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PREFACE 

This volume contains the full-length papers presented at the VII European Congress on Computational 

Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016) that was held on June 5-10, 2016 

on the Crete Island, Greece.  

The main objective of the quadrennial ECCOMAS Congresses is to provide a forum for presentation and 

discussion of state-of-the-art advances in computational methods in applied sciences and engineering, 

including basic methodologies, scientific developments and industrial applications and to serve as a platform 

for establishing links between research groups of academia and industry with common as well as 

complementary activities. About 2,200 papers were presented at the ECCOMAS Congress by authors from 

53 countries around the world. This volume, consists of 667 full length accepted papers which will be 

indexed by SCOPUS database with access to the pdf file of the paper.  

The ECCOMAS Congress 2016 is organized by the Institute of Structural Analysis and Antiseismic Research of 

the National Technical University of Athens under the support of the Greek Association for Computational 

Mechanics (GRACM), the Institute of Research and Development for Computational Methods in Engineering 

Sciences (ICMES) and the Computer Applications and Education in Engineering Sciences (CAEES). 

The editor of this volume would like to thank all authors for their contributions. Special thanks go to the 

colleagues who contributed to the organization of the Minisymposia and to the reviewers who, with their 

work, contributed to the scientific quality of this e-book. 
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V. Plevris 

Oslo and Akershus University College of Applied Sciences, Oslo, Norway 

 

 

  



iv 
 

ACKNOWLEDGEMENTS 

The conference organizers acknowledge the support towards the organization of the 7th European Congress 

on Computational Methods in Applied Sciences and Engineering, to the following organizations: 

 

 Greek Association for Computational Mechanics (GRACM) 

 Institute of Structural Analysis and Antiseismic  Research, National Technical University of Athens 

 John Argyris Foundation  

 Institute of Research and Development for Computational Methods in Engineering Sciences 

(ICMES) 

 Computer Applications and Education in Engineering Sciences (CAEES) 

 Region of Crete 

 Municipality of Hersonissos 

 

 

 

Plenary Speakers  

We would also like to thank the Plenary and Semi-Plenary Speakers for their help in the setting up of a high 

standard Scientific Programme. 

Plenary Speakers: Alexandre Ern, Charbel Farhat, Gerhard A. Holzapfel, Antonio Huerta, Thomas J.R. 

Hughes, Alfio Quarteroni, Ole Sigmund, Theodosios P. Tasios 

Semi-Plenary Speakers: Assyr Abdulle, Olivier Allix, Lourenco Beirao da Veiga, Andreas G. Boudouvis, 

Annalisa Buffa, Ramon Codina, Laura De Lorenzis, Bernard Geurts, Kyriakos Giannakoglou, Antonio J. Gil, 

Dan Givoli, Anthony Gravouil, George  Karniadakis, Mats G. Larson, Kim Meow Liew, Wing Kam Liu, Federico 

Negri, Shinji Nishiwaki, Ursula Rasthofer, Ernst Rank, Cord-Christian Rossow, Giancarlo Sangalli, Jörg 

Schröder, Bert Sluys, Christian Soize, Roberto Verzicco, Barbara Wohlmuth 

 
  



v 
 

SUMMARY 

Preface............................................................................................................................................... iii 
 
Acknowledgements........................................................................................................................... iv 

 

Contents.......................................................................................................................................... xvii 
  

 

VOLUME I 
SEMI-PLENARY LECTURES ................................................................................................................ 1 

 
MINISYMPOSIA 

MS 102 - COMPUTATIONAL MODELS IN BIOMECHANICS AND MECHANOBIOLOGY ….............................. 27 

Organized by Estefania Peqa, Renato Natal Jorge, Miguel A. Martínez, Pedro S. Martins 

 

MS 103 - MECHANICS OF BIOLOGICAL TISSUES …........................................................................................ 55 

Organized by Markus Böl, Gerhard A. Holzapfel 

 

MS 105 - SIMULATION OF CARDIOVASCULAR PROCEDURES AND DEVICES …............................................ 81 

Organized by Ferdinando Auricchio, Michele Conti, Simone Morganti, Alessandro Reali,  

Alessandro Veneziani 

 

MS 106 - DIRECT AND INVERSE METHODS FOR CARDIOVASCULAR AND PULMONARY  

BIOMECHANICS …......................................................................................................................................... 98 

Organized by Wolfgang A. Wall, C. Alberto Figueroa, Marek Behr 

 

MS 108 - NUMERICAL METHODS FOR COUPLED PROBLEMS IN BIOMEDICAL APPLICATIONS …............. 105 

Organized by Martina Bukac, Annalisa Quaini 

 

MS 111 - POPULATION BALANCE MODELING: CURRENT STATUS, FUTURE PROSPECTS AND NOVEL 

APPLICATIONS FROM NANOPARTICLES’ SYNTHESIS TO (LUNG) CANCER …............................................. 120 

Organized by Georgios Lolas, Georgios Bourantas, Panagiotis Gavriliadis, Konstantinos Syrigos 

 

MS 112 - ANEURYSMS: SOLID MECHANICS, FLUID MECHANICS, AND MECHANOBIOLOGY …................ 137 

Organized by Christian J. Cyron, Sven Hirsch, Philippe Bijlenga, Roland C. Aydin, Anne M. Robertson,  

Gerhard A. Holzapfel 

 

MS 113 - MATHEMATICAL AND NUMERICAL MODELING OF THE HEART …............................................. 155 

Organized by Luca Dede', Luca Pavarino, Alfio Quarteroni 

 

MS 115 - TUMOR GROWTH MODELING AND THE MECHANICAL ASPECTS OF CANCER …....................... 178 

Organized by Hector Gomez, Assad Oberai, Krishna Garikipati, Kristen Mills, Thomas J.R. Hughes 

 

MS 201 - MICROSTRUCTURE-DRIVEN DEFORMATION AND FAILURE IN CRYSTALLINE MATERIALS ….... 188 

Organized by Pilar Ariza, Lucia Nicola, Angelo Simone 

 

MS 202 - CIVIL ENGINEERING MATERIALS AND STRUCTURES UNDER EXTREME LOADINGS …............... 216 

Organized by Fabrice Gatuingt, Frédéric Dufour, Panagiotis Kotronis 



vi 
 

MS 203 - COMPUTATIONAL METHODS FOR MODELLING INSTABILITIES IN SOLIDS & STRUCTURES ….. 254 

Organized by Spyros A. Karamanos 

 

MS 204 - IMPACT AND CRASH MECHANICS …........................................................................................... 273 

Organized by Manfred Bischoff, Fabian Duddeck 

 

MS 205 - PROBABILISTIC APPROACH TO NUMERICAL SIMULATION OF FRACTURE …............................. 323 

Organized by Alexander V. Gerasimov 

 

MS 301 - METHODS FOR CUT AND COMPOSITE MESHES: THEORY, ALGORITHMS AND  

APPLICATIONS …......................................................................................................................................... 373 

Organized by Mats G. Larson, André Massing 

 

MS 302 - MESH GENERATION AND ADAPTION …...................................................................................... 384 

Organized by Josep Sarrate, Xevi Roca, Rafael Montenegro, Eloi Ruiz 

 

MS 303 - CURVED MESH GENERATION FOR HIGH-ORDER METHODS …................................................... 417 

Organized by Xevi Roca, Josep Sarrate 

 

MS 304 - COMPUTATIONAL MODELLING OF ADDITIVE PRODUCTION PROCESSES ….............................. 469 

Organized by Dirk Hartmann, Stefan Kollmannsberger, Ernst Rank, Utz Wever 

 

MS 305 - ADVANCED MESHING METHODS FOR INDUSTRIAL APPLICATIONS …....................................... 480 

Organized by Frederic Alauzet, Thierry Coupez, Alain Dervieux, Adrien Loseille 

 

MS 306 - LATTICE SPRING METHODS FOR LINEAR AND NONLINEAR CONTINUA …................................. 511 

Organized by Ioannis Doltsinis 

 

MS 403 - PARTICLE-BASED METHODS IN FLUID MECHANICS …................................................................ 539 

Organized by Sergio Idelsohn, Eugenio Oqate 

 

MS 404 - SIMULATION OF ENVIRONMENTAL FLOWS …............................................................................ 650 

Organized by Pablo Ortiz, Piotr K. Smolarkiewicz, Joanna Szmelter 

 

MS 405 - COMPUTATIONAL MODELING OF MULTIPHASE FLOWS: ADVANCED METHODS,  

INTERFACE PHENOMENA AND ENVIRONMENTAL APPLICATIONS …........................................................ 750 

Organized by Adeline Montlaur, Santiago Arias Calderón, Martin Kronbichler 

 

MS 406 - ADVANCES IN COMPUTATIONAL METHODS FOR GAS-LIQUID TWO-PHASE FLOW ….............. 788 

Organized by Byeong Rog Shin, Takeo Kajishima 

 

MS 408 - MANIPULATION AND CONTROL OF TURBULENT FLOW …......................................................... 831 

Organized by Markus Rütten, Christina Voß 

 

MS 409 - CURRENT TRENDS IN MODELLING AND SIMULATION OF TURBULENT FLOWS …..................... 865 

Organized by Suad Jakirlid 

 

  



vii 
 

MS 410 - COMPLEX FLUID FLOWS IN ENGINEERING: MODELLING, SIMULATION AND  

OPTIMIZATION …........................................................................................................................................ 949 

Organized by Stefanie Elgeti, Philipp Knechtges 

 

MS 411 - NON-NEWTONIAN HEAT AND FLUID FLOW SUBJECTED TO MAGNETIC FORCES …................ 1061 

Organized by Laszlo Konozsy, Dimitris Drikakis 

 

MS 412 - NUMERICAL METHODS FOR WAVES AND FLOWS IN COASTAL AND DEEP WATER 

HYDRODYNAMICS …................................................................................................................................. 1093 

Organized by Nina Shokina, Yuri Shokin, Leonid Chubarov, Gayaz Khakimzyanov, Vadym Aizinger,  

Denys Dutykh 

 

MS 414 - NEW TRENDS IN NUMERICAL METHODS FOR MULTI-MATERIAL COMPRESSIBLE FLUID 

FLOWS …................................................................................................................................................... 1139 

Organized by Andy Barlow, Michael Dumbser, Raphaël Loubère, Pierre-Henri Maire, Rob Rieben,  

Mikhail Shashkov, François Vilar 

 

MS 415 - COMPUTATIONAL NON-NEWTONIAN FLUID MECHANICS …................................................... 1205 

Organized by Georgios Georgiou, John Tsamopoulos 

 

MS 501 - ALGORITHMIC ASPECTS OF HIGH-PERFORMANCE COMPUTING FOR MECHANICS AND  

PHYSICS ………………………………………………………………………………………………………………….............................. 1237 

Organized by Santiago Badia, Victor Calo, Javier Principe 

 

MS 503 - HPC-BASED SIMULATIONS FOR THE ENGINEERING REALM AND INDUSTRIAL  

APPLICATIONS …....................................................................................................................................... 1277 

Organized by Makoto Tsubokura, Mariano Vázquez, Takayuki Aoki 

 

MS 504 - NUMERICAL METHODS AND TOOLS FOR KEY EXASCALE COMPUTING CHALLENGES IN 

ENGINEERING AND APPLIED SCIENCES ……………………………………………………………………............................ 1352 

Organized by Eugenio Oqate, Manolis Papadrakakis, Peter Wriggers 

 

MS 505 - INTERACTIVE SIMULATIONS IN COMPUTATIONAL ENGINEERING …....................................... 1392 

Organized by Adrian Harwood, Petra Wenisch 

 

MS 506 - ACCURACY AND EFFICIENCY OF APPROXIMATE COMPUTATIONS IN SCIENCE AND  

ENGINEERING …........................................................................................................................................ 1409 

Organized by Aram Soroushian 

 

MS 601 - SHOCK WAVE-BOUNDARY LAYER INTERACTION AND ITS CONTROL …................................... 1455 

Organized by Piotr Doerffer, George Barakos 

 

MS 602 - INNOVATIVE METHODS FOR FLUID-STRUCTURE-INTERACTION ….......................................... 1498 

Organized by E. Harald van Brummelen, Roger Ohayon, Trond Kvamsdal 

 

MS 603 - COMPUTATIONAL METHODS IN FLUID-STRUCTURE INTERACTION WITH IMPACT ON  

INDUSTRIAL APPLICATIONS ….................................................................................................................. 1582 

Organized by Elisabeth Longatte, Yannick Hoarau, Marianna Braza 

 



viii 
 

MS 605 - FRICTIONAL CONTACTS WITH LUBRICATION – BASICS AND APPLICATIONS …....................... 1623 

Organized by Michael Müller, Thomas Hagemann 

 

MS 606 - COMPUTATIONAL MODELING OF HYDRAULIC FRACTURING …............................................... 1637 

Organized by Gianluca Cusatis, Gilles Pijaudier-Cabot, Günther Meschke 

 

MS 607 - ADVANCES IN COMPUTATIONAL METHODS FOR LIQUID-VAPOR FLOWS WITH PHASE  

TRANSFER PROCESSES ….......................................................................................................................... 1672 

Organized by Rémi Abgrall, Pietro M. Congedo, Tore Flåtten, Bernhard Müller, Marica Pelanti,  

Maria Giovanna Rodio 

 

MS 608 - ADVANCES IN TIME INTEGRATION FOR SOLID, FLUID AND COUPLED SYSTEMS …................. 1709 

Organized by Ilinca Stanciulescu, Peter Betsch 

 

MS 609 - ADVANCED COMPUTATIONAL MODELING OF BATTERIES AND FUEL CELLS .......................... 1838 

Organized by Edwin Knobbe, Wolfgang A. Wall 

 

MS 610 - NUMERICAL METHODS TO STUDY THE CONTACT MECHANICS OF DRY, ADHESIVE AND 

LUBRICATED ROUGH SURFACES …........................................................................................................... 1850 

Organized by Carmine Putignano, Daniele Dini 

 

MS 612 - NUMERICAL SIMULATIONS FOR SMART-CITY APPLICATIONS ….............................................. 1876 

Organized by Julien Waeytens, Rachida Chakir 

 

MS 615 - COMPUTATIONAL MODELS IN MAGNETOHYDRODYNAMICS ….............................................. 1886 

Organized by Oleg Zikanov 

 

MS 701 - ADVANCED MATERIALS: COMPUTATIONAL ANALYSIS OF PROPERTIES AND  

PERFORMANCE ……………………………………………………………………………………………………….............................. 1893 

Organized by Vadim V. Silberschmidt, Valery P. Matveenko 

 

MS 702 - MODELING OF NANOFILLED COMPOSITES …............................................................................ 1971 

Organized by Konstantinos I. Tserpes 

 

MS 705 - IDENTIFICATION OF MATERIAL MODELS …............................................................................... 2003 

Organized by Danuta Szeliga, Wacław Kuś, Tadeusz Burczyoski, Jan Kusiak 

 

MS 706 - MODELING OF FIBER-BASED STRUCTURES - TEXTILES AND TEXTILE REINFORCED  

COMPOSITES ….......................................................................................................................................... 2010 

Organized by Yordan Kyosev, Philippe Boisse, Nahiene Hamila, Damien Durville 

 

MS 707 - MICROMECHANICAL MODELLING: COMPETITION BETWEEN ANALYTICAL AND NUMERICAL 

METHODS ….............................................................................................................................................. 2039 

Organized by Siegfried Schmauder, Vera Petrova 

 

MS 711 - FOURIER-BASED METHODS FOR COMPUTING THE BEHAVIOR OF HETEROGENEOUS MATERIALS 

DEVELOPMENTS, EXTENSIONS AND APPLICATIONS …............................................................................ 2099 

Organized by Lionel Gélébart, Hervé Moulinec, Franz Roters, François Willot 

 



ix 
 

MS 712 - SMART MATERIAL SYSTEMS AND STRUCTURES …................................................................... 2110 

Organized by Mieczysław Kuczma, Pavel Krejči, Jörg Schröder, Georgios E. Stavroulakis, Gwidon Szefer 

 

MS 713 - MICROSTRUCTURE-BASED MODELLING OF HETEROGENEOUS MATERIALS …........................ 2134 

Organized by Jan Zeman, Jan Novak, Guillermo Díaz 

 

MS 714 - STRENGTH, FATIGUE AND STABILITY OF COMPOSITE STRUCTURES ….................................... 2182 

Organized by Raimund Rolfes, Martin Ruess, Kai-Uwe Schröder 

 

 

VOLUME II 
MINISYMPOSIA 

MS 715 - COMPUTATIONAL ANALYSIS OF COMPOSITE STRUCTURES …................................................. 2210 

Organized by Efstathios E. Theotokoglou 

 

MS 801 - MULTISCALE COMPUTATIONAL HOMOGENIZATION FOR BRIDGING SCALES IN THE  

MECHANICS AND PHYSICS OF COMPLEX MATERIALS ….......................................................................... 2266 

Organized by Julien Yvonnet, Kenjiro Terada, Peter Wriggers, Marc Geers 

 

MS 802 - ADVANCES IN THE MODELLING OF MULTI-SCALE, MULTI-PHYSICS AND  

MULTI-UNCERTAINTY PROBLEMS …......................................................................................................... 2323 

Organized by Francisco M. Andrade Pires, Chengfeng Li 

 

MS 805 - ADVANCED MULTI-PHYSICS AND MULTI-SCALE TECHNIQUES FOR MODELING INELASTIC 

PROCESSES IN SOLIDS: DAMAGE, FRACTURE AND CONTACT MECHANICS …......................................... 2353 

Organized by Mauro Corrado, Marco Paggi, José Reinoso 

 

MS 806 - MULTISCALE MODELLING OF MATERIALS AND STRUCTURES ….............................................. 2363 

Organized by Tadeusz Burczyoski, Xavier Oliver, Maciej Pietrzyk, Alfredo Huespe 

 

MS 807 - ADVANCED COMPUTATIONAL STRATEGIES FOR MODELLING, SIMULATION AND 

CHARACTERISATION OF MULTI-SCALE HETEROGENEOUS MATERIALS …............................................... 2449 

Organized by Stéphane Bordas, Daniel Dias-da-Costa, Fabrice Pierron, Timon Rabczuk, Pierre Kerfriden, 

Pascal Lava 

 

MS 808 - MULTISCALE AND MULTIPHYSICS MODELING OF CEMENTITIOUS MATERIALS ….................. 2460 

Organized by Jörg F. Unger, Thomas Titscher 

 

MS 809 - MULTISCALE STOCHASTIC FINITE ELEMENT METHODS …........................................................ 2471 

Organized by George Stefanou, Xi Frank Xu, Yu Ching Wu 

 

MS 811 - MULTISCALE MODELING OF CONCRETE AND CONCRETE STRUCTURES ….............................. 2501 

Organized by Herbert Mang, Yong Yuan 

 

MS 901 - ISOGEOMETRIC METHODS ….................................................................................................... 2514 

Organized by Yuri Bazilevs, David J. Benson, Rene De Borst, Thomas J.R. Hughes, Trond Kvamsdal, 

Alessandro Reali, Giancarlo Sangalli, Clemens V. Verhoosel 

 



x 
 

MS 902 - INNOVATIVE NUMERICAL APPROACHES FOR MULTI-PHYSICS PROBLEMS …......................... 2558 

Organized by Anna Pandolfi, Laurent Stainier, Kerstin Weinberg 

 

MS 903 - ADVANCES IN FICTITIOUS DOMAIN METHODS FOR SOLID MECHANICS …............................. 2566 

Organized by Alexander Düster, Ernst Rank, Stefan Kollmannsberger, Andreas Schröder 

 

MS 905 - DISCONTINUOUS GALERKIN METHODS: NEW TRENDS AND APPLICATIONS …....................... 2614 

Organized by Sonia Fernández-Méndez, Nicoletta Franchina 

 

MS 906 - MATHEMATICAL ADVANCES IN ISOGEOMETRIC ANALYSIS ….................................................. 2715 

Organized by Annalisa Buffa, John A. Evans, Thomas J.R. Hughes, Giancarlo Sangalli 

 

MS 907 - REGULARIZED ENRICHED APPROXIMATIONS AND QUADRATURE FOR DISCONTINUITIES, 

SINGULARITIES AND CONTINUOUS-DISCONTINUOUS TRANSITION …................................................... 2726 

Organized by Elena Benvenuti, Giulio Ventura, José M.A. César de Sá 

 

MS 908 - VERIFICATION AND VALIDATION OF STRUCTURAL MECHANICS SIMULATION MODELS ....... 2734 

Organized by George Lampeas 

 

MS 910 - HIGH ORDER CFD METHODS: CONCLUSIONS AND OUTLOOK ….............................................. 2843 

Organized by Koen Hillewaert, John Ekaterinaris, Peter Vincent, Norbert Kroll, Norbert Huynh,  

Z.J. Wang 

 

MS 911 - NUMERICAL METHODS IN THE MECHANICS OF GENERALIZED CONTINUA …......................... 2869 

Organized by Elena Atroshchenko, Jack S. Hale, George Bourantas, Stéphane P.A Bordas 

 

MS 912 - HIGH-ORDER METHODS, SENSITIVITY ANALYSIS AND ADAPTATION FOR THE NAVIER  

STOKES EQUATIONS …………………………………………………………………………………………………........................... 2883 

Organized by Vincent Couaillier, Rémi Abgrall, Eusebio Valero 

 

MS 913 - HIGH-ORDER METHODS FOR POLYGONAL AND POLYHEDRAL MESHES ….............................. 2930 

Organized by Lourenço Beirao da Veiga, Franco Brezzi, Donatella Marini, Alessandro Russo 

 

MS 916 - DIRECT METHODS FOR LIMIT STATES OF MATERIALS AND STRUCTURES …............................ 2971 

Organized by Konstantinos V. Spiliopoulos, Dieter Weichert 

 

MS 917 - MESOSCOPIC METHODS FOR COMPLEX FLUIDS AND SOFT MATTER …................................... 3026 

Organized by Zhen Li, Wenxiao Pan, Igor V. Pivkin 

 

MS 918 - COMPUTER ALGEBRA SYSTEMS IN MODELLING STATIC AND DYNAMIC PROBLEMS IN 

MECHANICS OF SOLIDS …......................................................................................................................... 3045 

Organized by Alexander V. Matrosov, Dmitriy P. Goloskokov 

 

MS 919 - RECENT ADVANCES IN NUMERICAL SIMULATION AND ANALYSIS OF KINETIC MODELS …..... 3113 

Organized by E. Harald van Brummelen, Manuel Torrilhon 

 

MS 921 - RECENT ADVANCES IN BOUNDARY ELEMENT METHODS …..................................................... 3139 

Organized by Gernot Beer, Luiz Wrobel, Martin Schan 

 



xi 
 

MS 922 - HIGH-ORDER METHODS FOR ELASTIC WAVES AND THEIR APPLICATION …............................ 3211 

Organized by Thomas Hagstrom, Daniel Appelo 

 

MS 923 - NOVEL DISCRETIZATION METHODS – MATHEMATICAL AND MECHANICAL ASPECTS ……...... 3224 

Organized by Jörg Schröder, Peter Wriggers, Ferdinando Auricchio, Carsten Carstensen 

 

MS 1001 - STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION ….................................................... 3239 

Organized by J.F. Aguilar Madeira, Helder C. Rodrigues 

 

MS 1002 - EVOLUTIONARY ALGORITHMS AND METAHEURISTICS IN CIVIL ENGINEERING AND 

CONSTRUCTION MANAGEMENT …........................................................................................................... 3473 

Organized by Jorge Magalhaes-Mendes, David Greiner 

 

MS 1003 - ADVANCES IN DESIGN OPTIMIZATION OF STRUCTURES AND MATERIALS …........................ 3534 

Organized by Zhen Luo, Zhan Kang 

 

MS 1004 - AERODYNAMIC STRATEGIES FOR THE GLOBAL OPTIMIZATION OF FLYING  

CONFIGURATIONS IN SUPERSONIC FLOW …............................................................................................ 3596 

Organized by Adriana Nastase, Catalin Nae 

 

MS 1005 - MONITORING AND CONTROL OF STRUCTURES ….................................................................. 3630 

Organized by Resat Oyguc 

 

MS 1006 - PARAMETER IDENTIFICATION IN SOLID MECHANICS ….......................................................... 3652 

Organized by A. Gil Andrade-Campos, Marco Rossi, Sandrine Thuillier, Franck Toussaint,  

Marta C. Oliveira 

 

MS 1007 - ADDITIVE MANUFACTURING AND OPTIMIZATION …............................................................. 3689 

Organized by Ekkehard Ramm, Ole Sigmund, Pierre Duysinx, Wing Kam Liu 

 

MS 1008 - ULTRASONIC GUIDED WAVES TESTING AND MONITORING …............................................... 3753 

Organized by Yaacoubi Slah, Nico Declercq 

 

MS 1009 - ADJOINT METHODS FOR STEADY & UNSTEADY OPTIMIZATION …........................................ 3770 

Organized by Kyriakos C. Giannakoglou, Jens Dominik Mueller 

 

MS 1010 - INVERSE PROBLEMS, DESIGN AND OPTIMIZATION …............................................................. 4061 

Organized by Marcelo J. Colaço, Helcio R. B. Orlande, George S. Dulikravich 

 

MS 1011 - SURROGATE-ASSISTED EVOLUTIONARY ALGORITHMS IN AERODYNAMIC 

DESIGN/OPTIMIZATION …........................................................................................................................ 4082 

Organized by Varvara Asouti, Esther Andrés, Emiliano Iuliano 

 

MS 1013 - SOLUTION OF LARGE-SCALE INVERSE PROBLEMS ….............................................................. 4164 

Organized by Clint Dawson, Steve Mattis, Troy Butler, Lindley Graham 

 

MS 1014 - DESIGN OPTIMIZATION AND INVERSE PROBLEMS FOR WAVE PROPAGATION  

PROBLEMS …............................................................................................................................................. 4178 

Organized by Martin Berggren 



xii 
 

MS 1101 - REDUCED BASIS, POD AND PGD MODEL ORDER REDUCTION TECHNIQUES …...................... 4187 

Organized by  

 

MS 1103 - MATHEMATICAL SURROGATE MODELLING IN ELECTROMAGNETICS …................................. 4284 

Organized by Francisco Chinesta, Elias Cueto, Antonio Huerta, Pierre Ladeveze, Gianluigi Rozza 

 

MS 1201 - COMPUTATIONAL STRUCTURAL DYNAMICS …....................................................................... 4351 

Organized by  

Evangelos J. Sapountzakis, Andreas E. Kampitsis 

 

VOLUME III 
MINISYMPOSIA 

MS 1202 - ADVANCED BEAM MODELS …................................................................................................. 4445 

Organized by Dinar Camotim, Zuzana Dimitrovová, Rodrigo Gonçalves 

 

MS 1203 - THE MODELS AND INVESTIGATIONS METHODS OF DYNAMICS OF THE SOLIDS SYSTEMS  

WITH DRY FRICTION ….............................................................................................................................. 4553 

Organized by Alexey A. Kireenkov, Alexander V. Karapetyan 

 

MS 1204 - NONLINEAR DYNAMICS OF ROTATING STRUCTURES …......................................................... 4611 

Organized by Evangeline Capiez-Lernout, Marc P. Mignolet, Christian Soize 

 

MS 1206 - ADVANCES IN NUMERICAL METHODS FOR LINEAR AND NON-LINEAR DYNAMICS AND  

WAVE PROPAGATION …........................................................................................................................... 4674 

Organized by Alexander Idesman 

 

MS 1207 - COMPUTATIONAL SIMULATION OF SMART STRUCTURES AND MATERIALS …..................... 4728 

Organized by Ruediger Schmidt, Kai-Uwe Schröder 

 

MS 1208 - BIFURCATIONS AND STABILITY …............................................................................................ 4741 

Organized by Pekka Neittaanmäki, Nikolay Banichuk, Juha Jeronen, Tero Tuovinen 

 

MS 1209 - DYNAMIC ANALYSIS OF BEAMS UNDER MOVING VEHICLES: APPLICATION TO RAILWAY  

TRACK MODELLING, DESIGN AND REHABILITATION …............................................................................ 4780 

Organized by Fernardo Simões, Antonio Pinto da Costa 

 

MS 1210 - ADVANCES IN MODELING AND ANALYSIS OF FGM STRUCTURES …...................................... 4810 

Organized by Justin Murin, Stephan Kugler, Mehdi Aminbaghai 

 

MS 1211 - COMPUTATIONAL STRATEGIES FOR STRUCTURAL ROBUSTNESS ASSESSMENT …................ 4900 

Organized by Domenic Asprone, Fulvio Parisi 

 

MS 1212 - DYNAMICS AND SEISMIC RESPONSE OF ROCKING AND SELF-CENTERING STRUCTURES...... 4959 

Organized by Matthew DeJong, Elias Dimitrakopoulos, Michalis Fragiadakis 

 

MS 1213 - INNOVATIVE STRUCTURAL SYSTEMS FOR SEISMIC RESISTANT BUILDINGS …....................... 5142 

Organized by Carlo Castiglioni 

 



xiii 
 

MS 1214 - HISTORIC MASONRY STRUCTURES: MODELLING, ASSESSMENT & RETROFIT ….................... 5172 

Organized by Panagiotis Asteris, Charilaos Maniatakis, Constantine Spyrakos 

 

MS 1215 - NONLINEAR VIBRATIONS OF CONSERVATIVE AND NONCONSERVATIVE SYSTEMS:  

PHENOMENA AND ADVANCED NUMERICAL METHODS …...................................................................... 5396 

Organized by Malte Krack, Ludovic Renson, Gaëtan Kerschen 

 

MS 1216 - STRUCTURAL ANALYSIS AND VIBRATIONS ….......................................................................... 5444 

Organized by Diana V. Bambill, Carlos A. Rossit 

 

MS 1217 - COMPUTATIONAL METHODS IN EARTHQUAKE ENGINEERING AND STRUCTURAL  

DYNAMICS …............................................................................................................................................. 5464 

Organized by Vagelis Plevris, Georgia Kremmyda, Yasin Fahjan 

 

MS 1218 - STABILITY AND CONTROL OF FLEXIBLE STRUCTURES …......................................................... 5646 

Organized by Ilaria Venanzi, Marco Lepidi 

 

MS 1220 - DYNAMICS OF STRUCTURES SUBJECT TO SEISMIC EXCITATIONS …....................................... 5712 

Organized by Michel Géradin, Evtim Zahariev, Evangelos J. Sapountzakis 

 

MS 1221 - COMPUTATIONAL STRUCTURAL STABILITY …........................................................................ 5768 

Organized by Herbert A. Mang, Yeon-Bin Yang 

 

MS 1222 - INFLUENCE OF LIQUEFIABLE SOIL ON SINGLE AND CLOSELY CLUSTERED STRUCTURES ….... 5817 

Organized by Nawawi Chouw, Rolly Orense, Tam Larkin 

 

MS 1224 - INNOVATIVE SOLUTIONS FOR THE SEISMIC PROTECTION OF INDUSTRIAL BUILDINGS ....... 5834 

Organized by Walter Salvatore, Carlo Castiglioni, Francesco Morelli, Nikolaos Bakas 

 

MS 1225 - SEISMIC PERFORMANCE ASSESSMENT OF STRUCTURES AND SEISMIC RISK MITIGATION 

STRATEGIES …........................................................................................................................................... 5934 

Organized by Marco Vona 

 

MS 1301 - THE STOCHASTIC COMPUTER METHODS IN MECHANICS …................................................... 6029 

Organized by Marcin Kamioski, Takahiko Kurahashi 

 

MS 1303 - ANALYSIS AND DESIGN OF SAFETY CRITICAL SYSTEMS UNDER UNCERTAINTY ….................. 6091 

Organized by Edoardo Patelli, Michael Beer, Matteo Broggi, Francisco Alejandro Díaz De la O 

 

MS 1304 - STOCHASTIC MODELING AND IDENTIFICATION OF UNCERTAINTIES IN COMPUTATIONAL 

MECHANICS …........................................................................................................................................... 6136 

Organized by Johann Guilleminot, Maarten Arnst, Christian Soize 

 

MS 1306 - ERCOFTAC SIG-45: UNCERTAINTY QUANTIFICATION IN CFD AND FLUID STRUCTURE 

INTERACTION …........................................................................................................................................ 6196 

Organized by Didier Lucor, Sunetra Sarkar 

 

  



xiv 
 

MS 1307 - NON-INTRUSIVE SURROGATE MODELS FOR UNCERTAINTY QUANTIFICATION IN HIGH 

DIMENSIONS …......................................................................................................................................... 6250 

Organized by Bruno Sudret, Eleni Chatzi, Jean-Marc Bourinet, Nicolas Gayton 

 

MS 1308 - MODELLING AND INVERSE METHODS IN NONLINEAR DYNAMICAL SYSTEMS ….................. 6316 

Organized by Sotirios Natsiavas, Costas Papadimitriou, Eleni Chatzi, Dimitrios Giagopoulos 

 

MS 1309 - SCALABLE MULTI-FIDELITY MODELING FOR DESIGN, UNCERTAINTY QUANTIFICATION,  

AND INVERSE PROBLEMS …..................................................................................................................... 6383 

Organized by Paris Perdikaris, George Em. Karniadakis 

 

MS 1310 - COMPUTATIONAL METHODS FOR THE SOLUTION OF STOCHASTIC DIFFERENTIAL  

EQUATIONS …........................................................................................................................................... 6398 

Organized by Jianbing Chen, Ioannis Kougioumtzoglou, Vissarion Papadopoulos 

 

MS 1401 - TOICA: THERMAL OVERALL INTEGRATED CONCEPT AIRCRAFT ….......................................... 6420 

Organized by Pierre Arbez, Jean-Claude Dunyach 

 

STS 3 - INNOVATIVE DESIGN OPTIMIZATION TOOLS LINKED TO INDUSTRIAL AERONAUTICAL 

APPLICATIONS: TARGETING GREENER PERFORMANCES …..................................................................... 6471 

Organized by Jacques Periaux, Gabriel Bugeda 

 

STS 5 - TRANSITION LOCATION EFFECT ON SHOCK WAVE BOUNDARY LAYER INTERACTION …............ 6485 

Organized by Piotr Doerffer, Pawel Flaszynski 

 

STS 7 - MORPHING TECHNOLOGIES FOR AIRCRAFT WINGS …................................................................ 6496 

Organized by Hans Peter Monner 

 

STS 9 - ADVANCED WING HIGH-LIFT SYSTEMS …..................................................................................... 6505 

Organized by Jochen Wild 

 

YOUNG INVESTIGATORS MINISYMPOSIUM …......................................................................................... 6515 

Organized by Jaan-Willem Simon, Alexander Popp, Joan Baiges 

 

ECCOMAS OLYMPIAD MINISYMPOSIUM …............................................................................................. 6526 

 

 

VOLUME IV 

CONTRIBUTED SESSIONS 
CS 110 - NUMERICAL MODELS IN BIOMECHANICS …............................................................................... 6539 

 

CS 210 - NUMERICAL SIMULATION OF COMPOSITE MATERIALS …......................................................... 6637 

 

CS 211 - CRACK PROPAGATION …............................................................................................................. 6688 

 

CS 212 - NUMERICAL MODELING OF DAMAGE, FAILURE AND FRACTURE ….......................................... 6699 

 

  



xv 
 

CS 230 - DYNAMIC FAILURE AND FRACTURE …........................................................................................ 6799 

 

CS 310 - CAD, CAM AND CAE …................................................................................................................. 6847 

 

CS 320 - GRID GENERATION AND ADAPTIVE TECHNIQUES ….................................................................. 6911 

 

CS 410 - COMPUTATIONAL FLUID MECHANICS ….................................................................................... 6955 

 

CS 420 - MULTI-PHASE AND CHEMICALLY REACTING FLOWS ….............................................................. 7138 

 

CS 450 - NUMERICAL METHODS AND CONVERGENCE ACCELERATION IN CFD …................................... 7274 

 

CS 460 - UNSTEADY FLOW COMPUTATION ….......................................................................................... 7390 

 

CS 500 - HIGH PERFORMANCE COMPUTING …........................................................................................ 7572 

 

CS 610 - AERO-ACOUSTICS ….................................................................................................................... 7589 

 

CS 620 - COMPUTATIONAL CONTACT MECHANICS ….............................................................................. 7628 

 

CS 630 - SIMULATION OF FLUID-STRUCTURE INTERACTION …................................................................ 7640 

 

CS 720 - COMPUTATIONAL MATERIALS SCIENCE …................................................................................. 7711 

 

CS 750 - COMPUTATIONAL MODELING OF COMPOSITES ….................................................................... 7765 

 

CS 751 - SMART MATERIALS AND STRUCTURES …................................................................................... 7853 

 

CS 830 - COMPUTATIONAL NANOTECHNOLOGY ….................................................................................. 7875 

 

CS 840 - MULTI-SCALE COMPUTATIONAL METHODS FOR SOLIDS AND FLUIDS ….................................. 7886 

 

CS 930 - HIGH-ORDER DISCRETIZATION METHODS ….............................................................................. 7956 

 

CS 940 - EXTENDED DISCRETIZATION METHODS ….................................................................................. 8066 

 

CS 960 - MESHLESS METHODS ….............................................................................................................. 8115 

 

CS 980 - NUMERICAL AND SYMBOLIC COMPUTATION …........................................................................ 8162 

 

CS 990 - PARTICLE-BASED METHODS ….................................................................................................... 8196 

 

CS 1010 - COMPUTATIONAL INVERSE PROBLEMS AND OPTIMIZATION ….............................................. 8247 

 

CS 1020 - EVOLUTIONARY AND DETERMINISTIC METHODS FOR DESIGN, OPTIMIZATION AND  

CONTROL …............................................................................................................................................... 8391 

 

CS 1100 - REDUCTION ORDER METHODS …............................................................................................. 8539 

 



xvi 
 

CS 1200 - STRUCTURAL DYNAMICS …....................................................................................................... 8597 

 

CS 1201 - COMPUTATIONAL SOIL MECHANICS …..................................................................................... 8708 

 

CS 1202 - STRUCTURAL ANALYSIS AND MULTIBODY DYNAMICS …......................................................... 8739 

 

CS 1300 - UNCERTAINTY QUANTIFICATION AND ERROR ESTIMATION …............................................... 8769 

 

 
 
 
 

  



xvii 
 

CONTENTS 

Semi-plenary Lectures   
 
NONPARAMETRIC PROBABILISTIC APPROACH OF MODEL UNCERTAINTIES INTRODUCED BY A PROJECTION-

BASED NONLINEAR REDUCED-ORDER MODEL ………………………………………………………………………………………………….. 1 

Christian Soize, Charbel Farhat   

 
 

 

Minisymposia 
 

100 BIOLOGICAL SYSTEMS 
 
MS 102: COMPUTATIONAL MODELS IN BIOMECHANICS AND MECHANOBIOLOGY  
THE INFLUENCE OF MECHANICAL STIMULUS ON NUTRIENT TRANSPORT AND CELL GROWTH IN ENGINEERED 

CARTILAGE: A FINITE ELEMENT APPROACH …………………………………………………………………………………………….……….. 27 

S. Cortez, A. Completo, J.L. Alves   

 

HYBRID CELL CENTRED/VERTEX MODEL FOR LARGE TISSUE DEFORMATIONS ………………………………………………….. 37 

José J. Muqoz, Payman Mosaffa, Yanlan Mao, Rob Tetley, Nina Asadipour, Antonio Rodríguez-Ferran   

 

SENSITIVITY OF TEMPERATURE FIELD IN THE SYSTEM PROTECTIVE CLOTHING - FOREARM WITH RESPECT TO 

PERTURBATIONS OF EXTERNAL HEATING CONDITIONS …………………………………………………………………………………... 46 

Bohdan Mochnacki, Mariusz Ciesielski   

 

 
MS 103: MECHANICS OF BIOLOGICAL TISSUES 
INFLUENCE OF MUSCLE COMPRESSION ON DYNAMIC MUSCLE PERFORMANCE ……………………………….…………….. 55 

Tobias Siebert, Norman Stutzig, Olaf Till, Christian Rode   

 

A 3D ELECTROMECHANICAL FEM-BASED MODEL FOR CARDIAC TISSUE …………………………………………………….…….. 63 

Minh Tuan Duong, Alexander Jung, Ralf Frotscher, Manfred Staat   

 

BIOMECHANICAL PROPERTIES OF CORNEAL EXTRACELLULAR MATRIX USING EXPERIMENTAL AND 

COMPUTATIONAL METHODS ……………………………………………………………………………………………………………………….….. 74 

Hamed Hatami-Marbini   

 

 
MS 105: SIMULATION OF CARDIOVASCULAR PROCEDURES AND DEVICES 
MODELLING OF PATIENT-SPECIFIC CASES OF ATHEROSCLEROSIS IN CAROTID ARTERIES …………………………..…….. 81 

Timur Gamilov, Roman Pryamonosov, Sergey Simakov   

 

PERSONALIZED COMPUTATION OF FRACTIONAL FLOW RESERVE IN CASE OF TWO CONSECUTIVE STENOSES ... 90 

Yuri Vassilevski, Timur Gamilov, Philip Kopylov   

 

 
MS 106: DIRECT AND INVERSE METHODS FOR CARDIOVASCULAR AND PULMONARY BIOMECHANICS 
BLOOD FLOW IN THE COMMON CAROTID ARTERY WITH STENOSIS ………………………………………………….…………….. 98 

Helena Henriques, Luisa Sousa, Catarina Castro, Carlos António, Rosa Santos, Pedro Castro, Elsa Azevedo   



xviii 
 

MS 108: NUMERICAL METHODS FOR COUPLED PROBLEMS IN BIOMEDICAL APPLICATIONS 
A FENICS-HPC FRAMEWORK FOR MULTI-COMPARTMENT BLOCH-TORREY MODELS ………………….………………….. 105 

Dang Van Nguyen, Johan Jansson, Johan Hoffman   

 

 
MS 111: POPULATION BALANCE MODELING: CURRENT STATUS, FUTURE PROSPECTS AND NOVEL APPLICATIONS 
FROM NANOPARTICLES’ SYNTHESIS TO (LUNG) CANCER 
THERMODYNAMICS OF IRREVERSIBLE AGGREGATION ……………………………………………………………….………………….. 120 

Themis Matsoukas   

 

 
MS 112: ANEURYSMS: SOLID MECHANICS, FLUID MECHANICS, AND MECHANOBIOLOGY 
RELATIVE ROLES OF MECHANICS AND BIOCHEMISTRY IN THE INITIATION AND PROGRESSION OF CEREBRAL 

ANEURYSM THROMBOSIS ……………………………………………………………………………………………………………………….…….. 137 

Malebogo Ngoepe, Yiannis Ventikos   

 

TECHNIQUES TO INTEGRATE PATIENT-SPECIFIC SIMULATION OF ANEURYSMAL BLOOD FLOW INTO THE  

CLINICAL WORKFLOW ……………………………………………………………………………………………………………………………..…….. 147 

Gábor Závodszky, Roland Joó-Kovács, György Paál, István Szikora   

 

 
MS 113: MATHEMATICAL AND NUMERICAL MODELING OF THE HEART 
PROXIMAL ISOVELOCITY SURFACE FOR DIFFERENT MITRAL VALVE HOLE GEOMETRIES ………………….…………….. 155 

Alexandre This, Hernán G. Morales, Odile Bonnefous   

 

COMPARISON OF TETRAHEDRAL AND HEXAHEDRAL MESHES FOR FINITE ELEMENT SIMULATION OF CARDIAC 

ELECTRO-MECHANICS ……………………………………………………………………………………………………………………………..…….. 164 

Bernardo Lino De Oliveira, Joakim Sundnes   

 

 
MS 115: TUMOR GROWTH MODELING AND THE MECHANICAL ASPECTS OF CANCER 
A PARAMETRIC STUDY OF A MULTIPHASE POROUS MEDIA MODEL FOR TUMOR SPHEROIDS AND  

ENVIRONMENT INTERACTIONS ……………………………………………………………………………………………………………….…….. 178 

P. Mascheroni, D.P. Boso, C. Stigliano, M. Carfagna, L. Preziosi, P. Decuzzi, B.A. Schrefler   

 

 
 
200 DAMAGE, FRACTURE AND FAILURE 

 
MS 201: MICROSTRUCTURE-DRIVEN DEFORMATION AND FAILURE IN CRYSTALLINE MATERIALS 
STABILITY OF ASYMMETRIC GRAIN BOUNDARIES IN GRAPHENE …………………………………………………………………….. 188 

J.P. Mendez, F. Arca, M.P. Ariza   

 

DEFORMATION-DIFFUSION COUPLED ANALYSIS OF LONG-TERM HYDROGEN DIFFUSION IN NANOFILMS ….….. 197 

Xingsheng Sun, Pilar Ariza, Kevin Wang   

 

MESH OBJECTIVE DAMAGE MODELING OF DUCTILE FRACTURE AT VISCO-PLASTIC CONTINUUM RESPONSE ... 209 

Senad Razanica, Ragnar Larsson, B. Lennart Josefson   

 

 
 



xix 
 

MS 202: CIVIL ENGINEERING MATERIALS AND STRUCTURES UNDER EXTREME LOADINGS 
EQUIVALENT SDOF MODEL FOR ESTIMATING BLAST-INDUCED DYNAMIC REACTIONS OF EQUILATERAL 

TRIANGULAR HARDENED WALL ELEMENTS …………………………………………………………………………………………………….. 216 

Sebastian Mendes, Liling Cao, Douglas Heinze, Elisabeth Malsch   

 

MODELLING STRATEGIES OF PRESTRESSING TENDONS AND REINFORCEMENT BARS IN CONCRETE  

STRUCTURES ………………………………………………………………………………………………………………………………………………….. 234 

Antoine Llau, Ludovic Jason, Frédéric Dufour, Julien Baroth   

 

MODELING AND SIMULATION FOR AN OPTIMIZED DESIGN OF A DYNAMIC BEND TEST. ……………………………….. 242 

Rana Akiki, Fabrice Gatuingt, Cédric Giry, Nicolas Schmitt, Lavinia Stéfan   

 

 
MS 203: COMPUTATIONAL METHODS FOR MODELLING INSTABILITIES IN SOLIDS & STRUCTURES 
ON STABILITY LOSS OF A THIN-WALLED SPHERICAL SHELL SUBJECTED TO EXTERNAL PRESSURE AND INTERNAL 

HOMOGENEOUS CORROSION ……………………………………………………………………………………………………………………….. 254 

Emmanuel Gutman, Rudolf Bergman, Semyon Levitski   

 

EFFICIENCY OF DAMAGE-PLASTICITY MODELS IN CAPTURING COMPACTION-EXPANSION TRANSITION OF 

CONCRETE UNDER DIFFERENT COMPRESSION LOADING CONDITIONS ………………………………………………………….. 261 

Reza Mousavi, Masoud D. Champiri, Kaspar J. Willam   

 

 
MS 204: IMPACT AND CRASH MECHANICS 
A SIMPLIFIED MODEL OF A STEEL COLUMN SUBJECTED TO IMPACT ……………………………………………………………….. 273 

Piseth Heng, Mohammed Hjiaj, Jean-Marc Battini   

 

MATERIAL MODELLING OF CAST ALUMINIUM BY APPLICATION OF THE WILKINS DAMAGE MODEL ………..…….. 287 

Christian Mühlstätter, Matthias Hartmann   

 

FINITE ELEMENT SIMULATION OF CRACK PROPAGATION AND DELAMINATION IN LAYERED SHELLS DUE TO  

BLADE CUTTING …………………………………………………………………………………………………………………………………….……….. 295 

Federica Confalonieri, Aldo Ghisi, Umberto Perego   

 

EVOLUTIONARY LEVEL SET METHOD FOR CRASHWORTHINESS TOPOLOGY OPTIMIZATION …….…………………….. 309 

Mariusz Bujny, Nikola Aulig, Markus Olhofer, Fabian Duddeck   

 

 
MS 205: PROBABILISTIC APPROACH TO NUMERICAL SIMULATION OF FRACTURE 
NUMERICAL SIMULATION OF   HIGH-VELOCITY INTERACTION ELEMENTS WITH THIN-WALLED STRUCTURES  ... 323 

Alexander V. Gerasimov, Sergey V. Pashkov   

 

NUMERICAL SIMULATION OF MULTILAYER COMPOSITES FAILURE UNDER DYNAMIC LOADING ……….…………….. 334 

Sergey A. Zelepugin, Aleksey S. Zelepugin, Vladimir F. Tolkachev  

 

SIMULATION OF MECHANICAL PROPERTIES OF CERAMIC PARTS PRODUCED BY ADDITIVE TECHNOLOGIES IN  

WIDE RANGE OF LOADING RATES ………………………………………………………………………………………………….…….………….. 341 

Vladimir A. Skripnyak, Evgeniya Skripnyak, Vladimir V. Skripnyak, Irina K. Vaganova  

 

 

 

 



xx 
 

FRACTURE OF THIN METAL SHEETS WITH DISTRIBUTION OF GRAIN SIZES IN THE LAYERS ………………….…..……….. 355 

Natalia V. Skripnyak, Vladimir V. Skripnyak, Vladimir A. Skripnyak   

 

BRITTLE OR QUASI-BRITTLE FRACTURE OF CERAMIC NANOCOMPOSITES UNDER DYNAMIC LOADING ……..…….. 366 

Evgeniya G. Skripnyak, Vladimir A. Skripnyak, Vladimir V. Skripnyak, Natalia V. Skripnyak, Irina K. Vaganova  

 

 
 
300 DISCRETIZATION METHODS, GRID, MESH AND SOLID GENERATION 
 
MS 301: METHODS FOR CUT AND COMPOSITE MESHES: THEORY, ALGORITHMS AND APPLICATIONS 
REMOVING THE STABILIZATION PARAMETER IN FITTED AND UNFITTED SYMMETRIC NITSCHE  

FORMULATIONS ……………………………………………………………………………………………………………………………………..………. 373 

Christoph Lehrenfeld   

 

 
MS 302: MESH GENERATION AND ADAPTION 
A SEMI-UNSTRUCTURED TURBOMACHINERY MESHING LIBRARY WITH FOCUS ON MODELING OF SPECIFIC 

GEOMETRICAL FEATURES ……………………………………………………………………………………………………………………………….. 384 

Marco Stelldinger, Thomas Giersch, Felix Figaschewsky, Arnold Kühhorn   

 

CARTESIAN MESHES WITH DYNAMIC LOCAL WAVELET-BASED REFINEMENT FOR FLOW AROUND BODY 

PROBLEMS. …………………………………………………………………………………………………………………………………………..……….. 402 

Kirill Merkulov, Igor Menshov, Andrew Plenkin   

 

A MESH GENERATION METHOD FOR HISTORICAL MONUMENTAL BUILDINGS: AN INNOVATIVE APPROACH ... 409 

Giovanni Castellazzi, Antonio Maria D'Altri, Stefano De Miranda, Francesco Ubertini, Gabriele Bitelli, 
Alessandro Lambertini, Ilenia Selvaggi, Antonio Tralli  
 

 

 

 
MS 303: CURVED MESH GENERATION FOR HIGH-ORDER METHODS 
HIGH-ORDER CURVED MESH GENERATION BY USING A FINE LINEAR TARGET MESH ………………………..…………….. 417 

Verena Schmid, Hadrien Beriot, Onur Atak, Gwenael Gabard   

 

AUTOMATIC GENERATION OF 3D UNSTRUCTURED HIGH-ORDER CURVILINEAR MESHE ………………………..……….. 428 

Michael Turner, David Moxey, Spencerj.Sherwin, Joaquim Peiro   

 

MESH GENERATION FOR THE 2D NURBS-ENHANCED FINITE ELEMENT METHOD …………………………………….…….. 444 

Ruben Sevilla, Luke Rees, Oubay Hassan   

 

IMAGE SEGMENTATION TECHNIQUES FOR BIOMEDICAL MODELING: ELECTROPHYSIOLOGY AND 

HEMODYNAMICS ……………………………………………………………………………………………………………………………….………….. 454 

Alexander Danilov, Roman Pryamonosov, Alexandra Yurova   

 

A CONSISTENTLY LINEARISED SOLID MECHANICS BASED MESH DEFORMATION TECHNIQUE FOR HIGH ORDER 

CURVED ELEMENTS ……………………………………………………………………………………………………………………………………….. 462 

Roman Poya, Ruben Sevilla, Antonio Gil   

 

 
 
 



xxi 

MS 304: COMPUTATIONAL MODELLING OF ADDITIVE PRODUCTION PROCESSES 
VALIDATION OF MODELLING ASSUMPTIONS FOR THE BUILDUP SIMULATION OF LASER BEAM MELTING ON  

THE BASIS OF THE RESIDUAL STRESS DISTRIBUTION …………………………………………………………………………..………….. 469 

Fabian Bayerlein, Christian Zeller, Martin Wunderer, Johannes Weirather, Michael F. Zäh, Markus Schmid, 

Georg Schlick, Roland Hessert, Michael Hofmann, Thomas Uihlein 

MS 305: ADVANCED MESHING METHODS FOR INDUSTRIAL APPLICATIONS 
MESHING OCEAN DOMAINS FOR COASTAL ENGINEERING APPLICATIONS ………………………………….………………….. 480 

Alexandros Avdis, Christian Jacobs, Simon Mouradian, Jon Hill, Matthew Piggott  

HIGH-ORDER TRACKING METHOD FOR THE SIMULATION OF BURNING FRONTS IN 3D ………………………………….. 493 

Denis Gueyffier, Bastien Andrieu  

SINGULAR MESH GENERATION FROM MULTIPLE OVERSET MESHES: A TOOL FOR INDUSTRIAL APPLICATIONS…501 

Gennaro Abbruzzese, Marta Cordero Gracia, Mariola Gómez López, Nuno Vinha  

MS 306: LATTICE SPRING METHODS FOR LINEAR AND NONLINEAR CONTINUA 
GENERATING TRIANGULAR LATTICES FOR SURFACES WITH IRREGULAR BOUNDARY …………………….……………….. 511 

Tatiana Sá Marques, Vitor Dias Da Silva  

WAVE TRANSMISSION THROUGH NONLINEAR IMPACTING METAMATERIAL UNIT ………………………….…………….. 526 

Arnab Banerjee, Raj Das, Emilio Calius  

400 FLOW PROBLEMS 

MS 403: PARTICLE-BASED METHODS IN FLUID MECHANICS 
A PARTICLE FINITE ELEMENT METHOD FOR MACHINING SIMULATIONS ………………………………………………………….. 539 

Juan Manuel Rodríguez Prieto, Pär Jonsén, Ales Svoboda  

DYNAMICS OF DUST PARTICLES NEAR THE ROUND BELL SUCTION INLET ……………………………………..………………….. 554 

Olga Averkova, Konstantin Logachev, Artur Logachev, Elena Tolmacheva  

RECOVERY OF DIFFERENTIATION/INTEGRATION COMPATIBILITY OF MESHLESS OPERATORS VIA LOCAL 

ADAPTATION OF THE POINT CLOUD IN THE CONTEXT OF NODAL INTEGRATION …………………………………………….. 568 

Gabriel Fougeron, Guillaume Pierrot, Denis Aubry  

MODELING OF NON-SPHERICAL, ELONGATED PARTICLES FOR INDUSTRIAL SUSPENSION FLOW SIMULATION ... 586 

Jakob Dominik Redlinger-Pohn, Lisa Maria König, Christoph Kloss, Christoph Goniva, Stefan Radl  

A LAGRANGIAN FINITE ELEMENT METHOD FOR THE SIMULATION OF 3D COMPRESSIBLE FLOWS ………………….. 600 

Massimiliano Cremonesi, Attilio Frangi  

A LAGRANGIAN PFEM APPROACH TO THE NUMERICAL SIMULATION OF 3D LARGE SCALE LANDSLIDES  

IMPINGING IN WATER RESERVOIRS …………………………………………………………………………………………………….………….. 608 

Massimiliano Cremonesi, Francesco Ferri, Umberto Perego  



xxii 
 

A NUMERICAL INVESTIGATION OF FLOW DYNAMICS OVER A TRAPEZOIDAL SMOOTH OPEN CHANNEL ……..….. 619 

Giacomo Viccione   

 

A NUMERICAL INVESTIGATION OF LIQUID IMPACT ON PLANAR SURFACES. ………………………………………….……….. 627 

Giacomo Viccione, Vittorio Bovolin, Eugenio Pugliese Carratelli   

 

AERODYNAMICS OF AN UNSTEADY PARTICLE FLOW IN THE CHUTE ……………………………………………..……………….. 638 

Olga Averkova, Ivan Logachev, Konstantin Logachev   

 

 
MS 404: SIMULATION OF ENVIRONMENTAL FLOWS 
PROJECTION-BASED MODEL REDUCTION FOR FINITE ELEMENT APPROXIMATION OF SHALLOW WATER  

FLOWS …………………………………………………………………………………………………………….…………………………………………..….. 650 

Matthew Farthing, Alexander Lozovskiy, Christopher Kees   

 

EFFICIENT TWO-DIMENSIONAL SIMULATION MODELS FOR HYDRAULIC AND MORPHODYNAMIC TRANSIENTS..670 

Pilar Garcia-Navarro, Javier Murillo, Mario Morales-Hernandez, Carmelo Juez, Asier Lacasta   

 

ADDRESSING THE CHALLENGES OF IMPLEMENTATION OF HIGH-ORDER FINITE-VOLUME SCHEMES FOR 

ATMOSPHERIC DYNAMICS ON UNSTRUCTURED MESHES ……………………………………………………………………………….. 684 

Panagiotis Tsoutsanis, Dimitris Drikakis   

 

MODELLING OF LONG WAVES (SEICHES) IN CASCAIS BAY …………………………………………………………..………………….. 709 

Vera Bras, Antonio Trigo-Teixeira   

 

A MESHLESS METHOD FOR SIMULATION OF PARTICLE-DRIVEN GRAVITY CURRENTS WITH OBSTACLES ….…….. 720 

Karel Kovářík, Jozef Mužík, Dana Sitányiová   

 

APPLICATION OF THE SHALLOW WATER EQUATIONS TO REAL FLOODING CASE ………………………………..………….. 735 

Hani Ali, Pierre-Yves Lagrée, Jose-Maria Fullana   

 

 
MS 405: COMPUTATIONAL MODELING OF MULTIPHASE FLOWS: ADVANCED METHODS, INTERFACE PHENOMENA 
AND ENVIRONMENTAL APPLICATIONS 
A MULTIPHASE MODEL FOR THE NUMERICAL SIMULATION OF ICE-FORMATION IN SEA-WATER ……….………….. 750 

Vanessa Covello, Antonella Abbà, Luca Bonaventura, Alessandro Della Rocca, Lorenzo Valdettaro   

 

A 3D CFD NUMERICAL STUDY OF THE BUBBLE GENERATION PROCESS INTO A BUBBLE T-JUNCTION  

GENERATOR AND ITS COMPARISON WITH EXPERIMENTAL DATA: PART I ………………………………………………….….. 772 

Santiago Arias, Adeline Montlaur   

 

 
MS 406: ADVANCES IN COMPUTATIONAL METHODS FOR GAS-LIQUID TWO-PHASE FLOW 
COUPLING OF FLUID STUCTURE INTRACTION SOLVER WITH A VOF METHOD FOR MULTIPHASE STRUCTURE 

INTERACTION ……………………………………………………………………………………………………………………………………….……….. 788 

Daniele Cerroni, Roberto Da Via', Sandro Manservisi, Filippo Menghini   

 

A METHOD OF CHAINED ANALYTICAL WAVE STRUCTURES FOR LARGE SCALE STRATIFIED TWO-PHASE PIPE 

FLOWS …………………………………………………………………………………………………………………………………………….…………….. 806 

Andreas Holm Akselsen   



xxiii 
 

MS 408: MANIPULATION AND CONTROL OF TURBULENT FLOW 
MODELING OF EXCITATION OF CONTROLLING DISTURBANCES IN SWEPT WING BOUNDARY LAYER BY MEANS  

OF PLASMA ACTUATORS …………………………………………………………………………………………………………………….………….. 831 

Sergey Chernyshev, Andrey Kiselev, Aleksandr Kuryachii   

 

NUMERICAL SIMULATION OF INTERACTION PROCESS BETWEEN DIELECTRIC BARRIER DISCHARGE AND DUCT 

FLOW …………………………………………………………………………………………………………………………………………………………….. 844 

Pavel Semenev, Dmitriy Pudovikov, Pavel Toktaliev   

 

IMPLEMENTATION OF POD AND DMD METHODS IN APACHE SPARK FRAMEWORK FOR SIMULATION OF 

UNSTEADY TURBULENT FLOW IN THE MODEL COMBUSTOR ………………………………………………..……………………….. 857 

Mikhail Kalugin, Sergei Strijhak   

 

 
MS 409: CURRENT TRENDS IN MODELLING AND SIMULATION OF TURBULENT FLOWS 
NUMERICAL VALIDATION OF A FOUR PARAMETER LOGARITHMIC TURBULENCE MODEL ……………………………….. 865 

Daniele Cerroni, Roberto Da Vià, Sandro Manservisi, Filippo Menghini   

 

LARGE-EDDY SIMULATION AND FAR FIELD ACOUSTICS OF A SUBSONIC HOT JET ……………………………………..…….. 878 

O. Labbé   

 

ON THE APPLICATION OF MODERN TURBULENCE MODELS IN THE FLOW LAMINARIZATION PROBLEMS ……….. 893 

Sergey Chernyshev, Aleksander Ivanov, Andrey Kiselev, Dmitriy Sboev, Leonid Teperin, Petr Vorotnikov, 

Valeriy Vozhdaev 

  

 

 

ASSESSMENT OF RANS AND DES METHODS FOR THE AHMED BODY …………………………………………..………………….. 912 

Emmanuel Guilmineau, Gan Bo Deng, Alban Leroyer, Patrick Queutey, Michel Visonneau, Jeroen Wackers   

 

A WAY TO IMPROVE JET MODELING WITHIN RANS EQUATION SYSTEM …………………………………………………….….. 922 

Alexey Troshin   

 

A MODIFIED SSG/LLR-ω REYNOLDS STRESS MODEL FOR PREDICTING BLUFF BODY AERODYNAMICS …………….. 936 

Csaba Klajbár, László Könözsy, Karl W. Jenkins   

 

 
MS 410: COMPLEX FLUID FLOWS IN ENGINEERING: MODELLING, SIMULATION AND OPTIMIZATION 
NUMERICAL ANALYSIS OF RAREFIED GAS FLOWS USING THE ACADEMIC CFD CODE GALATEA ……………………….. 949 

Angelos Klothakis, Georgios Lygidakis, Ioannis Nikolos   

 

TOPOLOGY OPTIMIZATION FOR FLUID FLOW EMPLOYING LOCAL OPTIMALITY CRITERIA ……………………………….. 967 

Philip Sarstedt, Gerhard Kachel, Jörg Ettrich, Karl Bühler   

 

NUMERICAL SIMULATION OF THE CONJUGATE HEAT TRANSFER IN THE COOLING SYSTEM OF THE  

COMBUSTION CHAMBERS OF THE AVIATION RAMJET ON THE ENDOTHERMIC FUELS ……………………..…………….. 979 

Vadim Volokhov, Pavel Toktaliev, Sergei Martynenko   

 

SENSITIVITY STUDY OF THE NUMERICAL SETUP FOR AN AUTOMATIC OPTIMIZATION PROCEDURE FOR A 

HYDRAULIC MACHINE …………………………………………………………………………………………………………………………………….. 992 

Alexander Tismer, Markus Schlipf, Stefan Riedelbauch   



xxiv 

ADVANCES IN GEOMETRICAL PARAMETRIZATION AND REDUCED ORDER MODELS AND METHODS FOR 

COMPUTATIONAL FLUID DYNAMICS PROBLEMS IN APPLIED SCIENCES AND ENGINEERING: OVERVIEW AND 

PERSPECTIVES …………………………………………………………………………………………………………………………………..………….. 1013 

F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, G. Rozza  

NEAR WALL BEHAVIOR OF IMPLICIT LARGE EDDY SIMULATIONS ………………………………………………………………….. 1032 

Ioannis Kokkinakis, Dimitris Drikakis  

VALIDATION AND VERIFICATION OF A 2D LATTICE BOLTZMANN SOLVER FOR INCOMPRESSIBLE FLUID  

FLOW …………………………………………………………………………………………………………………………………………..………………. 1046 

Tamás István Józsa, Máté Szőke, Tom-Robin Teschner, László Könözsy, Irene Moulitsas  

MS 411: NON-NEWTONIAN HEAT AND FLUID FLOW SUBJECTED TO MAGNETIC FORCES 
VALIDATION OF A MAGNETO- AND FERRO-HYDRODYNAMIC MODEL FOR NON-ISOTHERMAL FLOWS IN 

CONJUNCTION WITH NEWTONIAN AND NON-NEWTONIAN FLUIDS …………………………………………………………….. 1061 

László Könözsy, Pietro Scienza, Dimitris Drikakis  

NUMERICAL STUDY OF MAGNETIC PARTICLES CONCENTRATION IN BIOFLUID (BLOOD) UNDER THE  

INFLUENCE OF HIGH GRADIENT MAGNETIC FIELD IN MICROCHANNEL …………………………………….………………….. 1084 

Vassilios Loukopoulos, George Bourantas, Dimitrios Labropoulos, Vassilios-Martin Nikiforidis, Stéphane 

Bordas, George Nikiforidis  

MS 412: NUMERICAL METHODS FOR WAVES AND FLOWS IN COASTAL AND DEEP WATER HYDRODYNAMICS 
NEW ALGORITHM FOR NUMERICAL SIMULATION OF SURFACE WAVES WITHIN THE FRAMEWORK OF THE  

FULL NONLINEAR DISPERSIVE MODEL …………………………………………………………………………………….…………………….. 1093 

Zinaida Fedotova, Oleg Gusev, Gayaz Khakimzyanov  

NUMERICAL MODELLING OF SURFACE WAVES IN THE FRAMEWORK OF THE SHALLOW WATER MODEL ….….. 1104 

Nina Shokina, Gayaz Khakimzyanov  

ON NUMERICAL METHODS FOR SOLVING RUN-UP PROBLEMS. COMPARATIVE ANALYSIS OF NUMERICAL 

ALGORITHMS AND NUMERICAL RESULTS. ……………………………………………………………………………..…………………….. 1127 

Leonid Chubarov, Alexandr Rychkov, Gayaz Khakimzyanov, Yurii Shokin  

MS 414: NEW TRENDS IN NUMERICAL METHODS FOR MULTI-MATERIAL COMPRESSIBLE FLUID FLOWS 
EULERIAN CALCULATIONS OF MULTIMATERIAL FLOWS WITH SUB-CELL RECONSTRUCTION OF INTERFACES ... 1139 

Igor Menshov, Pavel Zakharov  

SOME ACOUSTIC-TRANSPORT SPLITTING SCHEMES FOR TWO-PHASE COMPRESSIBLE FLOWS …….……………….. 1151 

Simon Peluchon, Gérard Gallice, Pierre-Henri Maire  

LAGRANGE-FLUX EULERIAN SCHEMES FOR COMPRESSIBLE MULTIMATERIAL FLOWS ………………………………….. 1165 

Florian De Vuyst, Thibault Gasc, Renaud Motte, Mathieu Peybernes, Raphael Poncet  

ISOTROPY–PRESERVING SLOPE LIMITERS FOR FINITE VOLUME METHODS ON SQUARE MESHES ………..……….. 1179 

Jan Velechovsky, Marianne Francois  



xxv 
 

BUILDING A MORE EFFICIENT LAGRANGE-REMAP SCHEME THANKS TO PERFORMANCE MODELING ………….. 1191 

Thibault Gasc, Florian De Vuyst, Mathieu Peybernes, Raphaël Poncet, Renaud Motte   

 

 
MS 415: COMPUTATIONAL NON-NEWTONIAN FLUID MECHANICS 
DEVELOPMENT OF CONFINED VISCOPLASTIC FLOWS WITH HETEROGENEOUS WALL SLIP …………………….…….. 1205 

Pandelitsa Panaseti, Maria Philippou, Zacharias Kountouriotis, Georgios Georgiou   

 

SQUEEZE FLOW OF VISCOPLASTIC BINGHAM MATERIAL ………………………………………………………………………….….. 1215 

Larisa Muravleva   

 

 
 
500 HIGH PERFORMANCE COMPUTING 
 
MS 501: ALGORITHMIC ASPECTS OF HIGH-PERFORMANCE COMPUTING FOR MECHANICS AND PHYSICS 
PSEUDOMULTIGRID GAUSS–SEIDEL METHOD FOR LARGE SCALE AND HIGH PERFORMANCE COMPUTING ….. 1237 

Sergey Martynenko, Vadim Volokhov, Pavel Toktaliev   

 

ALGORITHM FOR FAST SIMULATIONS OF SPACE-TIME FINITE ELEMENT METHOD ………………………………..…….. 1260 

Marcin Skotniczny, Anna Paszynska, Maciej Paszynski   

 

HYBRID PARALLELISATION OF AN ALGORITHMICALLY DIFFERENTIATED ADJOINT SOLVER ………………………….. 1268 

Pavanakumar Mohanamuraly, Jan Christian Huckelheim, Jens-Dominik Mueller   

 

 
MS 503: HPC-BASED SIMULATIONS FOR THE ENGINEERING REALM AND INDUSTRIAL APPLICATIONS 
EFFICIENT PARALLEL GEOMETRY DISTRIBUTION FOR THE SIMULATION OF COMPLEX FLOWS ………..…………….. 1277 

Andreas Lintermann   

 

LARGE-SCALE FREE-SURFACE FLOW SIMULATION USING LATTICE BOLTZMANN METHOD ON MULTI-GPU 

CLUSTERS ………………………………………………………………………………………………………………………………………………….….. 1294 

Naoyuki Onodera, Kunihide Ohashi,   

 

LARGE-SCALE LES ANALYSIS OF AUTOMOTIVE ENGINE COOLING FAN ………………………………………………………….. 1305 

Yuji Kobayashi, Kenji Yoshida, Itsuhei Kohri, Masaharu Sakai, Hideo Asano   

 

DIRECT AEROACOUSTIC SIMULATION RELATED WITH MODE CHANGE IN A RECORDER ……………………………….. 1315 

Hiroshi Yokoyama, Ryoma Hamasuna, Akira Miki, Hirofumi Onitsuka, Akiyoshi Iida   

 

NUMERICAL ANALYSIS OF RADIO FREQUENCY BLACKOUT FOR ATMOSPHERIC REENTRY VEHICLE USING  

CFD-CEM COMBINED METHOD …………………………………………………………………………………………………………..……….. 1325 

Yusuke Takahashi, Reo Nakasato, Nobuyuki Oshima   

 

DIRECT FEM LARGE SCALE COMPUTATION OF TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS  

AND MARINE ENERGY ………………………………………………………………………………………………………………………………….. 1339 

Ezhilmathi Krishnasamy, Johan Hoffman, Johan Jansson   

 

 
 



xxvi 
 

MS 504: NUMERICAL METHODS AND TOOLS FOR KEY EXASCALE COMPUTING CHALLENGES IN ENGINEERING  
AND APPLIED SCIENCES 
KINETIC MODELS AND ALGORITHMS FOR SOLUTION OF THE MAGNETOGASDYNAMIC PROBLEMS ON THE 

MODERN SUPERCOMPUTING SYSTEMS ……………………………………………………………………………………………………….. 1352 

Boris Chetverushkin, Nicola D'Ascenzo, A. Saveliev, Valeri Saveliev   

 

ERROR ANALYSIS AND QUANTIFICATION IN NEURON SIMULATIONS …………………………………………………….…….. 1366 

Francesco Casalegno, Francesco Cremonesi, Stuart Yates, Michael L. Hines, Felix Schürmann, Fabien 

Delalondre  

 

 

 

EVALUATION OF SPARSE LINEAR ALGEBRA OPERATIONS IN TRILINOS ………………………………………..……………….. 1381 

Mohammad Siahatgar, Gabriele Von Voigt   

 

 
MS 505: INTERACTIVE SIMULATIONS IN COMPUTATIONAL ENGINEERING 
AUTOMATIC VISUALIZATION AND CONTROL OF ARBITRARY NUMERICAL SIMULATIONS …………………………….. 1392 

Jan P. Springer, Helen Wright   

 

 
MS 506: ACCURACY AND EFFICIENCY OF APPROXIMATE COMPUTATIONS IN SCIENCE AND ENGINEERING 
DIRECT TIME-DOMAIN INTEGRATION APPROACH FOR VISCOELASTIC SYSTEMS INVOLVING VARIOUS 

DAMPING MODELS ……………………………………………………………………………………………………………………………………….. 1409 

Zhe Ding, Li Li, Yujin Hu   

 

ON THE PERFORMANCE OF A COMPUTATIONAL COST REDUCTION TECHNIQUE APPLIED TO COOLING TOWERS 

TRANSIENT ANALYSIS ……………………………………………………………………………………………………………….………………….. 1421 

Aram Soroushian, Amin Jahani Mehrnoosh, Yalda Zarabimanesh, Mohammad Hadi Ghondaghsaz, Ali Baiani, 

Ali Zakizade  

 

 

 

A DIFFERENT LOOK AT THE RICHARDSON EXTRAPOLATION LEADING TO A NEW PROPOSITION ….……………….. 1432 

Aram Soroushian   

 

ON THE FREQUENCY CONTENT OF ERRORS ORIGINATED IN A TIME INTEGRATION COMPUTATIONAL COST 

REDUCTION TECHNIQUE ……………………………………………………………………………………………………………………………... 1443 

Aram Soroushian, Mahmood Hosseini, Seyed Mohammad Khalkhali   

 

 
 
600 INTERDISCIPLINARY COUPLED AND CONTACT PROBLEMS 
 
MS 601: SHOCK WAVE-BOUNDARY LAYER INTERACTION AND ITS CONTROL 
NUMERICAL SIMULATION OF TRANSONIC BUFFET AND ITS CONTROL USING TANGENTIAL JET BLOWING .….. 1455 

Ksenia Abramova, Kamil Khairullin, Alexander Ryzhov, Vitaly Soudakov   

 

SHOCK WAVE BOUNDARY LAYER INTERACTION IN PROFILE CASCADES REPRESENTING ROTOR BLADINGS OF  

THE LAST STAGE OF LARGE OUTPUT STEAM TURBINES ………………………………………………………………………….…….. 1464 

Martin Luxa, David Simurda, Jaromir Prihoda, Jana Vachova  

 

 

 

 

 



xxvii 
 

SHOCK WAVE BOUNDARY LAYER INTERACTION INVESTIGATION: CONTROL BY ROD VORTEX GENERATORS  

AND THEIR APPLICATION ON HELICOPTER ROTOR BLADES ………………………………………………………………………….. 1474 

Fernando Tejero Embuena, Piotr Doerffer, Pawel Flaszynski   

 

ANALYSIS OF EFFECTS OF SHAPE AND LOCATION OF MICRO - TURBULATORS ON UNSTEADY SHOCKWAVE - 

BOUNDARY LAYER INTERACTION IN TRANSONIC FLOW ……………………………………………………………………………….. 1484 

Janusz Sznajder, Tomasz Kwiatkowski   

 

 
MS 602: INNOVATIVE METHODS FOR FLUID-STRUCTURE-INTERACTION 
ASSESSMENT OF THE FLUID-STRUCTURE INTERACTION CAPABILITIES FOR AERONAUTICAL APPLICATIONS OF  

THE OPEN-SOURCE SOLVER SU2. ………………………………………………………………………………………………………………….. 1498 

Ruben Sanchez, Heather L. Kline, David Thomas, Anil Variyar, Marcello Righi, Thomas D. Economon, Juan J. 

Alonso, Rafael Palacios, Grigorios Dimitriadis, Vincent Terrapon  

 

 

 

CONVERGENCE ANALYSIS OF COUPLING ITERATIONS FOR THE UNSTEADY TRANSMISSION PROBLEM WITH 

 MIXED DISCRETIZATIONS …………………………………………………………………………………………………………………………….. 1530 

Azahar Monge, Philipp Birken   

 

USING IMPROVED RADIAL BASIS FUNCTIONS METHODS FOR FLUID-STRUCTURE COUPLING AND MESH 

DEFORMATION …………………………………………………………………………………………………………………………………………….. 1545 

Giorgos Strofylas, Georgios Mazanakis, Sotirios Sarakinos, Georgios Lygidakis, Ioannis Nikolos   

 

A MONOLITHIC FLUID-STRUCTURE INTERACTION METHOD, APPLICATION TO A PISTON PROBLEM …………….. 1564 

Felix Ischinger, Martijn Anthonissen, Barry Koren   

 

 
MS 603: COMPUTATIONAL METHODS IN FLUID-STRUCTURE INTERACTION WITH IMPACT ON INDUSTRIAL 
APPLICATIONS 
SLAMMING IMPACT SIMULATION OF 2D WATER ENTRY FOR RIGID STRUCTURES ………………………………….…….. 1582 

Omar Hashim Hassoon, Mostapha Tarfaoui, A. El Malki   

 

A MESH MORPHING BASED FSI METHOD USED IN AERONAUTICAL OPTIMIZATION APPLICATIONS ………….….. 1594 

Matej Andrejašič, David Eržen, Emiliano Costa, Stefano Porziani, Marco Evangelos Biancolini, Corrado Groth   

 

A PATH-CONSERVATIVE OSHER-TYPE SCHEME FOR AXIALLY SYMMETRIC COMPRESSIBLE FLOWS IN FLEXIBLE 

TUBES ………………………………………………………………………………………………………………………………………………………….. 1613 

Julia Leibinger, Michael Dumbser, Uwe Iben   

 

 
MS 605: FRICTIONAL CONTACTS WITH LUBRICATION – BASICS AND APPLICATIONS 
LIMITING SHEAR STRESS FORMULATION FOR TEHL SIMULATION …………………………………………….………………….. 1623 

Thomas Lohner, Klaus Michaelis, Karsten Stahl   

 

 
MS 606: COMPUTATIONAL MODELING OF HYDRAULIC FRACTURING 
THE XFEM FOR A SIMPLIFIED MODEL IN HYDRAULIC FRACTURING …………………………………………………………..….. 1637 

Markus Schätzer, Thomas-Peter Fries  

 

 

 

 



xxviii 
 

SENSITIVITY ANALYSIS OF HYDRAULIC FRACTURING USING AN EXTENDED FINITE ELEMENT METHOD FOR  

THE PKN MODEL ………………………………………………………………………………………………………………………………………….. 1647 

Hasini Garikapati, Clemens V. Verhoosel, Harald Van Brummelen, Pedro Diez   

 

NUMERICAL MODELLING OF COUPLED HYDRO-THERMAL PROCESSES OF THE SOULTZ HETEROGENEOUS  

GEOTHERMAL SYSTEM …………………………………………………………………………………………………………………..…………….. 1659 

Musa Dahiru Aliyu, Hua-Peng Chen   

 

 
MS 607: ADVANCES IN COMPUTATIONAL METHODS FOR LIQUID-VAPOR FLOWS WITH PHASE TRANSFER 
PROCESSES 
A LOW DIFFUSIVE APPROACH FOR TWO PHASE FLOWS ……………………………………………………………………………….. 1672 

Alberto Beccantini   

 

A LARGE TIME STEP ROE SCHEME APPLIED TO TWO-PHASE FLOW ………………………………………………….….……….. 1693 

Sofia Lindqvist, Halvor Lund   

 

 
MS 608:ADVANCES IN TIME INTEGRATION FOR SOLID, FLUID AND COUPLED SYSTEMS 
ENERGY CONSERVING TIME INTEGRATION BASED ON GALERKIN-VARIATIONAL INTEGRATORS WITH 

CONSTRAINTS ……………………………………………………………………………………………………………………………………………….. 1709 

Matthias Bartelt, Michael Groß   

 

MIXED INTEGRATORS FOR STRUCTURE-PRESERVING SIMULATIONS IN NONLINEAR STRUCTURAL  

DYNAMICS …………………………………………………………………………………………………………………………………………………….. 1736 

Alexander Janz, Peter Betsch, Christian Hesch   

 

ENERGY AND MOMENTUM CONSERVING VARIATIONAL BASED TIME INTEGRATION OF ANISOTROPIC 

HYPERELASTIC CONTINUA …………………………………………………………………………………………………………………………….. 1765 

Michael Groß, Rajesh Ramesh, Julian Dietzsch   

 

STRUCTURE-PRESERVING OPTIMAL CONTROL OF DISCRETE MECHANICAL SYSTEMS …………………….…………….. 1789 

Peter Betsch, Christian Becker   

 

VARIATIONAL INTEGRATORS OF MIXED ORDER FOR DYNAMICAL SYSTEMS WITH MULTIPLE TIME SCALES  

AND SPLIT POTENTIALS …………………………………………………………………………………………………………………….………….. 1818 

Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker   

 

CO-SIMULATION OF LARGE MBD, FEA AND DEM SYSTEMS ………………………………………………………………………….. 1832 

Jose Ortiz, Neil Macdonald   

 

 
MS 609: ADVANCED COMPUTATIONAL MODELING OF BATTERIES AND FUEL CELLS 
STOCHASTIC 3D MODELING OF AMORPHOUS MICROSTRUCTURES - A POWERFUL TOOL FOR VIRTUAL  

MATERIALS TESTING ……………………………………………………………………………………………………………………………………. 1838 

Matthias Neumann, Volker Schmidt   

 

 
 
 



xxix 
 

MS 610: NUMERICAL METHODS TO STUDY THE CONTACT MECHANICS OF DRY, ADHESIVE AND LUBRICATED ROUGH 
SURFACES 
PERCOLATION PROPERTIES OF THE FREE VOLUME GENERATED BY TWO ROUGH SURFACES IN CONTACT …... 1850 

Paolo Cinat, Marco Paggi, Claudia Borri   

 

A PARAMETRICALLY TIME-DEPENDENT METHODOLOGY FOR RECIPROCATING CONTACT MECHANICS  

BETWEEN VISCOELASTIC SOLIDS ………………………………………………………………………………………………………………….. 1856 

Carmine Putignano, Giuseppe Carbone, Daniele Dini   

 

STATISTICAL AND GEOMETRICAL CHARACTERISTICS OF RANDOMLY ROUGH SURFACES USED FOR CONTACT 

SIMULATIONS. …………………………………………………………………………………………………………………………………….……….. 1864 

Rafael Schouwenaars, Carlos G. Figueroa, Víctor Hugo Jacobo, Armando Ortiz   

 

 
MS 612: NUMERICAL SIMULATIONS FOR SMART-CITY APPLICATIONS 
NUMERICAL OPTIMIZATION OF NEAR-ROAD VEGETATION BARRIERS …………………………………………………………. 1876 

Ludek Benes, Viktor Sip   

 

 
MS 615: COMPUTATIONAL MODELS IN MAGNETOHYDRODYNAMICS 
LARGE EDDY SIMULATIONS OF MAGNETIC FIELD EFFECT ON TURBULENT FLOW IN A SQUARE DUCT ……..….. 1886 

Jie Mao, Kunlei Zhang, Zhongquan Tan, Ke Liu   

 

 
 
700 MATERIALS 
 
MS 701: ADVANCED MATERIALS: COMPUTATIONAL ANALYSIS OF PROPERTIES AND PERFORMANCE 
OPTIMAL DESIGN AND ADDITIVE MANUFACTURING OF NOVEL REINFORCING ELEMENTS FOR COMPOSITE 

MATERIALS …………………………………………………………………………………………………………………………………..……………….. 1893 

Francesco Fabbrocino, Ilenia Farina, Ada Amendola, Luciano Feo, Fernando Fraternali   

 

A TEMPERATURE SENSITIVE CRYSTAL PLASTICITY MODEL FOR THE PREDICTION OF HIGH TEMPERATURE 

MECHANICAL BEHAVIOUR OF MULTI-PHASE TIAL ALLOY …………………………………………………………………..………….. 1909 

M. Umer Ilyas, M. Rizviul Kabir   

 

LAYOUT OPTIMIZATION OF PIEZOELECTRIC ELEMENTS WITH EXTERNAL ELECTRIC CIRCUITS IN SMART 

CONSTRUCTIONS BASED ON SOLUTION OF THE NATURAL VIBRATIONS PROBLEM ……………………………………….. 1920 

Nataliia Iurlova, Valerii P. Matveenko, Dmitriy A. Oshmarin, Nataliya V. Sevodina, Maksim A. Yurlov   

 

DETERMINATION OF OPTIMAL PARAMETERS FOR A PASSIVE RL-CIRCUIT BY SOLVING THE PROBLEM ON  

NATURAL VIBRATIONS OF ELECTROELASTIC BODIES …………………………………………………………………………………….. 1930 

Maksim Yurlov, Valerii P. Matveenko, Dmitriy A. Oshmarin, Nataliya V. Sevodina, Nataliya A. Iurlova   

 

COMPUTATIONAL MODELLING OF MECHANICAL BEHAVIOR OF BIOLOGICAL TISSUES FOR BIOMEDICAL 

APPLICATIONS …………………………………………………………………………………………………………………………………….……….. 1940 

Simin Li, Yang Liu, Juan Du, Begum Zeybek, Lorenzo Zani, Mark P. Lewis, Vadim V. Silberschmidt  

 

 

 

 

 



xxx 
 

ANALYSIS OF FIBRE BRAGG GRATINGS SENSORS OPTIMAL PLACEMENT FOR MONITORING OF DAMAGE 

PROPAGATION IN LAMINATE COMPOSITES ………………………………………………………………………………….…………….. 1950 

Mikhail Tashkinov   

 

SEVEN DIFFERENT WAYS TO MODEL VISCOELASTICITY IN A GEOMETRICALLY EXACT SETTING …………………….. 1959 

Alexey Shutov   

 

 
MS 702: MODELING OF NANOFILLED COMPOSITES 
SIMULATING ATOMIC FORCE MICROSCOPY FOR THE DETERMINATION OF THE ELASTIC PROPERTIES OF 

NANOPARTICLE REINFORCED EPOXY RESIN …………………………………………………………………………………………………... 1971 

Johannes Fankhänel, Andreas Kempe, Raimund Rolfes   

 

MULTI-SCALE FINITE ELEMENT ANALYSIS OF GRAPHENE/POLYMER NANOCOMPOSITES ELECTRICAL 

PERFORMANCE ……………………………………………………………………………………………………………………………….…………….. 1984 

Asimina Manta, Matthieu Gresil, Constantinos Soutis   

 

 
MS 705: IDENTIFICATION OF MATERIAL MODELS  
THE BOOTSTRAP APPROACH TO THE STATISTICAL SIGNIFICANCE OF PARAMETERS IN RSM MODEL …………….. 2003 

Jacek Pietraszek, Leszek Wojnar   

 

 
MS 706: MODELING OF FIBER-BASED STRUCTURES - TEXTILES AND TEXTILE REINFORCED COMPOSITES 
INVERSE IDENTIFICATION OF THE BENDING STIFFNESS OF A BRAIDED POLYETHYLENE TWINE SUBJECT TO  

LARGE DEFORMATION: APPLICATION TO THE IDENTIFICATION OF THE MESH OPENING RIGIDITY OF  

FISHING NETS ………………………………………………………………………………………………………………….………………………..….. 2010 

Barthélémy Morvan, Guilhem Bles, Nicolas Dumergue, Daniel Priour   

 

MULTI-SCALE FRAMEWORK FOR MODELLING CARBON FIBRE WEAVES BASED ON STOCHASTIC  

REINFORCEMENT GEOMETRY ……………………………………………………………………………………………………………………….. 2029 

Andy Vanaerschot, Karen Soete, Stepan Lomov, Dirk Vandepitte   

 

 
MS 707: MICROMECHANICAL MODELLING: COMPETITION BETWEEN ANALYTICAL AND NUMERICAL METHODS 
MULTISCALE MODELING OF THERMO-ELASTIC PROPERTIES OF MICROCRACKED MATERIAL ……….…….……….. 2039 

Antonino Favata, Patrizia Trovalusci, Renato Masiani   

 

EFFECTIVE ELASTICITY COEFFICIENTS IN DRY POROUS MATERIALS. NUMERICAL AND SEMI-ANALYTICAL 

APPROACHES ……………………………………………………………………………………………………………………………………………….. 2050 

Vladimir Sladek, Bruno Musil, Jan Sladek   

 

INFLUENCE OF MICRO CRACKS ON EFFECTIVE MATERIAL PROPERTIES IN FIBER REINFORCED SMART  

COMPOSITE MATERIALS …………………………………………………………………………………………………….………………..………. 2073 

Michael Wünsche, Jan Sladek, Vladimir Sladek   

 

DEFECT ACCUMULATION IN NANOPOROUS WEAR-RESISTANT COATINGS UNDER COLLECTIVE 

RECRYSTALLIZATION. SIMULATION BY HYBRID CELLULAR AUTOMATON METHOD …….…………….………..……….. 2080 

Dmitry Moiseenko, Pavel Maksimov, Sergey Panin, Viktor Panin   

 



xxxi 
 

MS 711: FOURIER-BASED METHODS FOR COMPUTING THE BEHAVIOR OF HETEROGENEOUS MATERIALS 
DEVELOPMENTS, EXTENSIONS AND APPLICATIONS 
NONLINEAR COMPOSITE VOXELS AND FFT-BASED HOMOGENIZATION ……………………………………………………….. 2099 

Matthias Kabel, Andreas Fink, Felix Ospald, Matti Schneider   

 

 
MS 712: SMART MATERIAL SYSTEMS AND STRUCTURES 
A THERMODYNAMICALLY CONSISTENT FINITE STRAIN MICRO-SPHERE FRAMEWORK FOR PHASE-

TRANSFORMATION ……………………………………………………………………………………………………………………………..……….. 2110 

Richard Ostwald, Thorsten Bartel, Andreas Menzel   

 

OPTIMAL CONTROL TUNNING IN SMART STRUCTURES WITH DELAMINATIONS …………………………………….…….. 2123 

Panos Koutsianitis, Amalia Moutsopoulou, Georgios Drosopoulos, Georgios Tairidis, Georgia Foutsitzi, 

Georgios Stavroulakis  

 

 

 

 
MS 713: MICROSTRUCTURE-BASED MODELLING OF HETEROGENEOUS MATERIALS 
DEPENDENCE OF THE MECHANICAL PROPERTIES OF PENTAMODE MATERIALS ON THE LATTICE 

MICROSTRUCTURE ……………………………………………………………………………………………………………………………………….. 2134 

Ada Amendola, Francesco Fabbrocino, Luciano Feo, Ferdinando Auricchio, Fernando Fraternali   

 

HOMOGENIZATION TECHNIQUES FOR ACCURATE AND APPROXIMATE ESTIMATES FOR OVERALL PROPERTIES  

OF MICROCRACKED VISCOELASTIC MASONRIES …………………………………………………………………………………….…….. 2151 

Amna Rekik, Alain Gasser   

 

APPLICATION OF POLAR ELASTICITY TO THE PROBLEM OF PURE BENDING OF A THICK PLATE …………………….. 2162 

Svitlana Fedorova, Jiří Burša   

 

ARTIFICIAL MICROSTRUCTURE GENERATOR FOR DUAL-PHASE STEELS …………………………………………….………….. 2172 

Yuliang Hou, Alexandre Dumon, Pièrre Culière, Mohamed Rachik   

 

 
MS 714: STRENGTH, FATIGUE AND STABILITY OF COMPOSITE STRUCTURES 
ON THE STRUCTURAL DESIGN OF IMPERFECTION SENSITIVE LAMINATED COMPOSITE SHELL STRUCTURES 

SUBJECTED TO AXIAL COMPRESSION ………………………………………………………………………………………….….…………….. 2182 

Linus Friedrich, Pawel Lyssakow, Garth Pearce, Martin Ruess, Chiara Bisagni, Kai-Uwe Schröder   

 

STRENGTH AND WEIGHT EQUIVALENT SUBSTITUTION OF LARGE SANDWICH PANELS BY MONOLITHIC CFRP 

STRUCTURES ………………………………………………………………………………………………………..…………………………….………... 2190 

Martin Meindlhumer, Martin Schagerl   

 

ROBUST INTEGRAL COMPOSITE AIRCRAFT STRUCTURES ……………………………………………………………………….…….. 2202 

Tamas Havar   

 

 
MS 715: COMPUTATIONAL ANALYSIS OF COMPOSITE STRUCTURES 
MINIMAL MASS DESIGN OF STRENGTHENING TECHNIQUES FOR PLANAR AND CURVED MASONRY  

STRUCTURES ………………………………………………………………………………………………………………………………………….…….. 2210 

Gerardo Carpentieri, Francesco Fabbrocino, Mariella De Piano, Valentino Paolo Berardi, Luciano Feo, 

Fernando Fraternali  

 

 



xxxii 
 

MODELING OF FIBER-REINFORCED PLASTICS TAKING INTO ACCOUNT THE MANUFACTURING PROCESS ….….. 2220 

Cherry Ann Reclusado, Sumito Nagasawa   

 

CONVERGENCE ANALYSIS OF STRESS FIELDS TO HOMOGENIZATION PREDICTIONS IN OPTIMAL PERIODIC 

COMPOSITE DESIGN …………………………………………………………………………………………………………………………………….. 2236 

Pedro Coelho, Rui Reis, José Guedes   

 

A NUMERICAL STUDY FOR THE BUCKLING CAPACITY OF WIND TURBINE BLADES: GEOMETRY, LOADING AND 

MATERIAL INFLUENCE …………………………………………………………………………………………………………………………………. 2247 

Efstathios E. Theotokoglou, George A. Balokas, Evgenia K. Savvaki   

 

 
 
800 MULTISCALE PROBLEMS 
 
MS 801: MULTISCALE COMPUTATIONAL HOMOGENIZATION FOR BRIDGING SCALES IN THE MECHANICS AND 
PHYSICS OF COMPLEX MATERIALS 
A SEMI-IMPLICIT MICROPLAR DISCRETE-TO-CONTINUUM METHOD FOR GRANULAR MATERIALS …………….….. 2266 

Kun Wang, Waiching Sun   

 

MODELING OF LOW-ALLOYED TRIP-STEELS BASED ON DIRECT MICRO-MACRO SIMULATIONS …………………….. 2280 

Stefan Prüger, Ashutosh Gandhi, Daniel Balzani   

 

HOMOGENIZATION METHOD FOR DESIGNING NOVEL ARCHITECTURED CELLULAR MATERIALS …….…………….. 2292 

Zheng-Dong Ma   

 

A HOMOGENIZATION TECHNIQUE FOR ELASTO-PLASTIC COMPOSITES ………………………………………………….…….. 2316 

Federica Covezzi, Stefano De Miranda, Sonia Marfia, Elio Sacco   

 

 
MS 802: ADVANCES IN THE MODELLING OF MULTI-SCALE, MULTI-PHYSICS AND MULTI-UNCERTAINTY PROBLEMS 
THEORETICAL PREDICTION OF PLASTIC INSTABILITY FOR ASYMMETRICAL MATERIALS ……………….……………….. 2323 

Shenghua Wu, Nannan Song, F. M. Andrade Pires   

 

MULTISCALE SIMULATION OF THREE-DIMENSIONAL UNSTEADY GAS FLOWS IN MICROCHANNELS OF  

TECHNICAL SYSTEMS ……………………………………………………………………………………………………………………………………. 2331 

Viktoriia Podryga, Yury Karamzin, Tatiana Kudryashova, Sergey Polyakov   

 

HIGHER-ORDER ASYMPTOTIC HOMOGENIZATION OF PERIODIC MATERIALS WITH LOW SCALE  

SEPARATION ……………………………………………………………………………………………………………….……………………………….. 2346 

M. Mohammed Ameen, R.H.J. Peerlings, M.G.D. Geers   

 

 
MS 805: ADVANCED MULTI-PHYSICS AND MULTI-SCALE TECHNIQUES FOR MODELING INELASTIC PROCESSES IN 
SOLIDS: DAMAGE, FRACTURE AND CONTACT MECHANICS 
MESO-SCALE MODELING OF HYBRID INDUSTRIAL/RECYCLED STEEL FIBER-REINFORCED CONCRETE ……….….. 2353 

Antonio Caggiano, Diego Said Schicchi, Guillermo Etse, Enzo Martinelli   

 

 
 
 



xxxiii 
 

MS 806: MULTISCALE MODELLING OF MATERIALS AND STRUCTURES 
THE KIRKENDALL SHIFT AND FRENKEL EFFECT DURING MULTI-COMPONENT DIFFUSION PROCESS …………..….. 2363 

Bartek Wierzba   

 

CRACK PATH FIELD AND STRAIN INJECTION TECHNIQUES IN DYNAMIC FRACTURE SIMULATIONS …………….….. 2372 

Oriol Lloberas-Valls, Alfredo E. Huespe, Javier Oliver, Ivo F. Dias   

 

HYBRID FE/XFE FINITE ELEMENT MODEL FOR SIMULATION OF BRITTLE-DUCTILE FRACTURES IN DUAL-PHASE 

STEEL GRADES. ……………………………………………………………………………………………………………………………….…………….. 2390 

Konrad Perzynski, Lukasz Madej   

 

EFFECTIVE MESO AND MACRO PROPERTIES FOR FIBRE-REINFORCED-POLYMER CURING COUPLED TO  

VISCO-ELASTICITY …………………………………………………………………………………………………………………………………..…….. 2398 

Rolf Mahnken, Christian Dammann   

 

ON APPLICATION OF THE MESHLESS FINITE DIFFERENCE METHOD TO NUMERICAL HOMOGENIZATION …….. 2417 

Irena Jaworska   

 

A MESOSCALE STUDY OF DEFORMATION AND FAILURE OF ANGLE-PLY LAMINATES UNDER TENSILE LOADING  

BY MEANS OF NUMERICAL HOMOGENIZATION …………………………………………………………………………………………... 2426 

Marek Romanowicz   

 

MODELING OF PHASE CHANGES IN MICRO-DOMAIN INDUCED BY AN ULTRASHORT LASER PULSE ………….….. 2437 

Ewa Majchrzak, Lukasz Turchan, Jolanta Dziatkiewicz   

 

 
MS 807: ADVANCED COMPUTATIONAL STRATEGIES FOR MODELLING, SIMULATION AND CHARACTERISATION OF 
MULTI-SCALE HETEROGENEOUS MATERIALS 
VALIDATION OF A DISCRETE CRACK MODEL FOR LIGHTWEIGHT AGGREGATE CONCRETE BEAMS ……………….. 2449 

D. Dias-Da-Costa, R. Graça-E-Costa, R.N.F. Carmo   

 

 
MS 808: MULTISCALE AND MULTIPHYSICS MODELING OF CEMENTITIOUS MATERIALS 
REINFORCEMENT CORROSION IN CONCRETE DUE TO CARBONATION AND CHLORIDE INGRESS UP AND  

BEYOND INDUCTION PERIOD ……………………………………………………………………………………………………………………….. 2460 

Karolina Hájková, Libor Jendele, Vit Šmilauer, T. Sajdlová, Jan Červenka   

 

 
MS 809: MULTISCALE STOCHASTIC FINITE ELEMENT METHODS 
THE STOCHASTIC FINITE ELEMENT METHOD FOR NUCLEAR APPLICATIONS ……………………………..………………….. 2471 

José David Arregui Mena, Lee Margetts, Llion Evans, D. V. Griffiths, Anton Shterenlikht, Luis Cebamanos, 

Paul M Mummery  

 

 

 

DETERMINATION OF MESOSCALE RANDOM FIELDS FOR THE APPARENT PROPERTIES OF SPATIALLY RANDOM 

COMPOSITES ……………………………………………………………………………………………………………………………………………….. 2484 

Dimitrios Savvas, George Stefanou   

 

 
 
 



xxxiv 
 

MS 811: MULTISCALE MODELING OF CONCRETE AND CONCRETE STRUCTURES 
NUMERICAL SIMULATION OF THE AUTOGENOUS SHRINKAGE OF HARDENING PORTLAND CEMENT PASTE ... 2501 

Peng Gao, Guang Ye, Jiangxiong Wei, Qijun Yu   

 

 

 
900 NUMERICAL SIMULATION METHODS 
 
MS 901: ISOGEOMETRIC METHODS 
ANALYSIS OF LAMINATED COMPOSITE PLATES USING ISOGEOMETRIC COLLOCATION METHOD ………..……….. 2514 

G. S. Pavan, K. S. Nanjunda Rao   

 

MODELLING STIFFENED LIGHTWEIGHT STRUCTURES WITH ISOGEOMETRIC ANALYSIS VIA MORTAR  

METHODS …………………………………………………………………………………………………………………………………………………….. 2531 

Malte Woidt, Kay Sommerwerk, Matthias C. Haupt, Peter Horst   

 

DOMAIN DECOMPOSITION SOLUTION SCHEMES FOR LARGE-SCALE IGA PROBLEMS …………………………………... 2541 

George Stavroulakis, Dimitris Tsapetis, Manolis Papadrakakis   

 

 
MS 902: INNOVATIVE NUMERICAL APPROACHES FOR MULTI-PHYSICS PROBLEMS 
NUMERICAL PROPERTIES OF A DISCONTINUOUS GALERKIN FOMULATION FOR ELECTRO-THERMAL  

COUPLED PROBLEMS ……………………………………………………………………………………………………………………….………….. 2558 

Lina Homsi, Christophe Geuzaine, Ludovic Noels   

 

 
MS 903: ADVANCES IN FICTITIOUS DOMAIN METHODS FOR SOLID MECHANICS 
TOWARDS LATTICE-BOLTZMANN ON DYNAMICALLY ADAPTIVE GRIDS — MINIMALLY-INVASIVE GRID  

EXCHANGE IN ESPRESSO ………………………………………………………………………………………………………………………………. 2566 

Michael Lahnert, Carsten Burstedde, Christian Holm, Miriam Mehl, Georg Rempfer, Florian Weik   

 

AUTOMATIC CONFORMAL DECOMPOSITION OF ELEMENTS CUT BY NURBS ………………………………………………... 2591 

Jakob W. Steidl, Thomas-Peter Fries   

 

A DESIGN-THROUGH-ANALYSIS APPROACH USING THE FINITE CELL METHOD …………………………………………….. 2601 

Benjamin Wassermann, Tino Bog, Stefan Kollmannsberger, Ernst Rank   

 

 
MS 905: DISCONTINUOUS GALERKIN METHODS: NEW TRENDS AND APPLICATIONS 
DISCONTINUOUS GALERKIN COMPUTATION OF GASEOUS MIXTURE COAXIAL JETS ……………………….…………….. 2614 

Nicoletta Franchina, Marco Savini, Francesco Bassi   

 

DISCONTINUOUS GALERKIN SOLUTION OF THE REYNOLDS-AVERAGED NAVIER–STOKES AND KL-KT-LOG(W) 

TRANSITION MODEL EQUATIONS ………………………………………………………………………………………………………………….. 2632 

A. Bassi, Alessandro Colombo, Antonio Ghidoni, Marco Lorini, Gianmaria Noventa   

 

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION 

EQUATION ……………………………………………………………………………………………………………………………………………………. 2648 

Philipp Birken, Jonathan Bull, Antony Jameson   

 



xxxv 
 

HIGH-ORDER LINEARLY IMPLICIT TWO-STEP PEER METHODS FOR THE DISCONTINUOUS GALERKIN SOLUTION  

OF THE INCOMPRESSIBLE RANS EQUATIONS ………………………………………………………………………………………….…….. 2664 

Francesco Carlo Massa, Gianmaria Noventa, Francesco Bassi, Alessandro Colombo, Antonio Ghidoni, Marco 

Lorini  

 

 

OUTPUT-BASED SPACE-TIME ADAPTATION WITH NON-VARIATIONAL TIME INTEGRATION ………………………….. 2684 

Krzysztof Fidkowski   

 

MATRIX-FREE MODIFIED EXTENDED BACKWARD DIFFERENTIATION FORMULAE APPLIED TO THE 

DISCONTINUOUS GALERKIN SOLUTION OF COMPRESSIBLE UNSTEADY VISCOUS FLOWS …………………………….. 2697 

Alessandra Nigro, Carmine De Bartolo, Andrea Crivellini, Francesco Bassi   

 

 
MS 906: MATHEMATICAL ADVANCES IN ISOGEOMETRIC ANALYSIS 
PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS BASED ON SOLVERS FOR SYLVESTER EQUATION ……….….. 2715 

Giancarlo Sangalli, Mattia Tani   

 

 
MS 907: REGULARIZED ENRICHED APPROXIMATIONS AND QUADRATURE FOR DISCONTINUITIES, SINGULARITIES 
AND CONTINUOUS-DISCONTINUOUS TRANSITION 
EFFECTIVE 3D REGULARIZED XFEM FOR PULL-OUT OF STEEL BARS IN CONCRETE, BENDING AND SHEAR  

TESTS ON FRP-REINFORCED CONCRETE BEAMS …………………………………………………………………………………….…….. 2726 

Elena Benvenuti, Nicola Orlando   

 

 
MS 908: VERIFICATION AND VALIDATION OF STRUCTURAL MECHANICS SIMULATION MODELS 
EXPERIMENTAL VALIDATION OF COMPOSITE STRUCTURES IN EXPLICIT IMPACT ANALYSIS …………………….…….. 2734 

Konstantinos Fotopoulos, George Lampeas   

 

CODE VERIFICATION IN SHELL ANALYSIS BY THE METHOD OF MANUFACTURED SOLUTIONS ……………………….. 2745 

Michael Gfrerer, Martin Schanz   

 

EXPERIMENTAL VALIDATION OF A MODEL UPDATE PROCEDURE FOCUSING ON SMALL GEOMETRIC  

DEVIATIONS ………………………………………………………………………………………………………………………………………………….. 2757 

Thomas Maywald, Arnold Kühhorn, Sven Schrape   

 

OPTIMUM DESIGN, FINITE ELEMENT MODEL UPDATING AND DYNAMIC ANALYSIS OF A FULL LAMINATED  

GLASS PANORAMIC CAR ELEVATOR ……………………………………………………………………………………………….…………….. 2774 

Dimitrios Giagopoulos, Iraklis Chatziparasidis   

 

INVESTIGATION IN THE MECHANICAL BEHAVIOUR OF LOW-VELOCITY IMPACTED CFRP PLATES UNDER  

DIFFERENT BOUNDARY CONDITIONS ………………………………………………………………………………………………….……….. 2786 

Süleyman Arslan, Zamaan Sadeghi, Athanasios Dafnis, Kai-Uwe Schröder   

 

A NEW SHELL FINITE ELEMENT WITH DRILLING DEGREES OF FREEDOM AND ITS RELATION TO EXISTING 

FORMULATIONS ………………………………………………………………………………………………………………………………………….. 2803 

Robert Winkler, Dimitrios Plakomytis  

 

 
 
 



xxxvi 
 

MS 910: HIGH ORDER CFD METHODS: CONCLUSIONS AND OUTLOOK 
CURVED GRID GENERATION AND DG COMPUTATION FOR THE DLR-F11 HIGH LIFT CONFIGURATION ……..….. 2843 

Ralf Hartmann, Harlan Mcmorris, Tobias Leicht  

 

BS1 - DNS OF THE TAYLOR-GREEN VORTEX AT RE = 1600 …………………………………………………………………………….. 2859 

Andrea Mastellone, Luigi Cutrone, Francesco Capuano   

 

 
MS 911: NUMERICAL METHODS IN THE MECHANICS OF GENERALIZED CONTINUA 
THE STRUCTURAL SYMMETRY WITHIN THE CONTEXT OF NONLOCAL ELASTICITY ………………………….…………….. 2869 

Aurora Angela Pisano, Paolo Fuschi   

 

ISOGEOMETRIC GALERKIN METHODS FOR GRADIENT-ELASTIC BARS, BEAMS, MEMBRANES AND PLATES …... 2876 

Jarkko Niiranen, Sergei Khakalo, Viacheslav Balobanov, Josef Kiendl, Antti H. Niemi, Bahram Hosseini, 

Alessandro Reali  

 

 

 
MS 912: HIGH-ORDER METHODS, SENSITIVITY ANALYSIS AND ADAPTATION FOR THE NAVIER STOKES EQUATIONS 
ADAPTIVE MESH REFINEMENT TECHNIQUES FOR HIGH-ORDER FINITE-VOLUME WENO SCHEME ……………….. 2883 

Harshavardhana Srinivasan, Panagiotis Tsoutsanis   

 

IMPLEMENTATION OF A LOW-MACH NUMBER MODIFICATION FOR HIGH-ORDER FINITE-VOLUME SCHEMES  

FOR ARBITRARY HYBRID UNSTRUCTURED MESHES …………………………………………………………………………….……….. 2900 

Nicholas Simmonds, Panagiotis Tsoutsanis, Adrian Gaylard   

 

APPROPRIATE COMBINATIONS OF CONTROLLER PARAMETERS FOR UNSTEADY FLOW SIMULATIONS WITH 

ADAPTIVE TIME STEP CONTROL ………………………………………………………………………………………………………….……….. 2916 

Kathrin Kozulovic, Graham Ashcroft   

 

 
MS 913: HIGH-ORDER METHODS FOR POLYGONAL AND POLYHEDRAL MESHES 
ADAPTIVE BEM-BASED FEM ON POLYGONAL MESHES FROM VIRTUAL ELEMENT METHODS ……………………….. 2930 

Steffen Weißer   

 

VEM AND TOPOLOGY OPTIMIZATION ON POLYGONAL MESHES ………………………………………………………………….. 2941 

Paola F. Antonietti, Matteo Bruggi, Simone Scacchi, Marco Verani   

 

THE VIRTUAL ELEMENT METHOD FOR DISCRETE FRACTURE NETWORK FLOW AND TRANSPORT  

SIMULATIONS ……………………………………………………………………………………………………………………………………..……….. 2953 

Matias Fernando Benedetto, Stefano Berrone, Andrea Borio, Sandra Pieraccini, Stefano Scialo   

 

 
MS 916: DIRECT METHODS FOR LIMIT STATES OF MATERIALS AND STRUCTURES 
COMPOSITE FEM MODELS FOR LIMIT AND SHAKEDOWN ANALYSIS …………………………………………….……………….. 2971 

Leonardo Leonetti, Giovanni Garcea, Hung Nguyen-Xuan   

 

ON SHAKEDOWN OF ELASTIC-PLASTIC BODIES WITH TEMPERATURE DEPENDENT PROPERTIES …….…………….. 2983 

Michael Peigney  

 

 

 

 

 



xxxvii 
 

A NUMERICAL STUDY ON THE ENDURANCE LIMIT OF PARTICULATE REINFORCED METAL MATRIX  

COMPOSITES (PRMMCS) USING THE DIRECT METHOD AND THE STATISTICAL LEARNING …………………..……….. 2994 

Geng Chen, Bezold Alexander, Christoph Broeckmann, Dieter Weichert   

 

SHAKEDOWN ANALYSIS OF PLATE BENDING UNDER STOCHASTIC UNCERTAINTY BY CHANCE CONSTRAINED 

PROGRAMMING …………………………………………………………………………………………………………………………………….…….. 3007 

Ngoc Trinh Tran, Thanh Ngoc Tran, H.G. Matthies, G.E. Stavroulakis, M. Staat   

 

LIMIT ANALYSIS LOCUS OF HIGH STRENGTH STEEL PLATES UNDER NON-QUADRATIC YIELD CRITERIA …….….. 3020 

Konstantinos Nikolaou, Christos Bisbos   

 

 
MS 917: MESOSCOPIC METHODS FOR COMPLEX FLUIDS AND SOFT MATTER 
PARTICLE BASED SIMULATION OF FLUID FLOW IN PERIODICALLY GROOVED CHANNELS …………………………….. 3026 

Dorothea Kasiteropoulou, Theodoros Karakasidis, Antonios Liakopoulos   

 

 
MS 918: COMPUTER ALGEBRA SYSTEMS IN MODELLING STATIC AND DYNAMIC PROBLEMS IN MECHANICS OF 
SOLIDS 
HIGH COMPUTATIONAL EFFICIENCY THROUGH GENERIC ANALYTICAL FORMULATION FOR LINEAR SOIL  

PRESSURE DISTRIBUTION OF RIGID SPREAD RECTANGULAR FOOTINGS ……………………………………………………….. 3045 

John Bellos, Nikolaos P. Bakas   

 

A REAL-SPACE MODAL ANALYSIS METHOD FOR NON-PROPORTIONAL DAMPED STRUCTURES ………………..….. 3065 

Evgueni Stanoev   

 

A FORCE-BASED FORMULATION FOR THE ANALYSIS OF 3-DIMENSIONAL INELASTIC STRUCTURAL FRAMES ... 3091 

Theodoros Patsios, Konstantinos Spiliopoulos   

 

THE FEATURES OF ANALYTICAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS OF THE ELASTICITY THEORY  

FOR FINITE DOMAINS WITH ANGULAR POINTS OF A BOUNDARY ……………………………………………………….……….. 3107 

Alexander Kerzhaev, Mikhail Kovalenko, Irina Menshova   

 

 
MS 919: RECENT ADVANCES IN NUMERICAL SIMULATION AND ANALYSIS OF KINETIC MODELS 
DISCRETE VELOCITY MODELS: A STUDY OF THE HYDRODYNAMIC LIMIT …………………………………………..………….. 3113 

Hans Babovsky   

 

MESO - MACRO MODELS FOR A HARD SPHERE GAS ……………………………………………………………………..…………….. 3121 

Sergey Bogomolov, Natalya Esikova, Artem Kuvshinnikov   

 

 
MS 921: RECENT ADVANCES IN BOUNDARY ELEMENT METHODS 
ADVANCES IN THE BOUNDARY ELEMENT METHOD IN GEOMECHANICS ……………………………………………………….. 3139 

Gernot Beer  

 

ENERGETIC BEM FOR THE NUMERICAL SOLUTION OF DAMPED WAVE PROPAGATION EXTERIOR  

PROBLEMS …………………………………………………………………………………………………………………………………..……………….. 3159 

Alessandra Aimi, Mauro Diligenti, Chiara Guardasoni   

 



xxxviii 
 

MODELLING THE PROCESS OF SEQUENTIAL EXCAVATION WITH THE BOUNDARY ELEMENT METHOD ……….... 3168 

Christian Duenser, Gernot Beer  

 

GREEN’S FUNCTION FOR THE EVALUATION OF ANCHOR LOSSES IN MEMS ………………………………………………….. 3181 

Attilio Frangi, Massimiliano Cremonesi   

 

EFFICIENT BOUNDARY ELEMENT FORMULATION OF THERMOELASTICITY ……………………………………………….….. 3190 

Relindis Rott, Martin Schanz   

 

A CHEBYSHEV INTERPOALTION-BASED FAST MULTIPOLE METHOD FOR POROELASTICITY ………………….……….. 3201 

Barbara Knöbl, Thomas Traub, Martin Schanz   

 

 
MS 922: HIGH-ORDER METHODS FOR ELASTIC WAVES AND THEIR APPLICATION 
ENERGY STABLE HIGH ORDER FINITE DIFFERENCE METHODS ON STAGGERED GRIDS: AN INITIAL  

INVESTIGATION …………………………………………………………………………………………………….…………………….……………….. 3211 

Ossian O'Reilly, Tomas Lundquist, Jan Nordström   

 

 
MS 923: NOVEL DISCRETIZATION METHODS – MATHEMATICAL AND MECHANICAL ASPECTS 
ALTERNATIVE TO RETURN -MAPPING ALGORITH FOR COMPUTING PLASTIC STRAIN. APPLICATION TO  

DILATANT MATERIALS ………………………………………………………………………………………………………………………………….. 3224 

Siegfried Maiolino   

 

DISCONTINUOUS GALERKIN METHOD WITH REDUCED INTEGRATION SCHEME FOR THE BOUNDARY TERMS  

IN ALMOST INCOMPRESSIBLE LINEAR ELASTICITY ……………………………………………………………………………………….. 3231 

Hamid Reza Bayat, Stephan Wulfinghoff, Stefanie Reese   

 

 
 
1000  OPTIMIZATION, INVERSE PROBLEMS AND CONTROL 
 
MS 1001: STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 
A METHOD FOR BI-DIRECTIONAL COUPLING OF STRUCTURE AND SYSTEM IN THE OPTIMISATION OF  

MULTI-FUNCTIONAL COMPONENTS ……………………………………………………………………………………..………….……………….. 3239 

Ajit Panesar, Ian Ashcroft, Ricky Wildman, Richard Hague   

 

SHAPE-TOPOLOGY OPTIMIZATION FOR DESIGNING SHELL STRUCTURES ………………………………………………………….. 3249 

Hirotaka Nakayama, Masatoshi Shimoda   

 

ON A NASH GAME FOR TOPOLOGY OPTIMIZATION UNDER LOAD-UNCERTAINTY – FINDING THE WORST  

LOAD ……………………………………………………………………………………………………………………………………………………………….. 3259 

Carl-Johan Thore   

 

ANALYSIS AND DESIGN OF REINFORCED CONCRETE STRUCTURES AS A TOPOLOGY OPTIMIZATION  

PROBLEM .. ……………………………………………………………………………………………………………………………………………………... 3271 

Matteo Bruggi   

 

ADJOINT OPTIMAL CONTROL PROBLEMS FOR FLUID-STRUCTURE INTERACTION SYSTEMS …………………….……….. 3280 

Daniele Cerroni, Roberto Da Vià, Sandro Manservisi, Filippo Menghini, Luca Zaniboni   



xxxix 
 

APPLICATION OF WHIRL FLUTTER OPTIMIZATION-BASED SOLUTION TO FULL-SPAN MODEL OF TWIN  

TURBOPROP AIRCRAFT …………………………………………………………………………………………………………………………..……….. 3293 

Jiri Cecrdle   

 

ON THE CONSIDERATION OF UNCERTAINTY IN DESIGN: OPTIMIZATION – RELIABILITY – ROBUSTNESS ………….. 3310 

Nicolas Lelièvre, Pierre Beaurepaire, Cécile Mattrand, Nicolas Gayton, Abdelkader Ostmane   

 

A NEW OPTIMIZED ANISOTROPIC MOVING LEAST SQUARES SURROGATE MODEL WITH MAXIMIZED  

PROGNOSIS ………………………………………………………………………………………………………………………………………..………….. 3321 

Kevin Cremanns, Dirk Roos  

 

LATIN HYPERCUBE SAMPLING BASED ON ADAPTIVE ORTHOGONAL DECOMPOSITION ………………………………….. 3333 

Dirk Roos  

 

A BENCHMARK OF CONTEMPORARY METAMODELING ALGORITHMS …………………………………………………….…….. 3344 

Can Bogoclu, Dirk Roos   

 

TOPOLOGY OPTIMIZATION USING A KRIGING-ASSISTED GENETIC ALGORITHM WITH A NOVEL LEVEL SET 

REPRESENTATION APPROACH ……………………………………………………………………………………………………………………….. 3361 

Mitsuo Yoshimura, Koji Shimoyama, Takashi Misaka, Shigeru Obayashi   

 

TOPOLOGY OPTIMIZATION OF CONTACT PROBLEMS BASED ON ALLEN CAHN APPROACH …..……………………….. 3377 

Andrzej Myslinski   

 

ON THE OPTIMAL DESIGN OF CABLE-STAYED BRIDGES …………………………………………………………..…………………….. 3386 

Gerardo Carpentieri, Mariano Modano, Francesco Fabbrocino, Luciano Feo, Fernando Fraternali   

 

A MIXED-INTEGER LINEAR PROGRAMMING APPROACH FOR GLOBAL DISCRETE SIZE OPTIMIZATION OF  

FRAME STRUCTURES …………………………………………………………………………………………………………………………………….. 3395 

Roxane Van Mellaert, Kristo Mela, Teemu Tiainen, Markku Heinisuo, Geert Lombaert, Mattias Schevenels   

 

A SUPER-STRUCTURE BASED OPTIMISATION APPROACH FOR BUILDING SPATIAL DESIGNS ………………………….. 3409 

Koen Van Der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, Michael Emmerich   

 

BENDING STIFFNESS OF A MULTILAYERED PLATE ……………………………………………………………………………..………….. 3423 

Petr Tovstik, Tatiana M. Tovstik   

 

EFFICIENT SIZING OF STRUCTURES UNDER STRESS CONSTRAINTS ……………………………………………………………….. 3436 

Zhi Hong, Mostafa Abdalla   

 

TOPOLOGY OPTIMIZATION OF WAVE BARRIERS FOR RAILWAY INDUCED VIBRATIONS IN BUILDINGS ……..….. 3461 

Cédric Van Hoorickx, Mattias Schevenels, Geert Lombaert   

 

 
MS 1002: EVOLUTIONARY ALGORITHMS AND METAHEURISTICS IN CIVIL ENGINEERING AND CONSTRUCTION 
MANAGEMENT 
MULTIOBJECTIVE OPTIMIZATION USING GENETIC ALGORITHMS IN TIME-COST CONSTRUCTION PROJECT 

SCHEDULING PROBLEM ………………………………………………………………………………………………………………………….….….. 3473 

Jorge Magalhães-Mendes   



xl 
 

APPLICATION OF GENETIC ALGORITHMS TO STRUTTED SHEET PILE WALL DESIGN OPTIMIZATION ……………….. 3485 

Mohamed Eid, Remon Isaac   

 

NASH EVOLUTIONARY ALGORITHMS: TESTING PROBLEM SIZE IN RECONSTRUCTION PROBLEMS IN FRAME 

STRUCTURES ……………………………………………………………………………………………………………………………….……………….. 3493 

David Greiner, Jacques Periaux, Jose M. Emperador, Blas Galván, Gabriel Winter   

 

OPTIMUM DESIGN OF REINFORCED CONCRETE FRAMES ACCORDING TO EC8 AND MC2010 WITH GENETIC 

ALGORITHMS ……………………………………………………………………………………………………………………………………………….. 3505 

Panagiotis Mergos   

 

CALIBRATION OF THE NUMERICAL MODEL OF A STAND IN DRAGÃO STADIUM BASED ON GENETIC  

ALGORITHMS ……………………………………………………………………………………………………………………………………………….. 3519 

Jorge Leite, Diogo Ribeiro, Hugo Marques, Rui Calçada   

 

 
MS 1003: ADVANCES IN DESIGN OPTIMIZATION OF STRUCTURES AND MATERIALS 
DESIGN OF ISOTROPIC MICROSTRUCTURES VIA A TWO-SCALE APPROACH …………………………………..….………….. 3534 

Alexis Faure, Georgios Michailidis, Rafael Estevez, Guillaume Parry, Grégoire Allaire   

 

SHAPE OPTIMIZATION OF GRAPHENE SHEETS FOR MAXIMUM FUNDAMENTAL FREQUENCY ………..…………….. 3546 

Jin-Xing Shi, Masatoshi Shimoda   

 

TOPOLOGY OPTIMIZATION WITH AN IMPLICIT FUNCTION AND PARAMETERIZED CUTTING SURFACE ………….. 3553 

Peter Dunning   

 

TOPOLOGY OPTIMIZATION OF PERIODIC STRUCTURES FOR COUPLED ACOUSTIC-STRUCTURE SYSTEMS ….….. 3565 

William Martins Vicente, Renato Picelli, Renato Pavanello, Yi Min Xie   

 

BESO APPROACH TO TOPOLOGY OPTIMIZATION OF GAN PHONONIC CRYSTALS …………………………….....……….. 3583 

Luca D'Alessandro, Bichoy Bahr, Luca Daniel, Dana Weinstein, Raffaele Ardito   

 

 
MS 1004: AERODYNAMIC STRATEGIES FOR THE GLOBAL OPTIMIZATION OF FLYING CONFIGURATIONS IN 
SUPERSONIC FLOW 
LOW BOOM / LOW DRAG SMALL SIZE SUPERSONIC AIRCRAFT DESIGN ………………………………………………….…….. 3596 

Atsushi Ueno, Yasushi Watanabe, Itham Salah El Din, Richard Grenon, Gerald Carrier   

 

DEVELOPMENT OF PHYSICAL METHODS OF THE SUPERSONIC AIRPLANE NEAR-FIELD INVESTIGATION AIMED 

AT THE SONIC BOOM MINIMIZATION ………………………………………………………………………………………………………….. 3612 

Sergey Chernyshev, Alexander Ivanov, Andrey Kiselev, Vladimir Mosharov, Leonid Teperin   

 

GLOBAL OPTIMIZATION OF THE SHAPE OF AN AEROSPACE VEHICLE, VIA ITERATIVE OPTIMUM-OPTIMORUM 

STRATEGY ………………………………………………………………………………………………………………………………………………..….. 3621 

A. Nastase   

 

 
 
 
 



xli 
 

MS 1005: MONITORING AND CONTROL OF STRUCTURES 
SHAPE IDENTIFICATION ANALYSIS OF CAVITY IN RESIN STRUCTURE BASED ON THERMAL NONDESTRUCTIVE 

TESTING METHOD …………………………………………………………………………………………………………………………………….….. 3630 

Kotaro Maruoka, Takahiko Kurahashi, Tetsuro Iyama   

 

DESIGN AND INSTALLATION OF A PERMANENT MONITORING SYSTEM FOR PALAZZO LOMBARDIA IN  

MILANO, ITALY …………………………………………………………………………………………………………………………………………….. 3640 

Marta Berardengo, Alfredo Cigada, Stefano Manzoni, Marcello Vanali   

 

 
MS 1006: PARAMETER IDENTIFICATION IN SOLID MECHANICS 
AN INVERSE PROBLEM STRATEGY BASED ON FORWARD MODEL EVALUATIONS: GRADIENT-BASED  

OPTIMIZATION WITHOUT ADJOINT SOLVES …………………………………………………………………………….……………….….. 3652 

Miguel Aguilo   

 

COHESIVE ZONE MODEL IDENTIFICATION WITH DCB TEST PARAMETER ESTIMATION SENSITIVITY ……………... 3676 

Racine Ly, Julien Jumel, Martin Shanahan, Florian Lavelle   

 

 
MS 1007: ADDITIVE MANUFACTURING AND OPTIMIZATION 
TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING WITH CONTROLLABLE SUPPORT STRUCTURE  

COSTS ……………………………………………………………………………………………………………………………………………………….….. 3689 

Matthijs Langelaar   

 

STUDY OF TOPOLOGY OPTIMIZATION PARAMETERS AND SCAFFOLD STRUCTURES IN ADDITIVE  

MANUFACTURING ………………………………………………………………………………………………………………………….…………….. 3700 

Alain Garaigordobil, Ruben Ansola, Estrella Veguería   

 

FINITE ELEMENT APPROXIMATION OF A TIME-DEPENDENT TOPOLOGY OPTIMIZATION PROBLEM ……………... 3711 

Matteo Bruggi, Nicola Parolini, Francesco Regazzoni, Marco Verani   

 

DESIGNING MANUFACTURABLE VISCOELASTIC DEVICES USING A TOPOLOGY OPTIMIZATION APPROACH  

WITHIN A TRULY-MIXED FEM FRAMEWORK …………………………………………………………………………………….………….. 3724 

Paolo Venini, Marco Pingaro, Carlo Cinquini   

 

ISO-XFEM FOR TOPOLOGY OPTIMIZATION OF STRUCTURES UNDER MULTIPLE LOAD CASES AND  

ACCELERATION LOADING …………………………………………………………………………………………………………………………….. 3739 

Meisam Abdi, Ian Ashcroft, Ricky Wildman   

 

 
MS 1008: ULTRASONIC GUIDED WAVES TESTING AND MONITORING 
LAMINATE ELEMENT METHOD AND ITS APPLICATION TO THE STUDY OF GUIDED WAVE RESONANCE 

PHENOMENA IN LAYERED ELASTIC STRUCTURES WITH DEFECTS ………………………………………………………..……….. 3753 

Evgeny Glushkov, Natalia Glushkova, Artem Eremin, Rolf Lammering   

 

INVESTIGATIONS OF MECHANICAL GUIDED WAVES PROPAGATION IN PIPES REPAIRED LOCALLY BY  

COMPOSITE PATCHES ………………………………………………………………………………………………………………………………….. 3761 

Slah Yaacoubi, Weina Ke, F. Dahmene, M. El Mountassir   

 

 



xlii 
 

MS 1009: ADJOINT METHODS FOR STEADY & UNSTEADY OPTIMIZATION 
TWO-STEPS SHAPE OPTIMIZATION ALGORITHM IMPROVING HYDRODYNAMICS STABILITY ……………….………….….. 3770 

Takashi Nakazawa   

 

ON THE CORRECT APPLICATION OF AD CHECKPOINTING TO ADJOINT MPI-PARALLEL PROGRAMS ………….…….….. 3778 

Ala Taftaf, Laurent Hascoët   

 

SPHERICITY: MESH OPTIMIZATION FOR ARBITRARY ELEMENT TOPOLOGY ……………………………………………………….. 3797 

Pavlos Alexias, Eugene De Villiers   

 

LINKING PARAMETRIC CAD WITH ADJOINT SURFACE SENSITIVITIES …………………………………………………..…………….. 3812 

Ilias Vasilopoulos, Dheeraj Agarwal, Marcus Meyer, Trevor T. Robinson, Cecil G. Armstrong   

 

A CODE-COUPLING APPROACH TO THE IMPLEMENTATION OF DISCRETE ADJOINT SOLVERS BASED ON  

AUTOMATIC DIFFERENTIATION ……………………………………………………………………………………………………….……………….. 3828 

Jan Backhaus, Anna Engels-Putzka, Christian Frey   

 

CAD KERNEL AND GRID GENERATION ALGORITHMIC DIFFERENTIATION FOR TURBOMACHINERY ADJOINT 

OPTIMIZATION ………………………………………………………………………………………………………………………………………..……….. 3843 

Ismael Sanchez Torreguitart, Tom Verstraete, Lasse Mueller   

 

ALTERNATIVE SOLUTION ALGORITHMS FOR PRIMAL AND ADJOINT INCOMPRESSIBLE NAVIER-STOKES ………….. 3858 

Mattia Oriani, Guillaume Pierrot   

 

DEFROSTER NOZZLE SHAPE OPTIMIZATION USING THE CONTINUOUS ADJOINT METHOD ……………………..……….. 3883 

Lefki Germanou, Evangelos Papoutsis-Kiachagias, Antoine Delacroix, Kyriakos Giannakoglou   

 

SENSITIVITY ANALYSIS FOR FORCED RESPONSE IN TURBOMACHINERY USING AN ADJOINT HARMONIC  

BALANCE METHOD ………………………………………………………………………………………………………………………………………….. 3893 

Anna Engels-Putzka, Christian Frey   

 

A TWO-LEVEL HYBRID APPROACH FOR OPTIMAL ACTIVE FLOW CONTROL ON A THREE-ELEMENT AIRFOIL ….…. 3912 

Anil Nemili, Emre Özkaya, Nicolas R. Gauger, Felix Kramer, Frank Thiele   

 

TRANSITION FROM 2D CONTINUOUS ADJOINT LEVEL SET TOPOLOGY TO SHAPE OPTIMIZATION ………….……….. 3928 

J.R.L. Koch, E.M. Papoutsis-Kiachagias, K.C. Giannakoglou   

 

AERODYNAMIC SHAPE OPTIMIZATION USING THE TRUNCATED NEWTON METHOD AND CONTINUOUS  

ADJOINT ……………………………………………………………………………………………………………………………………………………….... 3942 

Mehdi Ghavami Nejad, Evangelos M. Papoutsis-Kiachagias, Kyriakos C. Giannakoglou   

 

UNSTEADY ADJOINT TO THE CUT-CELL METHOD USING MESH ADAPTATION ON GPU’S …………………….………….. 3957 

Konstantinos Samouchos, Stergios Katsanoulis, Kyriakos Giannakoglou   

 

SHAPE OPTIMIZATION OF TURBOMACHINERY ROWS USING A PARAMETRIC BLADE MODELLER AND THE 

CONTINUOUS ADJOINT METHOD RUNNING ON GPUS ………………………………………………………………….……………….. 3972 

K.T. Tsiakas, F. Gagliardi, X.S. Trompoukis, K.C. Giannakoglou  

 

 

 

 



xliii 
 

GEOMETRIC CONTINUITY CONSTRAINTS FOR ADJACENT NURBS PATCHES IN SHAPE OPTIMISATION ………….... 3985 

Xingchen Zhang, Yang Wang, Mateusz Gugala, Jens-Dominik Mueller   

 

TOWARDS MULTIDISCIPLINARY ADJOINT OPTIMIZATION OF TURBOMACHINERY COMPONENTS ……….……….. 3999 

Marc Schwalbach, Tom Verstraete   

 

TOWARDS AN OUTPUT-BASED RE-MESHING FOR TURBOMACHINERY APPLICATIONS ………………………………….. 4011 

Mateusz Gugala, Marcus Meyer, Jens-Dominik Mueller   

 

OPTIMISATION OF A U-BEND USING A CAD-BASED ADJOINT METHOD WITH DIFFERENTIATED CAD  

KERNEL ……………………………………………………………………………………………………………………………………………..………….. 4023 

Salvatore Auriemma, Mladen Banovic, Orest Mykhaskiv, Herve Legrand, Jens-Dominik Mueller, Tom 

Verstraete, Andrea Walther  

 

 

 

A CONTINUOUS ADJOINT APPROACH FOR VEHICLE INTERIOR NOISE REDUCTION ……………………………………….. 4035 

Christos Kapellos, Michael Hartmann   

 

A MIXED OPERATOR OVERLOADING AND SOURCE TRANSFORMATION APPROACH FOR ADJOINT CFD 

COMPUTATION …………………………………………………………………………………………………………………………………..……….. 4047 

Zahrasadat Dastouri, Sinan Gezgin, Uwe Naumann   

 

 
MS 1010: INVERSE PROBLEMS, DESIGN AND OPTIMIZATION 
EFFICIENT CALIBRATION OF DISCRETE ELEMENT MATERIAL MODEL PARAMETERS USING LATIN  

HYPERCUBE SAMPLING AND KRIGING ………………………………………………………………………………………………………….. 4061 

Michael Rackl, Carolin D. Görnig, Kevin J. Hanley, Willibald A. Günthner   

 

UPDATING PRIOR PARAMETERS BASED ON LIKELIHOOD FUNCTION-BAYESIAN METHOD FOR  

PARAMETER ESTIMATION AT HIGH MEASUREMENT UNCERTAINTY …………………………………………………………….. 4073 

Sankaran Somasundharam, K Srinivas Reddy   

 

 
MS 1011: SURROGATE-ASSISTED EVOLUTIONARY ALGORITHMS IN AERODYNAMIC DESIGN/OPTIMIZATION 
CONSTRAINED MULTI-POINT AERODYNAMIC SHAPE OPTIMIZATION OF THE VISCOUS DPW WING THROUGH 

EVOLUTIONARY PROGRAMMING AND SUPPORT VECTOR MACHINES ………………………………………………….……….. 4082 

Daniel González Juárez, Esther Andrés Pérez, Mario Jaime Martin Burgos   

 

SURROGATE-BASED GLOBAL OPTIMIZATION OF A CYLINDER BY THE USE OF EVOLUTIONARY ALGORITHMS, 

SUPPORT VECTOR MACHINES AND NON UNIFORM B-SPLINES ………………………………………………….………………….. 4092 

Eesther Andrés-Pérez, Daniel González-Juárez, Mario J. Martin-Burgos, Leopoldo Carro-Calvo, Sancho 

Salcedo-Sanz  

 

 

 

PERFORMANCE COMPARISON OF KRIGING AND SVR SURROGATE MODELS APPLIED TO THE OBJECTIVE  

FUNCTION PREDICTION WITHIN AERODYNAMIC SHAPE OPTIMIZATION …………………………………………..………….. 4104 

Daniel Viúdez-Moreiras, Esther Andrés-Pérez, Daniel González-Juárez, Mario J. Martin Burgos   

 

HEAT TRANSFER OPTIMIZATION OF A RIBBED SURFACE USING SURROGATE-ASSISTED GENETIC  

ALGORITHMS …………………………………………………………………………………………………………………………….………………….. 4117 

Panagiotis Tsirikoglou, Ghader Ghorbaniasl, Simon Abraham, Chris Lacor   



xliv 

MULTI-FIDELITY EXTENSION TO NON-INTRUSIVE PROPER ORTHOGONAL DECOMPOSITION BASED  

SURROGATES ……………………………………………………………………………………………………………………………………………….. 4129 

Tariq Benamara, Piotr Breitkopf, I. Lepot, Caroline Sainvitu  

EVOLUTIONARY AERODYNAMIC SHAPE OPTIMIZATION THROUGH THE RBF4AERO PLATFORM ….……………….. 4146 

Dimitrios Kapsoulis, Varvara Asouti, Kyriakos Giannakoglou, Stefano Porziani, Emiliano Costa, Corrado 

Groth, Ubaldo Cella, Marco Evangelos Biancolini  

THE RBF4AERO BENCHMARK TECHNOLOGY PLATFORM ………………………………………………………………………….….. 4156 

Massimo Bernaschi, Alessandro Sabellico, Giorgio Urso, Emiliano Costa, Stefano Porziani, Fabrizio Lagasco, 

Corrado Groth, Ubaldo Cella, Marco Evangelos Biancolini, Dimitrios H.Kapsoulis, Varvara G. Asouti, Kyriakos 

C. Giannakoglou 

MS 1013: SOLUTION OF LARGE-SCALE INVERSE PROBLEMS 
DATA ASSIMILATION USING MRI DATA ………………………………………………………………………………………………….…….. 4164 

Geir Nævdal, Ove Sævareid, Rolf J. Lorentzen  

MS 1014: DESIGN OPTIMIZATION AND INVERSE PROBLEMS FOR WAVE PROPAGATION PROBLEMS 
FULL-WAVEFORM INVERSION FOR THE RECONSTRUCTION OF ELECTROMAGNETIC PROPERTY PROFILES 

USING PLANE MICROWAVES ……………………………………………………………………………………………………………………….. 4178 

Namho Joh, Jun Won Kang  

1100 REDUCTION METHODS 

MS 1101: REDUCED BASIS, POD AND PGD MODEL ORDER REDUCTION TECHNIQUES 
REDUCED BASIS METHOD FOR POISSON-BOLTZMANN EQUATION …………………………………………………………….…. 4187 

Cleophas Kweyu, Martin Hess, Lihong Feng, Matthias Stein, Peter Benner  

AN ITERATIVE MODEL ORDER REDUCTION SCHEME FOR A SPECIAL CLASS OF BILINEAR DESCRIPTOR  

SYSTEMS APPEARING IN CONSTRAINT CIRCUIT SIMULATION ……………………………………………………………………….. 4196 

Pawan Goyal, Peter Benner  

ELECTRICAL FIELDS SIMULATION IN HETEROGENOUS DOMAINS USING THE PROPER GENERALIZED 

DECOMPOSITION ………………………………………………………………………………………………………………………………………….. 4213 

Chady Ghnatios, Francisco Chinesta, Anais Barasinski  

MODEL ORDER REDUCTION IN STRUCTURAL DYNAMICS ………………………………………………………………………….….. 4221 

Raul Rodriguez Sanchez, Martin Buchschmid, Gerhard Müller  

TOWARDS A NON-INTRUSIVE PROPER GENERALIZED DECOMPOSITION SCHEME FOR MODEL ORDER  

REDUCTION ………………………………………………………………………………………………………………………………………………….. 4248 

Xi Zou, Pedro Díez, Michele Conti, Ferdinando Auricchio  

A PGD-BASED TIME SPACE DECOMPOSITION FOR THE UNSTEADY NAVIER-STOKES EQUATIONS APPLIED  

TO INCOMPRESSIBLE FLOWS ……………………………………………………………………………………………………………………….. 4263 

Michel Visonneau  



xlv 
 

MS 1103: MATHEMATICAL SURROGATE MODELLING IN ELECTROMAGNETICS 
RATIONAL MODELING OF MULTIVARIATE MULTI-FIDELITY DATA …………………………………………………………………… 4284 

Elizabeth Rita Samuel, Dirk Deschrijver, Luc Knockaert, Tom Dhaene, Annie Cuyt   

 

ON THE USE OF S-PARAMETER TRANSFORMATIONS TO IMPROVE SURROGATE MODEL BEHAVIOUR OF 

MULTIPORT NETWORKS ………………………………………………………………………………………………………………………………... 4295 

Petrie Meyer   

 

RECENT ADVANCES IN SURROGATE MODELLING OF REFLECTOR ANTENNA SYSTEMS …………………………………... 4302 

Dirk De Villiers  

 

A SHORT-TIME PRONY METHOD FOR THE DETECTION OF TRANSIENTS ……………………………………………….……….. 4313 

Annie Cuyt, Wen-Shin Lee, Min-Nan Tsai   

 

SURROGATE MODELING OF ANTENNA RADIATION CHARACTERISTICS BY GAUSSIAN PROCESSES ………….…….. 4322 

Jan Pieter Jacobs, Dirk De Villiers   

 

ACCELERATION OF MESH-BASED PHYSICAL OPTICS FOR ELECTROMAGNETIC SCATTERING ANALYSIS ………….. 4330 

Dao P. Xiang, Matthys M. Botha   

 

DESIGN OF AXIALLY SYMMETRIC POWER COMBINERS USING SURROGATE BASED OPTIMIZATION ……….…….. 4339 

Ryno Beyers, Dirk De Villiers   

 

 
 
1200 STRUCTURAL STABILITY AND DYNAMICS 
 
MS 1201: COMPUTATIONAL STRUCTURAL DYNAMICS 
FLEXURAL VIBRATION ANALYSIS OF GRAPHENE NANOPLATELETS REINFORCED NANOCOMPOSITE BEAMS ….. 4351 

Jie Yang, Chuang Feng   

 

DYNAMIC RESPONSE OF REAL OFFSHORE WIND TURBINES ON MONOPILES IN STRATIFIED SEABED …………….. 4361 

Guillermo M. Álamo, Juan J. Aznárez, Luis A. Padrón, Alejandro E. Martínez-Castro, Rafael Gallego, Orlando 

Maeso  

 

 

 

DYNAMIC ANALYSIS OF SPECIAL CARS ON UNEVEN ROADS ………………………………………………………………………….. 4377 

Szymon Tengler  

 

STRUCTURED SPATIAL DISCRETIZATION OF DYNAMICAL SYSTEMS ……………………………………………………………….. 4398 

Marko Jokic, Andrej Jokic, Bruno Dogancic   

 

WAVE PROPAGATION IN THIN PRETWISTED ANISOTROPIC STRIPS ……………………………………………………………….. 4406 

Maloth Thirupathi, Mira Mitra, P J Guruprasad   

 

NUMERICAL ROUTINE FOR DYNAMIC ANALYSIS OF TRANSMISSION LINES GUYED TOWERS SUBMITTED TO 

BROKEN CABLE …………………………………………………………………………………………………………………………………………….. 4416 

Thiago Brazeiro Carlos, João Kaminski Jr. 

 

 

 

 



xlvi 
 

INVARIANCE OF EIGENFREQUENCIES AND EIGENMODES UNDER GEOMETRIC TRANSFORMATION IN  

ELONGATED ELASTIC STRUCTURES ………………………………………………………………..…………………………………………….. 4436 

Maryam Morvaridi, Michele Brun   

 

 
MS 1202: ADVANCED BEAM MODELS 
A COMPUTATIONALLY EFFECTIVE FORMULATION TO FINITE ROTATIONS - SMALL STRAINS DESCRIPTION OF  

BEAM ELEMENTS ……………………………………………………………………………………………………………………………………….….. 4445 

Salvatore Lopez   

 

A COROTATIONAL FINITE ELEMENT TO MODEL BENDING VIBRATIONS OF METALLIC STRANDS …………………….. 4455 

Francesco Foti   

 

3D BEAM-COLUMN FINITE ELEMENT UNDER NON-UNIFORM SHEAR STRESS DISTRIBUTION DUE TO SHEAR  

AND TORSION ……………………………………………………………………………………………………………………………………………….. 4467 

Paolo Di Re, Daniela Addessi, Filip C. Filippou   

 

SINGULARLY PERTURBED PROBLEMS IN MECHANICS (SOME FUNDAMENTAL ASPECTS OF DESIGNING AND 

COMPUTING) ………………………………………………………………………………………………………………………………….…………….. 4481 

Lyudmila K. Kuzmina   

 

A DEGENERATE-CONTINUUM BASED TIMOSHENKO BEAM APPROACH FOR THE AEROELASTIC ANALYSIS OF  

THE WIND TURBINE BLADES …………………………………………………………………………………………………………………..…….. 4488 

Anthoula Panteli, Dimitris Manolas, Konstantinos Spiliopoulos   

 

DYNAMICS OF WIND TURBINE BLADES USING A GEOMETRICALLY-EXACT BEAM FORMULATION ………………... 4503 

Celso Faccio Junior, Alfredo Gay Neto   

 

EXTENDED FORMULA FOR THE CRITICAL VELOCITY OF A LOAD MOVING ON A BEAM SUPPORTED BY A  

FINITE DEPTH FOUNDATION ……………………………………………………………………………………………………………….……….. 4520 

Zuzana Dimitrovová   

 

FIRST-ORDER DISPLACEMENT-BASED ZIGZAG THEORIES FOR COMPOSITE LAMINATES AND SANDWICH 

STRUCTURES: A REVIEW ………………………………………………………………………………………………………………..…………….. 4528 

Marco Di Sciuva   

 

 
MS 1203: THE MODELS AND INVESTIGATIONS METHODS OF DYNAMICS OF THE SOLIDS SYSTEMS WITH DRY 
FRICTION 
VIRTUAL TESTBENCH FOR THE OMNI WHEEL DYNAMICS SIMULATION: NEW CONTACT TRACKING  

ALGORITHM ………………………………………………………………………………………………………………………………………………….. 4553 

Ivan Kosenko, Sergey Stepanov, Kirill Gerasimov, Mikhail Stavrovskiy   

 

MODEL AND INVESTIGATION OF DYNAMICS OF SOLID SYSTEM WITH TWO MASSIVE ECCENTRICS ON A  

ROUGH PLANE ……………………………………………………………………………………………………………………………………………... 4572 

Sergey Semendyaev, Alexey Tsyganov   

 

NON-REGULAR VEHICLE DYNAMICS. APPLICATION TO COLLISION ……………………………………………………………….. 4584 

Ahmed Bouzar Essaidi, Bachir Menkouz, Moussa Haddad, Taha Chettibi   

 



xlvii 
 

TESTING, SIMULATING AND UNDERSTANDING UNDER-PLATFORM DAMPER DYNAMICS …………………………….. 4599 

Chiara Gastaldi, Muzio M. Gola   

 

 
MS 1204: NONLINEAR DYNAMICS OF ROTATING STRUCTURES 
A NEW DYNAMIC SUBSTRUCTURING METHOD FOR NONLINEAR AND DISSIPATIVE SYSTEMS ………..…………….. 4611 

Colas Joannin, Benjamin Chouvion, Fabrice Thouverez   

 

SOME REMARKS ON TIME INTEGRATION OF 3D ROTOR-STATOR ASSEMBLY …………………………………………….….. 4624 

Benoit Prabel   

 

DELAYED FEEDBACK CONTROL METHOD FOR CALCULATING SPACE-TIME PERIODIC SOLUTIONS OF  

VISCOELASTIC PROBLEMS …………………………………………………………………………………………………………………………….. 4638 

Ustim Khristenko, Patrick Le Tallec   

 

COMBINING FINITE ELEMENT ANALYSIS AND ANALYTICAL MODELLING FOR EFFICIENT SIMULATIONS OF  

NON-LINEAR GEAR DYNAMICS …………………………………………………………………………………………………………………….. 4655 

Shadi Sweiki, Jakub Korta, Antonio Palermo, Rocco Adduci, Domenico Mundo   

 

DAMPING INDUCED BY DRY FRICTION: ANALYSES AND EXPERIMENTS FOR MODELING IMPROVEMENT …….. 4664 

Marc-André Douville, Béatrice Faverjon, Eric Chatelet, Georges Jacquet-Richardet   

 

 
MS 1206: ADVANCES IN NUMERICAL METHODS FOR LINEAR AND NON-LINEAR DYNAMICS AND WAVE 
PROPAGATION 
RAYLEIGH METHOD APPLIED TO A 46-M-HIGH CONCRETE MAST ……………………………………………………….……….. 4674 

Alexandre De M. Wahrhaftig, Reyolando M. L. R. F. Brasil   

 

A DISPERSION MINIMIZED MIMETIC METHOD FOR A COLD PLASMA MODEL …………………….……….……………….. 4682 

Vrushali A. Bokil, Vitaliy Gyrya, Duncan A. Mcgregor   

 

A VOLUME-AGGLOMERATION MULTIRATE TIME ADVANCING APPROACH ………………………………………………….. 4703 

Emmanuelle Itam, Stephen Wornom, Bruno Koobus, Alain Dervieux   

 

THERMOMECHANICAL NUMERICAL SIMULATION OF IMPACTS ON ELASTIC-PLASTIC SOLIDS WITH THE FINITE 

VOLUME METHOD …………………………………………………………………………………………………………………..………………….. 4717 

Thomas Heuzé   

 

 
MS 1207: COMPUTATIONAL SIMULATION OF SMART STRUCTURES AND MATERIALS 
TRANSVERSE WAVE PROPAGATION IN A ONE-DIMENSIONAL STRUCTURE COUPLED TO ITS ELECTRICAL 

ANALOGUE: COMPARISON OF TRANSFER MATRIX MODELS ……………………………………………………….……………….. 4728 

Boris Lossouarn, Mathieu Aucejo, Jean-François Deü   

 

 
MS 1208: BIFURCATIONS AND STABILITY 
BUCKLING OF ANNULAR PLATE JOINT WITH CIRCULAR BEAM ………………………………………………….………………….. 4741 

Sergei Filippov, Maria Boyarskaya  

 

 

 

 



xlviii 
 

THE CURL AND FLUTING OF PAPER: THE EFFECT OF ELASTO-PLASTICITY ……………………………….…………………….. 4752 

Anna-Leena Erkkilä, Teemu Leppänen, Tero Tuovinen   

 

STABILITY OF STEEL STRUCTURES WITH CLEARANCES AND IMPERFECTION ……………………………………..………….. 4770 

Katarzyna Rzeszut, Andrzej Garstecki   

 

 
MS 1209: DYNAMIC ANALYSIS OF BEAMS UNDER MOVING VEHICLES: APPLICATION TO RAILWAY TRACK  
MODELLING, DESIGN AND REHABILITATION 
NUMERICAL ANALYSIS FOR THE DYNAMIC RESPONSE CHARACTERISTICS OF THE PRESTRESSED CONCRETE 

SLEEPER ……………………………………………………………………………………………………………………………………………………….. 4780 

Tsutomu Watanabe, Kodai Matsuoka, Shintaro Minoura   

 

NUMERICAL DYNAMIC ANALYSIS OF BEAMS ON NONLINEAR ELASTIC FOUNDATIONS UNDER HARMONIC 

MOVING LOAD …………………………………………………………………………………………………………………………………………….. 4794 

Diego Froio, Roberto Moioli, Egidio Rizzi   

 

 
MS 1210: ADVANCES IN MODELING AND ANALYSIS OF FGM STRUCTURES 
ELASTOSTATIC AND MODAL AND BUCKLING ANALYSIS OF SPATIAL FGM BEAM STRUCTURES …….……………….. 4810 

Justin Murin, Mehdi Aminbaghai, Juraj Hrabovsky, Vladimir Kutis, Juraj Paulech, Stephan Kugler   

 

THERMO-ELASTICITY IN SHELL STRUCTURES MADE OF FUNCTIONALLY GRADED MATERIALS ……..……………….. 4838 

Stephan Kugler, Peter Fotiu, Justin Murin   

 

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE …... 4863 

Vladimír Kutiš, Justín Murín, Juraj Paulech, Juraj Hrabovský, Roman Gogola, Jakub Jakubec   

 

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS WITH NON-CONSTANT COEFFICIENTS …………………….. 4878 

Juraj Hrabovský, Justín Murín, Mehdi Aminbaghai, Vladimír Kutiš, Juraj Paulech   

 

TWO-WAY COUPLED ELECTRO-THERMAL ANALYSIS OF FGM SYSTEM CALCULATED BY THE NEW LINK FINITE 

ELEMENT …………………………………………………………………………………………………………………………………………………….. 4888 

Juraj Paulech, Vladimír Kutiš, Juraj Hrabovský, Justín Murín, Roman Gogola, Tibor Sedlár, Gabriel Gálik   

 

 
MS 1211: COMPUTATIONAL STRATEGIES FOR STRUCTURAL ROBUSTNESS ASSESSMENT 
PROGRESSIVE COLLAPSE FRAGILITY MODELS OF RC FRAMED BUILDINGS BASED ON PUSHDOWN  

ANALYSIS ………………………………………………………………………………………………………………………………………………….….. 4900 

Emanuele Brunesi, Roberto Nascimbene, Fulvio Parisi   

 

MECHANICAL PROPERTIES OF S355 UNDER EXTREME COUPLED EFFECT OF HIGH TEMPERATURES AND HIGH 

STRAIN RATES ……………………………………………………………………………………………………………………………………..……….. 4920 

Daniele Forni, Bernardino Chiaia, Ezio Cadoni   

 

IMPLEMENTATION OF PROGRESSIVE DAMAGE IN FINITE ELEMENT CODES FOR THE ASSESSMENT OF 

ROBUSNTESS ……………………………………………………………………………………………………………………………………………….. 4928 

Domenico Asprone, Bernardino Chiaia, Valerio De Biagi, Gaetano Manfredi, Fulvio Parisi  

 

 

 

 



xlix 
 

SEISMIC RESIDUAL CAPACITY ASSESSMENT OF FRAMED STRUCTURES DAMAGED BY EXCEPTIONAL  

ACTIONS …………………………………………………………………………………………………………………………………….…….………….. 4942 

Antonio  Formisano, Giuseppe Iazzetta, Giuseppe Marino, Francesco Fabbrocino, Raffaele Landolfo   

 

 
MS 1212: DYNAMICS AND SEISMIC RESPONSE OF ROCKING AND SELF-CENTERING STRUCTURES 
ROCKING RESPONSE OF MASONRY BLOCK STRUCTURES USING MATHEMATICAL PROGRAMMING ……………….. 4959 

Francesco Portioli, Lucrezia Cascini, Raffaele Landolfo   

 

CONTROLLED ROCKING, DISSIPATIVE CONTROLLED ROCKING AND MULTI-HIERARCHICAL ACTIVATION: 

NUMERICAL ANALYSIS AND EXPERIMENTAL TESTING …………………………………………………………………………………….. 4969 

Royce Liu, Alessandro Palermo   

 

THE ROLE OF THE PRESTRESSED TENDONS ON THE SEISMIC PERFORMANCE OF HYBRID ROCKING BRIDGE  

BENTS …………………………………………………………………………………………………………………………………………………………….. 4983 

Anastasios I. Giouvanidis, Elias G. Dimitrakopoulos   

 

MODELLING CONTACT IN ROCKING STRUCTURES WITH A NONSMOOTH DYNAMICS APPROACH ………………….. 4997 

Anastasios I. Giouvanidis, Elias G. Dimitrakopoulos   

 

A SIMPLE ANALYTICAL MODEL FOR THE ROCKING PREWEC SYSTEM ……………………………………………….…………….. 5010 

Dimitrios Kalliontzis, Sri Sritharan   

 

AN ANALYTICAL MODEL FOR DYNAMIC RESPONSE OF AN ELASTIC SDOF SYSTEM FIXED ON TOP OF A  

ROCKING SINGLE-STORY FRAME STRUCTURE: EXPERIMENTAL VALIDATION ………………………………………..……….. 5023 

Jonas A. Bachmann, Christoph Jost, Quentin Studemann, Michalis F. Vassiliou, Bozidar Stojadinovic   

 

SMOOTH-ROCKING OSCILLATOR UNDER NATURAL ACCELEROGRAMS ………………………………………………………….. 5063 

Blerta Lipo, Gianmarco De Felice   

 

EXPERIMENTAL INVESTIGATION OF THE SEISMIC RESPONSE OF A COLUMN ROCKING AND ROLLING ON A 

CONCAVE BASE …………………………………………………………………………………………………………………………………………….. 5074 

Jonas A. Bachmann, Patrick Blöchlinger, Matthias Wellauer, Michalis F. Vassiliou, Bozidar Stojadinovic   

 

SEISMIC ASSESSMENT OF MASONRY ROCKING COLUMNS AND FRAMES UNDER GROUND MOTION  

EXCITATIONS ………………………………………………………………………………………………………………………………………….…….. 5098 

Ioannis Kavvadias, Lazaros Vasiliadis   

 

PARAMETRIC INVESTIGATION OF THE DYNAMIC RESPONSE OF RIGID BLOCKS SUBJECTED TO SYNTHETIC  

NEAR-SOURCE GROUND MOTION RECORDS ………………………………………………………………………………………….…….. 5113 

Michalis Fragiadakis, Ioannis Psycharis, Yenan Cao, George P. Mavroeidis   

 

A MACRO-ELEMENT FORMULATION FOR ROCKING FLEXIBLE BODIES WITH A DEFORMABLE BASE .…………….. 5129 

Evangelos Avgenakis, Ioannis N. Psycharis   

 

 
 
 
 
 



l 
 

MS 1213: INNOVATIVE STRUCTURAL SYSTEMS FOR SEISMIC RESISTANT BUILDINGS 
NONLINEAR ANALYSIS AND EXPERIMENTAL BEHAVIOUR OF AN INNOVATIVE STEEL FRAME WITH  

REINFORCED CONCRETE INFILL WALLS ………………………………………………………………………………………………………... 5142 

Andrea Dall'Asta, Graziano Leoni, Francesco Morelli, Walter Salvatore, Alessandro Zona   

 

MODAL PROPERTIES AND SEISMIC RESPONSE OF EXISTING BUILDING RETROFITTED BY EXTERNAL  

BRACINGS WITH VISCOUS DAMPERS …………………………………………………………………………………….…………………….. 5156 

Laura Gioiella, Enrico Tubaldi, Fabrizio Gara, Andrea Dall'Asta   

 

 
MS 1214: HISTORIC MASONRY STRUCTURES: MODELLING, ASSESSMENT & RETROFIT 
SIMPLE CLOSED FORM HOMOGENIZATION MODEL FOR THE NON LINEAR STATIC AND DYNAMIC ANALYSIS  

OF RUNNING BOND MASONRY WALLS IN AND OUT OF PLANE LOADED ……………………………………………….………….. 5172 

Elisa Bertolesi, Gabriele Milani   

 

CONSTRUCTION PHASES ANALYSIS OF UNREINFORCED MASONRY BUILDINGS THROUGH EQUIVALENT FRAME 

MODEL …………………………………………………………………………………………………………………………………………………………….. 5190 

Francesco Pugi, Alessio Francioso, Giacomo Sevieri   

 

A COMBINED EXPERIMENTAL AND NUMERICAL STUDY OF THE PULL-OUT MECHANISM OF THREADED  

TITANIUM BARS EMBEDDED IN MARBLE BLOCKS …………………………………………………………………………………………….. 5207 

Stavros K. Kourkoulis, Aikaterini Marinelli, Ioanna Dakanali   

 

FINITE-DISCRETE ELEMENT MODELLING OF MASONRY INFILL WALLS SUBJECTED TO OUT-OF-PLANE LOADS ….. 5219 

Laura Liberatore, Marta Bruno, Omar Al Shawa, Monica Pasca, Luigi Sorrentino   

 

PALAZZO LA SAPIENZA IN PISA: STRUCTURAL ASSESSMENT AND RETROFIT OF AN HISTORICAL MASONRY  

BUILDING IN ITALY ……………………………………………………………………………………………………………………….………………….. 5230 

Silvia Caprili, Federico Mangini, Nicola Mussini, Walter Salvatore   

 

THREE-DIMENSIONAL NONLINEAR BEHAVIOUR OF MASONRY WALLS MODELLED WITH DISCRETE  

ELEMENTS ……….……………………………………………………………………………………………………………………………………………... 5248 

Daniele Baraldi, Antonella Cecchi   

 

NUMERICAL VALIDATION OF EQUIVALENT-FRAME MODELS FOR URM WALLS ……………………………………………….. 5262 

Rossella Siano, Guido Camata, Vincenzo Sepe, Enrico Spacone, Pere Roca, Luca Pelà   

 

SEISMIC ASSESSMENT OF HISTORICAL MASONRY TOWERS IN THE NORTH-EAST REGION OF ITALY ……………….. 5274 

Marco Valente, Gabriele Milani   

 

NATIVITY CHURCH IN BETHLEHEM: FULL 3D NON-LINEAR FE APPROACH FOR STRUCTURAL DAMAGE  

PREDICTION ………………………………………………………………………………………………………………………………………………….… 5287 

Gabriele Milani, Marco Valente, Claudio Alessandri   

 

DYNAMIC BEHAVIOUR AND EARTHQUAKE PERFORMANCE OF GREEK BASILICA CHURCHES WITH  

FOUNDATION DEFORMABILITY ………………………………………………………………………………………………………………….….. 5301 

George Manos, Evaggelos Kozikopoulos, Lambros Kotoulas  

 

 

 

 



li 
 

PROBLEMS RELATED TO THE USE OF FIBER REINFORCED CEMENTITIOUS MATERIALS AS STRENGTHENING OF 

MASONRY MEMBERS …………………………………………………………………………………………………………………………………….. 5314 

Daniela Sinicropi, Antonio Borri, Marco Corradi, Michele Paradiso   

 

FAST KINEMATIC LIMIT ANALYSIS OF FRP REINFORCED MASONRY VAULTS THROUGH A NEW GENETIC 

ALGORITHM NURBS-BASED APPROACH ………………………………………………………………………………………………….…….. 5326 

Andrea Chiozzi, Gabriele Milani, Antonio Tralli   

 

THE ROLE OF RESTORATION MORTARS IN THE EARTHQUAKE PROTECTION OF KAISARIANI MONASTERY …….. 5340 

Antonia Moropoulou, Maria Apostolopoulou, Petros Moundoulas, Eleni Aggelakopoulou, Louiza Siouta, 

Asterios Bakolas, Maria Douvika, Panagiotis Karakitsios, Panagiotis G. Asteris 

  

 

 

FIRST RESULTS OF THE VIBRATION-BASED STRUCTURAL HEALTH MONITORING OF A MASONRY DOME ….….. 5359 

Nicola Cavalagli, Gabriele Comanducci, Massimiliano Gioffrè, Vittorio Gusella, Filippo Ubertini   

 

BEHAVIOR OF SINGLE STORY BEARING WALL MASONRY STRUCTURES IN VARIOUS CONDITIONS ………………... 5373 

Abdelraouf Kassem   

 

SEISMIC PROTECTION OF MONUMENTS AND HISTORIC STRUCTURES – THE SEISMO RESEARCH PROJECT …... 5382 

Constantine Spyrakos, Charilaos Maniatakis   

 

 
MS 1215: NONLINEAR VIBRATIONS OF CONSERVATIVE AND NONCONSERVATIVE SYSTEMS: PHENOMENA AND 
ADVANCED NUMERICAL METHODS 
FORCED RESPONSE OF SHROUDED BLADES WITH VARIABLE OPERATING POINTS …………………………………………. 5396 

Ferhat Kaptan, Lars Panning-Von Scheidt, Jörg Wallaschek, Victor Salit   

 

GEOMETRY EFFECTS ON THE NONLINEAR OSCILLATIONS OF VISCOELASTIC CYLINDRICAL SHELLS ………….…….. 5406 

Zenon Del Prado, Marco Amabili, Paulo Gonçalves, Frederico Da Silva   

 

REDUCED ORDER MODELS FOR DYNAMIC BEHAVIOR OF PRESTRESSED ELASTOMER DAMPING DEVICES …….. 5417 

Antoine Legay, Jean-François Deü, Benjamin Morin   

 

LOCALIZATION OF VIBRATORY ENERGY OF A LINEAR SYSTEM IN A CHAIN OF FOUR NONLINEAR  

OSCILLATORS ……………………………………………………………………………………………………………………………………………….. 5427 

Simon Charlemagne, Claude-Henri Lamarque, Alireza Ture Savadkoohi   

 

CONTINUATION OF QUASI-PERIODIC SOLUTIONS WITH TWO-FREQUENCY HARMONIC BALANCE METHOD .. 5438 

Louis Guillot, Pierre Vigué, Christophe Vergez, Bruno Cochelin   

 

 
MS 1216: STRUCTURAL ANALYSIS AND VIBRATIONS 
ASYMPTOTIC ANALYSIS OF DEFORMATIONS OF THE SLIGHTLY ORTHOTROPIC SPHERICAL LAYER UNDER  

NORMAL PRESSURE ………………………………………………………………………………………………………………………….………….. 5444 

Andrei L. Smirnov, Svetlana M. Bauer, Liudmila A. Venatovskaia, Eva B. Voronkova   

 

EXPERIMENTAL VALIDATION OF FINITE ELEMENT MODELS FOR REINFORCED CONCRETE BEAMS WITH AND 

WITHOUT DISCONTINUITIES ……………………………………………………………………………………………………….……………….. 5454 

Marios Filippoupolitis, Carl Hopkins, Siu-Kui Au   



lii 
 

MS 1217: COMPUTATIONAL METHODS IN EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS 
SEISMIC BEHAVIOR INDICES OF OLD TYPE REINFORCED CONCRETE MEMBERS ……………………………………………….. 5464 

Anthos Ioannou, Stavroula J. Pantazopoulou   

 

EFFECT OF SOIL SPATIAL VARIABILITY ON THE DYNAMIC BEHAVIOR OF A SLOPE …………………………………………….. 5483 

Michael Michael, Tamara Al-Bittar, Abdul-Hamid Soubra   

 

ENERGY-MOMENTUM METHOD FOR NONLINEAR DYNAMIC OF 2D COROTATIONAL BEAMS ……………..………….. 5496 

Sophy Chhang, Mohammed Hjiaj, Jean-Marc Battini, Carlo Sansour   

 

THE INFLUENCE OF UNCERTAINTY OF DESIGN PARAMETERS ON DYNAMIC CHARACTERISTICS OF STRUCTURE  

WITH DAMPERS ……………………………………………………………………………………………………………………………………….…….. 5507 

Magdalena Lasecka-Plura, Roman Lewandowski   

 

FINITE-DISCRETE NUMERICAL MODELLING OF REINFORCED CONCRETE STRUCTURES …………………….…………….. 5523 

Nikolina Zivaljic, Zeljana Nikolic, Hrvoje Smoljanovic, Ivan Balic   

 

BEAM DYNAMIC STRESSES INCREMENTS AFTER PARTIAL DECONSTRUCTION OF FOUNDATION …………………….. 5533 

Vladimir Gordon, Olga Pilipenko, Timur Gasimov   

 

RELIABILITY OF SYSTEMS EQUIPPED WITH VISCOUS DAMPERS WITH VARIABLE PROPERTIES ……………………….. 5550 

Andrea Dall'Asta, Laura Ragni, Fabrizio Scozzese, Enrico Tubaldi   

 

AN INVESTIGATION ON EFFECT OF SUBGRADE REACTION MODULUS OF SOIL ON NATURAL PERIOD OF LOW  

RISE BUILDINGS …………………………………………………………………………………………………………………………………………….. 5567 

Rafet Sisman, Abdurrahman Sahin   

 

A PROBABILISTIC APPROACH TOWARDS AN EVALUATION OF EXISTING CODE PROVISIONS FOR SEISMICALLY 

ISOLATED STRUCTURES ………………………………………………………………………………………………………………………..……….. 5574 

Anastasios Tsiavos, Bozidar Stojadinovic   

 

EFFECT OF THE SEISMIC EXCITATION’S INCIDENCE ANGLE ON THE NONLINEAR BEHAVIOR OF BASE ISOLATED 

BUILDINGS CONSIDERING POUNDING TO ADJACENT MOAT WALLS …………………………………………………….……….. 5585 

Eftychia A. Mavronicola, Panayiotis C. Polycarpou, Petros Komodromos   

 

NUMERICAL NON-LINEAR SIMULATION OF THE IN-PLANE BEHAVIOUR OF R/C FRAMES WITH MASONRY  

INFILLS UNDER SEISMIC TYPE LOADING ………………………………………………………………………………………….…………….. 5598 

George Manos, Vasilios Soulis   

 

MODELING THE MECHANICAL RESPONSE OF A LEAD-CORE BEARING DEVICE: DAMAGE MECHANICS  

APPROACH …………………………………………………………………………………………………………………………………………………... 5613 

Todor Zhelyazov, Rajesh Rupakhety, Simon Olafsson   

 

INVESTIGATION OF THE PERFORMANCE OF VARIOUS MODAL CORRELATION CRITERIA IN STRUCTURAL  

DAMAGE IDENTIFICATION ………………………………………………………………………………………………………………..………….. 5626 

Manolis Georgioudakis, Vagelis Plevris   

 

 
 



liii 
 

MS 1218: STABILITY AND CONTROL OF FLEXIBLE STRUCTURES 
EXPLOITING MULTIPLE REFERENCE MODELS FOR ADAPTIVE CONTROL OF FLEXIBLE STRUCTURES ……………….. 5646 

Ilaria Venanzi, Laura Ierimonti   

 

PASSIVE CONTROL OF WAVE PROPAGATION IN PERIODIC ANTI-TETRACHIRAL META-MATERIALS ……………….. 5658 

Marco Lepidi, Andrea Bacigalupo   

 

FLEXIBLE COMPLEX SYSTEM OF A DOUBLE-STRING UNDER EXTREME MOVING LOADS ……………………….……….. 5670 

Jarosław Rusin   

 

ON THE MODELING OF SELF-DAMPING IN STRANDED CABLES ……………………………………………………………………... 5680 

Francesco Foti, Luca Martinelli, Federico Perotti   

 

COMPUTATIONAL EFFECTIVENESS OF LMI DESIGN STRATEGIES FOR VIBRATION CONTROL OF LARGE 

STRUCTURES ………………………………………………………………………………………………………………………………………….…….. 5689 

Francisco Palacios-Quiqonero, Josep Rubió-Massegú, Josep M. Rossell, Hamid Reza Karimi   

 

A SMART BASE RESTRAINT FOR WIND TURBINES TO MITIGATE UNDESIRED EFFECTS DUE TO STRUCTURAL 

VIBRATIONS ……………………………………………………………………………………………………………………………………………….... 5702 

Nicola Caterino, Christos T. Georgakis, Mariacristina Spizzuoco, Antonio Occhiuzzi   

 

 
MS 1220: DYNAMICS OF STRUCTURES SUBJECT TO SEISMIC EXCITATIONS 
NONLINEAR DYNAMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS WITH THE FRICTION PENDULUM  

SYSTEM SUBJECTED TO NEAR-FAULT EARTHQUAKES ……………………………………………………………………………………. 5712 

Fabio Mazza, Sandro Sisinno   

 

ABSOLUTE FINITE ELEMENT COORDINATES IN THE DYNAMICS OF LARGE FLEXIBLE STRUCTURES ………………... 5726 

Evtim Zahariev   

 

MODAL ANALYSIS OF A FRAME MODEL UNDER UNMEASURED SEISMIC INPUT ………………………….……………….. 5742 

Claudio Valente, Vincenzo Sepe, Marco Di Pilla, Fabrizio Iezzi, Rossella Siano, Luigia Zuccarino  

 

EQUIVALENT UNIAXIAL ACCELEROGRAM FOR CSS-BASED ISOLATION SYSTEMS ASSESSMENT UNDER  

TWO-COMPONENTS SEISMIC EVENTS ………………………………………………………………………………………………………….. 5753 

Marco Furinghetti, Alberto Pavese   

 

 
MS 1221: COMPUTATIONAL STRUCTURAL STABILITY 
MIXED SOLID MODELS IN NUMERICAL ANALYSIS OF SLENDER STRUCTURES ……………………………………….……….. 5768 

Domenico Magisano, Leonardo Leonetti, Giovanni Garcea   

 

COMPUTATIONAL ANALYSIS OF THE COLLAPSE BEHAVIOUR OF THIN-WALLED POLYGONAL STEEL BEAMS .... 5789 

Raffaele Ardito   

 

INFLUENCE OF STRAIN DEFINITIONS ON TRUSSES CRITICAL LOADS ……………………………………………….…………….. 5799 

Reyolando Brasil, Jose Balthazar  

 

 

 

 



liv 
 

ULTIMATE STRENGTH ANALYSIS OF STIFFENED PANELS OF SHIP STRUCTURES UNDER COMBINED LOAD ..….. 5810 

Li Hong, Meng Linghua, Qin Zhongwen, Zhang Enguo, Li Li   

 

 
MS 1222: INFLUENCE OF LIQUEFIABLE SOIL ON SINGLE AND CLOSELY CLUSTERED STRUCTURES 
NUMERICAL ANALYSES OF THE INFLUENCE OF STRUCTURAL SLENDERNESS ON THE SEISMIC RESPONSE OF 

SINGLE AND CLUSTERED STRUCTURES …………………………………………………………………………………………………..…….. 5817 

Gonzalo Barrios, Tam Larkin, Nawawi Chouw   

 

EFFECT OF HIGHER MODES ON STRUCTURAL RESPONSE WITH NONLINEAR SOIL-FOUNDATION-STRUCTURE 

INTERACTION …………………………………………………………………………………………………………………………………………….... 5826 

Xiaoyang Qin, Nawawi Chouw, Tam Larkin   

 

 
MS 1224: INNOVATIVE SOLUTIONS FOR THE SEISMIC PROTECTION OF INDUSTRIAL BUILDINGS 
SEISMIC RETROFIT OF AN INDUSTRIAL STRUCTURE THROUGH AN INNOVATIVE SELF-CENTERING  

HYSTERETIC DAMPER: MODELLING, ANALYSIS AND OPTIMIZATION. …………………………………………………………….. 5834 

Francesco Morelli, Andrea Piscini, Walter Salvatore   

 

PERFORMANCE ASSESSMENT OF SEISMIC RETROFITTING MEASURES ON SILO STRUCTURES USING  

INNOVATIVE SEISMIC PROTECTION SYSTEMS ……………………………………………………………………………………………….. 5851 

Marius Pinkawa, Benno Hoffmeister, Markus Feldmann   

 

SEISMIC RETROFIT OF INDUSTRIAL SILOS BY MEANS OF BASE ISOLATION DEVICES ………………..…………………….. 5868 

Alper Kanyilmaz, Carlo Andrea Castiglioni, Julia Georgi   

 

EFFICIENCY OF SEISMIC ISOLATION ON INDUSTRIAL PLANTS - CASE STUDY OF A GAS TANK ……………….……….. 5896 

José Henriques, Francesco Morelli, Bram Vandoren, Walter Salvatore, Hervé Degée   

 

PERFORMANCE-BASED NONLINEAR RESPONSE HISTORY ANALYSIS FRAMEWORK FOR THE "PROINDUSTRY" 

PROJECT CASE STUDIES …………………………………………………………………………………………………………………………….….. 5912 

Marco Faggella, Raffaele Laguardia, Rosario Gigliotti, Francesco Morelli, Franco Braga, Walter Salvatore   

 

PERFORMANCE BASED EARTHQUAKE ASSESSMENT OF AN INDUSTRIAL SILOS STRUCTURE AND RETROFIT  

WITH SLIDING ISOLATORS ……………………………………………………………………………………………………………………………. 5926 

Edoardo Rossi, Michelangelo Ventrella, Marco Faggella, Rosario Gigliotti, Franco Braga   

 

 
MS 1225: SEISMIC PERFORMANCE ASSESSMENT OF STRUCTURES AND SEISMIC RISK MITIGATION STRATEGIES 
A CRITICAL REVIEW OF FRAGILITY CURVES FOR EXISTING RC BUILDINGS ………………………………………………..…….. 5934 

Monica Mastroberti, Marco Vona   

 

DYNAMIC IDENTIFICATION AND MODELLING OF A RC HOSPITAL BUILDING ………………………………………………….. 5942 

Giorgio Lacanna, Pauline Deguy, Maurizio Ripepe, Massimo Baglione, Marco Tanganelli, Stefania Viti, Mario 

De Stefano  

 

 

 

SEISMIC HAZARD OF URBAN AREAS: A CASE-STUDY ………………………………………………………………………………………. 5952 

Giorgio Lacanna, Pauline Deguy, Maurizio Ripepe, Massimo Coli, Barbara Paoletti, Sara Barducci, Marco 

Tanganelli, Stefania Viti, Mario De Stefano  

 

 

 



lv 
 

SPO2FRAG V1.0: SOFTWARE FOR PUSHOVER-BASED DERIVATION OF SEISMIC FRAGILITY CURVES ………..…….. 5962 

Iunio Iervolino, Georgios Baltzopoulos, Dimitrios Vamvatsikos, Roberto Baraschino   

 

COMPUTER-AIDED SEISMIC RISK ASSESSMENT AT URBAN SCALE. MODEL DEFINITION AND VALIDATION ON  

A CASE STUDY ……………………………………………………………………………………………………………………………………………….. 5977 

Alberto Basaglia, Alessandra Aprile, Francesco Pilla, Enrico Spacone   

 

TOWARDS INTEGRATED SEISMIC RISK ASSESSMENT IN PALESTINE - APPLICATION TO THE CITY OF NABLUS ... 5987 

Ricardo Monteiro, Paola Ceresa, Vania Cerchiello, Jamal Dabeek, Antonella Di Meo, Barbara Borzi   

 

REASSESS V1.0: A COMPUTATIONALLY-EFFICIENT SOFTWARE FOR PROBABILISTIC SEISMIC HAZARD  

ANALYSIS ……………………………………………………………………………………………………………………………………………….…….. 5999 

Iunio Iervolino, Eugenio Chioccarelli, Pasquale Cito   

 

SIMPLIFIED PERIOD ESTIMATION OF ITALIAN RC BRIDGES FOR LARGE-SCALE SEISMIC ASSESSMENT …………... 6013 

C. Zelaschi, R. Monteiro, R. Pinho   

 

 
 
1300  UNCERTAINTY QUANTIFICATION AND ERROR ESTIMATION 
 
MS 1301: THE STOCHASTIC COMPUTER METHODS IN MECHANICS 
FLOW FIELD ESTIMATION IN OPEN CHANNEL BASED ON KALMAN FILTER FINITE ELEMENT METHOD ………….. 6029 

Taichi Yoshiara, Takahiko Kurahashi, Yasuhide Kobayashi, Toshihiko Eto   

 

STOCHASTIC TECHNIQUES FOR THE NUMERICAL SOLUTION OF ENGINEERING BOUNDARY VALUE  

PROBLEMS ……………………………………………………………………………………………………………………………………………………. 6041 

Victor Maceiras, Manuel Casteleiro   

 

THE BOOTSTRAP APPROACH TO THE STATISTICAL SIGNIFICANCE OF PARAMETERS IN THE FIXED EFFECTS  

MODEL ……………………………………………………………………………………………………………………………………….………….…….. 6061 

Jacek Pietraszek, Renata Dwornicka, Agnieszka Szczotok   

 

ON FULLY COUPLED THERMO-ELASTO-PLASTIC STOCHASTIC FINITE ELEMENT ANALYSIS OF STEEL  

STRUCTURES ……………………………………………………………………………………………………………………………………….……….. 6069 

Marcin Kaminski, Michał Strakowski   

 

AN INTRODUCTION TO STOCHASTIC FINITE ELEMENT METHOD ANALYSIS OF HYPERELASTIC STRUCTURES ... 6078 

Marcin Kamioski, Damian Sokołowski   

 

 
MS 1303: ANALYSIS AND DESIGN OF SAFETY CRITICAL SYSTEMS UNDER UNCERTAINTY 
IDENTIFICATION OF INTERVAL FIELDS FOR SPATIAL UNCERTAINTY REPRESENTATION IN FINITE ELEMENT 

 MODELS ………………………………………………………………………………………………………………………………………………..…….. 6091 

Matthias Faes, Jasper Cerneels, Dirk Vandepitte, David Moens   

 

INTRODUCTION OF BEAD INGS INTO A CRASH TUBE USING A ROBUST OPTIMISATION APPROACH ……………... 6099 

Stefan Scheiblhofer   

 



lvi 
 

DYNAMICAL ANALYSIS OF PLATE MODELS WITH UNCERTAIN STRUCTURAL PROPERTIES USING THE  

INTERVAL FIELD METHOD …………………………………………………………………………………………………………………………….. 6107 

Maurice Imholz, Dirk Vandepitte, David Moens   

 

POWER GRID ROBUSTENSS TO SEVERE FAILURES: TOPOLGICAL AND FLOW BASED METRICS  

COMPARISION ……………………………………………………………………………………………………………………………………….…….. 6121 

Roberto Rocchetta, Edoardo Patelli   

 

 
MS 1304: STOCHASTIC MODELING AND IDENTIFICATION OF UNCERTAINTIES IN COMPUTATIONAL MECHANICS 
MULTILEVEL STOCHASTIC REDUCED-ORDER MODEL IN LINEAR STRUCTURAL DYNAMICS FOR COMPLEX 

STRUCTURES ………………………………………………………………………………………………………………………………………..……….. 6136 

Olivier Ezvan, Anas Batou, Christian Soize   

 

TO ESTIMATE NON-STATIONARY STOCHASTIC DISTRIBUTED LOAD ON A BEAM STRUCTURE FROM  

RESPONSE SAMPLES ………………………………………………………………………………………………………………………………….….. 6148 

S.Q. Wu, J. Zhu   

 

A ROBUST POLYNOMIAL CHAOS KALMAN FILTER FRAMEWORK FOR CORROSION DETECTION IN  

REINFORCED CONCRETE STRUCTURES ………………………………………………………………………………………………………….. 6160 

Wael Slika, George Saad   

 

ANALYSIS OF STOCHASTIC DYNAMIC SOIL-STRUCTURE INTERACTION PROBLEMS BY MEANS OF COUPLED  

FINITE ELEMENTS-PERFECTLY MATCHED LAYERS ………………………………………………………………………………………….. 6172 

Manthos Papadopoulos, Stijn François, Geert Degrande, Geert Lombaert   

 

A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY 

ASSOCIATED NCF COMPOSITE MATERIALS …………………………………………………………………………………………………... 6186 

Loujaine Mehrez, Roger Ghanem, Colin Mcauliffe, William R. Rodgers, Venkat Aitharaju   

 

 
MS 1306: ERCOFTAC SIG-45: UNCERTAINTY QUANTIFICATION IN CFD AND FLUID STRUCTURE INTERACTION 
A MULTI-FIDELITY ADAPTIVE SAMPLING METHOD FOR METAMODEL-BASED UNCERTAINTY  

QUANTIFICATION OF COMPUTER SIMULATIONS ………………………………………………………………………………………….. 6196 

Riccardo Pellegrini, Cecilia Leotardi, Umberto Iemma, Emilio Campana, Matteo Diez   

 

A LEAST-SQUARES, ADAPTIVE UNCERTAINTY PROPAGATION APPROACH FOR A PLASMA-COUPLED  

COMBUSTION SYSTEM ……………………………………………………………………………………………………………………………….... 6213 

Kunkun Tang, Luca Massa, Jonathan Wang, Jonathan Freund   

 

UNCERTAINTY QUANTIFICATION IN NUMERICAL SIMULATIONS OF THE FLOW IN THORACIC AORTIC  

ANEURYSMS …………………………………………………………………………………………………………………………………………….….. 6226 

Alessandro Boccadifuoco, Alessandro Mariotti, Simona Celi, Nicola Martini, Maria Vittoria Salvetti   

 

 
MS 1307: NON-INTRUSIVE SURROGATE MODELS FOR UNCERTAINTY QUANTIFICATION IN HIGH DIMENSIONS 
OPTIMIZATION OF A PHOTOACOUSTIC GAS SENSOR USING MULTIFIDELITY RBF METAMODELING …………..….. 6250 

Cedric Durantin, Justin Rouxel, Jean-Antoine Desideri, Alain Gliere  

 

 

 

 



lvii 
 

BEARING CAPACITY OF STRIP FOOTINGS ON SPATIALLY RANDOM SOILS USING KRIGING AND MONTE  

CARLO SIMULATION ………………………………………………………………………………………………………………………….………….. 6260 

Jawad Thajeel, Tamara Al-Bittar, Nour Issa, Abdul Hamid Soubra   

 

AN OPTIMAL SENSOR PLACEMENT METHOD FOR SHM BASED ON BAYESIAN EXPERIMENTAL DESIGN AND 

POLYNOMIAL CHAOS EXPANSION ………………………………………………………………………………………………………………... 6272 

Giovanni Capellari, Eleni Chatzi, Stefano Mariani   

 

CALIBRATION OF NESTED COMPUTER MODELS ………………………………………………………………………………..………….. 6283 

Sophie Marque-Pucheu, Guillaume Perrin, Josselin Garnier   

 

A STATISTICAL APPROACH FOR BUILDING SPARSE POLYNOMIAL CHAOS EXPANSIONS …………………….………….. 6307 

Simon Abraham, Ghader Ghorbaniasl, Chris Lacor   

 

 
MS 1308: MODELLING AND INVERSE METHODS IN NONLINEAR DYNAMICAL SYSTEMS 
FINITE ELEMENT METAMODELING OF UNCERTAIN STRUCTURES ……………………………………………………..………….. 6316 

Vasilis Dertimanis, Dimitris Giagopoulos, Eleni Chatzi   

 

DYNAMICS OF MULTIBODY SYSTEMS SUBJECT TO UNILATERAL MOTION CONSTRAINTS USING A NEW 

NUMERICAL ALGORITHM FOR CONTACT DETECTION …………………………………………………………….…………………….. 6328 

Antonios Pournaras, Fotios Karaoulanis, Sotirios Natsiavas   

 

EQUATIONS OF MOTION FOR MECHANICAL SYSTEMS SUBJECT TO ACATASTATIC CONSTRAINTS ………….…….. 6342 

Elias Paraskevopoulos, Sotirios Natsiavas   

 

PARAMETER ESTIMATION OF NONLINEAR LARGE SCALE SYSTEMS THROUGH STOCHASTIC METHODS AND 

MEASUREMENT OF ITS DYNAMIC RESPONSE ………………………………………………………………………………..…………….. 6369 

Dimitrios Giagopoulos, Alexandros Arailopoulos   

 

 
MS 1309: SCALABLE MULTI-FIDELITY MODELING FOR DESIGN, UNCERTAINTY QUANTIFICATION, AND INVERSE 
PROBLEMS 
VARIABLE FIDELITY MODELLING IN MODERN AIRCRAFT DESIGN ……………………………………………………………..….. 6383 

Marian Zastawny   

 

 
MS 1310: COMPUTATIONAL METHODS FOR THE SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS 
FOUR-DIMENSIONAL PATH INTEGRATION METHOD FOR ESTIMATING THE STOCHASTIC ROLL RESPONSE ….. 6398 

Wei Chai, Arvid Naess, Bernt Leira   

 

SEISMIC RELIABILITY ASSESSMENT OF FRAME STRUCTURES WITH FLEXIBILITY-BASED STOCHASTIC  

BEAM-COLUMN ELEMENTS ……………………………………………………………………………………………………………..………….. 6407 

Georgios Balokas, Michalis Fragiadakis   

 

 
 
 
 
 



lviii 
 

1400 SPECIAL TECHNOLOGICAL SESSIONS 
 
MS 1401: TOICA: THERMAL OVERALL INTEGRATED CONCEPT AIRCRAFT 
THERMAL TRADE OFF SUSTAINED BY MULTI DISCIPLINARY AND MULTI LEVEL OPTIMIZATION ………..………….. 6420 

Olivier Tabaste, Cedric Campguilhem   

 

COLLABORATIVE ENGINEERING TECHNOLOGIES ENABLING MULTI-PARTNER THERMAL ANALYSIS IN EARLY 

DESIGN STAGES OF AIRCRAFT ……………………………………………………………………………………………………….……….…….. 6436 

Erik Baalbergen, Wim Lammen, Bert De Wit, Robert Maas, Marie Moghadasi, Johan Kos, Fabio Chiacchio   

 

VISUAL ANALYTICS FOR EVALUATION OF VALUE IMPACT IN ENGINEERING DESIGN ……………………………….……. 6461 

Timoleon Kipouros, Ola Isaksson   

 

 
STS 3: INNOVATIVE DESIGN OPTIMIZATION TOOLS LINKED TO INDUSTRIAL AERONAUTICAL APPLICATIONS: 
TARGETING GREENER PERFORMANCES 
COMBINING AN RBF-BASED MORPHER WITH CONTINUOUS ADJOINT FOR LOW-SPEED AERONAUTICAL 

OPTIMIZATION APPLICATIONS …………………………………………………………………………………………………………………….. 6471 

Evangelos Papoutsis-Kiachagias, Matej Andrejasic, Stefano Porziani, Corrado Groth, David Erzen, Marco 

Evangelos Biancolini, Emiliano Costa, Kyriakos Giannakoglou  

 

 

 

 
STS 5: TRANSITION LOCATION EFFECT ON SHOCK WAVE BOUNDARY LAYER INTERACTION 
LOAD CONTROL OF NATURAL-LAMINAR-FLOW WING VIA BOUNDARY LAYER CONTROL …………………………….. 6485 

Wieoczysław Stalewski, Janusz Sznajder   

 

 
STS 7: MORPHING TECHNOLOGIES FOR AIRCRAFT WINGS 
AN ADAPTIVE TRAILING EDGE FOR LARGE COMMERCIAL AIRCRAFT ………………………….……………..………………….. 6496 

Antonio Concilio, Ignazio Dimino, Rosario Pecora   

 

 
STS 9: ADVANCED WING HIGH-LIFT SYSTEMS 
APPLICATION OF SYNTHETIC JETS ACTUATORS IN WING-PYLON JUNCTION AREA TO IMPROVE THE HIGH 

LIFT PERFORMANCES …………………………………………………………………………………………………………………….…………….. 6505 

Petr Vrchota   

 

 

YOUNG INVESTIGATORS MINISYMPOSIUM 
A NANO-MACRO BOTTOM-UP APPROACH TOWARDS BRITTLE FRACTURE …………………………………….…………….. 6515 

Sandeep Patil, Yousef Heider, Carlos Hernandez Padilla, Eduardo Cruz Chu, Bernd Markert   

 

 
 
ECCOMAS OLYMPIAD MINISYMPOSIUM 
INTEGRATION OF DESIGN AND ANALYSIS THROUGH BOUNDARY INTEGRAL EQUATIONS ……………..…………….. 6526 

Benjamin Marussig, Jürgen Zechner, Gernot Beer, Thomas-Peter Fries   

 

 
 



lix 
 

Contributed Sessions 
 

CS 110: NUMERICAL MODELS IN BIOMECHANICS 
EVALUATION OF ANGULAR KINEMATICS OF LOWER LIMB AMPUTEES USING QUANTITATIVE FLUOROSCOPIC 

IMAGING …………………………………………………………………………………………………………………………………………….………….. 6539 

Alexander Breen, Mihai Dupac   

 

PRELIMINARY STUDY TO INVESTIGATE THE EFFECT OF PISTON-LIKE AND ROCKING MOTIONS OF THE STAPES 

FOOTPLATE ON THE BASILAR MEMBRANE VIBRATION …………………………………………………………………….…………….. 6547 

Philipp Wahl, Sebastian Ihrle, Pascal Ziegler, Peter Eberhard   

 

IN-HOUSE MULTIBODY HUMAN MODEL BASED ON EULER PARAMETERS FOR THE FAST IMPACT SCENARIO 

CALCULATION ………………………………………………………………………………………………………………………………………….…….. 6556 

Jan Spicka, Michal Hajzman, Tomasz Bonkowski   

 

EXPERIMENTAL STUDY ON THE FUZZY-PID HYBRID CONTROL ALGORITHM FOR UNLOADING SYSTEM IN 

MECHATRONIC DEVICE FOR GAIT RE-EDUCATION ………………………………………………………………………………..……….. 6567 

Slawomir Duda, Grzegorz Gembalczyk   

 

FE BONE STRUCTURAL ANALYSIS WITH CT MAPPING OF INHOMOGENEOUS MATERIAL PROPERTIES ……….….. 6574 

Miguel Tobias Bahia, Emílio Graciliano Ferreira Mercuri, Mildred Ballin Hecke   

 

SOLVING THE INVERSE PROBLEM OF ESTIMATING FUZZY VISCOELASTIC CONSTITUTIVE PARAMET ERS …….... 6588 

Ruifei Peng, Haitian Yang   

 

DEVELOPMENT OF A CENTRIFUGAL BLOOD PUMP FOR ECMO AND VAD OPERATIONS ………………….…………….. 6606 

Shinhwa Choi, Nahmkeon Hur, Mohammad Moshfeghi, Seongwon Kang, Wonjung Kim   

 

EFFECT OF PERIVASCULAR TISSUE ON INFLATION-EXTENSION BEHAVIOR OF ABDOMINAL AORTA ……………... 6616 

Tereza Vopavková, Lukáš Horný, Jan Veselý, Tomáš Adámek, Rudolf Žitný   

 

EFFECT OF STERILIZATION ON MECHANICAL PROPERTIES OF BIOLOGICAL COMPOSITE …………………..………….. 6625 

Jan Vesely, Hynek Chlup, Rudolf Zitny, Tomas Grus   

 

FINITE-ELEMENT MODEL OF INTRAOCULAR PRESSURE MEASUREMENT BY MAKLAKOV APPLANATION 

TONOMETER ……………………………………………………………………………………………………………………………………………….. 6631 

Dmitry V. Franus   

 

 
CS 210: NUMERICAL SIMULATION OF COMPOSITE MATERIALS 
MOMENT-CURVATURE DIAGRAMS FOR EVALUATION OF SECOND ORDER EFFECTS IN RC ELEMENTS ………….. 6637 

Helena Barros, Carla Ferreira, Tatiana Marques   

 

INVESTIGATIONS ON AN INNOVATIVE METAL-THERMOPLASTIC COMPOSITE ASSEMBLY …………………………….. 6652 

Simon Paroissien, Patrick Rozycki, Thierry Renault   

 

A FAILURE CRITERIA FOR UNIDIRECTIONAL FIBER REINFORCED COMPOSITES BASED ON MICROMECHANICS  

BY ASYMPTOTIC HOMOGENIZATION ………………………………………………………………………………………………..………….. 6664 

Rafael Quelho De Macedo, José Miranda Guedes, Rafael Thiago Luiz Ferreira, Maurício Vicente Donadon   



lx 
 

EVOLUTION EQUATIONS BASED APPROACH FOR MODELING FATIGUE IN AMORPHOUS GLASSY POLYMERS.  

ON THE INVESTIGATION OF FATIGUE DAMAGE DEVELOPMENT IN POLYCARBONATE ………………………………….. 6675 

Sami Holopainen   

 

 
CS 211: CRACK PROPAGATION 
ULTRASONIC GUIDED WAVES INSPECTION OF PIPES FROM ONE END TO THE FIRST BENT ………………………….. 6688 

Mihai Valentin Predoi, Marian Soare, Ovidiu Vasile, Mihail Boiangiu   

 

 
CS 212: NUMERICAL MODELING OF DAMAGE, FAILURE AND FRACTURE  
DUCTILE FRACTURE CRITERIA IN PREDICTION OF SLANT FRACTURE …………………………………………………………….... 6699 

Petr Kubik, Frantisek Sebek, Jindrich Petruska   

 

DAMAGE MODELING USING STRAIN GRADIENT BASED FINITE ELEMENT FORMULATION …………….……………….. 6711 

Filip Putar, Jurica Soric, Tomislav Lesicar, Zdenko Tonkovic   

 

RELIABILITY ANALYSIS IN FRACTURE MECHANICS ACCORDING TO COMBINED FAILURE CRITERIA …………….….. 6721 

Rudy Chocat, Paul Beaucaire, Loïc Debeugny, Jean-Pierre Lefebvre, Caroline Sainvitu, Piotr Breitkopf, Eric 

Wyart  

 

 

 

NEW BENCHMARK FOR THE LIFE ASSESSMENT OF A THIN-WALLED PIPE SUBJECTED TO STRESS ASSISTED 

CORROSION ……………………………………………………………………………………………………………………………………………...….. 6734 

Yulia Pronina, Elena Sedova   

 

A HIGHER ORDER PHASE-FIELD APPROACH TO FRACTURE FOR FINITE-DEFORMATION CONTACT  

PROBLEMS ……………………………………………………………………………………………………………………………………………………. 6741 

Marlon Franke, Christian Hesch, Maik Dittmann   

 

MODELLING THERMAL BARRIER COATINGS AND THEIR INFLUENCE ON THE LIFETIME OF ROCKET ENGINE  

NOZZLE STRUCTURES ………………………………………………………………………………………………………………….……………….. 6764 

Marek Fassin, Stephan Wulfinghoff, Stefanie Reese   

 

ANALYTICAL SOLUTION FOR DYNAMIC FRACTURE OF TWO COPLANAR LIMITED-PERMEABLE CRACKS IN 

MAGNETO-ELECTRO-ELASTIC MATERIAL ……………………………………………………………………………………………….…….. 6774 

Peiwei Zhang   

 

DAMAGE DETECTION OF A BRIDGE BY PARAMETRIC STATISTICAL MOMENT METHOD ……………………………….. 6788 

Isabella Failla, Nicola Impollonia, Giuseppe Ricciardi   

 

 
CS 230: MODELLING OF CONCRETE AND MEASURING  
A COHESIVE ZONE MODEL FOR THE CHARACTERISATION OF THE INTERFACIAL TRANSITION ZONE (ITZ)  

BETWEEN CEMENT PASTE AND AGGREGATE ………………………………………………………………………………………………... 6799 

Etienne Malachanne, Marie Salgues, Mouad Jebli, Frederic Jamin   

 

AN EXACT SHEAR STRAIN APPROACH FOR RC FRAME ELEMENTS WITH AXIAL-SHEAR INTERACTION ………..….. 6810 

Alexander Kagermanov, Paola Ceresa  

 

 

 

 



lxi 
 

CROSS-SECTIONAL FAILURE CRITERION COMBINED WITH STRAIN-HARDENING DAMAGE MODEL FOR 

SIMULATION OF THIN-WALLED TEXTILE-REINFORCED CONCRETE SHELLS ………………………………………………….... 6823 

Ehsan Sharei, Rostislav Chudoba, Alexander Scholzen   

 

SEISMIC ASSESSMENT OF A 5-STOREY RETROFITTED RC BUILDING ……………………………………………………………... 6832 

Hussein Bark, George Markou, Christos Mourlas, Manolis Papadrakakis   

 

 
CS 310: CAD, CAM AND CAE 
VECTOR FIELD GUIDED TOOL PATHS FOR FIVE-AXIS MACHINING …………………………………………………..…………….. 6847 

Stanislav Makhanov   

 

AN ‘A PRIORI’ MODEL REDUCTION FOR ISOGEOMETRIC BOUNDARY ELEMENT METHOD …………………..……….. 6882 

Shengze Li, Jon Trevelyan, Weihua Zhang, Zhuxuan Meng   

 

RESEARCH OF DEFORMATION QUALITIES OF POROUS MATERIALS ENHANCING COMPUTER DESIGN OF  

WETSUIT ……………………………………………………………………………………………………………………………………………………... 6892 

Irina Cherunova, Elena Sirota, Nikolai Kornev, Mathias Paschen, Sebastian Schreier, Tatyana Lesnikova, 

Pavel Cherunov  

 

 

 

MATHEMATICAL MODELLING OF CITY AERODYNAMICS …………………………………………………………………….……….. 6900 

Svetlana Valger, Natalya Fedorova, Alexander Fedorov   

 

 
CS 320: GRID GENERATION AND ADAPTIVE TECHNIQUES 
A STABLE AND CONSERVATIVE TIME-DEPENDENT INTERFACE FORMULATION ON SUMMATION-BY-PARTS  

FORM: AN INITIAL INVESTIGATION ………………………………………………………………………………………………………………. 6911 

Samira Nikkar, Jan Nordström   

 

A LAPLACIAN MESH DEFORMATION TECHNIQUE FOR SIMULATION-DRIVEN DESIGN OPTIMIZATION ………….. 6928 

Mario J. Martin-Burgos, Daniel González-Juárez, Esther Andrés-Pérez   

 

AN INTEGRATED FRAMEWORK FOR WRAPPING AND MESH GENERATION OF COMPLEX GEOMETRIES ……….. 6938 

David Martineau, Jeremy Gould, Jacques Papper   

 

 
CS 410: COMPUTATIONAL FLUID MECHANICS 
THE VORTICITY CREATION PROCESS AT PHYSICAL SURFACES ……………………………………………………………………….….. 6955 

Horia Dumitrescu, Vladimir Cardos   

 

HEAT RECOVERY BY CROSS FLOW ………………………………………………………………………………………………………………….... 6966 

Karel Adamek, Jan Kolar, Pavel Peukert   

 

THE INLET AND OUTLET BOUNDARY PROBLEM WITH THE PREFERENCE OF MASS FLOW ……………….……………….. 6979 

Martin Kyncl, Jaroslav Pelant   

 

BUDGET ANALYSIS OF TURBULENT KINETIC ENERGY IN CORNER SEPARATION : RANS VS LES …………..…………….. 6999 

Jean-François Monier, Feng Gao, Jérôme Boudet, Liang Shao, Lipeng Lu   

 



lxii 
 

A SHALLOW WATER EQUATION BASED ON DISPLACEMENT AND PRESSURE AND THE ZU-CLASS SYMPLECTIC 

METHOD ……………………………………………………………………………………………………………………………………………….……….. 7014 

Feng Wu, Wan-Xie Zhong   

 

IMMERSED BOUNDARY METHODS FOR COMPRESSIBLE LAMINAR FLOWS …………………………………………………….. 7029 

Rakesh Ramakrishnan, Anant Girdhar, Santanu Ghosh   

 

IMPACT OF EXTERNAL SURROUNDINGS ON NATURAL CONVECTION IN A VERTICAL CHANNEL  

ASYMMETRICALLY HEATED ………………………………………………………………………………………………………………………….... 7045 

Delphine Ramalingom, Alain Bastide   

 

INFLUENCE OF ADJACENT ROOMS ON THE DEVELOPMENT OF GAS EXPLOSION ……………………………..…………….. 7056 

Iurii Polandov, Sergei Dobrikov   

 

DOMAIN DECOMPOSITION APPROACH FOR NEAR-WALL TURBULENCE MODELING …………………………….……….. 7066 

Sergey Utyuzhnikov   

 

LARGE EDDY SIMULATION OF SALTATION OVER GAUSSIAN HILLS …………………………………………………………..…….. 7074 

Gang Huang, Catherine Le Ribault, Serge Simoëns, Ivana Vinkovic, J.M.Vignon   

 

AN EXPERIMENTAL AND NUMERICAL STUDY ON THE PERFORMANCE OF AN INNOVATIVE VERTICAL-AXIS  

WIND TURBINE ………………………………………………………………………………………………………………………………………….….. 7087 

Katarzyna Kludzinska, Krzysztof Tesch, Piotr Doerffer   

 

NUMERICAL SIMULATION OF NONLINEAR FREE SURFACE WATER WAVES USING A COUPLED POTENTIAL  

FLOW-URANS/VOF APPROACH …………………………………………………………………………………………………………………….. 7095 

Bulent Duz, Tim Bunnik, Geert Kapsenberg   

 

THE OPTIMAL CONTROL OF A MULTI-MASS VIBRATION PROPULSION SYSTEM IN A VISCOUS  

INCOMPRESSIBLE FLUID ……………………………………………………………………………………………………………………………….. 7121 

Artem Nuriev, Olga Zakharova   

 

HIGH-RESOLUTION SIMULATION OF INTERNAL WAVES ATTRACTORS AND IMPACT OF INTERACTION OF  

HIGH AMPLITUDE INTERNAL WAVES WITH WALLS ON DYNAMICS OF WAVES ATTRACTORS ……………………….. 7130 

Ilias Sibgatullin, Michael Kalugin   

 

NUMERICAL SIMULATION OF HEAT AND MASS TRANSFER PROCESSES IN LARGE-SCALE FLUIDIZED BED  

COMPLEX STRUCTURE APPARATUS AS AN EXAMPLE OF THE REACTOR OF ISOPARAFFINS  

DEHYDROGENATION ……………………………………………………………………………………………………………………………..…….. 7138 

Sergei Solovev, Svetlana Egorova, Alexander Lamberov, Olga Soloveva   

 

 
CS 420: MULTI-PHASE AND CHEMICALLY REACTING FLOWS 
SHOCK CAPTURING COMPUTATIONS WITH STABILIZED POWELL-SABIN ELEMENTS …………………………..………….. 7149 

Giorgio Giorgiani, Herve Guillard, Boniface Nkonga   

 

NUMERICAL INVESTIGATION OF METASTABLE CONDENSING FLOWS WITH AN IMPLICIT UPWIND METHOD ... 7165 

Lucia Azzini, Teus Van Der Stelt, Matteo Pini   

 



lxiii 
 

LEVEL SET METHOD FOR SIMULATING THE INTERFACE KINEMATICS: APPLICATION OF A DISCONTINUOUS 

GALERKIN METHOD ………………………………………………………………………………………………………………………………………. 7182 

Roozbeh Mousavi, Florian Kummer, Martin Oberlack, Peter F. Pelz   

 

LARGE EDDY SIMULATION OF TURBULENT COMPRESSIBLE FLOWS USING THE CHARACTERISTIC BASED SPLIT 

SCHEME AND MESH ADAPTATION ………………………………………………………………………………………………………….…….. 7222 

Renato Linn, Armando Awruch   

 

NUMERICAL SIMULATION OF HYDROGEN JET INJECTION AND IGNITION IN SUPERSONIC FLOW ………………….. 7237 

Yulia Zakharova, Natalya Fedorova, Svetlana Valger, Marat Goldfeld, Olga Vankova   

 

A 3D UNSTEADY NUMERICAL SIMULATION OF THE REFRIGERANT FLOW EVAPORATION IN A PLATE HEAT 

EXCHANGER ……………………………………………………………………………………………………………………………………………….... 7247 

Mirza Popovac, Gerwin Schmid, Michael Lauermann   

 

RESEARCH OF UNSTEADY FLOW REGIMES IN CHANNEL OF HYPERSONIC INLET ……………………………….………….. 7255 

Natalya Fedorova, Marat Goldfeld   

 

EXPLICIT DARCY’S LAW BOUNDARY CONDITION WITH COMBINED CONTINUUM AND DISCRETE MODEL FOR 

PRESSURE DRIVEN MEMBRANE APPLICATIONS ……………………………………………………………………………….………….. 7266 

Tomi Naukkarinen, Teemu Turunen-Saaresti   

 

 
CS 450: NUMERICAL METHODS AND CONVERGENCE ACCELERATION IN CFD 
A MULTIGRID FORMULATION FOR FINITE DIFFERENCE METHODS ON SUMMATION-BY-PARTS FORM:  

AN INITIAL INVESTIGATION ………………………………………………………………………………………………………………………..….. 7274 

Andrea Alessandro Ruggiu, Per Weinerfelt, Tomas Lundquist, Jan Nordström   

 

IMPROVED DUAL TIME–STEPPING USING SECOND DERIVATIVES ………………………………………………………………….. 7285 

Jan Nordström, Andrea Ruggiu   

 

A DIRECT SOLVER FOR THE ADVECTION-DIFFUSION EQUATION USING GREEN’S FUNCTIONS AND LOW-RANK 

APPROXIMATION ………………………………………………………………………………………………………………………………………….. 7302 

Jonathan Bull   

 

AN IMPROVED DISCRETIZATION METHOD FOR BOUNDED CONVECTIVE SCHEMES ON UNSTRUCTURED  

CO-LOCATED GRIDS ……………………………………………………………………………………………………………………………..……….. 7317 

Vlado Przulj   

 

A LOW-MACH, LOW-REYNOLDS PRECONDITIONING SCHEME WITH PARTICULAR ATTENTION TO VISCOUS  

TIME-STEPPING …………………………………………………………………………………………………………………………………………….. 7334 

Jens Fiedler, Graham Ashcroft   

 

PERFORMANCE IMPROVEMENT OF FLOW COMPUTATIONS WITH AN OVERSET-GRID METHOD INCLUDING  

BODY MOTIONS USING A FULL MULTIGRID METHOD ………………………………………………………………….……………….. 7347 

Kunihide Ohashi, Hiroshi Kobayashi  

 

 

 

 

 



lxiv 
 

SOLVING LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES WITH GMRES : AN APPLICATION TO  

AIRCRAFT DESIGN ………………………………………………………………………………………………………….…………………………….. 7358 

Aloïs Bissuel, Grégoire Allaire, Laurent Daumas, Frédéric Chalot, Michel Mallet   

 

COMPARISON OF DIFFERENT SPATIAL/ANGULAR AGGLOMERATION MULTIGRID SCHEMES FOR RADIATIVE  

HEAT TRANSFER COMPUTATIONS ……………………………………………………………………………………………………………….. 7372 

Georgios Lygidakis, Ioannis Nikolos   

 

 
CS 460: UNSTEADY FLOW COMPUTATION 
LINEARISED FREQUENCY DOMAIN GUST ANALYSIS OF LARGE CIVIL AIRCRAFT ……………………………………….……….. 7390 

Philipp Bekemeyer, Reik Thormann, Sebastian Timme   

 

CONSISTENT NON-REFLECTING BOUNDARY CONDITIONS FOR BOTH STEADY AND UNSTEADY FLOW  

SIMULATIONS IN TURBOMACHINERY APPLICATIONS …………………………………………………………………………….……….. 7403 

Daniel Schlüß, Christian Frey, Graham Ashcroft   

 

REDUCED ORDER MODELLING OF GUST ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS …………………….. 7423 

Reik Thormann, Philipp Bekemeyer, Sebastian Timme   

 

ON THE REGULARISATION OF NON-REFLECTING BOUNDARY CONDITIONS NEAR ACOUSTIC RESONANCE …….. 7435 

Christian Frey, Hans-Peter Kersken   

 

ON GRID RESOLUTION REQUIREMENTS FOR LES OF WALL-BOUNDED FLOWS ……………………………………………….. 7454 

Saleh Rezaeiravesh, Mattias Liefvendahl, Christer Fureby   

 

A HYBRID MESH HARMONIC BALANCE SOLVER FOR THE AEROELASTIC ANALYSIS OF TURBOMACHINERY …….. 7466 

Hans-Peter Kersken, Graham Ashcroft, Christian Frey   

 

NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF DYNAMIC STALL PROBLEM ON A 2D HELICOPTER  

ROTOR BLADE SECTION …………………………………………………………………………………………………………………………………. 7477 

Antonello Marino, Serena Russo, Giovanni Paolo Reina, Gennaro Esposito, Francesco Capizzano, Carlo De 

Nicola 

  

 

 

INVESTIGATION OF A MODERN & HYBRID TURBULENCE MODELLING APPROACH FOR TRANSIENT AUTOMOTIVE 

AERODYNAMICS SIMULATIONS …………………………………………………………………………………………………………………….. 7488 

Rene Devaradja, Petr Simanek, Jacques Papper, Pavla Policka   

 

FREE-SURFACE FLOW SIMULATIONS FOR MOORED AND FLOATING OFFSHORE PLATFORMS ……………………….. 7515 

Arthur Veldman, Roel Luppes, Peter Van Der Plas, Henri Van Der Heiden, Bulent Duz, Henk Seubers, Joop 

Helder, Tim Bunnik, Rene Huijsmans 

  

 

 

MODELLING OF UNSTEADY SECONDARY VORTICES GENERATED BEHIND THE RADIAL GAP OF THE AXIAL  

TURBINE BLADE WHEEL ……………………………………………………………………………………………………………………………….. 7532 

Petr Straka   

 

PATHWAYS TO IMPROVED AERODYNAMIC DESIGN ………………………………………………………………………………….….. 7544 

James Page, Paul Hield, Callum Mantell, Paul Tucker   

 



lxv 
 

SIMULATIONS OF BLAST WAVE PROPAGATION IN OPEN AND CLOSED SPACE …………………………………….……….. 7557 

Natalya Fedorova, Svetlana Valger, Yulia Zakharova   

 

 
CS 500: HIGH PERFORMANCE COMPUTING 
ON A DYNAMIC SCHEDULING ALGORITHM FOR MASSIVELY PARALLEL COMPUTATIONS OF ATOMIC  

ISOTOPE …………………………………………………………………………………………………………………………………………………….... 7572 

Elizaveta Dorofeeva, Jatin Arora, Stefan Typel, Gevorg Poghosyan, Peter Sanders, Achim Streit   

 

APPLICATION THE SPARSE MATRIX METHOD TO CALCULATE THE METAL ELASTIC STRESS-STRAIN STATE,  

USING THE FINITE ELEMENT METHOD ………………………………………………………………………………………………….…….. 7581 

Inna Barankova, Uliana Mikhailova, Victor Demidovich   

 

 
CS 610: AERO-ACOUSTICS 
FLUID ANALYSIS USING FICTITIOUS DOMAIN FINITE ELEMENT METHOD …………………………………………….……….. 7589 

Yukihiro Terakado, Tahahiko Kurahashi   

 

ON THE SIMULATION OF AERODYNAMIC NOISE WITH DIFFERENT TURBULENCE MODELS ……………………….….. 7599 

Xin Huang, Michael Schäfer   

 

NUMERICAL INVESTIGATION OF THERMOACOUSTIC ENGINE USING IMPLICIT LARGE EDDY SIMULATION .….. 7609 

Mustapha Mahdaoui, Rachid Bennacer, Smaïne Kouidri, N. Martaj   

 

SEMI-DISCRETE COINCIDENCE IN THE MID-FREQUENCY SOUND TRANSMISSION THROUGH RIB-STIFFENED 

PANELS …………………………………………………………………………………………………………………………………………………….….. 7620 

Edwin Reynders, Cédric Van Hoorickx, Arne Dijckmans   

 

 
CS 620: COMPUTATIONAL CONTACT MECHANICS 
SOLVING UNILATERAL CONTACT PROBLEMS IN MULTIBODY DYNAMICS USING A PRIMAL-DUAL INTERIOR  

POINT METHOD ……………………………………………………………………………………………………………………………….………….. 7628 

Dario Mangoni, Alessandro Tasora   

 

 
CS 630: SIMULATION OF FLUID-STRUCTURE INTERACTION 
3D DRBEM MODELING FOR ROTATING INITIALLY STRESSED ANISOTROPIC FUNCTIONALLY GRADED  

PIEZOELECTRIC PLATES ………………………………………………………………………………………………………………………………….. 7640 

Mohamed Abdelsabour Fahmy   

 

DIRECT EDDY CURRENT METHOD FOR VOLUMETRIC FLAWS OF CYLINDRICAL SHAPE ………………….……………….. 7659 

Valentina Koliskina, Andrei Kolyshkin, Rauno Gordon, Olev Märtens   

 

NUMERICAL SIMULATION OF BUOYANT PLUMES USING A FIXED POINT ITERATIVE METHOD ………..…………….. 7666 

Blanca Bermúdez, Alejandro Rangel-Huerta, W. Fermín Guerrero S., José David Alanis Urquieta   

 

INVESTIGATION OF THE FLOW OVER AN OSCILLATING CYLINDER WITH A VERY LARGE EDDY SIMULATION  

MODEL …………………………………………………………………………………………………………………………………………………..…….. 7674 

Anastasia Kondratyuk, Michael Schäfer, Awais Ali   

 



lxvi 
 

NUMERICAL STUDY OF TWO OPTIMIZED COUPLING INTERFACE TREATMENTS FOR STEADY CONJUGATE  

HEAT TRANSFER PROBLEMS ………………………………………………………………………………………………………….……………... 7682 

Marc Paul Errera, Roch Roukoz El Khoury   

 

EFFECT OF DISC GEOMETRY ON THE DYNAMIC STABILITY OF DIRECT SPRING OPERATED PRESSURE RELIEF  

VALVES ………………………………………………………………………………………………………………………………….……………….…….. 7695 

István Erdődi, Csaba Hős   

 

CFD SIMULATION OF THERMO- AERODYNAMIC INTERACTION IN A SYSTEM HUMAN-CLOTH-ENVIRONMENT 

UNDER VERY LOW TEMPERATURE AND WIND CONDITIONS ……………………………………….……………………………….. 7703 

Irina Cherunova, Sina Samarbaksch, Nikolai Kornev   

 

 
CS 720: COMPUTATIONAL MATERIALS SCIENCE 
ON THE INFLUENCE OF THE INCLUSIONS’ MORPHOLOGY ON THE ACCURACY OF THE PREDICTION OF  

REINFORCED COMPOSITES MECHANICAL BEHAVIOUR ………………………………………………………………………………….. 7711 

Viwanou Hounkpati, Vladimir Salnikov, Philippe Karamian-Surville, Alexandre Vivet   

 

NUMERICAL SIMULATION OF ADVANCED PULTRUSION PROCESSES WITH MICROWAVE HEATING …………….... 7720 

Evgeny Barkanov, Pavel Akishin, Rudolf Emmerich, Matthias Graf   

 

EFFICIENT NUMERICAL SIMULATION OF INDUSTRIAL SHEET METAL BENDING PROCESSES ………………………….. 7739 

Christian Zehetner, Paula Reimer, Franz Hammelmüller, Hans Irschik, Wolfgang Kunze   

 

NUMERICAL MODELLING AND SIMULATION OF SHEET METAL CUTTING PROCESSES ……………………….………….. 7749 

Paula Reimer, Christian Zehetner, Franz Hammelmüller, Wolfgang Kunze   

 

SIMULATION OF PRECIPITATION IN V-CONTAINING HSLA STEEL FOR THE STRENGTHENING  

ENHANCEMENT …………………………………………………………………………………………………………………………….…………….. 7757 

Piyada Suwanpinij, Paolo Massaro, Annalisa Pola, Prasonk Srichareonchai   

 

 
CS 750: COMPUTATIONAL MODELING OF COMPOSITES 
NUMERICAL ANALYSIS OF SANDWICH PANELS SUBJECTED TO POINT LOADS ……………………………………….……….. 7765 

Zbigniew Pozorski, Jolanta Pozorska  

 

BOND OF REINFORCEMENT IN REACTIVE POWDER CONCRETE: EXPERIMENTAL STUDY ……………………………….. 7771 

Mingde Sun, Ri Gao, Aili Li, Yongjing Wang   

 

MODELLING SOIL-FIBRE COMPOSITE BEHAVIOUR USING A MICROMECHANICAL APPROACH ……………………….. 7779 

Thomas Bower, Anthony Jefferson, Peter Cleall, Paul Lyons   

 

NUMERICAL SIMULATION OF MECHANICAL BEHAVIOR OF WOVEN COMPOSITE AT DIFFERENT STRAIN RATE  

BY A COLLABORATIVE ELASTO-PLASTO-DAMAGE MODEL WITH FRACTIONAL DERIVATIVES ……………..………….. 7786 

Alina Krasnobrizha, Patrick Rozycki, Laurent Gornet, Pascal Cosson   

 

NUMERICAL SIMULATION OF MECHANICAL BEHAVIOUR OF COMPOSITE SANDWICH PANELS WITH  

DEFECTS ……………………………………………………………………………………………………………………………………………………….. 7800 

Aleksandr Anoshkin, Valerii Zuiko, Mikhail Alikin, Anna Tchugaynova   



lxvii 
 

TIMOSHENKO BEAM ELEMENT WITH ANISOTROPIC CROSS-SECTIONAL PROPERTIES ………………….……………….. 7810 

Alexander R. Stäblein, Morten H. Hansen   

 

STABILIZATION OF THE NUMERICAL PRIMING TO STABILIZATION PHENOMENON IN THE CRUSHING OF A 

COMPOSITE PANEL USING LOCAL AND DIFFUSE DAMAGE LAWS ……………………………………………………………..….. 7820 

Christine Espinosa, Floran Tostain, Samuel Rivallant   

 

STRUCTURAL ANALYSIS OF ADHESIVE BONDING FOR THICK-WALLED TUBULAR COMPOSITE PROFILES ……... 7837 

Geminiano Mancusi, Agostina Orefice, Luciano Feo, Fernando Fraternali   

 

 
CS 751: SMART MATERIALS AND STRUCTURES 
TOWARDS REAL-TIME STRUCTURAL HEALTH MONITORING DAMAGE DETECTION WITHOUT USER INPUT ….. 7853 

Mohmmad Salmanpour, Zahra Sharif Khodaei, Ferri Aliabadi   

 

FIBROUS TECTONICS:A RETHINKING OF COMPOSITE PRODUCTION THROUGH INNOVATION AND  

EXPLORATION OF  MOLDING TECHNIQUES AND METHODOLOGIES …………………………………………………………….. 7863 

David Costanza   

 

 
CS 830: COMPUTATIONAL NANOTECHNOLOGY 
EFFECT OF NANOSIZED ASPERITIES AT THE SURFACE OF A NANOHOLE ……………………………………………………….. 7875 

Mikhail Grekov, Aleksandra Vakaeva   

 

 
CS 840: MULTI-SCALE COMPUTATIONAL METHODS FOR SOLIDS AND FLUIDS 
THE GEMA FRAMEWORK – AN INNOVATIVE FRAMEWORK FOR THE DEVELOPMENT OF MULTIPHYSICS AND 

MULTISCALE SIMULATIONS …………………………………………………………………………………………………………………….…….. 7886 

Carlos Augusto Teixeira Mendes, Marcelo Gattass, Deane Roehl   

 

NONLINEAR PATCH METHOD AND APPLICATION ………………………………………………………………………………………….. 7895 

Antoine Brunet, Pierre Sarrailh, François Rogier, Jean-François Roussel, Denis Payan   

 

ASSESSMENT OF A CONTINUUM MICROMECHANICS-BASED MULTISCALE MODEL FOR CONCRETE BY  

MEANS OF SENSITIVITY ANALYSIS AND UNCERTAINTY PROPAGATION ……………………………………………………..….. 7905 

Luise Göbel, Andrea Osburg, Tom Lahmer   

 

SPATIAL CLUSTERING STRATEGIES FOR HIERARCHICAL MULTI-SCALE MODELLING OF METAL PLASTICITY .….. 7922 

Md Khairullah, Jerzy Gawad, Dirk Roose, Albert Van Bael   

 

BLACK-BOX SOLVER FOR ONE-DIMENSIONAL MULTISCALE MODELLING USING THE QTT FORMAT ……………... 7938 

Ivan Oseledets, Maxim Rakhuba, Andrei Chertkov   

 

SCALE EFFECT IN MICROFLOWS MODELLING WITH THE MICROPOLAR FLUID THEORY ………….…………………….. 7948 

Anna Kucaba-Pietal   

 

 
 
 
 



lxviii 
 

CS 930: HIGH-ORDER DISCRETIZATION METHODS 
A COMPARISON OF VARIOUS NODAL DISCONTINUOUS GALERKIN METHODS FOR THE 3D EULER  

EQUATIONS ……………………………………………………………………………………………………………………………………….………….. 7956 

Michael Bergmann, Svetlana Drapkina, Graham Ashcroft, Christian Frey   

 

A 3D ISOGEOMETRICAL BOUNDARY ELEMENT ANALYSIS FOR NON-LINEAR GRAVITY WAVE PROPAGATION ... 7967 

Jorge Maestre, Jordi Pallarés, Ildefonso Cuesta   

 

HYBRID OPENMP/MPI PARALLELIZATION OF A HIGH–ORDER DISCONTINUOUS GALERKIN CFD SOLVER …..….. 7992 

Francesco Bassi, Alessandro Colombo, Andrea Crivellini, Matteo Franciolini   

 

ON THE CHOICE OF SHOCK CAPTURING SCHEMES FOR THE SOLUTION OF THE LWR TRAFFIC FLOW  

EQUATION USING A HIGH ORDER MODAL DISCONTINUOUS GALERKIN DISCRETIZATION …………………………….. 8013 

Alberto Costa Nogueira Junior, João Lucas De Sousa Almeida, Cláudio Alessandro De Carvalho Silva   

 

COMPARISON OF FINITE VOLUME HIGH-ORDER SCHEMES FOR THE WO-DIMENSIONAL EULER  

EQUATIONS ………………………………………………………………………………………………………………………………………………….. 8033 

Jens Wellner   

 

NURBS-BASED ISOGEOMETRIC ANALYSIS FOR BALLISTIC EVALUATION OF TITANIUM PLATES …….……………….. 8047 

Mattia Montanari, Petros Siegkas, Antonio Pellegrino, Nik Petrinic   

 

HYBRID RIEMANN SOLVERS FOR LARGE SYSTEMS OF CONSERVATION LAWS ………………………………………….….. 8057 

Birte Schmidtmann, Mariia Astrakhantceva, Manuel Torrilhon   

 

 
CS 940: EXTENDED DISCRETIZATION METHODS 
THE USE OF ENRICHED BASE FUNCTIONS IN THE THREE-DIMENSIONAL SCALED BOUNDARY FINITE  

ELEMENT METHOD ………………………………………………………………………………………………………………………………………. 8066 

Sascha Hell, Wilfried Becker   

 

METHODOLOGY OF COMBINED APPLICATION OF DIRECTIONAL DERIVATIVES AND THE EXTENDED FINITE 

ELEMENT METHOD (X-FEM) FOR SOLVING VIBRATION EIGENVALUE PROBLEMS ……………………..………………….. 8085 

Daria Serbichenko, Pascal Cosson, Patrick Rozycki   

 

XFEM ANALYSIS – INCLUDING BUCKLING – OF COMPOSITE SHELLS CONTAINING DELAMINATION ……………... 8103 

Wilhelm J.H. Rust, Saleh Yazdani, Peter Wriggers   

 

 
CS 960: MESHLESS METHODS 
THREE-DIMENSIONAL CRACK PROPAGATION ANALYSIS USING MESHLESS POINT COLLOCATION METHOD …. 8115 

Eiji Tanaka   

 

A CELL-BASED SMOOTHED POINT INTERPOLATION METHOD FOR AXISYMMETRIC PROBLEMS ……………..…….. 8133 

Arash Tootoonchi, Arman Khoshghalb   

 

EFFICIENT SHAPE FUNCTION COSTRUCTION OF EFG MESHLESS METHOD …………………………………………………... 8142 

P. Metsis, M. Papadrakakis   

 



lxix 
 

CS 980: NUMERICAL AND SYMBOLIC COMPUTATION 
MODERNIZING SOFTWARE IN SCIENCE AND ENGINEERING: FROM C/C++ APPLICATIONS TO MOBILE  

PLATFORMS ……………………………………………………………………………………………………………………………………………….... 8162 

Liliana Favre, Claudia Pereira, Liliana Martinez   

 

NEW EDUCATIONAL MATLAB TOOL TO EXPLAIN TWO DIMENSIONAL FINITE ELEMENT METHOD TO  

GRADUATE STUDENTS ……………………………………………………………………………………………………………………..………….. 8177 

Rafet Sisman, Abdurrahman Sahin   

 

CONTRIBUTION OF NUMERICAL THERMAL SIMULATION OF MASONRY TO THE GLOBAL OBJECTIVE OF  

BUILDINGS ENERGY EFFICIENCY ……………………………………………………………………………………………….………………….. 8187 

Hipólito Sousa, Rui Sousa, Luís Silva, Gonçalo Sousa   

 

 
CS 990: PARTICLE-BASED METHODS 
TOWARDS MULTIPHYSICS SIMULATION OF DEEP PENETRATION LASER WELDING USING SMOOTHED  

PARTICLE HYDRODYNAMICS ……………………………………………………………………………………………………………………..….. 8196 

Haoyue Hu, Peter Eberhard, Florian Fetzer, Peter Berger   

 

MULTIPLE TIMESCALE MODELLING OF PARTICLE SUSPENSIONS IN METAL MELTS SUBJECTED TO EXTERNAL 

FORCES …………………………………………………………………………………………………………………………………………………….….. 8207 

Anton Manoylov, Georgi Djambazov, Valdis Bojarevics, Koulis Pericleous   

 

STATISTICAL DISTRIBUTION FUNCTION OF CHARGED PARTICLES IN MAGNETIC FIELD …………………………..…….. 8224 

B.Chetverushkin, Nicola D'Ascenzo, Valeri Saveliev   

 

A STABILISED TOTAL LAGRANGIAN CORRECTED SMOOTH PARTICLE HYDRODYNAMICS TECHNIQUE IN  

LARGE STRAIN EXPLICIT FAST SOLID DYNAMICS …………………………………………………………………………………….…….. 8231 

Giorgio Greto, Sivakumar Kulasegaram, Chun H. Lee, Antonio J. Gil, Javier Bonet   

 

BLOOD FLOW SIMULATION USING SMOOTHED PARTICLE HYDRODYNAMICS ………………………………….………….. 8241 

Mohammed Al-Saad, Sivakumar Kulasegaram, Stephane P.A. Bordas   

 

 
CS 1010: COMPUTATIONAL INVERSE PROBLEMS AND OPTIMIZATION 
ON THE VALIDITY OF TIDAL TURBINE ARRAY CONFIGURATIONS OBTAINED FROM STEADY-STATE ADJOINT 

OPTIMISATION ……………………………………………………………………………………………………………………………………………….. 8247 

Christian T. Jacobs, Matthew D. Piggott, Stephan C. Kramer, Simon W. Funke   

 

DEVELOPMENT OF ACCURATE PNEUMATIC TYRE FINITE ELEMENT MODELS BASED ON AN OPTIMISATION 

PROCEDURE ……………………………………………………………………………………………………………………………………………………. 8262 

Chrysostomos-Alexandros Bekakos, George Papazafeiropoulos, Dan J. O'Boy, Jan Prins   

 

METEOROLOGICAL DATA ASSIMILATION USING AN ADJOINT PROGRAM GENERATED BY AUTOMATIC 

DIFFERENTIATION ………………………………………………………………………………………………………………………………………….. 8275 

Yasuyoshi Horibata   

 

EVOLUTIONARY TOPOLOGY OPIMIZATION USING PARAMETERIZED B-SPLINE SURFACE ………….…………………….. 8283 

Igor Pehnec, Damir Vucina, Frane Vlak   

 



lxx 
 

GEARBOX DESIGN VIA MIXED-INTEGER PROGRAMMING ………………………………………………………………………………. 8294 

Bastian Dörig, Thorsten Ederer, Peter F. Pelz, Marc E. Pfetsch, Jan Wolf   

 

A FRAMEWORK FOR THE DESIGN BY OPTIMIZATION OF HYDROFOILS UNDER CAVITATING CONDITIONS ….….. 8305 

Paolo Olivucci, Stefano Gaggero   

 

A COMPUTATIONAL STRATEGY FOR TRAJECTORY OPTIMIZATION OF UNDERACTUATED MULTIBODY  

SYSTEMS WITH CONTACTS ……………………………………………………………………………………………………..…………………….. 8324 

Silvia Manara, Alessio Artoni, Marco Gabiccini   

 

ANALYSIS OF NON-LINEAR ENVIRONMENTAL LOAD COMBINATIONS BY EXTENDED CONTOUR-LINE  

ALGORITHMS ………………………………………………………………………………………………………………………………….…………….. 8337 

Bernt Leira   

 

ADJOINT-BASED ROBUST OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSIONS ……………………….………….. 8351 

Joao Miranda, Dinesh Kumar, Chris Lacor   

 

APPLICATION OF THE DECONVOLUTION METHODS FOR PROCESSING OF MEASUREMENT SIGNALS IN THE  

FAST PROCESSES ………………………………………………………………………………………………………………………………………….. 8365 

Marat Goldfeld, Valery Pickalov   

 

INVERSION METHODS BASED ON KALMAN FILTERING FOR IDENTIFICATION IN TUNNELING PROBLEMS …….. 8378 

Tamara Nestorovid, Luan T. Nguyen   

 

 
CS 1020: EVOLUTIONARY AND DETERMINISTIC METHODS FOR DESIGN, OPTIMIZATION AND CONTROL 
EVALUATION OF DIFFERENT APPROACHES FOR THE OPTIMIZATION OF LAYOUT AND CONTROL OF BOOSTER 

STATIONS ……………………………………………………………………………………………………………………………………………………….. 8391 

Philipp Pöttgen, Peter F. Pelz   

 

MANIFESTATION OF ASCENDANCY OF EXTINCTION-REIGNITION ON SOUNDING HYBRID ROCKET USING  

DESIGN INFORMATICS ……………………………………………………………………………………………………………………………..…….. 8403 

Kazuhisa Chiba, Masahiro Kanazaki, Toru Shimada   

 

COMPUTING AN OPERATING STRATEGY FOR AN ACTIVE BODY CONTROL WITH DYNAMIC PROGRAMMING  

IN THE AUTOMOTIVE AREA ……………………………………………………………………………………………………………………………. 8419 

Marlene Utz, Phillipp Hedrich, Peter F. Pelz   

 

SEISMIC RELIABILITY-BASED DESIGN OF STRUCTUTRES ISOLATED BY FPS ………………………………………………………. 8431 

Paolo Castaldo, Guglielmo Amendola, Bruno Palazzo   

 

SEISMIC RETROFIT OF EXISTING BUILDINGS THROUGH THE DISSIPATIVE COLUMNS …………………………………….. 8445 

Paolo Castaldo, Bruno Palazzo, Francesco Perri, Ivana Marino, Marco Maria Faraco   

 

AN EXAMPLE OF ENERGY DISSIPATION OPTIMIZATION FOR STEEL MRFS WITH PIN-JOINTED COLUMN  

BASES ………………………………………………………………………………………………………………………………………………..………….. 8460 

Elide Nastri, Annabella Paciello  

 

 

 

 



lxxi 
 

ECCENTRICALLY BRACED FRAMES DESIGNED FOR THE ENERGY DISSIPATION OPTIMIZATION …………..………….. 8476 

Elide Nastri   

 

AN EXAMPLE OF COLUMN DESIGN OPTIMIZATION FOR FAILURE MODE CONTROL OF REINFORCED  

CONCRETE FRAMES ………………………………………………………………………………………………………………………………….….. 8492 

Roberta Muscati   

 

A COMPARISON OF MILP AND MINLP SOLVER PERFOMANCE ON THE EXAMPLE OF A DRINKING WATER  

SUPPLY SYSTEM DESIGN PROBLEM …………………………………………………………………………………………………………..….. 8509 

Lea Rausch, Philipp Leise, Thorsten Ederer, Lena C. Altherr, Peter F. Pelz   

 

RELIABILITY TEST DEMONSTRATION METHOD FOR EXPONENTIAL LIFE SYSTEM WITH RELIABILITY GROWTH 

UNDER THE CONDITION OF IN-TIME CORRECTIVE STRATEGY …………………………………………………………..………….. 8528 

Yunyan Xing, Ping Jiang, Feng Yao, Zhiwei Yang, Michael Emmerich, Thomas Bäck   

 

 
CS 1100: REDUCTION ORDER METHODS 
EVALUATION OF LINE-FITTING METHOD OF MODEL ORDER REDUCTION …………………………………………….……….. 8539 

Valery Makhavikou, Roland Kasper, Dmitry Vlasenko   

 

AN EFFICIENT ORDER REDUCTION STRATEGY IN EARTHQUAKE NONLINEAR RESPONSE ANALYSIS OF  

STRUCTURES ………………………………………………………………………………………………………………………………………………... 8552 

Franz Bamer, Abbas Kazemi Amiri, Christian Bucher   

 

ACTIVE SUBSPACES FOR THE PRELIMINARY FLUID DYNAMIC DESIGN OF UNCONVENTIONAL  

TURBOMACHINERY …………………………………………………………………………………………………………………………………….… 8572 

Juan S. Bahamonde, Matteo Pini, Piero Colonna   

 

EXTENSION AND APPLICATION OF A NONLINEAR REDUCED ORDER MODEL TO GUST LOAD PREDICTION  

IN TIME DOMAIN ………………………………………………………………………………………………………………………………..……….. 8587 

Christoph Strobach, Klemens Lindhorst, Matthias Haupt, Peter Horst   

 

 
CS 1200: STRUCTURAL DYNAMICS 
RESEARCH ON HYSTERETIC BEHAVIORS OF A SAPARATED SHOCK ABSORBER APPLIED IN RAILWAY BRIDGE ….. 8597 

Aili Li, Ri Gao, Mingde Sun, Jilei Zhang   

 

FINITE ELEMENT ANALYSIS OF TIMBER BEAMS WITH FLAWS …………………………………………………………………..…….. 8606 

Janka Kovacikova, Mats Ekevad, Olga Ivankova, Sven Berg   

 

NONLINEAR FORCED RESPONSE OF A STATOR VANE WITH MULTIPLE FRICTION CONTACTS USING A  

COUPLED STATIC/DYNAMIC APPROACH ………………………………………………………………………………….…………………….. 8612 

Marco Lassalle, Christian Maria Firrone   

 

COMPUTATIONAL METHOD OF DETERMINATION OF INTERNAL EFFORTS IN LINKS OF MECHANISMS AND  

ROBOT MANIPULATORS WITH STATICALLY DEFINABLE STRUCTURES CONSIDERING THE DISTRIBUTED 

DYNAMICALLY LOADINGS ………………………………………………………………………………………………………………….………….. 8627 

Zhumadil Baigunchekov, Muratulla Utenov, Nurzhan Utenov, Saltanat Zhilkibayeva   

 



lxxii 
 

FE MODELLING OF SFRC BEAMS UNDER IMPACT LOADS ………………………………………………………………..…………….. 8640 

Pegah Behinaein, Ali Abbas, Demetris Cotsovos   

 

AN APROXIMATE ANALYTICAL SOLUTION FOR NONLINEAR FGM SHELL STRUCTURE WITH VARIABLE IN TIME 

PARAMETERS ……………………………………………………………………………………………………………………………………………….. 8654 

Victor Gristchak, Yuliia Fatieieva   

 

UNCERTAINTY OF MODELS IN INTELLIGENT SYSTEMS UNDER STOCHASTIC LOADING ………………………………….. 8665 

Amalia Moutsopoulou, Georgios Stavroulakis, Tasos Pouliezos   

 

COMPUTATIONAL MODELLING OF COLD-FORMED STEEL SCREWED CONNECTIONS AT AMBIENT AND  

ELEVATED TEMPERATURES ………………………………………………………………………………………………………………………….. 8678 

Luis Mesquita, Rui Dias, Armandino Parente, Paulo Piloto   

 

MONITORING AND ANALYSIS OF STRESS FIELD FOR ORTHOTROPIC STEEL DECK OF DASHENGGUAN YANGZTE 

RIVER BRIDGE …………………………………………………………………………………………………………………………………………….... 8691 

Ying Wang, Y.S. Song   

 

 
CS 1201: COMPUTATIONAL SOIL MECHANICS  
A MORE COMPREHENSIVE MODELING OF CONTACT FORCE DURING SHEAR TESTING USING DEM …………….. 8708 

Varvara Roubtsova, Mohamed Chekired   

 

THREE-DIMENSIONAL BE-FE MODEL OF BUCKET FOUNDATIONS IN POROELASTIC SOILS ……………………..…….. 8725 

Jacob D. R. Bordón, Juan J. Aznárez, Orlando F. Maeso   

 

 
CS 1202: STRUCTURAL ANALYSIS AND MULTI BODY DYNAMICS 
ON THE NUMERICAL INFLUENCES OF INERTIA REPRESENTATION FOR RIGID BODY DYNAMICS ……….………….. 8739 

Xiaoming Xu, Wanxie Zhong   

 

APPROACHES TO THE CREATION OF MULTIBODY MODELS OF THE VVER 1000 NUCLEAR REACTOR CONTROL 

ASSEMBLY …………………………………………………………………………………………………………………………………………………... 8756 

Pavel Polach, Michal Hajžman   

 

 
CS 1300: UNCERTAINTY QUANTIFICATION AND ERROR ESTIMATION 
THE UPLIFT CAPACITY OF HORIZONTAL PLATE ANCHORS IN SPATIALLY VARIABLE CLAY USING SPARSE 

POLYNOMIAL CHAOS EXPANSIONS ……………………………………………………………………………………………………………….. 8769 

Tom Charlton, Mohamed Rouainia   

 

FATIGUE RELIABILITY OF AGEING RAILWAY BRIDGES: FEASIBILITY OF PROBABILISTIC APPROACH …………….….. 8778 

Nirosha D. Adasooriya   

 

AN EFFICIENT AERODYNAMIC SHAPE OPTIMIZATION FRAMEWORK FOR ROBUST DESIGN OF AIRFOILS USING 

SURROGATE MODELS …………………………………………………………………………………………………………………..……………….. 8787 

Daigo Maruyama, Dishi Liu, Stefan Görtz  

 

 

 

 

 



lxxiii 
 

QUANTIFICATION OF SPATIAL VARIABILITY FOR TRANSVERSE ELASTIC MODULUS OF SPRUCE WOOD ……..….. 8801 

Alireza Farajzadeh Moshtaghin, Steffen Franke, Thomas Keller, Anastasios Vassilopoulos   

 

COMPARISON BETWEEN A POLYNOMIAL CHAOS SURROGATE MODEL AND MARKOV CHAIN MONTE CARLO  

FOR INVERSE UNCERTAINTY QUANTIFICATION BASED ON AN ELECTRIC DRIVE TEST BENCH ……………………….. 8809 

Philipp Glaser, Michael Schick, Kosmas Petridis, Vincent Heuveline   

 

 

 
 

  



lxxiv 
 

 



ECCOMAS Congress 2016 

VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10  June 2016 

EVALUATION OF ANGULAR KINEMATICS OF LOWER LIMB 

AMPUTEES USING QUANTITATIVE FLUOROSCOPIC IMAGING 

Alex C. Breen
1
, Mihai Dupac

2

1 
Anglo-European College of Chiropractic 

Bournemouth, BH5 2DF, UK 

e-mail: AlexBreen@aecc.ac.uk 

2
 Department of Design and Engineering, Bournemouth University 

Poole BH12 5BB, UK 

e-mail: mdupac@bournemouth.ac.uk 

Keywords: Fluoroscopy, Imaging, Angular Kinematics, Lower Limb, Prosthesis. 

Abstract. In the design of a functional prosthetic socket for lower limb amputees it is desira-

ble to mimic the actions of a healthy limb as close as possible. While limiting the degree of 

freedom to which the residual limb is able to move in the prosthetic socket during ambulation 

(walking) is a prerequisite for an adequate fitting, with inadequate understanding of the spe-

cific anatomy of the patient including residuum changes after amputation, an overly tight 

socket fit can lead to pain, pressure ulcers and infections. Furthermore, changes in the initial 

alignment between the residual limb and socket have been shown to affect the pressure distri-

bution within the socket.  

The purpose of this study was to measure and report the angular kinematic data/variables of 

lower limb amputees under protocols designed to infer the kinematics within the socket dur-

ing walking and static weight hold on the artificial limb. The study details the angular motion 

kinematics of the tibia within the residuum with and without the addition of a 5kg mass used 

to replicate forces applied to the residual limb while undergoing the swing phase of slow and 

fast walking. Using quantitative fluoroscopic imaging  techniques, continuous frame by frame 

tracking of tibia and prosthesis have been recorded and measures of residual limb/tibia angu-

lar kinematic have been performed. The understanding of the angular motion of the tibia 

within the residuum conveys a new insight in socket design (comfort and performance consid-

erations) and furnishes a straightforward view into the effects of surgical amputation and 

prosthetic fit techniques. 
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1 INTRODUCTION 

Clinical studies showing that a majority of people with lower-limb amputation experience 

socket instability, discomfort, or residual limb pain [8,9,13] indicate the need of a better de-

sign for a functional and stable prosthetic to enable individuals to maximize their quality of 

life by better engaging in a day by day physical activities.  

Recent biomechanical studies [1] have determined that in walking and running the socket 

absorbs the impacts [12,21] and behaves as a variable stiffness device which store and release 

energy. Moreover, for the below-knee amputee running, relatively shorter aerial and swing 

times (-35%), and longer ground contact times (15%), which increase reaction forces in the 

socket have been observed. These biomechanical findings suggest that the dynamics of the 

stump inside the socket can lead to undesirable side effects [8].  

While reflective markers placed at specific locations convey a good understanding of the 

joints and (prosthetic foot) kinematics [17,18] it gives few indication of the stump motion in-

side the socket [2,3]. Since the weight distribution insight the socket is playing an important 

role in socket design, a better understanding of the angular kinematics between the residual 

tibia and the prosthetic is absolutely essential [16]. To answer the need, the Quantitative 

Fluoroscopy (QF) technology developed at the Institute for Musculoskeletal Research and 

Clinical Implementation at the Anglo-European College of Chiropractic (AECC), which can 

perform semi-automated continuous motion analysis of multiple images of the osseous link-

ages [6,7], have been used for the analysis of angular kinematics between the residual bone 

and the socket.  

Using a new coronal plane QF imaging protocol the angular kinematics of the residual 

limb (residuum) within the socket have been assessed during walking and static weight hold 

using the participant’s prosthesis. The study details the residual limb angular kinematics with 

and without the addition of a 5kg mass used to replicate slow and fast walking. The under-

standing of the angular motion of the tibia within the residuum conveys a new insight in sock-

et design (comfort and performance considerations) and furnishes a straightforward view into 

the effects of surgical amputation and prosthetic fit techniques. 

2 METHODS 

A protocol to measure the angular motion of the tibia while simulating the swing phase of 

gait was designed based on some studies reported in literature in [3,10,11]. The protocol using 

QF was approved in November 2012 by the National Research Ethics Service (REC reference: 

13/SW/0248) due to the need for 'Approval for research involving ionizing radiation' [15], 

however, the effective dose received by any individual was minimal, with a maximum dose of 

received by any participant across the cohort was 5x10-6 mSv (in addition to the UK average 

annual background radiation dose of 2.7mSv). To simulate angular kinematics under slow 

walking, fast walking and static weight hold on the artificial limb gait the protocol requires 

the participants to apply load as a weight transfer from foot to foot, that is, rocking from one 

foot to another. A platform with handrails (Figure 1) has been used to level the participant(s) 

to the fluoroscope height where the angular kinematics images of the limb-prosthesis interface 

are recorded (Figure 2). The image intensifier was positioned as close as possible to the par-

ticipant’s amputated limb ensuring that magnification/distortion effects were minimal and the 

base of the prosthetic socket would not leave the image field at any time.  
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Figure 1:  Depicting the stance of a unilateral trans-tibial amputee volunteer during residual limb fluoroscopy 

imaging procedure with and without the addition of a 5kg mass used to replicate slow and fast walking.  

 

Residual limb image acquisition, which quantifies tibial motion within the socket while ac-

counting for magnification effects [5], has been performed for 3 test configurations named:  

i) Rocking from Foot to Foot (RFF): a gait cycle duration of 2 seconds was determined to 

be of optimal duration. This was designed to be as close as possible to the natural gait cycle 

and avoid image blur across the image sequence allowing accurate image tracking of the tibia. 

During this simulated gait cycle the participants were been asked to move their full weight 

from rock from foot to foot (using a metronome for guidance) during which 10 seconds of 

fluoroscopic imaging took place. The fluoroscopic recording acquired in the anterior-posterior 

(AP) view of the limb/prosthesis interface started once the participants confirmed their com-

fort with the motion.  This allowed a recording of consecutive 5 gait cycles.  

ii) Rocking with 5 kg mass on Prosthetic Limb (R5kgPL): The RFF procedure was repeat-

ed with the addition of a 5 kg mass to simulate the force applied during a slightly faster walk-

ing swing phase [14]. All participants mentioned that they are comfortable with the addition 

of the 5 kg mass which was attached to the base of the prosthetic limb.   

iii) Static Weight-Bearing Hold (SWBH): carrying no additional mass weight the partici-

pants have been asked to slowly put their weight on their prosthetic limb and held it there for 

a short period of time (about 10 seconds).  

 

 
Figure 2: Example of successful tracking of tibial rotation during image acquisition 

 

Two force plates placed on the platform were used to measure the body weight distribution 

during these testing protocols. 
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3 DATA ANALYSIS  

In order to perform the data analysis, all the recorded images have been transferred from 

the fluoroscope to a dedicated computer for enhancement and analysis. Each fluoroscopic im-

age sequence typically contained up to 150 individual DICOM images and was 350 mega-

bytes in size. Individual image frames (Figure 3) were extracted from the sequence into ‘.jpg’ 

format files using a JPEG compression performed in the Matlab environment.  

Following enhancement of the images, templates have been manually placed around the 

tibia and metallic base of the prosthetic socket. These templates, called the ‘reference tem-

plates’, are used the verification process as well as a simplified representation of the tibia. The 

tracking algorithm makes note of the grayscale pixel information contained within each track-

ing template, as well as its location in the image. This information is then compared to the 

pixel data for the same location in the next frame. The template is then automatically moved 

both laterally and in rotation by small increments into locations near to its previous location 

and the process is repeated.  

Via cross-correlation methods, each image in each position is compared to that of the pre-

vious image. This process is then repeated for each subsequent image and tracking template 

for that image sequence [6,7]. 

 

 
Figure 3: Individual image frames - examples of the variation in the residual tibia length and shape 

 

The benefit of this process is its ability to quantify the location of the residual limb within 

the socket and to provide standardization of the measurements. However, there were some 

complications within this quantification process. While identification of the tibial outline and 

anatomical landmarks were found to be satisfactory, tracking of the tibia often failed as it 

moved though the image field at speed (i.e. shifting weight).  

In the full loading and full traction positions, where the limb is momentarily motionless, 

the tibia was readily identifiable. However, between these two positions, when the tibia is 

moving at speed, motion blur reduces the likelihood of successful image tracking. To account 

for these difficulties, manual or discrete identification of tibia positions were necessary at ex-

tremes of motion. To achieve this, the original templates have been manually replaced in a 

corrected position before continuing automated tracking. This allowed the relative sizes and 

shapes of the reference templates to be maintained and to give consistent results.  

Additional quality assurance procedures included inspection for image distortion, magnifi-

cation and out of plane rotation of the prosthesis. Image distortions such as pin cushion effect 

were not observed, since this is automatically corrected by the image interface of the Siemens 

fluoroscope used (Siemens Arcadis Avantic – Siemens GMBH, Germany). To account for 

magnification errors in the fluoroscopic images of the prosthesis limb an imaging protocol for 

measuring the proximo-distal motion of the residual tibia within the soft tissues of the residual 

limb and estimating errors which may arise in these measurements have been considered [7]. 
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Although the literature does not elaborate on tibial angulation in the coronal plane, previ-

ously conducted studies using sagittal or oblique imaging views have required adaptations to 

overcome the angular alignment change between the prosthesis and tibia as the tibia as it de-

scends into the socket and soft tissue [3, 14,19,20].  In the course of this investigation it be-

came apparent that such a method was needed and that it must be applicable across a range of 

tibia shapes and socket/suspension style combinations.  

 

4 RESULTS 

 

To standardize the results and to account for coronal plane rotation variations in the align-

ment of the residual limb and socket, a method for measuring the proximo-distal motion of 

the tibia was derived from similar radiographic techniques which imaged the residual limb in 

the sagittal plane [14,19].  The method considered the proximo-distal direction defined in the 

coronal plane passing through the center of the tibia, and represented by a line running from 

the center of the tibial plateau, perpendicular to it and extended to the bottom of the prosthetic 

socket (Figure 4). This compensate for asymmetries at the distal end of the tibia due to the 

surgical techniques used or to post-surgical bone growth.  

 

 
Figure 4: Tibia angular kinematics - a method to measure the angular changes 

 

To account for angular changes, the socket base was identified as a line, perpendicular to 

the proximo-distal direction and passing through the center of the prosthesis base marker. The 

tibia angular kinematics as a function of body weight and static hold is shown in Figure 5. It 

can be seen that the addition of a 5 kg mass shown in Figure 5.b which is used to replicate 

forces applied to the residual limb while undergoing the swing phase of fast walking, affect 

the angular kinematics in Figure 5.a by an increase from 4.8 to 8.3 degrees. From Figure 5.c it 

can be also observed that the angular kinematics is minimal when a static hold is performed.  
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(a)                                                                                (b) 

 
(c) 

 

Figure 5: Angular kinematics of the prosthetic foot/tibia for (a) no weight attached, i.e., slow walking (b) 5 kg 

weight attached, i.e., fast walking, and (c) full body weight is slowly applied to residual limb, i.e., static hold 

 

It was also observed (but not presented here) that the variation in the residual tibia length 

and shape shown in Figure 3 can affect both the initial angle of the tibia with respect to the 

base of the socket as well as the angular kinematics of the tibia inside the socket.   

5 CONCLUSIONS  

In this study the angular kinematics of lower limb amputees have been assessed for walking 

and static weight hold on the artificial limb using Quantitative Fluoroscopic imaging tech-

niques. The study details the angular motion kinematics (maximal angular amplitude) of the 

tibia within the residuum with and without the addition of a 5kg mass used to replicate forces 

applied to the residual limb while undergoing the swing phase of slow and fast walking. The 

study, which provides a better understanding of the pressure distribution within the socket 

through its angular kinematics, conveys a new insight into socket design for comfort, perfor-

mance and amputation techniques. 
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Abstract. The inner ear or cochlea is a bone structure of spiral shape and is composed of
mainly two conical chambers which are filled with fluid and separated by a soft membrane, the
basilar membrane. In case of a healthy ear, the closed hydraulic system is excited through the
vibration of the stapes. According to present hearing theory, this leads to pressure waves in
the cochlear fluid which in turn results in the characteristic vibration behavior of the basilar
membrane. Related to the sound frequency, hair cells in certain areas of the basilar membrane
are stimulated and cause hearing nerve stimulation.

As reported in literature, the stapedial motion is mainly piston-like for low frequencies,
whereas for higher frequencies rocking motions increasingly occur. Since purely rocking mo-
tions of the stapes footplate generate no net fluid displacement, several researches doubt that
these motion components can lead to basilar membrane vibration and thus to hearing impres-
sion. Therefore, in this study a Finite Element model with simplified geometry of the human
cochlea is developed using Eulerian-based acoustic elements to model the inner ear fluid. First
the vibrations of the basilar membrane are calculated for a purely piston-like excitation mode.
Then, these results are compared with the basilar membrane vibration pattern evoked by purely
rocking motion around the short axis of the stapes footplate.
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1 INTRODUCTION

The inner ear or cochlea is the sensory organ where mechanical vibrations are transferred to
nerve stimuli. It is a bone structure of spiral shape and is composed of conical chambers which
are filled with fluid and separated by a soft membrane, the basilar membrane. At the apical
end, the upper chamber, scala vestibuli, is connected to the lower chamber, scala tympani,
through the helicotrema. At the basal end, the scala tympani is closed by the soft round window
membrane, whereas the scala vestibuli is linked to the fluid-filled vestibulum. This in turn is
connected to the middle ear through the stapes located at the top of the vestibulum. The cochlea
can, therefore, be considered as a closed hydraulic system with fluid properties similar to water.

For a healthy ear, sound is received by the eardrum, transmitted through the middle ear ossic-
ular chain and finally excites the hydraulic system through the vibration of the stapes footplate.
The stapedial vibration leads to the propagation of pressure waves in the cochlear fluid which
in turn results in the characteristic vibration of the basilar membrane. According to present
hearing theory, the oscillation of the basilar membrane reaches a maximum amplitude at a char-
acteristic location along the cochlear partition, which depends on the excitation frequency. This
behavior is also called tonotopy. Particularly at this frequency-depending location, hair cells on
the basilar membrane are stimulated and cause hearing nerve stimulation.

Experiments on temporal bones indicate, that the physiological motion of the stapes footplate
is mainly piston-like for acoustic stimulation frequencies below 1 kHz. For higher frequencies,
the rocking motions along the long and short axis of the stapes footplate become increasingly
dominant and the stapes footplate motion becomes complex [1, 2]. However, it is not clarified
whether and to what extend these rocking motions are capable to evoke the characteristic basilar
membrane vibration, because these rotational components lead to no net fluid displacement
in the scala vestibuli [3]. Since the cochlea with its complex geometry represents a closed
hydraulic system, the small vibrations of the basilar membrane and fluid pressure distributions
are almost impossible to measure. Therefore, in this study a Finite Element (FE) model of the
inner ear with simplified geometry is developed. First the basilar membrane vibration due to
purely piston-like stapes footplate motion is investigated. Then, these results are compared with
the basilar membrane vibration resulting from purely rocking motions of the stapes.

2 FE MODEL

In the following section, the geometry, material properties, and applied boundary conditions
for the simplified FE model of the human cochlea are presented. Since the cochlear fluid is
slightly compressible and represents an enclosed fluid volume with no mean flow, acoustic
elements are used to describe the behavior of the inner ear fluid. The discretized equation for
the pressure-formulated, linear acoustic elements as well as the formulation between acoustic
and structural elements to describe the cochlear fluid-structure interactions are introduced.

2.1 Geometry, material properties, and boundary conditions

The FE model with its simplified geometry is shown in Figure 1. For preliminary investiga-
tions, the chambers are modeled cube-shaped and uncoiled. The fluid-filled scala vestibuli and
scala tympani are divided through the basilar membrane, which is embedded in the rigid bony
wall. At the apex, the chambers are connected through the helicotrema. At the base, the scala
vestibuli is linked to the fluid-filled vestibulum, which interacts with the middle ear through the
stapes footplate. The scala tympani, however, is closed by the round window membrane which
is embedded in the lateral basal wall.
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Figure 1: Model of the human cochlea with simplified geometry.

The dimensions of the cochlear fluid spaces and structural components are summarized in Ta-
ble 1 and are gathered from anatomical data published in literature, from the evaluation of addi-
tional CT-data or from other cochlea FE models. The fluid chambers have a width of 1.37mm
and are slightly different in height, thus the fluid volume of the scala vestibuli is slightly lower
compared to that of the scala tympani. The entire cochlea model has a length of 35.9mm. It
should be noted, that the width of the basilar membrane increases from base towards the apex, in
contrast its thickness decreases along the cochlear partition. Taking into account the area of the
stapes footplate and round window membrane reported in literature, their shapes are assumed
to be rectangular.

The material properties used for the FE model are listed in Table 2. The density, viscosity,
and sound velocity of the inner ear fluid are in the same range as water [19]. As reported in liter-
ature, the basilar membrane comprises transversally orientated fibers which are embedded in an
elastic ground substance. Therefore, the orthotropic material formulation described in [20] for
a guinea pig is used fitting the Young’s modulus to that of a human basilar membrane [13]. Fur-
ther, a structural damping for the basilar membrane is applied with a modal damping of ξ = 0.1.
For the round window membrane linear elastic material properties are assumed. The rims of
the basilar and round window membrane have fixed translations. The stapes footplate and bony
wall are represented as rigid bodies, the latter one is additionally fixed in space.

2.2 Coupling acoustic with structural elements for fluid-structure interaction

The FE model is created using ANSYS Mechanical APDL 15.0. The structural compo-
nents are meshed with standard shell elements. For the fluid domain the pressure-formulated
or Eulerian-based acoustic elements are used, referred to as FLUID30 in ANSYS. The acoustic
wave equation for a fluid with viscosity ηf , sound velocity cf , and density ρf is defined by

∇2p− 1

c2f

∂2p

∂t2
+

4ηf
3ρfc2f

∇2∂p

∂t
= 0. (1)

The equation describes the spatial propagation of pressure waves in a fluid with no net flow
rate and no source, neglecting effects of thermal conductivity. Further, a compressible fluid
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Table 1: Dimensions of the cochlea model.

fluid spaces
vestibulum volume 50mm3 [4, 5]
scala vestibuli volume 35.3mm3 [6, 7, 8, 9, 10]
scala tympani volume 44.2mm3 [6, 7, 8, 9, 10]
helicotrema area (y x z) 0.64mm2(1.37 x 0.46mm) [7]
structural components
basilar membrane length 30.4mm [11]

width basal 0.1mm [12, 13, 5]
width apical 0.5mm [12, 13, 5]
thickness basal 7.5µm [12, 13, 14]
thickness apical 2.5µm [12, 13, 14]

bony wall length 30.4mm
width 1.37mm
thickness basal 7.5µm
thickness apical 2.5µm

round window membrane area (x x z) 2.1mm2(1.04 x 2mm) [15]
thickness 65µm [16, 17]

stapes footplate area (y′ x z′) 3mm2(1.18 x 2.5mm) [18]

where density changes are due to pressure variations is assumed and the equation is limited to
relatively small pressures p, such that the changes in density are small compared to the mean
density. By discretizing Eq. 1, the finite element equation for the pressure-formulated, linear
acoustic element is

Mf p̈+Cf ṗ+Kf p = Ff , (2)

where Mf , Cf and Kf are the equivalent fluid mass, damping and stiffness matrices. Further, Ff

represents the vector of applied fluid loads and p the vector of the unknown nodal acoustic
pressures.

To describe the interaction between the inner ear fluid and the stapes footplate, basilar mem-
brane and round window membrane, the acoustic pressure is related to the resulting normal
displacement of the structure, using a coupling matrix R that accounts for the effective surface
area associated with each node on the interface. This leads to the equations of the two-way
coupled fluid-structure interaction problem

Mf p̈+Cf ṗ+Kf p = Ff − ρfRT ü, (3)
Ms ü+Cs u̇+Ks u = Fs +Rp.

There, Ms, Cs and Ks are the structural fluid mass, damping and stiffness matrices, Fs is the
vector of applied structural loads and u is the vector of unknown nodal displacements. These
equations can be formed into a matrix equation, where the assembled mass and stiffness matri-
ces are unsymmetric. Using the linear pressure-formulated acoustic elements to model the fluid
domain, the FLUID30-element in ANSYS has one pressure DOF and three additional displace-
ment DOFs at the fluid-structure interface. However, elements inside the fluid domain have
only pressure DOFs. For the FLUID30-elements located on the exterior surfaces of the scala
vestibuli, scala tympani and vestibulum, the absorption coefficient is set to zero representing a
rigid wall boundary condition.

6550



Philipp Wahl, Sebastian Ihrle, Pascal Ziegler, and Peter Eberhard

Table 2: Material properties for the cochlea model.

cochlear fluid
density ρf 1000 kg/m3 [19]
viscosity ηf 0.001Pa s [19]
sound velocity cf 1500m/s [19]
basilar membrane
Young’s modulus basal Ey,b 50MPa [13]

apical Ey,a 3MPa [13]
Ex = Ez Ey,a [20]

shear modulus Gxy = Gxz = Gyz Ey,a/2.99 [20]
Poisson ratio νxy = νzy 0.49Ey,a/Ey [20]

νxz 1− (0.49Ey,a/Ey) [20]
modal damping ξ 0.1
round window membrane
density ρrw 1200 kg/m3 [13]
Young’s modulus Erw 0.35MPa [13]
Poisson ratio νrw 0.3 [13]

3 RESULTS

The cochlea model is excited by the motion of the stapes footplate. In this study, first the
vibration of the basilar membrane due to purely piston-like motion of the stapes footplate along
the x′ axis for 0.5, 1, 2 and 4 kHz is investigated. Then, these results are compared at 1 kHz
with the basilar membrane vibration pattern for purely rocking motion around the short axis y′

of the footplate. For both excitation modes, physiological amplitudes are used and applied to
the rigid stapes footplate as kinematic boundary conditions, Table 3. For the following results,
the transversal deflections in x-direction of the steady basilar membrane vibration are evaluated
in the xz-plane.

Table 3: Displacement amplitude x′ (piston-like) and rotational amplitude βy′ (rocking) applied to the stapes
footplate to excite the cochlea model. The amplitudes are gained from physiological data [2] for an ear canal
pressure of 1Pa.

frequency 0.5 kHz 1 kHz 2 kHz 4 kHz
piston motion x′ [nm] 1.80 38.20 7.96 1.99
rocking motion βy′ [µrad] 7.96

For an excitation frequency of 1 kHz, the transversal deflections of the basilar membrane for
three discrete time points of a cycle as well as the envelope of the membrane pattern is shown
in Figure 2.

The piston-like motion of the stapes footplate leads to a vibration of the basilar membrane.
Due to the fluid viscosity and the structural damping, adjacent partitions of the basilar mem-
brane vibrate with an increasing delay in phase from base towards the apex. The spatially
moving oscillation nodes result in a travelling wave of the basilar membrane. Thereby, the
amplitude increases from the base towards the apex reaching a maximum amplitude at a char-
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Figure 2: Vibration of the basilar membrane due to piston-like excitation for x′ = 38.2 nm at 1 kHz.

acteristic point along the cochlea indicated by the envelope in Figure 2. Beyond this point, the
amplitude decreases rapidly and the adjacent apical domain of the basilar membrane remains at
rest. Further, the basilar membrane vibrations for the piston-like stapedial amplitudes accord-
ing to Table 3 are calculated. The basilar membrane amplitudes for excitation frequencies of
0.5, 1, 2 and 4 kHz are shown in Figure 3.
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Figure 3: Envelopes of the basilar membrane vibration due to piston-like stapes footplate motion for different
excitation frequencies.

By increasing the excitation frequency, the maximum amplitude is shifted towards the base
of the cochlear partition. This behavior leads to a unique mapping of each excitation frequency
to a distinct location along the basilar membrane. This tonotopic behavior as well as the vibra-
tion pattern of the basilar membrane are in agreement with the present hearing theory, described
in Section 1. Comparing the maximum basilar membrane amplitudes for the different excita-
tion frequencies, the global maximum amplitude occurs for an excitation frequency of 1 kHz.
Assuming, that the amplitude at the characteristic place is a measure for the perceived sound
intensity, this result is consistent with the lowest hearing threshold level for human ears at
around 1 kHz [21].

Finally, the cochlea model is excited by rocking motion around the short axis of the stapes
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footplate with an amplitude of βy′ = 7.96µrad. The normalized envelope and the transversal
deflections of the basilar membrane for one point of time of a cycle are shown in Figure 4.
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Figure 4: Vibrations of the basilar membrane at 1 kHz for purely piston-like and rocking motions of the stapes
footplate.

For an excitation frequency of 1 kHz, the rocking motion of the stapes footplate leads to a
vibration of the basilar membrane. The comparison with the normalized membrane deflections
of Figure 2 shows, that the evoked basilar membrane pattern is the same as for the piston-like
excitation mode. Obviously, the vibration pattern of the basilar membrane depends primarily
on the excitation frequency, not on the mode of excitation. Except in the basal domain, slight
differences in the vibration pattern are visible resulting from differences between the basal fluid
pressure distributions, Figure 5.
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Figure 5: Vibrations of the basilar membrane in the basal domain for 1 kHz.

For the excitation frequency of 1 kHz, the maximum amplitude of the basilar membrane
due to stapedial rocking motion is around 43 dB lower compared with that for the piston-like
motion. Thus, for this excitation frequency the contribution of stapedial rocking motion to
hearing impression is assumed to be low. However, at this frequency the amplitude of the
piston-like motion of the stapes footplate is maximum and decreases considerably for higher
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frequencies, Table 3. Therefore, further investigations are intended to study the vibration of the
basilar membrane over the entire auditory frequency range for both modes of excitation.

4 CONCLUSION

In this study, an FE model of the human cochlea with a simplified geometry is developed.
Using Eulerian-based acoustic elements to describe the inner ear fluid, the related equations for
the two-way coupled fluid-structure interaction are described. For the piston-like motion of the
stapes footplate, the FE model represents the characteristic basilar membrane vibration with a
distinct maximum amplitude along the cochlear partition and the results are in agreement with
the tonotopic hearing theory. It is further found that also purely rocking motion around the short
axis of the stapes footplate is capable to evoke the characteristic basilar membrane vibration.
Apart from slight differences in the basal domain, the resulting patterns of the basilar membrane
for both excitation modes are identical. For an excitation frequency of 1 kHz, the maximum
basilar membrane amplitude due to rocking motion of the stapes footplate is around 43 dB
lower than for the piston-like motion. However, according to physiological data the stapedial
amplitude for the piston-like motion decreases for higher frequencies. Therefore, in a next step
the basilar membrane vibrations for both excitation modes need to be studied for the entire
auditory frequency range.
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[18] Sim, J.H.; Röösli, C.; Chatzimichalis, M.; Eiber, A.; Huber, A.: Characterization of
Stapes Anatomy: Investigation of Human and Guinea Pig. Journal of the Association
for Research in Otolaryngology, Vol. 14, pp. 159–173, 2013.

[19] Baumgart, J.: The Hair Bundle: Fluid-Structure Interaction in the Inner Ear. Doctoral
thesis, Technische Universität Dresden, 2010.

[20] Fleischer, M.; Schmidt, R.; Gummer, A.W.: Compliance Profiles Derived From a Three-
Dimensional Finite-Element Model of the Basilar Membrane. The Journal of the Acous-
tical Society of America, Vol. 127, pp. 2973–2991, 2010.

[21] Lenarz, T.; Boenninghaus, H.G.: Hals-Nasen-Ohren-Heilkunde. Berlin Heidelberg:
Springer, 2012.

6555



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

IN-HOUSE MULTIBODY HUMAN MODEL BASED ON EULER
PARAMETERS FOR THE FAST IMPACT SCENARIO CALCULATION
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Abstract. Purpose of this paper is to build an in-house spatial model of a human body based
on multibody approaches, that could be utilized in numerical simulations of various impact
scenarios. The model currently contains 17 rigid bodies and 16 spherical joints. The joints
are modelled as range-unlimited in order to keep model robust for the further analysis. The
limits of the motion will be further modelled within internal stiffness. However the approach of
the spatial joints with unlimited motion suffers with so-called singular positions and thus the
numerical calculation can loose its stability. To solve this problem, the concept of four Euler
parameters instead of widely used three Euler angles is used here. The dimensions and masses
of the particular segments are based on the real data of the Czech population measurement
in 80s. The model is parametrized with the height and weight of the particular human. All
the dimensions are calculated with respect to these values, which makes the model scalable to
capture human population diversity. The contact problem of the human body with the external
shape or self-contact between segments is solved using the continuous contact force model,
where normal and tangential forces are evaluated as a function of the penetration, stiffness and
coefficients of restitution. Algorithm for ellipsoid-to-plane contact is applied here. MATLAB
software is used to build the in-house software for a human body model. The model will be
further validated to capture the real human kinematics and to achieve human-like behaviour
under different impact conditions.
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1 INTRODUCTION

Modelling of the human body is an expanding discipline of biomechanical research. With the
advantages of the fast computer processing, the researchers have started to use computers for
the biomechanical modelling more often. The goals ate to investigate numerical models of the
human by different approaches for different situations. The example of the highly expanding
area of human modelling is safety/automotive field, where virtual models of the human body
or the parts of the body are often used to predict or eliminate fatal injuries or death. For this
purpose, the detail and deformable finite element modelling method is usually applied. Such
complex models of particular tissues are widely developed. With the proper description of mate-
rials and geometry, these models can serve to calculate deformations, velocities, accelerations,
stresses or rupture of any human segments. On the other hand, there might be some cases,
where such complex description are inefficient or inappropriate. If we are interested only in
global behaviour (kinematics and dynamics) of the system (human body) the detailed descrip-
tion within finite elements are inefficient and time and cost consuming. Let us imagine a simple
example of a man pedalling his bike. If we consider the man and the bike as one mechanical
system and the goal is to describe the kinematics of the bike based on position of the legs,
the knowledge of stresses and deformations of the segments or internal organs is not required.
For such purpose the classical description of mechanisms can be enough to capture the motion.
Moreover, the complex description can be considered with the articulated rigid body approach.
If the researchers are interested in muscle forces, the musculoskeletal modelling method is an
appropriate tool. Such model consists of constrained rigid bodies (articulated rigid body, multi-
body system) and the model of muscles. On the other hand, the requirements of the detailed
tissue injury and deformations always require application of the finite element modelling.

Purpose of this work is to build an in-house software for fast simulations of the global be-
haviour of the scalable human body under different loading scenarios. Authors use the multi-
body (articulated rigid bodies) approach for the description of the human body. Such method
allows to calculate the motion under various loading in a real time simulation (or close to real
time). Authors replaced the well known Euler angles with the principle of Euler parameters.
The Euler angles is a widely used method for description of the spatial rotational motion of the
rigid body. However, this approach can suffer from the singular positions [1] , when the angle
of nutation is close to ±iπ, i ∈< 0, 1, 2... >. To solve this problem, the principle of Euler
parameters [2, 3, 4, 5], that can be used without the singularities, was applied here.

2 METHODS

2.1 Euler parameters

Four Euler parameters are used for the parametrization of the 3 degrees-of-freedom spatial
(spherical) motion of the rigid body. Therefore, these parameters are not totally independent
and the constraint equation between Euler parameters can be define as

4∑
k=1

(βk)
2 = 1, (1)

or written using vector of Euler parameters β as

βTβ − 1 = 0. (2)

When using e.g. Lagrange equations for the formulation of system dynamics, the second deriva-
tive of the constraint equations is further added to the equation of motion. Thus the Eq. 2 is twice
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differentiated and one obtain
βT β̈ = −β̇T β̇. (3)

2.1.1 Euler parameters in terms of Euler angles

Euler parameters define the 3 degrees-of-freedom rotation usually described using three Eu-
ler angles (precession ψ, nutation θ and spin φ). Since the Euler parameters can be hard to
interpret in the physical meaning, it is useful to define Euler parameters as functions of well
known Euler angles as

β1 = cos

[
1

2
(ψ + φ)

]
cos

θ

2
, (4)

β2 = cos

[
1

2
(ψ − φ)

]
sin

θ

2
, (5)

β3 = sin

[
1

2
(ψ − φ)

]
sin

θ

2
, (6)

β4 = sin

[
1

2
(ψ + φ)

]
cos

θ

2
, (7)

and similarly the derivatives of Euler angles as a function of Euler velocities

β̇1 = − sin

[
1

2
(ψ + φ)

]
1

2
(ψ̇ + φ̇) cos

θ

2
− cos

[
1

2
(ψ + φ)

]
sin

θ

2

θ̇

2
, (8)

β̇2 = − sin

[
1

2
(ψ − φ)

]
1

2
(ψ̇ − φ̇) sin θ

2
+ cos

[
1

2
(ψ − φ)

]
cos

θ

2

θ̇

2
, (9)

β̇3 = cos

[
1

2
(ψ − φ)

]
1

2
(ψ̇ − φ̇) sin θ

2
+ sin

[
1

2
(ψ − φ)

]
cos

θ

2

θ̇

2
, (10)

β̇4 = cos

[
1

2
(ψ + φ)

]
1

2
(ψ̇ + φ̇) cos

θ

2
− sin

[
1

2
(ψ + φ)

]
sin

θ

2

θ̇

2
. (11)

2.2 Equations of motion

2.2.1 Equations of motion of unconstrained bodies

Equations of motion of one unconstrained (free) body were defined based on the notation
shown in [4]. Here, the body has 7 coordinates (three translational coordinates and four Euler
parameters). The dynamic equations of motion of such unconstrained body can be define as[

mi
RR 0
0 mi

ββ

]
︸ ︷︷ ︸

Mi

[
R̈i

β̈
i

]
︸ ︷︷ ︸

qi

=

[
(Qi

e)R
(Qi

e)β

]
︸ ︷︷ ︸

Qi
e

+

[
0

(Qi
ν)β

]
︸ ︷︷ ︸

Qi
ν

, i=1, 2, ...,n, (12)

where Mi is the mass matrix of i-th body, qi is the vector of 7 generalized coordinates of the
body and (Qi

e)R and (Qi
e)β are the vectors of generalized external forces associated with the

generalized translations and orientations, respectively. Vector Qi
ν is so called quadratic velocity

vector [4].
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Equation (12) is the matrix equation that governs the unconstrained motion of the rigid body.
This equation was simplified for the centroidal case, i.e when the origin of the local body-fixed
coordinate system is rigidly attached to the centre of mass. When the sub-matrices are expressed
in terms of the vector of Euler parameters, the overall equations of motion of the unconstrained
body can be written in the following form

miI 0
0 I icogG

i

0 βiT


︸ ︷︷ ︸

Mi

[
R̈i

β̈
i

]
︸ ︷︷ ︸

qi

=


nF∑
j=1

F i
j

GiT [
nM∑
k=1

M i
j +

nF∑
j=1

uik × F i
k]


︸ ︷︷ ︸

Qi
e

+

+

 0

−

[
I icogĠ

i
β̇
i − (Giβ̇

i × I icogGiβ̇
i
)

β̇
iT
β̇
i

]
︸ ︷︷ ︸

Qi
ν

, i=1, 2, ...,n,

(13)

where
Icog = AIcogA

T (14)

is the inertia matrix defined in the global coordinate system, in which matrix A is the direc-
tion cosine matrix (transformation matrix between local and global coordinate systems) and is
defined as

A =

 1− 2β2
3 − 2β2

4 2(β2β3 − β1β4) 2(β2β4 + β1β3)
2(β2β3 + β1β4) 1− 2β2

2 − 2β2
4 2(β3β4 − β1β2)

2(β2β4 − β1β3) 2(β3β4 + β1β2) 1− 2β2
2 − 2β2

3

 . (15)

MatricesG andG are defined (in the global and the local coordinate system, respectively) as

G = 2

−β2 β1 −β4 β3
−β3 β4 β1 −β2
−β4 −β3 β2 β1

 (16)

and

G = 2

−β2 β1 β4 −β3
−β3 −β4 β1 β2
−β4 β3 −β2 β1]

 . (17)

Symbol mi in equation (13) is mass of i-th body, I is 3x3 identity matrix, F i is the vector of
applied external forces, uk is the position vector of point P, where an external force acts, nF is
the total number of external forces, M i is the vector of applied external torques and nM is the
total number of the torques.

2.2.2 Equations of motion of constrained bodies

Let us consider a multibody system containing N bodies. The bodies are interconnected
using kinematic joints. The kinematic constraints (equations) of the joints can be defined as

C(q, t) = 0. (18)

6559
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The overall equations of motion of the kinematic system containing N bodies can be written as
M1 0 · · · 0 CT

q1

0 M2 · · · 0 CT
q2

...
... . . . ...

...
0 0 · · · MN CT

qN

Cq1 Cq2 · · · CqN 0




q̈1

q̈2

...
q̈N

−λ

 =


Q1
e +Q1

ν

Q2
e +Q2

ν
...

QN
e +QN

ν

Qd

 (19)

or written in a more condensed form as[
M CT

q

Cq 0

] [
q̈
−λ

]
=

[
Qe +Qν

Qd

]
. (20)

VectorCq is a Jacobian matrix that is defined using derivatives of constraint equation (18) with
respect to generalized coordinates q as

Cq =


∂Cx
∂q1

. . . ∂Cx
∂qN

∂Cy
∂q1

. . . ∂Cy
∂qN

∂Cz
∂q1

. . . ∂Cz
∂qN

 . (21)

Constraint equation (18) and consequently equation (21) depend on the type of the particular
kinematic joint. Vector Qd is the vector that absorbs quadratic terms in the velocities and it is
defined as

Qd =



−
N∑
α=1

N∑
j=1

∂2C1

∂qj∂qα
q̇j q̇α

−
N∑
α=1

N∑
j=1

∂2C2

∂qj∂qα
q̇j q̇α

...

−
N∑
α=1

N∑
j=1

∂2Cr

∂qj∂qα
q̇j q̇α


, (22)

in which r is the number of constraints in the model.

2.3 Contact treatment

The goal of this work is to develop the human body model, or external shape of the body,
respectively, that consists of spheres and ellipsoids linked in the open kinematic tree structure.
This model is built on purpose simulations of the global behaviour of the human body under
external loading including contact with some infrastructure or self-contact between bodies. De-
spite the fact that there are no limitations for the shape of the infrastructure, we can always
approximate such shape with the finite number of planes. Thus, only the contact between an
ellipsoid and a plane is solved. In authors’ previous work [6] the algorithm for the solution of
the ellipsoid-to-plane contact was presented. The main idea of this method lays in the creation
of a new plane, parallel to the initial one and tangential to the ellipsoid, see Figure 1. When
common point C of the new plane and of the ellipsoid is detected, the distance between this
point and the initial plane can be calculated.

In case of collision the generated contact forces are calculated based on the continuous con-
tact force model [7] as

Fc
ij = −Knδnnc − Cn(vcnc)nc + Ft

ij (normal force), (23)
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Figure 1: Ellipsoid and parallel planes.

Ft
ij = −Ktv

t
c + Ct(vc × nc)× nc (tangential force), (24)

Mc
ij = RC

ij × Fc
ij (torque of the contact force). (25)

The contact force expressions (23), (24) and (25) are functions of distance (penetration) δn,
relative normal velocity vc collinear with vector of normal nc and tangential velocity vector vtc
and the contact parameters; i.e. virtual normal and tangential stiffness Kn and Kt respectively,
and virtual coefficients of restitution Cn and Ct. Vector RC

ij is the position vector of the contact
point defined in the global coordinate system.

Figure 2: Segmentation of a human body [8].
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2.4 Human body model

The basic concept of this work is in the segmentation of the human body defined by Robbins
[8]. Human body is divided into the segments, whose motion respects correct kinematics and
dynamics of the human body caused be external loading, see Figure 2.

Based on this segmentation, the spatial human body model was created as an open kinematic
tree-structure containing 17 rigid bodies. Hynčı́k [8] suggested the simple 11-bodies structure
of the 2D model, as is shown in Figure 3, where all bodies are modelled as ellipses or circles,
respectively.

Figure 3: Segmentation of 2D human body model [8].

The spatial segmentation is expanded by the pairs of extremities and thus the model has 17
rigid bodies, based on Figure 2 and Figure 3:

• Pelvis

• Abdomen

• Thorax

• Neck

• Head

• Left and right arms

• Left and right forearms

• Left and right hands

• Left and right tights

• Left and right calves

• Left and right feet

The connections between bodies are realized by means of 16 spherical joints, representing real
human’s joints:

• Joint between abdomen and pelvis, i.e.
vertebrae L5/Sacrum

• Joint between thorax and abdomen, i.e.
vertebrae T12/L1

• Joint between neck and thorax, i.e. ver-
tebrae C7/T1

• Joint between head and neck, i.e. verte-
brae Atlas/T1

• Left and right shoulder joints

• Left and right elbow joints

• Left and right wrist joints

• Left and right hip joints

• Left and right knee joints

• Left and right ankle joints
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2.4.1 Mass distribution, geometry and inertia properties

The proposed model is developed in the way that the total mass and the total height of the
human are inputs of the in-house software. The dimensions and masses of particular segments
are calculated based on these defined values. The masses of the body segments can be calculated
from the total mass and height of the human [9, 10]. The method of Zaciorsky and Salujanov
[10] is based on the radioisotope method of experimental measuring on 100 humans and defined
coefficients for each body segments. The mass of the segments can be expressed using the
simple equation as

mi = β0i + β1im+ β2iv, (26)

where m [kg] is the total mass of the body, v [cm] is weight of body and coefficients β are
defined in the Table 1.

Name of the segment β0 [kg] β1 [-] β2 [kg.cm
−1]

Pelvis -7.498 0.0976 0.04896
Abdomen 7.181 0.2234 -0.0663
Thorax 8.2144 0.1862 -0.0584
Neck 0.096 0.0031 0.0022
Head 1.2 0.014 0.0123
Arm 0.25 0.03013 -0.0027
Forearm 0.3185 0.01445 -0.00114
Hand -0.1165 0.0036 0.00175
Tight -2.649 0.1463 0.0137
Calf -1.592 0.03616 0.0121
Foot -0.829 0.0077 0.0073

Table 1: Table of coefficients for calculation of body segment’s masses [10].

Geometry of the segments was defined based on the Robbins database [11], where values
of human segments’ dimensions for the large, medium and small man and woman respectively,
were published. Authors use average male of height equals to 180 cm as a reference one (mea-
sured in Czech Republic in the year 2011) [12], and all the dimensions from Robbins database
(medium male) are related to this value. Thus, the dimensions of each body segment are func-
tions of the total height of the human. Such algorithm makes the proposed in-house model scal-
able for various humans: height – Robbins database (Figure 2) and weight – Zaciorsky method
(26). The inertia properties of the body segments are calculated from mass and geometry of the
particular parts.

The in-house software model is parametrized with the height and weight, which makes the
model scalable in order to capture the diversity of human population [13, 14, 15].
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3 RESULTS

The mathematical methods for the development of the scalable multibody model of the hu-
man were described in the previous chapter. The purpose of such model is the description of the
global behaviour of the human under different loading scenarios. The examples of the various
human body models are shown in the Figure 4. Figure 5 shows the motion of the reference
human body model (180 cm, 80 kg) for the prescribed initial velocities at the trunk and the
extremities.

Figure 4: Human body model family.

Figure 5: Illustrative motion of the human body model.
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4 CONCLUSION

The presented work is focused on the investigation of the multibody principle in the mod-
elling of the human body. Authors used Euler parameters set for the parametrization of the
spatial rotations. This paper introduced such principle and pointed out the advantages and dis-
advantages of such approach. Generally, the Euler parameters can solve the problem with the
singularities that occur with the Euler angles, however it brings an extra equation (constraint
equation among Euler parameters) into the equation of motion for each body. Dynamics equa-
tions of motion for the case of unconstrained and constrained body, respectively, are defined
here. Detection of the contact scenario is solved with the ellipsoid-to-plane contact algorithm
and the consequent contact forces (normal and tangential) are calculate based on the continuous
contact force model as a function of penetration. The definition of the forces consists of the
virtual stiffness and virtual coefficients of restitution that will be further tuned up in order to
correspond with the behaviour of the real human body. The presented model used the wide
database of geometric properties of the human body, measured in 1970’s in Czech Republic.
The model is parametrized with the initial height and weight and the dimensions and particular
masses depend on these values. The scaling process keeps this model scalable with respect
to the particular human. This simple multibody model of human body was evaluated on the
purpose of description of global behaviour of the human body. The goal was to evaluated the
in-house software including contact scenario, scalable, easy-to-position model that can be easy
modified for the further purposes, such as driving of the model or human cognitive behaviour.
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Západočeská univerzita v Plzni,(2014).
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Abstract. In the article, the control system dedicated to the unit responsible for the patient 

unloading, which is one of the components of the mechatronic device for gait reeducation will 

be discussed and experimentally verified. The control algorithm of the unloading system 

should guarantee an expected constant value of the unloading force, regardless of the posi-

tion and direction of the patient movement. 

The article presents a solutions in which the hybrid control algorithm based on fuzzy logic 

coupled with PID controller has been implemented. The optimization of parameters for regu-

lators was conducted based on numerical simulations in which the walk of a patient through a 

step was analyzed. The experimental results show that the proposed control algorithm real-

ized the primary goal (rapid reaction to the changes of the unloading force values) very well. 
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1 INTRODUCTION 

Modern mechatronic devices find an increasing number of applications aimed at aiding the 

activities performed by humans. Advanced mechatronic systems are used both in common 

household devices as well as in various industries. One of the more interesting applications of 

modern mechatronic technologies is found in medicine and rehabilitation. This might be ex-

emplified by surgical robots such as Vinci or Robin Heart. These robots are required to allow 

for a precise positioning of surgical instruments as well as to provide a precise view of the 

surgical field [1,2,3]. 

The use of automated devices is beneficial in the process of rehabilitation - especially of 

the upper and lower limbs. Devices such as Lokomat, zeroG or exoskeletons allow to increase 

the intensity of the training and perform a larger number of repetitions, which – as reported by 

numerous studies – translates into a significant improvement in rehabilitation effects. Moreo-

ver, the devices also support the work of physical therapists, allowing them to concentrate on 

observing the patient’s technique in performing the exercises [4,5].  

Rehabilitation devices are also required to adjust the resistance to motion in a manner ade-

quate to the strength of the patient’s muscles and to minimize the excessive loads. These goals 

are reached by means of biofeedback or with the use of mechanical solutions [6]. 

One of the innovative projects in the field of rehabilitation equipment is the mechatronic 

device dedicated to the gait re-education, developed in the Institute of Theoretical and Ap-

plied Mechanics at Silesian University of Technology.  

2 MECHATRONIC DEVICE FOR GAIT RE-EDUCATION 

The structure of the device resembles a single-girder overhead travelling crane which per-

form a keeping up the movement behind the patient. In addition, the dedicated special purpose 

winch relieves the patient with a constant force in the vertical direction.  

Each of the device’s axes is driven by servo drives with permanent magnet excited syn-

chronous motors. Due to the use of dedicated servo inverters, it is possible to adjust the dy-

namics of the device, e.g. by limiting the acceleration of individual elements. Moreover, all 

motors have been equipped with measuring encoders. 

The designed control system has been created in MATLAB/Simulink and the transmission 

of control signals between the PC Computer and the device control unit is conducted by 

means of two RT-DAC4/PCI real time boards. A signal conditioning interface has also been 

developed that is used for the measurement of the rope inclination angle, the value of unload-

ing force and the pressure of the patient’s feet against the ground. The correlation between the 

components in the mechatronic device for gait re-education has been presented in figures 4 

[7,8]. 

  

Figure 1: Block diagram of the of the components cooperation in mechatronic device for locomotor training. 
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The hoist assembly is of a special significance – it should rapidly react to the changes of 

the unloading force and simultaneously protect the patient against excessive loads. It is also 

important that sufficient vertical movement is provided as it is necessary e.g. for the training 

of climbing the stairs. To satisfy these requirements, two separately operating drive systems 

were installed in the unloading device. In the first of these (Z1), the drive motor drives the 

winding drum of the hoist by means of a planetary gear, which allows to control the vertical 

position of the sling. The second one has been coupled with a screw drive responsible for the 

movement of the travelling element which is separated from the pulley with elastic elements 

(Z2 drive). It is responsible for the dynamic compensation of the patient’s body weight. Such 

an electromechanical system acts as a “Series Elastic Actuator”, dedicated for rehabilitation 

devices or walking robots.  The structure of the unloading system has been presented in fig. 2. 

 

Figure 2: Scheme of unloading system. 

The mathematical model of the presented device has been developed. The motion of the 

system has been described using the generalized displacement variables and the numerical 

calculations for this model were performed using the MATLAB/Simulink software [9]. 

Stiffness of the springs in the Z2 actuator and the stiffness of the rope were determined ex-

perimentally with the testing machine.  

3 CONTROL ALGORITHM FOR UNLOADING SYSTEM 

The development of an optimal control of the unloading system constitutes an interesting 

engineering problem. From the point of view of rehabilitation centres, it is desirable that the 

control is performed by means of a single, universal system, that would not be dependent on 

the type of exercises.   

Experiments have shown, however, that in case of walking on a horizontal and flat surface 

it is best to only use the Z2 drive. The use of the PID controller allowed to maintain the un-

loading force with the precision of approximately 30 N. The movement of this actuator is lim-

ited by limiting switches and its range of movement is approximately 10 cm. To give 

consideration to the tests that have been completed, a solution was proposed in which the PID 

controller’s operation was coupled with a fuzzy logic controller [10,11,12]. The idea of study 

control algorithm is shown in Fig. 3.  
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Figure 3: Block diagram of the proposed control system. 

The developed set of controlling rules has been presented in table 1. The DZ2 symbol de-

notes the displacement of the actuator in the Z2 drive, while UF relates to the unloading force 

misalignment value. The characters from “---“ to “+++” represent the values in an increasing 

order.  The “nom” index means that the value of the variable equals the nominal value.  

 

  Displacement of actuator in Z2 drive system 

 DZ2---  DZ2--  DZ2 -  DZ2nom  DZ2+  DZ2++  DZ2+++ 

U
n
lo

ad
in

g
 f

o
rc

e 

 

UF - - -  Z1++  Z1++  Z1+++  Z1+++  Z1+++  Z1+++  Z1+++ 

UF - -  Z1++  Z1++  Z1+++  Z1++  Z1++  Z1+++  Z1+++ 

UF-  Z1+  Z1+  Z1+  Z1+  Z1+  Z1++  Z1++ 

UFnom  Z1--  Z1-  0  0  0  Z1+  Z1++ 

UF +  Z1--  Z1--  Z1-  Z1-  Z1-  Z1-  Z1- 

UF ++  Z1---  Z1---  Z1--  Z1--  Z1---  Z1--  Z1-- 

UF +++  Z1---  Z1---  Z1---  Z1---  Z1---  Z1--  Z1-- 

Table 1: Applied rules as a table. 

The ranges of the membership functions have been determined in the process of optimiza-

tion that was conducted using the numerical model of the device. During the numerical calcu-

lations the walk of a patient through a 10 cm high step was analyzed. And the optimization 

was done using genetic algorithm. The settings of the PID controller have been selected inde-

pendently for the case in which the patient moves on a flat surface and only the Z2 drive is 

active. This allowed to tune the fuzzy controller to the existing control system and largely fa-

cilitated the numerical computations by reducing the number of variables in the optimization 

process. 

 

Figure 4: The output signal controlling the motor rotational speed in Z1 drive presented as a surface. 
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4 EXPERIMENTAL RESEARCH  OF THE CONTROL SYSTEM  

A series of experiments was conducted for the developed algorithm controlling the drives 

of the unloading system. In the experiments, the operation of the device was tested during 

walking on a flat surface and in case of climbing a stair that was approximately 10 cm high. 

During the study, the unloaded person moved with different speeds. Special attention was 

given to the operation of the motor driving the winding drum. The attached graphs exhibit the 

registered values of shifts of the centre of gravity of the unloaded person in vertical axis (fig. 

5), the value of the unloading force (fig. 6), the displacement of the regulating unit in the Z2 

drive system (fig. 7), the linear displacement of the end of the cable resulting from the opera-

tion of the winding drum (fig. 8) and the value of the control signal of the engine speed in the 

Z1 drive (fig. 9). 

 

Figure 5: Registered displacement of the centre of gravity of the unloaded person in vertical axis as a function 

of time. 

 

Figure 6: Registered value of the unloading force as a function of time. 

 

Figure 7: Registered displacement of the regulating unit in the Z2 drive system as a function of time. 
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Figure 8: Registered linear displacement of the end of the cable resulting from the operation of the winding drum 

as a function of time. 

 

Figure 9: Registered value of the control signal of the engine rotational speed in the Z1 drive as a function 

of time. 

5 CONCLUSIONS  

 The work describes an innovative device used for the re-education of walk. Special atten-

tion was given to the structure and operation of the unloading system which requires the 

coordination of two independent drives for proper operation.   

 A hybrid Fuzzy-PID control system was proposed, in which the PID controls the opera-

tion of the drive responsible for dynamic compensation of the patient’s weight. The fuzzy 

controller controls the operation of the winding drum.  

 A set of control rules has been developed for the presented fuzzy controller as well as 

membership functions have been defined for all input and output signals. The ranges of 

these functions have been selected in an optimization process with the use of the numeri-

cal model of the device. 

 Experiments have confirmed the proper operation of the developed algorithm. The appli-

cation of fuzzy control along a classic PID controller guaranteed the maintenance of the 

unloading force with the precision of 30N, notwithstanding the type of the exercises per-

formed by the unloaded person. The experiments have also confirmed that one of the 

basic goals has been reached – during a walk on a flat surface the misalignment of the 

unloading force is regulated primarily by the dynamic compensation system. Moreover, 

the winding drum starts operating at high speeds only when the patient performs exercis-

es requiring large vertical displacements.  
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Abstract. This paper presents a bone structural analysis of a reconstructed fractured femur 
assigning inhomogeneous isotropic material properties accessed from CT images into the FE 
model. The grayscale values accessed from CT images were converted into local Young mod-
ulus that was assigned to the associated finite element of the mesh. The FE model was ob-
tained from CT images by a numerical reconstruction of a proximal femur which presents an 
atypical fracture in the sub-trochanteric region with full displacement and no continuity be-
tween the fragments. The reconstruction involved procedures such as volume reconstruction 
from images, segmentation by thresholding, labeling of the connected components and also 
the alignment of point clouds data using the Iterative Closest Point (ICP) algorithm. The re-
sulted aligned point cloud was thus converted into a solid and finally in a finite element mesh, 
that was analyzed in a standard FE framework. Another FE model with constant elastic mod-
ulus for cortical and trabecular bone was also simulated to compare results with our model. 
The values of principal stress and strains were rather closer to tensile values but for com-
pressive values there were obtained significant differences between the two models, indicating 
that inhomogeneous model captures better the mechanical behavior for compression. Results 
obtained are in accordance with expected bone biomechanics behavior. The assignment of 
inhomogeneous material properties into the FE model become the structural analyzes more 
realistic and this research highlight that this assignment is fundamental for reliable subject-
specific models. The procedure implemented for reconstruction of fractured bones using CT 
images offers new insights to analyze the bone fractures since allows recovering the material 
state immediately before the failure. 
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1 INTRODUCTION 

The modeling of biological tissues has commonly involved the adoption of homogeneous 
isotropic materials, with constant Young’s modulus and Poisson's ratio. Such adoption has 
been very useful considering aspects such as the simplicity of computational implementation 
and the theoretical consolidation in the scientific community. However, in the case of bone, 
for instance, many studies highlight that this tissue presents heterogeneous physical properties 
and anisotropic behavior with age and tissue density dependence [1].  

On the other hand, the use of subject-specific FE models as a tool to access the state of 
stress and fracture risk in individual patients based on CT images is increasing among re-
searchers [2-4]. In this perspective, the accurate knowledge of the stress and strain characte-
ristics implies the use of reliable models that consider specific features to define the geometric 
and the material model. 

The method used to perform CT scans is accurate; the test is non-invasive, painless and in-
volves little radiation exposure for patients allowing acquiring images with high quality from 
any part of human body, even in very small structures such as, for example, brain detail. 

The CT numbers or the intensity of image pixels (16 bits) is represented by Hounsfield 
Units (HU). The HU numbers describe quantitatively a radiological density, which corres-
ponds to a linear transformation of measuring the linear attenuation coefficient. The radiolog-
ical density of distilled water at standart temperature and pressure is set to 0 HU (zero HU) 
and the radiological density of air at STP is set to -1000 HU. The HU numbers can be related 
to an apparent density using hydroxyapatite phantoms of known mineral density, and further 
performing a linear interpolation. There are several relationships between the HU values and 
Young modulus available at the literature, for instance in [5-6]. Thus it is possible perform a 
mapping into the inhomogeneus isotropic material properties and further assign the material 
properties into the FE model. In this work we have implemented a procedure to perform the 
mapping of the grayscale values accessed from CT images, conversion into bone ash densities 
and Young modulus and assignment of these local material properties into the FE model. 
Similar mapping of properties accessed from CT images have been performed by softwares 
like IA-FEmesh1 and Bonemat2 [7]. However this kind of mapping is commonly used when 
there is geometrical equivalence and equal reference coordinates between the images and the 
3D model reconstructed.  

In this work we perform a numerical reconstruction of a fractured femur preserving the 
grayscale values accessed from CT images. These grayscale values are correlated to bone ash 
densities and converted into local elastic modulus. This inhomogeneous isotropic material dis-
tribution is finally assigned to the FE model, which contribute to become the model more rea-
listic and reliable. Besides, this numerical implementation of reconstruction of fractured bones 
using CT images offers new insights to analyze the bone fractures since allows recovering the 
material state immediately before the failure. The steps for reconstruction of the femur in-
volved techniques of image processing such as segmentation by thresholding, contour defini-
tion and labeling of connected objects. The alignment of point clouds was implemented using 
an Iterative Closest Point (ICP) algorithm, commonly used for registration on CAD systems 
[8]. 

                                                
1 Available to download at https://www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh 
2 Available to download at http://www.bonemat.org/ 
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2 MATERIALS AND METHOD

A fractured proximal femur w
of the fractured femur was taken 
old woman with a medical history of osteoporosis, as shown in Fig. 1. 
performed by the Center for Diagnostic Imaging at Hospital Santa Catarina (SP, Brazil). The 
images were kindly provided by 
Medicine of the Federal University of São Paulo (UNIFESP).
243 CT slices of the fractured proximal femur (diaphyseal femoral head) spaced at 1.5 mm, 
which means likely 3/4 of the femur. The fracture was concerned about cross producing late
al displacement and angularity between the two resulting fragments.
mapping and assignment of inhomogeneous
model and structural analysis were fully implemented with in
MatLab3.  The creation of the STL file 
using the platform MeshLab4 and the 
open source Paraview 5.05. In the following, the procedure employed is detailed and the m
thods for creating a FE model with inhomogeneous isotropic material properties are summ
rized. 

 

Fig. 1. CT scan of the atypical bilateral hip fracture 

2.1 Subject-specific FE model   

The CT scans were performed using a scanner 
slice thickness and pixel size of 
set of pixels, each image (that contains pixels information) is considered as a plane and each 
pixel a point in this plane. Acquiring
3D volume is acquired. Each level corresponds 
strated on Fig. 2.  

After obtained the 3D coordinates others steps must be per
dataset to be analyzed.  Here it was employed a segmentation by t
to remove all the pixels of a volume that do not satisfy a condition. In this case it was chosen 
an intensity threshold and only those pixels above the threshold

                                                
3 Trademark of The MathWorks Inc., MA, USA
4 Available to download at http://meshlab.sourceforge.net/
5 Available to download at http://www.paraview.org/
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MATERIALS AND METHODS 

femur was automatic 3-D reconstructed from CT images
of the fractured femur was taken in vivo, for diagnostic reasons. The patient was a 60 years 
old woman with a medical history of osteoporosis, as shown in Fig. 1. The CT scan

the Center for Diagnostic Imaging at Hospital Santa Catarina (SP, Brazil). The 
images were kindly provided by professor Marcelo de Medeiros Pinheiro, Department of 
Medicine of the Federal University of São Paulo (UNIFESP). For this reconstruction we use

proximal femur (diaphyseal femoral head) spaced at 1.5 mm, 
femur. The fracture was concerned about cross producing late

al displacement and angularity between the two resulting fragments. The 3-D reconstruc
inhomogeneous isotropic material properties, generation of 

tural analysis were fully implemented with in-house programs written in 
The creation of the STL file used as an input data for mesh creation was developed 

and the post-processing visualization were performed
In the following, the procedure employed is detailed and the m

thods for creating a FE model with inhomogeneous isotropic material properties are summ

 
atypical bilateral hip fracture without trauma. The donor is a female diagnosed with oste

porosis. 

 

scans were performed using a scanner with parameters: 120 kVp, 30 mA, 1.5 mm 
0.32 mm. In order to convert the image dataset to a 3D

set of pixels, each image (that contains pixels information) is considered as a plane and each 
Acquiring planes at different depths so as the process is repeated, a 

Each level corresponds to the distance between each slice, 

After obtained the 3D coordinates others steps must be performed to isolate the part of 3D
dataset to be analyzed.  Here it was employed a segmentation by thresholding, which allows 

ll the pixels of a volume that do not satisfy a condition. In this case it was chosen 
an intensity threshold and only those pixels above the threshold were selected. The threshold 

MA, USA. 
http://meshlab.sourceforge.net/ 
http://www.paraview.org/ 

from CT images. The dataset 
The patient was a 60 years 

The CT scans were 
the Center for Diagnostic Imaging at Hospital Santa Catarina (SP, Brazil). The 

Pinheiro, Department of 
s reconstruction we use 

proximal femur (diaphyseal femoral head) spaced at 1.5 mm, 
femur. The fracture was concerned about cross producing later-

D reconstruction, 
generation of FE 

house programs written in 
was developed 

performed in the 
In the following, the procedure employed is detailed and the me-

thods for creating a FE model with inhomogeneous isotropic material properties are summa-

female diagnosed with osteo-

30 mA, 1.5 mm 
set to a 3D data-

set of pixels, each image (that contains pixels information) is considered as a plane and each 
planes at different depths so as the process is repeated, a 

to the distance between each slice, as illu-

formed to isolate the part of 3D 
, which allows 

ll the pixels of a volume that do not satisfy a condition. In this case it was chosen 
. The threshold 
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used in this work was 104 for a grayscale range of [0, 255]. Result of the segmentation can be 
viewed in Figs. 3 and 4. 

Considering that in this case we are dealing with a fractured femur, it is necessary identify 
each fragment of the fractured femur and perform coordinates transformations in such a way 
that align the fragments to reconstruct the original femur before fracture. Translation of point 
cloud was carried out by adding the vector position of each node i (i = 1, ..., number of nodes), 

the desired translation vector ��⃗ = (�, �, �), where a, b, and c are the displacements in x, y, and 
z, respectively. 

 �⃗��� = �⃗��� + ��⃗  (1) 

The rotation of the point cloud data about x, y, and z axes is performed by multiplying the 
position vector of each node by the rotation matrix, wherein: 
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Unfortunately, the rotation matrices and translations vectors necessary to this alignment are 

unknown. To overcome this difficulty we employ here a registration technique for alignment 
of point cloud data called Iterative Closest Point method (ICP) that is commonly used in CAD 
systems for registration of surfaces.  The ICP algorithm was introduced in 1991 by [9] and 
independently by [10] and it was further developed by various researchers.  

Fig. 2. Conversion of 2D CT images into a 3D volume. 

The overall goal is to apply a transformation to one of the clouds and bring it as close to 
the other as possible. The convention is to apply the transformation to the data points in order 
to bring these to the best alignment with the model points. In 3-D space, such a transformation 
has six degrees of freedom – three rotations and three translations – and the objective function 
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becomes a function of six variables, see [8], [11]. Expressing a rotation in terms of the rota-

tion matrix R and a translation in the vector ��⃗   the problem may be seen as a minimization 
problem of the squared distances from points in one cloud to their nearest neighbors in the 

other after appliance of the transformation. We are interested in to find R and ��⃗  that minimize 
the following objective function:  

  
2

1

R



N

i
ii qTpF


 (3) 

In this work it was used as a reference point cloud a femur with no fracture. Thus, the 
fragments represented by point clouds were aligned using a healthy femur, to find the rotation 

matrix R and the translation vector ��⃗ . The resulted 3D aligned point cloud was converted into 
a 3D surface using the open source software Meshlab. The 3D surface was transformed in a 
solid finite element model discretized into 3846 nodes and 16689 linear tetrahedral elements, 
as illustrated on Fig. 6.  

2.2 Mapping of pixel values in elements   

After performing the above procedures to reconstruct the fractured femur preserving the 
pixels information and generate the FE model, the next step is assign to each finite element of 
the mesh the average grayscale value of the pixels that fall inside of each element. Thus it is 
necessary to establish a criterion for checking if the pixel fall inside or outside of the tetrahe-
dral finite element, and further assign this value (or average of values) locally to each element.  

Fig. 3. Segmentation by thresholding (left) and  labeling of connected components (right). 

 
In other words, the goal here is to check whether a point defined by the pixels coordinates 

falls inside or outside of the convex hull defined by the vertices of each tetrahedral finite ele-
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ment and assigns the average of the grayscale values of the pixels inside the convex hull to 
each respective element. There are several possibilities to perform this. One very interesting 
way adopted here was proposed by [19] and is summarized as follows. 

One point of a 3D point cloud data belongs to a specified tetrahedral if the signed volume 
of all the tetrahedral formed by this point and each triangular face of the specified element is 
positive. When at least one of the volumes of the tetrahedral formed by this point and each 
triangular face of the element is negative the point fall outside of the element. This procedure 
is repeated for all the elements of the model in order to verify if the point belongs or not to a 
specified element.  

In this work we adopt medical images of 8 bits, representing a grayscale range of [0, 255]. 
Fig. 5 shows a histogram of the distribution of the mapped pixels on the reconstructed femur 
by grayscale values provided by the 3D images. The bimodal appearance (two bells) of the 
graph indicates the two regions of bones: cortical and trabecular. Histograms such this one 
also allows to analyze the effects of CT image resolution in the material properties distribu-
tion. The result of the procedure of mapping and assignment of grayscale values into the FE 
mesh is illustrated at Fig. 6. 

 

Fig. 4. Point cloud data of femora fragments (left) and aligned femora (right) using the ICP algorithm. 

In order to determine the point wise Young modulus it was adopted the following proce-
dure. For cortical bone, we assign to the whitest pixel of image (full bone with no voids) the 
value 1.4 g/cm3 for bone ash density6. For water region on image (darkest pixel surrounding 
the bone) we attribute “zero” ash density. Other values of ash density were finding using a 
linear interpolation between the region with full bone with no voids (ρash =1.4 g/cm3) and the 
water region (“zero” ash density), which produced the following equation: 

 ����= ��(�, �, �) – ��
�.�

���
   [g/cm3] (4) 

where p(x,y,z) is the image grayscale value at the position (x,y,z), a and b are the grayscale 
values for water and full bone with no voids, respectively. In this study, the values adopted 
were a = 66 and b = 219, considering a grayscale range of [0,255]. These values should be 

                                                
6 Ash weight divided by the real volume, which neglects the effect of fat content for trabecular bone. 
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chosen according to the available images. After correlate the grayscale values with ash densi-
ties, it is adopted a relationship proposed by [16] and validated by [17] and [18] to determine 
the corresponding Young modulus (Eqs. 5 and 6): 

  �����= 10200����
�.��  [MPa] (5) 

 ����� = 5307���� + 469  [MPa] (6) 

For distinguish the cortical and trabecular bone, we define ���� > 0.6�/��� for cortical 
bone and  ���� ≤ 0.6�/���  for trabecular bone, as proposed by [12]. Poisson’s ratio was set 
to 0.3 for all material bins, covering the range used in other studies, such as [12] and [15]. The 
elastic modulus range obtained with this procedure of mapping was approximately 1.06 – 
19.46 GPa. 

 

 

Fig. 5. Histograms of pixel intensities by relative and cumulative frequencies (above and behind, respectively). 

 

Fig. 6. Discretization of reconstructed femur in a tetrahedral finite elements mesh (left) and the assignment of the 
grayscale values for each finite element (right). 
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2.3 Boundary conditions of FE model   

Reliable boundary conditions are fundamental for a realistic analysis of a biomechanical 
model. Here the models proposed by [20] and [21], were modified to define the values of ad-
ductor force on the femur head and the abductor force on the greater trochanter.  For this 
analysis we assume an individual weighting 680 N. It is performed a balance of forces acting 
on the pelvis accordingly to [21], which establish the resultant adductor force upon femur 
head at an angle of 16o with z-axis and a resultant abductor force upon greater trochanter at an 
angle of 22o with z-axis. In this case, the adductor and abductor forces are 2168 N and 1632 N, 
respectively. These forces were proportionally distributed on the element faces of the bounda-
ries at femur head and greater trochanter as shown in Fig. 7. The value of each face force is 
proportional of the angle between the normal of the element face and the resultant force. The 
nodes on the basis of femur were set fixed. 

Fig. 7. Boundary conditions applied to the FE model (left) and undeformed/deformed configurations(right).  

3 RESULTS 

A fractured femur CT scanned was reconstructed in 3D solid and analyzed by a standard 
finite element framework developed by the authors. The ICP algorithm used to align the point 
clouds data seems to be very effective in this purpose. The inhomogeneous isotropic material 
properties accessed from CT images were assigned to the FE model. The range of elastic 
modulus obtained in the procedure of mapping was 1.06 – 19.46 GPa, which fits in the range 

6581



M. T.Bahia, E. G. F. Mercuri and M. B. Hecke 

 

proposed by recent studies. Fig. 7 shows the applied boundary conditions and the deformed 
configurations obtained after simulation. 

Some previous works has been adopted Von Mises equivalent stress as a local yield crite-
rion, as pointed by [22].  Von Mises stress is suitable for materials that present a ductile beha-
vior as metals. On the other hands, in the case of bone the tensile strength is smaller than the 
compressive strength, indicating that bone be classified as a brittle material, as discussed in 
[22] and [23]. Thus we adopted here the Drucker-Prager equivalent stress, which takes in ac-
count the hydrostatic stress contribution, following the work of [22]. Drucker-Prager yield 
criterion is described by the following equations: 

 �(�) = ��� + (�′�)
�/� (7) 

 �� = �� + �� + ��   

 �′� =
�

�
��′�

�
+ �′�

�
+ �′�

�
� + ���

� + ���
� + ���

�   (8) 

 �′�� = ��� − ��� and �� =
�

�
���  

where �(�) is a yield function, � is the stress tensor, ��,  �� e  �� are the normal stress, ���, 

���, and  ��� are shear stress, the prime (’) indicates deviatoric stress. J1 is the first stress in-
variant, J2 the second deviatoric stress invariant, and α is a parameter related to the propor-
tions of the volumetric and deviatoric strains or the dilative potential of material. Here α is set 
to 0.07, as proposed in [24]. Fig. 8 shows the Drucker-Prager equivalent stress evaluated for 
this structural analysis. 

  Inhomogeneous Homogeneous 
  Ecortical =10200����

�.�� [MPa] 
Etrabecular= 5307����+469 

Ecortical    = 18100 MPa 
Etrabecular = 15200 MPa 

Drucker-Prager eq. stress [MPa]  537.85 528.28 
Principal stress                 [MPa] Max (tensile) 417.71 407.95 

 Min (compressive) -806.32 -641.97 
Principal strains            [mm/mm] Max (tensile) 0.034099 0.022277 

 Min (compressive) -0.073072 -0.035104 

Table 1. Comparison between results obtained by inhomogeneous and homogeneous FE model 

In order to compare the effectiveness of the procedure of mapping inhomogeneous isotrop-
ic material properties, we perform the same structural analysis considering a material with 
homogeneous distribution of elastic modulus. It was adopted here two constant values for 
elastic modulus: 18.1 GPa for cortical bone and 15.2 GPa for trabecular bone, as proposed by 
[25].  The results are summarized at Table 1. The values for Drucker-Prager equivalent stress 
and tensile principal stress are similar. Significant differences are observed for compressive 
values of principal stress and strains, what suggests that inhomogeneous model capture better 
the mechanical behavior on compression. The contribution of hydrostatic stress in the yield 
criterion on Drucker-Prager equivalent stress also reveals some remarks. As can be seen in the 
equations 7 and 8, J1 becomes negative when hydrostatic stress is presented, what means that 
the yield criterion F(σ)  becomes smaller. So as discussed by [22], a larger external load is 
necessary to cause the yielding of an element.  
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Fig. 8. Drucker-Prager equivalent stress distribution for FE model with inhomogeneous elastic modulus. 

 
Fig. 9. Maximum (tensile) e minimum (compressive) principal strains (left and right, respectively) in FE model 

with inhomogeneous elastic modulus. 
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The maximum Drucker-Prager equivalent stress obtained in this simulation for inhomoge-
neous and homogeneous models were rather closer, 537.85 MPa and 528.28 MPa, respective-
ly. These values will be used in a future work to access whether the equivalent stress exceed 
the element yield stress, which allows to evaluate locally the failure sites as shown in [22]. 

The maximum (tensile) and minimum (compressive) principal strains are shown on Figs. 9 
and 10 for inhomogeneous and homogeneous elastic modulus. The results for tensile principal 
strains were similar but there were significant differences for compressive principal strains. 
The values for maximum and minimum principal strains are also are listed on Table 1. An 
important result can be observed in these figures. The regions which present maximum and 
minimum principal strains (tensile and compressive) are in a region very close to the real frac-
ture, indicating that this model can be used to predict the failure site in a perspective of sub-
ject-specific FE models. 

 

 
Fig. 10. Maximum (tensile) e minimum (compressive) principal strains (left and right, respectively) in FE model 

with homogeneous elastic modulus. 

4 DISCUSSION 

Perform a structural analysis in a reconstructed bone as show in this work presents some 
limitations. First of all, there is rarely specific experimental data for each patient under study 
to compare with the numerical simulation, which led to adopt values available in the literature. 
This option may seem rather strange considering that we are interested in a subject-specific 
model. Other important note is the impossibility to recover the real boundary conditions 
(muscle and ligaments forces, joint reactions) involved before fracture. So it is very difficult 
to achieve in the numerical simulation the same location of the real fracture without 
knowledge and strict control of the boundary conditions. Choose real or almost real boundary 
conditions constitute a major challenge in this type of numerical simulation. In order to over-
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come this challenge or at least minimize its effects it is convenient analyse different scenarios 
of loading to cover the entire range of loading cases.  

The bone modulus-density relationships available in the literature have been demonstrated 
good agreement with experimental data. Unfortunately, there are few works evaluating the 
effectiveness of these relationships when we are dealing with specific cases presenting bone 
diseases, such as osteoporosis and osteopenia cases. 

5 CONCLUSIONS  

 The access of material properties from CT images offers many possibilities to the biome-
chanics structural analysis. Reliable subject-specific FE models require information 
about the inhomogeneities materials properties of each particular case in study. The use 
of the medical image data, however, requires caution considering that obtaining reliable 
values of bone ash density (used in the modulus-density relationships) must consider the 
type of CT equipment, calibration, the type of tissue under study, and ideally should have 
an experimental support for ensure validation  

 The procedure presented here for reconstruction of a fractured bone preserving the CT 
image information offers a new perspective to analyze the causes of bone fractures since 
allows recover the material state immediately after the failure. Find real boundary condi-
tions remains a challenge, but the results obtained in this research offers new perspec-
tives to investigate.  
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Abstract. This paper presents a numerical approach to solve the inverse problem of 

estimating fuzzy viscoelastic constitutive parameters. The direct fuzzy viscoelastic 

problem is solved by utilizing Scale Boundary Finite Element Method(SBFEM), a 

temporally adaptive algorithms and the General Transformation Method (GTM). On 

the basis of the solution of direct problem, the fuzzy estimation can be realized using 

an inverse fuzzy arithmetic and an evolutionary algorithm of Differential 

Evolution(DE). Two numerical examples are provide to verify the proposed approach. 
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1 INTRODUCTION 

   The experiment based estimation of viscoelastic constitutive parameters is 

fundamental for the viscoelastic analysis, and is an important issue related with many 

engineering aspects. In the estimation procedure, there are various uncertainties 

caused by measurements, observation, and modeling etc.. Such uncertainties may 

result in fault results, and necessitate to take into account.       

   As a matter of fact, there is a big pool containing a number of literatures related 

with analytical and numerical analysis for the estimation of viscoelastic constitutive 

parameters, However, to the best of authors’ knowledge, nearly all these literatures 

are based on the deterministic assumption.   

   There are mainly three mathematical means to describe the uncertainty, including 

probabilistic method, interval analysis and fuzzy theory that can account epistemic 

uncertainties caused by a lack of knowledge or imperfections in the modeling 

procedure[1-3],and is becoming increasingly popular for the analysis of numerical 

models that incorporate uncertainty in their description [4-5].  

    In the context of fuzzy analysis, many well documented experimental, numerical 

and analytical results exist in literature concerned with various aspects, but there 

seems no any report directly related with the inverse fuzzy viscoelastic problems of 

parameters estimation.  

    This paper aims at developing a numerical approach to solve inverse problems of 

estimating unknown fuzzy constitutive parameters. 

2 VISCOELASTIC CONSTITUTIVE RELATIONSHIP 

 In this paper, the viscoelastic constitutive relationships is specified by a 

three-parameter solid viscoelasticity model (see Figure 1) in a differential form [6] 
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            (4) 

where v , 1E , 2E  and 1  are constitutive parameters. 
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Figure 1: Three-parameter solid viscoelasticity model.  

3 DESCRIPTION OF SOLVING DIRECT VISOELASTIC PROBLEMS 

WITH FUZZY UNCERTAINTY 

    In the direct visoelastic problem, 1E , 2E , 1 , and  , are defined by fuzzy numbers

ip ( 1,2,3,4i  ) , the corresponding unknown fuzzy output of displacement , ( )u t , is 

defined by q . 

The deterministic relationship between , 1E , 2E , 1 ,  and ( , )su t x can be obtained in 

the form [7] 

                  1 2 1( , )= ( , ..)su t x u t x E E  ， ， ， ，   , 1,2,3s               (5) 

where t stands for time, and x  refers to a vector of coordinates. 

The indeterministic relationship between 1E , 2E , 1 ,  and ( , )su t x  is defined by 

  
1 2 3( , , . . )r rq q p p p                             (6) 

where  ( , ( )) | ( ) [0,1]
i ii i p i p ip x x x   , ix is a value of ip  , 1,2,...,4i            

, 1,2,...,rq r N  is a set of N fuzzy-valued outputs at r-th degree of freedom   

(DOF) in SBFEM. 

If ( ) 1
ip ix  , ix is a member of the fuzzy set ip . 

If ( ) 0
ip ix  , ix is not a member of the fuzzy set ip . 

If 0 ( ) 1
ip ix  , the membership of ix is uncertain. 
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Using Eq.(5) and the General transformation method[8]， rq  can be obtained. 

The major steps to determine the membership function of rq  using GTM  

include 

(1) Subdividing 
ip  into a number of mm  segments, equally spaced by  

1
ip

mm
   , 1,2,...,4i                          (7) 

where mm  is the number of discrete segments. 

(2) Decompose ip  into a number of intervals  

( ) ( ) ( ) ( ) ( )[ ,b ], b , 1,2,...,4, 0,1,...,j j j j j

i i i i iX a a i j mm     by the  -cut at the j-th

 level ,and set 
( )

,

j

l ic within 
( )j

iX , 2,3,..., , 0,1,..., 2l mm j j mm     by 

( )

( 1) ( 1)

1, ,( )

,

( )

1, 0,1,...,

(c c )
2,3,..., , 0,1,..., 2

2

1, 0,1,...,

j

i

j j

l i l ij

l i

j

i

a l j mm

c l mm j j mm

b l mm j j mm

 



  



    


   


    (8) 

 
( ) ( ),j j

i ia b denote the lower and upper bounds of the interval at the j-th  

membership level for ip . 

 The decomposition procedure is shown in Figure 2. 

 

Figure 2:Decomposition of the i-th uncertain parameter  ip
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(3) Construct a matrix ( )jX at the j -th level 
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1,2,...,4i  , 0,1,2,...,j mm , 1,2,3,..., 1l mm j              (12) 

(4) Determine
( )ˆk j

rq at j-th level  

     ( )

1 2 4
ˆ ( , ,..., , )

j j jk j k k k

r rq q X X X t , 0,1,2,...,j mm ,
41,2,..., ( 1 )k mm j        (13) 

where 
( )ˆk j

rq  denotes the k -th element of 
( )ˆ j

rq and 
 jk

iX , 1,2,...,4i   denotes the k

-th column of the matrix ( )jX . 

(5) Evaluate rq  in a decomposed form 

( ) ( ) ( ) ( ) ( )[ ,b ], b , 0,1,...,j j j j j

rq a a j mm                     (14) 

   where 

 

( ) ( 1) ( )

( ) ( 1) ( )

ˆmin( , )

ˆmax(b , )

j j k j

r
k

j j k j

r
k

a a q

b q








, 0,1,..., 1j mm                    (15) 

  
( ) ( )( ) ( )ˆ ˆm i n ( ) m a x ( ) b
m m m mm m k k m m

r r
k k

a q q                    (16) 

( )j

rq is a decomposition interval for rq  at the j-th level j . 

(6) Evaluate rq  in an ensemble form 

   By recomposing 
( )j

rq  according to their levels of membership j ,an         

 approximation for the ensemble rq  can be achieved. 
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4 DESCRIPTION OF SOLVING INVERSE VISCOELASTIC PROBLEMS 

WITH FUZZY UNCERTAINTY 

   The target of solving inverse fuzzy viscoelastic problems is to seek membership 

functions of unknown constitutive parameter 1 2 1, ,E E  ， , it can be achieved by an 

inverse fuzzy arithmetic proposed by Hanss [9] with Eq. (5) via some partially known 

membership functions of ( )u t  at some discrete time points 0 1 2, , ,..., nnt t t t  .   

The major procedure is described as following. 

(1) Evaluation of peak values 

Under the condition in which q is strictly monotonic with respect to each of ip  , 1x , 

2x ,..., 4x  , the peak values of , 1,2,...,ip i n  can be evaluate via the inverse 

solutions of following equations. 

m 1 2 4( )= ( , ,.., )mu t u t x x x，  ( 0 1 2, , ,..., nnm t t t t )            (17)   

In this paper，the inverse solutions are given by DE [10].  

 (2) Computation of gain factors 

Single-sided gain factors 
( )j

i  ,
( )j

i   ,which describes the effect of the i-th uncertainty 

parameter ip on the uncertainty of rq  when only positive deviations and negative 

deviations from the peak value =1,2,...,4i are considered, are given by  

4 1
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                        (19) 

where 
( )j

ia and 
( )j

ib  are guessed lower and upper bounds of ip  at membership j ,  

2 ( )ˆk j

rq and 1 ( )ˆk j

rq  refer to Eq. (13). 

(3) Assembly of 1 2 4, ,...,p p p  

( )j

ia  and 
( )j

ib , which are the lower and upper bounds of the intervals of ip  at 

membership j  can be obtained by 
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      (22) 

( )j

ic  and 
( )j

id  are the known lower and upper bounds of the intervals of rq  at 

membership j .NN is the number of DOF with known output information. 

The membership functions of the unknown ip  can be described by 
( )j

ia  ,
( )j

ib and 

kx , , 1,2,...,4i k  . 

5 NUMERICAL EXAMPLES 

For the simplicity, all variables are assumed dimensionless. The DE parameters are 

set as following: maximum number of iterations is 1000, population size is 50, lower 

bound of scaling factor is 0.2, upper bound of scaling factor is 0.8, crossover 

probability is 0.2. 

Example 1 Considers the three-parameter solid viscoelasticity model(see Figure 1) 

under a constant loading 0 . In this case, the model material is rock, and the 

constitutive relationship is defined by 

1

10 0

2 1

( ) (1 )

E
t

t e
E E

 




                         (23) 

where 0 1   2 9800E  . 1E , 1  refers to 1p , 2p , and is defined by 
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                            (25) 

The range of time is [0,10] and the time step is set to 0.1. 

Figure 3 shows the membership function of 1p , 2p  where mm  is set to 20. 

Figure 4 shows the fuzzy response of  with respect to prescribed 1E , 1 . 

The membership functions of   at t=0,0.1,0.2,0.3..1.4 are employed as known 

information.  

Figure 5 exhibits a comparison of 1p and 2p  given by the proposed approach with 

prescribed ones, the maximum relative error between prescribed and estimated 1p  is 

2.60%,and 1.04% between prescribed and estimated 2p .  

Figure 6 shows the iteration history of DE at 0-th membership level used in the step of 

inversion. 

The interval boundary of prescribed and estimated 1p , 2p  at each membership is 

shown in Table 1 and Table 2 respectively where LB means left boundary and RB 

means right boundary. 
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              (a)                                 (b) 

Figure 3:Symmetrical Gaussian fuzzy numbers 1p and 2p .(a) 1p .(b) 2p  

 

Figure 4: The fuzzy response of   
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                    (a)                                     (b) 

Figure 5 A comparison of prescribed and estimated 1p , 2p .(a).comparison of prescribed and 

estimated 1p .(b). comparison of prescribed and estimated 2p . 

 

Figure 6: Iteration history of DE at 0-th membership level. 
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Table 1:The interval boundary of prescribed 1p , 2p  at each membership. 

Membership ( )
ip ix LB of 1p RB of 1p LB of 2p RB of 2p

1.000000 1960.000000 1960.000000 52083.000000 52083.000000 

0.950000 1928.611441 1991.388558 51248.913118 52917.086881 

0.900000 1915.013726 2004.986273 50887.581595 53278.418404 

0.850000 1904.128150 2015.871849 50598.319616 53567.680383 

0.800000 1894.531371 2025.468628 50343.304803 53822.695196 

0.750000 1885.664293 2034.335706 50107.680307 54058.319692 

0.700000 1877.229157 2042.770842 49883.533787 54282.466212 

0.650000 1869.035840 2050.964159 49665.813111 54500.186888 

0.600000 1860.944770 2059.055229 49450.809417 54715.190582 

0.550000 1852.840058 2067.159941 49235.443242 54930.556757 

0.500000 1844.613817 2075.386182 49016.847689 55149.152310 

0.450000 1836.154387 2083.845612 48792.055583 55373.944416 

0.400000 1827.334584 2092.665415 48557.687338 55608.312661 

0.350000 1817.996537 2102.003462 48309.547786 55856.452213 

0.300000 1807.927945 2112.072054 48041.995514 56124.004485 

0.250000 1796.819296 2123.180703 47746.805818 56419.194181 

0.200000 1784.175987 2135.824012 47410.835688 56755.164311 

0.150000 1769.107672 2150.892327 47010.425974 57155.574025 

0.100000 1749.695329 2170.304670 46494.582572 57671.417427 

0.050000 1720.120810 2199.879189 45708.700090 58457.299909 

0.000000 1666.000000 2254.000000 44270.550000 59895.450000 
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Table 2:The interval boundary of estimated 1p , 2p  at each membership. 

Membership ( )
ip ix  LB of 1p  RB of 1p  LB of 2p  RB of 2p  

1.000000 1942.091888 1942.091888 52092.133589 52092.133589 

0.950000 1941.704284 1989.675237 51241.514079 52924.630769 

0.900000 1913.567391 2008.507551 50895.673356 53284.662664 

0.850000 1920.806585 2009.527200 50600.240660 53582.141626 

0.800000 1905.677396 2011.281705 50356.896392 53849.245699 

0.750000 1872.697636 2022.596843 50135.697758 54084.679594 

0.700000 1877.325231 2057.531698 49919.216384 54302.629658 

0.650000 1855.714355 2074.421790 49709.882968 54518.237541 

0.600000 1860.045326 2022.486221 49492.167331 54777.565568 

0.550000 1833.528683 2060.997639 49299.879755 54974.083302 

0.500000 1872.131222 2053.463510 49067.589422 55208.184748 

0.450000 1829.143780 2070.269237 48866.174422 55443.235282 

0.400000 1814.798895 2049.936918 48646.071934 55699.262524 

0.350000 1817.706941 2080.728220 48403.983274 55946.477782 

0.300000 1779.252500 2083.824668 48167.880228 56224.833575 

0.250000 1812.915434 2131.030043 47867.654497 56507.772061 

0.200000 1737.820053 2124.651896 47582.681851 56879.581643 

0.150000 1767.853034 2137.985729 47188.502901 57297.399235 

0.100000 1735.500517 2131.909586 46718.589420 57848.333607 

0.050000 1708.101554 2149.767512 46002.731009 58698.303257 

0.000000 1644.807367 2216.345710 44730.752739 60209.475501 

 

 

Example 2 Considers an estimation of 1E  and 1  in Figure 1 for a square 

viscoelastic plate subjected to a uniform tension 1p  as shown in Figure 7 where 

1a  , 2 9800E  , 0.3  .Figure 8 describes a node distribution of SBFEM with an 

adjacent node distance 0.1ds  . 

The membership functions of 1E  and 1 , refer to 1p and 2p  defined by 

Eqs.(24-25), are prescribed in Figure 9 where mm  is set to 10. 

The range of time is [0,10] and the time step is set to 0.1. 

The fuzzy response of displacements are given using Eq. (5), and the membership 

functions of displacement of nodes 12,13,14,..20 along x direction at t=1,2,3..10 are 
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employed as known information.  

Figure 10 shows the fuzzy response of xu  at node 16 with respect to prescribed 1E ,

1  where xu is the displacement along x direction. 

Figure 11 exhibits a comparison of 1p and 2p  given by the proposed approach with 

prescribed ones, the maximum relative error between prescribed and estimated 1p  is 

0.74%,and 0.59% between prescribed and estimated 2p .  

Figure 12 shows the iteration history of DE at 0-th membership level used in the step 

of inversion. 

The interval boundary of prescribed and estimated 1p , 2p  at each membership is 

shown in Table 3 and Table 4 respectively.  
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Figure 7: A square viscoelastic plate subjected to a uniform tension 

 

Figure 8: Node distribution of SBFEM  
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      (a)                                     (b) 

Figure 9: Symmetrical Gaussian fuzzy numbers 1p and 2p .(a) 1p .(b) 2p  

 

Figure 10: The fuzzy response of xu  at node 16. 

 

                     (a)                                     (b) 

Figure 11: A comparison of prescribed and estimated 1p , 2p .(a).comparison of prescribed and 

estimated 1p .(b). comparison of prescribed and estimated 2p . 
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Figure 12: Iteration history of DE at 0-th membership level. 

 

Table 3:The interval boundary of prescribed 1p , 2p  at each membership. 

Membership ( )
ip ix  LB of 1p  RB of 1p  LB of 2p  RB of 2p  

1.000000 1960.000000 1960.000000 52083.000000 52083.000000 

0.900000 1915.013726 2004.986273 50887.581595 53278.418404 

0.800000 1894.531371 2025.468628 50343.304803 53822.695196 

0.700000 1877.229157 2042.770842 49883.533787 54282.466212 

0.600000 1860.944770 2059.055229 49450.809417 54715.190582 

0.500000 1844.613817 2075.386182 49016.847689 55149.152310 

0.400000 1827.334584 2092.665415 48557.687338 55608.312661 

0.300000 1807.927945 2112.072054 48041.995514 56124.004485 

0.200000 1784.175987 2135.824012 47410.835688 56755.164311 

0.100000 1749.695329 2170.304670 46494.582572 57671.417427 

Table 4:The interval boundary of estimated 1p , 2p  at each membership. 

Membership ( )
ip ix  LB of 1p  RB of 1p  LB of 2p  RB of 2p  

1.000000 1960.054091 1960.054091 52084.882501 52084.882501 

0.900000 1915.336738 2005.351962 50885.112497 53272.798515 

0.800000 1895.154611 2026.093082 50332.132062 53809.456212 

0.700000 1878.243287 2043.728483 49865.878574 54261.986362 

0.600000 1862.373259 2060.422459 49426.076379 54684.788371 

0.500000 1846.496256 2077.209759 48983.346190 55104.098930 

0.400000 1829.802602 2095.060415 48514.290231 55546.667206 

0.300000 1811.175145 2115.208505 47987.524316 56041.476602 

0.200000 1788.518746 2139.975804 47339.448358 56641.253246 

0.100000 1755.898031 2176.257461 46401.577000 57501.404072 
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6 CONCLUSIONS 

The major merits of this paper include 

1. The fuzzy uncertainty is taken into account for the inverse viscoelastic problem. 

Although there are a number of reports concerned with fuzzy uncertainty analysis in 

various aspects, it seems no any directly related with the inverse viscoelastic problem. 

2. By integrating SBFEM, GTM, and DE, a numerical approach is presented to solve 

inverse problems of estimating fuzzy viscoelastic parametes.  

3. Numerical verification is provided via comparisons of membership functions given 

by the proposed approach with prescribed ones. 
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Abstract. Using cardiopulmonary circulatory assist devices has been increased in the recent 
years as more models are available in the market. These devices can be employed in the sit-
uation during which both cardiac and respiratory support to a patient’s heart and lungs have 
to be provided, either during or after surgeries, for short time or even in the case of severe 
disease, for a period of weeks. Hence, it is critical to know the details of the phenomena hap-
pen inside a blood pump from both mechanical performances (such as pressure head and me-
chanical efficiency) and biomedical factors (such as hemolysis and thrombosis) and to design 
an optimum pump from both aspects. This paper investigates development of centrifugal 
blood pump impeller, specifically with focusing on the performances during ECMO condition. 
The baseline model is designed by investigating existing commercial pumps and considering 
results of recirculation, pressure heads and mechanical efficiencies together with their bio-
mechanical performance via Modified Indices of Hemolysis (MIH). Afterword, two more 
modified models are designed and simulated. Overall, a comprehensive comparison between 
the results of all three case demonstrate that when impeller radius and prime volume is 
smaller, recirculation is reduced at impeller and MIH value becomes lower. Additionally,  
high scalar shear stress is observed near the volute and impeller walls and inside the top cav-
ity gap.  
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1 INTRODUCTION 

As number of patients with cardiovascular disorders has increased, using cardiopulmonary 
circulatory assist devices has been increased as well. These devices can be used when heart 
and lungs cannot perform their normal duties, such as surgeries and diseases. Cardiopulmo-
nary circulatory assist devices are divided into two types. First, ventricular assist device 
(VAD) which are devices for patients of heart failure. And second, extra corporeal membrane 
oxygenation (ECMO) is devices for patients of cardiovascular and respiratory diseases. VAD 
is composed of blood pump and driving parts. Pressure drop is comparatively low in blood 
pump in VAD. On the other hand, an ECMO system is composed of a blood pump, a driving 
devices and oxygenator. ECMO has higher pressure drop because of its multi-component de-
sign [1]. In previous study investigated existing pump to find out effect of impeller diameter 
and rotational speed on performance of pump running in turbine model [2]. Koki et al. [3] in-
vestigated hemolysis inside centrifugal blood pump through flow visualization. Yuki et al. [4] 
and Yukihiko et al. [5] established the design process of centrifugal blood pump. In order to 
figure out hemolytic phenomenon inside of centrifugal blood pump, mathematical models are 
adopted with CFD simulation. The mathematical models are divided into two types [6,7]. 
First, Eulerian approaches consider all areas contributing to the hemolysis [6]. Second, La-
grangian approaches miss out several high scalar shear stress areas. So Lagrangian approaches 
can’t accurately measure [7]. In this research a baseline model via designed by investigating 
the existing commercial blood pumps [8], by considering the results of CFD simulations, per-
formance curves and bio-mechanical factor analyses such as hemolysis. Furthermore, the 
baseline model is modified according to its hemolysis performance in ECMO condition, and 
two more geometries are designed and simulated. The results are presented and compared in 
terms of flow characteristic, pump performance curve and the hemolysis index of pumps.   

2 PHYSICS AND GOVERNING EQUATIONS 

In present paper, incompressible steady flow is assumed. Therefore, the governing equa-
tions can be present as: 

 0 u  (1) 

 
P

t



 

        

u
u u u  (2) 

 
where u is the velocity vector, P is the pressure and   is kinetic viscosity. 

The blood pumps rotational speed is 1200~3600 rpm which is associated with Re≈ 
51.2 10  (based on the impeller diameter). Hence, current study has to be conducted using 

turbulent assumptions. Therefore, the standard k-  turbulence model has been adopted. The 
standard k-  turbulence model can be present as: 

 
     t

t ij ij
k

k
div k div grad k E E

t

   


  
       

U  (3) 

 
     

2

1 22t
t ij ijdiv div grad C E E C

t k k 


      


  
       

U  (4) 

Where 0.09C  , 1.00k  , 1.30  , 1 1.44C    and 2 1.92C    is constant. 
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The rotational motion of the impeller has been simulated by sliding grid method. In order 
to consider the non-Newtonian properties of blood, the Carreau model has been applied for 
blood viscosity simulation [9]. The adopted Carreau model reads as: 

 
2 ( 1) 2

0( )(1 ( ) ) n     
       (5)                       

Where  =3.313 s, n=0.3568, 0 =0.056 Pa-s and  =0.00345 Pa-s are constants used  for 

the non -Newtonian viscosity of blood.  

3 MIH CALCULATION 

Hemolysis is related to exposure of red blood cells to high shear stresses, which destroys of 
red blood cells [10,11]. In order to evaluate hemolysis index, ASTM F1841-97 standard [12]  
suggests three methods for blood damage evaluations caused by high shear stresses of a medi-
cal device: normalized index of hemolysis (NIH), normalized milligram index of hemolysis 
(mgNIH), modified index of hemolysis (MIH). In current study, the MIH is adopted. The nu-
merical calculations are based on work of Wurzinger et al. [13] and Giersiepen et al. [14] who 
propose a power law-based model for a damage index as: 

 D C t   (6) 

where 73.62 10 , 2.416,  0.785C       are constants defined by analysis of the experi-
mental data,   is shear stress and t is the time of exposure.  

Moreover, Bludszuweit [15] suggests a shear stress parameter using the scalar shear stress 
derived from six components of the stress tensor. The scalar shear  stress can be presented as: 

        
1

222 2 2 2 2 21
6

2vm xx yy yy zz zz xx xy yz zx                       
 (7) 

In order to evaluate MIH, Garon and Farinas [7] suggest numerical model, which calcu-
lates blood damage through volume integration of a damage factor. The linear damage func-
tion can be present as:  

  1/0.7851 0.785 7 2.416 0.7853.62 10lD D t    (8) 

    0.785
, lD t D   (9) 

and finally the MIH can be present as:  

   6, 10MIH D t   (10) 

According to comparison presented by Chang et al. [16], the MIH values calculated based 
on this method in agreement with experiment. 

4 GEOMETRY OF PUMPS 

The geometry pumps is determined based on work done by Chang et al [16] and their in-
vestigation on the existing commercial blood pumps. Later, two more modified models are 
also designed and simulated. The 3-D geometries are shown in Figure 1. All pumps have 
blade-type impeller with a shroud. To design the blade, 2  is chosen as certain value and 1  

is calculated, according to velocity triangle as shown in Figure 2.  
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(a) Prototype 1 (baseline) (b) Prototype 2 (c) Prototype 3 

 

Figure 1: Isometric view of the degined models. 

 
 

 

Figure 2: Convention for blade profile and velocity triangle. 

  
1 11 atan /mc w   (11) 

where 
1

/m impeller inlet impeller inletc Q A . Later, the local  angle along to blade radius is calculated 

based number of blades and the impeller passage height at inlet and outlet. 
The outlet pipe is connected to the casing by a volute designed based on Constant Momen-

tum Volute (CMV) method [17]. The volume of the blood pumps, the radius of impeller and 
height of impeller inlet, outlet are listed in Table 1. The baseline model pump has the largest 
volume and longest radius of impeller. The third Prototype pump has the smallest volume and 
shortest impeller radius. 

5 RESULTS AND DISCUSSIONS  

The unsteady simulations are performed using STARCCM+ (v.9.06) at ECMO and VAD 
conditions. However, since the ECMO condition is more critical than the VAD, in the present 
research the flow properties of ECMO condition are presented. Convergence of each simula-
tion is checked by pressure and velocity values at certain point in flow flied and residuals of 
mass and momentum conservation. 
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(a) Prototype 1 (baseline) (b) Prototype 2 (c) Prototype 3 

Figure 3: Mesh arrangement of the designed models 

 

 Volume [mL] 
Radius of 

Impeller [mm] 1  [degree] 2  [degree] 

Prototype 1 95 37 33 30 
Prototype 2 75 27 16 40 
Prototype 3 66 25 14 43 

 

Table 1: Dimensions of the designed models. 

In order to investigate the flow pattern inside the pumps, Figure 4 shows the changes in the 
pressure head ( P ) with respect to the flow rate (Q ). The performance curve is conducted by 
steady simulation to figure out the trends. In general, the pressure differences decrease with 
increasing flow rate. All cases have same trend, the largest difference is approximately 5000 
[Pa] among the various flow rate. In centrifugal pump, difference of area between impeller 
inlet and outlet is a significant design parameter. Generally, head is controlled by difference 
of impeller inlet and outlet areas. The greater the difference between the areas of the impeller 
inlet and outlet the lower the pressure difference at the same rotational speed. For the same 
reason, Prototype 3 has the lowest pressure difference. So in present study Prototype 3 has the 
fastest rotational speed at ECMO condition to reach pressure required for ECMO condition, 
as shown Table 2. 
Figure 5 shows velocity magnitude and streamlines for each Prototype at ECMO condition. 
The result of top section presents occurrence of recirculation at impeller exit area at right side 
of impeller and inside volute. This asymmetric recirculation is caused by non-uniform pres-
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sure distribution in the volute. The side views show that effect of wash-out holes at the bot-
tom and the wash-out cavity at top and bridge of top cavity. The washout hole diameter is 1 
mm and top cavity bridge gap clearance is 0.2 mm. The top cavity flow has very fast velocity 
because of the narrow gap. This flow causes a noticeable swirl at impeller inlet area. 

Figure 6 demonstrates pressure distribution at ECMO condition. The pressure reference 
point is located at pump inlet. The top view section presents non-uniform pressure distribution 
in the volute, and the area near the outlet pipe has the highest pressure. Especially, Prototype 
3 has small pressure drop along the volute and its pressure distribution is more uniform. The 
side views show that effect of top cavity flow. Since the flow through top cavity has very fast 
velocity. The area near the impeller inlet has the lowest pressure. 
Figure 7 shows the scalar shear stress distribution at ECMO condition, which is an important 
factor in analysis of hemolysis by Equations (8-10). The high scalar shear stresses area are 
located inside volute and outside of impeller walls. The side view plot shows the effect of top 
cavity flow, which causes the swirl flow and high scalar shear stress at the top cavity wall. 
The highest scalar shear stress is located in this narrow gap. 
 

 
 

Figure 4: Pump characteristic curve  

 

 
Pressure difference

[kPa] 
Flow rate 
[L/min] 

Rotational speed 
[rpm] 

 ECMO VAD ECMO VAD ECMO VAD 

Prototype 1  
(baseline) 

53 13 5 3 2368 1220 

Prototype 2 53 13 5 3 3120 1670 
Prototype 3 53 13 5 3 3619 1850 

 

Table 2: ECMO and VAD operating condition 
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 (a) Prototype 1 (baseline)   (b) Prototype 2   (c) Prototype 3 

Figure 5: Velocity magnitude and streamlines for designed pumps 

 

 
 

 

 

      
 (a) Prototype 1 (baseline)   (b) Prototype 2   (c) Prototype 3 

Figure 6: Pressure distribution for designed pumps 
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 (a) Prototype 1 (baseline)   (b) Prototype 2   (c) Prototype 3 

Figure 7: Scalar shear stress distribution for designed pumps 

 
 

 

Figure 8: MIH values for designed pumps 

Finally, Figure 8 displays the MIH value for three Prototypes at ECMO and VAD condi-
tions. As it is seen, the VAD condition has smaller MIH value, because the rotational speed of 
the VAD condition is slower than the ECMO condition. In addition, a comparison between 
three models reveals that Prototype 3 has the fastest rotational speed while it has the lowest 
MIH values under ECMO and VAD conditions. Based on the result, the size of impeller and 
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priming volume are found to be more important variables than impeller rotational speed to 
occur hemolysis. 

6 CONCLUDING REMARKS 

In the present study, three different centrifugal blood pumps are designed and investigated 
through numerical simulation, using standard k- turbulence model and sliding grid technique. 
In order to draw performance curve and figure out mechanical performance trend steady 
simulations are conducted with various flow rate (1-9 [L/min]) and rotational speed (1000-
5000 [rpm]). As a result, all models have same trend. The pressure difference is reduced with 
increasing flow rate. Hence Prototype 3 has the lowest pressure difference because Prototype 
3 has the largest difference between impeller inlet and outlet area. The results of flow stream-
lines show that all prototype pumps have asymmetric recirculation at the impeller exit area. 
The gap flow through top cavity has fast velocity. So it causes the swirl flow at impeller inlet 
area. Corresponding to the velocity magnitude and streamlines result, pressure is non-uniform 
in the volute. Because of gap flow through top cavity, the area near the impeller inlet has the 
lowest pressure. The results of scalar shear stress distribution, which is an important factor in 
analysis of hemolysis, show that high scalar shear stresses are located in volute wall, top cavi-
ty wall and impeller outside wall. At narrow gap of top cavity the highest scalar shear stress is 
observed. From the bio-mechanical aspect, in order to calculate MIH, an Eulerian approach is 
used. As result reveal, Prototype 3 has the smallest MIH value despite higher rotational speed 
than other models under ECMO and VAD conditions. According to results the size of impel-
ler and total pump volume are important variables in generating the hemolysis. 
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Abstract. The research in the field of cardiovascular biomechanics is focused primarily on 
the heart and blood vessels, but the surrounding tissues, on the other hand, are often 
overlooked in the literature. This study shows that the human perivascular adipose tissue can 
significantly affect mechanical response of the human abdominal aorta. Analytical model of 
incompressible bilayer thick-walled closed cylindrical tube has been created and 
subsequently used to simulate the inflation-extension response of the aorta surrounded with 
adipose tissue. The inner layer, abdominal aorta, was assumed to exhibit residual stresses. 
The material of this layer was considered as anisotropic and was described by hyperelastic 
nonlinear constitutive model. The outer layer, fat tissue, was considered to be a hyperelastic 
isotropic material which does not exhibit residual stress. The outer radius of the aorta and 
inner radius of the external fatty tube were considered to be equal during the pressurization 
and axial stretch. The inflation-extension response of bilayer tube was compared with one-
layer representing only the abdominal aorta. The simulations showed that the abdominal 
aorta is more compliant in the circumferential and axial direction in comparison with the fat 
tissue. The Cauchy stress across the wall thickness of bilayer model and the one-layer tube 
was determined and compared. The plot of the Cauchy stress versus deformed radius proved 
that the radial stress satisfies the boundary condition �������� = −
, �������� = 0 and�������� = ��������. An abrupt change in the axial stress by approx. 80 kPa occurs on the
contact between the aorta and perivascular tissue. The results of this study suggest that the 
surrounding tissue should not be neglected in the modeling of blood vessels. 
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1 INTRODUCTION 

In the last few decades, there has been a significant growth of interest in the mechanical 
properties and constitutive modeling of biological soft tissue (predominantly vessels), but 
research on the perivascular tissue has been neglected. The adipose tissue surrounds all blood 
vessels and organs and influences their mechanical state. The perivascular tissue should be 
taken into account in solving of various types of boundary value problems describing 
biomechanics of abdominal aorta such as computational simulations of an aneurysm or in vivo 
constitutive modeling. 

In the case of vessels, most of the works focus on modeling only one-layer tubes, but 
Holzapfel et al. (2000) modeled healthy carotid artery of a rabbit as bilayered structure 
consisting of two layers corresponding to the media and adventitia. They showed results of 
deformation behavior during inflation and axial torsion, bending, with and without including 
the residual strain and after that, they presented the distributions of the principal Cauchy stress 
components  ���, ��� and ��� along the deformed wall thickness (media and adventitia 
layers). Waffenschmidt et al. (2014) adopted the material, structural and geometrical 
parameters for a carotid artery of a rabbit from Holzapfel et al. (2000) and published extremal 
states of the energy of a double-layered thick-walled tube with these parameters. Bilayered 
model of the pressurized tube was also used by Sommer and Holzapfel (2012) who identified 
material parameters of invariant-based exponential elastic potential for both intact (bilayer 
model) and layer-dissected (one-layer model) human carotid arteries. 

In the present study, the analytical model of bilayer thick-walled closed tube (the human 
abdominal aorta and perivascular adipose tissue as outer layer) has been created as a subject 
of the inflation-extension test, by using geometrical data of human abdominal aorta from 
Labrosse et al. (2012), material parameters of aorta from Horny et al. (2014) and material 
parameters of human perivascular tissue from Vonavkova et al. (2015). To the authors 
knowledge, this is the first study where the analytical model with individual layers 
(abdominal aorta and fat tissue) is studied. 

2 MATERIAL AND METHODS 

All the computations performed within this study have been conducted in Maple 
(Maplesoft, Waterloo, Canada). The abdominal aorta represents inner layer of analytical 
model and was modeled as an incompressible, hyperelastic, anisotropic residually stressed 
homogeneous thick-walled closed tube. The perivascular adipose tissue surrounding the aorta 
was considered as incompressible, hyperelastic and isotropic without residual stress. 

In what follows, constitutive model and geometrical data characterizing abdominal aorta 
of 38 years old male donor are adopted from Horny et al. (2014). They used results, originally 
published by Labrosse et al. (2013), to determine material parameters of the human abdominal 
aorta defined in the constitutive model suggested by Gasser et al. (2006).   

Vonavkova et al. (2015) published preliminary results of the uniaxial tensile tests 
conducted with human perivascular adipose tissue. They used hyperelastic constitutive model 
based on Fung-Demiray strain energy density function. This stress-strain relationship is here 
adopted to model mechanical behavior of the adipose tissue (male donor 29 years old).  

2.1 Kinematics of inflation and extension of a bilayer tube 

After removal from a body, the abdominal aorta is in the load-free configuration ���. 
However, this state is not a stress-free (reference) configuration which is denoted as ���. It is 
known that cutting the arterial ring in the vessel axis leads to opening of the artery due to the 
release of residual stress. Here, it is assumed that the open sector is the stress-free (reference) 
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configuration ��� (Sommer and Holzapfel, 2012), as depicted in Figure 1. Thus, the 
cylindrical coordinates of the tube ��, �´, �´� in the reference configuration ��� are defined in
(1). �� ≤ � ≤ ��,     0 ≤ �´ ≤ �2� − 2��,     0 ≤ �´ ≤ � (1) 

Here ��, ��, � and � denote the inner and outer radius of the abdominal aorta in undeformed 
configuration, opening angle and the length of the stress-free tube, respectively. The opening 
angle for reference configuration is shown in the Figure 1.  

The adipose tissue is modeled as not subjected to residual deformation, and, therefore it 
can be said, that its reference configuration is the load-free configuration ��� (Sommer and 
Holzapfel, 2012). See Figure 1. 

The deformation � (composition of the deformations �� and �� �) which maps ��� into 
the deformed (loaded) configuration �� is depicted in the Figure 1. The deformation �!"# 
maps from ��� to ��� and can be understood as a bending of curved beam corresponding to 
the stress-free arterial strip. The residual stress is induced by means of �!"#. The deformation �� is associated with axial stretch and inflation and leads to the deformed configuration �� 
(Sommer and Holzapfel, 2012). In terms of the cylindrical coordinates �$, %, &�, the region of ��� is $�' ≤ $' ≤ $�',     0 ≤ Θ ≤ 2�,     0 ≤ & ≤ )', (2)

where $�', $�' and )' are the inner and outer radius and the length of the abdominal aorta in

the load-free configuration ���, respectively.	Θ = +,�+,-+.��´ and & = /�´ holds in the maping �� �. $�0, $�0, )0�)0 = )'�,	/ are the reference inner and outer radius, length and axial
stretch of the perivascular tissue in the unloaded configuration. 

The deformation �� (Sommer and Holzapfel, 2012) takes the load-free configuration ��� 
into the deformed configuration �� (Figure 1). In terms of cylindrical coordinates ��, �, ��,
the region of the current configuration is ��' ≤ �' ≤ ��',     0 ≤ � ≤ 2�,     0 ≤ � ≤ 1'. (3) 

Here ��' , ��' and 1' denote the inner and outer radius and the length of the deformed
abdominal aorta, respectively.	��0, ��0, 10�10 = 1'� are the deformed inner and outer radius,
length and axial stretch of the perivascular tissue in the loaded configuration. 

The kinematics of inflation and extension is described by the deformation gradient 2� in 
(4). The deformation gradient 2� � which considered closing of opened up circular sector 
as shown in the equation (4). The resulting kinematics is given as (5).  

2� � = 3
4
5!�6�56 0 0
0 ,,-. !�6�6 00 0 /7

8,					2� =
3
94
5��!�5! 0 0
0 ��6�! 00 0 					:;'7

<8 	 (4) 

2 = 2�2� � = =:���� 0 00 :���� 00 0 :�> = 3
994
?����?� 0 0
0 �� − � ����� 0
0 0 					:;'/7

<<8 (5) 
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Here 					:;'�					:;' = 	:;0� is the axial stretch of aorta which is identical with the stretch of
the adipose tissue. :�, :� and :� are the radial, circumferential and axial stretches, 
respectively. 

During the deformation, the inner radius of the abdominal aorta and the inner radius of 
perivascular were expressed by means of the radius and the length via incompressibility 
condition (6) and (7), respectively. 

�1' @��+' − ��+'A = �� − ��)'���+ − ��+�, 					:;' = BCDC. (6) 

�)� @$�+0 − $�+0A = �10 @��+0 − ��+0A,					:;0 = BEDE. (7) 

 
 

 

Figure 1: Kinematics of the abdominal aorta and the perivascular tissue. 
The arterial ring with residual stress in the reference (stress-free) configuration ���. 

The abdominal aorta with surrounding perivascular tissue in the load-free configuration ��� 
but without internal pressure. 

The bilayer tube in the deformed (loaded) configuration �� after the application of internal 
pressure 
. 

2.2 Constitutive models 

According to Ogden (1982), the constitutive equation for an incompressible hyperelastic 
material can be written in the form of (8).  

σ = 22 5G5H 2I − JK. (8) 

Here σ denotes the Cauchy stress tensor. H is the right Cauchy-Green strain tensor, H = 2I2. K plays the role of a Lagrangean multiplier, which represents the hydrostatic contribution to σ, 
not captured by L, due to the incompressibility constraint.  

2.2.1. Abdominal aorta 

The abdominal aorta wall was modeled as a homogenous, anisotropic, incompressible, 
hyperelastic material. The strain energy density function LMNO was used, proposed by 

Reference (stress-free) 

 configuration 

   Load-free 

 configuration 

 Deformed  (loaded) 

 configuration 

��� ��� ��
�´ & 

� 

P�QR = 0 

 = 0 
 > 0 P�QR = 0 

�� � �� 
� 

�´ 
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� 

� �� �� 

Abdominal aorta 

$' $�'$�0 $�' = $�0 ) 1 Θ �' 
��' ��' = ��0

 ��0

Abdominal aorta 

Perivascular tissue 

Abdominal aorta 
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Gasser et al. (2006) for modeling general mechanical characteristics. The strain energy 
density function is expressed by equation (9). 

LMNO = T+ �UV − 3� + ∑ @ Z[+Z\ ]Z\^_`-Va\ − 1Acde,f , (9)

gc = hUV + �1 − 3h�Uc,   i = 4,6, (10) 

with UV = :�+ + :�+ + :�+, Ue = Uf = :�+cos+o + :�+sin+o, (11) 

where r = 15.9	v
w is the infinitesimal shear modulus of the isotropic matrix. vV = 78.488	v
w is a stress-like material parameter and v+ = 4.911 is a dimensionless 
parameter. The material parameters were adopted from Horny et al. (2014). ge and gf are 
generalised invariants related to imperfect fiber alignment. h = 0.189 is a structural 

parameter which measures the degree of fiber dispersion @0 ≤ h = VzA. UV is the first invariant 

of the right Cauchy-Green strain tensor. Ue and Uf are additional strain invariants induced by 
the existence of preferred directions in a continuum. The parameter o = 41.41° denotes the 
angle between the (mean) fiber direction and the circumferential direction in the individual 
layers, and, therefore, acts as a geometrical parameter. 

2.2.2. Perivascular tissue 

For the perivascular adipose tissue, the exponential function of strain energy density L| 
proposed by Demiray (1972) was used (12).  

L| = V+
T}~�@��\���\���\��A-V�

� , (12) 

with stress-like parameter r = 18.397	v
w and dimensionless parameter � = 31.834. These 
material parameters were taken from Vonavkova et al. (2015).  

2.3 Thick-walled bilayer tube model 

The equilibrium equations for the closed incompressible hyperelastic thick-walled tube in 
the radial and axial direction are expressed in (13) and (14) for the inner layer (the abdominal 
aorta) and in (15), (16) for the outer layer (the perivascular tissue). Their form is adopted from 
Holzapfel and Ogden (2010), Labrosse et al. (2013) and Horny et al. (2013). Detailed 
derivation can be found in Matsumoto and Hayashi (1996). The indices A, and P are used to 
distinguish between individual layers (aorta, perivascular tissue). The boundary conditions are 
considered in the form ������'� = −
, ������0� = 0 and ������'� = ������0�. Further, the
condition :;' = :;0 was considered.


' = � :�' 5G� C5��C R�
C�C��C��C (13) 

P�QR' = �� @2:�' 5G� C5��C − :�' 5G� C5��CA �'��'��C��C (14) 


0 = � :�0 5G� E5��E R�
E�E��E��E (15) 

P�QR0 = �� @2:�0 5G� E5��E − :�0 5G� E5��EA �0��0��E��E (16) 
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Here Ŵ denotes the strain energy density function with eliminated explicit dependence on :� 
by substituting :� = V����. 
 indicates internal pressure and P�QR is the reduced axial 

(prestretching) force acting on the closed end of the tube additionally to the force generated 
by the pressure acting on the end (Horny et al., 2013; Horny et al., 2014; Matsumuto and 
Hayashi, 1996). 

The distributions of the principal Cauchy stress components  ���, ��� and ��� across the 
deformed wall thickness (aorta and perivascular tissue layers) are given equations (17), (18), 
(19). 

������ = −� :� 5G�5�� R����� (17) 

��� = :� 5G�5�� + ��� (18) 

��� = :� 5G�5�� + ��� (19) 

2.4 Inflation-extension behavior of bilayer tube model 

Horny et al. (2014) fitted experimental data from Labrosse et al. (2013) by LMNO 
hyperelastic model and estimated material parameters �r, vV, v+, o, h� and subsequently
determined variable radii in an undeformed configuration ���, ��� and axial deformation
which arose during closing of the aorta ring �/�.  

The reference geometrical data �$� = 5.3	��,� = 1.22	��, � = 117°� of human
abdominal aorta (male age 38 years) from Labrosse et al. (2013), material parameters �r = 15.90	v
w, vV = 78.49	v
w, v+ = 4.991, o = 41.41, h = 0.1875� and geometrical
parameters ��� = 16.20	��, �� = 17.42	��� from Horny et al. (2014) were chosen for
purpose of this study.   

The outer radius of the aorta and inner radius of the external fatty tube �$�' = $�0, 			��' = ��0�	 were considered to be equal in the pressurization. The outer radius
of adipose tissue was chosen �$�0 = 16.52	���. The value of the outer radius corresponds
approximately to the amount of fat in the selected donor (male age 38 years). 

The inner and outer radius of perivascular tissue ���0, ��0� and axial stretch ^:;' = :;�a
have been determined by means of nonlinear least squares regression method. The objective 
function � (20) was minimized in Maple (Maplesoft, Waterloo, Canada) subjected to the 
constraint P�QR = 0. 

� = ∑ }^
~��� − 
����a+ − @P�QR~��� − P�QR����A+��dVf�d�   for  � = 0,1,2, … ,16	v
w (20) 

where 
~��� = 
'� + 
0�,  P�QR~��� = P�QR' � + P�QR0 �. (21) 

3 RESULTS 

The results of analytical model of bilayer thick-walled closed tube consisting of both the 
human abdominal aorta (index A) and surrounding perivascular tissue (index P) are 
summarized in the Figure 2. The bilayer model is compared with model containing only 
abdominal aorta. The plots of the pressure versus circumferential stretch �:�� or axial stretch 
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�:�� are depicted in the Figure 2 A, B. The radial, circumferential and axial Cauchy stress ����, ���,���� versus deformed radius ��� at the pressure 16	v
w are showed in the Figure 2C. 
The axial stretch of the abdominal aorta and adipose tissue was equal during inflation-

extension, but the analytical model shows that the tangential and axial stress differs 
significantly depending on the thickness of the outer tube. The radial stress satisfies the 
boundary condition ������'� = −
, ������0� = 0 and ������'� = ������0�. On the contact
with the aorta and perivascular tissue is an abrupt change in the axial stress by 80	v
w. 

Figure 2 A The plot of the pressure versus circumferential stretch 	�:�� and comparison of 
bilayer tube (lines) with abdominal aorta (points). 

B The plot of the pressure versus axial stretch �:�� and comparison of bilayer tube (lines) 
with abdominal aorta (points). 

 C The radial, circumferential and axial Cauchy stress ����, ���,����	versus deformed radius 
for bilayer tube (lines) and abdominal aorta (points) at the pressure 16	v
w. 

4 DISCUSSION 

The objective of this study was to compare the mechanical behavior of the bilayer thick-
walled close tube, where the inner layer was a human abdominal aorta and the outer layer was 
perivascular tissue, with abdominal aorta tube. The abdominal aorta and adipose tissue were 

A B 

C 
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modeled as a homogeneous, anisotropic, incompressible and hyperelastic material. The strain 
energy density functions LMNO, L| were used for the description of mechanical response of 
inner and outer layer of the model.  

The simulations showed that the abdominal aorta is much more compliant in the 
circumferential and axial direction in comparison with the fat tissue. The stress along the wall 
thickness of bilayer model and only aorta tube was determined and compared.  

The results of this study show that the mechanical responses are significantly different, 
therefore it is uncertain, whether a monolayer model without the surrounding tissue may 
correspond to in vivo reality. 
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Abstract. In this study, composite tubes were manufactured from biological collagenous ma-
trix and reinforcing polyester mesh. The effect of sterilization on mechanical properties of this 
structure was evaluated using inflation-extension tests. Samples were exposed to two types of 
sterilization (ethylene oxide and irradiation). The control (non-sterilized) samples were also 
tested. It was found that the process of sterilization (especially irradiation) dramatically af-
fects the final mechanical properties of the material. These findings should be taken into ac-
count when such collagenous material is assumed to be used in tissue engineering.   
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1 INTRODUCTION 

Composite materials are heterogeneous mixtures of two or more homogeneous components, 
which have been bonded together. In composites, properties or set of properties can be at-
tained which could not have been obtained separately. Many in nature occurring materials can 
be regarded as composite e.g. bones, blood vessels, woods and others. Man-made composites 
are used since thousands of years, e.g. straw and natural fibers in bricks, laminated woods, etc. 
[1]. 

Over the past few decades, tissue engineering has been focused on development of biologi-
cal substitutes to restore, maintain, or improve tissue functions. Collagen is the most abundant 
biological material used for tissue engineering. It is the basic constituent of skin, bones, liga-
ments and connective tissues. Collagen-based biomaterials have been studied extensively for 
a variety of biomedical applications, including dialysis membranes, wound dressings and arti-
ficial skin. Although native collagen possesses high tensile strength, the chemical treatment 
necessary for isolation makes the reconstituted collagen very poor in mechanical properties [2, 
3]. A possible means to circumvent the problem is to reinforce natural polymer matrix by syn-
thetic fibers or structures. Moreover, the properties of such composite could be modulated 
through composition of constituents in the material. 

Routinely used sterilization process for medical products, e.g. high pressure steam (auto-
claving) and dry heat cannot be considered for heat- and watersensitive biomaterials like col-
lagen structures [4]. Currently the most widely utilized methods for collagenous 
materialsterilization are ethylene oxide (EO) gas infiltration and gamma irradiation. Earlier 
investigations focused on physical or chemical alterations after these two methods [5]. EO 
was claimed to alter the mechanical and physical properties of collagen slightly, but with a 
high risk of toxic residues [5]. Gamma irradiation, once introduced as the simplest and most 
effective way of sterilization without toxic substances, breaks chemical bonds, affects tensile 
strength and modulus, thus affecting the exposed material fundamentally [6,7]. 

In our study, composite tubes were manufactured from biological collagenous matrix and 
reinforcing polyester mesh. The effect of sterilization on mechanical properties of this struc-
ture was evaluated using inflation-extension tests. 

2 MATERIAL AND METHODS 

Tubular samples of hybrid composite were manufactured using extrusion while the polyes-
ter mesh was integrated into biological collagenous matrix (Fig 1). Two samples were steri-
lized using ethylene oxide, two samples by gamma irradiation and two control specimens 
were left unsterilized.  

Samples were placed in physiological solution for 24 hours before testing. Prior to the me-
chanical tests, two rings were cut out from the specimen at both ends, and the mean reference 
dimensions of the samples (external radius, thickness) were determined by means of image 
analysis of digital photographs, Table 1. 

2.1 Inflation-extension test 

Each specimen was mounted in the experimental setup (Fig. 1) and marked with liquid 
eye-liner. The samples were pressurized until destruction using a motorized syringe (Standa 
Ltd, Vilnius, Lithuania). The intraluminal pressure was monitored by pressure transducer 
(Cressto s.r.o, Czech Republic). The experiments were performed at room temperature 
(22°C). The deformed geometry was recorded by a CCD camera (Dantec Dynamics, 
Skovlunde, Denmark). In the data post processing, the radius of the sample and length be-
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tween marks during pressurization was evaluated by the edge detection algorithm in Matlab 
(MathWorks, MA, USA). 

The longitudinal (��) and circumferential (��) stretch ratios were computed according Eq. 
(1). Here L and l is the length between marks in reference and deformed configuration, re-
spectively. R and r is the unloaded and loaded middle radius of the sample, respectively.  

 �� �
�

�
													�� �

�

	
 (1) 

The influence of the sterilization was evaluated through circumferential stress, computed 
according thin-walled tube approximation.  The circumferential stress (
�) induced by an in-
ternal pressure is computed using the Young–Laplace equation (2). In (2) � is intraluminal 
pressure, � is deformed middle radius and  is deformed thickness of the sample, respectively. 

 
� �
��

�
 (2) 

 
Figure 1: The experimental inflation-extension set-up (left panel) and the picture of the sample from CCD cam-

era (right panel). 
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3 RESULTS 

The reference dimensions of samples are listed in Table 1. Final circumferential stress – 
stretch curves are plotted in Fig. 2.  
 

Sample �� [mm] 
(mean ± SD) 

� [mm] 
(mean  

Non-sterilized 1 3.80 ± 0.02 0.75 ± 0.17 

Non-sterilized 2 4.26 ± 0.12 0.99 ± 0.28 

Ethylene oxide 1 3.87 ± 0.09 0.62 ± 0.13 

Ethylene oxide 2 3.65 ± 0.02 0.87 ± 0.25 

Radiation 1 3.80 ± 0.06 0.68 ± 0.20 

Radiation 2 3.45 ± 0.10 0.55 ± 0.07 

Table 1: The reference dimensions of tubes. Here Ro is the reference outer radius, H is the reference overall 
thickness, respectively. 

 
Figure 2: Stress – stretch curves for control/non-sterilized (black), ethylene oxide (blue) and irradiation (red) 

sterilized samples, respectively. 
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4 DISCUSSION AND CONCLUSIONS 

In our study, biological composite samples were manufactured from collagenous matrix 
and reinforcing polyester mesh. The effect of sterilization (ethylene oxide and irradiation) on 
mechanical properties of this structure was examined using inflation-extension tests. This in-
fluence was evaluated through circumferential stress computed according thin-walled tube 
approximation. This is one of the limitations of the study, where the ratio of radius and thick-
ness of the samples suggests using thick-walled tube model. However, authors wanted to 
compare the response of samples and the thin-walled model is simple and sufficient for this 
purpose.  

Fig. 2 shows that the final mechanical properties are dramatically affected by process of 
the sterilization. Control samples showed the most compliant behavior and low breaking 
strength. Specimens sterilized using ethylene oxide are stiffer but the deformation at the de-
struction point is similar as for control samples, while the irradiation changed behavior of the 
material completely. Here the breaking strength is close to the samples sterilized by ethylene 
oxide, but the stiffness is very high. These observations should be interpreted through cross-
linking process. During the sterilization, additional bonds are created between individual pol-
ymer (collagen) chains [8]. The more additional bonds are formed, the stiffer response is 
observed in the stress-stretch plot. 

It was concluded, that the sterilization processes significantly change mechanical response 
of collagenous material. These findings should be taken into account when such biological 
material is assumed to be used in tissue engineering.  
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Abstract. The stress-strain state of the corneal shell of a human eye loaded with a flat base
stamp of an arbitrary weight for different values of the intraocular pressure is analyzed. In the
Maklakov method the intraocular pressure (IOP) is measured by deformations under loading.
Similar approach, for which the stress-strain state is considered as the result of loading with a
flat base stamp, is applied in [1, 2, 3].

This paper discusses the three dimensional finite-element model of the contact problem, when
the multilayer corneal layer is loaded with a flat base stamp. This mathematical model is
constructed in software package ANSYS. The cornea is modelled as an orthotropic spherical
shell of variable thickness consisting of four layers: the outer layer (the epithelium), Bowmans
membrane, the core layer (stroma of the cornea), and the inner layer (Descements membrane).
Moreover, all layers have their specific elastic modules, that differ signicantly both in tangential
direction and in transverse directions. The analysis is conducted of four flat base stamps of
different weight and of different values of intraocular pressure (from 10 up to 30 mm Hg) for
each stamp. The deformations of the corneal shell depends substantially on these factors. Also,
the possibility of the contact detachment under loading is examined.

Finally, the estimation of different fundamental characteristics is made, including diameter
of the contact zone, with the help of which the intraocular pressure is measured. The results of
the mathematical modeling obtained in research are compared with the clinical data.
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1 INTRODUCTION

Determination of IOP is important in the diagnosis eye diseases and in monitoring during
the postoperative period. IOP measurement is made by recording deformation of the cornea in
response to mechanical impact under the load of a flat base stamp.

In the work [1] a two-dimensional model of measuring IOP using the Maklakov’s tonometer
is considered, in which the corneoscleral shell is modeled as two conjugated spherical segments.
Meanwhile corneal shell is considered as a soft shell that has no resistance to flexural deforma-
tion and no “shrinkage” under the action of the tonometer. So deformation of the corneal shell
is described by the relation pt = W/S, where pt – tonometric IOP, W – the weight of the
tonometer, and S – the contact area of the corneal shell and the tonometer (a flat base stamp).
This equation is applicable only for infinitely thin and soft shells.

Based on the assumption of balancing of the weight of applied tonometer and IOP the fol-
lowing relation can be written as F = W = PS. Considering that the area of contact between
the tonometer and the corneal shell has the shape of a circle, the area of the contact zone is
calculated by the formula S = πd2

4
. Modifying the formula to express it in terms of the contact

zone diameter d, the following is obtained:

d = 2

√
W

πP
, (1)

This paper presents a three-dimensional finite element modeling of the contact problem of
loading the corneal shell with a flat base stamp in the mathematical software package ANSYS.
It investigates the change in the stress-deformed state of the corneal shell while being loaded
with stamps of different weights. In particular, existance of possible “tear” of the surface of the
flat stamp from the cornea inside the contact zone is checked. Also the relationship of thickness
between corneal shell and its layers is explored while loading with flat stamp and varying IOP.

2 FINITE-ELEMENT MODEL

Corneal shell is modeled with a spherical segment of outer radius of 7.8 mm with variable
thickness, which is divided into four layers: epithelium, Bowman’s membrane (BM), corneal
stroma, and Descemet’s membrane (DM). In this model only the stroma has variable thickness,
which varies, for example, from 0,535 mm in the center up to 1,135 mm at the edge, the other
layers are set with constant thicknesses. The endothelium, the fifth layer of corneal shell, is not
modeled due to its insignificant thickness. All layers are modeled as homogeneous; fibration is
not taken into account.

According to [4] the cornea can be considered as a transversely isotropic shell. The elastic
constants satisfy to the following system of inequality [5]:

|ν ′

i | <
(
E

′
i

Ei

)1/2

, −1 < νi < 1− 2
(
ν

′

i

)2 E ′
i

Ei
,
(
Ei > 0, E

′

i > 0
)
, i = 1, ..., 4, (2)

where Ei and E ′
i - are the moduluses of elastisity for the surface of isotropy and in the direction

of normal to the surface respectively; νi and ν ′
i - the Poisson’s ratios; G′

i is the shear modulus
for any plane normal to the surface of isotropy; Shear modulus for the surface isotropy Gi is
given as:

Gi =
Ei

2 (1 + νi)
(3)
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Table 1: The thicknesses and elastic coefficients of the layers of the cornea

Units Epithelium BM Stroma DM Sclera
hi mm 0,043 0,012 0,535-1,135 0,01 0,6-1,2
Ei MPa 0,06 0,6 0,3 0,9 5
E

′
i MPa 0,003 0,03 0,015 0,045 0,5

Gi MPa 0,0297 0,2970 0,1485 0,4455 2,4752
G

′
i MPa 0,0010 0,0100 0,0050 0,0150 0,1668

νi 0,499 0,499 0,499 0,499 0,499
ν

′
i 0,01 0,01 0,01 0,01 0,01

Table 1 specify the thickness of the layers of the corneal membrane, values of elastic moduli
and Poisson’s ratios in the tangential and thickness directions, which are used to solve the
problem. It is assumed that the corneal tissue and scleral shell are close to incompressible, so
νi is assumed to be 0,499. For the finite element model of the flat base stamp isotropic material
with a coefficient of Young’s modulus equal to 2 ∗ 1011 Pa and Poisson’s ratio ν = 0, 3 (steel)
is used.

The IOP is set equal to 2000 Pa, which is normal, in the direction perpendicular to the inner
surface. To reduce the influence of the boundary conditions on the investigated area of the
corneal shell, a fixed support of the section of the sclera in the equatorial area of the eyeball is
used as boundary conditions.

3 RESULTS

In this reseach a series of calculations is done, which correspond to the loading of the flat
base stamp of different weights – 5, 7.5, 10, and 15 gram, simulating by so the process of
measuring IOP by Maklakov’s applanation tonometer using standard weights. Figure 1 shows

a) b)

c) d)
Figure 1: Deformation in the section Y Z of cornea loaded by stamp with weight a) 5 g, b) 7.5 g, c) 10 g, d) 15 g
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deformations in the cross-section Y Z, and Figure 2 shows deformation from above the model.
While loading the stamp with weight of 5 g, there is a distinct “ring”, which corresponds

to the minimum deformations (close to zero by value) in the contact zone at the very edge.
Moreover, these deformations become maximum (approx. 0.4 ) outside of the contact zone in
the form of a ring. In case of lager weight of 7.5 g the diameter of the zone of contact is increased
and another contact area of the maximum deformation appears in the center of the corneal shell.
The subsequent increase in the weight of the stamp up to 10 g rises the deformations in the
center and the diameter of the contact zone. This effect is enhanced by loading the heavier
stamp with a mass of 15 g. Maximum values of deformations in the center of the contact zone
are listed in table 3. In fact in figure 2 due to the ring of minimal deformation on the outer
surface of the corneal shell, marked in blue, the diameter of the contact zone is increasing while
raising the weight of the stamp.

a) b)

c) d)
Figure 2: Deformation of cornea (top view) loaded by stamp with weight: a) 5 g, b) 7.5 g, c) 10 g, d) 15 g

Table 2: The diameters of the contact zone between the stamp and the epithelium of the cornea, mm

the weight of the stamp, grams
IOP, mm Hg 5 7,5 10 15

15 5,552 6,915 7,757 9,292
20 4,880 5,902 7,096 8,439
25 4,634 5,320 6,463 7,527
30 4,243 4,849 5,823 6,909

Approximating the data from table 2 we can obtain the following equation for change of the
diameter of the contact zone d between the corneal epithelium of the shell and loaded flat base
stamp depending on P :

d5 = −0, 0002P 3 + 0, 013P 2 − 0, 4144P + 9, 3399 (4)

6634



Dmitry V. Franus

Table 3: Maximum values of deformations in the center of the contact zone

the weight of the stamp, grams
IOP, mm Hg 5 7,5 10 15

10 0,468 0,748 0,957 -
15 0,350 0,540 0,750 1,065
20 0,222 0,367 0,566 0,858
25 0,128 0,280 0,409 0,667
30 0,110 0,232 0,312 0,501

d7.5 = 0, 0007P 3 − 0, 0397P 2 + 0, 6309P + 4, 0951 (5)

d10 = 0, 0005P 3 − 0, 0362P 2 + 0, 6551P + 4, 2628 (6)

d15 = 0, 0016P 3 − 0, 1153P 2 + 2, 5427P − 9, 2137 (7)

where equations (4) – (7) correspond to the loading of the flat base stamp with weights of 5,
7.5, 10, and 15 g respectively. In these equations d – is measured in mm, and the IOP P – in
mm Hg. In order to calculate the value of the IOP based on the diameter of the imprint inversed
relationship is obtained:

P5 = 4, 5884d2 − 56, 682d+ 188, 15 (8)

P7.5 = 2, 182d2 − 32, 942d+ 138, 45 (9)

P10 = 0, 0865d2 − 9, 085d+ 79, 635 (10)

P15 = −0, 0036d2 − 8, 1348d+ 86, 393 (11)

here the equations (8) – (11) correspond to the loading of the flat base stamp with weights of 5,
7.5, 10, and 15 g respectively. The units are the same d in mm, and P in mm Hg. P varies in
the range from 15 to 30 mm Hg.

Based on received results of finite element modeling it is possible to obtain the diameter of
the area of contact in dependence from the weight of loaded flat base stamp, while IOP is taken
as constant. Approximating received data it is possible to obtain analytical relations between
the diameter of the zone of contact d and weight of the load applied to W :

d15 = −0, 0316W 2 + 0, 9174W + 1, 7695 (12)

d20 = −0, 0146W 2 + 0, 6538W + 1, 9338 (13)

d25 = −0, 0106W 2 + 0, 5106W + 2, 2751 (14)

d30 = −0, 0063W 2 + 0, 3998W + 2, 3477 (15)

where equation (12) – (15) correspond to loading at a constant value of IOP of 15, 20, 25, and
30 mm Hg respectively. The units of d are mm and W is in grams. The weight values of the flat
stamp applied range from 5 to 15 g.

The corneal thickness changes in the center of the shell when loaded with a flat base stamp.
As shown on figure 3 the overall thickness of the corneal shell is reduced by 18.4% under normal
IOP 2000 Pa as heavier flat stamp is used. Due to its small thickness Bowman’s membrane is
included in the thickness of the layer of epithelium in current analysis. But in the process of
loading with the 5 g stamp their combined thickness was reduced from 0.055 mm to 0,0234 mm,
which is more than two times, and during loading with the 15 g stamp thickness is reduced to
0,0112 mm, this is a reduction in the thickness of the epithelium of five times. So, about 30%
of the reduction in the corneal thickness falls on the epithelium.
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Figure 3: The change in the corneal thickness of the shell when loading by a stamp under normal IOP

4 CONCLUSION

There is no separation of the surfaces, in calculated range of IOP, in the contact zone of the
surfaces of the stamp and of the corneal epithelium, when loading the stamp with a flat base on
the corneal shell of the eye. Although the area of minimal deformations is close to zero (the
ring marked in blue in figure 2), it is inside the contact zone.

As a result of loading simulation it is revealed that there is a five-times reduction in the
thickness of the epithelium of the corneal shell, which is about a third of the total reduction in
thickness of all the shell during loading.

Constructed finite element model of loading of the corneal shell with the flat base stamp
allows to calculate the IOP depending on the weight of applied stamp and the thickness of the
corneal shell of the eye in its center. Results obtained in the finite element simulation are in
good agreement with clinical data.

The work was supported by the Russian Foundation for Basic Research (RFBR grant No.
15-01-06311-a).
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Abstract. The analytical (M-1/) relationship is obtained with Mapple software consider-
ing the static equilibrium equations (of bending moment M and axial load N) and compat-
ibility of deformations (between steel and concrete) at the section level [1]. The present 
work uses a closed form of the relation (1/-M) with the Ramberg and Osgood equation 
[2], representing in a unique way the stages of:  cracked concrete with steel in elastic 
range and cracked concrete with steel in the plastic range. To consider uncracked con-
crete in the global member behaviour the model of the European code [3] is used. The 
numerical results consist of moment curvature diagrams of reinforced concrete sections 
and load – deflection curves of reinforced concrete beams. 
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1 INTRODUCTION 

In structures composed of linear elements where one dimension is more significant than 
the others, such as beams and columns, a relation can be derived between the bending mo-
ment  and the curvature (	1 ⁄ ) at the section level, and the deformation produced by the 
tangential stresses disregarded. This moment ( ) - curvature (	1 ⁄ ) relation takes the form of 
a differential equation for the transverse displacement of the structural member in an homo-
geneous material.  

In composite beams made of materials with different behaviour in tension and compression, 
such as concrete, and steel reinforcement, the ( ) - curvature (	1 ⁄ ) relation varies with the 
section along the structure. Several models to predict the global behaviour of these structures 
are used and described next. 

Many (  -	1 ⁄ ) equations are known such as the trilinear relationship, presented by Zheng 
et al [4], to predict flexural sectional response of beams with reinforced polymer rebars. 

In the work of Torrico [5] the linearization of the moment vs curvature is used to obtain the 
pos-critical behaviour of high strength reinforced concrete (RC) columns, taking into account 
the geometrical and material nonlinearities including the confining effect of the transversal 
reinforcement. The values obtained are compared to experimental results of columns with dif-
ferent slenderness and reinforcement ratios. 

The use of a moment-curvature law modelling the material softening due to cracking in 
reinforced concrete beams is made in Challamel et al [6]. Ponaya et al [7] uses this law to 
represent, in a simplified unidimensional approach, the local buckling phenomenon in 
steel thin-walled structures. 

In Picandet et al [8] the moment-curvature relation is also used to model the geomet-
rical softening due to the global instability in compressed columns. In this paper, a biline-
ar moment-curvature relation is considered with a first branch representing the elastic 
behaviour and a second branch the inelastic.  Three alternatives in the inelastic branch are 
available: hardening, softening and perfect plastic. All of them are considered in the de-
velopment of the analytical solution of the differential equation governing the lateral de-
flection of the column, clamped at the base and free at the top, where an axial load is 
applied. Load-deflection diagrams [8] are obtained considering simultaneously geometric 
and material non-linearities. 

In Casandjian et al [9], the moment curvature relation at the section level is obtained using 
tension- deformation constitutive laws. 

In the work of Caglar et al [10], the moment curvature diagrams are used to obtain the 
flexural stiffness of reinforced concrete columns with circular cross section, to be used in ge-
netic programming with artificial intelligence.  This technique is also applied by Cevik et al 
[11] and Chen et al [12]. 

According to European codes [3,13], the tension stiffening effect, due to the contribution 
of the concrete between cracks to the global behaviour, can be considered by two different 
ways: approaching the average strain (or curvature or stiffness) or using an effective area of 
concrete, which is equivalent to consider a mean modulus of elasticity. Both procedures use 
the concept of average constitutive laws of cracked concrete and reinforcing steel and are pre-
sent in Vecchio et al [15] and Vecchio [16]. 

Kwak et al [17] use the average strain concept, considering the contribution of fully 
cracked and uncracked concrete and also a model to approach the bond-stresses between steel 
and surrounding concrete. 
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Kaklauskas et al [18] use the moment-curvature diagrams of RC beams obtained with 
ATENA software in a nonlinear finite element analysis, dividing the cross section into layers 
with perfect bond between them.  

Márquez et al in [19] analyse the moment-curvature relations of concrete piles, with circu-
lar cross sections and different arrangement of reinforcement, such as the symmetric and the 
asymmetric, and compare them to Eurocode 2 [3] and CEB-fib Model Code 2010 [20] pro-
posed expressions. 

In the present paper the analytical ( -	1 ⁄ ) formulation takes into account concrete crack-
ing under tension, linear elastic law in compression and steel with either elastic or plastic be-
haviours. Considering all these aspects the (  - 	1 ⁄ ) relation becomes nonlinear. The 
identified three stages are: a) uncracked concrete; b) cracked concrete and steel in the elastic 
domain and c) cracked concrete and steel in the plastic domain. The end of stage c) corre-
sponds to the ultimate design, solved for multi-rectangular concrete sections in [14]. In this 
paper an approximation with Ramberg and Osgood equation of the inverse relation, that is 
the curvature (	1 ⁄ ) as a function of the moment ( ), is made. This procedure delivers a 
unique equation of the two concrete cracked stages within the section level, representing 
the behaviour of cracked sections. In order to obtain the global behaviour of the cracked 
member, both cracked and uncraked zones must be considered (usually named tension sof-
tening effect). The average curvature [3] is used in the present work. 

The examples presented show the application of the developed model to obtain the 
moment-curvature of a reinforced concrete sections and the load deflection of reinforced 
concrete beams. The results are in good agreement with experimental and analytical re-
sults of other authors. 

2 REINFORCED CONCRETE MEMBER BEHAVIOUR  

The overall behaviour of the reinforced concrete member is ruled by the uncracked and 
cracked zones. The basic assumptions for singly reinforced concrete rectangular cross sec-
tions, defined by the width , height , concrete cover 	  (distance between steel centroid and 
concrete border), steel tension area  and steel compression area ´  (see Fig. 1), are de-
scribed in the next sections. 

2.1 Basic assumptions  

The fundamental assumptions of the behaviour of flexural beams are [3]:  
- the cross section remains plane after the deformation, see Fig.1;  
- full adherence between concrete and steel;  
- the concrete stress-strain constitutive law is linear elastic in compression and in 

tension, with elasticity modulus ; in tension the maximum stress in concrete is ; 
when the tensile concrete stress attains  the section is considered cracked, and the global 
behaviour of the member depends on both cracked and uncracked sections;  

- the steel stress-strain relation is linear elastic, with elasticity modulus , up to the 
design yield stress . After this value a constant stress of  is considered (plastic do-
main). 

Considering the concrete linear elastic relation in compression is an approximation allowed 
in EC2 [3] for service loads, for stress less than 0.4  (  is the mean compressive strength). 
As a matter of fact the existence of cracked sections influences more the beam deflection in 
service, than the simplification due to the linear relation in the compressed concrete. Usually, 
the structures ductility is an important issue in concrete design, meaning that their collapse 
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occurs with steel rebars  in the plastic domain. The possibility of the steel plastification is 
considered in the present model. 

 

Figure 1: Geometrical definitions of the cross section and deformation. 

2.2 Overall behaviour of the cracked member  

The overall behaviour of the cracked member after the appearance of the first crack is 
divided into the zones: before the appearance of the first crack; formation of the cracks 
and the stabilized cracking, see Fig. 2a,b) [3]. In the figures state I is the (  -	1 ⁄ )  evalu-
ated in an uncracked section and State II0 in a cracked section, both cases under pure 
bending. Under axial load and bending moment the curvatures are termed 1/ρ1  and 1/ρ2 in 
states I and II, respectively. 

 

 
Figure 2a): Idealized moment curvature behaviour for bending moment [3]. 

In state I the curvature  for pure bending or bending moment and axial load is consid-

ered the same [3]. The curvature for state II, bending moment and axial load, can be relat-

ed to the curvature in pure bending, by . The curvature  is caused by the 

bending moment due to the axial force N acting at the centre of gravity of the total section 
in State I, being displaced from the centre of gravity of the cracked section. 

  The mean curvature , that takes into account the contribution of the concrete between 

cracks, is given by, see [3]: 

 1   (1) 
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Figure 2b): Idealized moment curvature behaviour for bending moment and axial load [3]. 

The parameter ζ in pure bending or with bending moment and axial load is a function of: 
the maximum moment before cracking, Mcr; the resultant moment M at the centroid of the 
concrete section (middle height in the rectangular section); the adherence between steel and 
concrete defined by β . According to CEB Manual [13] ζ is given by: 

 1  if  N=0 (2a) 

 1
´

´ if  N 0	and	 ´ (2b) 

    1	if  N 0	and	 ´ (2c) 

The moment M´ is the intersection of the moment curvature for state I and II, as repre-
sented in Fig. 2b). 

2.3 Static equations  

The static equations at the section reveal the axial load  by the integration of normal 
stresses in concrete  and steel , and the bending moment  by a similar procedure, 
that is: 

  (3)

  (4)

where: 
	– area of active concrete; 
, ,	– concrete, steel stress at  coordinate; 
– steel area; 
	 and  – distances to the centroid (see Fig.1); 

G – centroid of the section 
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3 MOMENT CURVATURE EQUATIONS AT SECTION LEVEL  

The assumptions exposed in 2.1 lead to three stages of the reinforced concrete section 
and corresponding equilibrium equations (3) and (4), that are: 

a) uncracked concrete with the steel in the elastic range;  
b) cracked concrete with the steel in the elastic range; 
c) cracked concrete with the steel in the plastic domain; 
In each stage the procedure is the following: 
1- compute the axial load ;  
2- the axial load value determines the neutral axis position ;	 
3- the bending moment ∗	that equilibrates the axial load is found at the neutral axis or at 

middle height .  
Section 3.1 presents the moment-curvature relation for uncracked reinforced concrete sec-

tion. Section 3.2 resumes the expressions for , ,  or ∗ after concrete cracking. Using 
the methodology described in section 3.3 a moment-curvature relationship can be ob-
tained.  A closed form of the (1/) relationship is derived by the use of Ramberg and 
Osgood equation and Goldberg Richard power representation, as presented in section 4. 

Finally, the global behaviour of the member with the contribution of the stiffness due 
to the concrete between cracks is achieved. 

3.1 Uncracked concrete 

Before concrete cracking, the steel is in the elastic domain and the section is homogenized 
in concrete through the factor ⁄ , multiplying the steel area [3]. The moment ∗ ver-
sus curvature  1⁄  relation is given, in function of the neutral axis position, , by: 

∗ 1
2

´   (5)

The neutral axis in the elastic domain is located at the centroid of the section, defined 
by the particular position G, given through the equation: 

2 ´

´
  (6)

The maximum moment before cracking, termed 	, that is the moment for which the 
maximum tensile stress in concrete is equal to the mean value of the tensile strength, , 
and the corresponding curvature 1⁄ 	 are the following: 

´
 ;   1⁄    (7)

With: 

2
´  

 

(8)

and 
 

12
 

 

(9)
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The parameter  is computed by substituting the maximum moment before cracking, 
, into equation (2). The moment-curvature relation in the uncracked concrete, state I, is 

then written as follows: 

1
  (10)

3.2 Cracked concrete 

In the reinforced concrete section, after the cracking of the concrete under tension, two 
stages are considered: the tension steel  in the elastic range or in the plastic. The com-
pression steel ´  and the concrete are considered elastic. 

3.2.1 Cracked concrete and steel in the elastic range 

At the initial stage, when the steel is yet in the elastic range, the static equation (3) is 
rewritten: 

2
´

  (11)

Solving equation (11) in terms of , the neutral axis position is given by: 

´ ´ 2
´

/

 
 (12)

Equation (4) than becomes: 

∗
3

´   (13)

3.2.2 Cracked concrete and steel in the plastic range 

After the concrete cracking but with steel  in the plastic range, that is the stress equal 
to , equations (11, 12 and 13) become: 

1
2

1
´  (14)

´ ´ 2 ´
/

  (15)

∗
3

1
´  (16)

 
The bending moment evaluated at the centroid of the concrete section (middle height) 

is: 

∗
2

 (17)

The equations (11) to (17) lead to the representation in Fig. 3 for a particular section 
and material properties (defined in the numerical results) and variable axial load (
0; 100; 500	1000	 ), denoting that 1/ / . In Fig. 3 the elastic range both in 
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concrete and steel is not represented and the curves are truncated for the curvature corre-
sponding to the ultimate compressive strain attained in the concrete. This analytical for-
mulation, representing the two non-linear stages of the cracked concrete section, will be 
approximated by a single relation described in the next section. 

 

 
Figure 3: Analytical (M-1/) relationship for a particular case. 

3.3 Stiffnesses considered at elastic and plastic steel 

The equivalent elastic stiffness	 , point 1 in Fig. 4, is considered to represent the last 
stage of cracked concrete with steel in the elastic range. This means that point 1 is the end 
of the steel in the elastic zone. Its value is the derivative of: 

 (18)

The equivalent plastic stiffness  is computed at the point 2 with the corresponding 
bending moment, , given by the derivative: 

 (19)

The moment  corresponds to the maximum bending moment obtained for the ulti-
mate limit state (conventional rupture for bending moment with or without axial force 
[20]). The moment  represented in Fig. 4, is established by: 

1
 (20)
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Figure 4: General moment-curvature diagram for cracked concrete. 

4 M- OR -M REPRESENTATIONS OF CRACKED SECTIONS 

The representation of the moment curvature in a unique closed form can be obtained by 
two ways [2]: the curvature 1/ in function of the moment  using the Ramberg - Osgood 
equation and the moment  in function of curvature 1/ using the  Goldberg Richard 
power representation. Both closed forms are described next. 

4.1 Ramberg - Osgood equation 

A unique curvature- moment (1/) relation, after the concrete cracking, denoted by 
state II, can be written using the Ramberg-Osgood equation as follows [2]: 

1
 (21)

In the last equation n is an integer number of the Ramberg-Osgood adjustment and  is a 
parameter evaluated by: 

 (22)

Fig. 5 compares the moment-curvature diagrams by Ramberg-Osgood equation with dif-
ferent values of the parameter n(=6, 20, 40) and the analytical curves for variable axial load 
applied in the particular section defined in the numerical results. 
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Figure 5: Moment-curvature diagram by Ramberg-Osgood equation. 

4.2 Goldberg Richard power representation 

A closed form of the (M-1/) relationship is obtained using the Goldberg Richard ex-
pression [2]. This equation gives the bending moment (M) as a function of axial load (N), 
the initial (Kf)  and the ultimate (Kp) flexural stiffnesses: 

     (23) 

Fig. 6 represents this closed form applied to the same particular cases of Fig. 5. 
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Figure 6: Goldberg Richard power representation of (M-1/	 ). 

4.3 Comparison of the two representations 

The previous moment-curvature approximation pointed out the need of the best param-
eters (n to Ramberg-Osgood, or m to Goldberg Richard equations) to employ in a particu-
lar case. Further, there is not a parameter n, for Ramberg-Osgood representation, 
satisfying simultaneously the moment and the corresponding curvature at the rupture for a 
wide range of loads in opposite to the choice of the m parameter in the Goldberg Richard 
equation. A comparison of the two representations is made in Fig. 7 for the same particu-
lar cases of Fig. 5, considering in the Ramberg-Osgood equation n=40 and in the Gold-
berg-Richard m=4. In the figure, indicated as theoretical, is the analytical relationship 
composed by the equations for cracked concrete with elastic (equation (11)) and plastic 
steel (equation (17)). In this figure the uncracked concrete, for curvatures between 0 and 
(1/)cr and moments between 0 and Mcr, is not represented, that is, only the cracked con-
crete is approximated by the Ramberg-Osgood and Goldberg-Richard equations. 
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Figure 7: Comparison of the moment-curvature diagrams for cracked concrete. 

The preference for the Ramberg-Osgood representation is due to the fact that the pre-
sent model needs the curvature 1/ as a function of the bending moment, in order to apply 
equation (1). It can be noted that the objective is to find a unique representation to the 
cracked stages, 1/, because the interaction used in (1) considers automatically the 
uncracked stage 1/ 

5 NUMERICAL RESULTS  

5.1 Moment curvature diagrams: Rectangular section under variable axial load  

Figure 8 shows the moment curvature diagrams obtained for a rectangular symmetric rein-
forced cross section with variable axial load ( 0, 100, 500, 1000 ).  

The cross section geometry is: b 0,2 ; 0,4 ; 0,02 ;
´

0,0021 . The 
material properties are : 200 ;	 20 ;	 400 ; 30 	and 
3 . 
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Figure 8: Moment- curvature diagrams of a RC section. 

5.2 Moment curvature diagrams and deflection of a beam  

The beam represented in Fig. 9a), is tested by Kwak et al [8]. The characteristics of the 
beam are the following: b=90cm; d=27.23cm; H=30.48cm; B=15.24cm; ´=0; =0.0062; 
Es=1.98106kg/cm2; Ec=2.71105kg/cm2; fy=3236kg/cm2; fc=323kg/cm2. The mean concrete 
tensile strength used in the present analysis is: = /10. Figure 9b) represents the moment 
curvature diagram considering: the Ramberg-Osgood equation with n=80; the tension sof-
tening interaction given from equation 1 with the definition of ζ by equation 2, consider-
ing =1.0 and 0.5; the results of Kwak et al [21] analysis made with 24 finite elements. 
Figure 9c) represents the load – central deflection diagram obtained with the model (for 
the two values of ) and the experimental and analytical results of Kwak et al [21]. 

It can be observed in the figures that the present analytical model approximates the ex-
perimental results. 

 
Figure 9a): Loading type and cross section of beam T1MA.
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Figure 9b): Moment-curvature diagrams.                                      Figure 9c): Load deflection diagram. 

6 CONCLUSIONS  

The present work presents:  

 the deduction of the moment curvature diagrams for singly or doubly rein-
forced concrete rectangular sections by MAPLE software with the three stages: i) 
uncracked concrete; ii) cracked concrete and steel in elastic domain; iii) cracked concrete 
and steel in plastic domain; 

 the representation in a unique closed form of the curvature - moment relation 
using the  Ramberg - Osgood equation. The moment – curvature equation with the Gold-
berg Richard power representation is also deduced and compared to the previous one; 

 the analytical mean curvature of the structural member with the  parameter of 
EC2; 

 the deflection of the cracked member by the integration of the curvatures; 

 the load – deflection curve of a RC beam and the comparison to other mod-
els and experimental results. 
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Abstract. Multimaterial assembly is one of the main answers of the car industry to weight 
reduction issues. As their introduction in the automotive industry is still recent, many multi-
material solutions have not been tested in crash, endurance and specific loading. Pre dimen-
sioning tools and numerical models are still very challenging. The present study aims at ad-
dressing some of these limitations. From the industrial issue of a seat back rest, an innovative 
multimaterial assembly based the CMT pin technology has been designed. A first model based 
on multilayer element is proposed to represent the global behavior of the assembly. Then, in 
order to investigate the multiple mechanisms (metal to composite direct adhesion, pin-
composite interaction…) that rule the assembly, the present article focused on a simple unidi-
rectional piece: a double lap shear specimen. Some studies can be found on this kind of spec-
imen but for different materials and process. This geometry allows us to perform traction test 
in which both local and global data could be post treated. Several parameters have been test-
ed to evaluate the influence of pins’ arrangement on the model behavior. From this experi-
mental campaign, a numerical model with LS Dyna software and an analytical pre 
dimensioning tool are then proposed and compared. These first results encourage us to con-
tinue this study with future works to find the ideal texturing answering conception specifica-
tions. 
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1 INTRODUCTION 

1.1 Context 

During the past decades composites materials have taken more and more place in the 
transport industry. This is particularly true for the small series, where the price of the material 
have less impact on the production costs than in the large ones. One can take for example the 
evolution of the percentage of structural composite in the total weight of a plane in airbus 
production which goes from nearly 5% in the A300 (1972) to more than 50% for the more 
recent A350-900 XWB (2013). However, if composites are now common in this industry, 
their introduction in the large series of the automotive field is still very challenging. CO2 
emission standards required by various countries (Europe, USA, but also China) are forcing 
this sector to consider cutting edge solutions in weight reduction. The introduction of compo-
site in structural applications is one of the main tracks, but this raises other issues like the way 
of joining the new composite parts with others that, for economic or structural reasons, will 
remain in metal. The joining method is a key choice so that the assembly can assure a safe 
load transfer while meeting the drastic specifications of the automotive industry. 

1.2 State of the art 

The two most common ways to assemble structural application in car industry are mechan-
ical fastening and bonding. Both of them get their own advantages and limitations. Bolting 
benefits of a long return on experience and is a fast, cheap process but not the more efficient 
considering the additional weight, stress concentration and the weakening of the CFRP during 
the drilling process [1, 2, 5 and 13]. On the other hand bonding allowed the preservation of 
both substrates [7] but its efficiency decreased in extreme conditions (extremes temperature, 
high rate of humidity) and still need an important overlap surface. Hybrid solutions or the use 
of safety rivets can remedy to those limitations but, again those actions increase the weight of 
the structure. Apart from those industrial technologies, some other joining methods can be 
found in the literature. In [4] an arrow shape is laser cut and bent in a steel sheet. Those ar-
rows are then inserted inside the composite. This study shows good results for 0° and 30° 
loading under various strain rates. The Surfi-Sculpt™ process, patented by The Welding Insti-
tute aims at sculpting a metal surface thanks to an electron beam. Once treated, the metal can 
then be assembled to a composite (ComeldTM process). Various papers explore this technolo-
gy and its simulation [11 and 12]. Among the inconvenient of Comeld, the weak peeling 
strength, and the influence of the process on fiber orientation, and the resin distribution can be 
cited. The firm Alstom has also patented an assembly process between a metallic and a non-
metallic part. Drops of solder formed by an arc welding process are placed, on the surface of 
the metallic part. Once cooled each of this droplets forms an anchoring point to the composite. 

Working on the same principle, the Austrian society Fronius filled a patent (Figure 1) on a 
process named Cold Metal Transfer (CMT) allowing the welding of small pins on a metallic 
surface. This technology offers a better control of the shape of the pin formed that way than in 
the process mentioned above [8]. Experimental investigations have been conducted on CMT 
process in [10] showing promising results on thermoset CFRP – Steel assembly. The perfor-
mances are then compared to those of the arrow shape in [9] showing comparable results in 
terms of maximum transferable joint forces and energy. 
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Figure 1: (a)Fronius‘ patent (b) anchoring of CMT in pins as in thermoplastic composite as developed in 
LIMECO project 

This study focus on the evaluation and simulation of a multimaterial structure, joined with 
a CMT pins interface, more precisely on the case of a front seat back rest.  

2 TRIANGLE CASE OF STUDY 

2.1 Methodology 

A thermoplastic composite triangle is assembled to the head of a steel articulation mecha-
nism thanks to a metallic disk textured by the CMT pin technology (Figure 2). The CMT pins 
penetrate into the composite, locking the assembly in the transverse direction. A polyamide 
resin is added to avoid sliding between the two parts. Finally a second metallic triangle is 
welded to the articulation so that a moment could be transferred. 

Figure 2: Assembly’s geometry 

This assembly aims at transferring a torsional moment, along the rotational axis. The inter-
face is especially complex and nonlinear, a fine representation of the local behavior of the 
structure would be extremely penalizing for calculation time. For this reason, it has been de-
cided to search for the simplest possible method that conserves good global results. A first 
hypothesis has been to infer that the stiffness of the assembly is mainly due to interface’s tex-
turing so the other parts of the structure can be considered perfectly bonded. The goal here is 
to put forward the geometrical simplifications that will reduce calculation costs. The choice 
has been made to represent the bonded structure with multilayer element. Those elements are 
an extension of the monolayer shell theory of Reissner. This type of element has the ad-
vantages to integrate different materials along its thickness (one material law per integration 
point), so with this element, one can represent a superposition of different parts inside a single 
element.  
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2.2 The multilayer model 

The principle is to project on a plane surface the geometric profiles of the different pieces 
of the assembly. Thanks to multilayer elements, the section of each portion of the piece is 
then reconstructed. Here the assembly will be represented with two parts: the first part will 
represent the overmolding resin + composite, the other the metallic part. As the thickness of 
the shell is important regarding to the mesh size, several integration points per layer have 
been implemented.  

The contribution of the interface is represented with a nonlinear torsional spring. The com-
portment law of this spring is composed of a torsional stiffness, a nonlinear moment-angle 
curve and a moment of failure. At first, these parameters are set up from experimental data; 
future works will propose an analytical model allowing identifying them.  

To validate the model, numerical results have been compared to experimental ones from an 
experimental campaign. Specimens are fixed on a test bed with the following boundaries con-
ditions: a constant low rotational speed is imposed to the steel triangle while composite trian-
gle rotations are locked. This triangle remains free to translate along the rotation axis 
(Figure 3). 

Figure 3: (a) Experimental set up, (b) Comparison between experimental and numerical results 

Thanks to spring parameters set up, numerical results show good accordance with experi-
mental ones.  

2.3 Limitation of the model 

A method giving spring behavior from the pins disposition is still necessary. To define this 
method, investigations have been made on another kind of geometry. Indeed, the assembly’s 
geometry leads to complex solicitations and experimentally the metal composite interface is 
difficult to instrument correctly. Moreover the finite element model requires an important 
number of elements to model both pin scale and assembly’s scale with enough precision. In 
order to investigate the multiple mechanisms (metal to composite direct adhesion, pin-
composite interaction…) that rule the assembly, the present article focused on a simpler unidi-
rectional piece described in the following part. Two methods of simulation, one using the Fi-
nite Element Method (FEM) and the other using an analytical algorithm, are then proposed 
and compared. 
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3 EXPERIMENTAL CAMPAIGN 

3.1 The geometry tested 

The geometry of the specimen should enable to isolate a single pin’s behaviour, and the 
influence of the number of pins and their disposition on the specimen’s behaviour. Moreover 
instrumentation should be simple and give access to the local comportment of the interface. In 
papers and more precisely in [13] one can find the use of a double lap shear speciemen (DLS) 
to characterize an interface working under a shear loading. This geometry has the advantage 
to limit the peeling phenomenon due to the lack of planeity in the loading. The geometry 
described in Figure 4, is composed of two glass fiber shells, termostamped on both sides of a 
metalic plate. The recovery zone is textured with the CMT pin technology. Outside of the 
interface area, a metal wedge is inserted between the two composites to maintain the thickness 
of the composite part of the specimen, as described in the figure below. Pin’s height is set up 
at 3 mm so that the head of each pin flushes with the top of composite layer. 

Figure 4: Specimen geometry 

Three pin’s dispositions have been tested: 6, 3, and 1 raw(s) of 4 pins. Only cylindrical 
shaped pins of 1mm diameter are welded. To ensure the repeatability five tests have been re-
alized on each configuration. 

3.2 Experimental set up 

The tensile tests were carried out on a quasi-static testing machine INSTRON 5584 at a 
1mm/min speed (Figure 5.a.). Resultant efforts were measured by a force cell. A measure of 
the relative axial displacement of the two parts is performed by digital image correlation 
(DIC). Two high-definition recording cameras filmed the test: one record the edge of the DLS 
(Figure 5.b.), the other one of the two faces (Figure 5.c.).  

Figure 5: (a) Experimental set up, (b) DLS (edge), (c) DLS (face) 
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3.3 Results and discussion 

Figure 6: Effort – Displacement graph. 

The experimental results are given in Figure 6, where the effort displacement law is given 
for the three tested configurations. For readability only one representative curve of each con-
figuration has been displayed. Under a tensile loading, the DLS shows a linear elastic behav-
ior, followed by a plastic softening. This softening leads to two kinds of failure, depending on 
fiber’s orientation and effort’s level. On the one hand (and in most situations) a noisy failure 
of the can be heard, followed by a drop of effort level. Moreover almost none normal to the 
interface displacement is measured by the DIC before failure. This is characteristic of a metal 
to composite direct adhesion [3] involved by thermo stamping. On the other hand, if fiber’s 
orientation has been too disturbed and if the efforts are important enough, a failure of the pure 
composite part of the DLS can be observed. 

An important dispersion can be observed between the five samples of the 24 pins configu-
ration. This is due to resin creep during the thermo-stamping operation. In the two more flexi-
ble cases, this leads to a composite kind of failure. In the following parts of the paper, for this 
configuration, the simulation results will be compared to the stiffer experimental result. 

4 NUMERICAL MODEL 

4.1 Geometry and meshing 

The geometry and meshing are realized with Ansys Workbench v15 software. The explicit 
solver used is LS Dyna R7.1. For this model, only the pure composite and the interface part of 
our DLS are modeled. The steel part is considered rigid. Two planes of symmetry allow simu-
lating only a quarter of the specimen (Figure 7). The model is meshed with one integration 
point hexahedral elements. Mesh size goes from 0.1 mm on the pin to 0.3 mm on the rest of 
the interface.  

Interface failure 

Composite failure 
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Figure 7: Geometry and meshing 

To avoid initial penetrations, a small gap of 0.025mm is left between the pin and the sur-
rounding composite. A friction coefficient of 0.05 is added. Symmetry conditions are applied 
to the corresponding faces. The end of composite part is considered fixed and a constant 
speed is imposed the other end of the DLS, on the steel section. 

Concerning pins, two parts can be considered: the welding cone at pin’s base and pin’s 
stem/head. The pin, made of G3Si1, is characterized at solid state. A traction test performed on 
the welding wire shows important differences from the values given by the provider. It has 
been settled that the welding cone will be modeled according to providers’ data and the wire, 
which didn’t melt during the welding process, with the property obtained from the traction 
test. The material law n°261 of LS Dyna developed by Pinho & al in [6] is used. This material 
law allows the user to implement the in-plane shear behavior with a defined curve.  At the 
neighborhood of each pin, the material law is replaced by an orthotropic linear law so that the 
local artificial constraints don’t damage the composite. This hypothesis is justified by obser-
vations on the post rupture aspect of the interface. The direct adhesion is modeled with layer 
of cohesive elements. No data were given to implement the comportment law of those ele-
ments. So the general law n°138 has been chosen and its parameters were calibrated on exper-
imental results.  

The comparison between numerical and experimental results is given in Figure 8. 

Figure 8: Comparison of the numerical and experimental results 

Numerical results show a good accordance with experimental ones. Maximal efforts espe-
cially, are obtained with a 5% precision.  

To link this result to the triangle issue, the local behavior of one pin in a composite envi-
ronment has been studied. By refining the post processing it has been noticed, that a single 
force-displacement law, linking the effort at the base of the pin to its head’s displacement, can 
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be isolate for all the pins, in all the studied configurations (Figure 10). So an assumption has 
been made: the behavior of a pin can be found from a numerical model at pin’ scale. From 
this hypothesis, an analytical model giving the DLS traction law has been implemented. 

4.2 Scale of the pin 

Inside each DLS it has been noticed that a Representative Volume Element (RVE) can be 
isolated, (Figure 9). Thanks to geometrical and loading symmetries according to the plan (y,z), 
only half of the RVE has been represented. 

Figure 9: RVE Geometry 

The same contact, material laws, and type of elements are used as in the DLS model. The 
bottom face of the geometry is fixed, and symmetry conditions are applied on the faces nor-
mal to x-direction. A constant speed, in the z direction is imposed on both faces normal to z. 
The comparison between RVE’s behavior and each pins row from each configuration is given 
in Figure 10 (In the legend, “XX Pins RY” stands for “XX pins configuration, row number 
Y”): 

Figure 10: Pins local effort displacement law 

For each pin’s row, for each configuration (4, 12 and 24 pins), the Figure 10 gives the law 
linking pin’s head displacement to the effort transferred through pin row to the metallic plate. 
This graph shows that the behavior of the pin inside the RVE is representative of the behavior 
of any pin inside the DLS. A bilinear flexion law is extracted from this graph. The rupture cri-
terion which depends of the cohesive layer (i-e: metal to composite adhesion) is not associat-
ed to this law.  
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Now that the behavior of one RVE has been isolated, an analytical algorithm giving inter-
face behavior is proposed in the next part. 

5 ANALYTICAL MODEL 

5.1 Presentation of the problem 

For the next part, the following diagram (Figure 11: The CMT Pin link of the problem will 
be used: 

Figure 11: The CMT Pin link 

5.2 Equivalent model 

The model is made according to the following hypothesis: 
- In comparison to other materials, the steel plate is considered rigid.  
- The thermoplastic composite is supposed to be perfectly oriented, with the x direc-

tion as one of the orthotropic directions.   
- The displacement of a section of the composite, surrounding a pin is equal to the 

displacement of the head of this pin, ui. 

Pin’s behavior and cohesive layer on a RVE can be represented with a single multilinear, 
force displacement law	����,�. The composite transmits efforts from one pin to another, with a
stiffness noted	�	
�.

Once inserted in the global geometry, the system becomes: 

� =  ����,�(� − ��)
���

�� = �
����,�

�� = �� + ����,�. �� − ����,�(� − ��)
����,�

∀� ∈ �2, � − 1 , ��!� = �� + ����,� . (�� − ��"�) − ����,�"�(� − ��)
����,�!�

(1) 
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5.3 Different configurations 

The algorithm implemented in Matlab gives the following results (Figure 12) for the dif-
ferent configurations experimentally tested. 

Figure 12: Comparison of analytical and experimental results for 24, 12 and 4 pins configurations 

Again, the analytical results are close to experimental ones. The difference of stiffness in 
the 12 pins case can be due to an imperfection in fiber’s orientation in the experimental test.  

In this algorithm, the behavior part out of section is calculated analytically because of the 
simple geometry of the DLS. For a more complex case the interface can be simulated with a 
nonlinear spring. As pins are not modeled anymore, meshing the interface becomes much 
simpler and shell elements can be used to model the two parts. In the case of the 24 pin inter-
face, the geometry used in the numerical model becomes (Figure 13): 

Figure 13: Simplified geometry using non linear spring as an interface 

A comparison of experimental, numerical and analytical results is given in the following 
graph (Figure 14). In the legend, the “Ei” stands for “experimental test number i”:  
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Figure 14: 24 pins configuration, experimental, numerical and analytical results 

The real gain with the analytical model is on calculation time. For the numerical model the 
simulation was launch on a cluster with 8 nodes with a 4 x AMD Shanghaï 2380 2.5 GHz 
Quadcore processor and last more than 9 hours, whereas the analytical algorithm is solved 
quasi instantly on a single processor (i7-3630QM CPU, 2.4 GHz). This is especially conven-
ient for the pre dimensioning or optimization phases. 

6 CONCLUSION 

The CMT pin technology is used to produce a multimaterial assembly between a steel part 
and a PA6, glass fiber thermoplastic composite. As a fine representation of the interface ge-
ometry would be complicate and expensive, a multilayer model combined with a nonlinear 
rotational spring is proposed to simulate the global behavior of the assembly. To implement 
spring parameters and find a method to study the local behavior of this assembly, double lap 
specimen are designed and tested on a quasi-static traction machine. The results show the im-
portant influence of the thermo stamping phase of the production on the behavior of the final 
specimen. 

A numerical model is then proposed for these DLS, showing comparable results with ex-
perimental ones. Thanks to this model, the local behavior of a RVE, a pin stamped in thermo-
plastic composite has been extract. The flexural law obtained this way is then inserted in an 
analytical algorithm, which calculates the comportment law of the interface under shear load-
ing. The whole interface can be then simulated with a simple nonlinear spring (whose parame-
ters have been implemented from the previous algorithm) and inserted in another finite 
element model. The analytical algorithm works under any shear loading, and must be extend-
ed to torsional solicitations, so that it can be used to represent the triangle interface. These de-
velopments are still in progress. 

This method shows very fast results for a given disposition of pin, shear loaded, and can be 
an important advantage for the pre dimensioning phases. The numerical model can be used if 
specific local post processing data are needed. This method represents a powerful tool for the 
comprehension and the development of the CMT pins assembly technology. 

In future works an application to this method to a different texturing can be instigated. This 
method has also a high potential in optimization problems and can be used to find the ideal 
pin disposition answering interface specifications for both double lap and triangular specimen. 
Other kind of loading, as torsional or out of plane loading could be studied with a similar ap-
proach.  
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Abstract. This work presents a successful methodology for obtaining failure envelopes of uni-
directional fiber reinforced composites based on micromechanical analysis by the asymptotic
homogenization [1] method. Given a structure (in this case a composite material lamina) and
external loads, plus having its material heterogeneity geometrically represented by a periodic
unit cell of microstructure, the asymptotic homogenization method is able to predict its mi-
cromechanical stresses. Such stresses may be evaluated by failure criteria of the composite’s
constituents for several loading conditions, and this way it is possible to assess the compos-
ite’s failure envelope. In the methodology developed, a periodic unit cell of the composite
microstructure is isolated, consisting of a parallelepiped of polymeric matrix reinforced by
cilindrical fibers oriented in one direction, and its behaviour is evaluated by an appropriate
finite elements model. At first, the unit cell is tested in several directions to find strengths for
the matrix and fiber and also matrix/fiber interface, thus evaluating failure characteristics of
the composite constituents. The tests are carried out considering several possible orientations
for the unit cell inside the related macroscopic media, which take into account the possible
relative positions of the chosen unit cell inside the material heterogeneity of the composite.
Then, the strengths of the constituents are used to predict the failure envelope for the fiber re-
inforced material, according to failure criteria devoted to the constituents. In this prediction, it
is possible to say which is the constituent that fails first for each of the test loads. The results
obtained are in good agreement with experimental data for carbon/epoxi and glass/epoxi com-
posites. Moreover, the envelopes obtained are similar to the Puck & Schürmann [2] criterion,
widely used to predict failure of such composites. This way, the present methodology renders
good failure envelopes for fiber reinforced composites and gives information on the strengths of
the constituents and material phase of failure, benefits from an incorporated micromechanical
analysis.
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1 INTRODUCTION

Composite materials are made up of two or more materials (constituents) [3, 4] that have
better properties than the constituents when alone [5]. The unidirectional fiber reinforced com-
posite [3] is an example of such material that can achieve excellent mechanical properties having
low mass. Because of that, they are heavily applied at the aeronautic industry [4]. The rein-
forcing phase are usually made of carbon or glass fibers and the base material is called matrix,
usually made of epoxy [6].

It is very important in projects that use those materials to predict when failure is going
to happen. A common procedure to investigate failure is to perform experiments. However,
those are expensive, time consuming and it is not possible to investigate failure in all loading
conditions. Then, with the increase of computer’s capabilities, numerical methods arise as a
possible manner to predict failure of composite materials.

Numerical methods can tell if failure is going to happen in a macromechanical or microme-
chanical analysis. The macromechanical analysis treats the composite structure as an orthotropic
material and the failure criteria use the lamina strengths to determine failure [7]. The microme-
chanical analysis predict failure using the strengths of each constituent [8]. The micro analyses
use stresses at each constituent to tell whether failure is going to happen and, because of that,
different failure criteria can be considered for each constituent.

In this work, a micromechanical analysis of unidirectional fiber reinforced composites if per-
formed using the asymptotic homogenization technique [1]. This method permits to calculate
stresses at the micro level and then, failure can be predicted at each constituent. The methodol-
ogy to determine failure presented here considers three regions: matrix, fiber and the interface
between matrix and fiber.

2 ASYMPTOTIC HOMOGENIZATION

Asymptotic homogenization techniques allow to obtain micromechanics elastic properties
of a composite considering its microstructure. In this technique, two levels are considered: the
macro (x) and the micro (y). The micro level is considered to be periodic and it is represented
by an unit cell formed by matrix and fiber. Its geometry can be changed in order to vary fiber
volume fraction (Vf ) and cross section shape. Inclusions and holes can also be inserted in it. In
the present work, the hexagonal (Fig.1 a) and the square (Fig.1 b) unit cells are used to perform
the homogenization.

2.1 Homogenized elastic properties

The homogenized elastic properties of the composite are obtained at micro scale by:

EH
ijkl =

1

Y

∫
Y

(
Eijkl − Eijkm

∂χkl
m

∂yn

)
dY. (1)

In Eq.(1), tensorial notation is used, with the indexes vary from 1 to 3. Y is the volume of
the unit cell, Eijkl are the elastic properties of each point within the microstructure, yn are the
coordinates in the unit cell, χkl

m are the auxiliar displacement fields that are obtained from the
following equations, ∫

Y

Eijmn
∂χkl

m

∂yn

∂δui
∂yj

dY =

∫
Y

Eijopε
kl
op

∂δui
∂yj

dY. (2)
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Figure 1: Periodical fiber distribution in the composite and the hexagonal unit cell.

In Eq.(2), εklop are unitary constant strain test fields and δui are the virtual displacements.
Equation (2) is here solved in the software PREMAT [1] using finite element method [9].

It can be noted in Fig.1 that the distances between each fiber in the hexagonal geometry are
the same, but this not happen in the square unit cell. Because of that, transversal isotropy is
expected for the perfect hexagonal unit cell [10].

2.2 Micro stresses

After computing the elastic properties, stresses at micro level can be calculated with the aid of
the χkl

m fields. Equation (3) allows the determination of the stress tensor σij for each point of
the unit cell:

σij =

(
Eijkl − Eijmn

∂χkl
m

∂yn

)
∂u0k
∂xl

=

(
Eijkl − Eijmn

∂χkl
m

∂yn

)
ε0kl. (3)

In Eq.(3), ε0kl are the strains at macro level that are obtained from the average macroscopic
displacement field u0 and xl are the coordinates at macro level. In our case the stress calcula-
tions are performed using the software POSTMAT [1].

3 FAILURE ANALYSIS

In this section, a methodology to determine failure using the asymptotic homogenization
technique is presented. The failure methodology presented here is based on the work presented
by [11] in which the unidirectional strengths of the composite are used to calculate the strengths
of the constituents. At the composite micro level, three regions are considered in the analysis:
matrix, fiber and the interface between them, and each of them has its own failure criterion.

3.1 Matrix failure criterion

Epoxy matrices are considered isotropic materials with different tensile and compressive
strengths. There are several experiments [11] showing that the matrix failure depends on the
deviatoric stress invariant J2 and on the volumetric stress invariant I1. A failure criterion based
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on the relationship between those invariants is presented in [11]. It is known as the modified
von Mises criterion for isotropic material that has different compressive and tensile strength,
and is given as follows: (

σVM

σcr
V M

)np

+

(
I1
Icr1

)
= 1. (4)

The mentioned invariants are calculated by:

I1 = σm
11 + σm

22 + σm
33, (5)

I2 = −(σm
11σ

m
22 + σm

11σ
m
33 + σm

33σ
m
22) + (σm

12)
2 + (σm

23)
2 + (σm

23)
2, (6)

J2 =
I21
3

+ I2. (7)

In Eq.(5) and (6), σm
ij are the components of the stress tensor of the matrix and I2 is the

second volumetric stress invariant. In Eq.(4), np is a positive real number and the terms σVM ,
σcr
V M and Icr1 are described below:

σVM =
√
I21 − 3I2, (8)

σcr
V M = Tm

(
αnp + α

α + 1

)1/np

, (9)

Icr1 = Tm

(
αnp + α

α− 1

)
. (10)

In Eq.(9) and Eq.(10) Tm is the tensile strength of the matrix and α = Cm/Tm, where Cm is
the compressive strength of the matrix.

3.2 Fiber failure criterion

Carbon and glass reinforcing fibers are considered to be transversally isotropic [11]. They
have considerably higher elastic modulus and strength in the longitudinal direction than the
matrix. In [11], the authors apply a quadratic failure criterion for fiber and show that terms
regarding transverse strength can be eliminated from it. The result is a criterion that compares
the normal stress in the fiber σf

11 to fiber longitudinal strengths:

−Cf < σf
11 < Tf . (11)

Where Cf (Cf > 0) and Tf are the compressive and tensile strength of the fiber in the
longitudinal direction, respectively.

3.3 Interface failure criterion

The interface failure can be caused by debonding or detachment between fiber and matrix
[11]. In this work, it is assumed that normal and shear stresses at that region are responsible for
interface failure. The failure criterion is also presented in [11]:(

〈tn〉
Yn

)2

+

(
ts
Ys

)2

= 1. (12)
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In Eq.(12) Yn and Ys are the normal and shear strengths of the interface, respectively, and tn
and ts are the normal and shear stresses, respectively, at the interface; and the symbol 〈·〉 is an
operator that returns 0 if the argument is negative. It means that only interface tractions cause
failure.

3.4 Unit cell orientation

In this work the perfect hexagonal and square unit cells are used to sample the microstruc-
ture. It can be seen in Fig.1 that the fiber distribution using those cell within the composite has
a constant pattern. However, in real unidirectional fiber reinforced composites the fiber distri-
bution is rather random. Then, in order to account for this randomness, all possible unit cell
orientations are considered as depicted in Fig.2.
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x1//y1

=0°y2

y3

y1

x2

x3

 >0°
x1//y1

y2

y3

y1
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x3//y3
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=0°

x2

x3

x1//y1
 >0°

(a) (b)

(c)

(d)

Figure 2: Possible orientations for the perfect hexagonal ((a) and (b)) and square unit cells ((c) and (d)).

Considering x = (x1, x2, x3) the lamina coordinate system, the angle γ accounts for the
rotation of the unit cell around the axis y1. All possible fiber arrangements are within the
domain γ ∈ [0, π] rad.

3.5 Strengths of the constituents

The unidirectional strengths of the composite are used to calculate the strengths of the con-
stituents. The five unidirectional strengths of the composite are: Xt and Xc are the tensile and
compressive strengths at the longitudinal direction, Yt and Yc are the tensile and compressive
strengths at the transversal direction and S12 is the in-plane shear strength. Those are considered
as loads at the macro level and the micro stresses due to each of the macro loads are calculated
for all possible unit cell orientations.

Three graphics can be plotted using the micro stresses, each of them representing a region of
the microstructure: σf

11 is plotted in the fiber graphic, σVM x I1 in the matrix graphic and ts x tn
in the interface graphic. Those are exemplified in Fig.3.

Those graphics combined with the failure criteria of Eq.(4), Eq.(11) and Eq.(12) are utilized
to calculate the strengths of the constituents.
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Figure 3: Stresses cloud of points of each region of the micro level.

For matrix, an optimization process is used to determine Tm, Cm and np, where the quadratic
distance between the failure criterion and the micro stresses are minimized. For the fiber and in-
terface, the strengthsCf , Tf , tn and ts are calculated in order to guarantee that the unidirectional
strengths of the composite are exactly predicted.

Finally, with the strengths of the constituents, the failure envelope can be built.

4 Results

In this section, the failure methodology is employed to an AS4/3501-6 carbon epoxy com-
posite and the numerical results are compared to experimental data [7].

The elastic properties of the constituents are shown in Tab.1.

Properties/Material AS4 Carbon 3501-6 epoxy
E1 (GPa) 225 4.2

E2 = E3 (GPa) 15 4.2
G12 = G13 (GPa) 15 1.567

G23 (GPa) 7 1.567
ν12 = ν13 0.2 0.34

ν23 0.2 0.34

Table 1: Elastic properties of the constituents. Source:[12]

The elastic properties of the constituents are used as inputs to the homogenization problem.
The homogenized elastic properties of the composite are calculated by Eq.(1). The fiber volume
fraction used in the failure analysis was Vf = 55% due to this volume fraction yielded the least
sum of error between experimental and numerical elastic properties when the perfect hexagonal
unit cell was used, as can seen in Tab.2.

Now, the unidirectional strengths of the composite depicted in Tab.3 are applied as macro
loads.

Applying those strengths as macro loads the micro stresses are calculated for each region of
the microstructure and graphics can be built with those stresses. Those in conjunction with the
failure criterion equation are used to determine the strengths of the constituents. The calculated
strengths of the constituents are shown in Tab.4.

With the strengths of the constituents, the failure criterion equations of each region are de-
fined. Figures 4 and 5 show the graphics for the perfect hexagonal and square unit cell plotted
with the failure criterion equations.
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Experimental data Asymptotic homogenization
Elastic properties Vf = 60% Vf = 60% ∆ (%) Vf = 56% ∆ (%)

E1 (GPa) 126.000 136.060 8.0 127.230 1.0
E2(GPa) 11.000 8.856 19.5 8.437 23.3
E3 (GPa) - 8.841 - 8.425 -
G12 (GPa) 6.600 4.544 31.2 4.175 36.7
G23 (GPa) - 3.386 - 3.186 -
G13 (GPa) - 4.523 - 4.161 -

ν23 0.400 0.361 9.8 0.374 6.5
ν13 - 0.252 - 0.257 -
ν12 0.280 0.251 10.4 0.257 8.2

∆ = 15.8% ∆ = 15.1%

Table 2: Experimental elastic properties of the AS4/3501-6 carbon epoxy composite [12] and from
asymptotic homogenization using perfect hexagonal unit cell. The difference between experimental data
and homogenized is ∆ = 100 |Exp−AH|

Exp . The average error is ∆. The sign ”-” means that experimental
data were not provided.

Strength properties AS4/3501-6 carbon epoxy
Yt (MPa) 60.2(b)

Yc (MPa) 273.3(b)

Xt (MPa) 1950(a)

Xc (MPa) 1480(a)

S12 (MPa) 73.4(b)

Table 3: Unidirectional strength properties of AS4/3501-6 carbon epoxy. Sources: (a) - [12]; (b) - [7].

Figure 4: AS4/3501-6 carbon epoxy cloud of points and the failure criteria for each region using the perfect
hexagonal unit cell.

Finally, the numerical failure envelopes can be constructed and be compared to experimental
data. In addition to the asymptotic homogenization, the Puck & Schürmann [2] failure envelope
is also plotted. The parameters that feed this criterion are mf = 1.1 and p(−)⊥‖ = 0.3. Figures 6
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Material Strength parameter Perfect hexagonal Square
Matrix Tm (MPa) 135.05 130.84

Cm (MPa) 260.89 270.33
np 5.50 3.66

Interface Yn (MPa) 102.95 84.17
Ys (MPa) 168.14 168.53

Fiber Tf (MPa) 3447.70 3434.07
Cf (MPa) 2616.72 2606.37

Table 4: Strengths of the constituents and parameters for the perfect hexagonal and square unit cells of
the AS4/3501-6 carbon epoxy.

Figure 5: AS4/3501-6 carbon epoxy cloud of points and the failure criteria for each region using the square unit
cell.

to 8 show the failure envelopes calculated.
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Figure 6: AS4/3501-6 carbon epoxy failure envelope at σ22 x σ12.
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Figure 7: AS4/3501-6 carbon epoxy failure envelope at σ11 x σ12.
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Figure 8: AS4/3501-6 carbon epoxy failure envelope at σ11 x σ22.

5 CONCLUSIONS

This work proposed a methodology to predict failure of unidirectional fiber reinforced com-
posite using the asymptotic homogenization technique. It can be seen that the failure envelopes
calculated using the methodology predict well the experimental failure points. It can also be
noted that the numerical failure envelopes calculated are very similar to the Puck & Schürmann
failure envelope in some regions of the graphics. The proposed methodology revealed to be a
good method to predict failure of unidirectional fiber reinforced composites using the unidirec-
tional strengths of this material.

The differences between numerical and experimental failure envelopes are caused by simpli-
fications on the mathematical model, which are:

• The interface between fiber and matrix is considered perfect, this is: the displacements of
that region are the same for matrix and fiber. In a real composite, interfacial imperfections
may exist, changing the composite behaviour;

• The fiber alignment is also perfect, all fibers are parallel due to the periodicity, which do
not happen in the real material;

• There is no fiber waviness, a common characteristic in real composites;

• The fibers, because of the periodicity and the unit cell model, are perfectly distributed
inside the macrostructure, this is: the fiber volume fraction is constant within the mi-
crostructure. Random distributions are seen in a manufactured composite.
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Abstract. While the key damage processes for focusing on the macroscopic mechanical be-
havior of amorphous glassy polymers are already well identified, relevant deformation mecha-
nisms for fatigue damage are not yet established. The underlying study was born from the wish
to gain some better understanding of how said mechanisms contribute to the fatigue damage
in amorphous glassy matrix. In order to investigate the issue, an approach suitable for mod-
eling fatigue in amorphous glassy polymers is proposed. The approach is calibrated to data
taken from isothermal fatigue tests on dumbbell shaped PC-specimens. To investigate fatigue
versus inhomogeneous deformation behavior, the approach is implemented in a finite-element
program.
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1 INTRODUCTION

Manufacturers of polymer materials are being interested in assurance of components’ life-
time, especially when the lifetime cannot be easily inspected or may lead to a catastrophe in
service, [30]. Examples of mechanical components that are manufactured from polymers and
may experience fatigue during their service life are found e.g. from medical industry, automo-
tive glazing, aeronautics, and armour, [37], [24]. The design of such constructions could benefit
from capable models and the strong computational capability available nowadays.

The knowledge of the ultimate behavior of amorphous glassy polymers has been developed
rapidly while only a little of this work has been devoted to fatigue. Specific features of fatigue
failure development are found e.g. from [40], [3], and [31]. To explore materials’ microstruc-
tural characteristics with regard to fracture toughness, a strong attention has been paid on the
damage mechanisms ahead of the crack tip, cf. [39], [36], [7], and [16] to mention a few. Much
research has also devoted to the investigation of fatigue crack propagation in polymer compos-
ites having strong directional mechanical properties, cf. e.g. [12], [20], [19]. However, those
fracture mechanics approaches neglect the crack initiation stage which may cover over 90% of
the total fatigue life of amorphous polymers, [18].

Fatigue failure of amorphous polymers in their glassy state (termed amorphous glassy poly-
mers) is generally due to a two-step process. In the first, initiation step failure is typically
attributed to deficiencies or impurities affecting significant stress concentrations which exceed
the strength limits of the material, [12], [23]. Under repeated loadings, those defects can nucle-
ate and grow during the service life even at stress levels well below the nominal yield strength,
[7], [27]. This part of fatigue is influenced by the localized yield-like deformation process
which provides fatigue crack initiation sites controlling fatigue life (number of cycles N to fail-
ure) and thus being of a specific interest in the applied fatigue stress S (S-N curve), [23], [22].
The second, propagation step is characterized by the growth of damage through the coalescence
of micro-cracks and propagation of small cracks to form large cracks which ultimately cause
component failure, [21], [22]. However, the duration of the initiation step is typically orders
of magnitude greater than the propagation time and thus plays most important role on fatigue
behavior, [18]. Based on this observation the influence of crack propagation in the material
behavior is often omitted in the fatigue models.

Fatigue failure of polymers is generally due to either mechanically or thermally dominated
mechanisms. Mechanical modes that occur relatively low stresses and frequencies are charac-
terized by the two step process described above. The macroscopic mechanical behaviour under
such conditions is primarily (visco)elastic being influenced by the defects or inhomogeneities
in material, [3], [17]. The fatigue life is relatively long while the ultimate fracture mechanism
is rather brittle and influenced by combined mechanisms of the plastic dilatation and coales-
cence of inclusions or voids, [23], [28]. In thermally dominated mechanisms, at relatively high
stresses and frequencies, the physical and mechanical properties of the polymer change due to
hysteretic heating. This characteristic results from a high internal damping and low thermal
conductivity of polymers when heat generated from mechanical fatigue cannot be dissipated to
the surroundings, [41], [40], [18]. The time to thermally dominated failure is often rather short
and the failure mode ductile, [4], [3], [17].

From a mesoscopic point of view, shear yielding and crazing, subsequent crack initiation and
propagation are assumed to be major mechanisms for fatigue development in amorphous poly-
mers. However, through existing literature of the field, key morphological or microstructural
mechanisms that could explain their origin and subsequent progress of fatigue damage both in
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homogenous and in toughened amorphous polymers are unclear atthis moment.
The article continues by introducing a novel model suitable for predicting fatigue in amor-

phous glassy polymers. The governing constitutive model employed is an extension of the
celebrated Boyce-Park-Argon (BPA) model, cf. [5], for predicting inhomogeneous plastic de-
formation in glassy polymers. Thereafter, Section 2.1 describes the proposed fatigue model and
its numerical treatment in detail. Modeling of fatigue behavior per se is based on an appeal-
ing model introduced in [33], which model is formulated in continuum mechanics framework
by using evolution equations that make the definition of damage changes per cycle redundant,
i.e. cycle-counting techniques do not need to be applied. The approach is calibrated to data
taken from both cold drawing experiments and isothermal fatigue tests on dumbbell shaped PC-
specimens. Sections 3 and 4 are dedicated to the evaluation of the proposed approach through
tangible examples where the model results are compared with experimental observations.

2 The model

The governing constitutive model employed here has been introduced in a previous study
[13]. The model is a three dimensional extension of the BPA model, [5]. The extended model
is aimed at long-term investigations of the mechanical behavior of amorphous glassy polymers
under repeated loadings. Since amorphous polymers show a notable time dependent behavior
under loading cycles, i.e. the polymer chains need a relaxation time to attain their equilibrium
state after deformation, both viscoelastic and viscoplastic ingredients need to be included in the
model. A more detailed account of the applied constitutive model and its numerical treatment
is given in [13] and [14].

2.1 Fatigue model

When dealing with fatigue under variable complex loadings, a suitable damage rule con-
stitutes an integral part of the analysis. The stress approach, which has been reported to be
suitable for the modeling of mechanically dominated, relatively brittle and high-cycle fatigue,
is considered as a basis of the proposed fatigue model. Majority of the those approaches rep-
resents fatigue-limit criteria in which the fatigue limits are described under infinite number of
identical cycles, [34], [26]. For finite life predictions, however, those models are equipped with
cumulative damage theories, which describe the damage increase per cycle and thus require that
the loading consists of well-defined cycles, [29], [34], [26]. To define equivalent, representative
cycles for load histories, cycle-counting methods need to be applied, cf. [9]. However, it is of-
ten challenging to extract equivalent cycles from complex load spectrum, which characteristic
makes the cycle-counting approaches difficult for demanding applications in practice. Another
way is to formulate the fatigue damage model within continuum damage mechanics (CDM)
framework without need to measure damage changes per loading cycles, [32], [35], [19], [22].
However, those approaches as such are not suitable for modeling fatigue in amorphous poly-
mers.

An appealing model suitable to describe a long-term fatigue failure behavior was proposed
by Ottosen et al. [33]. According to this model, uniaxial and multiaxial stress states are treated
in a unified manner for arbitrary loading histories, thus avoiding cycle-counting methods. Ex-
ploiting this evolution equation based fatigue modeling concept, a model for predicting the
fatigue life of amorphous glassy polymers is proposed. The model uses only few macroscopical
quantities and a single parameter set, which property makes the model simple and suitable for
applications in practice.
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Figure 1: Alternating uniaxial stress state. The endurance surface will track the stress point and then moves
between the statesA andB (generally not fixed). Peripheries of the endurance surfaces in the initial and final state
are highlighted by the dashed and solid line, respectively.

Due to crazing and the existence of voids around the chain molecules and inclusions, the
microscopic yield of amorphous glassy polymers may depend on hydrostatic pressure, [38],
[8]. In that context, any flow rule where the volumetric deformation is suppressed is not solely a
sufficient rule for modeling fatigue. In the proposed model, the plastic deformation and fatigue
damage are defined by the two evolution equations, respectively. The evolution equation for
the plastic deformation does not include volumetric effects while for the fatigue damage it
does. The model for fatigue is based on the concept of a moving endurance surface in the
stress space and on an evolving damage variable, [33]. For many amorphous glassy polymers
such an endurance surface can be identified, i.e. the cyclic lifetime increases with a decreasing
accumulation of applied stress suggesting well-defined plateau when ultimate failure can finally
reached at finite numbers of cycles just above the endurance limit. Wöhler curves are commonly
used to illustrate those characteristics and identify polymers’ endurance limits.

The endurance surface is considered as a function of the stress history and it can move in the
stress space. In contrast to the plasticity theories for metals where the endurance surface may
lie inside the yield surface, the fatigue damage development in amorphous glassy polymers is
always induced by the propagation of plastic deformation. Also, since the polymer chains start
align with the loading direction already at relatively low stresses and plastic strains, polymer
materials show an anisotropic response which is in the model described by the backstress,β.
Due to that reasoning, the backstress is included to the endurance function. The expression of
the backstress is defined adopting the BPA model, [13]. To include also volumetric damage
effects, use is made of the endurance surface as

β =
1

S0

(τ̄ + aI1 − S0) = 0 (1)

where the effective stress̄τ is defined in terms of the second invariant of the reduced deviatoric
stresss− βdev −α as

τ̄ =
√

3J2(s− βdev −α) =
√

3

2
(s− βdev −α) : (s− βdev −α). (2)
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Figure 2:Alternating uniaxial loading. The damage development and movement of the endurance surface
during cycling is indicated by a double curve.

In the equation (2),s := τ dev is the deviatoric part of the Kirchhoff stress,τ , of which the first
stress invariant is given byI1 = tr τ , cf. [13]. α is a fatigue backstress defined subsequently.
The invariantI1 reflects the effect of mean stress, i.e. the hydrostatic tension enhances the
fatigue development while fatigue is suppressed under hydrostatic compression. The parameter
a in (1) is considered as positive and dimensionless which in uniaxial cyclic loadings determines
the slope of the Haigh-diagram. The last parameterS0 is the endurance limit for zero mean
stress. Shape of the endurance surface in the deviatoric plane is circular as illustrated in Fig. 1.

When low-cycle fatigue is studied, the impact of the backstressβ on fatigue is significant
since its magnitude in relation to the stress is large. Then, the backstress is considered as
a driving force for fatigue damage through the localized plastic deformation in the material.
When reducing stresses and strains, the effect of the backstress decreases and another backstress
quantityα dominates the fatigue damage development. In high-cycle regime, the presence of
α in the fatigue model is mandatory in order to govern fatigue of virtually elastic responses (cf.
e.g. steels).

The center point of the endurance surface is defined by theα + βdev tensor as depicted in
Fig. 1. Once an alternating loading is applied, the endurance surface will track the current stress
point since the movement ofα always is in the direction ofs − βdev − α. It is theα + βdev

tensor which memorizes the load history and results in the movement of the endurance surface
in the stress space. The evolution ofα is governed by a hardening rule similar to the Ziegler’s
kinematic hardening rule in plasticity theory, i.e.

α̇ = C(s− βdev −α)β̇, (3)

whereC is a non-dimensional material parameter. The volumetric damage effects are included
into (3) through the endurance surface (1). Sinceα is considered an overall driving force for
fatigue damage, it evolves only if the current stress state is outside the endurance surface, i.e.

β ≥ 0, β̇ ≥ 0 ⇒ Ḋ ≥ 0, α̇ 6= 0. (4)

Referring to Fig. 2 for an alternating uniaxial loading, the concept is further demonstrated,
see also [33] for a more detailed account. During loading from the state 1 to 2, the stress state
lies outside the endurance surface and damage evolves, i.e.β > 0 and β̇ > 0. Between the
states 2 and 3, the stress path has crossed the endurance surface and the stress state enters the
space within the endurance surface. Then,β > 0 andβ̇ < 0 when damage and the backstress
do not evolve, i.e.Ḋ = 0 andα̇ = 0 until the stress path crosses again the current endurance
surface at the state 3. It then follows thatα3 = α2. From the state 3 to 4, damage again
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evolves. In accordance with the stress path between the states2 and 3, the damage development
is inhibited until the state 5 is reached, i.e.α5 = α4.

Damage evolution

Despite possible strain hardening and subsequent directional damage fields especially in
large deformations, the fatigue behavior is described by a scalar valued quantity so as to keep the
model simple. Assuming damage increases nonlinearly with the distance from the endurance
surface, an exponential form

Ḋ = K exp(f(β;L1, L2, ϑ))β̇, (5)

with the values0 ≤ D ≤ 1, is chosen for the damage evolution law. In (5),K, L1, L2, andϑ
are material parameters.

Many amorphous glassy polymers (such as PC) show only a moderate increase of the applied
stress as the cyclic lifetime reduces. To capture such a behavior, a functionf having two linear
asymptotes for positiveβ is defined, i.e.

f(β;L1, L2, ϑ) = L1β − L2

[

β +
L2

ϑ
(exp(−ϑβ/L2)− 1)

]

, (6)

which has the asymptoteL1β whenβ → 0 (HCF-regime) and(L1 − L2)β whenβ is large
(LCF-regime). The curvatureϑ determines how rapidly the second asymptote is reached.

Since damage never decreases, it appears from (5) thatβ̇ ≥ 0, i.e. damage rate increases with
the distance from the endurance surface. Furthermore, damage develops only if stress states lie
outside the endurance surface, i.e.β > 0 and the condition (4) is fulfilled.

3 Calibration of the model

The governing constitutive model was first calibrated to data obtained from cold drawing
experiments on dumbbell shaped PC-specimens. Fatigue was omitted at this phase. A more
detailed account for the test program involving repeated loading cycles is found from [13]. The
calibrated parameters are listed in Table 1.

The parameters for modeling fatigue were determined from in situ measurements taken from
[17] and [18]. Material which has been employed in the tensile fatigue test is a quenched PC
(Lexanr 101R and 161R) and a specimen geometry used for fatigue studies includes a common
dumbbell-shaped, injection molded tensile specimen (ASTM D638-IV), cf. [1], [2], and [10].
Isothermal test conditions for mechanically induced fatigue involve uniaxial stress submitted to
load control at the room temperature of 23◦C.

Table 1: Constitutive model parameters for PC. The calibration of the model is based on the the cold
drawing experiments on a dumbbell shaped test specimens. The remaining viscoelastic constitutive
parameters areE = 2550 MPa,E1 = 1295 MPa,η = 1.5 · 105 MPas, andν = 0.37.

Parameter s0 sss h1 γ̇0 A CR N α

Unit ......... MPa MPa MPa s−1 MPa−1K MPa
Value ......... 96 76 720 5.6 · 1015 240 14 2.2 0.08
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Figure 3: Fatigue strengths (σm = σa + 2.2 MPa) for PC employed (left). The solid line denotes the model result,
and the marker△ refers to data points taken from [18]. The upper and lower horizontal dashed line refer to the
static tensile yield strength and an estimated endurance limit, respectively.

According to the test, the maximum stress level of a sine wave varies, while the minimum
stress level is kept at 2.2 MPa. The frequency applied is 2 Hz, [18].

First, the slopea of the Haigh-diagram was extracted from data given in [17] (Fig. 11a).
The fatigue limitS0 for zero mean stress and the remaining parametersC, K, L1, L2, andϑ
were calibrated to data shown in Fig. 3. The calibrated parameters are given in Table 2 and
the model response is depicted in Fig. 3. The results indicate that the cyclic lifetime smoothly
decreases with increasing accumulation of applied stress. Reducing the stress level, a transition
in the failure mode occurs from ductile to brittle, i.e. ultimate failure can finally reached at finite
numbers of cycles right above an expected endurance limit.

4 Results and discussion

4.1 Uniaxial stress state

Based on the calibrated parameters in Tables 1 and 2, the capability of the model to predict
fatigue phenomena is discussed. The development of the movement of the endurance surface
under a sinusoidal cyclic tension is demonstrated in Fig. 4. Right once the periodic loading
is applied, the endurance surface reaches its periodic state similar to demonstrated in Fig. 1.
During cycling, damage develops as the stress state is outside the endurance domain and moves
away from it, i.e damage always increases when the endurance limit in Fig. 4 shows an increase
and the stress is greater than the endurance limit. This situation was already illustrated in Fig.
2. Since the endurance limit in relation to the maximum stress is now low, damage increases
rapidly leading to a short fatigue life as it is depicted in Fig. 5.

Table 2:Material parameters of the fatigue model for PC. The calibration is based on the cyclic tension
experiments on a uniaxial tensile bar given in [17] and [18].

Parameter S0 a C K · 10−3 L1 L2 ϑ

Unit ......... MPa
Value ......... 28.0 0.95 0.05 5.8 18.0 4.0 2.0
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Figure 4: The cyclic true stress (solid thick line) and the periodic movement of the endurance limit
(dash-and-dot line) during first few stress cycles (left). The damage development during the first cycle
is indicated by the double curve. Model predictions for the second and last (prior to failure) hysteresis
loops (right).
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Figure 5:The periodic development of the true strain (solid line) and its viscoelastic component (dashed
line) at the beginning of cycling tension. The corresponding cyclic stress is shown in Fig. 4 (left).
Development of damage variable according to (5) (right).

Hysteresis loops of PC demonstrated in Fig. 4 show a constant area indicating a non-
substantial energy-dissipation, i.e. hysteresis loops do not show a progressive increase in com-
pliance and irreversible work during evolving fatigue, cf. [23], [18]. The result is a consequence
of both neglected temperature effects and physical aging which is a relevant assumption under
the applied low frequency loading. Fig. 5 further shows a periodically increasing development
of both the true strain and its viscoelastic component at the beginning of loading. A small
difference between the strains results from constantly increasing plastic strain. The growth of
viscoelastic and plastic strains during the cyclic loading lead finally to a notable elongation
composed of creep and plastic stretching. Considering a tensile test specimen, the elongation
causes neck propagation followed by a brittle rupture as shown in [18].

Almost fully reversed uniaxial loading case (a low negative mean stress) was also studied,
and the stress response as well as the corresponding hysteresis loops are shown in Fig. 6. In this
situation, a reduction in the true strain is observed which feature is due to an accumulation of
the viscoelastic and plastic strains. The development of the plastic strain shown in Fig. 7 refers
to ratchetting, i.e. constantly accumulated plastic strain develops without bound as the cyclic
loading continues, cf. [6], [21], [25]. Albeit not shown, similar phenomenon is observed in the
load controlled cyclic tension, cf. Fig. 5 (left). Comparison between the first few loops and the
loops prior to final failure (inset plot on the right) reveals that the area of the loops significantly
increases during loading. Despite an accelerated propagation depicted in the inset plot (left),
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Figure 6:The cyclic true stress at the beginning of cycling as the frequency is 2 Hz and the maximum
and minimum stresses are 56.4 MPa and -58.4 MPa, respectively (left). The inset plot shows damage
increase without phase shift (solid line) and with phase shift180◦ (dashed line). Model predictions
for the second and last (prior to failure) hysteresis loops are highlighted by the dashed and solid line,
respectively (right).

the final value prior to fatigue failure is still relatively low.
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Figure 7:Periodic development of the plastic strain at the beginning of a cyclic loading (left). The inset
plot shows an increase of the plastic strain up to the final failure. Stress vs plastic strain response at the
beginning of loading and prior to failure (right).

Fatigue of a dumbbell shaped PC-specimen

Due to the localization of the plastic deformation, damage grows unevenly in the material
leading to a reduced fatigue life somewhere in the material. Thus, it is of interest to investigate
the fatigue damage development of the entire test specimen by using a finite-element method.
The specimen’s geometry, loading conditions as well as details for the applied finite element
mesh are found from [13].

Fig 8 shows that the damage development progresses most intensively in the gauge section
of the specimen. This characteristic is because of an increasing localized plastic deformation
and necking during drawing, cf. [13]. The predicted progress of fatigue damage is in line with
experimentally observed macroscopic failure behavior of PC (at the same load) which shows a
stable neck growth followed by a rapid rupture, cf. e.g. [18]. It is largely acknowledged that
crazing is the governing micro-mechanism that triggers the fatigue damage at the sites following
closely the localization of the plastic deformation in the amorphous glassy matrix, [11], [15],
[7], [23].
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Figure 8: Damage development in a dumbbell shaped test specimen right after 100 cycles (right). The plot on
the left shows the damage development in the middle of the specimen. A stable damage growth initiates after
50 seconds. The minimum and maximum pressure employed at the bottom edge are 1.1 MPa and 28.1 MPa,
respectively. The corresponding average stress state in the gauge section is twofold.

A glance at Fig. 3 reveals that the fatigue life of the specimen under this loading should
remain under 400 cycles. Considering the result in Fig. 8, solely the calculation of the solution
for one hundred cycles took several hours. For this reason, when long term predictions are
investigated, the fatigue life (e.g. for steels) is traditionally evaluated by using the location
of most evolving fatigue observed at the beginning of the loading. However, due to a neck
initiation, the damage response shows a nonlinear accumulation which feature makes a reliable
prediction of the forthcoming damage and following fatigue life somewhat challenging. The
evaluation of the fatigue life is computationally expensive since the analyzes must continue
once a stable neck and damage growth are reached.

Conclusions

The celebrated 8-chain BPA (Boyce-Parks-Argon) model was extended to cover fatigue dam-
age behavior intrinsic to polymers of amorphous classes. When dealing with fatigue under
variable complex loadings, a suitable damage rule constitutes an integral part of the analysis. A
fatigue model proposed here is an extension of the appealing model given by Ottosen et al. [33],
which model is formulated in continuum mechanics framework by using evolution equations
that make the definition of damage changes per cycle redundant, i.e. cycle-counting techniques
do not need to be applied. The model was calibrated to data taken from an accelerated uniaxial
fatigue testing of PC with a high mean stress.

To investigate the propagation of fatigue damage under multiaxial cyclic loading conditions,
the proposed approach was implemented in a finite element program. Finite element studies
of a dumbbell-shaped test specimen were performed for analyzing the effect of plastic insta-
bilities on fatigue damage. The proposed approach predicted the progress of fatigue damage
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which was shown to be in line with experimentally observed macroscopic failure behavior of
PC. The results indicated that localized yield-like deformation provides fatigue crack initiation
sites which control the fatigue propagation and eventually the entire fatigue life of amorphous
glassy polymers. When based solely on previous, short-term damage histories, the prediction of
forthcoming damage development and the following fatigue life was shown to be challenging
due to the plastic instabilities. The evaluation of the fatigue life was reliable only once a stable
neck and damage growth were reached.
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Abstract. Non-destructive inspection of long pipes can be time consuming and some localized
defects might remain undetected. A new technique based on guided waves was developed in
the last decade. High risk industries such as chemical or nuclear, require a reliable method
covering if possible the whole length of the piping.  Guided ultrasonic waves can propagate
along several meters and up to tens of meters in pipes. The reflected signal, which is usually
made of some of the propagating modes, brings information concerning the presence of de-
fects and in some conditions on their location and size. There are three classes of guided
modes which can propagate in a pipe: longitudinal, torsional and flexural modes. Even if
many authors have investigated the guided waves in pipes, in the present research we are fo-
cusing on generating a high energy ultrasonic pulse, capable to produce detectable signals
from small defects. Moreover we discuss the probability of detectability of defects near and
especially on pipe bends. Using our in-house specialized software package to determine the
dispersion curves and displacements fields, we determine the incident modes sent in a pipe
from its free end, as in heat exchangers. These results are used for optimal numerical simula-
tion, using the Finite Elements Method (FEM), in order to determine the defect detectability.
The numerical data are compared with results obtained in laboratory experiments standard
equipment for ultrasonic NDT.
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1 INTRODUCTION

Non-destructive inspection of long pipes, as is the case for the petro-chemical industry, can
be time consuming and moreover, some localized small but dangerous defects might remain
undetected. A new technique based on guided waves was developed in the last decade, as can
be remarked in the works of Ditri [1], Cawley et al. [2] Lowe at al. [3], Li and Rose [4], just
to mention a few of the most relevant. Guided ultrasonic waves can propagate along several
meters for liquid filled or coated pipes and up to tens of meters in hollow uncoated pipes. The
defect reflected signal, which is usually made of several propagating modes, brings infor-
mation concerning the presence of defects and in some favorable conditions, on their location
and size.

Guided waves have special propagation characteristics, as shown in classical textbooks of
Auld [5], Miklowitz [6], Achenbach [7], Graff [8] or Rose [9]. There are three classes of
guided modes which can propagate in a pipe: longitudinal, torsional and flexural modes as
shown by Gazis theoretically in [10] and numerically in [11].

The longitudinal modes are axially symmetric and have dominant radial and axial dis-
placements. These waves prove to be most sensitive to partly circumferential flaws. The
waves are dispersive, meaning the wave phase and group velocities are strongly depending on
the frequency. The torsional modes are also axially symmetric and less dispersive, especially
the fundamental SH0 mode which is non-dispersive at least on the straight part of a pipe.
Since the radial displacements are negligible, the interaction with the surrounding various
media is weak, thus reducing the wave attenuation. The interaction of these waves with domi-
nantly axially oriented defects is more pronounced. The flexural modes which are no longer
axially symmetric are in general highly dispersive and more attenuated, but these modes can
also propagate in a pipe and must be taken into account.

Guided waves in pipes have been numerically investigated using several methods, for the
two main aspects: dispersion curves and propagation-scattering simulation.

The dispersion equations can be solved using numerical root finding algorithms, limited to
real solutions like Gazis [11] or Predoi et al. [12] or determining the complex solutions as
done by the team of Lowe [13]. A better approach, providing the full spectrum of complex
solutions, is to take advantage of the axial symmetry or circumferential periodicity and use the
so-called Semi-Analytical Finite Elements Method (SAFEM). This method requires a finite
elements mesh only along a radial segment limited by the pipe walls, as done by Predoi [14].
Another possibility is to mesh the entire cross-section of the waveguide, which can thus be
used for any shape of the cross-section as shown by Hayashi at al. [15].

The propagation of acoustic ultrasonic waves can be numerically simulated by direct time
marching solutions using finite differences as Gsell et al. [16], or by using the Finite Elements
Method (FEM) for either the time-marching solution or the frequency domain equivalent
problem. The time-marching solutions are resources consuming and thus limited to small fre-
quency and propagation length. The frequency domain approach can be used for higher fre-
quencies.

In the present research we are focusing on generating a high energy ultrasonic pulse, capa-
ble to produce detectable signals from small defects, at relatively high frequency (1MHz).
Moreover we discuss the probability of detectability of defects near and especially on pipe
bends, continuing previous researches concerning bents [17], by using FEM simulations [18]
and optimal selection of modes [19].

Using our in-house specialized software packages “Tubewave” [12] for real wavenumbers
and especially the SAFEM [14] for complex valued wavenumbers, we determine the disper-
sion curves and displacements fields, in a pipe. These results are used for optimal numerical

6689



Mihai V. Predoi, Marian Soare, Ovidiu Vasile and Mihail Boiangiu

simulation, using the Finite Elements Method (FEM), in order to determine the defect detect-
ability.

2 PROPAGATING LONGITUDINAL GUIDED WAVES

The detection of small localized defects can be done by using guided waves of short wave-
lengths, which implies high frequency. On the other hand, high energy flux is necessary in
order to receive a detectable echo. For these reasons, in the following we focus on longitudi-
nal axially symmetric guided waves, produced by longitudinal wave ultrasonic transducer,
with central frequency of 1 MHz.

2.1 Dispersion curves

The geometry and displacement field notations are shown on Figure 1.

Figure 1 Pipe geometry and displacements field

Plane wave harmonic displacement field is assumed for the longitudinal waves, with k
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Ro=9mm, Ri=7.8 mm, mass density ρ=8400 kg/m3; bulk longitudinal wave velocity cL=4400
m/s and bulk transverse velocity cT=2200 m/s, from which the Lame’s constants can be easily
obtained. The dispersion curves have been obtained using the algorithm detailed in [14], im-
plemented in a FEM commercial package [20]. The variation of the wavenumbers k (labeled
Re(kx)) on Figure 2 corresponds to known results, with a special remark for the L(0,5) mode
which can propagate above 1650 kHz as “retro-propagative mode” up to 1800 kHz, beyond
which it is propagating normally. A “retro-propagative mode” has phase and group velocities
in opposite directions, which is a peculiar feature.

Figure 2 Dispersion curves: wavenumbers k vs. frequency for the first five propagating modes

Figure 3 Dispersion curves: group velocities cg vs. frequency for the first five propagating modes
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For experimental and FEM simulations purposes, it is more useful to plot the group veloci-
ties, with which travel the short acoustic pulses in the pipe (Figure 3).

2.2 Displacement fields

Frequency ranges for which there is a large variation of group velocity are not recom-
mended, since the incident pulse energy will be spread into a long chirp, beginning with the
fastest and ending with the slowest moving part of the mode. The effect is a long measured
signal with low amplitude, which is difficult or even impossible to analyze.  For this reason,
most authors prefer to use lower frequencies (e.g. lower than 900 kHz in this case) for which
L(0,2) mode is practically non-dispersive and the L(0,1) mode has a much higher group ve-
locity and can be thus easily separated in the received signals. We suggest in this paper to use
the frequency of 1200 kHz (or using a 1 MHz commercial transducer) because:

- higher frequency increases the defect detectability
- at this particular frequency all three propagating modes have almost the same group

velocity, concentrating the acoustic energy in a single signal burst
- defect sensitivity is increased near the free inner and outer surfaces, where higher dis-

placements amplitudes exist and higher energy flux is concentrated.

Figure 4 Displacement fields for the first two modes L(0,1) and L(0,2)

At 1MHz, the displacement fields for the first two modes L(0,1) having k=3410.8 rad/m and
L(0,2) having 1764.6 rad/s are plotted on Figure 4. The existence of real and imaginary parts
of the displacements is related to the phase of these displacements. The L(0,2) mode has a
dominant real radial negative displacement (U) almost constant along the cross-section, with a
very small imaginary part. The axial displacement (W) has an imaginary part of large values
at the free surfaces and of opposite signs on these surfaces. Here, the phase lag between the
radial and axial displacement is π/2, indicated by the real/imaginary significant components.
The L(0,2) mode has a constant sign (negative on this plot) for the real part of the axial dis-
placement (Re(W)), but the radial displacement changes sign along the cross-section (Im(U))
and is phase lagged by π/2. The L(0,3) mode of k=616.24 rad/s, is not shown here, being less
important in the next analysis.
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3 FEM MODEL

Since the investigation is done for multimode high frequency, the frequency domain analy-
sis was selected. Even so, the 32 GB RAM memory (100 GB virtual memory) imposed limi-
tations on the number of hexahedral elements 99456, which correspond to the requirement of
10 elements per shortest wavelength and a minimum number of 3 elements per pipe thickness
in case of slowly radial varying displacements fields. The last condition is not correctly ful-
filled since the displacements fields have rapid variations along the radius (Figure 4), but a
compromise had to be made. A mesh detail is shown on Figure 5 for a 90 bent.

Figure 5 Mesh used for the 90 bent

Figure 6 FEM domain and boundary conditions

The boundary conditions require special attention in frequency domain simulations. The
equivalent in the time domain is a permanent harmonic excitation a single frequency. For this
reason, spurious reflections from FEM domain boundaries have to be eliminated. The FEM
software used in this case [20], offers two options: radiation condition and Perfectly Matched
Layer (PML). The radiation condition is perfect if the incident wave is perpendicular on the
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radiating surface, but this not the case in the bent pipe. Consequently, two PML domains have
been attached at the two ends of the pipe FEM model. Even so, the PML is not a perfect solu-
tion since several modes can propagate in the pipe and each of them has to be absorbed in the
PML. A very rapid attenuation represents a rapid variation in acoustic impedance, so reflec-
tions still occur. This is particularly important for waves of large wavelengths, for which the
PML must cover more than a wavelength. Again a compromise had to be made, since these
PML mean a supplementary number of finite elements, to the already large number of ele-
ments in the domain of wave propagation. The optimal parameters for the PML have been
selected from a simpler model of a short straight pipe, for which the solution time is less than
2 min. The displacement field attenuation to negligible values at the exit from the PML was
the selection criterion.

The excitation is done by a piston-like source placed between the first PML and the FEM
physical domain, at a frequency of 1 MHz of pressure intensity 10 kPa. The rest of the surfac-
es are stress-free. Three simulations have been selected for the analysis: the 90 bent without
defects, and with half-through flat bottomed holes on the pipe exterior, one on the inside
(Figure 7a) and the other on the outside of the bent (Figure 7b), respecting the cross-section
plane symmetry.

Figure 7 FEM mesh detail with flat bottom half through hole : (a) inner side of bent, (b) outer side of bent

4 SIMULATION RESULTS

The reference case is a 90 bent pipe without defects (Figure 8). The total displacement
field indicates parallel lines of alternating amplitudes in the incident wave straight part (lower,
left on the image), corresponding to plane harmonic waves. A remarkable phenomenon occurs
at the passage to the bend. The waves tend to remain plane and parallel to the incident waves
from the straight part and do not become perpendicular on the torus axis as some authors pre-
dict. Moreover there is a wave focalization on the outer side of the bent, near its middle. This
peculiarities have been emphasized for the first time by Predoi and Petre [17], to our
knowledge. A decomposition of the plane incident wave into specific toroidal plane waves
seems to be not physical. For this reason we do not try to project the reflected or transmitted
acoustic field on the modal basis of the torus and even on the modal basis of the straight pipe.
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Figure 8 Total displacements for the 90 bent pipe without defects

One can easily associate the irregular pattern of maxima and minima after the middle of
the bend as nonplanar partial waves which will impinge on the exit straight part a series of
circumferential localized waves. A modal decomposition will be extremely complicated and
mostly useless. For this reason we prefer to compare the reflected displacement field of this
reference case with the fields of bents with standard defects.

Figure 9 Relative radial displacement with a standard defect on the inner side of the bend
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The radial displacement field was extracted by post-processing the FEM results data in all
three cases. In order to determine the detectability of defects, the radial displacements fields
of the pipes with standard notches were subtracted from the displacement fields of the refer-
ence case. All displacements are plotted on a normal cross-section on the straight part of the
pipe, 10 mm from the excitation.

Figure 10 Relative radial displacement with a standard defect on the outer side of the bend

The radial displacements are of higher amplitude on the inner side of the bent when the
standard defect is on that side and at the same time, on the outer side of the pipe there is no
change in radial signal (Figure 9). If the defect is located on the outer side of the bent, a strong
echo can be detected on that side of the pipe and no signal on the opposite side (Figure 10).
These results prove the capability of detecting the location of the selected standard defect. The
rest of the surface of the pipe is subjected to a complicated pattern of radial displacements and
cannot be used for a circumferential receiver transducer.

5 CONCLUSIONS

 Numerical analysis using FEM in the frequency domain was used to investigate the de-
fect presence detectability if such a defect occurs at the junction between the straight and
curved part of a pipe. This is a challenge for guided waves techniques, since at this junc-
tion occurs modal scattering even in the absence of defects. Modal scattering brings spu-
rious signals on the weak signals due to defects.

 A typical defect on either side of the junction is investigated, keeping the geometrical
symmetry of the problem.

 The results are very promising, since the location of an extremely small defect (0.6 mm
depth and 2.4 mm diameter) is clearly identified, even if the defect is at the junction be-
tween the straight and bent part of the pipe.

 Moreover, we have not used a difficult to obtain, single mode excitation, but a piston like
one, at a common frequency of 1MHz.
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 The receiver should be however another longitudinal waves transducer, placed perpen-
dicular on the pipe, on either inner or outer generatrix, not too far from the bent.
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Abstract. The ductile fracture of metallic materials is consequence of damage accumulation
after straining accompanied by large plastic deformations. It is significantly dependent on
the microstructure of particular material and micromechanical defects as vacancies or second
phase particles. The nucleation, growth and coalescence of voids is the fracture mechanism
which applies in high values of stress triaxiality. The shear mechanism appears in the region
of negative stress triaxialities. Finally, the combination of both fracture mechanisms occurs
in cases of moderate stress triaxialities. The crack or fracture surface in specimens or real
components is often tilted approximately 45 degrees to applied load. This slant fracture is
driven by shear mechanism and occurs in the plane of maximum shear stress. It was shown
that coupled ductile fracture criteria are convenient for the prediction of slant fracture in finite
element simulations. There is conducted analysis of slant fracture prediction ability of two
chosen coupled and uncoupled criteria in the present paper. Those criteria were calibrated
and applied to two different metallic materials. The prediction is validated on those calibration
fracture tests at which the slant fracture was observed.
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1 INTRODUCTION

There has been a large increase of application of ductile fracture criteria to prediction of
failure at various crashes and manufacturing operations as turning, cutting or cold working
[1, 2, 3, 4] in the last decade due to evolution of computer technology. There are many criteria
in the literature based on different approaches. Those can be simply categorized as coupled
and uncoupled. Coupled criteria have mutually connected the damage with plasticity. The
damage is estimated on the basis of accumulated plastic deformation and fracture strain which
is dependent on the stress state. In case of uncoupled criteria, the damage is estimated by the
same means but it does not influence the plasticity. The slant fracture has been still studied
intensively. Huang and Xue [5] paid attention to prediction of slant ductile fracture on flat
specimen, thick-walled pipe and four-point bending of a pre-cracked pipe. Morgeneyer and
Besson [6] used a Gurson-like model with suggesting a shear void nucleation term based on
a Lode parameter for strain rate for simulation of a fully meshed Kahn tear test sample for
which a flat to slant crack transition was achieved at loads close to experimental results for
aluminium. Li and Wierzbicki [7] simulated a slant fracture of a flat tensile specimens cut from
advanced high strength steel sheets using partially coupled model.

The present paper deals with prediction ability of two coupled and uncoupled ductile frac-
ture criteria on the flat specimen loaded by tension and on the smooth cylindrical specimen of
Aluminium Alloy (AA) 2024 and AISI 1045 carbon steel, respectively. The most influencing
parameters, mesh size and its configuration, which trigger the slant fracture were analysed. The
crack initiation and propagation were realized through element deletion technique which re-
quires the adequately small size of finite elements in principle. The numerical simulations are
conducted within Abaqus/Explicit commercial finite element code with the use of user subrou-
tine VUMAT for implementation of ductile fracture criteria into time integration scheme.

2 MODEL OF PLASTICITY AND FAILURE

2.1 Plasticity model

Isotropic hardening and von Mises yield criterion with associated flow rule were adopted.
Flow curves were calibrated using tensile tests of smooth cylindrical specimens for both metals.
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Figure 1: Flow curves of investigated metals.
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Six specimens were tested having 6 mm in diameter with 30 mm gauge length of AISI 1045
steel. The flow curve until ultimate tensile strength was estimated using classical transformation
formulae for true stress–strain relationship to engineering stress–strain. It is suitable to use
some of correction formulae for extracting the flow curve directly from experiment beyond
the plastic instability when available [8, 9, 10]. Only the elongation was measured during
tensile testing in our case. Therefore, the trial and error method together with computational
simulations were employed in order to change the extrapolated trend of flow curve until the
satisfying match between computation and experiment was reached. Wierzbicki et al. [11]
carried out a series counting fifteen experiments in a broad range of stress triaxiality η and
normalized third invariant of deviatoric stress tensor ξ for AA 2024-T351. Smooth cylindrical
specimen used for calibration of flow curve had 9 mm in diameter and gauge lenght of 25.4 mm.
Flow curves of both materials are depicted in Fig. 1. Satisfying power law fit of those curves
gave strength coefficients and strain hardening exponents summarized in Tab. 1. Hollomon
hardening law, σ̄ = Kε̄n where σ̄ is equivalent stress, K is strength coefficient, ε̄ is equivalent
strain and n is strain hardening exponent, was used.

Material Strength coefficient [MPa] Strain hardening exponent [-]
AISI 1045 1147.6 0.2998
2024-T351 744 0.153

Table 1: Strength coefficients and strain hardening exponent of investigated materials.

2.2 Fracture criteria

Two phenomenological models were chosen in the present study. One of them was 4-
parametric Xue–Wierzbicki model [11] with material constants F1, . . . , F4 which incorporates
fracture envelope ε̄f symmetric with respect to plane strain condition

ε̄f (η, ξ) = F1e−F2η −
(
F1e−F2η − F3e−F4η

) (
1− |ξ|

1
n

)n
(1)

This model captures the transition between uniaxial tension and compression, where the mate-
rial exhibits the greatest ductility, very well.

Another model was Extended Mohr–Coulomb criterion which was proposed by Bai and
Wierzbicki [12] with the use of plasticity developed earlier [13]. The criterion contains eight
material constants but only two of them, c1 and c2, are related to fracture. Other constants are
related to Lode and pressure dependent plasticity used in the model development. When only
von Mises yield criterion and Hollomon hardening law are adopted, the fracture envelope reads

ε̄f (η, θ̄) =

K
c2

√1 + c21
3

cos
(
π

6
θ̄
)

+ c1

[
η +

1

3
sin

(
π

6
θ̄
)]− 1

n

(2)

Deviatoric stress state parameter is the normalized Lode angle θ̄ here. Extended Mohr–Coulomb
criterion in the presented reduced form has lower versatility than Xue–Wierzbicki model de-
scribed above. It implies that it has worse approximation ability to experimental fracture tests
in the calibration stage. On the other hand, the Extended Mohr–Coulomb criterion contains
cut-off region dependent on the material constant c1. Limiting stress triaxiality is described as

ηc = − 1

c1

√1 + c21
3

cos
(
π

6
θ̄
)− 1

3
sin

(
π

6
θ̄
)

(3)
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Besides tensile test of smooth cylindrical specimen, tensile tests of notched cylindrical spec-
imens with notch radii 5, 2.5 and 1.2 mm were included in fracture criteria calibration regarding
the AISI 1045 carbon steel. The diameters in the smallest cross-section were the same as in
smooth specimen. Then, biaxial tests of notched tube specimens were used in the calibration as
well. Various combinations of tension–torsion loading were chosen, 0, 0.5, 1,∞mm/rad [14].
Comparison of force and torque responses from experiments and computations can be found in
the work of Šebek et al. [15, 16].

All fifteen tests carried out by Wierzbicki et al. [11] were used for ductile fracture calibration
regarding the aluminium alloy 2024-T351. More detailed information about the specimens
geometry and experiment conditions can be found in the work of Bao [17].

Material constants were identified using nonlinear least square method in MATLAB. Ob-
tained constants for both metals are summarized in Tab. 2. Fracture envelopes of particular
criteria are depicted using these constants in Figs. 2 and 3. The fracture strain of both criteria is
also depicted under condition of plane stress for both investigated materials in Fig. 4.

Material Fracture criterion Material constants

AISI 1045
Xue–Wierzbicki model

F1 = 3.1288, F2 = 2.1351,
F3 = 1.2822, F4 = 1.1160

Extended Mohr–
c1 = 0.2499, c2 = 753.8 MPa

Coulomb criterion

2024-T351
Xue–Wierzbicki model

F1 = 0.7161, F2 = 1.5768,
F3 = 0.3297, F4 = 0.5232

Extended Mohr–
c1 = 0.0621, c2 = 343.8 MPa

Coulomb criterion

Table 2: Material constants of both investigated materials for both criteria.

Figure 2: Fracture envelope for steel and Xue–Wierzbicki model (left), Extended Mohr–Coulomb criterion (right).

There is depicted a cut-off plane for Extended Mohr–Coulomb criterion and AISI 1045 car-
bon steel in Fig. 2. There is no damage accumulation below this region. There is not a cut-off
plane at Extended Mohr–Coulomb criterion for aluminium alloy in Fig. 3 because it is situated
in extremely low stress triaxialities, approximately −8, which is probably unrealistic.
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P. Kubı́k, F. Šebek and J. Petruška

Figure 3: Fracture envelope for AA and Xue–Wierzbicki model (left), Extended Mohr–Coulomb criterion (right).

Figure 4: Fracture strain under plane stress condition for both metals.

2.3 Coupling failure with plasticity

The damage accumulation was governed by power law function derived by Xue [18, 19] in
scope of low-cycle fatigue as

D =
∫ ε̂f

0
m
(
ε̄p

ε̄f

)m−1 dε̄p

ε̄f
(4)

Here, m is the damage exponent and ε̂f the equivalent plastic strain for given loading path. The
role of damage exponent in the finite element simulations was described in detail by Šebek et al.
[20]. The coupling is ensured by weakening functiong w which represents material degradation
in accordance to damage accumulation through

w = 1−Dβ (5)

There is additional softening parameter β which is the weakening exponent.
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The feedback of damage to plasticity is realized through multiplying the original flow stress
σ̄flow by weakening function as

σ̃flow = wσ̄flow (6)

In the previous equation, σ̃flow is actual flow stress of weakened material or effective stress.
Both aforementioned ductile fracture criteria were developed as uncoupled and were also

calibrated with respect to that. Calibration of coupled criteria is very complicated process
which requires many computational simulations. Therefore, calibrated fracture envelopes of
uncoupled criteria described in previous section were used. The weakening and damage expo-
nents, respectively, were set to have a value of 2 which is widely adopted for metallic materials
[21, 22]. This is not a correct calibration procedure which will probably result in premature
fracture. Nevertheless, such material constants identification is acceptable for the present paper
dealing with slant fracture prediction ability.

3 PREDICTION OF SLANT FRACTURE

3.1 Experiments

Two different specimens were chosen for prediction of slant fracture. The first one is flat
specimen loaded by tension which produces slant fracture through the thickness tilted approx-
imately 45 degrees with respect to the major principal stress direction [5, 17, 24, 25]. There is
post-mortem specimen of AA 2024-T351 in Fig. 5a. This geometry was overtaken from Bao
[17] and used in upcoming numerical simulations. The specimen has 1.6 mm thickness and
50 mm width of the process zone with 8 mm gauge length.

Figure 5: Post-mortem: (a) flat specimen of aluminium alloy 2024-T351 [24]; (b) smooth cylindrical specimen
of aluminium alloy 2024-T351 with 6 mm in diameter [24]; (c) smooth cylindrical specimen of AISI 1045 carbon
steel [25]; (d) smooth cylindrical specimen of aluminium alloy 2024-T351 with 9 mm in diameter [24].

Another investigated geometry was smooth cylindrical specimen loaded by tension. Typical
cup and cone fracture prevails at most metals (Fig. 5b,c). The crack initiation occurs on the axis
of symmetry due to void nucleation, growth and coalescence. The crack spreads perpendicularly
to the major principal stress, that is perpendicularly to the specimen axis, forming a flat fracture.
Then, the nature of mechanism changes to the slant fracture due to increasing shear stress and
the crack propagates in the plane of maximum shear stress which is tilted approximately 45
degrees to the specimen axis. Unfortunately, there is often only slant fracture in case of AA
2024-T351 (Fig. 5d) which has still been waiting to be interpreted correctly. Geometry of this
specimen was described earlier and used in upcoming numerical simulations.
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3.2 Simulations

All numerical simulations were carried out in Abaqus/Explicit commercial finite element
code. Fracture criteria were implemented using user subroutine Vectorized User MATerial
(VUMAT). Crack initiation and propagation were realized through element deletion technique.
Time increment was changed using mass scaling function in order to keep computational time
reasonable while retaining negligible ratio of kinetic to internal energy for the whole model.

There was conducted analysis studying the influence of finite elements sizes which were
oriented in the loading direction, hereinafter II-orientation, in case of uncoupled criteria. Ele-
ments had a size of 0.075, 0.05 and 0.025 mm. Next, there were performed simulations using
uncoupled criteria with a mesh of a characteristic element length size of 0.075 mm and finite el-
ements orientation 45 degrees to applied load, hereinafter X-orientation, thus in the direction of
supposed crack propagation. Finally, there were conducted computations with elements having
size of 0.075 mm with II-orientation for coupled ductile fracture criteria.

3.3 Flat specimen

Only planar model was created in order to save some computational time. It was discretized
using 4-node rectangular plane strain elements CPE4R with reduced integration. In case of X-
oriented mesh, a negligible amount of 3-node triangular plane strain elements CPE3 was used
on lateral sides of the geometry. Areas lying far from the process zone were discretized by
coarse mesh, again, in order to save computational time.

Figure 6: Influence of mesh size for uncoupled fracture criteria and flat specimen with II-orientation.

There is damage parameter in Fig. 6 immediately after the final fracture and separation of
the specimen into more pieces for uncoupled criteria and flat specimen with II-orientation. The
legend is not shown hereinafter but it was set from 0 to 1 and linearly divided into 20 discrete
rainbow contours. The blue colour represents 0 and the red one corresponds to 1.
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Both uncoupled criteria are capable of prediction the slant fracture in case of both materials
for the mesh with 0.075 mm characteristic element length size.

Models behave similarly in case of AISI 1045 carbon steel, as depicted in Fig. 6. Both
meshes with element sizes 0.075 and 0.05 mm, respectively, produce a flat fracture. In case of
0.025 mm, the crack propagates perpendicularly to loading and form a slant fracture in the final
stage. There is no splitting into two directions. This is probably due to greater influence of
imperfection because there is higher necking than in case of aluminium alloy.

The finer the mesh in case of Xue–Wierzbicki model and 2024-T351, the better the ability
to produce the slant fracture. The simulation with size of 0.025 mm predicted the slant fracture
very well. Extended Mohr–Coulomb criterion showed similar behaviour but there was huge
amount of deleted elements in the perpendicular direction to applied load. This was probably
due to fact that, among others, there was higher localization of damage parameter in case of
Xue–Wierzbicki model. Crack created X-shaped fracture due to vertical symmetry of the model.

The crack initiation was in the centre of the specimen thickness, in the intersection of all
planes of symmetry, for both materials and fracture criteria, respectively, which is in accordance
with experimental testing. The slant fractures, which occurred, were 45 degrees to the applied
load which is also in good agreement with experiments.

Figure 7: Prediction by uncoupled and coupled criteria for flat plate with X- and II-orientation, respectively.

It is obvious that criteria are capable to predict the slant fracture even with element size
of 0.075 mm for X-orientation of the mesh in case of aluminium alloy as in Fig. 7. There is
huge amount of deleted elements in case of Extended Mohr–Coulomb criterion, again. Coupled
criteria predict the slant fracture without splitting into two direction and propagation of two
cracks. Regarding these models, there is a rapid increase of equivalent plastic strain due to
softening in the final stage just before crack initiation. This leads to localization of damage
parameter and the imperfections play more significant role than in uncoupled models.
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P. Kubı́k, F. Šebek and J. Petruška

The X-orientation, the diagonal one, with characteristic element size of 0.075 mm leads to
flat fracture for AISI 1045 (Fig. 7). This mechanism does not change even with using elements
of 0.025 mm size. On the other hand, coupled criteria predict slant fracture similarly as in case
of AA 2024-T351.

Finally, it is obvious that neither the crack initiation nor the angle of slant crack propagation
were influenced by the mesh configuration or coupling the damage with plasticity.

3.4 Smooth cylindrical specimen

Similarly as in previous case, the model was created as axisymmetrical in order to save com-
putational time. The geometry was discretized by 4-node rectangular axisymmetric elements
CAX4R with reduced integration. In case of X-oriented mesh, there were used a small number
of 3-node triangular axisymmetric elements CAX3 which were located on the axis and on the
outer surface of the specimen. The regions outside the process zone were discretized by coarse
mesh, again because of saving the computational time, because the deformation and fracture
are concentrated into certain section.

Similarly as in case of flat specimen, both models were not capable to describe the slant
fracture for both materials and element size 0.075 mm as depicted in Fig. 8.

In case of carbon steel, there was predicted flat fracture independently on the criterion or
mesh size.

Figure 8: Influence of mesh size for uncoupled fracture criteria and smooth round specimen with II-orientation.

Xue–Wierzbicki model predicted the crack initiation not on the axis of symmetry but in
a certain distance towards the outer surface for aluminium alloy which is in contradiction with
experiments. Both criteria predicted the flat as well as slant fracture for 0.025 mm sized ele-
ments. The slant fracture propagated 45 degrees to applied load at first and then it changed the
direction perpendicularly to specimen axis. Extended Mohr–Coulomb criterion exhibited this
behaviour also in case of the finite element size of 0.05 mm.
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P. Kubı́k, F. Šebek and J. Petruška

Both uncoupled models with X-oriented mesh produced a flat fracture for carbon steel as in
Fig. 9. This behaviour did not change even with decreasing the element size. Coupled Xue–
Wierzbicki model produced only flat fracture while coupled Extended Mohr–Coulomb criterion
predicted a slight slant fracture in the final stage close to the specimen surface without bifurca-
tion of the crack. In case of 0.05 mm sized finite elements, both coupled models predicted slant
fracture in greater distance from the surface in the final stage.

Uncoupled criteria with X-orientation and 0.075 mm sized mesh behaved for the aluminium
alloy 2024-T351 the same as in case of II-orientation and 0.025 mm sized finite elements. There
was better prediction of crack initiation after coupling the Xue–Wierzbicki model. The crack
initiated on the axis of symmetry and there was crack bifurcation in the final stage of rupture
governed by shear mechanism. Coupled Extended Mohr–Coulomb criterion predicted slight
slant fracture in the final stage. Again, there was significant number of elements deleted in the
plane perpendicular to the axis.

Figure 9: Results of uncoupled and coupled criteria for smooth specimen with X- and II-orientation, respectively.

4 CONCLUSIONS

The present paper was aimed to slant fracture prediction ability of two coupled and uncou-
pled ductile fracture criteria, originally phenomenological or empirical, Xue–Wierzbicki model
and Extended Mohr–Coulomb criterion, for two different metals, aluminium alloy 2024-T351
and AISI 1045 carbon steel. There was conducted analysis studying the influence of the size
and orientation of finite element mesh in case of uncoupled criteria. It might be generally stated
that the mesh oriented in the direction of applied load exhibited similar results as a finite ele-
ment mesh oriented in the supposed direction of slant fracture propagation, 45 degress to the
applied load in the plane of maximum shear stress, but for much smaller element sizes.
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P. Kubı́k, F. Šebek and J. Petruška

Results also suggest that coupled models are very convenient for slant fracture prediction
which is in accordance with recent literature [26, 27]. Such models describe best the real ma-
terial behaviour. Nevertheless, there is a disadvantage in complex calibration procedure from
the perspective of time consumption, high number of experiments needed or complicated im-
plementing and debugging.
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[13] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode
dependence. International Journal of Plasticity, 24, 1071–1096, 2008.
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[15] F. Šebek, P. Kubı́k, J. Petruška, Chevron crack prediction using the extremely low stress
triaxiality test. MM Science Journal, 617–621, 2015.
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Abstract. The present study deals with the modeling of quasi-brittle softening phenomena 
using the two dimensional C1 continuity triangular finite element. The formulation of damage 
model is based on an isotropic damage law applied to the higher-order stress-strain 
constitutive relations originating from the full strain gradient theory. Both homogeneous and 
heterogeneous materials are considered by employing the second-order homogenization 
procedure to obtain the required constitutive matrices. For this purpose, two different 
heterogeneous representative volume elements are employed, where the results of the 
softening analyses are compared with those obtained for the corresponding homogeneous 
materials with equivalent internal length scales. The derived finite element formulation is 
implemented into the finite element program ABAQUS using user subroutines. Finally, 
accuracy and efficiency of the proposed higher-order gradient model are demonstrated by the 
modeling of a stretched plate weakened in the middle, usually used as a benchmark in strain 
softening analyses.  
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1 INTRODUCTION 

A large number of engineering materials, such as high-strength steels, polymers, 
composites, concrete and rocks can be classified as quasi-brittle, since they exhibit negligible 
plastic behavior before and after the damage is initiated, causing the material to soften 
immediately after reaching the maximum elastic deformation. It is well-known that the 
application of the classical continuum mechanics cannot properly resolve strain softening 
because it leads to the local loss of positive definiteness of the material tangent stiffness. As a 
consequence, the differential equations which describe the deformation process may result in 
the loss of ellipticity. Mathematical description of the model than becomes ill-posed and 
numerical solutions do not converge to a physically meaningful solution [1]. In view of the 
finite elements, solutions are completely dependent on the discretization, with respect to mesh 
refinement and mesh alignment. Energy dissipated in the fracture process tends to zero when 
the size of the elements involved in the softening process is reduced, and the localization zone 
exhibits an extreme tendency to propagate along the mesh lines [2]. Various regularization 
techniques have been developed in the past few decades to overcome this problem. Most of 
them are based on the improvement of the classical continuum model, precisely on its 
enrichment with the internal length scale parameters in several different ways. Micropolar [3] 
and viscoplastic theory [4] can preserve the ellipticity only in some specific cases, while the 
theories related to the nonlocal material behavior have been shown to be the most versatile. In 
the case of the nonlocal models, stress at a material point does not depend only on the strain 
and other state variables at this point, as it is the case with the classical continuum theory, but 
also on the strains and other state variables of the points in the surrounding area. The 
magnitude of this interaction is described by the aforementioned internal length scale 
parameter, which represents the microstructure of the material [5]. Basically, there are two 
different approaches when it comes to describing of non-locality in the model, integral and 
gradient-enhanced approach. The integral approach, introduced in [6], is based on spatial 
averaging of the state variables, typically strains, in the finite neighborhood of a certain point, 
leading to the very complicated constitutive relations made of convolution-type integrals. The 
gradient approach enhances the constitutive relation either by incorporation of the strain-
gradients or by introduction of both strain-gradients and their stress conjugates. In case when 
only strain-gradients are used as an enhancement of the constitutive relation, explicit and 
implicit gradient formulations are usually used when dealing with softening, either in 
elasticity context [7], plasticity context [8] or in the analysis of the elastic wave propagation 
[9]. The second type of gradient approaches where both strain-gradients and their stress 
conjugates enter the constitutive relation has been employed less often, mainly because it is 
numerically more complex. In the recent developments, higher-order stress-strain theory has 
been employed in the context of a damage modeling of an infinitely long bar, where the 
authors concluded that the addition of the higher-order stress terms results in stabilizing the 
positive definiteness of tangent stiffness moduli when entering the strain softening regime. In 
such a way physically consistent solutions can be ensured and strain-softening phenomenon 
can be realistically reproduced [10]. Further development from one-dimensional to multi-
dimensional simulation of a localized failure process has been made in [11]. In [10] and [11] 
element-free Galerkin (EFG) meshless method has been used for finding the approximate 
solutions to the corresponding boundary value problems. Another advantage of the higher-
order stress-strain theory is that it can easily introduce material heterogeneity in the 
constitutive relations through the non-diagonal higher order material stiffness tangents [12]. 
The stiffness tangents can be obtained by applying the second-order homogenization 
technique on the representative volume element (RVE) [13]. 
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This paper presents formulation and numerical implementation of the higher-order stress-
strain damage theory into the C1 continuity displacement based finite element developed in 
[14]. Herein, continuum damage mechanics is realized in its simplest form through isotropic 
damage model. Similar consideration of quasi-brittle damage response has been presented in 
[15]. The proposed damage algorithm is verified on the benchmark example where both 
homogeneous and heterogeneous materials are employed. 

2 FORMULATION OF THE C1 FINITE ELEMENT FOR SOFTENING ANALYSIS 

In this section, an extension of the C1 continuity finite element presented in the authors’ 
former work [14] for the application in a softening regime is described. The developed finite 
element formulation is based on a small strain second gradient continuum theory for which 
more details can be found in [16]. Here the basic relations of the damage constitutive model 
are presented, and afterwards derivation of the finite element with a softening behavior is 
shown. 

2.1 Damage constitutive model  

The isotropic damage constitutive model describing the reduction of the elastic stiffness 
properties in quasi-brittle materials is based on the following stress-strain relationship [17] 

 1 D σ Cε , (1)

where D is a scalar damage variable ranging from 0 (undamaged) to 1 (damaged), while σ , ε  
and C  are tensors referring to Cauchy stress, strain and elastic stiffness, respectively. In this 
contribution, a simple linear damage evolution law is chosen [5] 
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where 0k   and uk   are the material parameters representing the threshold strain at which 

damage is initiated, and the strain at which material completely loses its stiffness, respectively. 

eqv  is the equivalent elastic strain measure which, considering the damage only due to tensile 

strains, can be expressed as 

   2 2

1 2 1 2for , 0eqv       (3)

with 1  and 2  as principal strain components of the strain tensor ε . 

2.2  C1 triangular finite element for softening analysis 

The C1 continuity plane strain triangular finite element proposed in [14] shown in Fig. 1 is 
used in the formulation derived in this contribution. The element has three nodes and 36 
degrees of freedom with the displacement field approximated by the full fifth order 
polynomial. The nodal degrees of freedom are the two displacements and their first- and 
second-order derivatives with respect to the Cartesian coordinates.  
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Figure 1: C1 triangular finite element [14] 

As usual, the element equations are derived from the principle of virtual work, which may 
be expressed for the strain gradient continuum as 

  δ d δ d δ d δ grad dT T T T

A A s s

A A s s     ε σ η μ u t u T , (4) 

where A and s are area and perimeter of the element, respectively. In Eq. (4), η  represents the 
second-order strain tensor containing second derivatives of the displacement vector u , while 
μ  is the work conjugate of the second-order strain, the so-called second-order stress or double 
stress tensor. t  and T are the traction tensor and the double traction tensor, respectively. The 
stress and the second-order stress increments, σ  and μ , are computed by the incremental 
constitutive relations which, for the undamaged material are defined as 
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  (5) 

Herein, C , C , C  and C  are the constitutive tangent matrices which can be computed 

from the appropriate RVE using the second-order homogenization procedure. In case of 
material homogeneity, the constitutive tangent matrices C  and C  are assumed to be zero 

[12]. The remaining two tangent stiffness matrices can be found analytically [18], which may 
be written symbolically in the form 
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where L denotes the size of the microstructural representative volume element. It is well-
known that, in the second-order computational homogenization scheme, the RVE size L is 
linked to the internal length scale l of the higher-order continuum as  
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After application of the isotropic damage law, Eq. (1), to the constitutive relations, Eq. (5), 
the constitutive damage model may be expressed in the form 
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where the stress and the second-order stress increments are computed from the values of the 
last converged equilibrium state (i–1). Here the incremental change of the damage variable is 
approximated by 
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. (9) 

Employing the relations given in [14], the strain and second-order strain increments can be 
expressed in terms of the nodal displacement increment vector v  by the relations 
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ε B v

η B v
 (10) 

where Bε and Bη are the matrices containing corresponding the first and second derivatives of 
the element interpolation functions. Substituting Eqs. (8)-(10) into Eq. (4), and after some 
straightforward manipulation, the following finite element equation is obtained 

   e i        K K K K v F F ,  (11) 

where the particular element stiffness matrices are defined as 

 

 

 

 

 

1 1
1 1 1

1

1 1
1 1 1

1

d d
1 d ,

d d

1 d ,

d d
1 d ,

d d

1 d .

i i
T i i i

A

T i

A

i i
T i i i

A

T i

A

D D
D A

D A

D D
D A

D A

     

   

     

   

 
  



 
  



           
     

 

           
     

 









K B C C ε C η B
ε ε

K B C B

K B C C ε C η B
ε ε

K B C B

 (12) 

The external and internal nodal force vectors, eF  and iF , in Eq. (11) are defined as 
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2.3 Analysis procedure 

The block diagram which concisely shows the analysis procedure is presented in Fig. 2. 
The first step of the analysis is a preprocessing step and includes application of the second-
order homogenization procedure to the appropriate RVE in order to obtain required 
constitutive stiffness tensors. As the linear elastic material behavior is considered in the 
presented damage analysis, the homogenized solutions do not depend on the macroscale 
deformation. Therefore, the homogenization has to be performed only once in each analysis. 
The homogenized stiffness tensors enter the constitutive relations, remaining constant until 
the end of the nonlinear damage analysis. When damage is initiated in the model, all stiffness 
tensors are being reduced by the term including the damage variable, as it can be seen from 
Eq. (8). In each finite element integration point, the incremental procedure is carried out, 
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where the stress and double stress tensors are calculated from the updated strain tensor, 
second-order strain tensor and damage variable, as well as the stiffness tensors obtained in the 
preprocessing step. The presented damage formulation has been implemented into the two-
dimensional C1 continuity triangular finite element [14] using the FE program ABAQUS and 
its user element subroutine UEL [19]. 

 
Figure 2: Scheme of the damage algorithm 

3 NUMERICAL EXAMPLE 

The algorithm presented above is verified on a benchmark problem already studied in [11] 
assuming homogeneous material. Here, the analysis is extended to heterogeneous materials. 

As an example, a rectangular plate with an imperfect zone under tension is considered. The 
geometry and boundary conditions are shown in Fig. 3. The constitutive properties have been 
set to: Young’s modulus 220000 N/mmE  , Poisson’s ratio 0.25  , limit elastic strain 

0 0.0001k  , equivalent strain corresponding to the fully damaged state 0.0125uk  . The 

model is loaded by the horizontal displacement of 0.0325 mm at the right edge. In order to 
trigger localization, the Young’s modulus is reduced by 10% in a 10 mm wide zone in the 
middle hatched area of the plate. 

 
Figure 3: Geometry and boundary conditions of the plate model 

The verification of the presented damage model is made using the results from [11], where the 
solutions are obtained in the same numerical example by means of the EFG meshless method. 
Therein, the constitutive tensors are derived for materials with granular microstructure, so the 
underlying microstructural theory differs when compared with the second-order 
homogenization approach. The constitutive model is restricted only to homogeneous materials, 
where the corresponding stiffness tensors are similar to those shown in Eq. (6). In [11] the 
stiffness tensors have been expressed in terms of the particle radius r and they are used for the 
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computation by means of the proposed algorithm. The damage responses obtained for the 
same microstructural values and using different approaches are presented in Fig. 4.  

Figure 4: Comparison of damage profiles along the horizontal central axis obtained using the presented damage 
model with the results from the literature  

As can be seen from Fig. 4, the calculated damage profiles show very good agreement with 
the solutions from the literature. The figure also illustrates the effect of the microstructural 
size on the behavior of the macroscale continuum. The increase in microstructural values 
leads to the expansion of the localization zone.  

The evolution of the damage contour obtained with the microstructural parameter l = 1.5 
mm using the analytical expression of the constitutive tensors from [18], for the plate 
considered under imposed end displacement of u = 0.0325 mm is presented in Fig. 5. For the 
same microstructural parameter and the displacement, the contour plot of the equivalent 
elastic strain eqv  is displayed in Fig. 6. 

Figure 5: Distribution of damage D for homogeneous material and internal length scale parameter l = 1.5 mm at 
u = 0.0325 mm 
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Figure 6: Distribution of equivalent elastic strain eqv  for homogeneous material and internal length scale 

parameter l = 1.5 mm at u = 0.0325 mm 

In the analysis of the heterogeneous material, the full form of the incremental constitutive 
relations represented by Eq. (8) has to be solved. Therefore, the second-order homogenization 
has to be applied in the preprocessing step to obtain the material stiffness tensors. Here, two 
cases of simple academic RVE examples are analyzed and compared to the corresponding 
homogeneous solutions, i.e. the solutions emerging from the corresponding homogeneous 
materials of the same internal length scales. The two RVEs considered have the same average 
hole radius aver  and porosity e, but different size L, as shown in Fig. 7. 

 
Figure 7: Comparison of damage profiles along the horizontal central axis obtained for two heterogeneous 
materials represented with RVEs of the same average hole radius rave and porosity e, but different size L 

In case of the smaller RVE, damage profile shows notable deviation from that obtained 
using the corresponding homogeneous material, while these differences are much smaller for 
the bigger RVE. This behavior can be explained with the positions of the holes as well as their 
distributions in the RVEs. These different damage responses can be confirmed by looking at 
the component values in the stiffness tensors C  and C , which are much bigger for the 

smaller RVE. It is to note that the influence of the RVE size and average hole radius on the 
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damage response of heterogeneous structures is one of the open questions and should be 
investigated in forthcoming research. 

4 CONCLUSIONS 

A new computational approach employing the full strain gradient theory for the modeling 
of quasi-brittle softening phenomena has been proposed. This model is based on the isotropic 
damage law so that the material tangent stiffness matrices appearing in the constitutive 
relations are pre-multiplied by the same term governing the damage process. The highly non-
linear softening model is implemented into the triangular C1 element using the FE software 
ABAQUS and provided UEL subroutines. The capabilities of the proposed computational 
strategy to simulate the strain localization has been demonstrated in a typical benchmark 
example consisting of a plate with an imperfect zone subjected to a tensile load. The 
verification of the algorithms derived has been made by the comparison with the solutions 
available in the literature, where the same problem has been analyzed using the EFG meshless 
method. Both homogeneous and heterogeneous material have been considered, where the 
latter is done by employing the second-order homogenization procedure to obtain the required 
material stiffness matrices. The homogeneous material has been analyzed employing the 
analytic expressions for the calculation of the stiffness matrices, and the softening state of the 
plate just prior to failure has been displayed by the contour plots of the damage variable and 
equivalent elastic strain field distributions. The heterogeneous material has been analyzed 
using the two different RVEs, where the damage responses have been compared to the 
homogeneous structures. It has been observed that the results depend on the RVE size and the 
number and position of the holes. The influence of heterogeneity on damage behavior requires 
more detailed studies which will be a topic of further research.   
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Abstract. The interest in reliability analysis related to Fracture Mechanics field grew during
the past decades. This contribution proposes a reliability analysis combining two failure cri-
teria: the crack stability and the plastic collapse by mean of the Failure Assessment Diagram
(FAD). FAD and reliability method are coupled to assess the probability of failure. Some issues
have been highlighted considering classic gradient-based optimization methods to determine
key points for approximation method. A strategy based on surrogate-based evolutionary algo-
rithms is proposed to solve these issues. A discussion on the most influencing parameters and
their consequences in terms of reliability based design is also presented. The application of the
methodology is demonstrated on a simple test case.
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1 INTRODUCTION

A frequent way to treat uncertainties is to consider the worse conditions and run determinis-
tic analysis. Nevertheless, this approach can generate over-sizing and the impact on the conser-
vatism is generally not known. Consequently, reliability analysis tools are developed to assess
the probability of failure of a component considering the uncertainties to estimate the level of
conservatism.

A typical Fracture Mechanics problem is subject to uncertainties related to the geometry,
material properties, loads or crack location and shape. Consequently, Fracture Mechanics is
one the main applications for the reliability analysis [1, 2]. To assess the probability of failure
in Fracture Mechanics issues [3], two main approaches have been developed, one based on the
simulation (Monte Carlo method) and another based on the approximation. [4] consider a fail-
ure criterion linking the Fracture toughness and Stress Intensity Factors (SIF). Nevertheless, it
is necessary to consider another failure criterion to include the plastic collapse to account for the
remaining strength of the structure [5]. In [6], a complete reliability study considering these two
criteria is presented using Monte Carlo method and First Order Reliability Methods (FORM).
They consider the different failure modes associated with each criterion independently and pro-
pose a performance function based on the number of cycles to failure. Another approach [7]
is to combine both failure criteria using the Failure Assessment Diagram (FAD). A reliability
and sensitivity analysis based on this approach is proposed in [8]. They focus the performance
function on the time inspection and perform Monte Carlo and FORM analysis. The present con-
tribution presents reliability and sensibility analysis considering a FAD margin as performance
function. Some difficulties are highlighted for FORM computation as a classical gradient-based
optimisation fails to converge, this contribution proposes to solve the optimization problem of
FORM using efficient surrogate-based evolutionary algorithm. Our approach allows to evaluate
the FORM approximation for black box performance function because its gradient is not neces-
sary. In addition to reliability analysis, a complete sensitivity of the FAD margin performance
function is performed on a test case.

This paper is structured as follows. The first section introduces the main methods of reli-
ability analysis. The second section reviews the main sensitivity indices and provides recom-
mendations for a good understanding of the reliability problem. The third section presents the
FAD margin performance function and the test case. It also includes the enhancement of the
FORM optimization algorithm and a complete sensibility analysis of the test case. Finally, the
last section concludes the and discusses future work.

2 APPLICATION TO FRACTURE MECHANICS

2.1 Probability of failure

Let us consider X = (X1, . . . , Xd) as a vector of d random variables Xi defined by respec-
tive probability density functions fXi

. Each random variable Xi is defined by distribution law
characterised by a vector of dθ parameters θi = {θik}, k = 1, . . . , dθ. Realizations of random
variable X is denoted by x and a realization vector by x = x1, . . . , xd.

A performance function G(X) is associated to the failure modes. This function allows split-
ting the space into two parts: the safe space where G(X) > 0 and the failure space defined as
G(X) ≤ 0. The border is the so-called limit state function and characterised as G(X) = 0.
The aim of reliability analysis is to compute the probability that an event is in the failure space
as Pf = Prob(G(X) ≤ 0). A structural reliability problem is solved using iso-probabilistic
transformation that switches the problem from the physics space Xd to the standard space Ud
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defined by uncorrelated standard normal random variables. Pf becomes:

Pf =

∫
G(X)≤0

fX(x)dx =

∫
H(U)≤0

φd(u)du, (1)

where fX is the joint probability density of Xi, i = 1, . . . , d, U are uncorrelated standard nor-
mal random variables, φd is the d-variate uncorrelated normal probability density function and
H(U) is the limit state function in the standard space.

2.2 Combination of failure criteria

The fundamental principle of Fracture Mechanics is that the stress field ahead of a sharp
crack in a test specimen or a structural member can be characterized by a single parameter, K,
which is the stress intensity factor (SIF). One of the main criteria in Fracture Mechanics relies
on the SIF, it must not exceed the toughness K1C which is a material property. It is expressed
using Kr as:

Kr =
K

K1C

< 1. (2)

Another failure mode corresponds to the plastic collapse of the remaining ligament. A failure
criterion Lr is developed in order to measure the capacity of the component to sustain the
mechanical load:

Lr =
σn
σp0.2

≤ σp0.2 + σm
2σp0.2

, (3)

where σn is the nominal stress in the remaining ligament, σp0.2 and σm are respectively the yield
and the ultimate strength.

The combination of both criteria is essential to assess the failure probability in Fracture
Mechanics. Both criteria are combined by to the Failure Assessment Diagram (FAD) inKr−Lr
space. In this diagram, the limit between safe and failure domains is defined by R6-rule [9] as
a function of parameters by:

g(Kr, Lr) = Kr −


0.3+0.7 exp(−µL6

r)√
1+0.5L2

r

for Lr ≤ 1

0.3+0.7 exp(−µ)√
1.5

L
nr−1
2nr
r for 1 < Lr < Lmax

r

0 for Lr ≥ Lmax
r

, with: (4)

µ = min{10−3
E

σp0.2
, 0.6}, nr = 0.3(1− σp0.2

σm
), Lmax

r =
σp0.2 + σm

2σp0.2
,

where E is the Young modulus. A strategy to evaluate the failure of structure in Fracture
Mechanics is to determine Kr and Lr to define a point in the FAD diagram and to compute a
function of the distance between this point and the R6-rule boundary [7]. This function is the
margin, if it is negative it means a failure of the structure, and if it is positive, the structure is
safe. As shown in Figure 1, the margin is function of the ratio |OB|

|OA| . The margin can be defined
as the performance functionG(x) because it allows to combine the two failure criteria andG(x)
can be expressed as:

G(x) =

(
|OB|
|OA|

− 1

){
> 0, safe
≤ 0, failure . (5)
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Figure 1: Failure Assessment Diagram: R6-rule and key points to evaluate the performance function.

2.3 Model description

A simple test case is defined. It consists in a crack in a beam (Figure 2) subjected to tensile
force. The crack propagates according to the Paris law expressed by:

da
dN

= C(∆K)m, (6)

where a is the size of the crack, N is the number of cycles, K is the SIF, C and m are crack
propagation law parameters.

As shown by Virkler [10], the phenomenon of the crack propagation can be considered as
a stochastic process. Indeed, considering sample of the same coupon test, experimental results
show that, for a given initial crack, the speed of the crack propagation is different. A common
way to integrate these uncertainties is to consider parameters of crack propagation law C and m
as random variables. There is a strong correlation ratio between these parameters [11], which
can not be independently sampled. Then, it is possible to consider m as random variable and
propagate the uncertainty to C according to a linear relationship:

lnC = ξ1m+ ξ0, (7)

where ξ0 and ξ1 are regression coefficients identified according to experimental test results.
As presented in Table 1, eleven input parameters are set as random variables defined by

classical distribution laws according to physical considerations. For the application, values of
parameters are invented but representative of the reality.

2.4 FORM

The Fist Order Reliability Method (FORM) [12, 13] is an approximation method based on
the Hasofer Lind reliability index [14] to compute the probability of failure. This index β is a
geometric measure of the reliability in relationship with the failure probability as pf = Φ(−β).
It is the shortest distance between the origin and the limit state in the standard space and is
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Figure 2: Test case geometry with parameters defined as random variables.

so-called the Most Probable Point (MPP) P ∗. The coordinates u∗ of P ∗ are obtained by solving
the following constrained optimization problem.

u∗ = arg min ‖u‖ (8)
s.t. H(u∗) ≤ 0.

This problem is commonly solved using the Rackwitz-Flessler gradient-based algorithm [15].
FORM implies a linearisation of the limit state in the vicinity of MPP. An approximation of the
probability of failure is expressed as:

Pf ≈ P (H(u∗)︸ ︷︷ ︸
=0

+∇uH(u∗)(u− u∗) ≤ 0) = Φ(−βFORM), with: βFORM = ‖u∗‖. (9)

Additional information about relative importance of input variables ui is provided by cosinus
director αi of the MPP in the U -space:

αi = − ∂β
∂ui
|{u∗}, (10)

so αi is the derivative of the reliability index according to variables u. This information is used
for sensitivity analyses developed in the next section.

FORM is a fast and efficient method to obtain the failure probability. Moreover, it provides
useful sensitivity information. Nevertheless, because it is based on an approximation, the pro-
vided value has to be checked using another reliable method such as simulations-based Monte
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Class Variable Distribution law Description
Geometry L U [299.9 mm; 300.1 mm] Height of the beam

W U [19.9 mm; 20.1 mm] Width of the beam
t U [9.9 mm; 10.1 mm] Thickness of the beam

Material properties E N (185000 MPa; 9250 mm) Young modulus
σp0.2 N (600 MPa; 6 MPa) Yield strength
σm N (900 MPa; 9 Mpa) Shear strength
K1C N (200 MPa

√
mm; 2MPa

√
mm) Fracture toughness

m N (3; 0.3) Paris law parameter
Loads F N (25 kN; 2.5 kN) Effort intensity
Crack a U [0 mm; 0.5 mm] Initial crack size

α N (0◦; 1◦) Crack orientation

Table 1: List of random variables with corresponding distribution laws.

Carlo method. The approximation can be enhanced using the Second Order Reliability Method
[13] SORM which includes the main curvature of the limit state function.

2.5 Application of FORM with Surrogate-Based Optimization

FORM relies on an optimization problem to get the Most Probable Point (MPP) which is
commonly solved using Rackwitz-Flessler gradient-based optimization algorithm. It has been
applied on our application case but it fails to determine the MPP. Similar issues, such as slow
convergence or no convergence, are also observed in [8]. Several starting points have been
tested, it is observed that after few iterations, the gradient of performance function becomes
close to zero and it breaks the algorithm. Null gradient underlines a saturation phenomenon of
the performance function. This phenomenon reveals a structural failure before the end of the
life cycle. Indeed, the crack grows and its size can become bigger than the beam size. In this
case, the margin in the FAD stays the same, even if input parameters are different. Figure 3
shows the evolution of the performance function in the standard space. In order to plot it in a
visual space, only two significant random variables are considered: the length of the crack a
and the crack propagation parameter m. The phenomenon of saturation can be observed in the
failure space. After few iterations, the optimal point is located in the saturation domain and this
stops the algorithm.

Gradient-based optimization methods are not relevant in our case. Hence, it has been pro-
posed to use genetic algorithm to determine the MPP. Actually, genetic algorithms do not need
gradient information to converge to the optimal point. Nevertheless, basic genetic algorithms
need a lot of simulations to converge [16]. Then, the interest to use FORM in comparison with
Monte Carlo can be compromised. In this contribution, a strategy based on a Surrogate-Based
Optimization (SBO) to get the MPP using the in-house optimization platform Minamo [17] is
built according to the following steps :

1. Firstly, a global objective function is built coupling the objective function (here the dis-
tance between the the origin and the Most Probable Point) and the inequality constraint
function (here the performance function must be less or equal to zero)

2. Then, a Design Of Experiments is generated using the Latin Hypercube Sampling method.
It allows to optimally sample the input space on the domain of definition of input parame-
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Figure 3: Evolution of the performance function in the standard space ua, um. The blue part is the failure domain.
Gradient in this domain is close to zero. The star points represent the iterations of FORM for the gradient-based
optimization. It stops when the point is located in the saturation domain.

ters. Individuals of DOE are so-called training points. In reliability problem, the sample is
generated in the standard space and each individual is mapped into the physical space by
the inverse of the iso-transformation to compute the performance function at each point
of the DOE.

3. A Radial Basis Function (RBF) surrogate of the global objective function in the standard
space is built on these training points. The fidelity of the surrogate depends of the size of
the DOE.

4. An optimal point is determined based on the surrogate model. The actual objective and
constraint function are assessed on this point.

5. Optimization criteria which are typically the maximum number of iterations or the dis-
tance between subsequent approximate optimal points, are checked:

• If criteria are satisfied, it is the end of the optimization process.

• If they are not. The DOE is enriched by this point and then we return to the third
step to build a surrogate with more training points.

This procedure is commonly named Adaptive sampling. At each iteration, new points enrich
the DOE to refine the surrogate in interesting part of the domain. Therefore, regardless satu-
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ration phenomenon, it allows to determine the MPP without performing a lot of simulations.
FORM approximation can be applied to compute reliability information.

Table 2 presents results of the reliability analysis using Monte Carlo method and FORM
with SBO comparing the probability of failure and the number of simulations. Even if there is a
ratio about two between the FORM probability and the Monte Carlo one, both are in the same
order of magnitude. FORM approximation is not exact but only about hundred simulations
are necessary. A compromise has to be determined between accuracy and speed. In our case,
FORM seems to be adapted because the scale of the probability is kept with a small number of
simulations. Moreover, FORM provides interesting sensibility information as explained later.

Method Pf Simulations
Monte Carlo 0.02505 100000 (cvP̂f

≈ 2%)

FORM with SBO 0.03860 115 (LHS 40)

Table 2: Results of reliability methods on the test case.

3 Sensitivity analysis

Reliability analysis aims at getting the probability of failure. Nevertheless, it is a fuzzy
information because experimental comparison are hard to establish. Therefore, sensibility of
the input variables is an interesting point as it defines the significant variables that impact the
probability of failure. Then, this contribution presents the main sensitivity indices useful for
reliability analysis. Firstly, sensitivity analysis of the performance function is performed. Sec-
ondly, reliability sensitivities are provided.

3.1 Mechanical sensitivities

Mechanical sensitivities aims at characterising the impact of inputs on the performance func-
tion. Even if screening and local sensitivity are available, mechanical sensitivities are generally
associated with global sensitivity providing accurate information about the influence of input
variabilities on the whole domain. Based on the ANalysis Of VAriance (ANOVA) decomposition
of model output, the Sobol method [18] is a global and model independent sensitivity analysis
method that provides indices to measure the impact of the input variabilities on the output vari-
ance. First Sobol indices quantify the impact of an input variable without taking into account
the interactions with other variable ans the total Sobol indices provide the global impact of a
variable. Nevertheless, these indices are only focused on the variance output and can not pre-
dict a change of the mean or other statistical moments of the output. Therefore, Borgonovo [19]
proposes indices based on the Probability Density Function (PDF) output. They measure the
change area of the density output and allow to consider other statistical moments. To completely
characterize the global impact of a variable, both indices are complementary.

Global sensitivity analysis of the performance function is achieved. Sobol first order, Sobol
total and Borgonovo indices are assessed and shown in Figure 4. On one hand, the variance-
based sensibility underlines three significant variables which the length of the crack a, the crack
propagation parameter m and the load F . It sounds in line with the definition of the test. The
difference of value between the two Sobol indices can be explained by the fact that there is
interaction between these three significant variables. On the other hand, density-based indices
show significant indices for ten variables : The three main variables of the variance-based ap-
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proach have still impact but geometric parameters and material properties have also significant
indices. These last parameters impact the output density mean or skewness but they have a very
small influence on the output variance. Mechanical sensitivities show that the variable H has
no influence on the performance. It is in line with the definition of the test case since it accounts
for semi-infinite geometry.
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Figure 4: Mechanical sensitivities of the performance function which the margin in the FAD.

3.2 Reliability sensitivities

In addition to provide the probability of failure, FORM gives some information about the
reliability sensibility. Firstly, as random variables are independent, the importance factors α2

i

(Figure 5) describe the weight of each variable on the reliability. As for the variance-based
mechanical sensibility, there are three significant variables : a, m and F . These results al-
low to determine, by some basic transformations[20], the reliability sensitivities of the inputs
distribution parameters of random laws,

∂βFORM

∂θik
=
∂βFORM

∂ui

∂uik

∂θik
= −αi

∂Tx→u(xi,θi)
∂θik

, (11)

where Tx→u(xi, θf ) = Φ−1(FXi
(xi, θf )) is the iso-probabilistic transformation. Considering the

FORM relationship between Pf and βFORM, the sensibility of Pf according to the parameters
θik is defined as:

∂Pf
∂θik

≈ −φ(−βFORM)
∂βFORM

∂θik
. (12)

Reliability sensitivities of the test case (Figure 6) underline two significant variables which are
a and m. The parameters of the load distribution seem to not impact the reliability. However,
reliability sensitivities quantify the impact of the variation of one unity of the input parameter
on the reliability. They are not normalised, then, the comparison of the influence of variation is
not obvious. Thus, it is also interesting to compare the influence of input variables quantifying
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Figure 5: Influence of the parameters on the failure space.

the impact of one percent of variation. This is commonly named elasticities and is expressed
by:

eθik =
θik

βFORM

∂βFORM

∂θik
. (13)

According to the comparison of elasticities (Figure 7), F , a and m are the most significant vari-
ables as for the variance-based sensibility and for the importance factors. It can be due to the
relatively small influence of other parameters. Indeed, results can be different if other param-
eters impact more the variance of the performance function. Moreover, F , a and m reliability
sensitivities are positive, it implies that the reliability decreases when the mean parameters of
these variables increase.
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m F a α-0.8

-0.6

-0.4
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Reliability sensitivities
∂β
∂θ1

∂β
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Figure 6: Reliability sensitivities of distribution parameters.
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Figure 7: Reliability elasticities of distribution parameters.

To summarise, three parameters have significant influence on the variance performance func-
tion and on the reliability:

• the length of the crack a,

• the crack propagation parameter m,

• the loads F .

It can be explained by the fact that these parameters directly drive the crack propagation. In
order to run accurate reliability analysis, specific effort has to be made to carefully fit the random
laws of these parameters.

4 CONCLUSIONS

This contribution presents a reliability and sensibility analysis of a typical Fracture Mechan-
ics problem which combines two failure criteria. Both are combined in the performance func-
tion using a margin function in the FAD diagram. The classical gradient-based algorithm used
for the FORM reliability method failed to determine the Most Probable Point which is neces-
sary to apply this method. It is due to a phenomenon of saturation of the performance function.
This contribution fixes the problem using an efficient Surrogate-Based Optimization algorithm
to allow to determine key information to apply the FORM method with a limited number of sim-
ulations. A complete sensibility analysis is performed and it underlines the significant impact
other random variables as the length of the crack a, the Paris law crack propagation parameter
m and the loads F . Therefore, a particular consideration must be given to the modelling of
these random variables.

The FORM method is applied here using a Surrogate-Based Optimization algorithm. Nev-
ertheless, simulation methods can also be used using surrogate model to reduce the number
of simulations. Moreover, in the surrogate enhancement, the phenomenon of saturation of the
performance function should be taken into account.
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Abstract. A thin-walled tube subjected to internal and external pressure under the conditions of
double-sided mechanochemical corrosion is considered. The rates of corrosion are supposed to
be linearly dependent on the maximum principal stress. Previous solutions for thin cylindrical
shells obtained by other authors reflect only the effect of differential pressure (i.e., the differ-
ence between internal and external pressure) and do not depend on the internal and external
pressure values themselves. The model proposed here allows to take into account the effect of
hydrostatic pressure on the durability of the tube exposed to corrosive environment, but it is not
so cumbersome as the accurate solution for the double-sided corrosion of a pressurized tube
based on the solution of Lamé problem for a thick-walled cylinder. The problem is reduced to
an ordinary differential equation of the first order, which is solved in a closed form. It has been
observed that the computational results for the classical thin shell model and for the proposed
here refined model are very close to each other when either internal or external pressure is
equal to zero. But the difference between the mentioned results grows as the minimum of the
pressure values increases.
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1 INTRODUCTION

Corrosion is a process of material destruction that occurs as a result of chemical interaction
between a material and its environment. General corrosion is one of the most common types of
corrosion, that damages the entire surface of the material at about the same rate, and as a conse-
quence, results in a failure. If a structural element, as well as being in aggressive environment,
is subjected to mechanical load, then the mechanochemical effect may occur when corrosion is
enhanced by stress [1, 2]. In such situations for the assessment of the durability of structural
elements, initial boundary value problems with evolving boundaries have to be considered.
Most of them are solved by numerical methods. However, it is reasonable to have closed-form
benchmarks for the verification of numerical techniques. A number of closed-form solutions
have been found for the cases of uniform corrosion, e.g. by the authors of [3, 4, 5, 6, 7, 8, 9].

This paper presents an analytical solution for a thin-walled cylindrical tube subjected to in-
ternal and external pressure under the conditions of double-sided mechanochemical dissolution.
The rates of corrosion are supposed to be linearly dependent on the maximum principal stress
[1]. There is a lot of works devoted to thin-walled structures [3, 4, 5, 6]. However, previous
solutions for thin shells obtained by other authors, do not depend on the internal and external
pressures themselves, but depend only on their difference. Therefore, they do not reflect the
effect of hydrostatic pressure (i.e. the minimum of the internal and external pressures) on life-
time of the vessel. At the same time, the known accurate solutions for double-sided corrosion
of elastic tube under internal and external pressure based on the solution of Lamé problem are
rather cumbersome [10, 11]. The model proposed here is not so complicated as these accurate
solutions, but it allows to take into account the effect of hydrostatic pressure on the durability
of thin shells under the mechanochemical corrosion conditions. The same questions for spher-
ical shells were investigated in [12, 13, 14, 15]. The problem of calculation of the optimal
initial thickness of a spherical vessel operating in mechanochemical corrosion conditions was
solved in [16]. The results can be taken into account for the lifetime assessment of thin-walled
structural elements subjected to the combined action of mechanical loads and an aggressive
environment [17, 18, 19, 20, 21].

2 THE DESCRIPTION OF THE PROBLEM

Consider a linearly elastic long thin-walled cylindrical tube with the inner r and outer R radii
subjected to internal pr and external pR pressure which are given constant. The article covers the
following cases: an incompressible tube subjected to the plane-strain condition characterized
by vanishing axial strain and a closed cylindrical vessel. The action of the ends of the cylinder
is not taken into account. Cylinder is uniformly corroding from the inside and outside with
the dissolution rates vr and vR, respectively. Change of the tube’s thickness is assumed to be
quasi-static and uniform throughout the entire length: the inner radius increases while the outer
radius decreases with time t. Let the tube’s radii at the initial time t0 be denoted by r0 and R0.

According to [1, 3], the rates of corrosion on the inner and outer surfaces are:

vr =
dr

dt
= ar +mrσ1(r), vR = −dR

dt
= aR +mRσ1(R), (1)

where ar, aR, mr, and mR are experimentally determined constants, which, in general, are
different for tension and compression [1, 7]; σ1 is the maximum principal stress at the corre-
sponding surface of the tube; signm = sign σ1.

Consider a cylindrical coordinate system (ρ, θ, z) with the z-axis coincide with the axis of
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the tube. In the previous solutions for thin-walled tubes obtained by other authors (for example
[4]), σ1 was chosen equal through the thickness of the shell:

σ1(r) = σ1(R) = σθθ =
∆pRc

h
, (2)

where Rc = (R0 + r0)/2 is the radius of the middle surface of the cylindrical tube (which is
supposed to be constant during the corrosion), h = R − r is the thickness of the tube, and
∆p = pr − pR.

It’s obvious that the solution derived by the use of equation (2) does not depend on the
pressure values pr and pR, but depends only on the difference ∆p. However, it is known that
hydrostatic pressure p = min{pr, pR} can affect corrosion kinetics [1].

The purpose of this paper is to derive a new (more accurate, but not more complicated than
previous) solution which allow to take into account the effect of hydrostatic pressure p on the
assessment of the durability of thin-walled tubes subjected to mechanochemical corrosion.

3 THE SOLUTION OF THE PROBLEM

3.1 Effective stress

According to the G. Lame’s formulas for a thick-walled tube under internal and external
pressure, maximum principal stress at every time t is determined as

σθθ(ρ) =
prr

2 − pRR
2

R2 − r2
+

(pr − pR)

R2 − r2
r2R2

ρ2
, r ≤ ρ ≤ R. (3)

Solution to the problem of mechanochemical corrosion obtained by the use of formula (3) is
rather cumbersome [11]. Let us simplify formula (3) taking into account that for a thin-walled
shell we can assume that h/Rc << 1. Using other notations: r = Rc − δ and R = Rc + δ
(where δ = h/2), we can write

σθθ(r) =
pr(2R

2
c + 2δ2)− 2pR(R

2
c + 2Rcδ + δ2)

4Rcδ

=
pr (1 + δ2/R2

c)− pR (1 + 2δ/Rc + δ2/R2
c)

2δ/Rc

, (4)

and

σθθ(R) =
−pR(2R

2
c + 2δ2) + 2pr(R

2
c − 2Rcδ + δ2)

4Rcδ

=
−pR (1 + δ2/R2

c) + pr (1− 2δ/Rc + δ2/R2
c)

2δ/Rc

. (5)

Due to the fact that δ/Rc << 1, the terms δ2/R2
c in equations (4) and (5) can be neglected

compared to 1. However, we leave the terms δ/Rc which will allow us to take into account the
effect of hydrostatic pressure p = min{pr, pR}. As a result we obtain

σθθ(r) =
∆pRc

h
− pR, σθθ(R) =

∆pRc

h
− pr. (6)
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3.2 Basic differential equation

Let us assume that during the corrosion process the radius Rc remains constant, while the
thickness h is changing with time.

Combining equations (1) and (6) gives the ordinary differential equation of the first order

dh

dt
= −(ar + aR −mRpr −mrpR)− (mr +mR)

∆pRc

h
. (7)

The initial condition to be satisfied at t = t0 is h|t0 = R0 − r0.

3.3 Solution of the basic equation

The integral of the differential equation (7), satisfying the above initial conditions is

t = t0 +
m∆pRc

a2
ln

m∆pRc + ah

m∆pRc + ah0

− h− h0

a
, (8)

where a = ar + aR −mRpr −mrpR and m = mr +mR.
Maximum principal stresses at the tube’s surfaces can then be calculated by the use of equa-

tions (6) for every (t, h).

3.4 The assessment of the lifetime

In the framework of the maximum normal stress criterion, since |σ1(r)| ≥ |σ1(R)|, for
the assessment of the durability of the tube we should track the stress σ1(r). Let us denote
it by σ. The lifetime of the tube can be defined as the time t∗ at which σ reaches a strength
limit σ∗ : σ(t∗) = σ∗. Therefore, the lifetime can be determined by equation (8) with h∗ =
∆pRc/(σ

∗ + pR) for h.

4 CALCULATION RESULTS

Let us compare calculation results obtained by the proposed model (using equations (6) for
the effective stresses in (1)) with the results based on the classical thin shell theory formula
(using equation (2) for the effective stress). In figure 1 the dependencies of |σ| on t are plotted
for the cylindrical tube with the middle radius Rc = 100 [lc] and the initial thickness h0 = 4
[lc]; t0 = 0. Here, lc is a certain unit of length. Corrosion kinetics constants are ar = aR = 0.16
[lc/tc] and mr = mR = 0.008 [lc/(tcpc)]). Here and below, tc is an appropriate unit of time; pc
is a given unit of stress.

In order to demonstrate the effect of hydrostatic pressure p = min{pr, pR}, four sets of the
internal and external pressure values were used:

• pr = 1 [pc], pR = 0 (green dotted line);

• pr = 0, pR = 1 [pc] (blue dotted line);

• pr = 6 [pc], pR = 5 [pc] (green dashed line);

• pr = 5 [pc], pR = 6 [pc] (blue dashed line).
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Figure 1: Evolution of |σ(t)| for |∆p| = 1.

These sets are chosen in such a way that despite various values of the pressures pr and pR, the
absolute value of the pressure difference remains constant: |∆p| = 1 [pc].

It is evident that when the effective stress is given by equation (2), the dependencies of
|σ| on the time t for all the above sets of pressure values are the same. In other words, for
|∆p| = const, the classical thin shell theory formula provides only one curve; it is the red solid
line in figure 1.

For the refined model, we have different curves for each of the considered sets of pressure
values. Blue curves in figure 1 correspond to the case when ∆p < 0, while green ones corre-
spond to positive differences, ∆p > 0.

It is seen from the figure that the curves for both models are close to each other at zero
hydrostatic pressure, p = min{pr, pR} = 0 (compare solid line and dotted lines). However,
the difference between the classical thin shell model (solid line) and our refined model (dashed
lines) increases with the growing p. Therefore, using the classical thin shell model is not reason-
able for modelling the mechanochemical corrosion under high hydrostatic pressure (especially
when |∆p| << p).

In the framework of our model it was revealed that the durability of the tube increases as p
grows if ∆p > 0 (see green lines), and decreases if ∆p < 0 (see blue lines).

At the same time, the computational results [11] based on the Lamé’s formula and proposed
here are hardy differ for any pressure values.

5 CONCLUSIONS

• A new mathematical model for the double-sided mechanochemical corrosion of a thin-
walled cylindrical tube has been developed.

• An analytical solution of the problem has been obtained.
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• The computational results for the classical thin shell model and for the proposed here re-
fined model are very close to each other for zero hydrostatic pressure, p = min{pr, pR} =
0.

• As compared to the classical thin shell model, the durability of the tube increases as p
grows if pr > pR, and decreases if pr < pR.

• Using the classical thin shell model is not reasonable for modelling the mechanochemical
corrosion under high hydrostatic pressure.

• The solutions based on the Lamé’s formula and proposed here are hardy differ for any
pressure values.
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Abstract. The present contribution provides a comprehensive computational framework for

large deformational contact and phase-fracture analysis and is based on the recently appeared

publication [16]. A phase-field approach to fracture allows for the efficient numerical treatment

of complex fracture patterns for three dimensional problems. Recently, the fracture phase-field

approach has been extended to finite deformations (see [18] for more details). In a nutshell,

the phase-field approach relies on a regularization of the sharp (fracture-) interface. Besides

a second-order Allen-Cahn phase-field model, a more accurate fourth-order Cahn-Hilliard

phase-field model is considered as regularization functional. For the former standard finite

element analysis (FEA) is sufficient. The latter requires global C1 continuity (see [3]), for

which we provide a suitable isogeometric analysis (IGA) framework. Furthermore, to account

for different local physical phenomena, like the contact zone, the fracture region or stress peak

areas, a newly developed hierarchical refinement scheme is employed (see [19] for more de-

tails). For the numerical treatment of the contact boundaries we use the variational consistent

Mortar method. The Mortar method passes the patch-test and is known to be the most accurate

numerical contact method. It can be extended, in a straightforward manner, to transient phase-

field fracture problems. The performance of the proposed methods will be examined in several

representative numerical examples.
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1 INTRODUCTION

The underlying contribution deals with large deformational continuum bodies which are as-

sumed to contact each other and are each able to fracture within considered simulation time. For

the spatial discretization a modern isogeometric analysis (IGA) framework with local refine-

ment scheme and the variational consistent Mortar contact method are employed. A structure

preserving integrator is provided for dynamic problems. Note, the work is based on the recently

appeared publication [16].

The phase-field method has originally been used to model phase separation. In the last two

decades it furthermore has been used to regularize sharp cracks (see e.g. [26, 28, 24]). Besides

the displacements the phase-field parameter s is introduced as primary unknown. This phase-

field parameter is driven by a suitable phase-field partial-differential equation (PDE), which

is used to regularize the sharp crack interface. In the literature different PDE’s are discussed

(see e.g. [3, 34]). We use a second and a fourth order PDE. It is assumed, that the crack

initiates or growths by attainment of a local critical energy release rate (see e.g. [9, 5, 26]).

It is further possible to give a variational formulation for the crack propagation problem (see

e.g. [23, 13, 12]). The phase-fracture method has been developed in the small strain regime

(see e.g. [26, 28]). Recently, the phase-fracture method has been extended to the full nonlinear

regime (see [18]) by using a multiplicative split of the deformation gradient into compressive

and tensile parts (cf. [27]). It is important to remark, that the numerical treatment of phase-

field approaches to fracture is less sophisticated than other computational crack propagation

techniques for modeling sharp cracks.

In the last three decades, computational modeling of contact mechanics has been intensified

(see [37, 25] for comprehensive overviews). Besides traditional nodal based contact methods,

e.g. like the node-to-surface method, the variational consistent Mortar method has been well-

established (see e.g. [31, 15, 30, 36]). In a recent publication (see [7]) we applied the Mortar

method for thermo-mechanical frictional contact problems. Therein we used an isogeometric

analysis framework, which allows for higher order approximations with arbitrary adjustable

continuity. Here and in our recent publication [16] we extend the isogeometric analysis frame-

work with the phase-field fracture approach. Note, for higher order phase-field equations stan-

dard C0 Lagrangian shape functions are not sufficient anymore.

Concerning the spatial discretization both the contact zone as well as the fracture zone de-

mand for refined meshes. Higher order spatial discretization methods are more accurate and

reduce the computational demand (see [6] for a comprehensive overview). Therefore we make

use of an IGA framework. To be specific we use non-uniform rational B-splines (NURBS),

for which the continuity is adjustable by construction of the shape functions. For local refine-

ment mainly T-splines and hierarchical refinement schemes have been used. The application of

T-Splines have some drawbacks (see [1] for details), such that we employ an hierarchical refine-

ment scheme (see [8, 33, 4]). Hierarchical refinement procedures replace B-spline and NURBS

basis functions on the refined level by a linear combination of scaled and copied versions of

themselves, maintaining the required continuity (see e.g. [22, 29]). In particular, we aim at an

hierarchical refinement formulation which maintains the partition of unity and is suitable to be

adapted to traditional contact mechanical formulations.

An outline of the underlying contribution is as follows. The continuum mechanical basis

with application to contact and fracture mechanics and the corresponding governing equations

are dealt with in Section 2. Standard FEA and IGA discretization of the weak form follows

in Section 3. Furthermore, a modern Mortar contact approach will be given in Section 3. The
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Figure 1: Typical reference (left) and current (right) configurations of bodies B(i) with crack phase-field.

temporal discretization of the semi-discrete equations is covered in Section 4. Representative

numerical examples are given in Section 5. Eventually, conclusions are drawn in Section 6.

2 Governing equations

The underlying contribution deals with continuum bodies B(i) ∈ R
d, where d ∈ {1, 2, 3}.

For ease of exposition we restrict the consideration to a two body problem, i.e. i = 1, 2, de-

picted in Figure 1. The bodies are assumed to contact each other within time t ∈ I = [0, T ],

where T ∈ R
+. The bodies B(i) are presented in its reference configuration B

(i)
0 and its current

configuration B
(i)
t , accordingly finite deformations are incorporated. The reference configura-

tion can be addressed with material coordinates X(i) ∈ R
d and corresponding material basis

EA, where A = 1, ..., d. Moreover, the current configuration is given by the bijective mapping

ϕ(i) : B
(i)
0 × I → R

d and is subject to spatial basis ea, where a = 1, ..., d.

In order to model fracture the smooth phase-field parameter s
(i) : B

(i)
0 × I → [0, 1] is

introduced. s can be regarded as damage variable and physically represents a homogenized

macroscopic crack of micro-cracks (see [28]).

The mechanical boundary Γ(i) := ∂B(i) ∈ R
d−1 (depicted in Figure 1) is decomposed into

a Dirichlet boundary Γ
(i)
d ⊂ Γ(i), a Neumann boundary Γ

(i)
n ⊂ Γ(i) and a contact boundary

Γ
(i)
co ⊂ Γ(i), accordingly

Γ(i) = Γ(i)
n ∪ Γ

(i)
d ∪ Γ(i)

co . (1)

The boundaries may not overlap each other, such that

Γ(i)
n ∩ Γ

(i)
d = Γ(i)

n ∩ Γ(i)
co = Γ

(i)
d ∩ Γ(i)

co = ∅ . (2)

This has to be valid for the spatial counterparts of the boundaries

γ
(i)
(•) = ϕ(i)(Γ

(i)
(•), t) , (3)
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Figure 2: 1D sharp (left) and phase-field regularized (right) crack.

as well, where the abbreviation (•) is used to refer to the different boundaries. In addition to

the mechanical boundaries a crack Dirichlet boundary Γ
(i)
cr defines a new internal boundary of

corresponding body and can be initialized within the bodies. All other phase-field boundaries

can be regarded as Neumann boundaries. For the two-field problem the displacement as well as

the scalar-valued phase-field parameter are the primary unknowns

[ϕ, s] ∈ R
d+1 . (4)

Phase-field contribution The aforementioned crack phase-field parameter s has two bounds,

the unbroken state with s = 0 and the fully broken state with s = 1 (see [28, 18]). Herein,

we assume that crack initiates or continues only in tensile state by attainment of a critical local

fracture energy density, given by G
(i)
c , which is related to the critical Griffith-type fracture en-

ergy (see [11, 21, 28]). The sharp crack is a d− 1-dimensional manifold. To avoid the difficult

modeling of sharp cracks we regularize the crack zone with a suitable crack density functional

γ
(i)
cr,n, such that we are able to integrate over the d-dimensional domain

G(i)
c

∫

Γ(i)

dA ≈ G(i)
c

∫

B
(i)
0

γ(i)
cr,n dV = G(i)

c Γ(i)
cr,n =: V (i)

cr,n .

Therein n denotes the order of the phase-field model (cf. [3]). In [28] a second order and

in [3, 34] a fourth order differential equation have been proposed1 (see Figure 3 for the 1D

analytical solution). The former is given by

s
(i) − 4 (l(i))2 ∆s

(i) = 0 , (5)

with the corresponding functional

F
(i)
cr,2 =

1

2

∫

B
(i)
0

((s(i))2 + 4 (l(i))2 ∇s
(i) · ∇s

(i)) dV , (6)

whereas the latter is given by

s
(i) − 2 (l(i))2 ∆s

(i) + (l(i))4 ∆∆s
(i) = 0 . (7)

The corresponding functional denotes

1It is important to remark, that it does not exist a natural PDE to model the crack density functional (for more

informations see [34])
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Figure 3: Analytical solution of 1D second order phase-field (5) s(x) = e
−|x|
2 l (left) and fourth order phase-field

(7) s(x) = e
−|x|

l (1 + |x|
l
) with different length scale parameters.

F
(i)
cr,4 =

1

2

∫

B
(i)
0

(
1

2
(s(i))2 + (l(i))2 ∇s

(i) · ∇s
(i) +

(l(i))4

2
∆s

(i) ∆s
(i)) dV . (8)

In the above equations l(i) denotes the length scale parameter, which determines the width of

the regularization zone (see Figure 2). The length scale parameter may be treated as material

parameter and should be chosen as

h(i) <
l(i)

2
, (9)

where h(i) denotes the smallest finite element size (for more details see [28]). Note, for the

fourth order approach l(i) can be chosen even smaller as suggested by (9) (see e.g. [16]) The

regularized crack surface topologies are then constructed by Γ
(i)
cr,2/4 :=

1
l(i)

F
(i)
cr,2/4 as proposed in

[28]. Accordingly, for (5) and (7), we obtain

Γ
(i)
cr,2 =

1

2 l(i)

∫

B
(i)
0

((s(i))2 + 4 (l(i))2 ∇s
(i) · ∇s

(i)) dV , (10)

Γ
(i)
cr,4 =

1

4 l(i)

∫

B
(i)
0

((s(i))2 + 2 (l(i))2 ∇s
(i) · ∇s

(i) + (l(i))4 ∆s
(i) ∆s

(i)) dV , (11)

respectively. As can be observed in Figure 3, the fourth order phase-field approach has two

advantages with respect to the second order phase-field approach. The fourth order phase-field

approach does not contain non-differentiable areas and further by using the same length scale

parameter the transition zone is smaller. Moreover, in the numerical treatment better accuracy

and convergence rates of the solution have been observed (see [3]). For the second order phase-

field model C0-continuity, whereas for the fourth order model C1-continuity is required.

Bulk contribution The potential of the bulk is given by

V
(i)

bulk =

∫

B
(i)
0

Ψ(i) dV , (12)
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where Ψ(i) denotes the strain energy density function of body i. The corresponding balance of

linear momentum is given by

Div(P (i)) + B̄
(i)

= ρ
(i)
0 ϕ̈(i) , (13)

where P (i) : B
(i)
0 × I → R

d×d denotes the first Piola-Kirchhoff stress tensor, B̄
(i)

∈ R
d

denotes the prescribed body force density and ρ
(i)
0 : B

(i)
0 × I → R denotes the mass density.

Additionally, an arbitrary hyperelastic material law can be incorporated with a suitable strain

tensor. The symmetric right Cauchy-Green strain tensor is introduced by

C(i) = F (i) F (i)T , (14)

using the deformation gradient F (i) : B
(i)
0 × I → R

d×d. As already mentioned, we assume that

only local tension rather than local compression is responsible for crack growth. Accordingly,

we aim at an anisotropic description, such that we need to split the kinematic into tension and

compression2. Therefore we employ an eigendecomposition of the deformation gradient, which

yields

F (i) =
d

∑

a=1

λ(i)
a a(i)

a ⊗A(i)
a , (15)

where the deformation gradient is represented in its principal stretches λ
(i)
a and spatial and mate-

rial directions a
(i)
a ,A(i)

a , respectively. As proposed by [18], an operator split of the deformation

gradient is performed, such that

F (i) = F (i),− F (i),+ =
d

∑

a=1

λ(i),−
a λ(i),+

a a(i)
a ⊗A(i)

a . (16)

Therein the superscripted ± denotes

λ(i),±
a =

λ
(i)
a ± |λ

(i)
a |

2
. (17)

Accordingly, the principal strains are decomposed into tensile and compressive components.

Furthermore, an anisotropic split of the principal stretches is accomplished, which yields

F (i) =: F
(i)
i

F (i)
e

, (18)

where the fracture sensitive and insensitive parts are introduced as follows

F
(i)
i

=
d

∑

a=1

(λ(i),+
a )1−g(s(i)) aa ⊗Aa, F (i)

e
=

d
∑

a=1

(λ(i),+
a )g(s

(i)) λ(i),−
a aa ⊗Aa . (19)

Therein the degradation function g(s(i)) = 1− s
(i) has been introduced. Note, in the linear case

an additive split has been proposed by [26] and can be stated as

Ψ(i)(ǫ(i)) → Ψ̃(i)(ǫi, s(i)) = (g(s(i)) + k)Ψ(i),+(ǫ(i)) + Ψi,−(ǫ(i)), g(s(i)) = (1− s
(i))2 .

(20)

2Note, a less realistic but more simple choice would be an isotropic description.
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Figure 4: Parametrization of contact surface γ
(2)
co .

Note further, that a more sophisticated cubic degradation function

g(s(i)) = a(i) ((1− s
(i))3 − (1− s

(i))2)− 2 (1− s
(i))3 + 3 (1− s

(i))2, a(i) ≥ 0 , (21)

is discussed in [2] and can easily be incorporated. For a(i) = 2 the quadratic functional in

equation (20) is recovered. Using the above coupled kinematic, the Helmholtz free energy

depends besides the strain also on the phase-field, such that

Ψ(i)(C(i)) → Ψ(i)(C(i)
e
) = Ψ(i)

e
(C(i), s(i)) =: Ψ(i)

e
. (22)

Accordingly, the elastic part of bulk potential (12) can be written as

V
(i)

bulk,e =

∫

B
(i)
0

Ψ(i)
e

dV . (23)

Contact contribution The underlying contact description is based on the description given in

[10]. Note, as mentioned earlier, the phase-field and the contact boundaries do not depend on

each other. As can be observed in Figure 4 we introduce a local convective coordinate system.

The closest point projection of ϕ(1)(X(1), t) ∈ γ
(1)
co to opposing surface γ

(2)
co yields

‖ϕ(1)(X(1), t)− ϕ̄(2))‖ → min . (24)

Therein ϕ̄(2) := ϕ(2)(X̄
(2)
(X(1), t) denotes the orthogonal projected point to ϕ(1)(X(1), t).

The local convective coordinate system is parametrized with convective coordinates ξα, α ∈

{1, 2} such that

X̄
(2)
(X(1)) := X(2)(ξ̄), ϕ̄(2) := ϕ(2)(ξ̄, t) . (25)

Therein ξ̄ = [ξ̄1, ξ̄2] denotes the convective coordinates of the projected point and is computed

via equation (24) e.g. with Newton’s method. The convected basis are calculated with

aα := ϕ(2)
,α (ξ̄, t) . (26)
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Note that the above basis are in general not orthonormal. Accordingly, it is important to give

the metric for the local coordinate system

mαβ = aα · aβ . (27)

The gap vector is given by (see Figure 4)

g = ϕ(1) − ϕ̄(2) . (28)

Furthermore, the unit outward normal to the surface γ
(2)
co at point ϕ̄(2) is defined by

n :=
a1 × a2

‖a1 × a2‖
. (29)

With the above the scalar-valued gap function can be computed via

gN =
(

ϕ(1) − ϕ̄(2)
)

· n . (30)

Considering the balance of linear momentum at the contact boundary, we obtain

t(1)co (X
(1), t) dA(1) = −t(2)co (X̄

(2)
(X(1)), t) dA(2) . (31)

Therein, the involved contact traction can be splitted into a normal and a tangential part as

follows

t(1)co (X
(1), t) = tN + tT, tT · n = 0 . (32)

Moreover, the normal contact traction is given by

tN := t
(1)
N = −tN n . (33)

Frictionless contact is incorporated by using the well-known Karush-Kuhn-Tucker conditions,

given by

gN ≥ 0 , (34)

tN ≤ 0 , (35)

tN gN = 0 . (36)

The Karush-Kuhn-Tucker conditions are comprised of the impenetrability condition (34), the

condition which only allows compressive tractions (35) and the complementarity condition (36).

The Karush-Kuhn-Tucker conditions are shown in Figure 5 for both the penalty method and

Lagrange multipliers. Note, the framework is readily expendable to incorporate any frictional

constitutive law (e.g. Coulomb friction), but is omitted herein for convenience, i.e. tT = 0.

Within the computational treatment of contact, we subsequently apply the active set strategy to

obtain an active contact boundary Γ̄
(i)
co from the potential contact boundary Γ

(i)
co . In particular

the inequalities given in (34)-(36) are implemented using the max-operator (see [20] for more

informations) as follows

ΦN = λN −max(0, λN − cΦN) = 0 . (37)
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tN

gN

ǫN

admissible region

Figure 5: Karush-Kuhn-Tucker conditions for frictionless contact (solid line: exact enforcement, dotted line:

penalty regularization with penalty parameter ǫN).

Therein λN and ΦN denote the Lagrange multiplier and corresponding constraint, respectively.

Note λN := tN denotes the exact contact traction and ΦN := gN the gap function. Moreover,

within the active set strategy c ∈ R
+ is a constant parameter, which is suitable to influence the

convergence of Newton’s method but does not influence the constraint enforcement. Eventually,

assuming active contact and using equation (31), we are able to introduce the contact potential

employing only one integral expression, such that

2
∑

i=1

V̄ (i)
co =

∫

Γ̄
(1)
co

t(1)co ·
(

ϕ(1) −ϕ(2)
)

dA(1) := V̄co . (38)

Initial boundary value problem In the following the contact boundaries are assumed to be

known. Collecting all introduced contributions, yields

V aug =
∑

i

V
(i)

bulk,e + V
(i)

cr,2/4 + V̄co . (39)

Regarding transient problems the kinetic energy is defined by

T =
∑

i

1

2

∫

B
(i)
0

ρ ϕ̇(i) · ϕ̇(i) dV . (40)

With the Lagrange functional L = T − V aug at hand, the above is used to employ Hamilton’s

principal, given by

δS =

∫ t2

t1

δL dt =

∫ t2

t1

(δT − δV aug) dt
!
= 0 . (41)
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Equation (41) leads to the Euler-Lagrange equations. Accordingly, the initial boundary value

problem (IBVP), for the coupled system with fourth order phase-field model, can be written as

Div(F (i)
e

S(i)
e
) + B̄

(i)
− ρ

(i)
0 ϕ̈(i) = 0 in B

(i)
0 ∀t ∈ I , (42)

H(i) +
G
(i)
c

4 l(i)
(s(i) − 2 (l(i))2 ∆s

(i) + (l(i))4 ∆∆s
(i)) = 0 in B

(i)
0 ∀t ∈ I , (43)

ϕ(i) = ϕ̄(i) on Γ
(i)
d ∀t ∈ I , (44)

P (i) N (i) = T̄
(i)

on Γ(i)
n ∀t ∈ I , (45)

gN ≥ 0 on Γco∀t ∈ I , (46)

tN ≤ 0 on Γco∀t ∈ I , (47)

tN gN = 0 on Γco∀t ∈ I , (48)

s
(i) = 1 on Γcr,d∀t ∈ I , (49)

∆s
(i) = 0 on Γ(i)∀t ∈ I , (50)

∇((l(i))4 ∆s
(i) − 2 (l(i))2 s(i)) ·N (i) = 0 on Γ(i)∀t ∈ I , (51)

ϕ(i)(t = 0) = ϕ
(i)
0 in B

(i)
0 , (52)

ϕ̇(i)(t = 0) = ϕ̇
(i)
0 in B

(i)
0 , (53)

s
(i)(t = 0) = s

(i)
0 in B

(i)
0 . (54)

The above is supplemented by the constitutive equations

S(i)
e

= 2 D1Ψ
(i)
e
(C(i), s(i)), H(i) = D2Ψ

(i)
e
(C(i), s(i)) , (55)

which denote the second Piola-Kirchhoff stress tensor and the driving force of the phase-field.

Equations (44)-(45) are the prescribed mechanical Dirichlet and Neumann boundary conditions,

whereas equations (49)-(51) denote the phase-field Dirichlet and Neumann boundary condi-

tions. Furthermore equations (52)-(54) denote the initial conditions. Note, in order to obtain

the IBVP for the second order phase-field model, equation (43) needs to be exchanged by

H(i) +
G
(i)
c

2 l(i)
(s(i) − 4 (l(i))2 ∆s

(i)) = 0 in B
(i)
0 . (56)

Furthermore, equations (49) and (50) need to be exchanged by condition

∇s
(i) = 0 on Γ(i)∀t ∈ I . (57)

Note that we do not enforce ṡ ≥ 0. Accordingly, within our formulation, the phase-field may

be healed except the material is fully broken, i.e. s = 1, which will be enforced with a Dirichlet

type mechanism (see next paragraph for more informations).

Virtual work Analogously, we are able to collect the virtual work contributions, such that

G :=
∑

i

G
(i)
dyn +G

(i)
int,ext +G

(i)
cr,2/4 + Ḡco . (58)

To this end the displacement solution space is defined by

V (i)
s = {ϕ(i) : ϕ(i)(X(i), t) ∈ H1(B

(i)
0 )|ϕ(i)(X(i), t) = ϕ̄(i) on Γ

(i)
d } , (59)
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such that the solution function ϕ(i) is element of the Sobolev space H1 which includes the space

of square-integrable functions and square-integrable first derivatives. Furthermore the solution

function is required to satisfy the Dirichlet boundary condition. The space of test functions with

the corresponding test function δϕ(i) is postulated as3

V
(i)
t = {δϕ(i) : δϕ(i)(X(i)) ∈ H1(B

(i)
0 )|δϕ(i)(X(i)) = 0 on Γ

(i)
d } . (60)

Accordingly, the test-function vanishes at the Dirichlet boundary. Using standard techniques,

the contributions to the weak form are obtained as follows

G
(i)
dyn :=

∫

B
(i)
0

δϕ(i) · ϕ̈(i) ρ
(i)
0 dV , (61)

G
(i)
int,ext :=

∫

B
(i)
0

S(i)
e

: F (i)T

e
Grad(δϕ(i)) dV −

∫

B
(i)
0

δϕ(i) · B̄
(i)

dV −

∫

Γ
(i)
n

δϕ(i) · T̄
(i)

dV .

(62)

Using a suitable test space for the second order PDE in (5), e.g. given by

V
s,(i)
cr,2 = {s(i) : s(i)(X(i), t) ∈ H1(B

(i)
0 )|s(i) = 1 on Γ(i)

cr } , (63)

V
t,(i)
cr,2 = {δs(i) : δs(i)(X(i)) ∈ H1(B

(i)
0 )|δs(i) = 0 on Γ(i)

cr } , (64)

where Γ
(i)
cr denotes a sharp crack inside B

(i)
0 and thus can be regarded as Dirichlet condition,

yields the weak form

G
(i)
cr,2 :=

G
(i)
c

2 l(i)

∫

B
(i)
0

(

δs(i) (s(i) +
2 l(i)

G
(i)
c

H(i)) + 4 (l(i))2 Grad(δs(i)) ·Grad(s(i))

)

dV . (65)

For the fourth order PDE given in (7), a test space which provides higher continuity is needed,

such as

V
s,(i)
cr,4 = {s(i) : s(i)(X(i), t) ∈ H2(B

(i)
0 )|s(i) = 1 on Γ(i)

cr } , (66)

V
t,(i)
cr,4 = {δs(i) : δs(i)(X(i)) ∈ H2(B

(i)
0 )|δs(i) = 0 on Γ(i)

cr } . (67)

Accordingly, the weak form is obtained by

G
(i)
cr,4 :=

G
(i)
c

4 l(i)

∫

B
(i)
0

(δs(i) (s(i) +
4 l(i)

G
(i)
c

H(i)) + 2 (l(i))2 Grad(δs(i)) ·Grad(s(i))

+ (l(i))4 ∆δs(i) ·∆s
(i)) dV . (68)

Using Lagrange multipliers for the incorporation of the contact conditions, the virtual work of

contact yields

Ḡco = ḠλN
co + Ḡϕ

co , (69)

3Note that the test function δϕ(i) can also be interpreted as virtual displacement.
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where ḠλN
co := δλN

V̄co and Ḡϕ
co := δϕV̄co have been introduced. Eventually, the governing

equations are obtained as follows4

∑

i

G
(i)
dyn +G

(i)
int,ext + Ḡϕ

co = 0, ∀δϕ(i) ∈ V
(i)
t , (70)

∑

i

G
(i)
cr,2/4 = 0, ∀δs(i) ∈ V

(i)
cr,2/4 , (71)

ḠλN
co = 0, ∀δλN ∈ R . (72)

Note, the abbreviation 2/4 indicates that either the virtual work of the second order phase-field

equation (65) or the virtual work of the fourth order phase-field equation (68) can be taken into

account.

3 Spatial discretization

To perform the spatial discretization for the numerical solution of the variational formulation

each domain is subdivided into a finite set of non-overlapping elements

B(i) ≈ B(i),h =

n
(i)
el
⋃

e

B(i),h,e . (73)

For the second order phase-field model standard FEA with C0 continuous shape functions is

sufficient, whereas for the fourth order phase-field model we need to apply C1 continuous shape

functions which we accomplish using IGA.

Standard FEA – Allen-Cahn phase-field model For the second order phase-field model

we are able to use standard Lagrangian shape functions and isoparametric as well as Bubnov-

Galerkin FE interpolations. Accordingly, solution and test functions are approximated by

ϕ(i),h = LA q
(i)
A , δϕ(i),h = LA δq

(i)
A , X(i),h = LA X

(i)
A , (74)

s
(i),h = LA s

(i)
A , δs(i),h = LA δs

(i)
A , ∀A ∈ ω = {1, . . . , nnode} . (75)

Here L
(i)
A (X(i)) : B0 → R denote Lagrangian shape functions. Inserting these approximations

into the weak forms given in (70)–(72) yields the semi-discrete virtual work
∑

i

δq
(i)
A · (M

(i)
ABq̈

(i)
B + F

(i),int

A − F
(i),ext

A ) + Ḡϕ,h
co = 0 , (76)

∑

i

δs
(i)
A

∫

B
(i)
0

(L
(i)
A H(i),h +

G
(i)
c

l(i)
L
(i)
A L

(i)
B s

(i)
B + 4G(i)

c l(i)∇L
(i)
A · ∇L

(i)
B s

(i)
B ) dV = 0 , (77)

ḠλN,h
co = 0 . (78)

Here, M
(i)
AB =

∫

B0
ρ0L

(i)
A L

(i)
B dV are the coefficients of the consistent mass matrix. Further-

more, F
(i),int
A , F

(i),ext
A denote the nodal internal and external force vectors. Note the semi-

discrete contact contributions Ḡϕ,h
co and ḠλN,h

co are dealt with in the very last paragraph of this

section.

4Strictly speaking, the underlying virtual work (38) is not an equality but an inequality equation, due to the

contact constraints (34)-(36) involved. As already mentioned, here and in what follows it is assumed that the

contact interface is known using e.g. an active set strategy, regularization techniques or others. Based on this

assumption the virtual work can be written as an equality (see e.g. [37, 35]).

6752



M. Franke, C. Hesch and M. Dittmann
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C−1 C−1C2 C1 C0

Figure 6: Continuity of cubic B-splines with knot vector Θ = [0 0 0 0 1 2 2 3 3 3 4 4 4 4].

IGA – Cahn-Hilliard phase-field model For the higher order Cahn-Hilliard phase-field model

we use an IGA approach to satisfy the demand for C1 continuity. For the approximation we use

a linear combination of suitable splines and corresponding solution and test control variables

ϕ(i),h = R
(i)
A q

(i)
A , δϕ(i),h = R

(i)
A δq

(i)
A , s

(i),h = R
(i)
A s

(i)
A , δs(i),h = R

(i)
A δs

(i)
A ,

∀A ∈ ω = {1, . . . , nnode} . (79)

Here R
(i)
A (X(i)) : B0 → R denote multivariate NURBS with tensor product structure

R
(i)
A = R(i),i

p (ξ(i)) =
Πd

l=1N
(i)
il,pl

(ξ(i),l)w
(i)
il

∑

î Π
d
l=1N

(i)

îl,pl
(ξ(i),l)w

(i)

îl

, (80)

Therein i = [i1, ..., id] denote the multi index of the B-splines N
(i)
il,pl

with multi index p =
[p1, ..., pd] for the respective order of each parametric direction. Moreover, wi denote the

NURBS weights. A comprehensive overview for IGA can be found in [6]. Note, for global

C1-continuity, which is required for the Cahn-Hilliard phase-field model, at least quadratic B-

splines need to be provided. B-splines are recursively defined. For order pl = 0 we have

N
(i)
il,pl=0(ξ

(i),l) =

{

1 if ξ
(i),l
il

≤ ξ(i),l < ξ
(i),l
il+1

0 otherwise
, (81)

whereas for order pl > 0 the corresponding B-spline can be computed with

N
(i)
il,pl

(ξ(i),l) =
ξ(i),l − ξ

(i),l
il

ξ
(i),l
il+pl

− ξ
(i),l
il

N
(i)
il,p−1(ξ

(i),l) +
ξ
(i),l
il+pl+1 − ξ(i),l

ξ
(i),l
il+pl+1 − ξ

(i),l
il+1

N
(i)
il+1,p−1(ξ

(i),l) , (82)

where problem specific knot vectors need to be provided

Θ(i),l = [ξ
(i),l
1 , . . . , ξ

(i),l
nl+pl+1] . (83)
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Figure 7: Hierarchical level 1 subdivision of 1D linear, cubic and quintic B-splines (black: original spline/parent,

colored: ’refined’ splines/children).

With the knot vectors both the finite element mesh as well as the continuity is determined (see

Figure 6). B-splines and NURBS basis functions are local linear independent

∑

A

cAR
(i)
A (ξ(i)) = 0 ⇔ cA = 0 . (84)

Furthermore the partition of unity is fulfilled

∑

A

R
(i)
A (ξ(i)) = 1 . (85)

Another property is that B-splines as well as NURBS only have minimal support. In general

B-splines and NURBS are non-interpolatory but can be constructed that they are. B-splines and

NURBS basis functions are always positive, i.e.

R
(i)
A (ξ(i)) > 0 . (86)

As refinement techniques h-refinement e.g. achieved via knot insertion leads to expensive global

refinement. For local refinement techniques there mainly exists T-splines, which are the IGA

representation of hanging nodes and the concept of hierarchical refinement which we want to

apply subsequently. For hierarchical B-splines the basis functions are subdivided instead of

the elements. In particular the B-spline to be refined (parent) is replaced by using a linear

combination of copied and scaled version of the original B-spline (children) via

B(i),A = B(i),i
p (ξ(i)) =

p+1
∑

j=0

d
∏

l=1

2−pl

(

pl + 1

jl

)

N
(i)
il,pl

(2ξ(i),l − j
(i)
l h

(i)
l − ξ

(i),l
il

) . (87)

Therein hl refers to the coarse level element length in the parameter space. The refinement

procedure for one level is shown for the one-dimensional case in Figure 7 and for the two-

dimensional case in Figure 8. Next we rewrite the hierarchical B-splines given in equation (87)

approach by using the subdivision matrix S(i), S
(i)
i,j which contains the scaling. A single B-

spline on level k can then be replaced by its children, which correspond to B-splines on level

k + 1

B(i),i,k
p (ξ(i)) =

p+1
∑

j=0

S
(i)
i,jB

(i),2i−1+j,k+1
p (ξ(i)) . (88)
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Figure 8: Subdivision of a 2D quartic B-spline (left: parent, right: children).

This is only valid for uniform knot vectors (for non-uniform knot vectors, see Sabin [32]).

Afterwards, the control mesh needs to be extended by

q
(i),k+1
A = S

(i),T

A q
(i),k
A , s

(i),k+1
A = S

(i),T

A s
(i),k
A , (89)

where q
(i),k+1
A represents a set of new coordinates. The extension of B-splines to NURBS is

given by

R
(i),k
A = R(i),i,k

p (ξ(i)) =

p+1
∑

j=0

S
(i)
i,jB

(i),2i−1+j,k+1
p (ξ(i))w

(i),k+1
2i−1+j

∑

i

p+1
∑

j=0

Si,jB
(i),2i−1+j,k+1
p (ξ(i))w

(i),k+1
2i−1+j

. (90)

The partition of unity as well as the continuity are still satisfied. For further details see [29].

Insertion of the polynomial approximations into the virtual work of the coupled phase-field

system yields

∑

i

δq
(i)
A · (M̃

(i)
ABq̈

(i)
B + F̃

(i),int

A − F̃
(i),ext

A ) +Gϕ,h
co = 0 , (91)

∑

i

δs
(i)
A

∫

B
(i)
0

(R
(i)
A H(i),h +

G
(i)
c

l(i)
R

(i)
A R

(i)
B s

(i)
B + 4G(i)

c l(i)∇R
(i)
A · ∇R

(i)
B s

(i)
B ) dV = 0 , (92)

ḠλN,h
co = 0 . (93)

Here, M̃
(i)
AB =

∫

B0
ρ0R

(i)
A R

(i)
B dV are the coefficients of the consistent mass matrix. Further-

more, F̃
(i),int

A , F̃
(i),ext

A denote the nodal internal and external force vectors, approximated with

HNURBS. As constitutive relations the discrete second Piola-Kirchhoff stress tensor as well as

the driving force for the phase-field

S(i),h
e

= 2 D1Ψ
(i)
e
(C(i),h, s(i),h), H(i),h = D2Ψ

(i)
e
(C(i),h, s(i),h) , (94)

need to be provided.
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Mortar contact element For the discretization of the contact interface we aim at a Mortar

approach. Herein, we restrict our consideration to the IGA case for the Lagrange discretized

case we refer to the Mortar method given in [15]. In order to simplify the approach without

violation of the required C1 continuity of the primal space we use linear approximation of the

dual space as has been proposed in [17, 7]. Accordingly, the contact traction is approximated

as follows

t(1),hco =
∑

A∈ω̃(1)

LAλA, δt(1),hco =
∑

A∈ω̃(1)

LAδλA . (95)

Therein ω̃(1) = [q̃1, . . . , q̃nsurf
] denotes nsurf nodes on the physical contact boundary γ

(1)
co . More-

over, LA : Γ
(1)
co → R are (d − 1)-dimensional shape functions associated with nodes A ∈ ω̃(1).

It is important to remark, that the discrete Lagrange multiplier space for refined contact regions

can provide possible singularities (for more informations see [16]). Eventually, we are able to

state the semi-discrete contact contribution

Ḡϕ,h
co = λN,An ·

[

nABδq
(1)
B − nACδq

(2)
C

]

+ λN,Aδn ·
[

nABq
(1)
B − nACq

(2)
C

]

. (96)

Therein the nodal normal traction λN,A is employed. Furthermore, the Mortar integrals

nAB =

∫

Γ̄
(1),h
co

LA(ξ
(1))RB(ξ

(1)) dA, (97)

nAC =

∫

Γ̄
(1),h
co

LA(ξ
(1))RC(ξ

(2)) dA , (98)

are comprised of the above introduced linear shape functions LA(ξ
(1)) for the dual and quadratic

shape functions RB(ξ
(1)), RC(ξ

(2)) for the primal space. In order to be able to integrate the

contact contributions we provide an isoparametric transformation

ξ(i),h(η) =
3

∑

K=1

MK(η)ξ
(i)
K , (99)

where we make use of bilinear, triangular shape functions MK . The segment-wise Mortar

integrals are then given by

nκβ =

∫

△

Lκ(ξ
(1),h(η))Rβ(ξ

(1),h(η))Jseg dη , (100)

nκζ =

∫

△

Lκ(ξ
(1),h(η))Rζ(ξ

(2),h(η))Jseg dη . (101)

Therein Jseg denotes the segment-wise Jacobian. Using the tangential vectors in the reference

configuration Aα(ξ) = RA,α
(ξ)qA the segment-wise Jacobian can be computed by

Jseg = ‖A1(ξ
(1),h(η))×A2(ξ

(1),h(η))‖det(Dξ(η)) . (102)

Eventually the segment-wise contact contributions needs to be assembled into the global system.

For a more detailed explanation of the Mortar method, especially the technically demanding

segmentation and the assembly see [14, 15, 17, 7].
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4 Temporal discretization

For the temporal discretization we subdivide the time interval I of interest into N equidistant

increments ∆t = tn+1 − tn, as follows

I = [0, T ] =
N−1
⋃

n=0

[tn, tn+1] , (103)

where in the following the variables qn
A, snA at time tn are assumed to be known, whereas the

variables qn+1
A , sn+1

A at time tn+1 are searched. Then we employ a second order accurate one

step midpoint-type discretization. In particular the fully discrete equations

∑

i

δq
(i)
A · (M̃

(i)
AB

q
(i),n+1
B − q

(i),n
B

∆t
+

∫

B
(i)
0

∇R
(i)
A (X(i)) · S(i),n,n+1

e
∇R

(i)
B (X(i)) dV q

(i),n+ 1
2

B

−

∫

B
(i)
0

F̃
(i),ext,n+ 1

2

A dV ) +Gϕ,n,n+1
co = 0 , (104)

∑

i

δs
(i)
A

∫

B
(i)
0

R
(i)
A H(i),n+ 1

2 +
Gc

2l
R

(i)
A R

(i)
B s

(i),n+ 1
2

B + Gc l∇R
(i)
A · ∇R

(i)
B s

(i),n+ 1
2

B

+
Gc l

3

2
∆R

(i)
A ∆R

(i)
B s

(i),n+ 1
2

B dV = 0 , (105)

GλN,n,n+1
co = 0 , (106)

are obtained. In order to obtain a structure preserving time integration scheme, an algorithmic

stress computation

S(i),n,n+1
e

=2
∂Ψ(i),n+ 1

2

∂C(i),h

+ 2
Ψ

(i),n+1
e −Ψ

(i),n
e + G

(i)
c (γ(i),n+1 − γ(i),n)− ∂Ψ

(i),n+1
2

e

∂C(i),h : ∆C(i),h

∆C(i),h : ∆C(i),h
∆C(i),h , (107)

using the concept of the discrete gradient is employed. Note that the concept of the discrete

gradient exhibits superior stability and robustness properties even for large time steps. The

fully discrete contact contributions can be calculated by

Gϕ,n,n+1
co = λn,n+1

A nn+ 1
2 ·

[

nn
ABδq

(1)
B − nn

ACδq
(2)
C

]

+ δλAδn
n+ 1

2 ·
[

nn
ABq

(1)
B − nn

ACq
(2)
C

]

,

GλN,n,n+1
co = δλAn

n+ 1
2 ·

[

nn
AB q

(1)
B − nn

AC q
(2)
C

]

.

5 Numerical examples

In order to show the enhanced properties of the proposed methods two representative numeri-

cal examples are examined. In particular the proposed hierarchical NURBS based discretization

with the Mortar contact method and the phase-field approach to fracture are investigated in the

examples, where local refinements are predefined. Note, for the simple geometries employed,

all NURBS weights are chosen equal to one, such that the NURBS can be considered as B-

splines.

6757



M. Franke, C. Hesch and M. Dittmann

Figure 9: Patch test with two level local refinement of the upper body, where reference (left) and current configu-

ration (right) are shown.

Patch test As first example we investigate the local refinement with the proposed IGA ap-

proach within a patch test (cf. [16]). The initial configuration is depicted in Figure 9. As usual

for patch tests, the lower block is clamped, such that the body is able to expand in tangential

directions. Furthermore, we apply a Neumann boundary to the upper surface on the upper body

with constant pressure field of σ = −1.3e3.

We use quadratic B-splines and apply a two level refinement for the upper body and no local

refinement for the lower body, such that we obtain non-conforming finite element meshes in

contact. Large areas between coarse and fully refined elements can be observed which is due to

the support of the splines. The upper body consists of 4× 4× 4 elements on level 0. In total the

upper body consists of 2192 elements with 10224 degrees of freedom (DOFs). The lower body

consists of 5× 5× 5 elements on level 0. The lower body consists of 125 elements with in total

1029 DOFs.

A compressible neo-Hookean material model is employed with Lamé parameters λ(i) =
1298.1 and µ(i) = 865.3846, which correspond to a Young’s modulus of E(i) = 2250 and a

Poisson ratio of ν(i) = 0.3, respectively. The corresponding strain energy density function is

given by

Ψ(i)(C(i)) =
µ(i)

2

(

tr(C(i))− 3
)

+
λ(i)

2

(

ln(J (i))
)2

− µ(i) ln(J (i)) , (108)

where J (i) = det(F (i)). We are interested in a quasi-static solution, accordingly the density is

neglected for both bodies.

We obtain a uniform stress distribution as can be observed in Figure 10. The corresponding

displacement solution is shown in Figure 9. Accordingly, the Mortar method with higher order

hierarchical NURBS approach and local refinement passes the patch test (cf. [16]).

6758



M. Franke, C. Hesch and M. Dittmann

Figure 10: Von Mises stress distribution.

Bending contact fracture problem The next example deals with the contact of an elastic

block with an elastic plate. Note, this example is taken from [16]. The initial configuration is

depicted in Figure 11. As can be observed, the plate is clamped whereas the upper boundary of

the block is moved downwards with a constant increment size of ∆u = 5e-3 e3 for the first 200

steps and ∆u = 2.5× 10−3 e3 for the remaining steps.

The plate is of size 20 × 30 × 2 , whereas the block is of size 4 × 4 × 4. The center point

of the plate is placed at
[

0 15 1
]

and the center point of the block is placed at
[

0 26 4.5
]

.

The block consists of 4 × 4 × 4 elements and the plate of 13 × 19 × 2 elements on level 0.

Additionally, we apply a predefined local hierarchical refinement to account for the physical

events (contact and fracture). Therefore the contact zone of the block is locally refined with one

level. The plate is locally refined using one level refinement in the area of the expected contact

boundary and two level refined at the clamping zone (see Figure 11). In total 12948 elements

with overall 72912 DOFs and minimal element size of hmin = 0.0769 are employed.

Both bodies are modeled using the compressible neo-Hookean material model given in (108).

The Lamé parameters of the plate are chosen as λ(1) = 1.1538e7 and µ(1) = 7.6923e6, which

Figure 11: Reference configuration of bending contact fracture problem.
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Figure 12: Final phase-field (left) and σ22 stress (right) result of bending contact fracture problem.

correspond to a Young’s modulus of E(1) = 2e7 and a Poisson ratio of ν(1) = 0.3. The Lamé

parameters of the block are chosen as λ(2) = 2.8846e4 and µ(2) = 1.9231e4, which correspond

to a Young’s modulus of E(2) = 5e4 and a Poisson ratio of ν(2) = 0.3. Accordingly, we expect

no locking behavior and there is no need for an advanced finite element model. For the plate

the phase-field parameters are chosen as Gc = 2.7 · e2 and l = 0.1538.

The final phase-field result as well as the final σ22 stress distribution are depicted in Figure

12. As can be observed the plate ripped out of the clamping zone, such that the plate becomes

statically undetermined. Accordingly, the problem can not be solved anymore with the consid-

ered quasi-static setup. Note, a more detailed explanation and examination of this example is

given in [16].

6 CONCLUSIONS

The underlying contribution introduces a large deformation framework to describe both con-

tact and fracture. For the former the variational consistent Mortar method, whereas for the latter

the phase-field method is used. In particular an accurate and smooth fourth order phase-field

model is employed which requires global C1 continuity. Therefore an existing IGA framework

with a sophisticated Mortar method for the contact boundaries is combined. With the proposed

NURBS-IGA approach a wide range of curved geometries can be approximated exactly. More-

over, an hierarchical refinement scheme is employed which does not violate the partition of

unity. This allows the local refinement of the bodies in order to account for different physical

events like e.g. contact or fracture.

In total an accurate and efficient higher order method is proposed for computational modeling

of large deformation Mortar contact and phase-field fracture problems.
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[16] C. Hesch, M. Franke, M. Dittmann, and İ. Temizer. Hierarchical NURBS and a higher-

order phase-field approach to fracture for finite-deformation contact problems. Computer

Methods in Applied Mechanics and Engineering, 301:242–258, 2016.

[17] C. Hesch and P.Betsch. Isogeometric analysis and domain decomposition methods. Com-

put. Methods Appl. Mech. Engrg., 213:104–112, 2012.

[18] C. Hesch and K. Weinberg. Thermodynamically consistent algorithms for a finite-

deformation phase-field approach to fracture. Int. J. Numer. Meth. Engng., 99:906–924,

2014.

[19] Schuß S. Dittmann M. Franke M. Hesch, C. and K. Weinberg. Isogeometric analysis

and hierarchical refinement for higher-order phase-field models. Computer Methods in

Applied Mechanics and Engineering, 303:185–207, 2016.

6761



M. Franke, C. Hesch and M. Dittmann

[20] M. Hintermueller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semis-

mooth Newton method. SIAM J. Optim., 13:865–888, 2003.

[21] G.R. Irwin. Elasticity and plasticity: fracture. In S. Függe, editor, Encyclopedia of Physics,
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Abstract. The walls of rocket engine nozzle structures undergo extreme thermomechanical
loadings during the engine cycle. These loads cause an accumulation of plastic strains due
to creep and relaxation which finally lead to the failure of the hot gas wall. One approach to
increase the lifetime of the hot gas wall is the reduction of the temperatures in the hot gas wall
since the temperature is the main driver of this failure phenomenon. Special thermal barrier
coating (TBC) systems are under development in order to protect the copper alloy of the hot
gas wall from high temperatures. The present paper studies the influence of such thermal bar-
rier coatings regarding the damage behaviour of the hot gas wall made of a copper alloy. In
the first step, thermal analyses are performed to define an appropriate TBC thickness and the
needed coolant power such that the maximum service temperature of the TBC is not exceeded.
Furthermore the temperature distributions of the hot gas wall with and without TBC are com-
pared, which show a reduction in temperature of approximately 200 K. In the second step static
analyses with a recently developed viscoplastic damage model are presented. Here damage
distributions as well as the deformation behaviour of the hot gas wall with and without TBC
are compared. It is shown that the application of TBCs has an positive effect on the damage
behaviour as well as the deformation of the hot gas wall.
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1 INTRODUCTION

The demand for higher payloads and the general endeavour of a performance increase of
rocket engines require the development of reliable lifetime prediction models. During the oper-
ation of the rocket engine the hot gas wall undergoes extreme cyclic thermomechanical loads.
These cyclic loads lead to an accumulation of plastic strains, followed by thinning and bulging
of the hot gas wall. Finally, after several cycles the hot gas wall (usually made of a copper alloy)
fails (see Figure 1). Since the deformed hot gas wall resembles the shape of a doghouse, the
failure mode is called doghouse effect (see e.g Riccius et al. [1]). This failure phenomenon can
be rather related to ductile damage than to low cycle fatigue (see e.g. Schwarz et al. [2]). One

Figure 1: Left: Combustion chamber of the Vulcain rocket engine, Center: schematic cross section of the combus-
tion chamber, Right: microscopic picture of the doghouse effect [1].

approach to increase the lifetime of the hot gas wall is the reduction of the temperatures in the
hot gas wall. This seems to be a reasonable idea since the damage and failure behaviour of the
copper alloy/copper substrate is highly temperature dependent. Special thermal barrier coating
(TBC) systems for the application on copper alloys have been developed by the Institute for
Materials at TU Braunschweig in order to protect the copper alloy from extremely high temper-
atures [3, 4, 5, 6, 7, 8, 9]. A thermal barrier coating typically consists of two layers: a bond coat
and a top coat. In previous studies of the Institute for Materials [3, 4, 5, 6] a coating system
usually used in gas turbines was investigated (bond coat: NiCrAlY, top coat: yttria-stabilized
zirconia). However, this system turned out not be practical since the coatings failed at the
bond coat/copper substrate interface due to (i) mismatch of the coefficient of thermal expansion
(CTE) and (ii) the chemical gradient between the copper alloy substrate and the bond coat [5].
Therefore, a new bond coat NiCuCrAl was developed offering higher chemical similarity to the
substrate as well as reducing the mismatch in the CTE. The current promising thermal barrier
coating system is composed of a NiCuCrAl bond coat and a NiCrAlY top coat (see Fiedler et
al. [8, 9]).
Butler and Pindera [10] investigated as one of the first the influence of thermal barrier coatings
on the doghouse effect. They found that by the application of TBCs the temperature distribution
within the hot gas wall was dramatically changed and reduced. They concluded that the strongly
temperature dependent creep/relaxation of the copper alloy which is one of the main reasons for
the doghouse failure can be limited by TBCs. By utilizng a viscoplastic material model they
showed that the thickness of the TBC directly influences the deformation of the hot gas wall.
Fiedler et al. [9] investigated with FE-simulations based on a micro model the interface stresses
between the copper substrate and the bond coat. As desired, the interface stresses perpendicular
to the surface are reduced strongly compared to the former bond coat made of NiCrAlY. Fur-
thermore a temperature reduction in the copper substrate of approximately 200 K was observed.
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The present study focuses on the lifetime of the copper alloy (which shall be increased by the
application of a TBC), not on the lifetime of the TBC. Figure 2 left shows the representative
segment of the cooling channel structure, which is highlighted in Figure 1 (center) by the dashed
line, with the additional TBC on the hot gas wall (marked in red). Figure 2 (center) shows the
FE model of the corresponding finite element model, where the TBC is discretized with several
elements over the thickness. In reality, the TBC is a system of two layers: a top coat and a
bond coat. Due to simplicity and the similarity of the thermal and mechanical properties of the
two layers, the present study merges the two layers to one layer called “TBC” in the following.
This approach is considered to be sufficient for the investigation of the lifetime/behavior of the
subjacent copper alloy.

Figure 2: Left: segment of the cooling channel structure with TBC on the hot gas wall (marked in red), Center:
FE model of the cooling channel segment with TBC, Right: microscopic picture of a TBC applied on a copper
alloy [11].

2 MATERIAL MODELLING

The material model utilized for the lifetime investigations of the copper alloy has been de-
veloped and presented in previous works (see e.g. Tini et al. [12] and Kowollik et al. [13]).
Therefore the material model is only briefly summarized and for more details it is referred to
the latter mentioned publications. In order to take into account the relevant phenomena occuring
during the thermomechanical loading of the copper alloy hot gas wall a viscoplastic material
model considering isotropic damage is used. The corresponding rheological model is depicted
in Figure 3. Schwarz et al. [14] compared isotropic damage models with anisotropic damage
models (with and without considering micro defect closure effects) and concluded that neither
damage anisotropy nor the crack closure effect strongly affect the global failure phenomenol-
ogy. Due to this reason and to keep the number of parameters as low as possible the isotropic
damage model is considered to be sufficient to perform first studies on the influence of the ther-
mal barrier coatings on the lifetime of the copper alloy. An anisotropic damage model has been
already developed by the authors (see e.g. Fassin et al. [15]) and was furthermore applied for
lifetime simulations of rocket combustion chamber walls (see Fassin et al. [16] and Wulfinghoff
et al. [17]). The intent of the authors for the future is also to use anisotropic damage models for
simulations involving thermal barrier coatings.
The thermomechanical material parameters for the copper alloy are chosen according to Kowol-
lik et al. [13] with the only difference that the coefficient of thermal expansion is adopted from
Baeker et al. [18] to be now temperature dependent. The nickel material behaviour only plays
a minor role and is therefore modelled as linear elastic (cf. Kowollik et al. [13]). The material
behaviour of the TBC is modelled by an ideal elastoplastic material law as it was already done
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in Baeker et al. [18]. The material parameters for the TBC were adopted from the bond coat
material (NiCuCrAl).

Figure 3: Rheological model of the viscoplastic material model incorporating isotropic damage.

Table 1: Summary of the constitutive equations of the viscoplastic damage model.

total strain ε = εe + εvp + εth

effective elasticity tensor C̃ = (1−D) C

stress σ = C̃ [εe]

effective stress σ̃ = C [εe]

back stress deviator XD = 2µh
[
εDvpe

]
total strain ε = εe + εvp + εth

viscoplastic strain εvp = εvpe + εvpi

yield function Φ =
∥∥∥σ̃D −XD

∥∥∥−√2
3

(σy +Q)

viscoplastic strain rate ε̇vp =
λ̇

1−D
σ̃D −XD∥∥∥σ̃D −XD

∥∥∥
(local inelastic) viscoplastic strain rate ε̇vpi = λ̇ b εDvpe

damage Ḋ = ṗ
(
Y
S

)k
H(p−pD)

plastic multiplier λ̇ = 〈Φ〉m
η

3 THERMAL ANALYSIS

The basis of the transient thermal analysis is Fourier’s heat equation

∆T =
ρc

ζ

∂T

∂t
, (1)

with temperature T and time t. Here, the material parameters are ρ (density), c (heat capacity)
and ζ (thermal conductivity). For the values of the material parameters of the copper alloy

6767



Marek Fassin, Stephan Wulfinghoff, and Stefanie Reese

and nickel, see Fassin et al. [16]. For the TBC the material parameters of NiCuCrAl from
Baeker et al. [18] are used. The finite element model of the cooling channel segment with
TBC used for the thermal as well as for the static analysis is shown in Figure 4. The thermal
boundary conditions are described in the following: The interaction with the cooling fluid in
the cooling channel and the hotgas on the hot gas wall is modelled via convective boundary
conditions. For the cooling fluid the heat transfer coefficient αcf and the bulk temperature Tcf
are prescribed, for the hot gas boundary condition αhg and Thg. One engine cycle consists of
a pre cooling, a hot run, a post cooling and a relaxation phase, for which the corresponding
values are listed in Table 3. A special case is present for the heat transfer coefficient αhg on
the hot gas wall surface. This value is dependent on the wall temperature Tw of the hot gas
wall and was adopted from Baeker et al. [18]. For the heat transfer coefficient of the cooling
fluid values varying between 50 kW/(m2K) and 60 kW/(m2K) are applied. This variation
corresponds to a varying mass flow rate of the cooling fluid. For the other free surfaces of
the segment adiabatic boundary conditions are applied. In order to illustrate the influence

Figure 4: Finite element model of the cooling channel segment with TBC with thermal and static boundary condi-
tions.

Phase Time Hot gas Cooling channel
[-] t [s] αhg

[
kW
m2K

]
Thg[K] αcf

[
kW
m2K

]
Tcf [K]

Pre cooling 0-2 f(Tw) 293.15 50...60 50
Hot run 2 - 602 f(Tw) 3435 50...60 50
Post cooling 602 - 604 f(Tw) 293.15 50...60 50
Relaxation 604 - 1000 f(Tw) 293.15 0.15 293.15

Table 2: Thermal boundary conditions for the hot gas and the cooling channel in one engine cycle.

of the thickness of the TBC on the temperature in the hot gas wall, several parameter studies
have been performed. The conducted thermal analyses encompassed in each case only one
engine cycle since the temperature distribution is approximately the same in every cycle. First
of all, an appropriate TBC thickness and cooling fluid coefficient have to be specified to limit
the maximum temperatures occuring in the TBC. Therefore transient thermal analyses were
performed with different TBC thicknesses and cooling fluid heat transfer coefficients αcf . For
the design of the TBC system the maximum occuring temperature on the surface of the TBC
is an important value since it has to be under the maximum service temperature of the TBC,
which is around 1500 K for NiCuCrAl. Figure 5 shows the maximum temperature occuring on
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Figure 5: Maximum temperature occuring on the
surface of the TBC in dependence of the thickness
of the TBC for different heat transfer coefficients.

Figure 6: Comparison of the temperature distribu-
tion within the hot gas wall along the distance x for
the versions “without TBC” and “with TBC”.

the surface of the TBC in dependence of the thickness of the TBC for different heat transfer
coefficients αcf . It can be seen that the thicker the TBC, the higher is the maximum occuring
temperature. This can be explained by the insulation effect of the TBC, which has a much
lower thermal conductivity than the copper alloy. Therefore the thermal resistance increases
with increasing TBC thickness which leads to a lower heat flux through the hot gas wall. This
finally results in a higher surface temperature. Figure 5 shows that only for a TBC thickness of
t=90µm and for a strong cooling with αcf=60 kW/(m2K) the maximum occuring temperature
lies under 1500 K. For this reason the further discussion of the results of the thermal analyses
focus on this configuration. The static analyses in Section 4 will be also performed with this
configuration.
In Figure 7 the temperature contour plots for the hot gas wall at the end of hot run (t=602 s) for
the versions “without TBC” and “with TBC” are opposed to each other. Due to the application
of the TBC, the temperature in the copper alloy could be drastically decreased. In contrast to
that, the maximum occuring temperature on the TBC surface (T=1483 K) is much higher than
the maximum occuring temperature on the hot gas wall surface for the version “without TBC”
(T=1218 K). The strong temperature decrease within the TBC, which is approximately linear,
is illustrated in Figure 6. Five elements over the thickness of the TBC were applied, which is
shown by the six nodal temperatures plotted for path B-B for the first 0.09 mm (thickness of the
TBC). The main purpose of the TBC, the reduction of the temperature within the copper alloy,
is clearly depicted. The temperature reduction (difference between the red and the blue line)
is round about 200 K. The maximum occuring temperature in the copper alloy is reduced from
1218 K to 1017 K. The surface temperature on the cooling channel wall is reduced from 969 K
to 811 K. This temperature reduction is seen to be very promising to increase the lifetime of the
copper alloy hot gas wall, which will be investigated in the next section.

4 STATIC ANALYSIS

The temperature field of the segment at every time point is used as input for the series of
quasi static analyses with which the lifetime of the copper alloy will be investigated. The ma-
terial parameters are temperature dependent as described in Section 2. Furthermore the thermal
expansion of the material plays a major role in the static simulation, which is considered by the
thermal strain. The static boundary conditions of the cooling channel segment are described in
Figure 4. The left and the right face of the segment are fixed in tangential direction (T-direction)
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Figure 7: Temperature contour plots for the hot gas wall at the end of hot run (t=602 s) for the versions “without
TBC” and “with TBC”.

due to rotational symmetry. In thickness direction (Z-direction) a generalized plane strain con-
dition is enforced (all elements in the R-T plane have the same strain in Z-direction) where the
upper face is fixed in Z-direction and the bottom face is free. The boundary conditions of the
cooling channel wall and the hot gas wall are given by means of pressures (see Table 4). For the
finite element simulations 8-node bricks with reduced integration and hourglass stabilization
are utilized. The time stepping is set manually. Figure 8 shows the damage distributions in the

Phase Time Hot gas pressure Coolant pressure
[-] t [s] phg [MPa] pcf [MPa]
Pre cooling 0 - 2 0 20
Hot run 2 - 602 10 20
Post cooling 602 - 604 0 20
Relaxation 604 - 1000 0 0

Table 3: Hot gas and coolant pressure over one engine cycle.

hot gas wall for the versions “without TBC” and “with TBC” after 10 and 20 cycles. After 10
cycles (cf. Figure 8(a)) the bulging of the hot gas wall is already clearly visible. For the version
“without TBC” the highest values of the isotropic damage variable D occur at the corner of the
cooling channel and at the hot gas side in the middle of the fin. Furthermore damage has also
accumulated in the center of the ligament. In contrast, the version “with TBC” shows mainly
damage at the corner of the cooling channel and no further pronounced places of damage accu-
mulation as for the version “without TBC”. After 20 cycles (cf. Figure 8(b)) the deformation
and the damage in the hot gas wall have further evolved. The differences between the damage
distributions for the version “without TBC” and “with TBC” are the same as described already
for the distributions after 10 cycles. In summary, it can be stated that the damage for the version
“with TBC” is, as expected, smaller than for the version “without TBC”. However, the differ-
ences in the maximum values of the isotropic damage varibale D are smaller than expected.
The influence of the TBC becomes more apparent in terms of deformation. The deformation of
the hot gas wall (after 10 cycles as well as after 20 cycles) is higher for the version “without
TBC”. This is illustrated by the comparison of the displacement difference ∆uy,1−2 of node 1
and 2 with the displacement difference ∆uy,3−4 of node 3 and 4, which are measures for the
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bulging of the hot gas wall. Figure 9 shows this deformation over the calculated 20 cycles. By
using a TBC the deformation after 20 cycles is reduced by 30 %.

(a) after 10 cycles. (b) after 20 cycles.

Figure 8: Comparison of the damage distributions in the hot gas wall for the versions “without TBC” and “with
TBC” after 10 and 20 cycles.

Figure 9: Comparison of the displacement differences ∆uy,1−2 and ∆uy,3−4.

5 CONCLUSIONS

In this work the influence of thermal barrier coatings on the lifetime and deformation be-
haviour of rocket engine nozzle structures made of copper alloys has been investigated. For
the material modelling of the copper alloy a viscoplastic material model incorporating isotropic
damage was applied. As input for the series of quasi static analyses including 20 cycles, the
temperature field for one engine cycle was used repeatedly. In the first step an appropriate TBC
thickness and the needed cooling fluid heat transfer coefficient were defined such that the max-
imum service temperature of the TBC was not exceeded. Afterwards it was shown that with
the defined configuration (tTBC=90µm and αcf=60 kW/(m2K)) a temperature reduction of
approximately 200 K is obtained. The evaluation of the static simulations of 20 cycles showed
that the damage distribution for a hot gas wall with TBC is slightly different from the one with-
out TBC. The damage for the version “with TBC” was, as expected, smaller than for the version
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“without TBC”. However, the differences regarding the maximum values of the isotropic dam-
age varibale D were smaller as expected. But it was revealed that the deformations of the
hot gas wall (bulging of the hot gas wall) induced by the thermomechanical loading were less
pronounced when a TBC was applied.
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Abstract. Two coplanar limited-permeable rectangular cracks in magneto-electro-elastic
material are modeled and solved using generalized Almansi’s theorem. The mixed boundary
value problem is formulated into three pairs of dual integral equations with the help of
Fourier transform, in which the unknown functions are the jumps of displacements across the
crack-surface. By directly expanding the unknown functions into infinite series form of Jacobi
polynomials, the dual integral equations are solved, and the analytical expressions of
generalized intensity factors are derived strictly. Based on the generalized intensity factors,
the dynamic behaviors of two cracks are estimated under P-wave loads. To show the trends of
effects of loading frequency and geometry of cracks on the generalized intensity factors, top
finite terms of infinite series are numerically calculated based on the Schmidt method.
Numerical results are then drawn graphically. It reveals that the trend of two cracks forming
a larger crack by propagating depends strongly on crack geometry and load frequency. This
work illuminate the condition inducing different crack propagation patterns, which will
benifit the forecast of damage forms of transversely isotropic magneto-electro-elastic
material.
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1 INTRODUCTIO
Magneto-electro-elastic composites, with its root in the early work of Vansuchtelen[1],

have been widely applied in science and engineering. Layered magneto-electro-elastic
composites, as a basic form of various electromagnetic structures, usually manufactured using
tape-casting technique and bonding method, achieve a historic high electromagnetic factor.
The dynamic mechanical, magnetic and electric loads are inevitable in its service, which make
the layered magnetic-electric-elastic components pregnant coplanar cracks or parallel cracks
from the interface or other weak position. Furthermore, the initiation of cracks will result in
the reduction of electromagnetic conversion efficiency, if not fail prematurely. Therefore,
researching on the dynamic fracture behaviors of magneto-electro-elastic composites is very
worthwhile[2, 3]. To obtain the reliable service life time and the reliable action of related
devices and to prevent failure during service, most of works concerned about the dynamic
fracture problems with assumption of transversely isotropic property. Among them, Zhong et
al[4, 5] investigated the anti-plane and in-plane dynamic fracture problem, and the influence of
various factors on the crack propagation orientation were discussed. Feng et al[6, 7] also made
lots of effort on the dynamic fracture of magneto-electro-elastic medium. They discussed four
kinds of ideal crack-face assumption, and based on energy release rate, the effect of
crack-face assumption on the crack extension was unfolded. As discussed in previous work[7],
the boundary condition on the crack surface was complex in piezoelectric/piezomagnetic
composites. The limited-permeable boundary condition first proposed in Hao’s work[8] for
piezoelectric materials was developed into magneto-electro-elastic composites by Zhong et
al[5] and Zhou et al[9], respectively.

Although there are a lot of works focusing on the anti-plane and in-plane problems, it is
insufficient to analyzing the fracture behavior in 3-Dimensions. And, it is important to take
multi-cracked 3D medium into account. Layered composites were prone to generating
multiple cracks in the same layer due to periodical fatigue loads or manufacturing process, so
investigating the interaction between coplanar cracks is necessary. During analyzing 3D
crack, model of penny, elliptical and rectangular were the most commonly used types, in
which rectangular crack model is over safety in the engineering analysis.

With the lack of 3D dynamic analysis of multi-cracked magneto-electro-elastic materials
in mind, in this paper, the model of transversely isotropic magneto-electro-elastic materials
are established with two coplanar rectangular cracks parallel to the isotropic plane. Here the
steady-state effects of the loading frequency on the limited-permeable crack initiating
behavior were investigated on. The double-cracked magneto-electro-elastic material problems
were formulated to three pairs of dual integral equations through Fourier transform. By
solving the dual integral equations with the jumps of displacements as unknown variables, the
analytical generalized intensity factors were derived strictly in the forms of infinite series
which comes from Jacobi polynomial expansion of the jumps of displacements. In order to
reveal some implicit links between mixed boundary conditions and generalized intensity
factors, numerical results of generalized intensity factors were depicted and some useful
conclusions and laws were explained, including the possibility of two crack converging and
the effects of the geometry of cracks and the load frequency on the crack extension. This
contribution is available for further analyzing multi-cracked 3D magneto-electro-elastic
materials.
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2 MODELING AND BASIC EQUATIONS
The simplified model of transversely isotropic homogeneous magneto-electro-elastic

material is adopted in the present problem. Consider two coplanar rectangular cracks inside
the isotropic plane as shown in Fig. 1. These two cracks are situated at the region of
1 3l x l  and 2y l in the plane of 0z  in Cartesian coordinate system ( , ,x y z ). A
uniform distributed normal harmonic load 0( , ,0) i

zz x y e    (here 0 and  are the
amplitude and the circular frequency of the incident load wave, respectively.) is directly
applied on the upper and the lower crack-surfaces, to which the solution combining with a
uniform field can be transformed into the solution to the double-cracked material with a
remotely harmonic load according to the standard superposition technique in the fracture
mechanics point of view.

Fig.1: Geometry and coordinate system for two rectangular cracks
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O 3l
3l 1l

1l
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1 for 0z 
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When the time-harmonic P-wave is applied on the magneto-electro-elastic materials and
the response goes from the transient response stage into the steady state, all fields quantities
can be expressed in the form as follows:

0 ( , , , ) ( , , ) iX x y z X x y z e  
where X is on behalf of the displacement ku , the electric potential  , the magnetic
potential  , the stress kl , the electric displacements kD and the magnetic flux

kB ( , , ,k l x y z );  is the time variable, respectively.
In Cartesian coordinates ( , , )x y z of the present problem, the basic equations of linear,

homogeneous, transversely isotropic magneto-electro-elastic material ignoring body force,
free electric and magnetic charge are as follows:

( ) ( )
, 0

( )
,

( )
,

0
0

j j
k l k l

j
k k
j

k k

u
D
B

    



, , , ,k l x y z (1)
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(4)

where 0 , jkc , jke , jk , jkq , jkd and jk ( , 1, 2,3j k  ) are the mass density, the elastic
stiffness constants, the piezoelectric constants, the electric permittivities, the piezomagnetic
constants, the electromagnetic constants and the magnetic permeabilities of
magneto-electro-elastic medium, respectively. ( )j

lu denotes the second-order differential of
( )j
lu with respect to time variable and a subscript comma denotes the partial differential to

the coordinates ( , ,x y z ), where the superscript j ( j =1, 2) denotes the fields in the upper
half space 1 ( 0z  ) and the lower half space 2 ( 0z  ) as shown in Fig.1. Considering the
load wave propagating along z -axis in form of plane wave, ( ) ( ) 0j j

x yu u   is concluded.
Substituting Eqs.(2)-(4) into Eq.(1), the governing equations represented by the

displacements, electric potentials and magnetic potentials are constructed:
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In magneto-electro-elastic material, the velocity of elastic P-wave in z -axis direction
33 33 33 33 33 33 33 3333 33 33 02 2
33 33 33 33 33 33

( ) /z
e q d q e dc c e qd d
     

     can be derived which only depends on
the material constants.
3 LIMITED-PERMEABLE BOUNDARYCONDITIONS

The limited-permeable crack model, developed in Zhong’s [10] and Zhou’s [9, 11] works, is
adopted here. The boundary conditions on crack-surfaces and at infinity for 3D problem are
expressed in detail as follows:
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for 1x l or 3x l ,

2y l (7)
( ) ( ) ( ) ( ) ( )( , , ) ( , , ) ( , , ) ( , , ) ( , , ) 0j j j j j
x y zu x y z u x y z u x y z x y z x y z      for 2 2 2x y z   

(8)
where 0zD and 0zB are defined as the electric displacement and the magnetic flux inside
cracks, and they are equal to (1) ( , ,0 )zD x y  and (1) ( , ,0 )zB x y  in magnitude, respectively. As
discussed in public literatures[10, 12], the electric displacement and magnetic induction inside
the opening crack are almost constants and dependent on applied magneto-electro-elastic
loads, material properties, dielectric permittivity and magnetic permeability of crack interior,
which would be certified briefly later. The limited-permeable boundary conditions in Eq.(6)
will transform to permeable electric-magnetic boundary condition when

(1) (2)( , ,0 ) ( , ,0 ) 0z zu x y u x y   and to impermeable one when 0 0 0   .
4 SOLUTION PROCEDURE

The governing equations (5) need to be simplified by introducing displacement potential
functions as discussed in reference [13]. Let
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( ) ( ) ( )
, ,

j j j
x y xu G   , ( ) ( ) ( )

, ,
j j j

y x yu G   (9)
where ( )j and ( )jG are two potential functions. By strict derivation, the general
expressions of the displacement potential function, the displacements, stresses, electric
potentials, electric displacements, magnetic potentials and magnetic flux fields satisfying Eq.
(8) are derived as follows:
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2 24(2) (4*)
2 0 0 1
4( , , ) ( , ) ( , ) cos( )cos( ) k s t z

k k
k

t

x y z s t B s t sx ty e dsdt 
  



   
(11)

where ( ) ( , )j
k s t and ( *) ( , )j

k s t ( 1,2,3,4. 1, 2,3,4,5.k j  ) are functions of known
expressions (The expressions are not shown here for brevity.).
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(13)

where ( ) ( , )j
k s t and ( *) ( , )j

k s t ( 0,1,2,3, 4. 1,2,3, 4,5.k j  ) are functions of known
expressions (The expressions are not shown here for brevity.).

Substitution of expressions (10)-(11) into limited-permeable boundary condition (6),
electric displacement and magnetic flux inside crack can be generated

4 (3)
10 0 4 (2)
1
4 (4)
10 0 4 (2)
1

( , )[ ( , ) ( , )]
( , )[ ( , ) ( , )]

( , )[ ( , ) ( , )]
( , )[ ( , ) ( , )]

k k k
kz

k k k
k

k k k
kz

k k k
k

s t A s t B s t
D

s t A s t B s t

s t A s t B s t
B

s t A s t B s t


















      






(14)

It is obviously that the distribution of electric displacement and magnetic flux inside
crack is independent on Cartesian coordinates, means, both of the physical field inside cracks
are almost constants.

To solve the fracture problem, the jumps of displacement on upper and lower crack
surface are defined as follows:
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(1) (2)
1

(1) (2)
2

(1) (2)
3

( , ) ( , ,0 ) ( , ,0 )
( , ) ( , ,0 ) ( , ,0 )
( , ) ( , ,0 ) ( , ,0 )

x x

y y

z z

f x y u x y u x y
f x y u x y u x y
f x y u x y u x y

 
 
 

      
(15)

It is obviously that both 1( , )f x y and 3( , )f x y are even functions about the variable y
and 2 ( , )f x y is an odd function about the variable y according to the symmetry of this
problem.

Using Fourier transform, and Substituting Eqs.(10)-(13) into the crack boundary
conditions Eqs.(6)-(7) and the jumps of displacements Eq.(15), the following dual integral
equations can be deduced:

(1)
1 32 0 0

2( , ,0) ( , ) ( , ) cos( ) cos( )zz x y g s t f s t sx ty dsdt 
    0  , 1 3l x l  and

20 y l  (16)
(1)

2 1 3 22 0 0
2( , ,0) [ ( , ) ( , ) ( , ) ( , )]sin( )cos( ) 0xz x y g s t f s t g s t f s t sx ty dsdt 

     ,
1 3l x l  and 20 y l  (17)

(1)
4 1 5 22 0 0

2( , ,0) [ ( , ) ( , ) ( , ) ( , )]cos( )sin( ) 0yz x y g s t f s t g s t f s t sx ty dsdt 
     ,

1 3l x l  and 20 y l  (18)
10 0

20 0

30 0

( , )sin( )cos( ) 0
( , ) cos( )sin( ) 0
( , ) cos( )cos( ) 0

f s t sx ty dsdt
f s t sx ty dsdt
f s t sx ty dsdt

 

 

 

   

 
 
 

, for 1x l or 3x l or 2y l (19)

where ( , )jf s t ( 1, 2,3)j  indicates two dimensional Fourier transform of ( , )jf x y .
( , )kg s t ( 1,2,3, 4,5.k  ) are known functions (The forms of functions are not shown here for

brevity.). The foregoing three pairs of dual integral equations (16)-(19) must be solved to
determine the unknown functions 1( , )f x y , 2 ( , )f x y and 3( , )f x y .
5 CRACK TIP SINGULARITY FIELD AND GENERALIZED INTENSITY

FACTOR
The Schmidt method [14-16] is introduced to solve the dual integral equations (16)-(19).

The whole generalized fields can be solved, such as stress, electric displacement, magnetic
flux and so on. But, to determine the generalized field intensity factors, the main attention
must be focused on the generalized fields ahead of crack edges. In this work, (1)

zz , (1)
xz ,

(1)
yz , (1)

zD and (1)
zB ahead of crack edges are obtained as follows:

(3)(1) 12 1 2 1 12 0 00 0
( ) 12 1( , ,0) ( ) cos( ) [ ( , ) ( )cos( ) ]2

mnzz mn n m
n m

G s lx y c J tl ty dt g s t J s sx dst s 
   

  
    (20)
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(1) (1)( , ,0) ( , ,0) 0xz yzx y x y   (21)
(3)(1) 12 1 2 7 12 0 00 0
( ) 12 1( , ,0) ( )cos( ) [ ( , ) ( )cos( ) ]2

mnz mn n m
n m

G s lD x y c J tl ty dt g s t J s sx dst s
   

  
    (22)

(3)(1) 12 1 2 8 12 0 00 0
( ) 12 1( , ,0) ( )cos( ) [ ( , ) ( ) cos( ) ]2

mnz mn n m
n m

G s lB x y c J tl ty dt g s t J s sx dst s
   

  
    (23)

where ( , )kg s t ( 7,8k  .) is known functions (The forms of functions are not shown here for
brevity.).

The generalized intensity factors K on each crack edge are respectively obtained as
follows:
(I) on inner crack edge, 1x l and 20 y l  :

1
I 101 1 12 0 03 1

2lim 2( ) ( 1) ( )m
x zz mn mnx l n m

hK l x c H yl l 
  

  
      (24)

1
I 1701 1 12 0 03 1

2lim 2( ) ( 1) ( )m
Dx z mn mnx l n m

hK l x D c H yl l
  

  
      (25)

1
I 1801 1 12 0 03 1

2lim 2( ) ( 1) ( )m
Bx z mn mnx l n m

hK l x B c H yl l
  

  
      (26)

(II) on outer crack edge, 3x l and 20 y l  :

3
E 03 1 12 0 03 1

2lim 2( ) ( )x zz mn mnx l n m
hK x l c H yl l 

 
  

       (27)

3
E 703 1 12 0 03 1

2lim 2( ) ( )Dx z mn mnx l n m
hK x l D c H yl l

 
  

       (28)

3
E 803 1 12 0 03 1

2lim 2( ) ( )Bx z mn mnx l n m
hK x l B c H yl l

 
  

       (29)

(III) on upper crack edge, 2y l and 1 3l x l  :

2
02 2 22 0 02

2lim 2( ) ( )y zz mn m mny l n m
hK y l c R x Ql 

 
  

     (30)

2
702 2 22 0 02

2lim 2( ) ( )Dy z mn m mny l n m
hK y l D c R x Ql

 
  

     (31)

2
802 2 22 0 02

2lim 2( ) ( )By z mn m mny l n m
hK y l B c R x Ql

 
  

     (32)
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where
1 1( 1 ) (2 1 )2 22 ! (2 )!mn

m n
Q m n        .

6 NUMERICALRESULTS AND DISCUSSION
Now, the analytical solution for generalized intensity factors have been derived strictly in

forms of infinite polynomials, but to demonstrate the response law of cracks to kinds of
factors such as loading frequency, numerical results are calculated and depicted for the
generalized intensity factors. Considering the commonly used magneto-electro-elastic
materials, the material constants of BaTiO3/CoFe2O4 are adopted in all computations as
shown in Table 1 to Table 3. According to the previous work[15], to achieve the available
numerical solutions through the Schmidt method, only the first several terms in the infinite
series should be taken into calculation. Here, the top ten terms are taken in computation, and
the numerical results of the generalized intensity factors are graphically shown from Fig. 2 to
Fig. 5 to indicate some significant response laws different from the static problem.

11c
2( / )N m

12c
2( / )N m

13c
2( / )N m

33c
2( / )N m

44c
2( / )N m


3( / )kg m

1022.6 10 1012.5 10 1012.4 10 1021.6 10 104.4 10 5500.0

Table 1: Elastic stiffness constants and mass density of BaTiO3-CoFe2O4

31e
2( / )C m

33e
2( / )C m

15e
2( / )C m

31f
( / )N Am

33f
( / )N Am

15f
( / )N Am

2.2 9.3 5.8 290.2 350.0 275.0

Table 2: Piezoelectric constants and piezomagnetic constants of BaTiO3-CoFe2O4

11
2 2( / )C Nm

33
2 2( / )C Nm

11
2 2( / )Ns C

33
2 2( / )Ns C

11g
( / )Ns VC

33g
( / )Ns VC

1056.4 10 1063.5 10 6297.5 10 683.5 10 94.0 10 94.7 10

Table 3: Dielectric constants, magnetic permeablities and electromagnetic constants of BaTiO3-CoFe2O4
(I) According to Eqs.(24)-(32), the stress intensity factors, the electric intensity factors and

the magnetic flux intensity factors possess of the same changing rule and only different in
magnitudes coming from 0h , 70h and 80h , which had been discussed in references [9, 17].
So during the following discussion, the electric displacement intensity factors and the
magnetic flux intensity factors would not be elaborated particularly for the simplicity of
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the article, except the generalized intensity factors show a different variation.
(II) Maintain the circular frequency  satisfying 2 / 0.8zl c  and 2 / 1.2zl c  ,

respectively, the stress intensity factors at the midpoints on the inner crack edge, the outer
crack edge and the upper crack edge are depicted versus the inter space between two
rectangular cracks as shown in Fig.2 and Fig.3. All stress intensity factors vibrate with
the increasing of 1l , with the vibration amplitudes gradually tending to zero. Different
from statistic problems that the stress intensity factor on the inner crack edges is always
larger than ones on the outer crack edges, as shown in Fig.2(a) and Fig.3(a), the stress
intensity factors at inner and outer crack edge alternately occupy the dominant position,
which makes it more difficult to predicting crack converging. When 2 / 0.8zl c  , the
cracks are more inclined to converging for 1 2/ 0.5l l  . When 2 / 1.2zl c  , the cracks
will expand outward separately for 1 2/ 0.5l l  . But for 1 2/ 0.5l l  , even though the
stress intensity factor on one edge is slightly larger than that on the other edge, it is hard
to say whether cracks join together or expand separately. Additionally, the stress intensity
factors at the midpoint on the upper edge are smaller than that on the inner and outer
edges in these two cases.

(III)Fig.4 depicts the trend of *K at midpoint on each crack edge versus the dimensionless
circular frequency 0 1 / zl c  . Within the researched load frequency range, when the
frequency is not large 0 1.0  , the two cracks are capable of converging. However, with
larger 0 , the main behavior of two coplanar cracks is enlarging separately. Note that, as
shown in Fig.4, the most dangerous load frequency prompting cracks to converge locates
at 0 0.7  . Additionally, in the case of dangerous frequency, the midpoint of crack edge
is not the location easy to crack according to the stress intensity factors curve as shown in
Fig.5. the whole crack edges should be given adequate attention in the dynamic fracture
analysis.

Fig.2: The stress intensity factors versus 1 2/l l for 2 1.0l  , 3 1 1.0l l  , 2 / 0.8zl c  ,
8

0 0/ 1.0 10D    and 0 0/B  51.0 10  .
(a) The stress intensity factors at the middle point of inner and outer crack edges

(b) The stress intensity factors at the middle point of upper crack edge

0 1 2 3 4
1.12
1.16
1.20
1.24
1.28

 inner
 outer

 
1 2/l l

( )a

1 2/l l
0 1 2 3 4

0.66
0.68
0.70
0.72
0.74

 

( )b
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0 1 2 3 40.44

0.48

0.52

0.56

 

Fig.3: The stress intensity factors versus 1 2/l l for 2 1.0l  , 3 1 1.0l l  , 2 / 1.2zl c  ,
8

0 0/ 1.0 10D    and 0 0/B  51.0 10  .
(a) The stress intensity factors at middle points of inner and outer crack edges

(b) The stress intensity factors at the middle point of upper crack edge

0 1 2 3 4
0.6
0.7
0.8
0.9

 inner
 outer

 
1 2/l l

( )a

1 2/l l

( )b

7 CONCLUSIONS
Coupling fracture of coplanar two rectangular cracks was addressed considering

piezoelectric effect, piezomagnetic effect and magneto-electric effect of materials and the
load frequency. limited-permeable crack model was introduced to emulating the reality and
using generalized Almansi’ theorem and Fourier Transform, the analytical solution of whole
generalized fields and generalized intensity factors were deduced strictly. In order to
demonstrate intuitively the affection of geometry of cracks and load frequency on the
initiation behavior of cracks, numerical computation was depicted with the help of Schmidt
method which permitted higher accuracy with less computation. Some important factors
affecting fracture behavior were pointed out to advance the material health monitory.

Fig.5: The stress intensity factors on inner and
outer crack edges versus y for 1 0.2l  ,

2 1.0l  , 3 1.2l  , 2 / 1.4zl c  ,
8

0 0/ 1.0 10D    and
0 0/B  51.0 10  .

0.0 0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5

 inner
 outer

 y
Fig.4: The stress intensity factors at middle point

of inner, outer and upper crack edge versus
2 / zl c for 1 0.2l  , 2 1.0l  , 3 1.2l  ,

8
0 0/ 1.0 10D    and 0 0/B  51.0 10  .

0.0 0.5 1.0 1.5 2.0
-0.4
0.0
0.4
0.8
1.2

 

 inner
 outer
 upper

2 / zl c
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Abstract. The statistical moment-based damage detection method with approximate paramet-

ric solutions of the stationary second-order moments of the response is proposed for damage 

detection of a bridge. The method is based on an approximate explicit solution recently pro-

posed by the authors, which allows to explicitly relate second-order moments of the nodal 

displacements and velocity to the structural stiffness. Application on a bridge is reported to 

check the consistency of the method and to investigate the influence of the entity of the dam-

age and of the application point of the force on the identification procedure. 
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1 INTRODUCTION 

Moment based approaches proved to be quite effective in the identification of structural 

damages and positions. Statistical measures of the response under stochastic excitation have 

succeeded numerically and experimentally both in the non-linear and linear settings. 

Nonlinearity arising from a breathing crack affects higher order statistics which can be ex-

ploited to detect and locate stiffness discontinuities with high accuracy [1]-[5]. 

Statistical moments are suitable damage indices also if linear behavior is preserved when 

the damage arises. In fact they are sensitive to local structural damage but insensitive to 

measurement noise so that the statistical moment-based damage detection (SMBDD) method 

can be conveniently resorted to [6], [7]. The SMBDD method can be more effectively em-

ployed if approximate parametric solutions for nodal stationary statistical moment are availa-

ble. The benefit of having explicit solutions is conspicuous when the least squares method is 

applied because the residual between the simulated response and the actual statistical mo-

ments is parameterized with respect to the quantities to be identified. This offers great con-

venience in applying Newton's method to search for the parameters of stiffness and damping 

inversely when the objective function is minimized. The parametric relationship between sta-

tionary second order moments proposed in [8] are resorted to. 

The objective function is defined herein as the weighted sum of squared differences be-

tween the measured data from a simulated experiment and the corresponding analytical para-

metric values of nodal stationary second order displacements and velocity under Gaussian 

input. The weights can be chosen accordingly to the sensitivity of the related measure with 

respect to structural parameters. The procedure has already been applied to semi-rigid connec-

tions identification [9], and its robustness against measurement noise have been assessed [10]. 

In this paper the method is applied to damage identification in a frame grid modeling a 

span bridge. The simulated experiments allow different damage entity and position, whereas a 

low number of measurement point is foreseen. A single frame element is given a reduced 

stiffness modulus so to reproduce damage. The numerical investigation always gives back the 

correct identification for damage entity and position when the structure is loaded by a white 

noise load concentrated on a node.  

2 SECOND ORDER MOMENT DYNAMIC EQUATION 

Let us consider an n-DOF structural system whose dynamic behaviour is predicted by an 

FE linear model, characterized by the mass, damping and stiffness ( )n n  matrices M , C  and 

K , respectively. Moreover, let us assume that the structure is subjected to a zero mean sta-

tionary Gaussian white noise excitation ( )W t  with intensity 02q S , 0S  being the constant 

power spectral density. The motion differential equations of the system are: 

( ) ( ) ( ) ( )t t t W t  Mu Cu Ku τ  (1) 

where ( )tu , ( )tu  and ( )tu  are the n-vectors of nodal displacements, velocities and accelera-

tions,  respectively, and τ  is the influence forcing n-vector.  

Let us introduce the modal coordinate transformation 

( ) ( )t tu Φq  (2) 
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where ( )tq  is the m-vector of the modal coordinates, with m n , and Φ  is the reduced modal 

matrix, of order n m , solution of the following eigenproblem: 

 K M    (3) 

normalized with respect to the mass matrix M , so that T

mM I  , whereas 

2[ ]T

jdiag  K    is the diagonal matrix listing the squares of the first m natural fre-

quencies of the predicted structure. Substituting Eq.(2) into Eq.(3), the latter becomes 

 ( ) ( ) ( ) ( )t t t W t  q Ξq Ωq p  (4) 

where Tp Φ τ  and TΞ Φ CΦ . Eq.(4) rules the dynamic behaviour of the predicted FE 

model in the modal space. 

By using the 2m-dimensional vector state approach, Eq.(4) can be written in the following 

matrix form: 

 ( ) ( ) ( )t t W t Z DZ v  (5) 

where ( ) [ ( ) ( )]T T Tt t tZ q q  is the 2m-vector of the modal state variables and 

 
m 

  
 

0 I
D

Ω Ξ
                    

 
  
 

0
v

p
 (6) 

being mI  the identity matrix of order m . 

If the physical properties of the system, such as mass, damping and stiffness, are known, 

the response process is a Gaussian stationary one and its probabilistic characterization is de-

termined once the stationary second order moments of the nodal displacements and velocities 

are evaluated. The latter are related to the second order moments of the modal coordinates. In 

fact, by introducing the 2n-vector of the nodal state variables ( ) [ ( ) ( )]T T Tt t tY u u , the fol-

lowing relation holds 

 
[2]

,2 ,2( ) ( )t t
Y Z

m Γ m  (7) 

In Eq.(7), 
[2]

,2 2( ) [ ( )] [ ( ) ( )] [ ( )]t t E t t E t   
Y

m m Y Y Y Y  is the 24n -vector which collects all 

the second order moments of the displacements and velocities of the nodal coordinates, and 
[2]

,2 2( ) [ ( )] [ ( ) ( )] [ ( )]t t E t t E t   
Z

m m Z Z Z Z  is the 24m -vector which collects the second or-

der moments of the displacement and velocities of the m selected modal coordinates, where 

the symbol   means Kronecker product and the exponent in square brackets means 

Kronecker power [11],[12]. Furthermore, 

 
 

  
 

Φ 0
Γ

0 Φ
 (8) 

is a transformation matrix of order 2 2n m , so that ( ) ( )t tY ΓZ , and [2]  Γ Γ Γ . 

The differential equations describing the time evolution of the vector ,2 ( )t
Z

m  can be writ-

ten as follows [13] 

 ,2 2 ,2 2( ) ( )t t q 
Z Z

m D m v  (9) 

where 
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2 2 2m m   D D I I D , [2]

2   v v v v  (10) 

Note that all the cross moments appear twice in the vector 
,2 ( )t

Z
m . Then a condensation 

can be employed in order to reduce the size of the problem by clearing away the repetitions. 

So operating the problem dimension reduces from 24m  to 22N m m  . 

The stationary response is given as solution of the algebraic equations obtained removing 

the time dependence from Eq.(9): 

2 ,2 2q
Z

D m v  (11) 

and the vector 
,2Y

m  of the stationary second order moments of the nodal displacements and 

velocities can be evaluated by Eq.(7). From the previous equation it appears that the evalua-

tion of the stationary second order moments of the modal coordinates and its velocities re-

quires the inversion of the matrix 2D . 

3 STIFFNESS PARAMETERS VARIABILITY 

Let us assume, in agreement with realistic models, the mass parameters exhibit negligible 

fluctuations and can be considered known. On the contrary, the stiffness of the elements 

commonly suffer from significant uncertainty, and their values may deviate from predicted 

ones. For example, this is the case of variation introduced by damage. The damage identifica-

tion could be accomplished exploiting by an inverse parametric analysis aimed to detect its 

location and entity starting from the knowledge of statistical response measures at some 

points of the structure excited by a white noise, according to the SMBDD method [6]. 

In the following, the SMBDD method is improved according to an explicit parameteriza-

tion of the stationary second order moments of the structural response, which are expressed as 

analytical functions of element stiffnesses. The Global stiffness matrix can deviate from the 

predicted value K  and it can be written in the following form: 

( )

1

( )
KR

i

i
i

  K K K (12) 

where ( )K   is the updated global stiffness matrix, while K  and ( )i
K  are known matrices 

determined by assembling the frame stiffness matrix and 1 2[ ]
K

T

R     is the vec-

tor collecting the stiffness parameter fluctuations. In Eq.(12), K  represents the predicted 

value of the stiffness matrix and the summation denotes its fluctuating components. Accord-

ingly, the updated dynamic matrix ( )D α  can be written as: 

( )

1

( )
KR

i

i
i

  D D D (13) 

where D  is the predicted dynamic matrix and 

( )

( )

i

i

 
  
 

0 0
D

Ω 0
(14) 

with 

( ) ( )i T iΩ Φ K Φ  (15) 

Φ  being the modal matrix relative to the predicted structure. 
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3.1 Stationary Stochastic Response 

The stationary second order moments of the modal response are solution of the following 

set of algebraic equations : 

2 ,2 2( ) ( ) q  
Z

D m v (16) 

where 

( )

2 2 2
1

( )
R

i

i
i

   D D D (17) 

being 

( ) ( ) ( )

2 2 2

i i i

m m   D D I I D (18) 

Eq.(16) is the parametric counterpart of Eq.(11), with unknowns given by the vector of the 

second order moments of the nodal response 
,2 ( )

Z
m α . 

Solving the system governed by Eq.(16) means to obtain the explicit relationships between 

the vector 
,2 ( )

Z
m α  and the parameter vector α . This cannot be generally done by inverting 

2 ( )D α , which is a parametric matrix of large dimension, so that different procedures solving 

this problem in an approximate way have been proposed in the literature. The approximate 

analytical solution presented by [8], briefly recovered in the next section, is adopted herein.  

4 THE EXPLICIT ANALYTICAL SOLUTION 

Let us consider the case in which only one fluctuating parameter i  is present,so that 

Eq.(16) is rewritten as: 

2 ,2 2( ) ( )i i q  
Z

D m v (19) 

The vector of the second order moments of the modal response can be written as follows: 

( )

,2 ,2 ,2( ) ( )i

i i   
Z Z Z

m m m  (20) 

where 
,2Z

m  is the vector of the stationary second order moments of the predicted structure 

(for 0i  ), solution of Eq.(11). Moreover, the matrix 
2 ( )iD  takes on the following simpler 

form: 

( )

2 2 2( ) i

i i  D D D (21) 

By substituting Eq.(20) and Eq.(21) into Eq.(19), one obtains: 

( ) ( )

2 2 ,2 ,2 2( )[ ( )]i i

i ia q   
Z Z

D D m m v  (22) 

Taking into account Eq.(11), the following equation for the unknown vector 
( )

,2 ( )i

iZ
m  is 

obtained: 

( ) ( ) ( )

2 2 ,2 2 ,2[ ] ( )i i i

i i i   
Z Z

D D m D m (23) 
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The solution of Eq.(23) appears not straightforward at a first glance since the inverse of the 

parametric matrix ( ) 1

2 2( )i

i

D D  is required. However, the expression of the vector 
( )

,2 ( )i

iZ
m

as an explicit function of the parameter i  can be readily obtained as shown in the next. 

Let us consider the right and left eigenproblems related to the ( )N N  matrix 
( ) 1 ( )

2 2 2

i iA D D  (assuming that the condensation has been employed, i.e. 22N m m  ): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

i i i i i i i i

R R L L A A      (24) 

Since ( )

2

i
A  is a non-defective matrix, the following ortonormalization condition can be ap-

plied: 

( ) ( ) ( ) ( ) ( ) ( )

2,   i i i i i i

L R N L R I A     (25) 

The p N  matrix ( )i

L  and the N p  matrix ( )i

R  collect, respectively, the p significant 

left and right eigenvectors, i.e. the eigenvectors related to the nonzero eigenvalues 
( )i

j (with

1, 2, ,j p ) listed in the diagonal p p  matrix ( )i . By introducing the following coordi-

nate transformation: 

( ) ( ) ( )

,2 ,2( ) ( )i i i

i R i  
Z Z

m n  (26) 

into Eq.(23), pre-multiplying both sides by ( )i

L  and taking into account Eqs.(25), Eq.(23) be-

comes: 

( ) ( ) ( ) ( )

,2 2 ,2( ) ( )i i i i

i i i L   
Z Z

I n A m  (27) 

From the previous equation, it is easy to obtain the exact explicit relationship between the 

vector 
( )

,2 ( )i

iZ
m  and the generic parameter i : 

 
1

( ) ( ) ( ) ( ) ( )

,2 2 ,2( )i i i i i

i i R i L



   Z Zm I A m   (28) 

If more parameters are present, as a first approximation the cross effects can be neglected 

and the superposition principle can be applied. Therefore, the solution in the modal coordi-

nates is given by the sum of the single contributions, that is: 

( )

,2 ,2 ,2
1

( ) ( )
R

i

i
i

  Z Z Zm α m m (29) 

where R  is the number of the fluctuating parameters and the generic 
( )

,2 ( )i

iZ
m  is given by 

Eq.(28). Taking into account Eq.(7), the solution in terms of nodal displacement and veloci-

ties is 

[2] ( )

,2 ,2 ,2
1

( ) ( )
R

i

i
i

  Y Y Zm α m Γ m (30) 

Eq.(30), which gives an approximate solution if 2R   because the joints effects of the pa-

rameter fluctuations are neglected, is sufficiently accurate for solving the inverse problem 

arising in structural identification. Eventually, more accurate solutions can be obtained by in-

troducing cross terms [8]. 
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5 INVERSE MEASUREMENT PROBLEM 

The approximate explicit solution produced by Eq.(30) can be exploited for element stiff-

ness identification starting from the knowledge of experimental measurements of the station-

ary second order moments of the response at some points of the structure. Assume that some 

measurements 
2

,2
ˆ ˆ[ ]

ky km E y  are available, where ˆ
ky  is the measured displacement or velocity

of the k-th degree of freedom of the structure (the cap over the variable means "experi-

mental"). The corresponding parametric expressions 
,2 ( )

kym   is evaluated as components of 

the vector given by Eq.(30). The inverse problem consists in retrieving the parameters   

from given displacement or velocity measurements. Then, the identification of the R  parame-

ters may be obtained using the least squares estimation approach, where the objective function 

2

,2 ,2

1 ,2

ˆ( )
( )

ˆ

R
k k

k

N
y y

k
k y

m m
f W

m

  
   

  
 (31) 

is to be minimized and RN  is the number of measurements. 

6 APPLICATION: IDENTIFICATION OF DAMAGE IN A BRIDGE 

The proposed damage identification procedure has been applied to a span of a bridge, dis-

cretized by beam finite elements, simply supported on two piers at its end (see Fig.1 and 2). 

The simulated experiment has been performed in relation to the FE model depicted in Fig. 3, 

where a 18 element discretization has been used. The data of the longitudinal beams are: sec-

ond moment of area 
40.9803 I m , polar (torsional) second moment of area 

40.1765 J m , 

total span 34.25L m , mass density per unit length 
32.55 10bl kg m   . The data of the 

transversal beams are: second moment of area 
40.4667 I m , polar (torsional) second mo-

ment of area 
40.0211 J m , total span 8.50L m , mass density per unit length 

33.50 10bt kg m   , mass density per unit area of the deck 
233.12 10d kg m   . 

Figure 1: Cross Section of the bridge 
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Figure 2: Schematic sketch of the bridge 

Figure 3: FE model of the bridge 

Let us assume that the Young modulus of all the elements has the value 
7 23.46 10E kN m  , except one with value ˆ ˆ(1 )i iE E   , where ˆi  is a negative coeffi-

cient (with ˆ1 0i   ), representing the damaged zone. For simplicity, a damage due to a 

reduction of the Young modulus of a beam can be similarly taken into account. The bridge 

has been subjected to a vertical point force applied at a given node of the model, represented 

by a white noise. Of course more general loading could be treated. Suitable damping proper-

ties of the structure have been assumed in the cases above considered and a lumped mass ma-

trix has been implemented. 

The identification strategy relies upon the least squares estimation approach which is car-

ried on for all possible damage scenarios by assuming a single value for the Young modulus 

at all the elements but the one where the damage is tentatively located. The real damage posi-

tion is singled out by selecting the damage scenario with smaller residue (see Eq. (31)). 

The numerical examples assume a limited number of measurements, namely 4RN  , as 

given by second order stationary displacement at nodes 2, 3, 6 and 7. 

The investigation starts from considering that the damage is located alternatively at the 10-

th, 11-th and 17-th element of the simulated experimental model, with a value ̂ varying 

from 0.3  to 0.05 . 

Let us assume that the damage is present on the j-th element (with 10, 11, 17j  ), with 

unknown value 
( )j

D , and the remaining elements are supposed undamaged with value 
( )j

ND
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̂  

̂  

(with 10, 11, 17j  ). Identification of the damage entity and position is determined in the 

element in which one has the smallest value of the residue in the minimization problem 

Eq.(31). 

 
     FE    10-th Error %    11-th Error %    17-th Error % 

0.3  -0.3450 15.00 -0.3953 31.77 -0.3114 3.80 

0.2  -0.2194 9.70 -0.2316 15.83 -0.2042 2.13 

0.1  -0.1046 4.64 -0.1072 7.26 -0.1009 0.93 

0.05  -0.0511 2.27 -0.0517 3.51 -0.0502 0.44 

 

Table 1: Stiffness reduction identified by the parametric model for damage located at the 10-th, 11-th and 17-th 

element of the beam, with ˆ 0.3, 0.2, 0.1      and 0.05 , and point force at node 3. 

 
     FE    10-th Error %    11-th Error %    17-th Error % 

0.3  -0.3462 15.40 -0.3373 12.45 -0.2949 1.68 

0.2  -0.2195 9.77 -0.2161 8.09 -0.1986 0.69 

0.1  -0.1046 4.66 -0.1038 3.87 -0.0998 0.19 

0.05  -0.0511 2.28 -0.0509 1.89 -0.0499  0.06 

 

Table 2: Stiffness reduction identified by the parametric model for damage located at the 10-th, 11-th and 17-th 

element of the beam, with ˆ 0.3, 0.2, 0.1      and 0.05 , and point force at node 10. 

 

Element    Residue              

1 6.0707E-07 0.00023 

2 2.9979E-08 -0.00731 

3 3.3123E-07 -0.00355 

4 5.3909E-07 0.00167 

5 5.1163E-07 -0.00302 

6 1.5169E-07 -0.00555 

7 4.7854E-07 0.01177 

8 1.2607E-07 -0.02684 

9 3.4168E-08 0.01527 

10 1.6937E-07 0.01194 

11 3.2713E-07 0.01237 

12 6.0940E-07 -0.00023 

13 4.6062E-08 -0.05273 

14 1.9527E-07 0.01106 

15 7.6440E-08 -0.07097 

16 3.8792E-07 0.00221 

17 8.2491E-10 -0.20426 

18 5.0598E-07 0.00117 

 

Table 3: Stiffness reduction identified by the parametric model for damage located at the 17-th element of the 

beam, with ˆ 0.2   , and point force at node 3. 
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Element    Residue              

1 3.4831E-06 0.00969 

2 3.4501E-07 0.00948 

3 7.1014E-06 0.00377 

4 7.8148E-06 -0.00041 

5 7.3201E-06 0.01713 

6 7.8605E-06 -0.00310 

7 7.7307E-06 -0.00903 

8 3.4112E-07 -0.03551 

9 1.4893E-06 -0.03172 

10 2.3522E-06 -0.03710 

11 3.6456E-07 -0.02275 

12 2.1483E-06 -0.04871 

13 5.2607E-06 0.08237 

14 5.9452E-06 0.05694 

15 5.2748E-06 -0.18271 

16 6.9742E-06 -0.05382 

17 2.0889E-10 -0.19862 

18 7.0393E-06 -0.08502 

 

Table 4: Stiffness reduction identified by the parametric model for damage located at the 17-th element of the 

beam, with ˆ 0.2   , and point force at node 10. 

Table 1 and 2 show the results of the identification procedure here proposed, for different 

location and entity of damage ̂  for point force applied at node 3 and at node 10, revealing as 

the accuracy of the method increase when the value of damages decrease. The method is ca-

pable to catch also small values of the damage, common in real cases. Table 3 and 4 show the 

results of the identification procedure here proposed at element 17-th for a point force applied 

at node 3 and at node 10, and entity of damage ˆ 0.2   . 

 

7 CONCLUSIONS  

The statistical moment-based damage detection method has been applied to identify the 

stiffness of a grid structure modelling the span of a bridge. The numerical applications reveal 

that the method is effective when damage localization should be achieved with satisfactory 

accuracy. The simulated experiments are related to different scenarios where a single frame is 

given a reduced stiffness so to reproduce a fictitious damage. In all the cases considered, the 

proposed method, taking advantage of accurate approximate relationship between nodal sec-

ond order statistical moments and element stiffnesses, is able to spot damage position and its 

entity.  
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Abstract. Characterization of concrete behavior needs to know mechanical properties of the

two phases constituting them : mortar and aggregates. Nevertheless this bi-phasic approach

reaches its limits when concrete leaves the elastic domain. At that stage and according to

several studies, phenomena which occur at the interface between mortar and aggregates, or in

mortar between cement paste and aggregates, must be taken into account. If the occurence of an

Interfacial Transition Zone (ITZ), with weak mechanical properties in regard to the two others

surrounding them is well knwon, the modeling of this third phase is not settled yet. This study

focus on the characterization of the adhesion at interface between cement paste and aggregates.

A mortar compounded by two limestone aggregates binded by a cement paste is considered, and

tensile tests are performed on a sample of this composite. Based on these experimental results,

a numerical study is developed in order to see influence of interface quality in tensile strength.

For thar mortar is modeled by finite elements with a cohesive zone model at the interface, substi-

tuting ITZ. With the cohesive zone model used, coupling friction and adhesion at the interface,

three parameters have to be fitted : normal and tangential stiffness, and decohesion energy. A

strong correlation is found between these parameters and tensile strength, but numerical re-

sults show also low values of stiffness and decohesion energy at interface. This result could be

explained by a partial adhesion between mortar and cement paste in the sample.
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1 INTRODUCTION

When concrete is considered as a bi-phasic material represented at a mesoscopic scale, com-

pounded by mortar and aggregates, the characterization of its mechanical behavior depends on

elastic properties of the two phases, at less until the rupture [21, 16]. Nevertheless an acurate

prediction when the elastic limit is reached is often investigated. For that, a damage variable

may be introduced and the behavior is described by a volumic model as developed by Pijaudier-

Cabot and Mazars [20]. These models allow to describe the post-peak behavior using inverse

analysis methods [3], concrete being still represented as a bi-phasic material. In a different way,

some studies consider a third phase, the Interfacial Transition Zone (ITZ) between mortar or

cement paste and aggregates, as an independant material with weak mechanical properties [18].

In order to take into account this third phase, some numerical studies propose a finite element

model representing physically ITZ [15, 10], inducing difficulties particularly in the mesh gen-

eration because of the very thin thickness of ITZ in regard to dimensions of other phases [4].

In their experimental and numerical studies, Ke et al. [12, 13] have overcome these difficulties

with the development of a micromechanical model, especially for lightweight concrete, in order

to predict failure. Other works consider a mechanical damage induced by the quality of the

matrix-aggregates interface [14]. In the present study we focus on the caracterization of the

mechanical link between cement paste and aggregates.

A non perfect adhesion between two phases, may be modeled by introduction of Cohesive

Zone Models (CZM) at the interface. These models provide good description of mechanical

behavior, also out of elastic domain [6]. Among various studies using CZM in their numeri-

cal models, based on finite elements modelling [17, 7, 23] or with discrete elements [1], the

one used in this paper, couples adhesion, friction and unilateral contact [22, 24]. Here, cohe-

sive forces directed at interface are both in tangential and normal directions [2]. Cohesion at

interface is represented by a damage parameter β, providing the intensity of adhesion.

The work presented here, deals with a characterization of interface quality, between cement

paste and limestone aggregate. For that, the cohesive zone model quoted previously is calibrated

on mechanical tests performed on a composite compounded by two cubic samples of limestone

linked by a thin thickness of cement paste. For that a three-dimensionnal finite elements model

of the composite is carried out using the software LMGC90 [5]. Parameters of CZM law fitted

will describe the mechanical properties and the adhesion quality at the interface between cement

paste aggregates.

2 MATERIALS AND METHODS

2.1 Experimental sample of concrete

All experimental results come from works of PhD thesis of Mouad Jebli, from University of

Montpellier, France. Composite of mortar is realized with two cubic blocks of limestone binded

by a thin cement paste, as represented in the Figure 1. Elastic properties of these two materials

are obtained by uniaxial compression tests and are summarized in the Table 1.

Material Young’s modulus (GPa) Poisson ratio

Limestone 60 0.3

Cement paste 12.5 0.3

Table 1: Elastic properties of aggregates and cement paste
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Figure 1: Sample of concrete compounded by two blocks of limestone (10 × 15 × 10mm) binded by a cement

paste (10× 2× 10mm)

Mechanical tensile tests are carried out on the sample. A velocity of 0.01mm/s is imposed

through a tensile test device, as shown by the Figure 2. Sample is loaded until rupture. The

onset of cracking and rupture of the sample is recorded with use of a high-speed digital camera.

For the calibration of the cohesive zone model, results on 28 days mortar composites have been

taken into account.

Figure 2: Tensile test on the concrete sample

Results of uniaxial tensile test are shown on Figure 3. This curve will be used on the follow-

ing to choose parameters of CZM at the interface.

2.2 Cohesive Zone Model

Mathematical developments of the model chosen here, using thermodynamic considerations,

are detailed on several works [2, 22]. We will limit in this part to present parameters of the cohe-

sive law, and its main constitutive equations. This model considers a non-penetration between

two bodies in contact, here cement paste and aggregates. These two materials are meshed by

finite elements. The unilateral contact is coupled with friction, coming from Coulomb law be-
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Figure 3: Stress (in MPa) vs strain for tensile test on the concrete composite

tween the two materials, and adhesion governing by a state variable which describes the contact

state. This variable β, introduced by Fremond [9], giving the intensity of adhesion between the

two bodies in contact, is defined with a damage parameter D included between 0 (no damage)

and 1 (rupture) such as :

β = 1−D (1)

Thus adhesion linked to damage between aggregate and cement paste is :

• β = 1 total adhesion

• 0 < β < 1 partial adhesion

• β = 0 no adhesion

The thermodynamic description, based on standard material generalized theory [11], needs

to define state variables associated to thermodynamical forces. For that one considers the re-

versible forces RN and RT associated to the dispalcements uN and uT . Indexes N and T
indicate a decomposition into normal and tengential part on the contact surface. Thus, RN and

RT are considered as normal and tengential contact forces and the displacement is written :

[u] = [uN ] .n+ [uT ] with [uN ] = [u] .n (2)

In a same way, the decomposition of contact forces gives :

R = RN .n+RT with RN = R.n (3)

In this problem the state variables are β, uN and uT , and we introduce a free energy potential

defined such as :

ψ(uN , uT , β) =
CN

2
u2Nβ

2 +
CT

2
u2Tβ

2 − wb (4)

6802



Etienne Malachanne, Marie Salgues, Mouad Jebli and Frederic Jamin

with CN and CT the normal and tengential stiffness, w the Dupre’s energy and b the adhesion

viscosity coefficient. As explained in works of Raous et al. [22], the main constitutive laws of

the contact at the interface come from the subdifferentiation of the free energy potential, and a

potential of dissipation, with respect to the state variables uN , uT and β. As consequence we

can define the unilateral contact with adhesion :

RN − CN [uN ] β
2 ≥ 0 (5)

[uN ] ≥ 0

(RN − CN [uN ] β
2) [uN ] = 0

Introducing a fricton coefficient of Coulomb µ, the friction with adhesion is defined by the

following equations :

||RT − CT [uT ] β
2|| ≥ µ|RN − CN [uN ] β

2| (6)

||RT − CT [uT ] β
2|| < µ|RN − CN [uN ] β

2| ⇒ [u̇T ] = 0

||RT − CT [uT ] β
2|| = µ|RN − CN [uN ] β

2| ⇒ ∃λ > 0, [u̇T ] = λ(RT − CT [uT ] β
2)

Finally, shape of the cohesive law presented is shown by the curve of the Figure 4 giving

the normal reaction with respect to normal displacement. Force-peak represents the limit of

adhesion. Indeed at that stage damage occurs at interface, and energy of adhesion, considered

as the area under the cruve decreases.

 0
 0

R
N

uN

Figure 4: Shape of the cohesive law

2.3 Numerical computation

All the numerical computations have been proceeded with the open software LMGC90 [5],

developed at the University of Montpellier, France, in which the cohesive zone model presented

in past section is implemented. A tree-dimensional finite element model of the composite sam-

ple has been carried out. A symmetrical geometry has been chosen, as shown by Figure 5, in

order to reduce computation time, thus conditions of symmetry will be respected. Geometry is
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meshed with hexaedron finite elements H8, and the time step is taken constant and equals to

1× 10−4 s. A theta-method is chosen for time intregation with θ = 0.55. Boundary conditions

are applied on the lower and upper faces, with a velocity vy = 0.01mm/s for the tensile load

on the upper, and vertical displacements blocked on the lower due to symmetry.

Figure 5: Meshing of a half composite sample by hexaedron finite elements

Application of the cohesive zone between cement paste and aggregate, is based on contact

nodes placed in the contact surface both on cement paste and aggregates. At each time step a

detection is realised and rupture occurs when contact is lost between the two bodies. To calibrate

cohesive law, several parameters have to be setted : normal and tangential stiffness CN and CT ,

friction coefficient µ, adhesion energy w and adhesion viscosity b. In this model we consider

any viscosity at the interface, thus b = 0. Friction coefficient is determinated by experimental

study, and µ = 0.4. We assume that adhesion energy, is defined by the experimental curve

stress-strain (Figure 3), and calculated as the aera under the curve, until the rupture. Hence :

w =
1

2
(1.6× 106 × 0.015× 10−3) = 12 J/m2 (7)

Hence, adhesion energy calculated here is only the one for the elastic part until rupture, thus

according to the Figure 4 presented in the past section we assume that the value corresponding

in the cohesive law is near the double, 24 J/m2. We will see in the following if this assumption

gives results expected.

Finally, only CN and CT have to be fitted with the experimental results. We assume that CN

= CT , hence their value will be calibrated with several numerical tensile test on the composite

sample.

3 RESULTS

Numerical computation is performed until the peak-stress, and compared with the experi-

mental stress-strain curve, the objective being to tend to this curve. On the finite element model,

we observe that rupture is represented by a decohesion between the two bodies, as shown by

the Figure 6.

As explained previously, in this study two parameters have to be fitted : CN , CT . It appears

that in our case, CN and CT give the slope of the linear par and the w sets the position of
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Figure 6: Displacement of the two materials after rupture

peak stress along the slope. Influence on these three parameters on the mechanical response are

represented of the Figure 7. Value of decohesion energy estimated previously, has to be slightly

reduced to bring numerical peak stress closer to the experimental one.

 0

 0.5
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 2.5

 0  0.0001  0.0002  0.0003  0.0004

st
re

ss
 (
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CN=CT=10x1011 Pa/m, w=24 J/m2

CN=CT=5x1011 Pa/m, w=24 J/m2

CN=CT=4.8x1011 Pa/m, w=22 J/m2

Experimental curve

Figure 7: Influence of parameters CN , CT and w on the mechanical response

Thus, we can observe on Figure 7 that paramaters of cohesive zone model which allow to

tend to experimental curve are CN = CT = 4.8× 1011 Pa/m and w = 22 J/m2.

4 DISCUSSION

We can first notice a strong correlation between mechanical parameters defined at the in-

terface between cement paste and aggregates, and both strain and tensile strength. Moreover

numerical results show that with this cohesive zone model, it is possible to tend to experimental

results. We can observe that value of decohesion calculated experimentaly, gives a good estima-
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tion of the peak stress. The slighly decrease is explained by the interface considered as perfect

in the numerical sample which is not the case in the experimental one. As consequence with w
fixed by the experiment, only 2 parameters have to be fitted.

Since decohesion occurs only in the ITZ, the latter is substituted by cohesive zones. Thus

parameters fitted can be considered as characteristics of the ITZ. A comparison with other

studies realised with the same cohesive law, give values of interfacial stiffness higher than the

one obtained here. Indeed works of Perales et al. [19], have shown that CN = CT = 2 ×

1018 Pa/m when studies of Fouchal et al. [8] found 1.5 × 1017 Pa/m. These values depend on

material modeled, hydrided Zircaloy for the first and interface between bricks and mortar for the

second. In the same way, our values of decohesion energy are also weak, particularly comparing

to adhesion between bricks and mortar (0.9 J/mm2). Two ways may be investigated to explain

these low values of interface parameters : parameters identified with numerical computation are

not representatives of the real interface properties, or an initial damage occurs at the interface,

due to the composite sample fabrication. If the first hypothesis requires other experimental

investigations, in particular on a mini-structure of mortar, let us focus on the second through an

analysis of Young modulus.

Experimental Young modulus of the composite sample, could be calculated as being the

slope of the curve of the Figure 3. Indeed, assuming that until tensile strength, in the linear

part, the sample has an elastic behavior, Young modulus is obtained using the Hooke law for an

uniaxial tensile test :

Esample =
σ

ε
(8)

with σ the stress and ε the strain. Here, according to the Figure 3, Esample = 3.43GPa. This

value has to be compared with the real Young modulus of the sample, which could be calculated

through a serial stiffness. Indeed if we consider that the sample is compounded by three serial

elastic bodies, the equivalent stiffness is defined by :

ksample =
1

2

kagg
+ 1

kp

(9)

where kagg and kp are aggregate and paste stiffness defined such as :

kagg,p =
Sagg,p × Eagg,p

Lagg,p

(10)

with Sagg = Sp = 100mm2 the section of aggregate and cement paste, Lagg = 15mm the

length of each aggregate and Lp = 2mm the length of the paste. Thus using these values,

composite stiffness is ksample = 151515N/mm leading to the theoretical equivalent Young

modulus of the sample :

Eth =
32× 151515

100
= 48.5GPa (11)

A noticeable difference is observed between theoretical Young modulus and the one obtained

experimentally. This result may be explained by a damage at the interface, due to the interface
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quality between aggregate and cement paste, which lead to a fall on the equivalent Young mod-

ulus. According to the definition of the damage variable given by Mazars et al. [20], theoretical

and experimental Young modulus are binded by the relationship :

Esample = (1−D)Eth (12)

where the damage variable D is different to zero, inducing an intensity of adhesion β less

than 1 at the begining of the computation, as explained by equation (2.2). This observation

could indicate a partial adhesion between aggregate and cement paste and explain low values of

stiffness and decohesion energy at the interface. Thus the strong correlation between stiffness

and adhesion energy at interface, and mechanical behavior of the composite, leads to confirm

that tensile rupture is in this case governing by the adhesion quality.

5 CONCLUSION

Cohesive zone model applied to the numerical computation studied here, allows to cali-

brate decohesion between cement paste and limestone aggregate, using experimental tensile

test on a composite sample compounded by both materials. It is possible to reach experimental

stress-strain curve, with values of stiffness at the interface and decohesion energy according to

literature. Moreover Young modulus obtained by experimental works and numerical computa-

tion, calculating the slope of the stress strain curve, is very small against the theoretical one.

Other experimental studies have to be performed to confirm the existence of initial damage at

the interface.
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Abstract. A fiber-section frame element for nonlinear analysis of two-dimensional, shear-

critical reinforced concrete structures is developed. The element incorporates a new sectional 

algorithm for the computation of an exact shear strain profile and corresponding shear stress 

distribution. Longitudinal axial strains are evaluated based on the plane section assumption, 

while transverse strains are determined from equilibrium in the vertical direction, following 

classical beam assumptions. Axial-shear interaction at the fiber level is based on a smeared-

crack, orthotropic constitutive model, which uses equivalent uniaxial material models for 

concrete and steel in the fixed-crack and reinforcement directions, respectively. Shear strain 

components at the crack, arising from deviations between principal and crack directions, are 

related to shear stresses by means of a shear stiffness term that fully satisfies compatibility 

and equilibrium conditions. The procedure was implemented into a force-based fiber element 

and applied to monotonic and cyclic analysis of shear-critical reinforced concrete structures. 

Validation examples include a number of experiments on lightly reinforced beams, shear-

critical frames and columns. 
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1 I�TRODUCTIO� 

Extensive experimental and analytical effort has been devoted to investigate the response 

of RC members under combined axial and shear stresses in the last 50 years. This allowed de-

veloping refined finite element models capable of predicting the global force-displacement 

response up to collapse, as well as local response parameters such as strains, crack widths and 

crack patterns. However, their general application to framed structures results cumbersome 

and time consuming, hence substantial effort is being addressed towards improving existing 

frame elements, usually based on the plane section assumption and uniaxial constitutive laws, 

in order to account for multi-axial loading conditions while keeping an efficient and simple 

formulation. 

It can be said that a promising, fiber-based frame element for axial-shear interaction re-

quires (i) an accurate multi-axial constitutive model and (ii) plausible section and beam kine-

matic assumptions. Extensive literature can be found concerning each of these topics. For 

instance, [1] introduced axial-shear interaction at the fiber level based on a dual-section anal-

ysis, whereby shear stresses over the section were calculated from the difference between axi-

al stresses at two consecutive sections separated h/6 (h: depth of the member). [2] suggested a 

local procedure such that shear stresses were obtained from longitudinal gradients of defor-

mations at a given section. Both authors used two-dimensional constitutive models, namely 

the Modified Compression Field Theory (MCFT), assuming that plane sections remain plane. 

Several authors used Bernoulli and Timoshenko beam theories in both displacement- and 

force-based frame elements with axial-shear interaction [3]. The Bernoulli beam theory does 

not directly account for shear deformations, hence shear effects were usually introduced with 

an equivalent truss model, resulting only in partial coupling with axial forces and bending 

moments [4,5,6]. The Timoshenko beam theory provides a kinematic link between shear 

strains and transverse displacements of the beam axis. Hence, multi-axial constitutive models 

can be used at each individual fiber resulting in full axial-shear coupling [7, 8, 9, 10, 11, 12, 

13]. However, the theory predicts a constant shear strain profile over the section, thus violat-

ing inter-fiber equilibrium. More recently, several higher-order theories were proposed deal-

ing with the latter shortcomings [14, 15, 16, 17, 18]. Their application to nonlinear analysis of 

RC members is still in development. Moreover, their practical implementation for inelastic 

dynamic analysis needs further research due to complexities associated with their formulation 

and high computational demands. 

The present work explores the possibility of an exact shear strain profile at the section lev-

el, while maintaining the plane section assumption for longitudinal strains. The rationale be-

hind this approach is that [2], among others, demonstrated that axial-shear interaction in 

beams and columns can be relatively well captured assuming plane sections remain plane, 

whereas refined kinematic beam theories have not yet been fully verified. The exact shear 

strain profile is obtained from an averaged form of inter-fiber equilibrium over the section, 

using linear interpolation functions. The formulation was implemented into a force-based, fi-

ber-element with smeared-crack, fixed-crack cyclic constitutive models. Verification exam-

ples on shear critical beams, frames and columns are provided at the end. 

2 BEAM KI�EMATICS 

The Timoshenko beam theory is adopted to define the element kinematics. The total dis-

placement of a given section point with coordinates (x, y) is given as: 

y)x()x(u =y)(x,u zo θ− (1) 
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)x(v =y)(x,v o  (2) 

where uo is the horizontal displacement, θz the section rotation and vo the vertical displace-

ment of the beam axis, x the longitudinal coordinate along the beam axis, and y the vertical 

coordinate. Assuming small strain-displacement compatibility, fiber strains are defined from 

the linear Green-Lagrange strain tensor as:  
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where εx is the axial strain, εy the transverse strain and γxy the shear strain acting on a section 

layer with coordinate y. εo is the section axial strain, χz the section curvature and γoy section 

shear deformation. The relationship between strains and section deformations can be ex-

pressed as: 
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Beε  = (7) 

Section forces are obtained from direct integration of stress distributions over the section: 

∫=
A

T dA  σBS  (8) 

where S=[N,M,V]
T
 and σ=[σx, τxy]

 T
 are the vector of section forces and stresses, respectively.

The tangent stiffness matrix of the section is obtained taking variation of section forces with 

respect to section deformations: 
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where  is the condensed, 2×2 material stiffness matrix, given as: 
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(10) 

Condensation is carried out upon neglecting the effect of clamping forces, that is, assuming 

that σy=0, which is a reasonable approximation in regions away from local disturbance, such 

as supports and points of load application. In this case, the increment of transverse strains is 

given as: 

22

xy23x21

y
D

)DD( γ∂−ε∂−
=ε∂ (11) 
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where D21, D22 and D23 are coefficients of the 3×3 material stiffness matrix relating (∂σx, ∂σy, 

∂τxy) and (∂εx, ∂εy, ∂γxy), obtained from the two-dimensional constitutive model presented in 

the next sections. 

3 SHEAR STRAI� PROFILE 

The section model is based on the evaluation of an exact shear strain profile using the in-

ter-fiber equilibrium equation. This can be derived from internal beam equilibrium in the lon-

gitudinal direction:  

0dydx
y

dxdxdy
x

dydxdy
xy

xy
x

xxyx =
∂
τ∂

+τ+
∂
σ∂+σ+τ−σ−  (12) 

0
yx

xyx =
∂
τ∂

+
∂
σ∂

 (13) 

Figure 1: Internal equilibrium in a cross-section plane stress element. 

Using the constitutive relationship in equation (10) in conjunction with equation (13) yields:  

0
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D
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D
xy

22
x

21
xy

12
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The first two terms in (14) contain strain derivatives in the longitudinal direction. These 

can be obtained from the derivative of section forces and compatibility between fiber and sec-

tion strains: 

dx

d

dx

d 1-

s

S
K

e = (15) 

dx

d

x

e
B

ε =
∂
∂

(16) 

where dS/dx=[0,-V,0]
T
 for an element under constant axial load and shear, and linear varia-

tion of bending moments. The term ∂εx/∂y in (14) is equal to -χz from (3), and ∂γxy/∂y is ob-

tained from interpolation of γxy using linear shape functions such that: 

jjiixy NN = γ+γ=γ �γ (17) 
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where γi, γj are nodal values of shear strain at the ends of the l
th

 layer, and yi and yj the corre-

sponding coordinates (Figure 2).  

 

Figure 2: Interpolation of the shear strain profile. 

Inter-fiber equilibrium in equation (13) is invoked in a weighted average form over the cross 

section, using as a weighting function the derivative of the shear strain, ∂γxy/∂y. Upon ac-

counting for the contribution of each individual layer, this is expressed in the following func-

tional form: 
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where A is the assemblage operator over the section layers, nl number of layers, Al the area of 

the l
th

 layer, and δγxyˈ the virtual derivative of the shear strain. Substituting equations (14) and 

(17) into (19) yields: 
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Since δγ, containing the virtual nodal shear strains, is non-zero, the vector of nodal shear 

strains γ can be obtained from solving:  

 fkγ
1−=  (22) 

where: 
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4 FI�ITE ELEME�T IMPLEME�TATIO� 

4.1 Force-based formulation  

The proposed section model was implemented into a two-dimensional, force-based fiber 

element according to [19]. In this formulation, once the global displacements are known, an 

iterative state determination procedure is invoked at the element level in order to find the cor-

responding section strains at each integration point. Because section forces are known at the 

start of the state determination procedure, from the exact interpolation of element forces, and 

section deformations can be estimated using the current section flexibility matrix, all the in-

gredients for the calculation of the “exact” shear strain profile are available. Thus, the three 

total strain components (εx, εy, γxy) at each individual fiber are known. The corresponding 

stresses, (σx, σy, τxy), are obtained from the constitutive model and integrated to yield the sec-

tion forces. In subsequent element iterations, the initial shear strain profile is corrected based 

on the unbalanced vector of section forces until satisfying section equilibrium. Further details 

on the numerical implementation are given elsewhere [20]. 

4.2 Constitutive model  

The constitutive model is based on a smeared-crack, single fixed-crack membrane model 

[21]. For concrete, equivalent uniaxial constitutive relationships are applied in the fixed-crack 

directions (figure 3), while shear components arising from deviation between principle direc-

tions and crack directions are related through the secant shear stiffness term given as: 

)cos)(sin2(

)cos)(sin(
=G

21

21

εε

σσ

θ∆θ∆ε−ε
θ∆θ∆σ−σ

(25) 

where σ1, σ2, and ε1, ε2 are the principal stresses and strains, respectively, and ∆θσ, ∆θε the 

corresponding angles between principle and crack directions. 

Figure 3: Fixed-crack reference system and cyclic constitutive model. 

The cyclic response in tension is obtained from a physically-based approach, whereby ten-

sion stiffening, crack-opening and crack-closing branches are computed from average equilib-

rium on a cracked element of reinforced concrete (figure 4). Further details can be found in 

[21]. 
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Figure 4: Cracked element of reinforced concrete and cyclic response in tension. 

5 �UMERICAL VERIFICATIO� 

5.1 Shear critical beams. 

Beams OA1 and A1, tested by Bresler and Scordelis 1963 [22], were two simply supported 

beams with 305mm x 552mm rectangular cross sections and 3660mm clear span. Beam A1 

presented 6.4mm diameter stirrups spaced at 210mm, whereas beam OA1 was unreinforced in 

shear and only presented bottom reinforcement (Table 2). Beam OA1 failed in diagonal-

tension along the shear-critical crack with accompanying longitudinal splitting in the bottom 

flexural reinforcement. Beam A1 failed in shear-flexure, involving the formation of diagonal 

shear cracks and concrete crushing in the compression zone next to the loading plate [25]. 

Figure 5: Beam test set up and cross section [22]. 

Beam OA1 A1 Steel Diameter(mm) fy(MPa) fu(MPa) Es(MPa) 

Compressive 

strength(MPa) 
22.6 24.1 Nº2 6.4 325 3660 190000 

Peak Strain 0.0018 0.0018 Nº4 12.7 127 3660 201000 

Nº9 28.7 645 3660 218000 

Table 1: Beam material properties. 

Beam  Width(mm) 
Height 

(mm) 

Effective 

depth(mm) 

Length(mm) Span(mm) Bottom 

Steel 

Top 

Steel 

Stirrups 

OA1  310 556 461 4100 3660 4Nº9 - - 

A1 307 561 466 4100 3660 4Nº9 2Nº4 Nº2@210 

Table 2: Beam geometric properties. 
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The beams were modeled with one single frame element with 5 integration points (IPs) 

(Gauss-Legendre integration rule), representing half of the beam due to symmetry conditions. 

The cross section was discretized into 21 layers of equal thickness. The influence of longitu-

dinal reinforcement was smeared over the layers located within a distance of 7.5db (db: bar 

diameter) at both sides of the reinforcement. The analysis was performed under displacement 

control with 1mm displacement increments. Figure 6 compares the analytical and experi-

mental responses. Also, results from FE analysis reported in [25], performed with 15×46 con-

stant-strain, membrane finite elements based on a rotating-crack approach, are included.  

Figure 6: Force-displacement response of beams A1 (left) and OA1 (right) [25] 

Figure 7 and figure 8 show calculated shear strains, shear stresses and normal concrete 

stresses over the depth of the section at the closest to the applied load IP, at three different 

displacement levels. It can be observed that the parabolic shear strain assumption approxi-

mately holds at early load stages, before significant crack-induced anisotropic behavior de-

velops. In later stages, shear strains in the compression zone tend to decrease and concentrate 

in the lower portion of the web. Note that for beam A1 concrete crushing in the top compres-

sion zone occurs, suggesting that the beam ultimately failed in combined shear-compression 

mode, whereas for beam OA1 normal concrete stresses remain below the compressive 

strength. These results are consistent with the experimental observations, as previously de-

scribed. 

Figure 7: Shear strain, shear stress and normal concrete stress profiles for beam A1. 
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Figure 8: Shear strain, shear stress and normal concrete stress profiles for beam OA1. 

5.2 Shear critical frame 

The RC frame tested by Duong et al. 2007 [23] failed in brittle mode due to shear failure of 

the beams. It was a one-bay, two-story frame with an applied vertical load of 420 kN at the 

top of each column, subjected to an increasing lateral force at the second level (figure 9). Ma-

terial properties for steel and concrete are summarized in table 3. The frame was pushed in 

one direction, until substantial diagonal cracking of the beams occurred, and then in the oppo-

site direction until completing one full cycle.  

Figure 9: Geometric properties of the frame [23] 

Concrete 

Compressive strength(MPa) Peak Strain Young Modulus(MPa) 

42.9 0.0023 30058 
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Steel 

Bar Size Diameter(mm) Area(mm
2
) fy(MPa) fu(MPa) Es(MPa) εu‰ 

φ20 19.5 300 447 603 198400 130.8 

φ 10 11.3 100 455 583 192400 129.9 

US #3 11.3 71 506 615 210000 134.6 

Table 3: Frame material properties. 

Each column was modeled with two frame elements per story in order to consider the in-

crease in longitudinal reinforcement ratios at the ends of the columns. One single element was 

used for each beam, being the number of integration points 5/element, for both beam and col-

umn elements. The cross section was discretized into 11 layers of equal thickness. Centerline 

dimensions were used to define the geometry of the frame, which was assumed rigidly fixed 

at the foundation level. No particular modeling of the joint flexibility was undertaken. Com-

parison between analytical and experimental lateral force-top displacement responses is 

shown in figure 10, for both monotonic and cyclic load cases. The monotonic analysis pre-

dicts an ultimate displacement of about 47mm, very close to the unloading point (45mm) at 

which substantial shear cracking of beams was observed during the test.  

Figure 10: Force-displacement response for the monotonic (left) and cyclic (right) case. 

The calculated shear strains, shear stresses and normal concrete stresses over the section 

are depicted in figure 11 for the first story beam, at the IP closest to the right column. Note 

again the reduction in shear strains in the compressive zone. 

Figure 11: Shear strain, shear stress and normal concrete stress profiles for the 1
st
 story beam. 
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5.3 RC bridge pier 

The RC bridge pier R1 tested by Xiao et al. 1994 [24] had an aspect ratio of 4, 603mm x 

406mm rectangular cross-section and 2398mm clear height (Figure 12). The pier was tested in 

double curvature, with the top and bottom rotations fixed, resulting in a shear span of 2. Lon-

gitudinal reinforcement consisted of 22, 20mm bars distributed around the perimeter of the 

section. Shear reinforcement consisted of 6.35mm rectangular hoops spaced at 127mm. A 

permanent axial load of 501kN was applied at the top of pier. The pier was subjected to in-

creasing displacement increments at different levels of ductility. 

Concrete Bar Size Diameter(mm) fy(MPa) fu(MPa) εu‰ 

Compressive strength(MPa) 38 #6 19.5 317 453 110 

Young Modulus(MPa) 30820 #2 6.35 361 483 110 

Table 4: Bridge pier material properties. 

The pier was modeled with one single element (5IPs) 2438mm long, fully fixed at the bot-

tom and with the top node restrained against rotation. The section was discretized into 11 lay-

ers of equal thickness and the reinforcement distributed according to the layout. The top 

horizontal degree of freedom was subjected to increasing cyclic displacement. Experimental 

and analytical results are compared in Figure 12. An overestimation of the initial stiffness can 

be observed due to the fact that the specimen was pre-cracked under initial small-

displacement excursions during the test. Good agreement is found in terms of strength, load-

ing/unloading stiffness and permanent displacements. Results from monotonic analysis indi-

cated imminent failure of the specimen at approximately 40mm top displacement. 

Figure 12: Bridge pier geometry and horizontal force-displacement response [24]. 
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6 CO�CLUSIO�S 

The proposed section model for the evaluation of an exact shear strain profile was satisfac-

torily implemented within a force-based, fiber-based frame element for monotonic and cyclic 

analysis of shear-critical RC structures. 

Conceptually speaking, the element is superior to elements with fixed shear strain profiles, 

such as those with constant or parabolic patterns. However, the element kinematics still relies 

on the Timoshenko beam theory, i.e. plane section assumption and no section distorsion or 

warping, resulting in kinematic incompatibility between fiber deformations and element dis-

placements. 

A number of verification examples on shear-critical RC beams, frame and pier showed rel-

atively good agreement in terms of post-cracked stiffness, shear strength and ultimate dis-

placement capacity. Realistic stress and strain distributions over the section were obtained. 

However, further verification and comparison with experimental data is required. 
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Abstract. Application of textile reinforced concrete (TRC) can significantly facilitate the man-
ufacturing of thin-walled shell structures. Thanks to the high tensile strength and longtime
durability of textile reinforcement, construction of much thinner cross sections compared to
ordinary reinforced concrete has become possible. Furthermore the form-flexibility of textile
reinforcement allows for much more freedom in design of shells with more complex geometries.
However, these advantages make the prediction of the structural behavior under imposed loads
much more difficult. Due to the complex stress redistribution in the plane of shell and also
the anisotropic behavior of the composite material, different modes of failure can be observed
in TRC shell structures. In this paper we focus on the failure criterion of thin-walled TRC
shell elements. In particular, we propose a criterion reflecting the interaction of normal force
and bending moment in a shell cross section. The failure criterion has been implemented in
combination with an anisotropic damaged-based material model in order to provide realistic
prediction of the structural load-carrying behavior. The accuracy of the model in prediction of
different failure modes has been validated using three different types of tests setups.
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Figure 1: (a) material model formulation; (b) failure criterion of the TRC cross section based on n-m interaction
diagram; (c) validation of the failure criterion based on laboratory tests

1 INTRODUCTION

Textile reinforced concrete (TRC) is a composite material consisting of high performance
fine aggregate matrix reinforced with textile reinforcement made of carbon or alkali-resistant
glass rovings in form of fabrics. Two important characteristics of textile reinforcement are non-
corrosiveness and high tensile strength. Application of this type of reinforcement increases the
durability of the composite material compared to steel reinforced concrete and extends the range
of its applicability in construction. Recently, TRC has been used for construction of large scale,
thin-walled shells [1, 2], sandwich wall or slab panels [3], facade elements [4] and pedestrian
bridges [5]. Focus of this paper is restricted to thin-walled TRC shell structures uniformly
reinforced with textile fabrics.

TRC shell elements exhibit a complex behavior in terms of nonlinearity and anisotropy im-
posed to in-plane and out-of-plane loading conditions. Interaction of textile reinforcement with
concrete matrix leads to multiple cracking under tension. Therefore, nonlinear behavior of
strain-hardening type is observed in the composite material. Anisotropic behavior of TRC is
due to the formation of cracks perpendicular to the principle direction of stresses [6]. At a
macroscopic level, the process of crack pattern development can be viewed and modeled using
anisotropic damage model.

In this paper behavior of the TRC shells at the material level and structural level has been in-
vestigated with the goal to formulate both realistic and pragmatic failure criterion. The overview
of the modeling framework is shown in Fig. 1. In Section 2 the modeling approach with a brief
description of the material model is presented. Consequently, after a brief description of calibra-
tion and validation of the model in Section 3 based on the previous studies, we investigate the
failure criterion for TRC elements exposed to combined tensile force and bending moment in
Section 4. The feasibility of the cross-sectional failure criterion has been demonstrated by cali-
brating the material model and the failure criterion using tensile test, compressive test, bending
test. The validation for combined tensile and bending loads was performed using a slab test.

2 MODELING APPROACH OF TRC SHELLS

The crack pattern in the studied type of composite structures is fine in relation to the dimen-
sions of the structural elements. This fine nature of cracking justifies a smeared representation
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Figure 2: (a) basic principle of microplane model; (b) constitutive stress-strain relation in microplane damage
model

of cracking using a homogenized strain-hardening model. In order to capture the nonlinearity
and anisotropy of TRC, a damage-based model of microplane type has been be used. Material
models with microplane approach are generally characterized as a constitutive relation between
the strain and stress on plane of various orientations, so called microplanes [7]. Evolution of
damage on a microplane is governed by a damage function. The shape of damage function
can be tailored for either quasi-brittle materials with strain-softening behavior, e.g. plain con-
crete [8], or it can also reproduce the strain hardening behavior of quasi-ductile materials such
as TRC [9].

Basic structure of microplane model approach is shown in Fig. 2a. The constitutive mapping
of strain to stress is done in three steps: (i) geometric projection of macroscopic strain tensor
εij into microplane directions providing strain vectors ei, (ii) application of constitutive law
between strain vector ei and stress vector si, (iii) energetic homogenization of microplane stress
vectors based on the principle of virtual work (PVW) to obtain the global stress tensor σij . The
damage-based form of microplane model (microplane damage model) has been presented by
Jirásek [8]. Constitutive formulation of this model is shown in Fig. 2b. In this formulation,
the mapping of apparent strain/stress vectors (ei and si) to the effective strain/stress vectors (ẽi
and s̃i) is done on a microplane level using a damage function φ. Inverse transformation of
the variables from the microplane level to the macroscopic level is performed by principle of
virtual work (PVW), setting the summation of virtual works of the forces applied to the system
(in microscopic and macroscopic level) equal to zero. Although there is an explicit relation
between effective strain and stress tensors (ε̃i and σ̃i) in terms of elastic stiffness tensor De, the
global strain to stress mapping is only possible by consecutive steps of projection and energetic
homogenization between macroscale and microplane levels to generate the stiffness tensor in
damaged state D.

For the purpose of modeling of TRC shell structures, a two-dimensional formulation of the
microplane damage model with strain-hardening for TRC has been presented by the authors
in [10]. By means of dimensional reduction of the model, microplane damage model is used
only for strain and stress components in the in-plane directions of the TRC shell and material
behavior along the thickness of the shell is assumed to be linear elastic.

3 CALIBRATION AND VALIDATION

In order to determine the shape of the damage function of a certain TRC cross section, the
material model needs to be calibrated. A direct incremental calibration procedure by means of
a tensile test on a TRC specimen has been presented by Scholzen et al. [9]. The capability of
the calibrated model in prediction of structural behavior of a large scale TRC shell has been
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Table 1: Properties of TRC cross section

description symbol value unit cross section layout

width b 100 mm

thickness t 20 mm

textile fabric

concrete matrix

ttotal cross section A 2000 mm2

number of textile layers ntex 6 −

textile cross section Atex 32.1 mm2

reinforcement ratio ρtex 1.61 %

presented by Sharei et al. [11].
The calibration is exemplified for TRC tensile test specimens reinforced with 6 equidis-

tant layers non-impregnated carbon fabrics. Cross section properties and reinforcement layout
within the cross section is given in Table. 1. The test setup with the specimen of the length
l = 1000 mm is shown in Fig. 3a. Strain has been measured within the length of lm = 250 mm.
Stress-strain curve of the tensile test is given in Fig. 3b. The maximum tensile strain achieved
in the test was εf = 7.05 h. Calibration of the material for this cross section based on [9]
leads to the damage function in Fig. 3c. Failure assessment of laboratory tests has been per-
formed by implementing the material model and the failure criterion in the finite element code
ABAQUS[12].

During tensile test, damage evolves in form of a finely spaced cracks oriented perpendic-
ularly to the direction of the tensile force. The failure occurs in the weakest crack once the
ultimate strength of the textile reinforcement is achieved. The calibrated damage function rep-
resents the failure as a drop of the integrity value to zero. Thus, the tensile test serves for the
calibration of the nonlinear behavior during the matrix cracking and, at the same time, for the
identification of the ultimate failure.

4 CROSS-SECTIONAL FAILURE CRITERION

It is well known, that the bending tensile strength (also called as modulus of rupture) of
quasi-brittle materials is larger than the tensile strength measured in tensile test [13]. In case
of TRC, two major sources of the difference between tensile strength in pure tension and in
bending can be specified distinguished:

• Statistical size-effect: In the tensile tests many crack bridges along the tested zone develop
with weakest one defining the ultimate failure. In the three-point bending test, only the
cross section at mid-span is actually tested, which may not be the weakest one.

• Tensile load transfer: Even for very smooth transfer of tensile load into the tensile spec-
imen, local stress concentrations in the vicinity of clamps cannot be completely avoided
and cause a premature specimen failure.

In order to properly reflect the macroscopically observed strength of a shell cross section,
we propose a strength criterion defined at the level of the stress resultants of a cross section. In
principle, the same approach is used in usual dimensioning approaches. In our case, we built the
criterion on top of the material model implementation. Thus, except of the standard mapping
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Figure 3: (a) test setup of pure tensile test; (b) stress-strain curve of the tensile test; (c) calibrated damage function

between the strain to stress tensors within an iteration loop, the material model also evaluates
the stress resultants for a shell cross section and checks the level of its utilization.

In order to implement the cross-sectional criterion, the first step is to extend the strain ca-
pacity in the damage function beyond the limit measured in the tensile test given in Fig. 3c.
Furthermore, the cross-sectional stress resultants, i.e. the vectors of normal forces n and bend-
ing moments m are calculated for each integration point of a shell. For a cross section depicted
in Fig. 1b, normal force n and bending moment m are be determined during the analysis by
integrating the stresses in the TRC cross section as:

n =
∫
t
σxdz m =

∫
t
zσxdz (1)

The cross-sectional resistance in presence of both normal force and bending moment is de-
fined as a failure envelope shown in Fig. 4a. The real and the simplified n-m envelope of a
TRC cross section includes the values of strength in pure tension (nt,Rm), compression (nc,Rm)
and bending (mRm) [2]. Simplification of the failure envelope using the linear interpolation has
been justified using a tests series on TRC specimens loaded with combined tensile force and
bending moment [14]. The normalized form of the envelope is shown in Fig. 4b defining the
utilization parameters as:

ηnt =
n

nt,Rm

ηnc =
−n
nc,Rm

ηm =
|m|
mRm

. (2)

Utilization ratio ηnm of the cross section can be evaluated as:

ηnm = max {ηnc, ηnt}+ ηm. (3)

Failure in a TRC cross section occurs once the interaction of normal force n and bending mo-
ment m exceeds the admissible range of n-m envelope in Fig. 4, or in the normalized form:

ηnm > 1. (4)
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Figure 4: Failure envelope of TRC cross section based on (a) n-m interaction diagram and (b) ηn-ηm interaction
diagram

Strength characteristics of the TRC cross section in Table. 1 have been determined as: ten-
sile strength nt,Rm = 476 N/mm, compressive strength nc,Rm = 1666.7 N/mm and bending
strength mRm = 3330 Nmm/mm.

The force-deflection curves measured and simulated for three-point bending test on a TRC
specimen with the span length of l = 460 mm and the cross section given in Table. 1 is shown
in Fig. 5a. Test has been performed with three repetitions. As indicated in Fig. 5a, the tensile
strength determined in tensile test is attained at ≈ 70 % of the ultimate force in three-point
bending test. Stress and strain cross-sectional profiles corresponding to the failure point are
given in Fig. 5b with failure tensile strain of 1.66 h is beyond the ultimate tensile strain in the
tensile test.
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Figure 5: (a) Comparison of load-diplacement curves and ultimate failure of TRC bending tests for test and simu-
lation applying two failure criteria; (b) stress and strain profiles in the cross section at failure

The validation of the cross-sectional failure criterion for prediction of the structural behavior
including stress redistribution and complex damage pattern has been performed using TRC slab
test. Test specimen had dimensions of 800 × 800 mm with the cross section parameters given
in Table 1. The pin supported specimen was loaded at the center using displacement control as
shown in Fig. 6. Simulation of the slab test was performed with and without consideration of
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Figure 7: (a) Comparison of force-deflection curves and ultimate failure of TRC slab test for test and simulation
applying cross-sectional failure criterion; (b) corresponding utilization ratios in the ηn-ηm interaction diagram with
and without consideration of geometrical nonlinearity

geometrical nonlinearity. Since the deflection of the slab was large, membrane effect could be
activated during the later stages of loading. In this way, the ultimate failure was achieved for
combined action of tensile force and bending moment. The geometrically linear model without
the ability to reflect the membrane effect resulted in unrealistic prediction of the true behavior
(force-deflection curve labeled without NLG in Fig. 7a). The corresponding utilization ratios
are ηn = 0.03 and ηm = 0.97 for tensile force and bending moment respectively as shown in
Fig. 7b, indicating a pure bending failure without activation of membrane forces in the cross
section.

The force-deflection curve with the considered effect of geometrical nonlinearity, (labeled
with NLG in Fig. 7a), has revealed a membrane effect leading to a failure with utilization ratios
for tensile force and bending moment of ηn = 0.30 and ηm = 0.70, respectively as depicted in
Fig. 7b, indicating a considerable tensile force in the cross section at failure. The corresponding
n-m pairs for both cases with and without geometrical nonlinearity are given in Table 2.

5 CONCLUSIONS

In this study failure of thin-walled TRC shell structures imposed to in-plane and out-of-
plane loading conditions was investigated. Failure was predicted using two approaches: 1)
local failure criterion (failure of material point) and 2) cross-sectional failure criterion (failure
through n-m interaction). Based on the simulation results we can conclude that the cross-
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Table 2: Assessment of the n-m failure criterion for the slab tests with and without consideration of geometrical
nonlinearity (NLG)

NLG n m ηnc ηnt ηm

[N/mm] [Nmm/mm] [−] [−] [−]
without -46 -3246 0.03 - 0.97

with 143 -2350 - 0.30 0.70

sectional failure criterion can effectively represent the stress redistribution effects within a TRC
cross section and provides a realistic estimate of the ultimate structural load.

ACKNOWLEDGEMENTS

The financial support by Deutsche Forschungsgemeinschaft (DFG) (project No. 276/2-2) is
gratefully acknowledged.

REFERENCES

[1] Scholzen A., Chudoba R., and Hegger J. Thin-walled shell structure made of Textile Rein-
forced Concrete; Part I: structural design and construction. Structural Concrete, 16:106–
114, 2015.

[2] Scholzen A., Chudoba R., and Hegger J. Thin-walled shell structure made of Textile Re-
inforced Concrete; Part II: experimental characterization, ultimate limit state assessment
and numerical simulation. Structural Concrete, 16:115–124, 2015.

[3] Shams A., Horstmann M., and Hegger J. Experimental investigations on Textile-
Reinforced Concrete (TRC) sandwich sections. Composite Structures, 118:643–653, De-
cember 2014.

[4] Hegger J., Kulas C., and Horstmann M. Spatial textile reinforcement structures for venti-
lated and sandwich facade elements. Advances in Structural Engineering, 15(4):665–676,
April 2012.

[5] Hegger J., Goralski C., and Kulas C. A slender pedestrian bridge made of textile reinforced
concrete. International Association for Bridge and Structural Engineering (IABSE),
Venice, Italy, September 2010.

[6] Hughes B. P. and Ash J. E. Anisotropy and failure criteria for concrete. Matriaux et
Construction, 3(6):371–374, November 1970.
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Abstract. Due to severe damages on structures caused by earthquakes different approaches 

were introduced to enhance their carrying capacity. The most common one is retrofitting, 

which is a technique used to improve the structural capacity of a building that is found to be 

inadequate against earthquake loads. The problems that arise when retrofitting reinforced 

concrete structures, is the use of objective and sound methods that will provide the engineer 

with the tools to assess the final design. This work aims to alleviate this restriction by per-

forming a complete study of a 5-storey reinforced concrete structure that was retrofitted with 

reinforced concrete shear walls through the use of 3D solid finite elements. Cracking is treat-

ed with the smeared crack approach and the steel reinforcement is simulated by embedded 

rod elements. This detailed modeling approach is applied for the first time so as to perform a 

full pushover analysis of a 5-storey RC retrofitted building. The numerical results illustrate 

that the proposed assessment approach is computationally accurate. Furthermore, the use of 

parallel processing is required so as to decrease the computational demand when dealing 

with full scale models. 
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1 INTRODUCTION 

Retrofitting is required under several circumstances according to [1], especially when not 

taking into account the additional seismic loads while designing. Retrofitting is applied on 

existing structures that were designed according to old seismic codes, thus their lateral 

strength is not sufficient to carry the expected seismic forces. Moreover, building with poor 

construction quality can be enhanced as well.  

There are mainly two types of retrofitting, global and local. The global retrofitting is con-

cerned with the seismic resistance of a structure by placing shear walls, infill walls, steel brac-

ings, and base isolation [2]. On the other hand, the techniques that increase the carrying 

capacity of inadequate members locally are considered as local strengthening methods. This 

includes reinforced concrete (RC), steel or fiber reinforced polymer (FRP) jacketing of the 

existing members such as columns, beams, joints, walls and foundations [3]. Selecting the ap-

propriate retrofitting strategy is based on economy, performance and constructability. Some-

times it is more preferable to use more than one technique in a single structure 

When it comes to design the retrofitted structural member, the available methods are rather 

limited given that semi-empirical formulas available in design codes account for the behavior 

of the section but do not integrade the effect on the overall mechanical behavior of the struc-

ture and its derived capacity after the retrofitting has been implemented locally. As it will be 

shown in this research work, the prementioned restrictions can be alleviated through the use 

of state-of-the-art 3D detailed finite element modeling. 

2 NUMERICAL METHOD USED 

The numerical method that was used in this research work was the Finite Element Method 

(FEM) [4]. In order to determine the mechanical behavior of the under study structure, two 

software have been used: Femap and ReConAn. Below follows a short description of the two 

finite element analysis software. 

2.1 Femap 

Femap is an advanced engineering simulation program owned by Siemens PLM Software. 

It is used as a “pre-processing” tool to construct finite element models and as a “post-

processing” tool to display results. 

2.2 ReConAn FEA 

ReConAn is a research finite element analysis software created at the NTUA [5]. It uses 

two post-processing programs, Femap and ReConAn Eye. ReConAn Eye is encapsulated in-

side ReConAn main code structure to illustrate the crack openings that derive from the analy-

sis as smeared cracks. 

3 5-STOREY RC BUILDING 

The under study building used in this research work was a seismically strengthened 5-

storey RC building adopted from Orakdogen et al. [6], where the building was analyzed and 

studied for the effect of soil structure interaction (SSI) for different foundation types (see also 

[7]). This RC building is used herein so as to develop the numerical models that will be pre-

sented in the next sections. 
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3.1 Geometry 

As it can be seen in Figure 1, the initial framing system of the building consisted of 12 col-

umns (with rectangular sections of 25x40cm) and drop-beams (15x50cm) supporting the slabs 

(10cm of thickness). The initial framing system was strengthened by constructing four main 

shear walls (two shear walls parallel to the x axis and two parallel to the y axis) around the 

existing columns (Figure 1). The total length and width of the building’s plan are 10.2m and 

6.8m, respectively, while the total building height is 13.9m (the ground floor height is 2.15m, 

3 typical floors have a 2.75m height each and the top floor has a height of 2.5m) [6]. 

 

Figure 1: RC 5-storey building typical plan view [6] 

3.2 Material properties 

The material properties of the structure are divided into: (a) existing RC material, where 

the uniaxial compressive strength of concrete was reported to be equal to 16MPa and the steel 

reinforcement that had a yielding stress of 220 MPa, (b) the RC material used to strengthen 

the building (infill walls) had 20MPa and 420MPa, uniaxial concrete compressive strength 

and steel yielding stress, respectively. These were also the values incorporated in the numeri-

cal models presented below. 

4 NUMERICAL MODELS  

Two models were developed so as to study the overall effect of retrofitting. Model A fore-

sees the discretization of the initial frame and Model B the discretization of the retrofitted 

frame. 20-nodded hexahedral elements where used in order to discretize the concrete meshes 

while rod finite elements were used for the embedded rebars. Different colors where used so 
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as to distinguish between different rebar diameters. Also steel plates (2cm thick) were used 

for the application of the external horizontal load in order to avoid any local failure. It must be 

noted here that the slabs were modeled through the use of a von Mises material model in an 

attempt to decrease the computational demand of the models. The concrete uses a 3D consti-

tutive matrix as presented by Kotsovos and Pavlovic [8] and later modified by Markou and 

Papadrakakis [9]. 

4.1 Initial model (Model A) 

Table 1 shows the reinforcement details for each structural member of the building. 

 

Element Properties 

Beams 
Rebar: 4Ø12 

Stirrups: Ø8/15cm 

Columns 
Rebar: 6Ø14 

Stirrups: Ø12/15cm 

Footings 
Top & Bottom X direction: Ø12/15cm 

Top & Bottom Y direction: Ø12/15cm 

Table 1: Reinforcement details of the initial mode 

As stated above, Femap was used in order to create both numerical models (initial and ret-

rofitted frame). The procedure followed for the model construction is summarized in four 

steps: (a) constructing the concrete mesh, (b) create the embedded rebars inside the concrete 

mesh, (c) apply the constrains, and (d) apply the loads. The initial model is shown in Figure 

2a, where the concrete mesh, the applied loads and the fix support can be seen. Figure 2b 

shows the embedded rebars mesh, while a zoom view that illustrates the embedded rebars 

within a RC joint is also shown. 

Three types of loads were applied in both models. (a) Dead load: the self-weight of the 

building which applied automatically by the software, (b) Live load: 3kN/m2 distributed load 

were assigned on each slab. (c) Earthquake load: horizontal load was applied along the Y-

direction at each floor as shown in Table 2. The pushover analysis foresaw 10 load increments 

and a convergence tolerance of 10-4. 

 
a) 

 

 
b) 

Figure 2: Model A. a) Hexa mesh. b) Embedded rebars mesh 

 
c) 
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Storey number Earthquake loads (kN) 

First 66.67 

Second 133.33 

Third 200 

Forth 266.67 

Roof 333.33 

Total 1000 

Table 2: Earthquake loads distribution 

4.2 Retrofitted model (Model B) 

As previously mentioned, RC shear walls were used in both directions to improve the 

overall stiffness and strength of the structure (see Figure 1). The shear walls and RC jackets 

were reinforced as shown in Table 3. New finite elements were added to Model A without any 

modifications performed on the initial mesh. Figure 3 and Figure 4 present the mesh of the 

second model (Model B). 

Element Properties 

RC Jackets 
Dimensions: 15 cm around columns 

Rebar: Ø14 at each 15-cm 

Stirrups: Ø8/15-cm 

Shear Wall 
Web Rebar: 16ø12 

Confinement Rebar: 6Ø20 

Stirrups: Ø8/15-cm 

Table 3: Rebars used for retrofitting 

a) b) 

Figure 3: Model B. a) Concrete mesh of the retrofitted structure. b) rebar mesh embedded in the shear walls 
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a) b) c) 

Figure 4: Model B. a) Retrofitting rebars around the column. b) Shear wall concrete mesh with initial columns. 

c) Shear wall reinforcement mesh

5 NUMERICAL RESULTS AND DISCUSSION 

5.1 Analysis of Model A 

After constructing the two models, the input data files were exported for analysis through 

the use of ReConAn FEA. The solution of the entire full-scale model required 29 days, which 

highlights the excessive computational demand of the problem. So as to assemble and store 

the stiffness matrix of Model A (Skyline storage), 30Gb of RAM were required. This numeri-

cal finding underlines the need of using parallel processing (a research work that is under pro-

cess), while demonstrates the numerical robustness of the developed algorithm in handling 

this large-scale numerical problem. 

Figure 5 shows the predicted P-δ curve. As it resulted from the numerical analysis, the 

structure managed to carry a total of 540kN prior complete failure. The failure was attributed 

to the failure of longitudinal reinforcement at the ground floor columns which initiated an ex-

cessive internal forces redistribution leading the frame to failure. The computed capacity does 

not satisfy the codes demand which was 693-954kN [6] according to the soil conditions. 

As it can be seen in Figure 6a, the predicted crack initiation at load increment 1 foresees 

that the main crack openings are located at the joints of the structure. As the horizontal load 

increased, the cracks increased in size and number until complete failure (see Figure 6b). 

Figure 5: P-δ curve of initial building 

5.2 Analysis of Model B 

On the other hand, the solution of Model B required 66 days. So as to assemble and store the 

stiffness matrix of Model B, 37Gb of RAM were required due to the additional FE elements used in 

Existing 

concrete 

material 

-New 

concrete 

material 
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order to discretize the retrofitting infill walls. The analysis details are summarized in Table 4 for both 

models. 

a) b) 

Figure 6: Model A. a) Initial cracks at load increment 1. b) Cracks prior to failure 

Model A Model B 

Mesh Data 

Total no. nodes 159,567 240,060 

No. hexa elements 19,044 29,431 

No. embedded rebars 27,399 58,072 

Total no. elements 46,443 87,503 

Analysis Data 

No. of stiffness matrix elem. 3,761,459,688 4,688,727,648 

Required RAM for the stiffness matrix 30Gb 37Gb 

Required RAM for the analysis 36Gb 43Gb 

Embedded mesh generation time 10min 14sec 34 min 6 sec 

Time for solving nonlinear analysis 29-days 66-days 

No. of load incr. solved successfully 6 load incr. 9 load incr. 

Time for writing the output data 25min 48sec 1hr 28min 

Total computational time 29-days 66-days 

Table 4: General numerical details that derived after the nonlinear analysis of the FE models. 

As it can be seen in Figure 7a, the results from the pushover analysis of Model B, predicted 

the initiation of cracks occurred at the beams’ end joints due to the moments that were gener-

ated from the applied horizontal load. As the horizontal load increases, the cracks increase in 
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size and number until complete failure (see Figure 7b). The shear walls develop horizontal 

and diagonal cracks as the horizontal load increases (see Figure 7b). The retrofitted model 

failed due to the rapture of the longitudinal reinforcement of the beams that were connected to 

the shear wall leading the solution to stop. 

 
a) 

 
b) 

Figure 7 Model B. a) Initial cracks at load increment 1. b) Cracks prior to failure 

Figure 8 shows the comparison between the predicted P-δ curves for both models. As it re-

sulted from the numerical analysis, the strengthened structure managed to carry a total of 

1800kN prior complete failure. As mentioned above, the failure was attributed to concentra-

tion of strains at the beam-shear wall joints which led the frame to failure. It is also shown 

that with the increase in the stiffness due to the retrofitting shear walls, the resulted horizontal 

displacement decreased significantly. 

 

Figure 8: Comparison of P-δ curves for both models (A & B) 

 Model A Model B 

No. of load increments until failure 6 9 

Numerically predicted Base Shear (kN) 540 1800 

Max Horizontal Deformation (cm) 5.02 3.94 

Table 5: General outputs that derived from the FEA of both models. 
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Table 5 illustrates the comparison between the numerical results for both models. While 

Figure 9 shows the von Mises strain contours for both framing systems prior to failure. 

Figure 9: Comparison of von Mises contours for both models prior to failure 

5.3 Analysis Results of a Single RC Infill Shear Wall 

In order to investigate the overall capacity of the derived shear wall (13.9m height) after 

the retrofitting, a shear wall model was developed and analyzed until complete failure (see 

Figure 10). The retrofitting rebars that were used to construct the shear wall were assumed 

well anchored within the existing framing system, so as to avoid any local failure and capaci-

tate the full strength of the shear wall. Eurocode 2 [10] was used so as to compare the numeri-

cally obtained failure load. According to Equations (1) and (2) of EC2, the resulted resistance 

of the shear wall section was 687kN in shear, and 5880kNm in bending moment. It must be 

noted here that only the characteristic values were used so as to compute the strength in shear 

and moment. 

𝑀𝑅d= 𝑏𝑤∙𝑙𝑐∙𝜌v𝑐∙𝑓𝑠∙𝑑1 + 𝑏𝑤∙𝑥𝑢∙𝜌v𝑐∙𝑓𝑠∙𝑑2 + 𝑏𝑤∙(𝑙𝑐+𝑐−𝑥𝑢)∙𝜌v𝑐∙𝑓𝑠∙𝑑3 + 𝑏𝑤∙(𝑙w−2h𝑐)∙𝜌vw∙𝑓𝑠∙𝑑4

+ 𝑏𝑤∙𝑥𝑢∙0.8𝑓c∙𝑑2 
(1) 

V𝑅d,c=[C𝑅d,c∙k(100∙𝜌𝑙∙𝑓ck)
1/3+k1σcp]𝑏𝑤d (2) 

Figure 10a represent the crack pattern of the shear wall (Model l) at load increment 1 

where a 5% of the horizontal load (30kN) was applied. No cracks were formed until load in-

crement 3 where the model entered the inelastic zone (the total horizontal load was applied 

incrementally through 20 load increments). The shear wall failed at load increment 19 (95% 

of the applied horizontal load) as shown in Figure 10. The P-δ curve in Figure 10c shows the 

overall response of the retrofitted part of the structure as it was obtained from the analysis 

where it can be seen that the predicted failure load was 540kN, smaller than the load predicted 
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by EC2. This is attributed to the code’s inability to account for the eccentricities that derive 

additional stresses and strains during the loading procedure, leading the shear wall to a prema-

ture failure. When the vertical static loads are applied, the shear wall develops an out of plane 

initial deformation thus the horizontal loads force the wall to deform in a bending and torsion-

al manner (due to the eccentricity). 

 
a) Load Incr. 1 

 
b) Load Incr. 18 

 
c) P-δ curve of the shear wall Model-1 

 

 

 

 

Figure 10: Shear wall Model 1 crack patterns and P-δ curve 

So as to further investigate the resulted carrying capacity of the shear wall, 5-additional 

models were developed that foresaw different material properties. The effect of the proper 

anchorage of the retrofitting rebars was also investigated through this study. Table 6 presents 

the details of each model that was developed, while Figure 8 illustrates the well anchored re-

inforcement (Figure 11a) and not anchored reinforcement (Figure 11b). 

Model Retrofitting 

concrete 

(MPa) 

Retrofitting 

Steel 

(MPa) 

Embedded rebars 

anchored properly 

(Yes or No) 

Numerically predicted 

Base Shear  

(kN) 

1 20 420 Yes 540 

2 20 420 No 240 

3 30 500 No 240 

4 30 420 Yes 640 

5 20 500 Yes 560 

6 30 500 Yes 660 

Table 6: Mesh and material details of the shear wall models 

Figure 12 shows the crack patterns of the shear wall models prior to failure, where Figure 

12b represents the crack pattern that was obtained from Model 1 (see also Figure 10), while 

Figure 12a and Figure 12c illustrate the crack patterns at load increment 8 (240kN failure load) 

of Models 2 and 3, respectively. As it resulted from the parametric investigation Models 2 and 

3, exhibit a significantly decreased overall strength (see Table 6) due to the fact that the longi-
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tudinal reinforcements were not anchored properly (throughout the height of the shear wall). 

Even in the case of Model 3 where the material properties were increased for both concrete 

and steel, the shear wall failed prematurely due to local strain concentration (see Figure 12c) 

that led to significant horizontal cracking (at the area where the longitudinal retrofitting rein-

forcement were not anchored properly). 

a) Fully anchored longitudinal retrofitting rebars b) Not anchored longitudinal retrofitting rebars

Figure 11 Anchoring of retrofitted rebars 

a) Model-2 b) Model-1 c) Model-3

Figure 12: Crack patterns of shear wall models prior to failure (Models 1,2 &3) 

Moreover, model 4 that foresaw full anchorage, failed at load increment 16 (640kN), 

where the crack pattern is shown in Figure 13a. Model 5 (see Figure 13b) managed to carry 

560kN, which was attributed to the increased steel yielding strength assumed in comparison 

to Model 1 (540kN). Figure 13c shows Model 6 that failed for a load of 660kN. This last 

model resulted the highest capacity given that it foresaw both increased retrofitting material 

properties and full anchorage of the retrofitting rebars. Figure 14 present the comparison of all 

numerically obtained P-δ curves.  

In order to further investigate the performance of the retrofitted structural member (shear 

wall), a cyclic analysis was performed by using the shear wall model (Model 1). A history 

displacement was assigned at the top of the shear wall that foresaw the application of 5 com-

-not 

anchored 
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plete cycles (see Figure 15). A displacement of 75 mm was assigned at the top section of the 

shear wall which was then multiplied by the displacement factor shown in Figure 15. 

d) Model-4

e) Model-5

f) Model-6

Figure 13: Crack patterns of shear wall models prior to failure (Models 4, 5 &6) 

Figure 14: Comparison of shear wall models P-δ curves 

Figure 15: Displacement history curve 
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Figure 16 illustrates the crack patterns as they resulted from the numerical analysis. As it 

can be seen, opening (Figure 16a) and closing (Figure 16b) of cracks occurs according to the 

imposed displacements along the positive and negative x-axis. The overall hysteretic behavior 

is shown in Figure 17 where it is compared with the pushover analysis curve. As it derives the 

cyclic material model used to simulate concrete behaves in a softer manner compared to the 

monotonic, while managed to predict the same failure load (540kN). The opening and closing 

of cracks [11] cause the material to develop further deterioration thus derive a softer behavior. 

The full-scale 5-storey RC shear wall model required 24 hours to be analyzed for 216 load 

increments with an average of 10 internal iterations per load increment. This underlines the 

robustness of the developed algorithm [11] while the solution procedure managed to success-

fully converge for all load increments (the convergence criterion was set to 10-4). 

 
a) Cracks 

opening 

 
b) Cracks     

closure 

 
c) Failure 

Figure 16: Crack patterns at different load step as they resulted from the cyclic analysis 

 

Figure 17: P-δ curves. Cyclic and monotonic analyses 
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6 CONCLUSIONS  

The research work presented in this paper foresaw the numerical investigation of the me-

chanical behavior of retrofitted RC structures through the use of 3D detailed analyses. The 

full-scale model of a 5-storey RC building was developed prior and after retrofitting, while 

individual shear wall elements that were constructed to strengthen the structure (infill RC 

walls), were numerically investigated in an attempt to study the mechanical behavior and their 

overall effect on the retrofitted structure’s response under seismic loads. 

According to the numerical findings, the proposed strengthening design (addition of shear 

walls) significantly increases the seismic capacity of the structure. A single shear wall is ca-

pable in carrying the entire demand for seismic loads, while the overall increase of the seismic 

resistance of the structure due to retrofitting was found to be equal to 333%. The parametric 

investigation of the shear wall that derived after retrofitting the existing framing system, re-

vealed the importance of proper implementation of the strengthening elements and connecting 

them rigidly to the existing frame. It was found that when the longitudinal rebars are not an-

chored properly within the existing framing system, the shear wall’s overall capacity can be 

decreased more than 50%, leading to non-cost effective implementation.  

An additional finding that derived from this research work was the overestimation of the 

carrying capacity of the shear wall (20%) that was computed when using the Eurocode formu-

lae. The complexity of the derived strengthened shear wall’s section that combines different 

types of materials and the irregular shape of the section itself, causes the development of a 

complicated deformation shape (bending and torsion in 3D) even for the case of symmetric 

horizontal loading. Evidently the proposed modeling approach will pave the way towards the 

development of improved guidelines and cost effective design. 

From the analysis of the complete model with the initial framing geometry, it was found 

that it was not capable in carrying the seismic load demand while the computational robust-

ness of the developed algorithm in handling an approximately half a million degrees of free-

dom numerical problem was illustrated. The computationally efficiency was found to require 

the implementation of a parallel solver which is a research work under process, while the ef-

fect of the interface between the existing and new concrete materials will be investigated in 

future projects (the detachment of the retrofitting concrete will decrease the overall strength of 

the structural members especially when excessive cracking will initiate). Finally, a future ob-

jective will be to perform a full-scale 5-storey RC building cyclic analysis. 
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  VECTOR FIELD GUIDED TOOL PATHS FOR FIVE-AXIS 
MACHINING 
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Technology, Thammasat University, Thailand 
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Abstract. We propose a new framework for toolpath generation for 5 axis machining of part 
surfaces represented by the StereoLithography (STL) format. The framework is based on flat-
tening the STL part and generation of curvilinear toolpaths adapted to the vector field of op-
timal directions. The experiments show that there is no universal sequence of steps applicable 
to every surface. However, a correct choice of the tools available within the proposed ACT-
framework always leads to a substantial improvement of the toolpath, in terms of its length 
and the machining time. 
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1 INTRODUCTION 
A milling machine is a programmable mechanism, guided by a controller fed with a CNC 
program (G-code) . The G-code is derived from a toolpath 0 1{ , ,..., }mΩ = Ω Ω Ω , consisting of the 
pairs { , }p p pM IΩ = , where ( , , )p p p pM x y z=  is the Cartesian coordinates of the cutter loca-
tion (CL) points in the machine coordinate system, and , , ,{ , , }p x p y p z pI I I I=  are the tool orien-
tation vectors. The rotation angles, ( , )p p pa bℜ =  to control the rotary and the tilt table of the 
machine, are functions of the tool orientation vectors. Therefore, the toolpath can also be de-
fined by ,0 ,1 ,{ , ,..., }M M M M mΠ = Π Π Π , where , { , }M p p pMΠ = ℜ . The Cartesian coordinates in the 
machine coordinates are usually derived from the corresponding toolpath in the workpiece 
coordinates, given by ,0 ,1 ,{ , ,..., }W W W W mΠ = Π Π Π , , { , }W p p pWΠ = ℜ , ( , , ) ( , )p p p pW X Y Z S u v= ∈ , 
where ( , )S u v  denotes  the part surface and u,v the parametric coordinates. The configuration 
of the 5 axis milling machine is characterized by the relative positions of the rotary and linear 
axes, with regard to the tool and the workpiece. On a very basic level the machines can be 
categorized by the positions of the rotational joints as follows:   

The 2-0 machine. Two rotary axes on the table.  
The 1-1 machine. One rotary axis on the table and one on the tool. 
The 0-2 machine. Two rotary axes on the tool.   

Figures 1 and 2 display the configuration 2-0 used in this study.    

Figure 1. Five axis milling machine with rotary axes on the table 
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  Figure 2. HAAS VF2TR 
The toolpath optimization usually aims to reduce the total length of the toolpath or the total 
machining time, maintaining the prescribed accuracy. Alternatively, the user may wish to im-
prove the accuracy while keeping or even reducing the machining time [1,2].  
Furthermore, we differentiate the toolpath in the machine and the workpiece coordinates. In 
particular, our techniques account for the fact that minimization of the toolpath in the work-
piece coordinates does not necessarily minimize it in the machine coordinates and does not 
necessarily minimize the machining time. However, optimization in the workpiece coordi-
nates is machine independent and computationally easy. That is why the strategy to minimize 
the toolpath is often based on a machine independent criterion such as maximization of the 
machining strip [3], minimization of the scallops, etc. However, the reduction of the kinemat-
ic error and the machining time are the ultimate goals of 5–axis optimization [4-8].  

Let C be the quality criterion,  ε  the difference between the actual and the desired tool trajec-
tory, h  the scallop height, and ε′ the prescribed accuracy. The basic quality criterion is the 
length of the toolpath in the workpiece/machine coordinates and the machining time.  Our 
toolpath generation employs a direct estimate of the basic criterion. It may also use another 
measure, which includes that criterion implicitly.  For instance, instead of minimization of the 
length C L=  one can consider MC R′ = −  where MR  is the material removal rate or εC′ = , 
where  ε  is the kinematic error. 

We also consider a quality criterion measure represented by a vector-function. At every point 
( , , )p p p pW X Y Z= , we evaluate an optimal direction (vector), using one of the above scalar 

criteria. The collection of these vectors constitutes the target vector field denoted by V . 
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The optimization problem is then given by 

minimizedist( , )W
W

V V
Π

subject to 

ε εp ′≤ , 
εph ′≤ , 

where dist denotes an appropriate distance, and 
1

1
0

m

W p p
p

V W W
−

+
=

→
=  is the desired vector field.    

Although V  and C′  are not related explicitly, we will show that the solution of the above op-
timization problem minimizes or at least reduces C′ and consequently C .  

Originally, the toolpath relative to a certain vector field was proposed in [9,10] and iso-
scallop toolpaths in [1].  In [3], the part surface is covered by potential machining patches 
characterized by the optimal directions, corresponding to the maximum machining strip.  The 
vector field of the optimal tool directions, to capture the “skeletal” information of toolpath (or 
a family of a toolpaths), was combined with the geometric constraints, and the kinematic per-
formance of the machine and other constraints were evaluated such as the cutting force  limits 
in [11,12].  The part surface was partitioned into clusters so that the streamlines of the vector 
field are close to the conventional isoparametric (ISO) or spiral in [13,14]. Optimal or nearly 
optimal directions can be combined with rear gouging, global gouging, and machine limits 
constraints [15]. Recently a machine-dependent vector field has been proposed in [43].  How-
ever, all the above algorithms construct the toolpath by offsetting an initial path and propagat-
ing the offsets inside the region. When the offset deviates from the optimal directions the 
algorithm requires a new initial track.  Such strategies are usually sensitive to small variations 
of the optimization criterion. Moreover, finding the initial toolpath is a computationally ex-
pensive, NP hard problem. Additional efforts must be made to ensure that the resulting tool-
path is structured and not self-intersecting.  

In [16], we construct a curvilinear toolpath aligned with the optimal vector field using the el-
liptic grid generation. The optimal directions are evaluated using the maximum material re-
moval rate. The proposed vector field aligned path (ACT) is a compromise between the 
flexibility of methods based on propagating of the initial track and the simplicity of the ISO 
topology. The method extends scalar based grid generation for five-axis machining originally 
proposed in [17,14,18-21]  and independently in [22]. 

The flexibility of grid generation methods makes it possible to use a variety of cost functions 
and boundary adapted grids and domain decomposition methods. Although these options are 
well known in computational hydro and aerodynamics, they have not been fully exploited in 
the framework of five-axis machining.  Furthermore, the toolpath can be further improved by 
applying the space filling curves (SFC) [23,24] and the biased space filling curves (BSFC) 
[16].  
An important practical application of the toolpath generation methods is machining surfaces 
represented by the STL format. In order to apply the ACT to the STL surfaces, we have to 
either adapt the algorithms to the 3D case or flatten the STL surface and generate the re-
quired curvilinear grid in the resulting parametric domain. Noting that meshing algorithms 
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in 2D are more efficient than in 3D [25] , we incorporate a “radial plane” flattening ap-
proach into the proposed framework (see the forthcoming section  Flattening Algorithm).        
Our methodology includes the following components: 
1. Flattening.
2. Evaluation of the surface characteristics in the parametric domain.
3. Grid generation in the parametric domain.

3.1.1 Boundary fitted grids.
3.1.2 Different types of grids, such as the C-grid, O-grid, H-grid [26].
3.1.3 Grids adapted to control functions: scalar functions, vector fields.

4. Space filling curves
4.1 Adaptive space filling curves. 
4.2 Biased space filling curves. 

The methodology has been tested on a variety of STL surfaces, including surfaces with mul-
tiple ridges, human masks, as well as dental crowns or even tooth implants represented by 
the STL files.  In particular, we demonstrate the efficiency of the algorithms by machining 
all types of human teeth: molars, premolars, canines, and incisors.  The proposed tools have 
been tested against the standard ISO path, MasterCam generated path, and advanced tool-
path generation methods of NX9.  The tools available within the ACT-framework are capa-
ble of substantially improving the quality of the toolpath, in terms of its length,  the 
machining time and the kinematic error. 

2 FLATTENING ALGORITHM 
The majority of toolpath generation techniques have been demonstrated on a single para-
metric surface, such as the Bezier patch, Gregory patch, B-spline, etc. However, the explicit 
parametric representation is rarely used in the industry. The most popular formats are STL 
[27], IGES [28], STEP [29],  SET [30], CATIA [31],  and PHIGS [32]. The STL format, 
which approximates the surface of a solid model by triangles, is becoming the standard for 
the rapid prototyping industry and is increasingly popular in multi-axis manufacturing. The 
main reason is its simplicity and applicability to an arbitrary surface.  The algorithms for 
flattening triangulated or tessellated surfaces have been used in many research areas, such as 
generation of clothing patterns, 3D reconstruction, texture mapping reconstruction, multi-
resolutional analysis, formation of ship hulls, metal forming, etc. By flattening, we under-
stand a one-to-one mapping of the STL surface to a planar domain in the parametric space. 
Geometrically, the flattening algorithm unfolds the surface onto a plane without self-
intersections, that is, each point of the original surface is associated with a unique point (u,v) 
in the parametric space. A variety of algorithms have been proposed for parameterization of 
the triangulated surfaces[33]-[39]. In this paper we propose radial plane flattening and 
demonstrate that it works for a particular practical case of STL surfaces representing human 
teeth. The method was also successfully tested on parts which can be roughly approximated 
by surfaces having radial symmetry. Note that this approximation could be very far from 
ideal, however, radial flattening still works better than some general commercial software. 
Besides, the proposed algorithm preserves distances along the trajectories in the radial 
planes and reduces angular and metric distortions in the proximity of the focus point [40].  
We define a polar coordinate system centered at a point of reference pO . Given the sur-
face’s tangential plane at the reference point, a perpendicular plane through the reference 
point, and an arbitrary STL point S ′ , we evaluate the trajectory connecting pO  and S ′  on 
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the surface by finding intersections of the radial plane and the corresponding STL triangles 
(Figure 3).  

(a) (b) 

Figure 3. Radial plane flattening algorithm 

The technique requires solving a large series of linear (possibly singular) systems, 2x2 and 
3x3, and a special tracing procedure to connect the intersection points.  

The new coordinates ( ,θ)s  are the length of the trajectory pO S ′ and the angle between the 
radial plane and the reference plane, respectively (Figure 3). Note that the radial flattening 
does not necessarily mean that the curvilinear grid must be polar. As a matter of fact, we map 
the resulting triangles onto the Cartesian plane. However, using a polar parametrization and 
the spiral toolpath is a feasible option which can be implemented by the ACT as well. Figure 
4 compares the proposed algorithm with MeshFlatten [41]. 

(b) (c) 
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(a) 

(d) 

(e) 

Figure 4. Flattening (a) 3D Model (b)-(c) MeshFlatten, (d)-(e) radial plane flattening 

Clearly, MeshFlatten fails to return an acceptable parametrization, whereas a correct choice of 
the reference point pO  allows for construction of the required flattening using the proposed 
approach. 

3 MATERIAL REMOVAL RATE 

Let 1W  be an arbitrary cutter contact (CC) point on the surface (see [7] regarding the relation-
ship between the CC and CL points). Consider a disk defined by 1 11

{ : dist( , ) }W W W W lΩ = = , 

where dist  denotes an appropriate distance on the surface, and 1l  is an arbitrary step (see Fig-
ure 5). The corresponding disk in the machine coordinates is denoted by 

1MΩ . The distance 

between the center of the disk 1M  and the points belonging to 
1WΩ  is given by 1, 1, ( )M Ml l W≡ . 

The machining strip along the feed direction 1,W W
→

is denoted by 1 1( )w w W≡ . It is evaluated 
by locating the intersections of the effective cutting shape and the part  surface [24]. 

Our target vector at  1W  is defined as 1 2,W W
→

, where   
1

2 1arg max ( )
W W

W C W
∈Ω

′= , and  where 

1 1( ) ( )C W w W′ = , 1 1,( ) ( )MC W l W′ =  or  1 1,( ) ( )MC W R W′ = , where 1, ( )MR W  denotes the material 
removal rate (MRR) . In order to define the MRR, assume that only the rotation axes can ex-
ceed the machine speed limit and that the workpiece is machined with the maximum linear 
speed allowed for the particular material. These assumptions are usually correct for relatively 
small parts, exemplified in our forthcoming section “Numerical Examples and Cutting Exper-
iments”, where the largest blank workpiece is 100x100x100mm. In this case the required ma-
chining time is evaluated by   

max( , )a bt t t= , 
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where  1

,max
a

a

a at
v
−

= , 1

,max
b

b

b bt
v
−

=  and,  where ,max ,max,a bv v  are the maximal speeds of the rotation-

al axes a  and b,  respectively. 
The actual rotation speed is given by  

1
a

a av
t
−

= , 1
b

b bv
t
−

= . 

Note that if 1a a=  and 1b b≠  , then 0av = . If 1b b=  and 1a a≠  , then 0bv = . 
If  1a a=  and 1b b= , then the maximum linear speed is allowed in each of the linear axis. 

Consequently, the feed rate 1lF
t

= , whereas the effective MRR is evaluated by 1( )MR Fw W= , 

where 1( )w W  is the corresponding machining strip.  

We call the direction 1 2,W W
→

 optimal, if 2W  maximizes the cost function 1C′ . Evaluating vec-

tors 1 2,W W
→

 for each surface point and transferring them into the parametric domain ( ,u v ) 
generates a discrete version of the optimal vector field, ( , ) ( ( , ), ( , ))x yV u v v u v v u v≡ . Following  

( , )V u v  at every CC point generates an optimal tool path. However,  constructing such a tool 
path is not always possible. Therefore, the next section presents a vector field aligned path 
which is nearly optimal on a set of  paths topologically similar to a Cartesian zigzag.      

Figure 5. Material removal rate: possible directions in the workpiece coordinates 

4 CURVILINEAR TOOL PATH 

Recall that ( , ) ( ( , ), ( , ), ( , ))S u v x u v y u v z u v≡  is the part surface, where u and v are the paramet-
ric variables.  Let us consider the CC points { , ,( , )i j i ju v , ξ0 i N≤ ≤  η0 j N≤ ≤ } arranged as a 
curvilinear grid. In other words, the CC points are a discrete analogy of a mapping 
{ (ξ,η), (ξ,η)}u v  from the computational region ξ η{0 ξ , 0 η }N N∆ = ≤ ≤ ≤ ≤   onto a physical 
region K  in the parametric coordinates u, v. In other words, the rectangular grid 
{ ( , )i j , ξ0 i N≤ ≤  η0 j N≤ ≤ } being fed to { (ξ,η), (ξ,η)}u v  becomes , ,{ , }i j i ju v  (see Figure 6). 

2W

W
1W1WΩ
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Computational coordinates 

  

Workpiece coordinates 

Figure 6. Coordinate transformations and the curvilinear grids, Δ denotes the computational 
domain, K the parametric domain 

We adapt the curvilinear grid to the boundary of the parametric domain obtained by flattening. 
Furthermore, we consider adaptation to the vector field ( , )V u v using a modification of classi-
cal grid generation methods [20] as follows:  
The smoothness of the grid is controlled by a variational functional given by 

2 2 2 2
ξ ξ dξdηSF u u v vη η= + + +∫ ∫  , (1) 

where subscripts denote the partial derivatives. 
Furthermore,  the idea of a curvilinear grid adapted to the vector field  is borrowed from com-
putational fluid dynamics where such grids were exploited to improve the accuracy of the 
numerical  solution of partial differential equations [44-46]. Consider a vector field ( , )V u v de-
rived from a cost function C′  (machining strip, length of the toolpath, material removal rate, 
see the previous section). Furthermore, we  partition  ( , )V u v  into a dual vector field 

( , ) (α( , ),β( , ))DV u v u v u v= , corresponding to the ξ  and η  directions as follows: 

( , ) ,
α( , )

0,otherwise,
V u v

u v ξ∈Ω
= 


( , ) ,
β( , )

0,otherwise,
V u v

u v η∈Ω
= 


(2) 

( , )x ξ η  
( , )y ξ η  

( , )z ξ η  

ξ  

η  

( , )u ξ η  

( , )v ξ η  

,( , )i ju v

K

∆  

Parametric coordinates 

ISO toolpath corresponding 
to curvilinear coordinates 

a b

dc  

1( )C t  

4 ( )C t  

2 ( )C t  

3 ( )C t

d

ba

c  
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where ξΩ , ηΩ  are prescribed subsets of ( , )V u v  selected according to a certain criterion.  For 
instance, if the vector field has two major directions ξd  and ηd , the partition is performed as 
follows (Figure 7). 

(a) ( , )V u v  (b) α( , )u v  

(c) β( , )u v (d) Adapted grid 

Figure 7. Partition of the vector field ( , )V u v  into (α( , ),β( , ))u v u v  

ξ ξ( , ) 0 or ( , ) ,
α( , )

0, otherwise,
V d V d

u v
π≈ ≈

= 


 
, η η( , ) 0 or ( , )

β( , )
0, otherwise.

V d V d
u v

π≈ ≈
= 


 
 

The vectors from ( , )V u v  are included into the ( , )DV u v  if  they are  almost parallel or almost 

anti-parallel to ξd  or ηd .   In other words, ( , ) 1 ε
|| || || || V

V d
V d

− ≤ , where εV  is the prescribed 

threshold.        

The curvilinear grid is aligned with ( , )DV u v , using a modification of the grid generation tech-
niques  [44-46]. Let us align the family of the grid lines η=const with the vector field 

1 2α(ξ,η) (α (ξ,η),α (ξ,η))≡ , whereas the grid lines ξ=const  are aligned with 

1 2β(ξ,η) (β (ξ,η),β (ξ,η))≡ . The alignment is performed by minimizing a functional given by   

2 2( α ) +( β ) dξdηVF s sξ η′ ′= ∫ ∫ , (3) 

ξd

ηd
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where 1 2 2 1α (ξ,η) (α ,α ) (-α ,α )′ ′ ′≡ =  is the vector field perpendicular to α(ξ,η) , 

1 2 2 1β (ξ,η) (β ,β ) (-β ,β )′ ′ ′≡ =  is the vector field perpendicular to β(ξ,η) , ξ ξ ξ( , )s u v= , and 
( , )s u vη η η=  

Following [44], we combine the functionals SF  and VF  linearly as follows S VF FλΦ = + , 
where λ  is the weighting coefficient.  
The Euler equations are  

, , 0u u uξ ηξ ηΦ −Φ −Φ = , 

, , 0v v vξ ηξ ηΦ −Φ −Φ = . 

 Substitution 1 2α = α αs u vξ ξ ξ′ ′ ′+  , 1 2β = β βs u vη η η′ ′ ′+  and differentiation yields 

               ξξ ηη 1 1 ξ 2 ξ ξ 1 1 η 2 η η2λ{[α (α α )] [β (β β )] 0u u u v u v′ ′ ′ ′ ′ ′+ + + + + = ,                 (4) 

ξξ ηη 2 1 ξ 2 ξ ξ 2 1 η 2 η η2λ{[α (α α )] [β (β β )] 0v v u v u v′ ′ ′ ′ ′ ′+ + + + + = . 

Furthermore, the problem can be simplified by following the optimal directions only where 
the alignment with the vector field leads to a significant reduction of the cost function. There-
fore, the desired vector field can be replaced by   

(ξ,η) if (ξ,η) important points,
(ξ,η)

(0,0) , otherwise.new

V
V

∈
= 


For instance, the “important points” can be defined as points characterized by a high curvature 
or large rotation angles. At the unimportant points 0VF = , which simplifies the numerical so-
lution and reduces the number of iterations. The numerical approximation is based on the dis-
crete Laplacian and the central differences for the first derivatives.   

5 KINEMATIC ERROR 

Let 1( , , ) ( , )D
p pW s s t S u v+ ∈  be a desired trajectory between two tool positions pW  and 1pW +  ,  

where 1[ , ]p pt s s +∈  is a parametric coordinate along the curve. The kinematic error  is a dis-

tance between 1( , , )D
p pW s s t+ , and the actual trajectories 1( , , )p pW s s t+  are defined as follows:   

1 1ε dist( ( , , ), ( , , ))D
p p p p

p
W s s t W s s t+ +=∑ . (5) 

The actual trajectories are generated by the inverse kinematic transformations (see, for in-
stance, [47], pages 40-42). Furthermore, we use a parameterization-invariant Hausdorff dis-
tance, given by 

( )( ) ( ) ( )
dist ( , ) max{max min | | , max min | | )

D D

D
H E Ea W ta W t b W t b W t

W W a b a b
∈∈ ∈ ∈

= − − ,where the subscript E denotes the 

Euclidean distance. 

6857



Stanislav S. Makhanov 

6. BIASED SPACE FILLING CURVE
First, the curvilinear grid , ,{ , }i j i ju v  is converted into a continuous mapping { (ξ,η), (ξ,η)}u v  
using the bilinear interpolation. Next, the discrete grid is reconstructed using the condition 

1 , , 1dist ( , )H i i R i L iT T w w+ +< + , where iT  1iT +  are the adjacent tool tracks, and , , 1,L i R iw w +  are the  
left and the right maximum  allowed strip width (Figure 8 (a)). 
The cells are connected by the biased adaptive space filling curve (BSFC) [16] so that the 
toolpath follows the optimal direction, where necessary. The BSFC uses the concept of im-
portant and non-important points as a compromise between reducing the machining time and 
the kinematic error. The idea is similar to that used for minimization of the alignment func-
tional. If the grid is well aligned with the optimal direction, then the BSFC follows it. Howev-
er, the BSFC works on the chaotic vector fields as well. If the grid is not well aligned with the 
important point, the BSFC defines a local optimal direction based on an estimate of the cost 
function around this particular point. If the point is unimportant, the BSFC connects it with a 
random neighboring point.  Furthermore, the algorithm detects segments characterized by the 
multiple consecutive turns. The BSFC along this segment is re-adjusted to follow the main 
direction in a window around the segment as shown in Figures 8 (b) and (c). 

(a) Calculating the offset between the tool tracks 

(b) Before correction (c) After correction 

Figure 8.  BSFC correction in the case of frequent turns 

multiple sharp turns 

,L iw , 1R iw +

Cutter’s bottom 
edge 

Surface 

iT 1iT +  
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7. NUMERICAL EXAMPLES AND CUTTING EXPERIMENTS

In this section, the ACT is applied to STL toolpath generation. The numerical technology has 
been tested against the standard ISO, MasterCam, advanced toolpath algorithms  Heli-
cal/Spiral (HS), and Follow Periphery (FP) of NX9 (formerly UG).  All surfaces have been 
machined using a flat end cutter. The experiments have been performed for 5 axis machines 
MAHO-600E and HAAS VF2TR.  

The conventional methods and the ACT have been applied with an appropriate setup optimi-
zation [4]. The accuracy of the machining has been evaluated in terms of the kinematic error, 

roughness, and waviness. The improvement is defined as  100before after
before

− . The grid align-

ment  is based  on cost functions representing the material removal rate and the toolpath 
length. We will denote these  options by subscripts R and L, respectively, for instance, 
VFAGR and VFAGL.    

Example 1. Surface decomposition and ACT for a synthetic dental surface 
The surface in Figure 9 (a) is characterized by a ridge nearby the boundary. We adopted this 
shape from the dental milling, where the elevated part represents the ridges of a dental crown 
or implant [48].  The size of the workpiece is 100x100. The surface was designed using 
MasterCam, then converted into the STL format (Figure 9 (a)), and flattened using the 
proposed radial plane approach (Figure 9 (b)).     
The VFAG for such surfaces can be efficiently generated in subregions obtained 
automatically or manually. Clearly,  the surface is composed of a flat region and a region 
characterized by a high curvature. The high curvature narrows the machining strip, whereas 
inside the flat area, the tool can cut the material using the maximum machining strip.  The 
optimal directions corresponding to the material removal rate and machining strip width, 
respectively, in Figures 9 (c) and (d), show that it is possible to construct a single grid such 
that one family of the grid lines is adapted to RV  and another to LV . 

Consider the case when the user requires a minimal tool path for the rough cut to reduce the 
tool wear and the minimal time for the fine cut. The generated VFAG in Figure 9 (e) accom-
plishes both tasks. The rough machining is performed along the direction of the highest curva-
ture, in order to maximize the machining strip (ACTL). The finishing strategy employs ACTR 
to maximize the material removal rate and to reduce the machining time. In this case, most of 
the time the tool moves along the direction of the minimal curvature. Note that a boundary 
fitted grid in Figure 9 (f) was used as the initial approximation for VFAGs. The toolpaths, 
constructed by BSFC, are shown in Figures 9 (g) and (h).  Clearly, the two cost functions 
generate very different toolpaths. The virtual and real machining results are illustrated in Fig-
ures 9 (i)-(l).  

The performance of ACT, in terms of the length of the toolpath and the machining time, is 
summarized in Table 1. The table clearly demonstrates the advantages of the ACTL and ACTR 
for varying scallop height. The benchmark methods are the regular ISO, MasterCam, and  ad-
vanced algorithms, HS and FP of  NX9. 
Compared to ISO, the length of the ACTL-path is shorter by 7-20%. For instance, when the 
maximum allowable scallop height h=0.01, the length of the tool path is about 2,500 mm 
shorter while the entire ISO is approximately 12000mm.  The machining time for the fine cut 
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using ACTR has been reduced by 76%. In other words, the proposed method reduces the ma-
chining time by (approximately) a factor of 2. There is a clear advantage relative to NX9. For 
instance, on MAHO 600E for h=0.01, the ACTR requires 19 min versus 46 min using FP, and 
9h52min using HS (see the entire  evaluation in Table 1). 

Table 2 compares the quality of the proposed method vs. ISO in terms of the average kinemat-
ic error ε , the corresponding standard deviation εσ  and the number of the required CC points 

CCN . Clearly, the error stays within the prescribed limits, whereas the number of the CC 
points has been reduced.  For instance, for  HAAS VF-2TR , 18603CC ISON = , , 9625CC RN = , 
and , 17437CC LN = . 

Table 3 shows the quality of the produced surface for the rough and finishing cuts evaluated 
by stylus profiling, [49]. The surface profile obtained by a high-resolution probe is post pro-
cessed by the Gaussian filter [50]. Twenty sample profiles were measured with the standard 
cutoff of 0.8 mm [50]. Roughness of the machined surface is within the acceptable range for 
surface milling operations [51]. The rough cut by the ACTL has a better quality compared to 
ISO, that is, roughness: 7.8 vs. 8.1 µm and waviness 17.8 vs. 31.9.  We hypothesize that the 
major improvement in waviness is due to a reduced variation of the rotation angles, which are 
implicitly included in the evaluation of the material removal rate, since maximization of the 
removal rate leads to the reduction in the angular distance between the CC points.      

(a) Synthetic dental  surface (b) Flattened surface 
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(c) RV (d) Vector field LV

(e) VFAG (f) Boundary fitted grid 

(g) ACTR (h) ACTL 

(i) Virtual ACTR (j) Virtual ACTL 
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(k) Machining by ACTR (l) Machining by ACTL 

Figure 9. Synthetic (ridge-cusp) dental surface 

Table 1 Synthetic dental surface: ACT vs. the reference methods 

Toolpath Generation Methods 
Scallop Height h (mm) 

0.25 0.10 0.05 
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Toolpath 
Length 
(mm) 

Master CAM 35553.0 72215.0 128879.0 

HS 25991.0 62825.0 125070.0 

FP 5480.4 8115.6 11175.0 

ISO 5755.2 8666.1 12034.0 

ACTR 5489.1 7601.2 10075.0 

ACTL 5336.9 7092.7 9545.7 

Machining 
Time 

HAAS 
VF2TR 

HS 3:26:00.6 8:13:54.1 16:22:50.4 

FP 0:45:04.7 1:07:20.4 1:33:35.8 

ISO 0:56:13.9 1:26:37.5 2:01:03.5 

ACTR 0:17:46.1 0:24:56.1 0:33:36.1 

ACTL 0:55:09.7 1:24:21.2 1:55:52.1 

MAHO 
600E 

HS 2:03:53.1 4:57:21.7 9:52:27.2 

FP 0:22:15.4 0:33:09.6 0:46:22.0 

ISO 0:28:22.1 0:43:39.8 1:01:03.8 

ACTR 0:10:25.4 0:14:21.7 0:19:22.9 

ACTL 0:27:14.5 0:41:20.4 0:56:19.7 
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Toolpath 
Length (mm) 

ACTR 4.6% 12.3% 16.3% 

ACTL 7.3% 18.2% 20.7% 

Machining 
Time 

HAAS 
VF2TR 

ACTR 68.4% 71.2% 72.2% 

ACTL 1.9% 2.6% 4.3% 

MAHO 600E 
ACTR 63.3% 67.1% 68.3% 

ACTL 4.0% 5.3% 7.8% 
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Table 2 Synthetic dental surface: CC points, kinematic error, ACT vs. ISO 

Toolpath       
Generation 
techniques 

HAAS VF-2TR MAHO 600-E 

h=0.25 mm h=0.10 mm h=0.05 mm h=0.25 mm h=0.10 mm h=0.05 mm 

CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ

ISO 5882 0.082 0.064 10299 0.040 0.024 18603 0.023 0.012 5047 0.064 0.063 9334 0.038 0.025 16652 0.022 0.012 

ACTR 5378 0.013 0.010 7157 0.013 0.008 9625 0.011 0.004 5374 0.009 0.004 7151 0.009 0.001 9331 0.009 0.001 

ACTL 4321 0.065 0.006 9418 0.025 0.026 17437 0.013 0.013 4059 0.054 0.002 9059 0.022 0.025 16773 0.012 0.013 

Table 3 Synthetic dental surface: roughness and waviness, ACT vs. ISO 
Roughness aR ( m)µ Standard Deviation Waviness aR Standard Deviation 

ISO ACTR ACTL ISO ACTR ACTL ISO ACTR ACTL ISO ACTR ACTL 
8.1 6.8 7.8 10.5 3.1 8.1 31.9 12.2 17.8 7.5 1.5 6.2 

Example 2. Dual vector field on a single Cartesian grid. STL model of the human 
face mask. 

The ACT applied to the surface from Example 1 employs decomposition techniques to 
achieve the best alignment with the vector field. However, certain surfaces allow for a de-
composition of the vector field ( , )V u v into a dual vector field ( , ) (α( , ),β( , ))DV u v u v u v=  and 
adaptation of the two families of the coordinate curves to α( , )u v  and β( , )u v , respectively, 
within a single parametric region (see Section 4). 

We apply these techniques to an STL model of the human face mask in Figure 10 (a), (b).  
The two families of vector fields shown in Figures 10 (c) and (d) are obtained using RV   while 
Figure 10 (e) and (f) show the vector field obtained using LV . The VFAGs are presented in 
Figures 10 (g) and (h). The particular cost function affects BSFCs displayed in Figures 10 (i) 
and (j). Virtual and real machining using the regular ISO and ACTR are presented in Figures 
10 (k) - (m) and Figures 10 (l) - (n), respectively.  

Table 4 presenting the performance of the ACT against the benchmark toolpath generation 
methods shows the advantages of the proposed framework. The ACTL is shorter by 17% and 
the ATCR is faster by 13%, compared to ISO. Note that the real industrial parts require thou-
sands of hours of costly machine operations and qualified technicians. Therefore, the ad-
vantage of 13-17% is financially and technically sound. Besides, the example shows that even 
for a very complicated surface and seemingly chaotic  vector field, the ACT based on a single 
VFAG can lead to important improvements (our next example shows that those improvements 
can be even more tangible). Table 5 shows that the efficiency of the ACT measured by the 
number of the required CC increases, whereas the average kinematic error practically does not 
change.  Finally,  

Table 6 displaying the roughness and waviness of the machined surface measured by stylus 
profiling, shows the advantages of the ACT.     
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(a) Human mask (b) Flattened human mask 

(c) α ( , )R u v  (d) β ( , )R u v

(e) α ( , )L u v  (f) β ( , )L u v  
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(g) VFAGR (h) VFAGL 

(i) BSFCR (j) BSFCL 

(k) Virtual machining, ISO (l) Virtual machining, ACTR 
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(m) Real machining, ISO (n) Real machining, ACTR 
Figure 10. Machining the human face mask 

Table 4 Human face surface: ACT vs. the reference methods  

Toolpath Generation Methods 
Scallop Height (mm) 

0.25 0.10 0.05 
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Toolpath 
Length 
(mm) 

Master CAM 17372.6 37669.5 71054.5 

HS 2968.6 7072.1 13988.8 

FP 3224.6 3241.2 4426.2 

ISO 3115.6 3203.0 4072.0 

ACTR 2944.9 2961.8 3530.1 

ACTL 2681.3 2671.1 3364.0 

Machining Time 

HAAS 
VF2TR 

HS 0:24:42.0 0:57:53.8 1:53:36.8 

FP 0:48:24.1 0:48:48.2 1:07:05.6 

ISO 0:54:27.4 0:55:59.7 1:11:29.1 

ACTR 0:51:57.2 0:51:43.1 1:02:10.3 

ACTL 0:53:30.3 0:54:41.2 1:09:30.9 

MAHO 
600E 

HS 0:18:18.6 0:42:44.2 1:23:53.4 

FP 0:24:57.8 0:25:17.8 0:34:30.2 

ISO 0:17:52.6 0:18:24.9 0:23:27.5 

ACTR 0:17:11.1 0:17:04.4 0:20:50.5 

ACTL 0:17:39.2 0:18:07.3 0:22:57.1 
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Toolpath 
Length (mm) 

ACTR 5.5% 7.5% 13.3% 

ACTL 13.9% 16.6% 17.4% 

Machining Time 

HAAS 
VF2TR 

ACTR 4.6% 7.6% 13.0% 

ACTL 1.7% 2.3% 2.8% 

MAHO 600E 
ACTR 3.9% 7.3% 11.2% 

ACTL 1.2% 1.6% 2.2% 
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Table 5 Human face surface: CC points, kinematic error,  ACT  vs. ISO 

Toolpath       
Generation 
techniques 

HAAS VF-2TR MAHO 600-E 

h=0.25 mm h=0.10 mm h=0.05 mm h=0.25 mm h=0.10 mm h=0.05 mm 

CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ

ISO 1509 0.081 0.616 3936 0.056 0.183 6917 0.050 0.031 1260 0.050 0.154 1221 0.028 0.064 3132 0.022 0.060 

ACTR 1446 0.060 0.179 3896 0.035 0.104 6832 0.028 0.018 1171 0.034 0.076 1206 0.019 0.049 2704 0.009 0.030 

ACTL 1023 0.061 0.077 2822 0.035 0.036 4911 0.025 0.029 275 0.026 0.050 962 0.018 0.027 1941 0.013 0.020 

Table 6 Human face surface, roughness and waviness, ACT vs. ISO 
Roughness aR

( m)µ
Standard Deviation Waviness aR Standard Deviation 

ISO ACTR ISO ACTR ISO ACTR ISO ACTR 

8.3 8.1 7.7 7.7 43.6 40.8 23.8 28.6 

Example 3. Dual vector field on a single Cartesian grid. An STL model of the 
incisor tooth. 

We verify our methodology on the STL models of four types of human teeth: incisor, premo-
lar, molar, and canine. The STL model of the incisor and the corresponding flattened STL are 
presented in Figure 11. The incisor represents the case when the dual vector field on a single 
Cartesian grid leads to the significant improvement, in terms of the length of the tool path and 
the machining time. The components of the dual vector  fields , ( , ) (α ( , ),β ( , ))D R R RV u v u v u v=

and , ( , ) (α ( , ),β ( , ))D L L L LV u v u v u v=  are shown on the surface and in the parametric domain in 
Figures 11 (c) - (h). VFAGs are presented in Figures 11 (i) - (l).  Finally, machined surfaces 
are shown in Figures 11 (m) - (n). Table 7 shows the benefits. The toolpath  is  43% shorter 
and 46% faster against the standard ISO.  The advantage with regard to NX9, in terms of the 
length of the tool path,  is also very significant. For instance, when h=0.01, the ACTL  gener-
ates the tool path of  570.9 whereas  the best NX9  result is 1049.3. The advantage in the ma-
chining time on HAAS is 17%. It should be noted that the neither MasterCam nor NX9 can 
produce the 5 axis tool path for the STL surface directly. In order to compare their perfor-
mance, we flattened the STL surface, generated a boundary fitted curvilinear grid, and ap-
proximated the surface on that grid. Therefore, our MasterCam and NX9 toolpath generation 
is partly based on the proposed techniques.  Finally, Table 9 shows that the efficiency of the 
ACT, measured by the number of the required CC points, increases, whereas the average kin-
ematic error practically does not change.  
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(a) STL model of the incisor (b) flattened incisor 

(c) RV (d) LV

(e) α ( , )R u v  (f) β ( , )R u v
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(g) α ( , )L u v  (h)  β ( , )L u v  

(i) VFAGR (j) VFAGL 

(k) BSFCR (l) BSFCL 
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(m) Virtual milling, ACTR (n) Virtual milling, ACTL 

Figure 11. Machining the incisor tooth 
Table 7 Incisor tooth: ACT vs. the reference methods  

Toolpath Generation Methods 
Scallop Height (mm) 

0.065 0.025 0.0125 
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Toolpath Length (mm) 

Master CAM 6834.8 14373.3 27614.1 
HS 655.9 1477.7 2781.5 
FP 800.1 940.4 1049.3 
ISO 756.4 837.9 1005.5 
ACT R 469.1 515.6 582.9 
ACT L 456.0 498.5 570.9 

Machining Time 

HAAS VF2TR 

HS 0:18:22.0 0:40:40.2 1:19:15.1 
FP 0:21:13.4 0:28:27.7 0:30:50.6 
ISO 0:34:19.2 0:38:35.2 0:46:14.4 
ACT R 0:19:47.5 0:21:34.2 0:25:02.3 
ACT L 0:24:50.6 0:27:11.2 0:31:25.2 

MAHO 600E 

HS 0:07:34.5 0:16:48.4 0:32:04.6 
FP 0:07:30.5 0:08:53.7 0:09:55.8 
ISO 0:11:10.7 0:12:49.0 0:15:38.9 
ACT R 0:07:13.9 0:07:56.6 0:09:11.0 
ACT L 0:07:13.1 0:08:09.3 0:09:33.1 
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Toolpath Length (mm) 
ACT R 38.00% 38.5% 42.0% 

ACT L 39.70% 40.5% 43.2% 

Machining Time 

HAAS VF2TR 
ACT R 42.30% 44.1% 45.9% 

ACT L 27.60% 29.5% 32.0% 

MAHO 600E 
ACT R 35.30% 38.0% 41.3% 

ACT L 35.40% 36.4% 39.0% 
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Table 8 Incisor tooth : CC points, kinematic error,  ACT  vs. ISO 
HAAS VF-2TR MAHO 600-E 

h=0.065 mm h=0.025 mm h=0.0125 mm h=0.065 mm h=0.025 mm h=0.0125 mm 

CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ CCN ε εσ

ISO 576 0.048 0.173 1709 0.030 0.136 4880 0.021 0.122 36 0.013 0.029 246 0.011 0.026 1282 0.008 0.024 

ACTR 
222 0.044 0.069 923 0.026 0.056 2545 0.016 0.072 7 0.010 0.023 99 0.009 0.017 611 0.006 0.013

ACTL 
574 0.051 0.178 1443 0.031 0.134 3425 0.027 0.109 60 0.014 0.032 350 0.009 0.024 1137 0.007 0.024

Example 4. C–grids applied to the STL models of  canine, premolar, and molar 
teeth 

The following three cases of the STL surfaces, corresponding to premolar, molar, and canine 
teeth, are characterized by the unstructured (chaotic) vector field. Consequently, VFAGs do 
not produce any improvement, even though the grids can be aligned with some small clusters 
of the vectors. However,  we show that the tools provided by the ACT still can be used  to 
improve the quality of the toolpath generation. We show that, boundary fitted curvilinear tool 
path, combined with a manual selection of the type of the grid and BSFC, lead to a substantial 
improvement.    
In the context of the grid generation technologies, the basic Cartesian grids include H-grids, 
O-grids, and C- grids[20,52]. We will show the premolar, molar, and canine STL models can 
be produced using the O-grid for a shorter time, using a shorter tool path.  
The STL-premolar and its flattened version are presented in Figures 12 (a) - (d). The bounda-
ry fitted initial grids in Figures 12 (e) and (f) are the H-grid and the O-grid respectively. In 
order to evaluate the suitability of the grid, we compute the alignment functional (3) as fol-
lows: 

, , 16.0V H canineF = , , , 14.0V O canineF = , , , 16.7V H premolarF = , , , 14.0V O premolarF = , , , 19.3V H molarF = , 

, , 17.6V O molarF = . 

Clearly, the O-grid is more suitable for the three dental models. The corresponding toolpaths 
and virtually machined surfaces are shown in Figures 12 (g) – (l). The results for the molar 
and canine teeth are displayed in Figure 13 and Figure 14. Finally, Table 9 presents the bene-
fits of the ACT, compared to ISO and to NX9 and MasterCAM. The proposed framework 
provides advantages in both the toolpath length and machining time, with regard to the 
benchmark methods. For instance, the premolar tooth can be machined by the ACT, with the 
advantage of 26% in length and 43% in time relative to ISO. 
Table 10 provides the number of CC points versus the scallop height and the kinematic error. 
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(a) STL model of the premolar tooth (b) flattened premolar tooth 

(c) RV (d) LV

(e) H-grid (f) O-grid 
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(g) ISOH (h) ISOO 

(i) BSFCH (j) BSFCO 

(k) Virtual milling ISOH (l) Virtual milling BSFCO 
Figure 12. Machining the premolar tooth 
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(a) STL model of the molar tooth (b) flattened molar tooth 

(c) H-grid (d) O-grid 

(e) ISOH (f) ISOO 
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(g) BSFCH (h) BSFCO 

(i) Virtual milling, ISOH (j) Virtual milling, BSFCO 
Figure 13. Machining the molar tooth 

(a) STL model of a canine tooth (b) Flattened canine tooth 

6875



Stanislav S. Makhanov 

(c) H-grid (d) O-grid 

(e) ISOH (f) ISOO 

(g) BSFCH (h) BSFCO 
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(i) Virtual Milling ISOH (j) Virtual Milling  BSFCO 
Figure 14. Machining the canine tooth 

Table 9 ACT vs.  the reference methods, molar, premolar, and canine tooth. 

Toolpath Generation Techniques 

Canine Premolar Molar 

Scallop Height (mm) Scallop Height (mm) Scallop Height (mm) 

0.065 0.025 0.0125 0.065 0.025 0.0125 0.065 0.025 0.0125 
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Toolpath 
Length (mm) 

Master CAM 4261.3 9615.0 18802.0 5275.9 12560.3 25009.4 6483.1 15102.6 30074.0 

HS 1013.0 2330.4 4599.0 1023.5 2360.9 4614.8 1284.6 2992.0 5912.0 
FP 1120.5 1181.6 1230.2 1129.6 1156.9 1217.7 1099.9 1141.9 1184.5 
ISO 766.7 778.4 801.5 761.7 773.2 783.5 847.6 854.4 855.4 
O-Grid 664.6 664.5 664.4 616.9 622.6 620.5 826.9 827.7 828.2 
BSFCH 610.7 620.3 634.3 616.1 617.5 623.5 782.5 784.8 785.4 
BSFCO 617.8 627.4 641.6 573.2 574.6 580.1 742.9 745.1 745.7 

HAAS VF2TR 

HS 0:20:36.5 0:47:34.7 1:33:34.8 0:24:28.4 0:56:43.5 1:50:48.3 0:37:12.3 1:27:20.7 2:51:51.9 
FP 0:24:54.2 0:26:15.4 0:27:18.8 0:34:15.9 0:35:04.8 0:36:43.3 0:37:03.1 0:38:46.2 0:39:52.8 
ISO 0:24:21.8 0:24:48.3 0:25:19.3 0:36:41.9 0:38:14.5 0:42:14.5 0:41:27.5 0:41:55.5 0:42:34.1 
O-Grid 0:22:15.8 0:22:33.5 0:22:52.9 0:28:09.1 0:28:24.6 0:30:41.5 0:35:19.5 0:35:35.1 0:35:40.0 
BSFCH 0:20:55.9 0:21:05.1 0:21:07.9 0:28:44.5 0:28:50.6 0:30:30.3 0:32:47.4 0:32:55.0 0:32:58.7 
BSFCO 0:20:01.9 0:20:10.7 0:20:13.3 0:27:57.2 0:28:03.1 0:29:40.2 0:33:17.6 0:33:25.3 0:33:29.1 

MAHO 600E 

HS 0:13:48.8 0:31:42.8 1:02:24.8 0:17:35.1 0:40:19.1 1:18:37.1 0:28:52.8 1:07:35.2 2:13:07.7 
FP 0:10:45.1 0:11:20.2 0:11:48.2 0:13:48.4 0:14:06.2 0:14:42.3 0:19:19.1 0:20:13.7 0:20:41.2 
ISO 0:12:20.3 0:12:55.3 0:13:18.7 0:19:20.1 0:19:30.1 0:19:46.5 0:21:19.7 0:21:34.5 0:22:25.1 
O-Grid 0:10:13.7 0:10:38.5 0:10:55.9 0:12:06.4 0:12:11.7 0:12:15.6 0:17:48.3 0:17:58.1 0:18:02.0 
BSFCH 0:10:15.3 0:10:38.3 0:10:39.7 0:13:40.9 0:13:42.7 0:13:48.7 0:18:32.3 0:18:40.6 0:18:47.1 
BSFCO 0:09:18.3 0:09:39.1 0:09:40.4 0:11:00.3 0:11:01.7 0:11:06.6 0:18:45.0 0:18:53.3 0:18:59.9 

A
dv

an
ta

ge
 r

el
. t

o 
IS

O
 Toolpath 

Length (mm) 

O-Grid 13.3% 14.6% 17.1% 19.0% 19.5% 20.8% 2.4% 3.1% 3.2% 
BSFCH 20.3% 20.3% 20.9% 19.1% 20.1% 20.4% 7.7% 8.1% 8.2% 
BSFCO 19.4% 19.4% 19.9% 24.7% 25.7% 26.0% 12.3% 12.8% 12.8% 

HAAS VF2TR 
O-Grid 8.6% 9.1% 9.6% 23.3% 25.7% 27.3% 14.8% 15.1% 16.2% 
BSFCH 14.1% 15.0% 16.6% 21.7% 24.6% 27.8% 20.9% 21.5% 22.5% 
BSFCO 17.8% 18.7% 20.1% 23.8% 26.6% 29.8% 19.7% 20.3% 21.3% 

MAHO 600E 
O-Grid 17.1% 17.6% 17.9% 37.4% 37.5% 38.0% 16.5% 16.7% 19.6% 
BSFCH 16.9% 17.7% 19.9% 29.2% 29.7% 30.2% 13.1% 13.4% 16.2% 
BSFCO 24.6% 25.3% 27.3% 43.1% 43.4% 43.8% 12.1% 12.5% 15.3% 
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Table 10 Molar, premolar and canine: CC points, kinematic error,  ACT  vs. ISO 
HAAS VF2TR MAHO 600E 

Scallop 
height Method Type Molar Premolar Canine Molar Premolar Canine 

0.065 

ISO 
CCN 1645 788 342 379 203 58 

ε 0.078 0.059 0.035 0.039 0.019 0.012 

εσ 0.170 0.173 0.065 0.048 0.074 0.033 

O-Grid 
CCN 1637 708 302 577 163 59 

ε 0.073 0.064 0.041 0.038 0.024 0.012 

εσ 0.174 0.280 0.062 0.058 0.051 0.031 

BSFCH 

CCN 1575 748 306 478 174 59 

ε 0.069 0.060 0.035 0.038 0.021 0.012 

εσ 0.167 0.220 0.058 0.049 0.062 0.030 

BSFCO 
CCN 1619 741 304 468 175 56 

ε 0.068 0.057 0.033 0.036 0.021 0.011 

εσ 0.167 0.209 0.056 0.051 0.060 0.030 

0.025 

ISO 
CCN 3080 1654 984 776 445 171 

ε 0.048 0.037 0.026 0.026 0.017 0.011 

εσ 0.143 0.163 0.059 0.046 0.065 0.018 

O-Grid 
CCN 3099 1655 920 1171 435 164 

ε 0.042 0.037 0.028 0.026 0.017 0.010 

εσ 0.142 0.253 0.051 0.032 0.035 0.018 

BSFCH 
CCN 2966 1638 933 974 427 159 

ε 0.044 0.036 0.026 0.024 0.016 0.010 

εσ 0.128 0.202 0.053 0.035 0.048 0.016 

BSFCO 
CCN 2957 1632 936 974 418 165 

ε 0.040 0.036 0.026 0.024 0.017 0.009 

εσ 0.138 0.196 0.052 0.036 0.048 0.016 

0.0125 

ISO 
CCN 6359 3692 2115 1878 1206 520 

ε 0.021 0.025 0.018 0.014 0.012 0.009 

εσ 0.130 0.183 0.048 0.042 0.057 0.016 

O-Grid 
CCN 6309 3698 2086 2897 1134 490 

ε 0.021 0.024 0.018 0.015 0.012 0.008 

εσ 0.101 0.236 0.046 0.023 0.025 0.016 

BSFCH 
CCN 6207 3621 2079 2292 1170 480 

ε 0.019 0.025 0.017 0.014 0.012 0.008 

εσ 0.104 0.207 0.043 0.030 0.040 0.016 

BSFCO 
CCN 6292 3597 2093 2261 1158 492 

ε 0.019 0.024 0.017 0.013 0.011 0.008 

εσ 0.105 0.194 0.044 0.029 0.038 0.015 
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CONCLUSIONS 
A new framework for generation of adaptive vector field aligned toolpaths for five-axis ma-
chining has been presented and analyzed. The method provides up to 70% decrease of the 
machining time with regard to the ISO toolpath, and up to 64% with regard to FP of NX9 (the 
best reference method). The advantages with regard to HS of NX9 and MasterCAM are over-
whelming: the machining time is 10-20 times shorter. The tests against the benchmark tool-
path generation show that the kinematic error and the roughness of the workpiece remain 
practically unchanged while the machining time, toolpath length, and waviness have been 
considerably reduced.      
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Abstract. The aim of this work is to provide a promising way to accelerate the structural de-
sign procedure and overcome the burden of meshing. The concept of Isogeometric Analysis
(IGA) has appeared in recent years and has become a powerful means to eliminate gaps be-
tween Computer Aided Design (CAD) and Computer Aided Engineering (CAE), giving a higher
fidelity geometric description and better convergence properties of the solution. The Boundary
Element Method (BEM) with IGA offers a better, more seamless integration since it uses a
boundary representation for the analysis. However, the computational efficiency of IGABEM
may be compromised by the dense and unsymmetrical matrix appearing in the calculation, and
this motivates the present work. This study introduces an ‘a priori’ model reduction method
in IGABEM analysis aiming to enhance efficiency. The problem is treated as a state evolu-
tion process. It proceeds by approximating the problem solution using the most appropriate
set of approximation functions, which depend on Karhunen-Loève decomposition. Secondly,
the model is re-analysed using a reduced basis, using the Krylov subspaces generated by the
governing equation residual for enriching the approximation basis. Finally, the IGABEM cal-
culation combined the model reduction strategy is proposed, which provides accurate and fast
re-solution of IGABEM problems compared with the traditional BEM solution. Moreover, the
CPU time is drastically reduced. A simple numerical example illustrates the potential of this
numerical technique.
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1 INTRODUCTION

The Boundary Element Method (BEM) [1] is a domain discretisation technique for solving
partial differential equations, which takes advantage of boundary integral equations to decrease
the dimensionality of a problem by one, i.e., only line integrals for 2D and surface integrals
for 3D problems, and thus a smaller system of equations will be generated. The cost of mesh
generation is reduced as a surface mesh generation is much more easier than domain mesh.

In a traditional structural design process, mesh generation is an essential task to bridge from
CAD geometries to numerical analysis tools, and this can take a considerable amount of time.
To alleviate this burden, the idea of Isogeometric Analysis (IGA) [2] has received much atten-
tion in recent years as it offers precise and efficient geometric modelling, refinement without
re-meshing the CAD model and control over the smoothness of the basis functions. This pro-
vides a uniform representation for the design and analysis models, significantly reducing the
overall analysis time including the creation and refinement of the analysis model.

The fact that both CAD and BEM require only a boundary representation suggest that there
is much more scope for further development in linking BEM to CAD geometries than the Finite
Element Method (FEM). This natural connection motivated many researchers to consider some
early attempts to include CAD representations in a BEM framework. Arnold [3, 4] proposed
a spline collocation method which is used to develop convergence estimates for BEM in two
and three dimensions. A BEM formulation based on cubic splines[5, 6] was discovered to solve
groundwater flow problems and the Laplace equation. Turco [7] presented an approach by
which the elasticity problem could be solved by B-spline elements. Rivas [8] firstly put forward
the combination of BEM with rational non-uniform B-splines (NURBS) in the context of the
method of moments.

Recently, much of the literature on isogeometric analysis focuses on the combination with
FEM. For BEM, the existing body of literature is more limited. Simpson [9] implemented the
isogeometric boundary element method (IGABEM) for elastostatic analysis in two dimensions,
and further Marussig [10] extended the IGABEM to three dimensions by using a hierarchical
matrix which reduced the computational complexity for large scale analysis. It should be no-
ticed that the drawback of IGABEM and traditional BEM remains, that it will generate a fully
populated matrix. 3D problems present challenges in computational complexity if they have a
large number of degrees of freedom (DOF). Hence, in order to mitigate this drawback, model
reduction techniques will be a possible way. These provide some more efficient approximation
bases which can be used for the further calculation.

One use of model reduction techniques is derived from some problems of random data pro-
cessing [11], which provide a small number of shape functions in order to represent the spatially
distributed state of a system. The reduced order models (ROMs) are interesting to reduce the
cost of parametric studies on the state evolution of the system. This method is further used in
image processing [12], and so far, it also has been successfully applied in some finite element
frameworks [13, 14]. As the key of model reduction is to find the inner correlation of an evo-
lution process, it is also suitable for the BEM analysis process as well if it follows some rules
such like continuously varying parameters in time or space.

In this article, the combination of IGABEM and model reduction will be presented, and fur-
ther, this framework will be applied in a reanalysis process which is tested by a quarter cylinder
model under inner pressure to accelerate greatly the process of undertaking a parametric study.
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2 B-SPLINES AND NURBS

A B-spline is a group of piecewise polynomials which are defined by a knot vector

Ξ = {ξ1, ξ2, . . . , ξn+p+1} ξA ∈ R (1)

which is a set of non-decreasing real numbers in the parametric space. Here, A denotes the
knot index, p the curve order, and n the number of basis functions or control points. Each real
number ξA is called a knot. The number of knots in a valid knot vector is always n + p + 1.
The half open interval [ξi, ξi+1] is called a knot span. The basis function NA,p could be defined
using the Cox-de Boor recursion formula [15, 16]

NA,0(ξ) =

{
1 if ξA 6 ξ < ξA+1

0 otherwise
(2)

NA,p(ξ) =
ξ − ξA

ξA+p − ξA
NA,p−1(ξ) +

ξA+p+1 − ξ
ξA+p+1 − ξA+1

NA+1,p−1(ξ) (3)

The B-spline geometry is found through a mapping from parametric space to physical space
through a linear combination of B-spline functions, which are defined in parametric space, and
the corresponding coefficients may be considered to be the geometric coordinates of a set of
control points scattered in physical space. The B-spline curve can be expressed as

x(ξ) =
n∑

A=1

NA,p(ξ)PA (4)

where x(ξ) is the location of the physical curve, ξ the spatial coordinate in parameter space,
PA the control point and NA,p the B-spline basis function of order p.

Multivariate basis functions are defined by tensor products of univariate basis functions of
parametric direction, given by

NA(ξ|ΞA) ≡
dp∏
i=1

N i
A(ξiA|Ξi

A) (5)

where i denotes the direction index and dp is the number of dimensions.
Non-uniform rational B-splines (NURBS) are developed from B-splines but can offer signifi-

cant advantages due to their ability to represent a wide variety of geometric entities. Importantly
for engineering applications, they have the ability to describe circular arcs exactly, whereas the
traditional piecewise polynomial FEM description cannot. The expression defining a NURBS
curve is similar to that with B-splines,

x(ξ) =
n∑

A=1

RA,p(ξ)PA (6)

here, PA is the set of control point coordinates, RA,p is the NURBS basis function which is
given by

RA,p(ξ) =
NA,p(ξ)wA

W (ξ)
(7)
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with

W (ξ) =
n∑

A=1

wANA,p(ξ) (8)

where wA denotes a weight associated to each basis function or control point. It can influence
the distance between the associated control point and the NURBS geometry; with higher values,
the curve will be closer to that point. If all of the weights are equal to 1, the NURBS curve
degenerates into a B-spline curve.

3 ISOGEOMETRIC BEM

3.1 Boundary integral equation

For a linear elastic problem, the structure occupies a continuous domain Γ, with the boundary
conditions

u = u on Γu (9)
t = t on Γt

where the domain boundary Γ = Γu + Γt.
The Boundary Integral Equation (BIE) can be written as follows:

uj(s) +

∫
Γ

Tij(s,x)uj(x)dΓ(x) =

∫
Γ

Uij(s,x)tj(x)dΓ(x) (10)

where s is the ‘load’ point and x the ‘field’ point, ui the displacement field, tj the traction field,
Uij the displacement fundamental solution, Tij the traction fundamental solution and i, j are
the indices running from 1 to 3 in three dimensions. Eq. 10 also can be written as a discretised
form which is the traditional BEM formulation

Cij(sc)u
e0a0
j +

ne∑
e=1

na∑
a=1

ueaj

∫
S̃

Tij(sc, ξ̃)Nea(ξ̃)Je(ξ̃)dS̃(ξ̃) (11)

=
ne∑
e=1

na∑
a=1

teaj

∫
S̃

Uij(sc, ξ̃)Nea(ξ̃)Je(ξ̃)dS̃(ξ̃)

where Cij indicates the jump term, c the collocation point index, e0 the element in which the
collocation point is located, and a0 the local index of the collocation point in element, e is the
element index and a the local index of the node in element e, ξ̃ the intrinsic coordinates in
parent element, Nea the shape function, Je the Jacobian and S̃ the space spanned by intrinsic
coordinates.

The integrals in the above can be written in matrix form

Hu = Gt (12)

where matrix H is a square matrix containing a combination of the integrals of the Tij kernel
and the jump terms, G is a rectangular matrix of Uij kernel integrals, u contains the nodal
displacements and t the nodal tractions. Both u and t include unknown value and the value
prescribed by boundary conditions. By swapping the unknowns and the related coefficients of
both sides, Eq. 12 takes the final form

Ax = f (13)
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where A is a coefficient matrix which is usually non-symmetric and densely populated, the
vector x contains all unknown displacement and traction component and the vector f is the
summation of all known coefficient. The above equation is a linear system which can be solved
to obtain the values of the unknown displacement and tractions.

3.2 Isogeometric approximation

The implementation of IGABEM is similar to the traditional BEM with the concept of
isoparametric elements; they both discretise the BIE and geometry using the same shape func-
tions. Hence, the displacement and traction fields around the boundary could also be discretised
using NURBS, which is the main difference from the traditional BEM,

uej(ξ̃) =
na∑
a=1

Rea(ξ̃)ũeaj (14)

tej(ξ̃) =
na∑
a=1

Rea(ξ̃)t̃eaj (15)

where ũeaj and t̃eaj are the nodal displacement and traction parameters associated with control
points, and ξ̃ the intrinsic coordinates of the field point in the parent element. It should be noted
that ũeaj and t̃eaj are no longer the nodal displacements or tractions as the NURBS basis functions
lack the Kronecker delta property. Eq. 10 can be rearranged by separating the integrals into two
parts

uj(s)|Γt +

∫
Γt

Tij(s,x)uj(x)dΓ(x)−
∫

Γu

Uij(s,x)tj(x)dΓ(x) (16)

= −ūj(s)|Γu −
∫

Γu

Tij(s,x)ūj(x)dΓ(x) +

∫
Γt

Uij(s,x)t̄j(x)dΓ(x)

where Γt denotes the portion of prescribed traction boundary conditions and Γu displacement
boundary conditions. Here, uj and tj on the left are unknowns, ūj and t̄j on the right are the
known values given by boundary conditions. Then, the discretised form of the BIE could be
written by discretising the left side of Eq. 16 with Eq. 14 and Eq. 15,

na0∑
a0=1

Cij(ζ̃c)Re0a0(ζ̃c)ũ
e0a0
j +

ne∑
e=1

na∑
a=1

∫
S̃t

Tij(ζ̃c, ξ̃)Rea(ξ̃)Je(ξ̃)dS̃(ξ̃)ũeaj (17)

−
ne∑
e=1

na∑
a=1

∫
S̃u

Uij(ζ̃c, ξ̃)Rea(ξ̃)Je(ξ̃)dS̃(ξ̃)t̃eaj

= −
na0∑
a0=1

Cij(ζ̃c)ū
e0a0
j (ζ̃c) −

ne∑
e=1

na∑
a=1

∫
S̃u

Tij(ζ̃c, ξ̃)ūeaj (ξ̃)Je(ξ̃)dS̃(ξ̃)

+
ne∑
e=1

na∑
a=1

∫
S̃t

Uij(ζ̃c, ξ̃)t̄eaj (ξ̃)Je(ξ̃)dS̃(ξ̃)

where c denotes the collocation point index, ζ̃c the intrinsic coordinate of the collocation point,
e0 the element of which the collocation point is located, and a0 the local index of the collocation
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point in element e0. In addition, contrary to the traditional BEM, the control points in IGABEM
may be inappropriate locations for collocation, since they may lie off the physical problem
boundary. This requires us to compute feasible locations for the collocation points in parametric
space as

ζA =
ξA+1 + ξA+2 + · · ·+ ξA+p

p
(18)

By evaluating a series of boundary integrals, Eq. 17 may be assembled into a matrix form

Ax = f (19)

where matrix A contains the entries of the left of Eq. 17, f the column vector of the right side
and x includes all the unknown displacement and traction. Now, the linear system could be
solved directly.

4 THE MODEL REDUCTION

4.1 The Karhunen-Loève decomposition

This method is also known as the Proper Orthogonal Decomposition (POD), which is a
powerful and elegant method for data analysis aimed to obtaining low-dimensional approximate
descriptions of a high-dimensional process. The concept is well established and can be seen
in different algorithms, including the Karhunen-Loève Decomposition (KLD), the Principal
Component Analysis (PCA) and the Singular-Value Decomposition (SVD).

For an arbitrary evolution process, a certain field could be defined by a discrete form written
as u(xi, s

p) , where xi denotes the nodal displacement and sp the calculation step. It is also
equivalent to up(xi), ∀p ∈ [1, . . . , P ], ∀i ∈ [1, . . . , N ]. The main idea of the KLD is to obtain
the most typical or characteristic structure φ(x) among those up(x), rather like a small number
of vibration modes can encapsulate the vibration characteristics of a structure. This is equivalent
to solving for a function φ(x) maximising α where

α =

P∑
p=1

[
N∑
i=1

φ(xi)u
p(xi)

]2

N∑
i=1

(φ(xi))2

(20)

which can be rewritten as
N∑
i=1

{
N∑
j=1

[
P∑

p=1

up(xi)u
p(xj)φ(xj)

]
φ̃(xi)

}
= α

N∑
i=1

φ̃(xi)φ(xi) (21)

where φ̃(x) denotes the variation of φ(x). Introducing a vector notation, Eq. 21 takes the
following matrix form

φ̃TKφ = αφ̃Tφ; ∀φ̃⇒ Kφ = αφ (22)

The two point correlation matrix K is given by

Kij =
P∑

p=1

up(xi)u
p(xj) (23)
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whose matrix form becomes

K =
P∑

p=1

uP (uP )
T

(24)

which is symmetric and positive definite. If the matrix Q can be defined as a discrete field
history

Q =


u1

1 u2
1 · · · uP1

u1
2 u2

2 · · · uP2
...

... . . . ...
u1
N u2

N · · · uPN

 (25)

the matrix K will be rewritten as
K = QQT (26)

Thus the characteristic structure of the displacement field up(x) is presented as the eigen-
vectors φk(x) ≡ φk associated with the largest eigenvalues.

4.2 Reduced model construction

If some direct calculations have been carried out previously, the nodal displacements can be
denoted as u(xi, sp) ≡ upi , ∀i ∈ [1, . . . , N ], ∀p ∈ [1, . . . , P ]. The eigenvalues can be considered
in a descending sequence, and eigenvectors included in the reduced basis if the corresponding
eigenvalue λk > 10−10λ1, ∀k ∈ [1, . . . , n], λ1 being the largest eigenvalue. Then, those n
eigenvectors related to the eigenvalues above could be used for generating an approximating
basis for further solutions. The (N × n) matrix Φ can be defined as

Φ =


φ1

1 φ2
1 · · · φn

1

φ1
2 φ2

2 · · · φn
2

...
... . . . ...

φ1
N φ2

N · · · φn
N

 (27)

where N is the size of the full (i.e. unreduced) system and n is the number of eigenvectors
considered. The solution vector in Eq. 19 can be written as

x =
n∑

i=1

yiφi = Φy (28)

which can be substituted into Eq. 19 to obtain

AΦy = f (29)

We now premultiply both sides by ΦT

ΦTAΦy = ΦTf (30)

If the original coefficient matrix A is N × N , this procedure causes the size of the reduced
system (30) to decrease to n× n, providing the final low dimensional system.
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4.3 An ‘a priori’ model reduction strategy

As a design geometry continuously evolves, perhaps as part of an optimisation scheme, the
basis matrix Φ should be updated to fit the new condition and maintain the quality of each new
solution. If the basis matrix Φ is generated from solutions at the first P steps, and another S
steps considered with this basis, then after these S steps the residual of the system should be
evaluated as

R = Ax− f = AΦy − f (31)

If the norm of residual is sufficiently small, i.e. ‖ R ‖< ε, with ε a threshold value small
enough, the next S steps will be continued efficiently with the existing reduced basis. On the
other hand, if ‖ R ‖> ε, the approximation basis should be enriched and computations repeated
for the last S steps. The enrichment is built using a Krylov subspace, the new basis matrix being
defined as

Φ∗ = {ΦV,R,AR,A2R} (32)

where V is the combination of the most representative eigenvectors which is from the previous
reduced result y, and a new solution vector could be written as

y∗ =
[
Φ∗TΦ∗]−1

Φ∗TΦy (33)

5 NUMERICAL EXAMPLE

The problem is defined as a single quarter cylinder which contains an internal pressure of 1
MPa, the left, bottom, and back surface are set as x, y and z-direction displacement constraint
(Fig. 1). The control points for model construction are shown in Fig. 2. The inner radius is
R1 = 0.4m, outer radius R2 = 1m, the length L = 1m, and the material properties of steel are
used. This problem is solved first for P = 5 steps using the full (unreduced) IGABEM system
in order to generate the approximation matrix. These five models consider the inner radius
R1 = {0.4, 0.5, 0.6, 0.7, 0.8}. For the set of solution vectors generated from these problems,
only 3 eigenvalues satisfy the criterion for inclusion (αk > 10−10α1), so the full (78×78) matrix
is reduced through POD to a 3 × 3 matrix for solving a large number of problems considering
different values of R1. We let the inner radius R1 continuously increase in 0.01m steps from
0.4m to 0.8m, which is 41 calculation steps. After each 5 steps, the quality of the reduction
result is checked, and the basis enriched using the Krylov subspace.

Fig. 3 compares the radial displacement at the inner surface between the standard IGABEM
and the reduced IGABEM. As the figure shows, the reduced model provides an accurate result
with a lower dimensional computation, the error remaining within 0.23%.

6 CONCLUSIONS

In this article, the Isogeometric Boundary Element Method is combined with a model reduc-
tion approach based on the Karhunen-Loève decomposition and Krylov subspace to provide a
computational strategy for the repeated analysis of similar geometries. The size of the linear
system may be very considerably decreased without significant loss of accuracy. The numeri-
cal example proves the potential of this method. Further work, applying this method within a
structural optimisation process and for more complicated structures, will continue.
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Figure 1: Geometry of the example Figure 2: Control points

Figure 3: Radial displacement at the inner surface for each step
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Abstract. The article presents the research in order to create a new level of computer tools 

for effective design of clothing for underwater kinds of activity. This report covers the consid-

eration, sub-stantiation, and proposals relating to the ways for improving the mathematical 

models built into integrated CAD systems to be used in creation of underwater outfits. In or-

der to ensure precise solutions for stocking the outfit object with materials with respect to the 

underwater conditions selected, the experimental studies of deformation of modern expanded 

polymer materials under the action of external pressure and local stretching have been per-

formed in this research. Such multiaxial deformations lead to redistribution of the thickness of 

clothing being under investigation over the complicated surface of the man’s body.  A method 

of autonomous fixing the deformation of expanded material thickness has been developed for 

conduction of such investigations. Basing on the method proposed, the authors have devel-

oped a fundamental solution for a special device for autonomous measurements of the defor-

mation characteristics of expanded polymer materials, in particular, in the conditions of 

direct hydrostatic pressure on the clothing. The results of experimental studies obtained have 

allowed to derive relations for the behaviour of deformation characteristics of expanded ma-

terials. 
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1 INTRODUCTION 

Rapid development of modern CAD/CAM technologies in clothing industry is increasingly 

using mathematical models of various type and purpose. Clothing design for underwater envi-

ronments is based on conventional computer-aided-design (CAD) systems basis of which 

consists of mathematical models for obtaining construction parts and surface development, 

which are adequate to the external shape of the man’s body under static and dynamic condi-

tions [1].  In doing so, such clothing is a sophisticated system of work of expanded polymer 

materials aimed at ensuring heat and mechanical protection of the man’s body [2].  

In the manufacture of wetsuits, 3 types of design are noted: 

 "Dry" — these wetsuits almost never pass the water inside. This effect is achieved by 

the use of packing seals at the hands and neck, and waterproof zippers. Such suits can be 

made of trilaminate or neoprene. 

 ―Wet" — these wetsuits are made of neoprene (foam rubber). Thermal insulation is 

provided by the suit material itself due to the presence of air bubbles. Water trapped under the 

wetsuit cannot be a heat insulator, therefore, the closer suit is fitting, the less is a circulation 

of water under it, and the less a heat is spent for heating of new cold-water portion. 

 "Semi-dry" is an intermediate type of wetsuits. Despite the presence of seals, a water 

can penetrate to under-suit space (if air penetrates into it), but to a lesser extent, and, in close 

suit’s fitting, a water does ingress practically, due to which the heat insulating properties is 

increased. 

For wet type suits, a porous neoprene is used. For the manufacture of dry type wetsuits, 

a pressed neoprene is most commonly used (neoprene, which pores are partially or completely 

crushed), which increases reliability and reduces the buoyancy of the wetsuit. For spearfish-

ing, an ordinary neoprene is used, but with the cut pore (there are unclosed pores on inside, 

due to which the material is snag against the body, a water circulation inside the suit is re-

duced, the man is getting warmer). 

Neoprene can be used at -55 °C to + 90 °C temperatures, but the actual temperature range 

depends on the particular chemical composition of the material. Neoprene is resistant to the 

sunlight influence and chemically active oil products [3]. 

The average thickness of the material can range from water temperature and diving pur-

poses (Table.1). 

Table 1: Dependence of average thickness of the suit material on the water tempera-

ture 

Material thickness, 

mm 

Water tempera-

ture, °C 

Intended use 

9-10 4—12 diving operations 

7 10—18 spearfishing, diving 

5 17—23 surfing, diving 

3 24 и выше surfing, wind-kite surfing, other 

sports 

The thickness of diving suits depends on the structure of set of individual layers of mate-

rials. These materials have a feature of compression deformation under external loads. A par-

ticular importance is the change in thickness of such materials at the hydrostatic pressure. At 

that, the presented data of material thickness for underwater clothes lose their effectiveness 

because of change of thermal resistance of clothes and overall heat loss by the man. These 
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changes must be taken into account at the stage of engineering analysis in the CAD. This pa-

per presents the engineering developments that allow determining the experimental changes in 

the geometric characteristics of the foam material under the influence of external pressure. 

The parts of the diving suits are exposed to the most pressure under the influence of the foot. 

Therefore, the integration of the results of experimental studies of foam materials for clothing 

is considered by the example of the design of support structures of the diving suit. 

2. EXPERIMENTAL STADIES

2.1 Justification of special materials for the research 

Support structures of diving suits can be made from several types of materials that are part 

of information provision in CAD-designing of underwater clothes (Fig.1): 

Figure 1: Main types of materials for the supporting structures of diving suits 

2.2. Features of structure of “sandwich-type” material sets. 

To determine the source data required in the automated calculation of clothing, the in-

formation registry of necessary materials for the supporting structures of diving suits has been 

established [4] (Table 2). 
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Table 2: Features of materials for wetsuits 

New materials Manufacturing 

country 

Composition Benefits 

Radially covered 

neoprene 

Korea super stretch (latex), 

neoprene, nano-titanium 

alpha, jersey nylon 

High strength, dura-

bility 

Nano-zirconium lycra Japan lycra-nylon, neoprene, 

nano-titanium alpha and 

aero-zirconium 

Convenience, flex-

ibility. Technology 

of transmission of 

solar heat to the hu-

man body. Allows to 

compare the heat of 5 

mm fabric with 8 

mm one. 

Nano-super stretch Japan super stretch, neoprene, 

nano-titanium alpha, su-

per stretch 

Super stretch materi-

al increases the elas-

ticity of neoprene in 

2 times. Nano-

titanium alpha is 

used for maximum 

heating 

Nano-aqua block, 

neoprene 

Japan aqua block, neoprene, 

nano-titanium alpha, 

aqua block 

―Aqua block" is a 

material that blocks 

the water from stag-

nation. Nano-

titanium alpha pro-

vides maximum heat-

ing. 

Nano-SCS Silver Japan super stretch, neoprene, 

nano-titanium silver 

It retains 30 % more 

heat.  

Nano-SCS Gold Japan super stretch, neoprene, 

nano-titanium gold 

Retains 35 % more 

heat 

Breathable fabric Japan cordura, polyurethane, 

polyurethane film, a net-

like layer 

Removes a moisture, 

the weight of suit is 3 

kg. 

Suitable for all-

season dry suits 

Butyl-rubber fabric United 

Kingdom 

lycra nylon, neoprene, 

nylon 

Suitable for light dry 

suits. More durability 

and less volume 

As can be seen from the above analysis of materials used for the manufacture of wetsuits, 

neoprene is the basic material from which the wetsuits are made. The main part of ―sandwich 

structures‖ is neoprene (more precisely, chloroprene),(Fig.2). 
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Figure 2:  Neoprene  

 

2.3 Basic properties of chloroprene materials for information database of CAD-system 

for designing the wetsuits. 

 

Table 3: Properties of rubbers based on chloroprene rubbers  

Index Unfilled rubbers Filled rubbers 

regulator regulator 

sulfur thiol sulfur Thiol 

 

Elongation ten-

sion 

300 %, MPa 

1,0-1,5 1,9-2,3 8,5-9,5 17-18 

Relative elonga-

tion, % 

880-11000 780-900 450-550 450-550 

Tear resistance, 

kN/m (20 °С) 

30-45 25-35 55-70 55-65 

Rebound elastici-

ty, % 

40-42 40-42 32-35 38-40 

Brittleness tem-

perature, 
о
С 

-37 -37 -37 -37 

Compression set 

20% (120 t, 

100 °С), % 

80-90 35-40 80-85 45-53 
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The properties of such materials are determined by the characteristics of composite layers 

combined into the ―sandwich type‖ general construction of the material. Mechanical and 

thermophysical properties of clothing from expanded sandwich type materials are greatly de-

pendent upon the conditions of hydrostatic pressure and deformation with respect to the 

man’s body surface as well as upon dynamic deformations during operational service of the 

suit [2,3]  

 

2.4.  Study the effect of pressure on the deformation of neoprene. 

 

Material of clothes in service suffers loads and deformation that in general do not exceed 

rupture stress. At thus, when examining mechanical properties of materials, total strain and 

components thereof at single loadings below rupture stress are measured besides strength and 

rupture elongation characteristics. 

A method of autonomous fixing the deformation of expanded material thickness has been 

developed for conduction of such investigations. Basing on the method proposed, the authors 

have developed a fundamental solution for a special device for autonomous measurements of 

the deformation characteristics of expanded polymer materials, in particular, in the conditions 

of direct hydrostatic pressure on the clothing 

(Fig.3).

 
 

Figure 3:  Device for compression of porous materials research (1-axis neoprene 

fixation; 2 - screw connection; 3 - the top support plate; 4 - a lower 

base plate; 5 - neoprene; 6 - screw clamp for a porous material). 

 

The results of experimental studies obtained have allowed to derive relations for the beha-

viour of deformation characteristics of expanded materials. The examination resulted in de-

rived dependency for further use in automated calculation of correlations of the diving dress' 

parts dimensional parameters:  

                                       (1) 

where: δ - Thickness, m.; R
2
 -  credibility factor. 
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2.5.  Results for CAD wetsuit 

The thicker the neoprene sample is, the less it is affected with strain changes. As to the 

plastic strain, the experiment had show that plastic strain depends upon both thickness of the 

sample and the coating of it. 

Accounting derived results there was an algorithm for further integration in CAD sys-

tems elaborated [5] (Fig.4). 

Figure 4:  Algorithm CAD-Design wetsuits (D- deformation; δ -  thickness, P - pres-

sure, ρ - density, G- geometric index,λ - thermal conductivity, - design 

factors). 
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3. CONCLUSIONS 

 

The results allow enlarging of modern capabilities of diving dress' design using computer-

aided methods, accounting for stress-strain behavior of materials, being complex physico-

chemical systems, thus facilitating development of science and technology.  

On the basis of the new relations for the behaviour of material properties in the elements of 

clothing construction, the authors have proposed a mathematical model and a basic algorithm 

of the program module for extending and improving the functional life cycle of modern CAD 

systems for functional clothing design. 
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Abstract. The article is devoted to the numerical simulation of turbulent air flows in the vi-
cinity of building complexes. The simulation was performed under isothermal assumption on 
the basis of 3D URANS equations supplemented with the k-ω SST turbulence model. The 
ANSYS Fluent Software was used as the main modeling tool. At the first stage, the atmospher-
ic flow in the neighborhood of a building of a complex shape was carried out taking into ac-
count the surrounding objects. The numerical simulation was performed under the conditions 
of the experiments. The 3D structure of the flow in the vicinity of the building was obtained 
and the comparison of the calculation results with the experimental data on the pressure coef-
ficient distribution on the walls of the building was performed. At the second stage, we made 
the full-scale numerical modeling of the flow around the complex of high-rise buildings in the 
Frankfurt/Main, Germany, city center. According to the results of the numerical modeling the 
transient flow structure in the vicinity of the buildings was obtained and the mean and the fluc-
tuating components of the wind load were estimated. The pedestrian comfortable/uncomfortable 
zones were also detected for this area of the city.  
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1     INTRODUCTION 
Aerodynamics of buildings is an area of applied research which has emerged in the recent 

years as an academic discipline examining the wind impacts on civil engineering structures 
disposed on a ground surface in the atmospheric boundary layer (ABL). In the recent years 
the density of urban environment tends to increase. When new high-rise objects are con-
structed within an already densely-built area, it leads to changes in air flow around the already 
existing buildings through vortex formation or higher wind velocities. The study of wind ac-
tions on buildings is one of the most important design stages since such actions affect signifi-
cantly the mechanical strength of buildings. Wind actions accompanied by the acceleration 
due to structure vibrations under dynamic gusts may violate the normal service conditions in 
upper-floor premises of high-rise buildings.  

The study of air flow in the vicinity of buildings is especially important for design of addi-
tional structural elements and ventilated facades. Caving of facades elements under the strong 
wind conditions is often observed. To prevent, specific calculation methods have to be devel-
oped which take into account the inhomogeneous distribution of wind load and the presence 
of local zones of negative pressure on the building walls. Another important task is to provide 
a comfortable environment for human activity, which requires a study of urban pedestrian 
comfort.  

Presently, there are two approaches to solving building aerodynamics problems: the theo-
retical approach and the experimental one. The theoretical approach is based on rational me-
chanics methods, in particular, on fluid dynamics, and it applies mathematical models to 
describe transient turbulent air flows. For solving the initial-boundary-value problems, both 
theoretical methods and numerical algorithms are used. In the latter half of the XX century, the 
basic concepts of hydrodynamic processes in atmosphere were formulated [1  3] and, in this 
way, a certain theoretical basis for evaluating the wind actions was developed [4  6]. 
Progress in computing means and numerical methods has enabled the use of computer science 
in solving hydro- and gas-dynamics problems, including problems in the exterior building 
aerodynamics. The experimental approach is based on wind-tunnel studies [7  11] followed 
by treatment of the experimental data aimed to get empirical engineering dependences to de-
scribe the wind actions on various objects [12  14]. It should be noted, that the experimental 
modeling is time and cost consuming. Moreover, experiments are significantly limited by pa-
rameters of wind facilities. For example, it is quite difficult to reproduce the atmospheric 
boundary layer in the experiment. As for semi-empirical engineering methods, they permit 
evaluation of the mean and fluctuating wind-load components only for very simple configura-
tions and fail to account for the interference effects between buildings as well as for complex 
phenomena of self-exciting oscillations and resonances arising under external dynamic ac-
tions. It leads to the necessity to develop new approaches that allow considering the interfe-
rence effects in the air flow to predict wind loads and pedestrian comfort zones location. Thus 
it is reasonable to use methods based on computational experiments, which allow us to reduce 
time and cost to optimize engineering project and to dump excessive oscillations. Such me-
thods may be based on the use of CAD/CAE software packages [15], [16]. 

In [17], the authors carried out the numerical simulation of turbulent flows of incompressi-
ble air in the vicinity of a plate-mounted prism of a square cross-section. The comparison with 
experimental data [18] on the velocity and turbulent kinetic energy (TKE) profiles was per-
formed and satisfactory agreement was obtained. However, it becomes especially important to 
study the interference effects in flows around more complex configurations, for example for 
building complexes in cities.  

6901



Svetlana A. Valger,  Natalya N. Fedorova and Alexandr A. Fedorov 

In the paper, the numerical simulation of the turbulent air flows in the vicinity of the build-
ings complexes was performed. At the first stage, the atmospheric flow in the neighborhood of 
a building of a complex shape was carried out taking into account the interference with sur-
rounding objects. The numerical simulation was performed under the conditions of the expe-
rimental data obtained in 3-АТ-17.5/3 aerodynamic facility [19]. The 3D structure of the flow 
in the vicinity of the building was obtained and the comparison of the calculation results with 
the experimental data on the pressure coefficient distribution on the walls of the building was 
performed. At the second stage, the full-scale numerical modeling of the flow around the com-
plex of high-rise buildings in the Frankfurt/Main, Germany, city center was made and pede-
strian comfort of the area was investigated.  

2     METHOD OF COMPUTATIONS 
The simulation was performed under isothermal assumption on the basis of 3D URANS 

equations [20] supplemented with the k-ω SST turbulence model [21] and Kato-Launder [22] 
correction. To solve the initial-boundary problem, the finite-volume method and the method 
of splitting taking physical processes into account were used [23]. A monotonic solution was 
obtained using the MUSCL scheme of third-order accuracy for convective terms and the cen-
tral-difference scheme of second-order accuracy for the viscous terms. For the temporal ap-
proximations, an implicit scheme of second-order accuracy was used. The ANSYS Fluent 
Software [15] supplemented with user-defined functions for settings the initial and boundary 
conditions was used. 

3     AIR FLOW IN THE VICINITY OF BUILDING OF COMPLEX SHAPE  

3.1     Problem statement, boundary conditions and computational grid 
Let us consider a turbulent isothermal air flow in the neighborhood of a building of com-

plex shape (Fig. 1, a, b). The numerical simulation was performed under the conditions of the 
experimental data obtained in 3-АТ-17.5/3 aerodynamic facility [19]. The model is of 1:150 
to the real scale. The main goal of the investigation was to get pressure coefficient distribution 
on the walls of the building of a complex shape (building A, fig. 1, c). Two cases were ex-
amined in the paper: when the building A was surrounded by another buildings (conf. 1) and 
when it was isolated (conf. 2). The incoming flow velocity is U∞= 16.6 m/s and the boun-
dary-layer thickness is   = 0.92 m for these cases. The Reynolds number calculated by length 
scale  and flow velocity U∞ is Re ≈ 1.05 × 106.  

The computational domain is shown in Fig. 2, a. The characteristic diameter of the domain 
is about 3.5 and the height of the domain is ≈ 2.5. The sizes of the calculation domain were 
chosen with regard for the scale  so, that the artificial boundaries do not influence the calcu-
lated data [18]. 

In the computation, the north wind direction (α = 0º, Fig. 1, c) was modeled with the in-
flow velocity and TKE profiles taken from the experimental data [19]. The "no-slip" boun-
dary condition was used for the substrate and the walls of the buildings.  At the exit, the 
condition of constant static pressure was used, P = Pwall  P0 = 0. At the upper boundary, we 
used the symmetry boundary condition, which provided the absence of flow across this boun-
dary. 
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a) 

b) c)
Fig. 1: Building of complex shape (а), the geometrical model of the building (b, facade's view) and location of 

the building А relative to the surrounding area (c). 

The computational finite-volume grid was constructed with the use of the ANSYS Mesh-
ing preprocessor. A fragment of unstructured computational grid on building surfaces is 
shown on Fig. 2, b. The computational finite-volume grid includes tetra elements in the outer 
region and the prismatic layers near the solid walls. A series of calculations using various 
meshes was performed for conf. 1  to obtain the mesh-independent solution. The parameters 
of the grids are presented in Table 1. The most detailed numerical grid includes approx. 59 
millions of cells.  The non-dimensional distance to the wall at the first calculation node was 
y+= 1 for all cases. 

No  
Total number of
cells, millions 

Characteristic element size 
near building A, m 

y+ 

1 ≈ 9  ≈ 0.013 

≤ 1 
2 ≈ 16,6  ≈ 0.012 
3 ≈ 26  ≈ 0.01 
4 ≈ 46  ≈ 0.008 
5 ≈ 59  ≈ 0.0066 

Table 1: Mesh characteristics. 

a) b) 
Fig.2: The computational domain (а) and a fragment of the mesh on the building's walls (b). 

А
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3.2    Results and discussions 

Let us consider the flow structure in the vicinity of the building A taking into account the 
surrounding buildings (conf. 1). In this case, an steady-state solution with residuals for all eq-
uations smaller than 103 was obtained. The flow structure is considerably influenced by the 
interference effects due to presence of the neighboring buildings. Under the conditions of 
north wind direction, the building A is located behind the building B. As we can see in 
Fig. 3, a, the flow separates from the edge b1 of the building B. The large recirculation zone 
V2 is formed behind it. That changes the angle at which the free stream comes on the front 
side of building A. Moreover, the free stream velocity is increased up to 20.5 m/s, when pass-
ing around the building B and zone V2. It leads to an increase in the pressure coefficient val-
ues on the facade a1 of the building A (Fig. 3, c). We can also see a horseshoe vortex in front 
of the building A. The large separation zone is formed on the roof of the building A, and the 
negative values of pressure are observed in this zone. It is also important to note that the 
building C is located extremely close to the building A and it is the cause the velocity increase 
up to 19 m/s in the region between them. 

a) b)

c) d)

Fig. 3: Air flow structure in the vicinity of building B (a,b) and  in the vicinity of building A (c,d). 

The flow structures in the vicinity of building A are shown on the Fig. 4 for both the confi-
gurations 1 and 2. In the second case, the inflow comes to the facade of the building A with a 
slower speed and at a smaller angle (Fig. 4, b) in comparison with the first case. The maximal 
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values of positive pressure coefficient are less at this zone for conf. 2 and reaches values of 
Cp,max,2≈0.83 (≈0.6Cp,max,1), where Cp,max,1 is the maximal values of positive pressure coeffi-
cient for conf. 1. The maximal absolute values of negative pressure coefficient for configura-
tion 2 are about Cp,min,2≈-1.68 (≈ 0.73Cp,min,1).  

For configuration 2 the absence of obstacles behind the building A also leads to the forma-
tion of an extensive recirculation zone V6 on the leeward side.  For configuration 1 zone V6 is 
smaller "pressed" to the leeward side of the building A (Fig 4,a). 

      а) b)
Fig. 4: Flow structure in the vicinity of building A obtained 
 from numerical simulation for conf. 1 (a) and conf. 2 (b). 

а) 

b) c)
Fig. 5: The pressure gauges location in experiment [19] (a, b) and pressure coefficient values (c) 

 for gauges g1 - g5 in section h3 obtained from the experiment (exp), from the numerical simulation of conf.  1 
for various meshes (case 1 (1) - (5)) and from the numerical simulation of conf. 2 for mesh (4) (case 2).   

The obtained numerical results for conf. 1 and 2  were compared with the experimental da-
ta [19] on the pressure coefficient Cp. Fig. 5 shows the values of the Cp, obtained in characte-
ristic points (Fig. 5, b) at the section h3 = 0.760hb (Fig. 5, a) in the experiment and in the 
numerical simulation for conf. 2 on the grid No. 4 (see Table 1) and for conf. 1 on the various 
grids. As we can see in Fig. 5, negative pressure coefficient values are observed for all the 
considered points in the section h3, which connected with the fact, that the cross section h3 is 
located in the separation zone. The good agreement with experimental data [19] was obtained 
for conf. 1 on the grid No. 4 and No. 5. For isolated building (conf. 2), the numerical solution 
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significantly differs from the experimental data. For conf. 2 the separation zone on the facade 
is shifted due to the change in free stream flow angle. It testifies of the necessity to consider 
the interference effects and flow interaction with the surrounding buildings when calculating 
wind loads.   

4     AIR FLOW IN THE VICINITY OF THE COMPLEX OF HIGH-RISE BUILDINGS  

4.1     Problem statement, boundary conditions and computational grid 
At the second stage, a turbulent isothermal air flow is considered in vicinity of a high-rise 

building complex located in Frankfurt/Main city centre (Fig. 6, a). The numerical simulation 
was performed using full-scale geometrical model1. The maximal height of the buildings is 
hb,max≈186 м. The velocity in the flow core is U∞= 25.4 m/s and the boundary-layer thickness 
is  ≈ 500 m [24]. The freestream Reynolds number calculated by length scale L =   and 
flow velocity U∞ is Re ≈ 3.2 × 108. The computational domain shown in Fig. 6, b, has a di-
ameter of d ≈ 10hbmax and a height of h ≈6hbmax.  

The inflow velocity and TKE were calculated using Monin-Obukhov theory considering 
the nature measurements [24] in some points on Commerz Bank walls for south-west wind 
direction (α = 225º). The total number of finite-volume cells is ≈33.6×106 for the case.  The 
characteristic size of cells near the walls is about ≈3 m.  

        a)                                    b) 

Fig. 6: The geometrical model of buildings complex (a) and the computational domain (b): 
 1 – inflow conditions, 2 –outlet, 3 – "no-slip" wall condition, 4 – symmetry.  

4.2    Results and discussions 
The air flow near the buildings has a complex 3D vortex structure. In Fig. 7, the instanta-

neous velocity fields at the moment t=210.7 sec are presented in several horizontal cross-
section. Under the conditions of south-west wind direction, the vortexes separate from the 
side edges of the first-located high-rise building (building 1, Fig. 6, a) and a von-Karman vor-
tex structure is formed. It leads to velocity increasing up to ≈1.31.5 Uh,∞, where Uh,∞  is a 
freestream velocity at the height h. The building 2 is located almost completely in separation 
zone formed behind the building 1. It causes the high negative values of pressure coefficients
at the front faces of the building 2. 

1 Geobasisdaten:© Stadtvermessungsamt Frankfurt am Main, Stand 20.01.2015 

1 
2 

3 
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a) b)

c) d)

e) f)
Fig. 7: The instantaneous velocity fields at the moment t=210.7 sec. for different characteristic 

 horizontal sections:  z= 8 m (a), 26 m (b), 56 m (c), 86 m (d), 146 m (e), 176 m (f). 

In Fig. 8, a we can see an instantaneous distribution of the pressure coefficient Cp on the 
walls of the high-rise buildings. The analysis of the Cp distribution has shown that high values 
of wind pressure are observed in the p2  zone where the flow comes to the front face of the 
building 1, and also in the p1 zone where the flow comes to the upper part of the windward 
face of the building 2. To estimate the mean and the fluctuating components of the wind load 
on the building 1, we calculated the pressure time history in several characteristic points on its 
surface. The Fig. 9, a shows P(t) at the point c1 (-107.8 m;-189.5 m; 60 m) located at the frontal 
face of building 1. The average pressure at this point is Pс1≈76.9 Pa. Pressure fluctuations at 
this point are not significant (P'с1≈0.5 Pa). We observe a different situation at the frontal sur-
face of building 2 (Fig. 9, b), namely, the fluctuating component of the wind load at the point 
c2 (10.3 m; 46.5 m; 60 m) reaches more than 30 % from the average value (Pс2≈-33.6 Pa; 
P'с2≈11.4 Pa). 

U∞ 

U∞ U∞ 

U∞ U∞ 

z 
x y 

U∞ 
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а) b)
Fig. 8: The instantenous pressure coefficient distribution on the buildings walls at the moment t=210.7 sec. (a) 

and the field of velocity for  horizontal section  z= 2 m (b). 

а) b)
Fig. 9: The static pressure - time dependence at the gauge point c1 (-107.8 m;-189.5 m; 60 m) located at the frontal 

surface of building 1 and the gauge point c2 (10.3 m; 46.5 m; 60 m) located at the frontal surface of building 2. 

Low-rise buildings located in the neighborhood of high-rise buildings 1, 2 and 3 do not 
significantly influence the formation of large vortex flow structures. However, low-rise build-
ings form roughness of the ground surface and affect the air flow in pedestrian zones. The in-
stantaneous velocity field at the horizontal section z=2 m is shown in Fig. 9. The maximal 
velocity amplitude at this section occurs at zones U1 and U2, that is caused by "restriction" of 
flow in these areas. The maximal flow velocity at the zone U1 reaches values of about 
4.8U∞,h1, where U∞,h1 ≈ 2.8 m/s is a velocity of free stream at the height z=2м. The maximal 
flow velocity at the zone U2 reaches values of about 3.5U∞,h1. From the viewpoint of pede-
strian comfort such values may be considered as unfavorable. A visualization of the flow 
structure near the pedestrian zones may allow us to optimize city environment taking into ac-
count street topology. It also allows us to design additional protective measures like park 
zones etc. to control wind flows. 

5     CONCLUSIONS  

 3D computational analysis of a turbulent separated air flow in the vicinity of the building
of complex shape has been performed with a high resolution of the viscous sublayer tak-
ing into account the surrounding buildings.

 The flow interference effects were described and their influence on the wind load distri-
bution on the buildings wall was evaluated. It has been demonstrated that local separated
zones on the building faces may occur and pressure coefficient may be sign-alternating
with high amplitudes that must be taken into account in the design of facades.

U∞ 

U1 U2 
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 The comparison of the numerical results and the experimental data [19] on the pressure
coefficient distribution on the buildings walls was carried out for the two configurations.
Satisfactory qualitative and quantitative agreement with the experimental data was ob-
tained for the non-isolated building location (conf. 1).  We have observed that flow inter-
ference effects may lead to a significant increase in the wind load (up to 50%) on a
building. The results obtained for the conf. 2, when the building was isolated, significant-
ly underpredict the values of the wind pressure coefficient.

 We performed the 3D computational analysis of the flow around the complex of high-
rising buildings in the Frankfurt/Main city center, Germany. The flow structure and pres-
sure distribution on buildings walls were obtained. The main features of a wind flow in the
vicinity of buildings were investigated and pedestrian comfortable/uncomfortable zones
were detected.

6     ACKNOWLEDGMENTS 
The work was supported by the Ministry of Education of the Russian Federation (Project 

No. 211, task No. 2014/140 for executing scientific activities within the basic part of govern-
ment order); German Academic Exchange Service (DAAD) 2014/2015. 

The authors would like to thank: 
- Prof. Valery M. Mitasov, Novosibirsk State University of Architecture and Civil Engi-

neering (Sibstrin), for providing the wind tunnel experimental data [19] and valuable ad-
vices on wind loads modelling; 

- CADFEM International GmbH and especially Dr.-Eng. Günter Müller and Dr.-Eng. Ste-
fan Trometer for providing geometry model of Frankfurt/Main city area and the valuable 
advices on using of CAE ANSYS for cityscape modelling; 

- Our colleagues from IAG, Stuttgart University, Prof. Dr.-Eng. Ewald Krämer, Dr.-
Eng. Uwe Gaisbauer and Dr.-Eng. Thorsten Lutz for their support of Svetlana Valger 
during her internship at IAG.  

REFERENCES  
[1] L.T. Matveev, Fundamentals of General Meteorology: Physics of Atmosphere, Gidro-

meteoizdat, Leningrad, 1985 (in Russian). 

[2] A. Gill, Atmosphere-Ocean Dynamics, Vol. 1, Mir, Moscow, 1986 (in Russian). 

[3]  A. Gill, Atmosphere-Ocean Dynamics, Vol. 2, Mir, Moscow, 1986 (in Russian). 

[4] E. Simiu and R. Scanlan, Wind Effects on Structures, edited by B.E. Maslov, Stroiizdat, 
Moscow, 1984 (in Russian). 

[5] A.N. Birbraer and A.Yu. Roleder, Extreme Impacts on Buildings, St.-Petersburg Poly-
technic University, St. Peters-burg, 2009 (in Russian). 

[6] G. Fershing, Fundamentals of Aeroelasticity, edited by G.M. Fomin, Mashinostroenie, 
Moscow, 1984 (in Russian). 

[7] Computational Techniques for Fluid Dynamics, Springer-Verlag, Berlin, 1988. 

[8] P.N. Solyanik, Experimental Aerodynamics, Kharkov, National Aero-Space University 
“Kharkov Aviation Institute”, 2007. 

6909



Svetlana A. Valger,  Natalya N. Fedorova and Alexandr A. Fedorov 

[9] N.A. Zaks, Basics of Experimental Aerodynamics, Oborongiz, Moscow, 1953 (in Rus-
sian). 

[10] S.M. Gorlin, Experimental Aerodynamics, Vysshaya Shkola, Moscow, 1970 (in Rus-
sian). 

[11] S.V. Nikolaev, V.M. Ostretsov, et al. Aerodynamic tests of high-rise building models, 
in: Unique and Special Technologies in Construction Activities, Dom na Brestskoi, 
Moscow, 2005, P. 82-84 (in Russian). 

[12] Construction norms and regulations, CN&R 2.01.07-85*, Loads and Impacts, FGUP 
CPP, Moscow, 2010 (in Russian). 

[13] ENV 1991: Eurocode 1: Basis design and actions on structures. Parts 2-4: Wind action, 
CEN, 1994. 

[14] Eurocode 1. Impacts on Building Structures, Parts 14, General impacts, Wind impacts, 
Standard-Practice Engineering Code, Minstroi Arkhitektura, Minsk, 2010. 

[15] ANSYS Fluent [Electronic resource] // ANSYS Software [Official web-site], 

http:// www.ansys.com  

[16] SOFISTIK CFD [Electronic resource] // SOFISTIK [Official web-site], 
http://www.sofistik.com/  

[17] S.A. Valger, N.N. Fedorova, A.V. Fedorov, Structure of turbulent separated flow in the 
neighborhood of a plate-mounted prism of square section. Thermophysics and Aerome-
chanics, 2015, Т. 22. Vol. 1, P. 29-41 (in Russian).  

[18] A. Mochida, Y. Tominaga, S. Murakami, R. Yoshie, T. Ishihara, and R. Ooka, Compar-
ison of various k-ε models and DSM applied to flow around a high-rise building report 
on AIJ cooperative project for CFD prediction of wind environment, Wind and Struc-
tures, 2002, Vol. 5, No. 2-4, P. 227-244. 

[19] The science-technical report on experimental measurements of pressure on the buildings 
walls of model "Biotechnopark", Kol’tcovo city, 2013 (in Russian). 

[20] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier, Ams-
terdam, 2005. 

[21] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Appli-
cation // AIAA Jour. 32, No. 8, 1994. P. 1598-1605 

[22] Kato, M., Launder B.E. The modelling of turbulent flow around stationary and vibrating 
square cylinders // Ninth Symposium on "Turbulent Shear Flows". Kyoto, Japan. Au-
gust 16-18, 1993. –P.10–14.  

[23] A.J. Chorin, Numerical solution of Navier—Stokes equations, Math. Comp., 1968, P. 
745762. 

[24] Hessisches Ministerium des Innern. Ergänzungserlaß zu DIN 1055, Teil 4, Ausgabe 
August 1986, Betr. Windlasten bei hohen Hochhäusern im Raum Frankfurt am Main, 
1987. – 491 p. 

[25] Berneiser A., König G. Wind Loads in City Centres Demonstrated at the New Com-
merzbank Building in Frankfurt/Main // LACER, 1997. – No. 2. – P. 231–244.  

6910



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

A STABLE AND CONSERVATIVE TIME-DEPENDENT INTERFACE
FORMULATION ON SUMMATION-BY-PARTS FORM: AN INITIAL

INVESTIGATION

Samira Nikkar and Jan Nordström

Department of Mathematics, Computational Mathematics, Linköping University
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Abstract. A time-dependent coupling for curved multi-domain problems is considered. First,
we transform the problem from Cartesian coordinates into curvilinear coordinates and apply
the energy method to derive well-posed and conservative interface conditions.

Next, we discretize the problem in space and time by employing finite difference operators
that satisfy the summation-by-parts convention. The boundary and interface conditions are
imposed weakly by using the simoultaneous approximation term technique as penalty formula-
tions. The discrete version of the energy method is used to derive the stability and conservation
requirements. We show how to formulate the penalty operators in such a way that the interface
procedure is automatically adjusted to the movements and deformations of the interface, while
stability requirements are fulfilled and conservation conditions are respected.

Finally, we illustrate the developed techniques by considering an application with the Eu-
ler’s equations posed on time-dependent curved multi-domains in two space dimensions. The
numerical calculations corroborate stability and accuracy of the fully discrete approximation.
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1 INTRODUCTION

Multi-block schemes that use Summation-by-Parts (SBP) operators and the Simultaneous
Approximation Terms (SAT) technique [2], have previously been investigated in terms of sta-
bility, accuracy and conservation [3, 5, 6, 10, 11]. The focus of the SBP-SAT multi-block
methodology has been, so far, mostly on time-independent spatial domains with a notable ex-
ception being [13].

In this paper, we extend the multi-block technique for moving domains in [13] and construct
an interface formulation that couples two curved domains over a moving and/or deforming
interface. The new time-dependent interface formulation is provably stable, accurate and con-
servative.

The rest of this paper proceeds as follows. In section 2, we transform the continuous problem
from Cartesian to curvilinear coordinates and derive a conservative and well-posed interface
condition. Section 3 deals with the discrete problem where we guarantee the stability and
conservation of the interface procedure. In section 4, numerical experiments are performed and
corroborate the results regarding the accuracy, stability and conservation of the scheme. Finally,
we summarize and draw conclusions in section 5.

2 THE CONTINUOUS PROBLEM

Consider the following system of equations on a time dependent deforming domain

Ut + (ÂU)x + (B̂U)y = 0, (x, y) ∈ ΩL(t), t ∈ [0, T ],

Vt + (ÂV )x + (B̂V )y = 0, (x, y) ∈ ΩR(t), t ∈ [0, T ],
(1)

where U, V are the solutions on the left and right sub-domains, the subscripts t, x and y indicate
partial derivatives in their respective direction and ΩL,R(t) are the left and right spatial domains.
Moreover, Â and B̂ are constant and symmetric matrices of size l. In (1), ΩL,R(t) meet at a
time-dependent interface denoted by i(t), as shown schematically in Figure 1.

Ω! Ω!

𝑥

𝑦	  

𝑖(𝑡)

Figure 1: A schematic of the domains ΩL,R(t) and the time-dependent interface i(t)

We transform (1) from the Cartesian coordinates, x and y, into curvilinear coordinates ξ
and η by employing a Lagrangian-Eulerian transformation [22]. The dependence between the
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coordinates is described by

x=x(ξ, η, τ), y= y(ξ, η, τ), t= τ,
ξ= ξ(x, y, t), η = η(x, y, t), τ = t.

(2)

A schematic of the transformed sub-domains, ΦL,R, and the fixed interface between them, i, is
shown in Figure 2. For more details about the transformation, see [13].

ϕ! ϕ!

𝜉

𝜂	  

𝑖

Figure 2: A schematic of the transformed domains ΦL,R and the time-independent interface i.

The governing equations in (1) are then expressed in terms of ξ and η by using the chain rule,
as

(JLUτ ) + (ALU)ξ + (BLU)η = 0, (ξ, η) ∈ ΦL, τ ∈ [0, T ],
(JRVτ ) + (ARV )ξ + (BRV )η = 0, (ξ, η) ∈ ΦR, τ ∈ [0, T ],

(3)

where JL,R > 0 are the determinants of the Jacobian matrix for the left and right transforma-
tions, respectively. Moreover,

AL,R = (Jξt)L,RI + (Jξx)L,RÂ+ (Jξy)L,RB̂,

BL,R = (Jηt)L,RI + (Jηx)L,RÂ+ (Jηy)L,RB̂,
(4)

where I is the identity matrix of size l. To get the conservative form in (3), we have used the
Geometrical Conservation Law (GCL) [12, 13] summarized as (JLR)τ +(AL,R)ξ+(BL,R)η = 0.

2.1 Conservation

To derive conservation conditions, we apply the energy method (multiplying the first and
second equations in (3) with φTL and φTR where (φL,R)j ∈ H0 for j ∈ {1, . . . l} are arbitrary test
functions that vanish at the boundaries (not at the interface), and integrate in space and time).
The result is∫ T

0

∫∫
ΦL

[(φTLJLU)τ+(φTLALU)ξ+(φTLBLU)η]dΦdτ=

∫ T

0

∫∫
ΦL

[(φTL)τJLU+(φTL)ξALU+(φTL)ηBLU ]dΦdτ,∫ T

0

∫∫
ΦR

[(φTRJRV )τ+(φTRARV )ξ+(φTRBRV )η]dΦdτ=

∫ T

0

∫∫
ΦR

[(φTR)τJRV+(φTR)ξARV+(φTR)ηBRV ]dΦdτ.

(5)
To derive the total derivatives on the left hand side of both equations in (5), one needs to use
the GCL corresponding to the left and right transformations. We add the two relations in (5),
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integrate by parts and only consider the terms at the interface. Additionally, at the interface we
assume φL = φR := φi to obtain∫∫

ΦL

(φTLJLU)

∣∣∣∣τ=T

τ=0

dΦ+

∫∫
ΦR

(φTRJRV )

∣∣∣∣τ=T

τ=0

dΦ−
∫ T

0

∫∫
ΦL

[
UT [(JLφL)τ+(ALφL)ξ+(BLφL)η]

]T
dΦdτ

−
∫ T

0

∫∫
ΦR

[
V T [(JRφR)τ+(ARφR)ξ+(BRφR)η]

]T
dΦdτ

= −
∫ T

0

∫
i

φTi (ALiUi−ARiVi)︸ ︷︷ ︸
IT

dηdτ

(6)
where the subscript i denotes interface and IT indicates interface term. To derive the IT , we
have used the Green-Gauss theorem. Moreover, we have again applied the GCL in order to
arrive at the weak forms on the left hand side of (6). Further, we note that the following terms
are included in IT

ALi = (Jξt)LI + (Jξx)LÂ+ (Jξy)LB̂,

ARi = (Jξt)RI + (Jξx)RÂ+ (Jξy)RB̂,
(7)

where the following relations between the metric terms and their counterparts corresponding to
the inverse transformation hold

(Jξt)L,R = (xηyτ − xτyη)L,R, (Jξx)L,R = (yη)L,R, (Jξy)L,R = (−xη)L,R. (8)

The two domains, ΩL,R(t), are always connected at the interface regardless of the movements
and deformations. Therefore, the left and right transformations map the same curve (i(t) in
the Cartesian coordinates) to the same line segment (i in the curvilinear coordinates). Hence,
although the left and right transformations may differ in general, the left and right metrics terms
in (8) will have exactly the same values at the interface. We conclude that

ALi = ARi := Ai (9)

and Ui = Vi removes the interface term. Finally, (6) becomes an integral statement of the
original problem and conservation is respected. Condition (9) will need to be respected also in
the numerical approximations as we will show below.

2.2 Well-posedness

The energy method (multiplying (3) with the transpose of the solution and integrating over
the spatial and temporal domains) together with the Green-Gauss theorem results in

||U(T, ξ, η)||2JL = ||U(0, ξ, η))||2JL −
∫ T

0

∮
δΦL

UTCL U ds dτ,

||V (T, ξ, η)||2JR = ||V (0, ξ, η))||2JR −
∫ T

0

∮
δΦR

V TCR V ds dτ.

(10)

In (10), the norm is defined as ||W ||2JL,R=
∫∫

ΦL,R
W TJL,RW dξ dη, for W ∈ {U, V } and δΦL,R

are the boundaries of ΦL,R. Moreover, CL,R = (AL,R, BL,R) · nL,R where nL,R = (αL,R, βL,R)
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is the outward pointing normal vector from ΦL,R. Further, CL,R can be expanded as CL,R =
αL,RAL,R + βL,RBL,R and due to symmetry be decomposed into CL,R = XL,RΛL,RX

T
L,R where

ΛL,R is the matrix of eigenvalues of CL,R and XL,R is the corresponding eigenvector matrix.
To control the growth of the energy of the solution due to boundary terms, we choose the

following far-field well-posed boundary conditions

(XT
LU)j = (XT

LU∞)j if (ΛL)jj < 0,
(XT

RV )j = (XT
RV∞)j if (ΛR)jj < 0,

(11)

where U∞, V∞ are the data to the problem and j ∈ {1, . . . , l}. Additionally, at the interface
where nL = (1, 0)T and nR = (−1, 0)T , we have CL = Ai and CR = −Ai and the decompo-
sition Ai = XiΛiX

T
i .

By substituting (11) in (10), observing that Ui = Vi, and considering the initial conditions
U(0, ξ, η) = fL and V (0, ξ, η) = fR, we find

||U(T, ξ, η)||2JL + ||V (T, ξ, η)||2JR = ||fL||2JL + ||fR||2JR
−
∫ T

0

∫
δΦL\i

[
(XT

LU)TΛ+
L (XT

LU)−(XT
LU∞)TΛ−L (XT

LU∞)
]
dsdτ

−
∫ T

0

∫
δΦR\i

[
(XT

RV )TΛ+
R (XT

RV )−(XT
RV∞)TΛ−R(XT

RV∞)
]
dsdτ,

(12)
where the positive and negative superscripts in Λ+,−

L , Λ+,−
R and Λ+,−

i restrict ΛL,R,i to the non-
negative and negative eigenvalues, respectively. Finally, we conclude that the energy of the
solution is bounded by data and that the problem is strongly well-posed [21].

3 THE DISCRETE PROBLEM

We discretize the left and right sub-domains using NL,R and M grid points in the ξ and η
directions, respectively. In this article, we consider matching grid points along the interface.
For non-conforming grids at the interface, interpolation techniques must be used [24, 25] in
order to couple the blocks. However, with the added difficulty of a moving interface we refrain
from this technical complication and will consider that in a future paper. We use K time levels
from 0 to T and tensor products to arrange the fully discrete numerical solution. As an example,
the numerical solution on the left sub-domain is arranged as

U=


U1

...
[Uk]

...
UK

; [Uk]=


U1

...
[Ui]

...
UNL


k

; [Ui]k=


U1

...
Uj
...

UM


ki

, (13)

in which Ukij ≈ U(τk, ξi, ηj) for (ξ, η) ∈ ΦL. The fully discrete numerical solution corre-
sponding to the right sub-domain is denoted by V and arranged in the same way.

The first derivative uξ is approximated by Dξu, where Dξ is a so-called SBP operator of the
form

Dξ = P−1
ξ Qξ, (14)

and u=[u0, u1, · · · , uN ]T is the solution vector evaluated in each grid point in the ξ direction.
Pξ is a symmetric positive definite matrix, and Qξ is an almost skew-symmetric matrix that
satisfies

Qξ +QT
ξ = E1−E0 =B = diag(−1, 0, ..., 0, 1). (15)
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In (15), E0 = diag(1, 0, ..., 0) and E1 = diag(0, ..., 0, 1). The η and τ directions are discretized
in the same way.

A first derivative SBP operator is a 2s-order accurate central difference operator which is
modified close to the boundaries such that it becomes one-sided. Together with a diagonal
norm P, the boundary closure is s-order accurate, making a stable first order approximation of a
hyperbolic problem s+1 order accurate globally [4, 9]. For more details on non-standard SBP
operators see [15, 18, 16, 17].

A finite difference approximation including the time discretization [7, 8], on SBP-SAT form,
is constructed by extending the one-dimensional SBP operators in a tensor product fashion as

Dτ =P−1
τ Qτ ⊗ Iξ ⊗ Iη ⊗ I,

Dξ = Iτ ⊗ P−1
ξ Qξ ⊗ Iη ⊗ I,

Dη = Iτ ⊗ Iξ ⊗ P−1
η Qη ⊗ I,

(16)

where ⊗ represents the Kronecker product [14]. Here and in the remainder of this article, all
matrices in the first position are of sizeK×K, the second positionNL,R×NL,R, the third position
M×M and the fourth position l×l. Additionally, the identity matrix, I , has a consistent size
with its position in the Kronecker product.

Prior to discretizing (3), we use the splitting technique explained in [19]. The discrete version
of (3) including only the interface term (the far-field boundaries are addressed in [13] and are
not repeated here) is

1

2
[DτJLU+JLDτU+(JL)τU+DξALU+ALDξU+(AL)ξU+DηBLU+BLDηU+(BL)ηU]=

(Iτ ⊗ P−1
ξ E1 ⊗ Iη ⊗ I)ΣL(U−V)

1

2
[DτJRV+JRDτV+(JR)τV+DξARV+ARDξV+(AR)ξV+DηBRV+BRDηV+(BR)ηV]=

(Iτ ⊗ P−1
ξ E0 ⊗ Iη ⊗ I)ΣR(V −U),

(17)
where ΣL,R are matrices of size (KNMl) × (KNMl) and operate as penalty parameters
corresponding to the weak interface treatments for the left and right sub-domains, respec-
tively, and will be chosen later based on conservation and stability requirements. Moreover,
JL,R,AL,R,BL,R, (AL,R)ξ and (BL,R)η are block diagonal matrices of size (KNL,RMl) ×
(KNL,RMl), where each l × l block approximates respectively JL,R, AL,R, BL,R, (AL,R)ξ and
(BL,R)η on a grid point. Note that the SBP operators are not necessarily the same on the left
and right sub-domains. To ease the notation the subscripts L,R on the derivatives Dξ,η,τ are
dropped.

3.1 Conservation

To show that the scheme is conservative, we multiply (17) by arbitrary vector functions φTLP
and φTRP , where P = (Pτ ⊗ Pξ ⊗ Pη ⊗ I). Moreover, we use the SBP property stated in (15)
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and focus on the interface to obtain

φTL[(E1−E0)⊗Pξ⊗Pη⊗I]JLU+φTL(Pτ⊗E1⊗Pη⊗I)ALU

−1

2

[
UTP [DτJLφL+JLDτφL+(JL)τφL]

]T
− 1

2

[
UTP [DξALφL+ALDξφL+(AL)ξφL]

]T
−1

2

[
UTP [DηBLφL+BLDηφL+(BL)ηφL]

]T
= φTL(Pτ ⊗ E1 ⊗ Pη ⊗ I)ΣL(U−V)

φTR[(E1 − E0)⊗ Pξ ⊗ Pη ⊗ I]JRV − φTR(Pτ ⊗ E0 ⊗ Pη ⊗ I)ARV

−1

2

[
VTP[DτJRφR+JRDτφR+(JR)τφR]

]T
− 1

2

[
VTP[DξARφR+ARDξφR+(AR)ξφR]

]T
−1

2

[
VTP [DηBRφR+BRDηφR+(BR)ηφR]

]T
= φTR(Pτ ⊗ E0 ⊗ Pη ⊗ I)ΣR(V −U).

(18)
In order to arrive at (18), we have used the symmetry property of the matrices as well as the Nu-
merical Geometric Conservation Law (NGCL) summarized as (Jτ )L,R+(Aξ)L,R+(Bη)L,R = 0.
For more details on NGCL see [13]. Now, we consider the same Pη,τ in the left and right sub-
domains and add the two relations in (18). The result is

φTL[(E1−E0)⊗Pξ⊗Pη⊗I]JLU + φTR[(E1 − E0)⊗ Pξ ⊗ Pη ⊗ I]JRV

−1

2

[
UTP [(DτJLφL+JLDτφL+(JL)τφL)

]T
− 1

2

[
UTP [DξALφL+ALDξφL+(AL)ξφL]

]T
−1

2

[
UTP [DηBLφL+BLDηφL+(BL)ηφL]

]T
− 1

2

[
VTP[DτJRφR+JRDτφR+(JR)τφR]

]T
−1

2

[
VTP[DξARφR+ARDξφR+(AR)ξφR]

]T
− 1

2

[
VTP [DηBRφR+BRDηφR+(BR)ηφR]

]T
=−φTL(Pτ⊗E1⊗Pη⊗I)ALU + φTL(Pτ ⊗ E1 ⊗ Pη ⊗ I)ΣL(U−V)
+φTR(Pτ ⊗ E0 ⊗ Pη ⊗ I)ARV + φTR(Pτ ⊗ E0 ⊗ Pη ⊗ I)ΣR(V −U).

(19)
As in the continuous problem, φL = φR := φi at the interface, by which the right hand side of
(19) becomes

φTi (Pτ ⊗ Pη ⊗ I)[−ALiUi + ARiVi + (ΣLi − ΣRi)(Ui −Vi)], (20)

where the subscript i restricts the vectors and matrices to the interface, i.e. Ui is now of size
KMl. Since AL and AR include pointwise approximations to AL and AR in (7), respectively,
we have

AL=(Jξt)L(Iτ⊗Iξ⊗Iη⊗I) + (Jξx)L(Iτ⊗Iξ⊗Iη⊗Â) + (Jξy)L(Iτ⊗Iξ⊗Iη⊗B̂),

AR=(Jξt)R(Iτ⊗Iξ⊗Iη⊗I) + (Jξx)R(Iτ⊗Iξ⊗Iη⊗Â) + (Jξy)R(Iτ⊗Iξ⊗Iη⊗B̂),
(21)

where the bar sign is used to indicate that the metric terms are approximated numerically. The
numerical metric terms are evaluated as

Jξt = diag[Dη(DηM
(1) −DξM

(2))], Jξx = diag[Dηy], Jξy = −diag[Dηx], (22)

where x, y are the x and y coordinates of the mesh in the Cartesian coordinate system, arranged
in a vector, consistent to (13). Moreover, M (1) = diag(y)Dξx and M (2) = diag(y)(Dηx). To
see more details about the numerical metrics, see [13, 23]. From (21) and (22) one can conclude
that if we have matching grid points along the interface, and use the same SBP operators for
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the left and right problems, we have ALi = ARi := Ai, which correspond to the continuous
requirement in (9).

We use the decomposition Ai = XiΛiX
T
i and choose ΣLi,Ri = XiΣ̃Li,RiX

T
i where Σ̃Li,Ri

are diagonal and rewrite (20) as

φTi (Pτ ⊗ Pη ⊗ I)

[
Xi(−Λi + Σ̃Li − Σ̃Ri)X

T
i

]
(Ui −Vi). (23)

In order to obtain a conservative scheme, Σ̃Li,Ri must be chosen such that

−Λi + Σ̃Li − Σ̃Ri = 0 (24)

holds.

3.2 Stability

To prove stability we apply the discrete energy method (multiplying the left and right sub-
problems with UTP and VTP , respectively) on (17). We add the transpose of the result to itself
and use the SBP property (15) to arrive at

UT [(E1 − E0)⊗ Pξ ⊗ Pη ⊗ I]JLU + UT [Pτ ⊗ (E1 − E0)⊗ Pη ⊗ I]ALU+
UT [Pτ ⊗ Pξ ⊗ (E1 − E0)⊗ I]BLU = UT (Pτ ⊗ E1 ⊗ Pη ⊗ I)ΣL(U−V)+
(U−V)TΣT

L(Pτ ⊗ E1 ⊗ Pη ⊗ I)U,

VT [(E1 − E0)⊗ Pξ ⊗ Pη ⊗ I]JRV + VT [Pτ ⊗ (E1 − E0)⊗ Pη ⊗ I]ARV+
VT [Pτ ⊗ Pξ ⊗ (E1 − E0)⊗ I]BRV = VT (Pτ ⊗ E0 ⊗ Pη ⊗ I)ΣR(V −U)+
(V −U)TΣT

R(Pτ ⊗ E0 ⊗ Pη ⊗ I)V.

(25)

Again, we have used the NGCL in order to obtain (25). We simplify (25) and only keep the
terms at the interface which gives

||UK ||2(Pξ⊗Pη⊗I)JLK − ||U1||2(Pξ⊗Pη⊗I)JL1
= UT [Pτ ⊗−E1 ⊗ Pη ⊗ I]ALU+

UT (Pτ ⊗ E1 ⊗ Pη ⊗ I)ΣL(U−V) + (U−V)TΣT
L(Pτ ⊗ E1 ⊗ Pη ⊗ I)U

||VK ||2(Pξ⊗Pη⊗I)JRK − ||V1||2(Pξ⊗Pη⊗I)JR1
= VT [Pτ ⊗ E0 ⊗ Pη ⊗ I]ARV+

VT (Pτ ⊗ E0 ⊗ Pη ⊗ I)ΣR(V −U) + (V −U)TΣT
R(Pτ ⊗ E0 ⊗ Pη ⊗ I)V.

(26)

The norms in (26) are given by ||W||2HL,R =WTHL,RW, where HL,R=(Pξ ⊗ Pη ⊗ I)JL,R > 0

for W ∈ {U, V}. Moreover, the subscripts K and 1 indicate restrictions to the last and first
time levels, respectively. We add the two relations in (26) and again use the decompositions
Ai = XiΛiX

T
i and ΣLi,Ri = XiΣ̃Li,RiX

T
i to obtain

||UK ||2(Pξ⊗Pη⊗I)JLK + ||VK ||2(Pξ⊗Pη⊗I)JRK = ||U1||2(Pξ⊗Pη⊗I)JL1
+ ||V1||2(Pξ⊗Pη⊗I)JR1

+

[
XT
i Ui

XT
i Vi

]T [
Pτ ⊗ Pη ⊗ I ⊗ Ĩ1

] [ −Λi + 2Σ̃Li −(Σ̃Li + Σ̃Ri)

−(Σ̃Li + Σ̃Ri) Λi + 2Σ̃R

] [
XT
i Ui

XT
i Vi

]
,

(27)

where Ĩ is

Ĩ1 =

[
1 1
1 1

]
. (28)
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By considering the conservation requirement on the penalty operators in (24), (27) becomes

||UK ||2(Pξ⊗Pη⊗I)JLK + ||VK ||2(Pξ⊗Pη⊗I)JRK = ||U1||2(Pξ⊗Pη⊗I)JL1
+ ||V1||2(Pξ⊗Pη⊗I)JR1

+

[
XT
i (Ui −Vi)

]T
(Pτ ⊗ Pη ⊗ I)

[
−Λi + 2Σ̃Li

]
XT
i (Ui −Vi).

(29)

From (29), we conclude that the following conditions lead to a stable interface treatment

(Σ̃Li)jj ≤ (Λi)jj/2 if (Λi)jj < 0,

(Σ̃Li)jj = 0 if (Λi)jj ≥ 0,
(30)

for j ∈ {1, . . . , l}. As an example if we let Σ̃Li = Λ−i , where the negative superscription
restricts Λi to the negative eigenvalues. Then (29) becomes

||UK ||2(Pξ⊗Pη⊗I)JLK + ||VK ||2(Pξ⊗Pη⊗I)JRK = ||U1||2(Pξ⊗Pη⊗I)JL1
+ ||V1||2(Pξ⊗Pη⊗I)JR1

−

(Ui −Vi)
T (Pτ ⊗ Pη ⊗ I) |XiΛiX

T
i |︸ ︷︷ ︸

=|Ai|

(Ui −Vi)
(31)

which represents a dissipative, stable and conservative interface procedure.

4 NUMERICAL EXPERIMENTS

We consider the two-dimensional constant coefficient symmetrized Euler equations [20] de-
scribed by

Wt + ÂWx + B̂Wy = 0, (x, y) ∈ ΩL,R(t), t ∈ [0, T ], (32)

where

W =

[
c̄ρ
√
γρ̄
, u, v,

θ

c̄
√
γ(γ − 1)

]T
. (33)

In (33), W ∈ {U, V }, and ρ, u, v, θ, and γ are respectively the density, the x and y velocity
components, the temperature and the ratio of specific heats. An equation of state of the form
γp = ρ̄θ + ρθ̄, where p is the pressure, completes the system (32). Moreover, the bar sign
denotes the reference state around which we have linearized. The matrices in (32) are

Â=


ū c̄/

√
γ 0 0

c̄/
√
γ ū 0

√
γ−1
γ
c̄

0 0 ū 0

0
√

γ−1
γ
c̄ 0 ū

, B̂=


v̄ 0 c̄/

√
γ 0

0 v̄ 0 0

c̄/
√
γ 0 v̄

√
γ−1
γ
c̄

0 0
√

γ−1
γ
c̄ v̄

 . (34)

We prescribe γ = 1.4, c̄ = 2, ρ̄ = 1 and consider a mean velocity field of the form (ū, v̄) =
(1, 1). The geometries ΩL,R(t) are described by

ΩL(t):


xwL(y) =−1− 0.1 sin(2πy),
xi(t, y) =−0.1 [sin(πt)+cos(2πt) sin(2πy)],
ysL(t, x) =−0.05 sin[2π(xi(t)− x)/(xi(t) + 1)],
ynL(t, x) = 1− 0.05 sin[2π(xi(t)− x)/(xi(t) + 1)],

(35)
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Figure 3: A schematic of ΩL,R and the boundaries

and

ΩR(t):


xeR(y) = 1− 0.1 sin(2πy),
xi(t, y) = −0.1 [sin(πt) + cos(2πt) sin(2πy)],
ysR(t, x) = −0.05 sin[2π(x− xi(t))/(1− xi(t))],
xnR(t, y) = 1 + 0.05 sin[2π(x− xi(t))/(1− xi(t))],

(36)

where wL, eR, sL,R, nL,R and i are schematically defined in Figure 3.
As seen in (35) and (36), also the four adjacent boundaries nL,R, sLR to the interface are

slightly deforming. To see the details of how to treat deforming boundaries, see [13].

4.1 Accuracy

To conclude the accuracy of our numerical approximations, we use the method of manufac-
tured solution with the reference solution W∞

W∞ = [5 sin(x− t), 5 cos(x− t), 10 sin(y − t), 10 cos(y − t)]T (37)

which is injected as a forcing function to the right hand side of (32). Moreover, characteristic
boundary conditions [13] are used.

We examine the scheme for SBP operators of order 2s in the interior and s close to the
boundaries in space, where s ∈ {1, 2, 3}. The fifth order accurate SBP operator i.e. SBP84,
with a sufficiently large K, is used in time. The rates of convergence are calculated and shown
in tables 1-3.

NL,R,M 21 31 41
ρ 2.40229 2.08909 2.03912
u 2.13136 2.03877 2.01409
v 2.06440 2.03268 2.01787
p 2.48489 2.12153 2.04978

Table 1: Convergence rates at T=1, for a sequence of mesh refinements, SBP21 in space, SBP84 in time (K=201)

The convergence results in tables 1-3 are correct according to the theory [4, 2].
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NL,R,M 21 31 41
ρ 3.08961 2.94594 2.93760
u 3.22104 3.11838 3.06405
v 2.91411 2.99215 3.02028
p 3.16628 3.12290 3.08363

Table 2: Convergence rates at T=1, for a sequence of mesh refinements, SBP42 in space, SBP84 in time (K=201)

NL,R,M 21 31 41
ρ 4.68075 4.45144 4.60620
u 3.87224 4.15980 4.48346
v 3.84525 3.94578 4.28970
p 3.73903 4.50886 4.75789

Table 3: Convergence rates at T=1, for a sequence of mesh refinements, SBP63 in space, SBP84 in time (K=201)

4.2 An application

We consider an initial pressure of the form p = e−20((x+1)2+y2) together with zero velocities
and densities everywhere in the left and right sub-domains. Characteristic boundary conditions
with data from manufactured solution p∞ = e−20((x+1−2t)2+(y−t)2) is used for far-field bound-
aries. Moreover, we construct a grid of 41× 41 points in space and 81 nodes in time. Third and
fifth order accurate SBP operators in space and time, respectively, are used.

The pressure distribution at different times (the red and/or dashed curves corresponding to
ΩL,R(0)) are shown in Figures 4-11. As shown in the figures, the pressure pulse passes across
the interface smoothly and moves out of the domain as time passes.

5 SUMMARY AND CONCLUSIONS

We have constructed a numerical scheme that satisfies the summation-by-parts convention
in combination with the simultaneous approximation term technique, for general multi-block
problems with time-dependent deforming interfaces in several space dimensions.

We have studied well-posedness, stability and as well continuous and discrete conservation
by employing the continuous and discrete versions of the energy method as our analytical tools
and constructed a dissipative, conservative and stable scheme.

An application using the Euler equations posed on a time-dependent multi-block geometry
with a moving and deforming interface, was presented. The correct rates of convergence toward
the exact solution, were concluded.
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Figure 4: The pressure distribution.
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Figure 5: The pressure distribution.
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Figure 6: The pressure distribution.
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Figure 7: The pressure distribution.
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Figure 8: The pressure distribution.
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Figure 9: The pressure distribution.
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Abstract. A simple method to automatically adapt the computational grid to surface bound-
ary deformations is presented. Mesh adaptation techniques can be used to reduce the number
of re-meshing steps in aerodynamic shape optimization problems or during the solution of a
coupled fluid-structure interaction problem. The method is inspired on the solution of the
Laplace  equation  and  the  resulting  algorithm  resembles  a  fully  explicit  Jacobi  iterative
scheme, avoiding the need to invert a large matrix, in order to solve the resulting system of
equations. The proposed method can withstand large deformations and also includes orthog-
onality correction to maintain the quality of the grid, especially in the boundary layer region.
The proposed technique is presented in two-dimensional unstructured hybrid grids, but can
be easily extended to three-dimensions.
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1 INTRODUCTION

Using Computational Fluid Dynamics (CFD) simulations, the mesh must be updated to
conform the boundary surface modifications. The mesh update can be achieved by re-mesh-
ing, but the generation of the mesh, for industrial complex configurations, is a time-consum-
ing operation and automatic grid generation is not always feasible.  This issue particularly
arises in the search of an optimal shape using CFD simulations, aero-elastic analysis, or con-
trol surface deflection problems. In addition, the use of different overlapped grids or chimera
for the simulation of moving parts is a well established and versatile technique. However, the
interpolation between zones is not intrinsically conservative and for some specific problems,
such as fluid-structural interaction, the use of mesh deformation would be preferable instead,
in order to reduce the numerical noise. To avoid the regeneration of the grid, mesh deforma-
tion or mesh update techniques can be considered as a fast and cheap alternative.

In the literature, there are several proposals for mesh deformation. The transfinite interpo-
lation [1,2] is an algebraic method, generally used in structured grids, that interpolates the dis-
placement of mesh points along arc mesh lines. This method is simple but not appropriate for
unstructured grids. The advancing front method is another algebraic technique for unstruc-
tured grids [3]. In this method, grid points are sorted with increasing distance to the deforma-
tion surface. Then, new displacements for each point are scaled average from the displace-
ments of the neighbor points, which have a smaller distance and which are thus already up-
dated. This strategy leads to advancing the front of displacements as iso-surfaces of equal dis-
tances, which was found to be of advantage in order to transport the information orthogonal to
the surfaces into the interior of the grid. The advancing front algorithm is simple and compu-
tationally very efficient. However, the robustness is uncertain for large deformations and it is
unclear how to face multiple components, such as wing-flap configurations.

In the tension spring analogy [4],  the edges  of the computational  grid are  modeled  as
springs, whose stiffness are inversely proportional to the length of the edge, making short
edges stiffer. This method is mathematically simple and can be solved with an iterative Jacobi
solver.  However,  the spring-edge idealization  will  eventually fail,  in some cases even for
small displacements. This method prevents the colliding of the vertices, but there is no mech-
anism to prevent a vertex to cross and edge and the consequently collapsing element.

 In order to mitigate overstretching and negative volume elements, the edge-spring is usu-
ally combined with a torsional spring analogy [5]. In two-dimensional grids, each vertex is at-
tached to a torsional spring that prevents the faces from squashing. Unfortunately, the exten-
sion to three-dimensional grids is not straightforward, as it may lead to negative volume tetra-
hedrons, even if all tetrahedron faces are valid elements. There are some attempts to extend it
to three-dimensions using more complex formulations and kinematic systems [6]. However,
the  spring-torsion  analogy works  under  the  assumption  of  relatively  small  displacements.
When elements are nearly flat, the Partial Differential Equations (PDE) that governs the sys-
tem is ill-conditioned, imposing a limited time step and convergence problems. Despite of its
limitations, the spring analogy still remains popular thanks to its easy implementation. 

The linear elasticity analogy [7] assumes that the computational mesh obeys the isotropic
linear elasticity equations, much like a rubber. The modulus of elasticity is often taken to be
inversely proportional to the cell volume or the cell aspect ratio. In this manner high aspect ra-
tio cells, as those close to the boundary layer, are less susceptible to compression. The spring
and linear elasticity approaches are compared in [8], where only the linear elasticity method is
stable enough for large scale deformations of 3D hybrid Navier-Stokes grids. The linear elas-
ticity approach allows significantly larger geometric deformations and can be naturally ex-
tended to three-dimensional grids. However, it requires the solution of a large system of equa-
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tions, one for each vertex, and the computational effort is not diminished in comparison with
the CFD simulations.  

The concept of Radial Basis Functions (RBF) has been also applied to update the mesh [9-
11]. In the RBF method, the mesh points are calculated through a global function that depends
on the distance of the base points, which are usually the deformed surface. The RBF method
does not require connectivity information, making it suitable for unstructured grids. However,
without information of the elements shape, there is little control of the grid quality. Some au-
thors propose the incorporation of a second set of base points to limit the change in orthogo-
nality near the wall [12].

Partial Differential Equations (PDE) are often used for generating grids. The use of the
Laplace equations is a popular approach to optimize smoothness and control the variation of
cell volumes. Techniques based on PDEs can also be applied for updating the grid to a mov-
ing boundary [13], which can be naturally extended to three-dimensions [14]. This approach
tackles the mesh motion as a boundary value problem by finding the mesh displacement field
that emanates from the solution of an Euler-Lagrange equation. This works when the mesh is
composed of approximately equal-sized elements and the motion of the interface boundary is
in the order of the size of the elements; otherwise, results in an algorithm breakdown. In order
to prevent an ill-conditioned system, a constraint condition is applied element wise; so larger
elements absorb most of the distortion. Similar to the linear elasticity analogy, methods based
on PDE can withstand a large amount of deformation, but require the solution of a very large
equation system; often tackled with a gradient conjugate method, or one of its variants.

The tension spring and linear elasticity are closely related to the Laplace equation. In this
work, a mesh deformation algorithm based on the Laplace operator is presented. The method
is similar to the linear elasticity in terms of robustness and deformation withstanding, while it
is as easy to implement as the spring analogy. The method can update very large deformations
without losing grid quality and the resulting equation system can be easily solved with an ex-
plicit Jacobi algorithm.

2 PROPOSED APPROACH

2.1 Mesh deformation 

The heat  equation  describes  how thermal  energy is  distributed  through a body until  a
steady state, governed by the Laplace equation

02  u

Let's consider the kinematic system represented in Figure 1, which illustrates a an interior
vertex a connected to its neighbors xi through the edges of an unstructured grid. 
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Figure 1: Kinematic system, where the vertex a is updated due to a perturbation of one of its neighbor.

Equivalently to the heat analogy, a mesh deformation rule is to minimize the variation of
the relative vertex displacements Min{∂(xi-xa)}, compared with the original ones. By imposing
Dirichlet  boundary conditions and using relative displacements  as a field,  this  can be ex-
pressed as a problem to calculate the solution of the Laplace equation, which in the discrete
form can be approximated as a linear system of equations: 

    


 

i
i

i
iaiai

w

wxxxx 00''

(1)

where the term wi is the norm usually associated to the grid domain, such as the cell dimen-
sions. The superscript x0 indicates the original positions, while the superscript x' denotes the
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Jacobi algorithm: 
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where n is the iteration index. The norm selected in the test cases is the inverse squared length
of the edge connecting two vertices:

200 
 aii xxw (3)

In this way, smaller elements, such as those close to the boundary layer, will remain stiffer,
while deformations are absorbed by larger elements, which can sustain more strain. Alterna-
tively, selecting the inverse of the dual area associated to the vertex or a weight calculated
from the area of the associated elements, will achieve similar results. However, the edge dis-
tance turns out better for avoiding invalid elements in regions with high mesh stretching. In
this formulation, displacements in each coordinate direction become decoupled and are solved
independently. The norm are calculated from the original grid, before the deformation, which
is taken as a reference. So, a good grid quality is expected from the original grid. The above
expression corrects the relative position of the vertex, but it is insufficient to correct the skew-
ness of the elements, or the orthogonality, which is the subject of the next section.

2.2 Mesh orthogonality correction

The concept of mesh orthogonality relates how a grid element faces an optimal angle. In
convection-diffusion simulations a "false diffusion" is an error when the flow is not aligned
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with the grid lines, which is accumulated downstream. Orthogonality is a relevant mesh qual-
ity metric, in especial at the boundary layer, and might compromise the robustness and accu-
racy of the simulations. 

The mesh deformation algorithm presented in Eq. (2) can sustain large deformations, but
there is no information about the shape of the elements. It deals very well with translation
transformations, e.g. if the airfoil is moved to the left. On the other hand, rotations present a
more challenging problem and the orthogonality is required to be corrected, to maintain the
cell lines perpendicular to the wall. This can be achieved by preserving the angle of the ele-
ments, as it is illustrated in Figure 2.  

Figure 2: Kinematic system, where the vertex a is updated to maintain the angle θ of the element.

In a similar way to section 2.1, the aim is to minimize the variation of the angles after de-
formation:  Min{∂θ} (this can be trivially rewritten as θ'=θ0). The reference angles  typically
are 90º for quadrilaterals and 60º for triangles. In our test cases, the angles taken as reference
are those of the original grid, before deformation. In two dimensions, this can be expressed as
a coupled linear system of equations.
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where the weight wi is the same as Eq. (4), the terms x and y are the Cartesians coordinates,
while the angles β and  θ are illustrated in Figure 2. The superscript β n indicates the updated
value at iteration level and β 0 the reference value, which in our test cases are the angles of the
original mesh elements. The above formulation is ill-defined (there are oscillations between
two local equilibrium states), and therefore requires a relaxation coefficient  α to ensure the
convergence; a value of  α=0.5 ensures the convergence. The algorithm corrects the orthogo-
nality, but cannot prevent elements from squashing. The final algorithm comes as the combi-
nation of both approaches. 

n
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n
p

n XXX )·1(·1   (5)
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where the term Xp are the updated coordinates from Eq. (3) that maintains the vertex relative
positions, and Xg are the updated coordinates from Eq. (5) that corrects the orthogonality of
the mesh. The value of γ highly depends on the severity of the deformation. The orthogonality
correction has slow convergence, while the algorithm based on the relative positions is very
robust. In the test cases presented in this work, the strategy employed is to start with γ=0, to
give more strength to the relative position correction, then gradually increase the orthogonal-
ity correction, as the residuals drops to a final value of γ=1.

3 TEST CASE

The test case considered is a two dimensional hybrid grid for a RAE2822 airfoil, as shown
in Figure 3, where the geometry is rotated 20º. The proposed grid deformation method is com-
pared with the advancing front algorithm [3].

Figure 3: Original RAE2822 hybrid grid and the rotation tested for the mesh deformation. 

Figure 4 and Figure 5 compare the mesh updates performed with the two different meth-
ods. Even when none of the methods turn out with invalid elements, there are disparities on
the  grid quality.  The first one is the advancing front algorithm, which presents squashing
cells for this test case. The Laplacian deformation, in comparison, is able to maintain the in-
tegrity of the elements, but the grid lines are not perpendicular to the wall, which might com-
promise the accuracy of the simulations. Both methods are then post-processed with the or-
thogonality correction presented in section 2.2,  delivering good quality grids. Both post-pro-
cessed grids lead to almost  identical deformations,  because the orthogonality correction is
based on the Laplace operator, and therefore, the solution is theoretically unique. Disparities
can only be explained at numerical level. 

The advancing front algorithm is very fast and computationally efficient; in contrast, the
Laplace deformation requires a long number of iterations. The orthogonality correction is then
applied to both grids; because the starting grid is already close to the optimal, convergence is
very fast. 
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Figure 4: Details at the leading edge of the mesh deformation algorithm. a) Advancing front, b) Only Laplacian
deformation, c) Advancing front with orthogonality correction, and d) Laplacian with orthogonality correction.
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Figure 5: Details at the trailing edge of the mesh deformation algorithm. a) Advancing front, b) Only Laplacian
deformation, c) Advancing front with orthogonality correction, and d) Laplacian with orthogonality correction.
Note: c and d are almost identical grids, because the orthogonality correction is based on the Laplace operator,

and therefore, the solution is unique.

The skewness is used to compare the grid quality with the methods exposed, as shown in
Figure 6. As expected, the Laplacian deformation without orthogonality correction is not able
to maintain the correct skewness of the elements. Hexahedrons are associated to the boundary
layer and a value close to the original grid, previous to the deformation, indicates that most of
the deformation is transferred to the prismatic layer, where is less critical. The presented algo-
rithm, with orthogonality correction, shows a grid quality very close to the original.
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Figure 6: Comparison of the skewness, as a measurement of the quality of the grid. 

4 CONCLUSIONS

A mesh deformation technique with orthogonality correction is presented in this work, in-
spired in the Laplace operator. The proposed method can maintain good grid quality, even in
the case of large deformations. The method is very easy to implement, resulting into an ex-
plicit Jacobi iterative algorithm. Moreover, the algorithm is an element-based data structure
,and it is suitable for parallelization. In comparison, the advancing front algorithm is computa-
tionally more efficient, but the grid quality is uncertain. On the other hand, the Laplacian de-
formation requires an iterative algorithm. Using the grid delivered from the advancing front
algorithm, and then applying the Laplacian deformation correction,  to fix bad shaped ele-
ments, convergence is very quickly reached. 

Future works would extend the proposed method to three dimensional grids and testing the
method for multi-comonent grids. A further research will tackle how to improve the conver-
gence rate to reduce the computational time; one posibility may be to take advantage of multi-
grid techniques.
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Abstract. This paper presents a combined mesh generation and surface wrapping capability 
which is able to create manifold watertight surfaces for complex industrial model assemblies.  
The wrapping functionality is able to join disconnected and overlapping surfaces. Large holes 
in the assembly are closed by performing the wrapping at intermediate stages of the mesh re-
finement.  The ability to perform wrapping in combination with mesh generation ensures that 
holes are closed without loss of geometric fidelity.  The wrapping capability is demonstrated 
on a range of test cases including an engine block and a highly detailed automotive case. 
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1 INTRODUCTION 

Thanks to significant advances in computational fluid dynamics (CFD) over the last few 
decades, and increasing availability of high performance computing resources, engineers are 
able to apply CFD to more and more complex flow simulations.  However, robust and auto-
matic mesh generation still represents a significant challenge in the overall process from CAD 
to CFD solution in industrial engineering analysis.  A major bottleneck in the mesh generation 
process is the creation of a watertight representation of the geometry from the original CAD 
model.  A watertight geometry representation is required as input to traditional structured and 
unstructured mesh generation methods, which first discretize the surface of the flow domain 
before meshing the interior.  The translation of the geometry from the native CAD data into 
another format can often result in problems such as missing or duplicate parts, small gaps and 
overlaps [1].  Often the input to the simulation process is a model which has been designed 
for manufacture, not for the purpose of simulation, and therefore contains an unnecessary lev-
el of detail and geometry which should not be part of the fluid domain.  Resolving these is-
sues, and creating a geometry model suitable for mesh generation requires labour-intensive 
and time-consuming geometry repair and modification. 

Mesh generation approaches such as octree or Cartesian-based methods [3, 4], which start 
with a volume mesh in the interior of the domain, and then obtain a boundary conforming sur-
face mesh through cell-cutting or snapping procedures, have therefore become increasingly 
popular in recent years, in part due to their inherent tolerance to poor quality or “dirty” geom-
etry [5].  However, although such meshing approaches do not need a watertight geometry rep-
resentation, and are able to tolerate geometry issues such as overlaps and poor quality 
triangulations, they cannot handle so-called ‘fully-resolved gaps’, i.e. gaps in the geometry 
larger than the local element size [5].  There have been numerous attempts over the last dec-
ade to develop methods for automatic repair of holes in discrete geometry models.  These 
methods broadly fall into two main categories: surface-based approaches and voxel or vol-
ume-based approaches.   

Surface-based approaches operate directly on the discrete geometry input data and resolve 
defects in the geometry such as holes with open boundary edges.  The closing of such holes is 
a relatively mature field of study, and there are various algorithms described in the literature 
[6-10].  Holes in relatively planar regions of the model can be easily patched via planar trian-
gulation.  To handle more complex holes, Jun [6] proposes a piecewise scheme which divides 
them into several simpler holes which are filled with a planar triangulation, before applying 
smoothing and sub-division techniques to improve the quality.  Zhao et al [7] employ an ad-
vancing front method to close complex holes, and then solve the Poisson equation to re-
position the new vertices.  Alternative algorithms use radial basis functions [8] or the Level 
Set Method [10] to construct an implicit surface which covers the hole.  Since surface-based 
methods operate only locally, they can be very efficient and incur only minimal perturbation 
of the input data.  However, they can only close holes with an open boundary, and are not able 
to handle semantic holes caused by missing components, or gaps between parts in a model 
assembly. 

Volume-based approaches operate by generating a volumetric representation of the sur-
face, and then classifying the cells in the volume as either inside, outside, or intersecting the 
surface.  The shrink wrapping technique developed by Lee et al [1] is one such example of 
this approach, and is based on the concept of the interior-to-boundary Cartesian mesh genera-
tion described by Wang [5].  Volume approaches such as this are typically fully automatic and 
can be very robust.  However, large holes in the geometry can lead to mesh ‘leaking’ into are-
as of the domain which should not be modelled.  Juretić and Putz [12] identify the holes lead-
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ing to such mesh leaks by solving the heat diffusion equation and looking at regions of high 
heat flux intensity.  However it is left to the user to then manually close these holes and repeat 
the process until no leaks are present.  Kumar and Shih [13] propose a hybrid method, which 
applies surface-based repair techniques to close holes with simple topologies, and then obtains 
a watertight surface using the Marching Cubes algorithm [14] to extract the zero-set surface 
of the numerical solution to the diffusion equation.  Whilst they demonstrate good quality re-
sults on models with complex topology, their approach relies on consistent orientation of the 
input geometry, and is not able to deal with semantic holes in an assembly. 

This paper describes an integrated approach to wrapping and mesh generation implement-
ed in iconCFD® [15], which is able to handle large gaps in model assemblies, including holes 
with open boundaries and semantic holes, without significant loss of geometric fidelity.  The 
problems of resampling a geometry (e.g. loss of model features) that are typically encountered 
with volume-based geometry repair methods are also avoided in our approach by exploiting 
an adaptively-refined Cartesian grid to simultaneously perform the wrapping of the geometry 
and generate a boundary conforming, hexahedral-dominant mesh of the flow domain.  Section 
2 of this paper describes the various stages of the existing mesh generation process which 
formed the basis for this work.  The extension of this capability to include surface wrapping is 
then described in section 3, and in section 4 the two different modes of operation are de-
scribed.  In section 5 the capability is applied to a number of models to demonstrate the ability 
of the approach to handle industrial geometries used in external aerodynamic and under-hood 
thermal management simulations.  Finally, the paper finishes with conclusions and a discus-
sion of directions for future work. 

 

2 OVERVIEW OF MESHING APPROACH 

The wrapping capability has been implemented within an existing parallel hexahedral-
dominant mesh generator, iconHexMesh, which is part of the iconCFD process, an open 
source-based CFD software suite developed by ICON, using OpenFOAM® [16] technology.  
The mesh generation process in iconHexMesh comprises three main stages: (1) refinement of 
the initial block mesh based on prescribed refinement levels on geometry surfaces and feature 
lines, (2) creation of a conformal mesh by snapping to geometry surfaces, and (3) insertion of 
a layer mesh to capture viscous boundary layers.  At various points during the mesh genera-
tion, the mesh is dynamically re-partitioned to achieve good load-balancing.  The refinement 
and snapping stages are common requirements for both meshing and surface wrapping, and 
are therefore described in more detail in the following sections. 

2.1 Refinement 

The input to the meshing process is a discretized model of the geometry.  In the automo-
tive industry, the STL (stereo lithography) format is commonly used as input to the simulation 
process as it is a simple portable format which can be generated by most CAD systems and is 
easy to visualize [5].  The meshing process begins by reading one or more STL files describ-
ing the assembly to be meshed, and creates an initial coarse mesh of the domain, typically us-
ing a uniform grid of Cartesian-aligned cells which completely encloses the entire geometry, 
as illustrated in Figure 1(a).  Successive iterations of local mesh refinement are then applied, 
until the required level of mesh refinement is reached (Figure 1(b)).  The mesh generator sup-
ports a number of different refinement criteria to capture the details of the geometry, includ-
ing: 

 

6940



David G. Martineau, Jeremy D. Gould and Jacques Papper 

• Uniform refinement of geometry surfaces and feature lines
• Curvature-based surface refinement
• Proximity-based refinement of surfaces and feature lines
• User-defined volumes of refinement

Figure 1: Illustration of the refinement process in iconHexMesh. 

Once the refinement criteria have all been met, ‘dual-edges’ of the mesh are tested for in-
tersection with the geometry (Figure 1(c)).  A ‘dual-edge’ corresponding to an interior face of 
the mesh is the line joining the centres of the two cells neighbouring the face.  If this edge in-
tersects the geometry, then the face is marked as a boundary face (Figure 1(d)).  By painting 
cells connected to one or more user-specified keep points without crossing boundary faces, 
the fluid region to be kept is identified (Figure 1(e)).  Any cells on the other side of the set of 
boundary faces from the keep point are then discarded (Figure 1(f)). 

2.2 Snapping 

The outer surface of the remaining mesh, which will be castellated at this stage, is then 
snapped to the geometry to provide a body-conforming volume mesh.  This process involves 
a combination of smoothing of the nodes on the boundary, and projection to the geometry, 
and as such shares a degree of similarity with the shrink wrapping approach described by 
Kobbelt et al [17].  A full description of the snapping algorithm is beyond the scope of this 
paper, but the overall process is summarized as follows: 

1. Apply a few iterations of global Laplacian smoothing to the initial castellated sur-
face.  This helps to ensure that the subsequent projection onto the geometry does
not result in self-intersection of the mesh.

2. Project selected nodes in the surface mesh to feature lines in the geometry.  These
feature lines are automatically detected based on discontinuities (i.e. sharp edges)
in the discretized geometry model, or region boundaries.  For each feature line, a

gap overlap 

(a) Input ‘dirty’ geometry 
with initial mesh 

(b) Refined mesh  

(d) Marked boundary faces 

keep point 

(e) Cells connected to speci-
fied keep point 

(f) Cells corresponding to 
fluid domain 

(c) Dual-edges intersecting 
the geometry 
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corresponding path of connected nodes is found in the surface mesh, which is then 
projected to the feature line.  The deformation field arising from this projection is 
smoothed into the surrounding mesh, minimizing the distortion of the surrounding 
mesh elements. 

3. Project all remaining boundary nodes to the geometry.  Rather than simply project-
ing each node to the closest point on the geometry, this process is performed itera-
tively, and attempts to gradually move and rotate the faces of the surface mesh to 
match the local normal direction of the geometry. 

4. Smooth the final surface locally where the distance from the face centre to the ge-
ometry is large.  This relaxation of the surface mesh where the snapping has failed 
to accurately capture the geometry improves the local quality of the surface mesh, 
and aids in the subsequent insertion of layer mesh. 

 
Throughout the snapping process, the geometric quality of the volume mesh is monitored.  

Any deformation which would result in degradation of the mesh quality below user-specified 
limits is locally scaled back to ensure that the mesh quality constraints are satisfied.  Similarly, 
any topological changes to the mesh which could violate these mesh quality constraints can be 
reversed to guarantee a resulting volume mesh of acceptable quality.  

3 WRAPPING IMPLEMENTATION 

3.1 Improving tolerance to gaps 

The method by which the boundary faces of the mesh are determined in iconHexMesh is 
quite different to conventional Cartesian and octree mesh generation.  Typically, Cartesian or 
octree mesh generation defines the boundary faces as the exposed faces remaining after re-
moval of the intersected cells and cells outside the flow domain, as illustrated in Figure 2(c).  
The advantage that the approach described in section 2.1 has over this latter approach is that 
thin non-manifold surfaces in the geometry can be modelled with a ‘sheet’ of faces in the vol-
ume mesh.  In general, the approach allows the topology of the initial set of boundary faces to 
more closely match the topology of the geometry, as shown in Figure 2(b).  This enables 
much more accurate capture of the non-manifold parts of the geometry, such as the open edg-
es of thin surfaces. 
 

Figure 2: Capture of thin surfaces. 
 
There is a disadvantage to the ‘dual-edge’ intersection method for defining boundary faces 

however.  With this approach, there exists the possibility that a dual-edge passes through a 

(a) Non-manifold geometry and 
refined mesh 

(b) Boundary faces obtained using 
intersecting dual-edges 

(c) Boundary faces obtained using 
boundary of intersected cells 
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gap in the geometry, thus leaving a hole in the boundary faces which permits the volume 
mesh to ‘leak’ into parts of the volume which are not intended to be part of the flow domain.   

Figure 3: Modified process for identification of fluid region. 

This limitation is overcome by combining the existing method for detecting boundary fac-
es with the more conventional method.  The new method is depicted in Figure 3 and starts, as 
in the original method, with marking of faces whose dual-edges intersect the geometry.  These 
are defined as ‘intersecting’ faces.  The nodes belonging to these intersecting faces are also 
marked as boundary nodes.  The algorithm then marks all cells which intersect the geometry, 
and paints all the remaining cells connected to the keep point (the keep region).  The intersect-
ing cells which share a non-boundary node with the cells in the keep region are added to this 
region, and finally all cells not in the keep region are discarded.  The boundary faces are then 
defined as the faces on the outer surface of the keep region. 

Although the modified process described above improves the tolerance to dirty geometry, 
it cannot handle the situation of fully resolved gaps, as discussed in [5], where the size of the 
gap is larger than the local element size.  Unfortunately, as computing resources increase and 
engineers attempt to improve the accuracy of flow simulations by resolving finer and finer 
detail, the possibility of creating a fully resolved gap becomes more and more likely.  In the 
automotive industry for example, small gaps between body panels or paths through the heat-
ing, ventilation and air-conditioning (HVAC) system can connect the region outside the car to 
the region inside the car cabin.  Although tools are available in iconCFD® to detect and visu-
alize leaks in a volume mesh, this still requires labour-intensive visual inspection and manual 
repair of the model, and prevents the formation of a fully automated analysis process. 

3.2 Wrapping at coarser levels 

To address the issue of fully resolved gaps in the meshing process, an iterative gap-filling 
methodology is proposed.  The iterative gap-filling methodology starts by applying the modi-
fied boundary identification process, described in the previous section, at an intermediate 

 

(c) Cells intersecting 
geometry 

(b) Intersecting faces  (a) Geometry with gaps 
and refined mesh 

keep point 

(d) Marked cells con-
nected to keep point 

(e) Re-assignment of 
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(f) Mesh corresponding 
to flow domain 
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stage of the refinement process, as illustrated in Figure 4(a).  This intermediate stage of the 
refinement process is achieved by refining the mesh until a user-defined refinement level has 
been reached on all surfaces of the geometry.  This is referred to as the wrap level for a sur-
face and is either equal to or less than the maximum refinement level associated with a sur-
face.  If the wrap levels have been set correctly, then the set of boundary faces identified in 
this coarse mesh should form a closed surface enclosing the region to be modelled. 

Figure 4: Iterative identification of gap faces during refinement process. 

Having created a closed set of boundary faces, a subset of these faces which close the gaps 
in the geometry can be identified as those whose corresponding dual edge does not intersect 
the geometry.  The refinement process now continues, with the mesh being refined from the 
wrap level to the maximum level required.  The set of gap faces is updated during the mesh 
refinement to take into account changes to the mesh topology.  At each step in the refinement, 
the process of identifying the boundary faces must be repeated as shown in Figure 4(b) and 
(c), since the additional refinement may otherwise cause a gap to be created. 

The set of gap faces is also filtered at each step of the refinement process, to minimize the 
area of the faces closing a hole and improve the quality of the final wrapped surface. 

3.3 Surface snapping 

After the refinement process, and removal of the mesh outside of the flow domain, the 
boundary nodes of the mesh are snapped to the surface of the geometry as described in section 
2.2.  However, in the original implementation, it could be assumed that all the boundary 
nodes were within a relatively small distance from the geometry.  With the creation of gap 
faces spanning potentially large gaps in the geometry, this assumption is no longer valid.  
However, by maintaining a list of mesh faces corresponding to the gaps in the geometry, it is 
possible to apply a special treatment to these nodes.  Firstly, more aggressive smoothing is 
applied to the gap faces to improve the quality of the surface mesh in these regions.  After this 
initial smoothing, and snapping to feature lines on the geometry, the dual-edges correspond-
ing to the gap faces are tested for intersection with the geometry.  Any intersection of these 
dual edges indicates that the gap face likely corresponds to a crack in the geometry, rather 
than a fully resolved gap, and is therefore un-marked as a gap face.  During the rest of the 
snapping process, the displacement of the boundary nodes to conform to the geometry is 
propagated to the remaining gap faces from the neighboring boundary nodes. 

Once the snapping stage has been completed, the gap faces are assigned to neighbouring 
patches.  This allows a consistent layer mesh to be inserted on boundary patches, irrespective 
of the presence of any cracks or gaps. 

(a) Gap faces (red) 
identified at level 1 

(b) Gap faces (red) 
identified at level 2 

(c) Gap faces (red) 
identified at level 3 
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3.4 Pure Wrapping Mode 

If a wrapped surface is the only output required, then the quality of the volume mesh can 
be disregarded.  This allows for a much faster snapping process, since no checks on the vol-
ume mesh quality need to be performed, and there is no need for scaling of the mesh defor-
mation when moving the boundary points onto the surface of the geometry. 

Finally, in pure wrapping mode, the surface mesh is triangulated and output to STL format, 
preserving any patch IDs assigned to the original geometry.  The gap faces can either be as-
signed to a separate patch, or assigned to the nearest adjacent patch. 

4 RESULTS 

4.1 Flange 

To demonstrate the ability to wrap holes larger than the local element size, the wrapping 
capabilities of iconHexMesh are applied to the Flange geometry from the OpenFOAM® tuto-
rial [18].  This is a simple geometry, as shown in Figure 5(a), which features several holes and 
recesses of varying diameter.  An initial uniform Cartesian mesh of element size 0.02 is creat-
ed which encloses the geometry, as shown in Figure 5(b).  The iconHexMesh mesh generator 
is then used to apply 4 levels of surface refinement, resulting in the final surface mesh shown 
in Figure 5(c), which accurately captures the sharp features of the geometry. 

 

 

Figure 5: Flange geometry and corresponding surface mesh. 
 
The series of images in Figure 6 show how iconHexMesh is able to close off different size 

gaps in the geometry using varying wrap levels, but with the same final refinement level in all 
cases, enabling the geometric fidelity of the model to be maintained as much as possible.  In 
contrast, Figure 7 shows how use of varying refinement level to close off the holes in the 
mesh results in considerable loss of geometric fidelity. 

 

 

Figure 6: Flange surface mesh at different wrap levels. 

(a) STL geometry (b) Surface mesh 

(a) Wrap level = 4 (b) Wrap level = 3 (c) Wrap level = 2 
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Figure 7: Flange surface mesh at different refinement levels. 

The geometric fidelity of the surface mesh can be further improved by enabling the feature 
line snapping functionality in iconHexMesh, as illustrated in Figure 8.  The feature line snap-
ping is able to improve the capture of sharp edges on the geometry, as well as properly resolv-
ing the region boundaries on the flat surface of the model.  Finally, Figure 9 shows how the 
gap faces can be kept in a separate patch, or assigned to the same patch as neighbouring faces 
in the surface mesh. 

Figure 8: Improved geometry capture using feature line snapping. 

Figure 9: Surface mesh shaded by patch ID. 

(a) Refinement level 4 (b) Refinement level 3 (c) Refinement level 2 

(a) Surface mesh with basic surface snapping (b) Surface mesh with feature line snapping 

(a) Gap faces (red) put in separate patch (b) Gap faces assigned to neighbouring patches 

6946



David G. Martineau, Jeremy D. Gould and Jacques Papper 

4.2 External Aerodynamics Case 

In this section a few holes have been deliberately added to a model of the Koenigsegg Ag-
era hypercar to illustrate how the combined wrapping and meshing capability is able to handle 
geometry defects commonly encountered in automotive applications.  The geometry of the car 
is shown in Figure 10.   

 

    
 

Figure 10: Koenigsegg Agera geometry. 
 
To create a mesh on the Koenigsegg Agera vehicle, an initial Cartesian mesh was generat-

ed around the car and wind tunnel with a base size of 3 m.  A minimum refinement level of 8 
was applied to all of the car surfaces, giving a maximum element size of approximately 12 
mm on the car surface.  Between one and three levels of curvature refinement were applied to 
capture the feature edges and highly curved regions of the car, such as the rear wing blade, 
leading to a minimum element size of 1.5 mm.  To capture the viscous boundary layer, 6 lay-
ers of cells are inserted at the car surface, with a first layer thickness of 1 mm. 

 

 
 

Figure 11: Slice through volume mesh with leakage into cabin region. 
 
A slice through the volume mesh generated without wrapping is shown in Figure 11, 

clearly indicating that mesh has leaked into the car interior, resulting in a mesh which is not 
suitable for an external aerodynamic flow simulation.  A flow simulation on this mesh will 
waste valuable computational resources, and may fail to converge due to the stagnant region 
inside the car.   
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A leak detector utility is provided within the iconCFD software suite, which can be run in 
order to help find gaps in geometries in this type of situation.  Figure 12  shows a path (in red) 
of cells detected using this tool which connect a user-specified orphan point inside the car to 
the keep point.  It can easily be seen in this case that the leakage path corresponds to a gap 
around the wind screen highlighted in blue in Figure 12.  However, there may be many leaks 
in the geometry and the process of finding and closing them all can be slow and labour-
intensive on a complex industrial model.  

 

   
 

Figure 12: Leakage path detected (red) and corresponding hole in geometry (edges in blue). 
 

In order to close the holes in the geometry without the need for any leak detection and 
manual repair, a wrap level of 7 was applied to all the car surfaces during the meshing process.  
This should close any holes of size 23 mm or smaller.  All other meshing parameters were 
kept the same.  Several views of the gaps in the geometry and the surface mesh generated in 
these regions are shown in Figure 13.  A slice through the resulting surface volume mesh is 
shown in Figure 14, indicating that the wrapping has managed to successfully close all the 
gaps and prevent the mesh leaking into the interior.   
 

         

         

         

         
Figure 13: Details of car geometry (a), (b), (c) and corresponding surface mesh (d), (e), (f). 

 

(f) (e) (d) 

(c) (b) (a) 
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Figure 14: Mesh of car with wrapping activated. 
 

Table 1 gives some statistics of the meshes obtained with and without wrapping activated 
during the meshing process.  These indicate that the mesh leakage into the cabin incurs a 79% 
increase in element count, which could result in a significant waste of computational re-
sources if not detected early in the analysis process.  Both meshes were generated using 32 
cores of a Linux cluster with Intel Xeon E5-2670 (2.60GHz) processors.  
 

 
Mesh 1  

(unwrapped) 
Mesh 2 

(wrapped) 
Time taken (s)  6,593 6,907 
Number of cells  66,826,035 37,366,550 
Number of faces  215,589,109 120,713,107 
Number of points  83,252,580 46,732,723 

Table 1: Comparison of mesh statistics. 

4.3 Engine Block 

In the automotive industry, under-hood thermal management (UHTM) deals with the de-
sign and verification of critical components in the engine compartment to ensure proper cool-
ing and acceptable operating temperatures in a wide range of driving conditions.  Although 
accurate capture of the highly detailed geometry in the engine compartment is not important 
for UHTM simulations, the full car geometry must be included, since the blockage effects of 
the engine and other components must be modelled properly.  The engine geometry is howev-
er, highly detailed, and manual cleanup of the CAD geometry to provide a watertight surface 
can be very complex and time-consuming [19].  For these reasons, surface wrapping tools are 
often employed in the automotive industry to wrap engine geometries prior to mesh genera-
tion. 

This test case therefore demonstrates the use of iconHexMesh in pure ‘wrapping’ mode, to 
create a watertight surface wrap of a complex engine block geometry.  The model, shown in 
Figure 15(a), comprises 887 separate components grouped into 57 solids defined with a total 
of 4.2 million triangles.  An initial Cartesian mesh was created with an element size of 1.25 m.  
A uniform surface refinement of level 9 was applied to the engine, giving a smallest element 
size of 2.44 mm.  A wrap level of 5 was applied to fill any holes larger than 39 mm, resulting 
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in the surface wrap shown in Figure 15(b).  The entire wrapping process, including projection 
of the wrap surface to the geometry and capture of feature lines, took 278 seconds on a Linux 
workstation using 2 Intel Xeon X5650 (2.67GHz) processors.  The final wrapped surface con-
sists of a single closed manifold surface containing 762,028 triangles. 

Figure 15: Engine geometry and wrap. 

In the detailed view of the wrap surface shown in Figure 16, the ability of the wrapping 
functionality to close large holes in the model, whilst still capturing fine details, is clearly 
demonstrated.  A large circular hole in the geometry can be seen in the centre of Figure 16(a), 
which the wrap surface closes off in Figure 16(b), whilst still capturing the thin plate and nar-
row rod structures nearby. 

Figure 16: Detail of engine geometry and wrap, shaded by PID. 

(a) Engine geometry (b) Surface wrap 

(b) Watertight surface wrap of engine (a) Engine geometry shaded by PID 
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4.4 UHTM Case 

The final example in this section is used to demonstrate the wrapping capability on a fully 
complex industrial application.  The model is a detailed geometry of the Skoda Fabia II con-
taining the complete geometry of the engine compartment including power-train, suspension, 
cooling, exhaust system, and electrical components.  The geometry consists of 14 STL files, 
which together comprise 382 patches and 36 million triangles.  A clip through the geometry is 
shown in Figure 17, which illustrates the complex topology of the engine compartment.  
Manual clean-up of such a geometry and subsequent processing to allow volume mesh gener-
ation can involve several man weeks of CAD repair and preparation [17]. 
 

 
 

Figure 17: Geometry and clip through geometry of UHTM model 
 

The ‘pure wrapping’ mode was used to generate a watertight surface wrap of this model 
suitable for subsequent analysis.  Firstly, an initial background mesh of element size 0.625 m 
was generated enclosing the entire car geometry.  A wrap level of 4 was applied to the entire 
geometry to close any holes smaller than 40 mm in the assembly.  The background mesh was 
refined to level 8 (2.44 mm) on all surfaces, and an additional 2 levels of curvature refinement 
were applied to provide accurate capture of geometry features.  The resulting surface wrap is 
shown in Figure 18.  A slice through the background mesh in Figure 19 shows that the wrap-
ping capability has managed to close any gaps which connect the outside of the car to the cab-
in. 
 

 
 

Figure 18: Wrap and clip through wrapped surface of UTHM model  
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The wrapping process took 2 hours and 42 minutes on 32 cores of a Linux cluster with In-
tel Xeon E5-2670 (2.60GHz) processors.  The final wrapped surface consists of 12.5 million 
triangles. 

 
Figure 19: Slice through background mesh on UHTM model 

 
 

5 FUTURE WORK 

Although the combined wrapping and meshing approach presented here offers a signifi-
cant improvement in automation of the simulation process, the user is still required to pre-
scribe suitable refinement levels for the wrapping based on an upper bound on the size of any 
gaps which need to be filled in the geometry.  Determining the size of gaps in the geometry is 
not a trivial task, and in future it would be preferable to remove this burden from the user.  
Instead of specifying wrap levels, it is envisaged that the user specifies one or more orphan 
points, similar to the keep points, which would indicate volumes of the model which are not 
to be included in the simulation.  As the refinement process progresses, as soon as a path is 
created connecting an orphan point to a keep point, the refinement level at which wrapping is 
required can be identified. 

In order to help keep selected components separate during the wrapping and meshing pro-
cess, proximity refinement can be employed.  However, this is currently applied between the 
selected surface and any other surface.  In future, this will be extended to allow users to speci-
fy proximity refinement between selected pairs of surfaces and therefore enable highly fo-
cused contact prevention. 

The primary focus of this work has been the combined wrapping and meshing functionali-
ty within iconCFD.  However, as mentioned previously, it is possible to operate the mesher in 
a pure ‘wrapping’ mode, and output the resulting surface mesh as a modified set of STL files.  
In this scenario, it may be desirable to further improve the quality of the wrapped surface for 
the upstream applications.  Topological operations such as edge swapping, edge splitting and 
edge collapsing [20], as well as node smoothing [20] are a few ways in which to achieve bet-
ter surface mesh quality.  If the size of the wrapped STL is a concern, then there are various 
surface mesh decimation techniques [21] which could be employed to reduce the number of 
triangles.  There is also potential to improve the performance of the pure wrapping mode, by 
avoiding certain operations which are only required when the quality of the resulting volume 
mesh is of importance.  
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6 CONCLUSIONS  

• A combined wrapping and mesh generation capability has been described which allows
the original geometry to be retained to whatever fidelity is required in the simulation.
This capability eliminates the de-featuring of geometry associated with conventional sur-
face wrapping techniques.

• The problem of fully-resolved gaps encountered in other interior-to-boundary mesh gen-
eration approaches is avoided by wrapping at intermediate refinement levels during the
meshing process.

• Implementing wrapping within the framework of an existing parallel mesh generation
process means that wrapping can be performed quickly and efficiently with minimal
overhead.  The wrapping is also able to re-use a substantial amount of software devel-
oped in the mesh generator for snapping to geometry lines and surfaces.

• The ability to wrap geometry within the meshing process allows special treatment to be
applied to the gap-closure faces, leading to a better quality volume mesh for flow simula-
tion.

• The wrapping capability is designed to handle extremely complex industrial models con-
taining many parts with complex topology.  No assumptions are made regarding the qual-
ity or orientation of the input geometry, or the shape or nature of any holes present in the
assembly.  The wrapping is controlled simply by specifying the minimum size of hole
which should be closed in the geometry.
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Abstract. The fluids as deformable bodies without own shape, when starting from rest, expe-

rience interactions between the flowing fluid and the physical surfaces marking the bounds of 

flow. These interactions are a kind of impact process where there is a momentum exchange 

between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of 

contact a post-impact shear flow occurs where two main effects are triggered off by the flow-

induced collision: dramatic redistribution of the momentum and the boundary vorticity fol-

lowed by the shear stress/viscosity change in the microstructure of the fluid which at the be-

ginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The 

disturbance of the starting flow induces the entanglement of the wall-bounded flow in the 

form of point-vortices or concentrated vorticity balls whence waves are emitted and propa-

gated through flow field. The paper develops a wave mechanism for the transport of the con-

centrated boundary vorticity, directly related to the fascinating turbulence phenomenon, 

using the torsion concept of vorticity filaments associated with the hypothesis of thixo-

tropic/nonlinear viscous fluid. 
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1 INTRODUCTION 

Generally, the impact/collision is a process of momentum exchange between two colliding 

bodies within a short time of contact. With respect to a single impacted body or structure, the 

loading in such a process acts with high intensity during this short period of time. As a result, 

the initial velocity distribution is rapidly changed (even pressure wave loadings). Such rapid 

loading in the contacting area is a source where waves are emitted that propagates with finite 

speed through the body. In the case of sufficiently small amplitudes, the linear elastic body 

waves propagate with the speed of sound waves; the distinction between the fast longitudinal 

L – wave (carrying wave) and the slower transverse T – wave complicates the pattern as it 

will be seen in the sequel. 

When starting from rest the fluids as deformable bodies without own shape, experience 

interactions between the flowing fluid and the physical surfaces enclosing the flow. These 

interactions are a kind of impact process where there is a momentum exchange between the 

flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs 

where two main effects are triggered off by the flow-induced collision: dramatic redistribution 

of the momentum and the boundary vorticity creation followed by the shear stress/viscosity 

change in the microstructure of the fluid which at the beginning behaves as linear reactive 

medium and latter as nonlinear dispersive medium. The disturbances of the starting flow 

( 0t  ) cause the entanglement of the wall-bounded flow (stream function 0, 0t   ) in-

ducing a wall torsion pressure (suction) in the form of point-vortices or concentrated vorticity 

balls whence waves are emitted and propagated through the flow field [1], [2]. Such vorticity 

concentrations and their potentially devastating rotary motions are observed in the natural 

case of tornados. The above phenomenology of the impact process of a starting fluid shows 

that at the beginning the vorticity lines are subjected to a torsion pressure [2] being 

concentrated at the boundaries; after that the vorticity concentrations are dispersed in a shear 

layer by vorticity shear waves. Thus, the description of the complicate dynamics of the 

concentrated boundary vorticity, in fact a kind of variable angular velocity, requests a new 

fluid medium able to adjust itself continuously and to respond to the flow/stress. Such a fluid 

playing a role of variable mass is called the thixotropic/nonlinear viscous fluid [3]. In contrast 

to the Newtonian fluid model, too restrictive (linear shear stress and constant viscosity), the 

thixotropic model is a flexible one, able to describe even intricate turbulent motions. 

The boundary vorticity dynamics, (i.e. its creation, growing and finally fading under the 

form of the full turbulent flow) is presented in the paper through the results concerning the 

plate boundary layer flow and Couette flow. 

2 GENERAL FORMULATION 

We consider an infinite region of fluid, which is viscous and incompressible. The Navier-

Stokes equations expressed in the vorticity-stream function formulation for two-dimensional 

motion of this fluid is recasted in the vorticity transport/transfer equation 

2 2

2 2
u v

t x y x y

       
     

     
, (1) 

where 
1

2

v u

x y


  
  

  
 is the vorticity at the fluid point (rotation of fluid), t is the time, x is 

the coordinate in the direction of mean flow and y is the coordinate normal to that direction; x 

and y velocity components are  and u v
y x

 
  
 

 and Ψ is the stream function. 
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The vorticity transport equation is classified as a parabolic equation with the unknown 

being the vorticity ω. The definition of vorticity yields 

2 2

2 2x y

   
  

 
, (2) 

known as the stream function equation, classified as an elliptic partial differential equation. 

The unknown is the stream function Ψ, whose ω is provided from the solution of Eq. (1). 

Once the stream function has been computed, the velocity component may be determined 

from its derivatives. By introduction of new variables, namely the vorticity and the stream 

function, the incompressible Navier-Stokes equations are decoupled into one elliptic equation 

and one parabolic equation which can be solved sequentially. The main drawback of the 

method consists in the poor knowledge of the initial and boundary conditions that must be 

obtained by physical considerations. The initial condition at fluid-boundary impact 

( 0, 0
e

x
t

U
    ) given by Stuart’s solution for vorticity 2

w e   [1] associated with the 

thixotropic fluid model [2] renders Eq. 1 at the boundary enclosing the flow (Ψ = 0, t) into a 

non-linear ordinary differential equation for the boundary vorticity, 0,w
e

x
t

U


 
   
 

 

2

2
,  - vorticity boundary conditionsw wd d

dx dx

 
  , (3) 

2  - shear compliance relationw eU   , (4) 

where the ν(x) is the variable viscosity of the thixotropic viscous fluid able to respond to 

flow/stress and Eq. (4) represents a kind of the conservation of flow angular momentum. The 

initial/starting and boundary conditions (3) for vorticity are a crucial part of the mechanism by 

which a laminar flow becomes transient and then turbulent one. 

3 ON PHYSICS OF VORTICITY 

Formally, the problem of turbulence is to solve the Navier-Stokes equations subject to 

initial and boundary conditions. At present, it is possible to obtain fully resolved solutions at 

moderate Reynolds numbers via direct numerical simulations of the Navier-Stokes equations. 

However, the common mathematical conjecture that the turbulent flows can be correctly 

described in an asymptotical manner (i.e. at large Re with 0 ) by some sort of specially 

selected weak solution of Euler equations has little to do with real physics at any large 

Reynolds number. But, beside the difficulties of a formal/technical nature, there is another 

difficulty of a more general nature. It is lack of knowledge about the basic physical processes 

of turbulence and its generation and origin, and poor understanding of the processes which are 

already known. 

Here, in contrast with the common view that the origin of turbulence lies in the instability 

of some basic laminar flows, the turbulence is the result of the boundary vorticity dynamics of 

the flow-induced collision and its consequences where shear waves are emitted and 

propagated in the flow field from the vibrating concentrated vorticity at the boundaries. 

This is understood in the sense that any flow starts from rest at some moment in time, and 

as long as the Reynolds number, or the reduced frequency of vorticity is small, the flow 

remains laminar (creeping motion of vorticity). As the Reynolds number/frequency of 

vorticity increases a wide instability range sets in, which is followed by transition and then a 
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fully developed turbulent state. This is the visible face or large scale of the flow field, i.e. the 

velocity fluctuations, whereas the poorly known origin of turbulence is the invisible face or 

small scale of the flow field, i.e. the vorticity fluctuations. 

Therefore, the origin of turbulence is a problem of boundary vorticity dynamics that needs 

a holistic approach of the motion process containing the linked up events: the flow surface 

colliding and starting vorticity creation, the non-dispersive creeping motion of vorticity 

(laminar flow) and the dispersive vibrating motion of vorticity (turbulent flow). 

Each perturbation, small or large, is in fact a kind of impact between the flow and its 

boundaries exchanging the momentum between bodies within a short time of contact. As a 

result, the initial velocity distribution is rapidly skewed/squeezed, the vorticity is created and 

organizes itself into more and more concentrated structures, thus at the boundary there is a set 

of point-vortices. The exact solutions of the equations of inviscid motion found by Stuart [1] 

(e

 - solutions,  0,2 ) can describe strong vorticity concentrations developing in skewed

shear layers. The concentration level of vorticity is estimated on a natural logarithmic scale e


from e
0
 - sparse/weak vorticity, up to e

2
 – concentrated vorticity, where the index  is a meas-

ure of the concentration of vorticity. In contrast to the sparse vorticity transported by the ideal 

fluid flow according to the laws given by Helmholtz [4], the concentrated vorticities are 

transported by waves, their shape depending mostly on the concentration of vorticity, Fig. 1. 

Figure 1: Effect of γ (concentration), R (circulation) parameters on streakline patterns [5]. 

Physically, the concentration of vorticity at boundaries is a local compression of flow in-

ducing by the torsion of vorticity wires. The concept of torsion of the concentrated vorticity 

allows a better understanding of the boundary vorticity creation and its dynamics, which be-

comes an active one just after impact. Essentially, the boundary vorticity dynamics contains 

small amplitude vibrational motions generating vorticity weak waves that create the cov-

ered/hidden field of flow. The self-sustained vorticity wave onset is the mechanical origin of 

turbulence. 

Concomitantly with the vorticity creation the impact process induces microstructure 

changes of the flow properties resulting in a time dependent shear stress, ν = ν(t), known as 

the thixotropic behavior of the flowing fluid. It is experimentally shown that the transient vis-

cosities follow the line of the complex viscosity versus angular frequency [5]. This behavior 

can be described by a Klein-Gordon like wave equation [6] 
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2

2 2
02 2

1

e

d x
x

dx U


    , (5) 

where ν0 is steady shear viscosity and 1
0 0

    is the natural angular frequency of fluid, de-

fined as the first zero of the Fourier coefficient B(ω) of a square pulse/impact. Thus, the solu-

tions of Eq. 5, describe well enough the dual behavior of the thixotropic fluid, as a reactive 

medium, ω < ω0, at impact inducing exponential waves (without energy dissipation), and as a 

dispersive medium which can support sinusoidal waves for ω above the natural frequency 1
0
 . 

Equation (5) also shows that the microstructure takes time to respond to the flow/stress and its 

elastic response at low frequency is faster as the flow velocity Ue increases. 

The disturbed post-impact flow is a boundary-layer type flow which is relaxed through a 

complicated wave system, which transports concentrated vorticity from boundaries to the 

flow field and rebuilds the flow microstructure. There is a non-dispersive transport of 

vorticity performed by exponential waves in the form of the laminar flows dominated by the 

frictional shear stress and a dispersive one which involves lightly damped sinusoidal waves 

by dry friction in turbulent flows. Hence, it is evident that the analysis of the impact-

relaxation process requests another constitutive relation to describe the intricate behavior of 

viscous fluid. For the thixotropic fluid, such a relationship is a shear compliance defined as 

2
,

1
 on Btorsion w w ep U    


, (6) 

where ,torsion wp  is the torsion pressure at wall, w e   is the vorticity at a two-dimensional 

wall ( B ),  is a torsion/concentration index  0,2 , and ν(t) denotes the change of viscosity 

during the post-impact flow which is able to adjust itself continuously. 

A non-steady fluid system involves an oscillating behavior of its opposite, intrinsic proper-

ties (vorticity and viscosity) and suddenly excited it decays as a big damped harmonic oscilla-

tor. The evolution is slow and to visualize its full way a plotting on suited scales is necessary. 

Using the exponential scales and measure units e and 1
0
 , the shear compliance, Eq. 6, can be 

written as 

 

 

1/
1

0

1/ 1
0

Re  for Re Re  (laminar flow)

Re  for Re Re  (turbulent flow)

x x c

x x c

e

e


 


 

  

  

, (7) 

where the critic Reynolds number 2 1
0Rec e    is the non-rolling condition for concentrated 

vorticity, which separates the non-periodic creeping motion of vorticity inducing laminar flow, 

from the torsional vibration motion of vorticity generating turbulent flow, and 1
0
 is the natu-

ral frequency of the thixotropic fluid. Equations (7) express the conservation of boundary 

vorticity in laminar flow, its dispersion in turbulent flow, respectively. 

For the above 1
0Rex
   the transient flow in the neighborhood of the wall vibrates as a 

continuous and homogeneous string carrying transverse vorticity waves which permanently 

disperse vorticity. Figure 2 illustrates the wave system induced by the flow-boundary impact 

and the dispersion mechanism of concentrated vorticity that displays a wide frequen-

cy/Reynolds number spectrum from the low indifference Reynolds number 2 1/ 2
0Relind e    - 

the onset of the weakest waves (TSW-Tolmien-Schlichting waves) up to the high indifference 
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Reynolds number 1/ 2 2
0Rehind e   . For the last Re the wave system becomes a slightly damped 

one with the resonance close to the natural frequency 1
0
 , emitting acoustic waves. For above 

2 1
0Rex e    the transitional flow displays a strong beat phenomenon with varicose aspect of 

vorticity where its frequency 1/ 2Rex , is far from the resonance frequency. For 

above 2/3 3/ 2
0Rex e   , the vorticity is broken down in contra-rotating fragments/flocks and its 

frequency approaches the resonance frequency where the flow is full turbulent and it can be 

statistically described. The Reynolds number controls the wave system playing a role of tun-

ing button that switches the frequency band from concentrated vorticity and small Re/low fre-

quency and long wavelength to dispersed vorticity and high Re/high frequency and short 

wavelength. 

The essential difference between laminar flow and turbulent flow is given by the difference 

between the behaviors of fluid as linear viscoelastic-reactive medium and nonlinear thixo-

tropic-dispersive medium. That is, while both are time effects, the former is in the linear re-

gion, where the microstructure responds but remains unchanged and the latter takes place in 

the nonlinear region where the microstructure is broken down by deformation as well as re-

sponding to it. 

 

Figure 2: Transverse waves (TW) modulated in amplitude on a longitudinal carrying wave (LW) and dispersion 

mechanism of concentrated vorticity by shear waves [8]. 

4 RESULTS FOR ZERO-PRESSURE GRADIENT FLOW 

The zero-pressure gradient flows are simple shear flows (Prandtl boundary-layer flow and 

Couette flow) where the shear stress has a prevailing role everywhere in the flow field. The 

reason to treat these flows is because of fundamental importance for turbulent flows close to 

walls in general, far beyond these particular cases. It will be seen that the flow regions of the 

chosen turbulent flows close to wall have universal importance, so that, up to some yet to be 

specified conditions, the results can be carried over to the regions close to the wall of general 

turbulent flows. That is, the Prandtl and Couette flows are the extreme examples concerning 
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the visual perception of turbulence: one sidewall-bounded flows (boundary-layers flows) with 

visible velocity fluctuations, and two sidewall-bounded flows (shear flows) involving invisi-

ble velocity fluctuations. As a matter of fact, the Couette flow is also called no-fluctuation 

shear flow. 

In this context, the motion equations contain an irrotational potential U x  (outside a 

shear layer) and a vector potential  ,x yA k  (inside and normal to shear layer) where ψ is 

the stream function defined by 

,u v
y x

 
  
 

, (8) 

Using the approximations and notations of the boundary-layer flow [7] 

   
 

1/ 2

2 , ,
x y

xU f x
U x





 
        

 
, (9) 

where  f   is the dimensionless stream function,  x is a scaled measure of the boundary-

layer thickness (up to the approximation 0.99u U ) and  '
u

f
U

   is the similarity law of 

the velocity profile, the boundary layer equations and their boundary equations become one 

ODE for the stream equation 

''' '' 0
''' '' 0
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Prandtl flow 0: 0, ' 0 Couette flow

0: 0
: ' 1

: ' 0
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f
f f

f
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. (10) 

This nonlinear third order equation and the three boundary conditions completely deter-

mine its solution, if the mute constant kw can be known a priori. Blasius found a solution of 

Eq. 10 for 2wk  , known as Blasius equation, in the form of a series expansion for 0  and 

an asymptotic expansion for  , the two forms being matched at a suitable value of η. But, 

Eq. 10 describes a more general phenomenon, that of the transverse standing vorticity/shear 

waves, called solitons, which retain their identity upon a collision. 

The vorticity soliton identified here as Blasius soliton, depends on the function wk  directly 

related to Rex via the shear compliance, Eq. 7 , which is responsible for coupling between the 

autonomous fast motion of vorticity and the velocity field of the non-autonomous slower flow, 

 
-1

 for Re Re  (weak coupling)

log Re  for Re Re  (strong coupling)

w x c

w x x c

k e

k

 

 
. (11) 
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Figure 3: Coupling function  Rew xk [8]. 

Figure 3 shows the variation of the coupling function  Rew xk , that as a matter of fact is a 

vorticity creation boundary condition, with a physical support, for any wall-bounded flow. 

This natural boundary condition can be interested in the numerical methods using vorticity-

stream function/velocity formulations [8]. Now, justly Rex known the solutions of Blasius 

soliton can be easy computed by a standard shooting technique. 

Figure 4 shows the solution for the vorticity waves close to the ends of the Reynolds spec-

trum, i.e. flow field at small scale for Prandtl flow. In contrast to the strong shock/pressure 

waves, the weaker vorticity waves propagate under the form of the three wave packet: shear 

stress wave f’’, elastic wave f’’’ and dispersion wave f
iv
. The vorticity wave packet is a super-

imposing of three waves, each wave having different roles depending on the Reynolds num-

ber (the flow type), that is while the laminar flows are dominated by the shear stress waves 

induced by the creeping motion of vorticity (without energy dissipation), in turbulent flows 

the dispersive sinusoidal waves, induced by torsional vibrations of vorticity, are the key 

mechanism of the turbulence phenomenon. 

Figure 4: Blasius soliton for T – waves, (Prandtl flow): f’’ - shear wave, f’’’ - elastic wave, f
1v

 –dispersion wave 

for a) kw = e and b) kw = e
-2

.
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Figure 5: Blasius soliton for T – waves, (Couette flow): f’’ - shear wave, f’’’ - elastic wave, for a) kw = e and b) 

kw = e
-2

. 

Figure 5 shows the vorticity field for Couette flow, where the wave packet contains only 

shear stress wave (f”) and elastic wave (f’’’) because of the stronger restriction on the flow 

bounded by two sidewalls. The suppression of the dispersion wave leads to a pressure in-

crease in the flow field as the Reynolds number increases. At 1/ 2Re 2Re 1400c  the concen-

trated vorticity (e
2
) is broken down in two contra-rotating fragments, the wall torsion pressure 

is recovered in the flow field and the velocity field is regularized, Fig. 6b2. The onset of tur-

bulence is the vorticity jump itself where the vorticity (its concentration) is halved and the en-

ergy storage at impact as torsion pressure (suction) is recovered as dynamic pressure of flow, 

Fig. 6. 

 

  

Figure 6: Average velocity profiles and dynamic features of a wall-bounded flow : a) Prandtl boundary layer 

flow: laminar, turbulent two layer model ; b) Couette flow, b1: laminar, b2: turbulent. 
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Figures 6(a, b) show the flow field at large scale marking also the vibration tendencies of 

flow near wall when the Reynolds number exceeds its critic value. The analysis of the wall-

bounded flow both at small scale (vorticity field) and large scale (velocity field) points out the 

self-sustained wave mechanism of turbulence, that is similar to synthetic jets generated by 

pulsed jets with zero net-mass flux and a small flow-momentum consumption. The thixo-

tropic fluid in the turbulent wall-bounded flows operates as a diaphragm that alternatively 

sucks inflow and ejects outflow in a periodic manner, creating discrete/concentrated vortical 

structures followed by their dispersion by wall friction and transport by flow. 

5 CONCLUSIONS 

Using the concept of torsion of the concentrated vorticity associated with the hypothesis of 

thixotropic/nonlinear viscous fluid a vorticity wave mechanism is devised for disper-

sion/transport of concentrated boundary vorticity. The main results obtained from the investi-

gation of the vorticity wave system, triggered off by the flow-boundary collision, can be 

summarized as follows: 

 The boundary vorticity creation is result of the flowing fluid - boundary collision that is a 

weak viscous shock of its evolution is governed by solitary shear waves called solitons, 

called in the paper Blasius solitons, analogous to KdV (Korteweg-de Vries) solitons 

formed in shallow water. 

 There is a wide frequency/Reynolds spectrum from 2 1/ 2
0Rex e    (TSW) up to 

1/ 2 2
0Rex e    (acoustic waves) where the wave system operates like a big slightly damped 

oscillator close to the natural frequency of the fluid. 

 The interested region in research lies in the audible frequency range, i.e. below 
2/3 3/ 2

0Rex e    where the breaking down process of concentrated vorticity by torsion vi-

brations remains a black box of turbulence. 

 The origin of turbulence is one of mechanical nature where vibrations of concentrated 

boundary vorticity (transverse vorticity waves) are induced by the slightly damped oscil-

lations (longitudinal compressing/expanding waves) of the fluid excited at the beginning 

of motion. The self-sustaining mechanism of fluctuations in turbulent shear flows con-

sisting of creation, dispersion and transport of vorticity is similar to a typical device gen-

erating synthetic jets. 

 The dual concept of the torsional concentrated vorticity – thixotropic fluid is vital for any 

paradigm in research of turbulence. 
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Abstract. Important problem of residential buildings, social centers etc. is the increased 

concentration of pollutants during use of the building / room.  

The air-tight outer housing is typical for new or reconstructed buildings, due to tight windows, 

outer thermal insulation, etc. It is good for the reduced heat consumption in winter period but 

there are some disadvantages, in general, too, known in general as the “sick building syn-

drome”. For instance, the higher air humidity could result in water vapor condensation in the 

colder outer corners of the observed room and consequently in mould growth, or in assem-

bling rooms (classrooms, etc.) with poor ventilation, the concentration of CO2 is increasing 

quickly over the hygienic limits and is the reason of fatigue, headache etc., or due to internal 

heat sources, the room temperature is increasing and it is necessary to keep it on a suitable 

level. Many other pollutants can be present in observed buildings, as for instance formalde-

hyde, radon, bacteria etc., but it is over the extent of this short paper. 

In standard rooms without ventilation or air conditioning, the natural or forced ventilation is 

used, only. Results of numerical simulations describe, how to simply remedy the so-called sick 

building syndrome and without any expenses to get and keep healthy living environment.  

The design of air conditioning units, taking into account all such pollutant sources, is well- 

known. Many producers offer many different units for various kind of use. In general, the 

costs are significant – not only investment, but operational, too. In reconstructed buildings is 

not space enough for such equipment. 

In each system of ventilation / air exchange is a part of polluted inner air replaced by fresh 

outer one. The exhausted inner warm air contains some heat, which must be in winter period 

added again into the fresh and cold outer air. To reduce the extent of such thermal energy, 

various heat recovery systems are used.  

The paper deals with numerical simulations of flow and heat exchange between warm and 

cold air, using heat exchanger with crosswise flows. It contains two systems of crosswise 

oriented channels, in the first one the outlet warm air is cooled by inlet cold air, situated in 

the second channel. The aim is to get the maximum of recovery heat to reduce costs for reheat 

of outer air, at minimum pressure losses during air flow. 
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1 INTRODUCTION 

Important problem of residential buildings, social centers etc. is the increased 

concentration of pollutants during use of the building / room.  

The air-tight outer housing is typical for new or reconstructed buildings, due to tight win-

dows, outer thermal insulation, etc. It is good for the reduced heat consumption in winter pe-

riod but there are some disadvantages, in general, too, known in general as the “sick building 

syndrome” [1]. For instance, the higher air humidity could result in water vapor condensation 

in the colder outer corners of the observed room and consequently in mould growth, or in as-

sembling rooms (classrooms, etc.) without ventilation, the concentration of CO2 is increasing 

quickly over the hygienic limits and is the reason of fatigue, headache etc., or due to internal 

heat sources, the room temperature is increasing and it is necessary to keep it on a suitable 

level [2]. Many other pollutants can be present in observed buildings, as for instance formal-

dehyde, radon, bacteria etc. [3], [4], but it is over the extent of this short paper. 

In standard rooms without ventilation or air conditioning, the natural or forced ventilation 

is used, only. Results of numerical simulations [5] describe, how to simply remedy the so-

called sick building syndrome and without any expenses to get and keep healthy living envi-

ronment. Similar data about problems of ventilation are presented for instance in [6] to [11]. 

The design of air conditioning units, taking into account all such pollutant sources, is well- 

known. Many producers offer many different units for various kind of use. In general, the 

costs are significant – not only investment, but operational, too. In reconstructed buildings is 

not space enough for such equipment. 

In each system of ventilation / air exchange is a part of polluted inner air replaced by fresh 

outer one. The exhausted inner warm air contains some heat, which must be in winter period 

added again into the fresh and cold outer air. To reduce the extent of such thermal energy, 

various heat recovery systems are used.  

The paper deals with numerical simulations of flow and heat exchange between warm and 

cold air, using heat exchanger with crosswise flows. It contains two systems of crosswise 

oriented channels, in the first one the outlet warm air is cooled by inlet cold air, situated in the 

second channel. The aim is to get the maximum of recovery heat to reduce costs for reheat of 

outer air, at minimum pressure losses during air flow.  

2 MODEL OF ONE CHANNEL FLOW 

The simple introductory model simulates the influence of various kinds of inner ribs. It is 

clear that ribs increase the heat transfer surface in general, but in the same time the pressure 

losses are increasing, too. For comparison of various designs of ribs the simple model of one 

channel, only, is created, flowed by warm air (as an example). The warm air is cooled by 

outside cold walls, defined as constant cold temperature. Really, on outside surfaces there is 

flowing the second cold air, warming along the heat transfer surface, and then its temperature 

is not constant.  

This model is idealization, only, for simple and quick evaluation of various designs. 

Some results are presented here for several kinds of triangular ribs of various pitches in the 

same channel height. The Figure 1 shows the pressure field in inlets cross-sections for three 

simultaneously solved cases (signed as 7-8-9, where 3-6-9 ribs are used on the same distance). 

 
Figure 1: Pressure field in inlet cross sections (cases signed 7-8-9) 
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On the Figure 2 to Figure 4 there are presented the fields of pressure, temperature and 

velocity, all in the middle height of observed channels. Used example is for warm air at the 

inlet. In narrow channels there is faster temperature change, comparing with large ones. 

Probably, for specified channel length and temperatures difference in the recuperation, in the 

narrows channel the maximum possible temperature gradient was reached. It should be to 

check this case for higher specified temperature difference. 

In narrow channels the pressure decreasing in the flow direction is slower – the flow 

resistance in narrow channels is higher in general, the pressure decreasing is not so fast.  

The velocity in narrow channels is smaller in general, due to higher flow resistance. 

 

From realized numerical simulations all necessary flow parameters were evaluated and the 

relation between thermal outputs received by recovery is determined as 

Q = m . cp . ΔT [W] 

and mechanical input, necessary for overcoming of flow resistance, is 

P = V . Δp [W]. 

 
Figure 2: Pressure field 

 
Figure 3: Temperature field 
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Figure 4: Velocity field 

 

Received values for simulated cases of different ribs arrangements are in the Table 1, as the 

first information, only, because channel dimensions and their arrangement are not identical 

with reality. 

case Q/P 

1 435.6 100% 

2 456.3 105% 

3 477.6 110% 

4 481.9 111% 

5 468.6 108% 

6 471.1 108% 

7 490.7 113% 

8 496.4 114% 

9 528.5 121% 

   
Table 1: Effectivity of various shapes of ribs – summary 

 

The cases 1-2-3 contain 1-2-3 channels. The effectivity is increasing with channel density 

(i.e. with decreased channel pitch), cases (1-2-3-7-8-9).  The influence of various detailed 

modifications of the case 3 (cases 4-5-6) on the value of effectivity is practically none. The 

greater heat transfer surface influences markedly the greater thermal output. The influence of 

greater flow resistance due to the higher flow velocity in smaller cross-section of channel is 

not so important.  

Probably, with decreased ribs pitch (increased ribs density) the recuperation effectivity is 

increasing theoretically. Practical restriction is given by production feasibility – which 

slimness of ribs (their density and height) is possible to produce using the actual technology. 

 

3 MODEL OF TWO CROSS FLOWS 

The channel modifications above, tested on single channel, only, are verified on the more 

complicated model of cross flow of both warm and cold flows. The model contains two flat 

channels of the crosswise orientation of flows, equipped by ribs, arranged after the previous 

paragraph. The heat transfer is realized on the common surface between them, while the outer 
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surfaces are defined as thermaly insulated. Really, on outside surfaces there are connected 

next crosswise channels, the modeled situation is really repeated in each pair of neighboring 

layers. 

Real heat exchanger contains many pairs of such channels of warm and cold air, to get an 

adequate total air flow. Simulation of such real design is not possible due to large extent – 

large outer dimensions, many fine details of ribs etc. 

Temperatures are specified after [12], warm air (25°C, dew point 5°C) and cold air (5°C, 

dew point 1°C), i.e. without humidity condensation. 

 

Features of the model: 

1).The simulated temperature distribution is the same as in the reality. The heat exchange 

is realized between two layers of warm and cold air. On the outer surfaces there is defined 

perfect thermal insulation – really there is next heat transfer into next air layer, but for the 

evaluation of designed geometry of heat transfer surface here is used such simplification. 

2) The simulated flow or velocity distribution is real as in the reality. The complete 

exchanger consists from many pairs of such channels, in each of them some partial air volume 

is flowing and the flow resistance is the same in each layer. 

 

From results of simulations we can state that the transferred heat output (m.cp.ΔT) is much 

higher than the mechanical input consumed by flow resistance (V.Δp). Using more 

complicated shape or higher number of ribs, the gain of thermal output from heat recovery is 

probably more important than the increased consumption of mechanical energy due to higher 

flow resistance in narrow channels among ribs. 

 

As an information here is presented one of possible solution procedure and received 

results. As mentioned above, due to the task extent the heat transfer between two adjacent 

layers of warm and cold air is solved, only, the outer surfaces are thermally insulated (really 

there are next heat transfer surfaces here). This modeled situation is repeated in each pair of 

adjacent layers. 

 
 Figure 5: Geometry of 1 layer Figure 6: Mesh of 2 layers 

 

Geometry 
Created after the Figure 5, the model contains two layers situated across. Along outlines 

some inlet and outlet channels are added to suppress an influence of possible backflows on the 

total mass balance. In the model should be removed all details, necessary for production 

(rounding, foil thickness etc.), because such details extremely complicate the model creation 

and solution, too. The foil thickness is equal zero in the geometry; the real value is defined 

later, together with other material specifications. 
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By laying of individual surfaces in crosswise manner, inside arise complicated shapes of 

individual channels, with high turbulence of the flow, which increases the heat transfer 

coefficient of observed case. 

 

Mesh 
Created from tetrahedrons of 1.5 mm, see the Figure 6 - together 5.6 millions of elements, 

over 0.5 GB of data respectively. Regarding fine geometric details and heat exchange, the 

mesh should be even finer, but restrictions are given by the extent of actual operational 

memory of standard PC and the time of solution. 

 

Boundary and initial conditions 
After [12] the cold air temperature is defined +5°C (278 K) for lower body and warm air 

temperature +25°C (298 K) for upper body.  

Defined pressure gradient of 100 Pa is identical for both bodies. Thus in the model of 

certain geometry arises flow of certain velocity, here in the specified geometry 1.4 – 1.5 m/s 

approx. For several specified pressures several operational points are simulated for prescribed 

velocity range 1 to 4 m/s approx. and so-called operational characteristics V = f(Δp) is 

evaluated. From the simulation the characteristics of thermal input, mechanical output, 

thermal efficiency etc. are evaluated, too. 

 

Results 
As an illustration, only, there are presented some basic figures of the flow field for one 

solved case, only, see the Figure 7 to Figure 12. 

Values in individual points of observed surface are quite different, so it should be to 

remind here, that the standard deviation of evaluated data is quite high. Nevertheless, the 

errors of energy balances for heat recovery and flow resistance, using averaged values, are not 

important. 

 
  

Figure 7: Temperature on the middle (heat transfer) 

surface – warm air from down, cold air from right 

Figure 8: Temperature on the lower (insulated) 

surface – cold air inlet from right 
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Figure 9: Temperature on upper (insulated) 

surface – warm air inlet from down 

Figure 10: Pressure field in the lower layer 

(inlet of 100 Pa from right) 

 
Figure 11: Pressure field in the upper layer 

(inlet of 100 Pa from down) 

Figure 12: Velocity in the outlet cross section 

     

3.1   Rectangular channels  

Above mentioned model contains ribs of complicated shape, which means the complicated 

modeling and simulation, too. The advantage of the model with rectangular elementary 

channels is the smaller extent.  

To get the operational characteristics V = f(p) of the model, it is necessary to solve 4-5 

different pressure gradients for each geometry. For channel cross sections of 6x6, 6x9, 6x12, 

6x18 and 6x36 mm the sum of 20-25 solved cases is necessary. For instance the model of 

channels with cross section 6x6 mm contains 0.9 millions of elements sized 2 mm, and then 

the total time of solution for all solved cases will be shortened significantly.  

For more detailed temperature and velocity fields it would be better to use finer mesh, but 

it needs longer time of solution. But higher number of elements in cross section of channels is 

here on the limit of applicability. Boundary conditions are identical with previous model.  

 

Using the same pressure gradient as in the previous paragraph, the thermal output is 

decreasing here and the negligible mechanical input is increasing a little. As an illustration the 

distribution of some flow field parameters is presented on Figure 13 to Figure 15. 
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Eliminating some partitions (i.e. model 6x36) the pressure losses are decreasing and the 

flow rate is increasing. 

 
Figure 13: Pressure field of air Figure 14: Temperature field of air (flow direction 

from the right to the left) 

    
Figure 15: Temperature field on the middle surface 

(warm air from right, cold air from down) 

 

3.2 Influence of wall thickness  

Rectangular channels have simple geometry and maybe here should be used cellular boards 

known as Makrolon. By assembling of such board there arises double thickness of heat 

transfer wall between adjacent channels. The influence of wall thickness on the heat transfer 

coefficient is summarized in the Table 2, using well-known formula for heat passage through 

simple flat wall 

1/k = 1/α1 + s/λ + 1/α2. 

 

The basic case 1 contains plastic ribs of thermal conductivity λ = 0.2 W/(m.K) and 

thickness 0.2 mm. The used heat transfer coefficients between air and wall is preliminary 

specified as α = 20 or 40 W/(m
2
.K), depending on the flow velocity. For expected velocity 

range up to 5 m/s the empirical formula [13] can be used  

 

α [W/(m
2
.K)] = 5.8 + 4.1 . w [m/s]. 

 

Using double wall thickness (case 2), the heat passage coefficient is decreasing of 0.6%, 

only.  
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Using double heat transfer coefficient (case 3) the heat passage coefficient is increasing 

twice (198.8%) and the double wall thickness (case 4) means its relative decreasing of 1.9%. 

The next wall thickness increasing on the real value of cellular board (case 5) means its 

relative decreasing of 2.9%, compared with case 3 or for double wall thickness (case 6) 

decreasing of  2.2%, compared with case 4. The difference between high and low conduction 

(case 7 - aluminum) is negligible. 

Result: Use of standard cellular boards could be possible. 
 

No. λ α s k 

 W/(m.K) W/(m
2
.K) mm W/(m

2
.K) 

1 

0.2 

20 
0.2 9.901 

2 0.4 9.804 

3 
40 

0.2 19.608 

4 0.4 19.230 

5 
40 

0.5 19.048 

6 1.0 18.182 

7 
200 20 

0.2 9.9000 

 0.4 9.9800 
 

Table 2: Influence of main parameters on resulting heat passage 

 

4 COMPARING OF RESULTS  

Actual PC enables to simulate the flow in 1+1 layers of cross flow heat exchanger for 

outlines of 0.8x0.8 m approx. For comparison here is used the heat exchanger with triangular 

ribs (6 mm height, 12 mm base, marked as Δ6x12t), see the Par. 2 and the exchanger like the 

cellular board (“Makrolon”) with cross sections of rectangular channels  6x6 mm and 6x36 

mm (marked as 6x6t, 6x36t), see Par. 3. From above mentioned results here are presented 

some basic ones.  

 
Figure 16: Conversion of pressure gradient on velocity in different geometries (recommended range 1 to 4 m/s) 

 

To create specified range of velocities 1 to 4 m/s approx. it is necessary to specify the 

pressure gradient. It is different depending on used geometry. The Figure 16 presents the 
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conversion between specified pressure gradient and velocity. It is visible that in smooth 

channel of small flow resistance the velocity is much higher than in shaped channel, using the 

same pressure gradient. 

Velocity differences between inlet and outlet of the channel or between channels of warm 

or cold air can be neglected – it is given by different air density at different temperatures. 

Those differences here are not displayed. 

 
Figure 17: Change of air temperature during passage through heat exchanger 

 

The change of air temperature (i.e. the cooling of warm air or warming of the cold one) 

after the Figure 17 is typically higher at small flow. With increasing flow the value is going to 

any value in asymptotic way. 

 
Figure 18: Thermal efficiency of observed heat exchangers 

 

Definition of thermal efficiency: After specified values here is the theoretical maximum 

temperature change of 20 K (the cold air +5°C would warmed on the temperature of warm air 

+25°C and vice versa), but practically it is not possible. The rate of real temperature change to 
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the maximum theoretical one is here defined as thermal efficiency of the heat exchanger, see 

the Figure 18. 

Remark: Both characteristics (Figure 17 and Figure 18) are identical; the distinction is 

given by used proportionality constant, i.e. by specified difference between inlet temperatures 

of cold and warm air.  

 
Figure 19: Thermal output of heat exchangers 

 

Thermal output Q = m.cp.ΔT of both kinds of heat exchangers is presented on the Figure 

19. The spatially more complicated design (Δ6x12) gives higher thermal output. Its change in 

dependence on change of flow velocity is slow, compared with smooth channels (6x6t, 

6x36t). Their thermal output is smaller, because they have smaller heat transfer surface and 

higher flow velocity. Thermal output of smooth channels is going near to the output of shaped 

design until for very high flow velocities (comparing Figure 19 with Figure 16). 

 
Figure 20: Flow loss of heat exchangers 

 

Flow resistance Δpz = f(w
2
) on the Figure 20 is proportional to the specified pressure 

gradient Δp = f(w
2
). Characteristics of both types of exchangers are quite consecutive, but for 

smooth channels it is visible absolutely smaller loss.  
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Figure 21: Mechanical input for overcoming of flow resistance 

 

The Figure 21 shows the theoretical mechanical input P = V. Δpz /η, necessary for 

covering of flow resistance, at the fan efficiency of 100%. Comparing with thermal output, 

this value can be neglected, even though any real value of fan efficiency would be used, for 

instance 20%, only. 

 

5 CONCLUSION  

Models for numerical simulations of flow and heat exchange in cross flow heat exchangers 

are simplified on 1+1 layer of cold + warm air, only. For simulation of a complete model of 

any real arrangement is not actually enough of operational memory and number of parallel 

processes, too. But the system of two cross flows is repeating and so the total air volume is 

multiplied. 

 

After some testing simulations the simplest model was used as sole channel of different 

shape of outlines and of ribs, too. The cross flow is simulated by alternative way as inlet 

temperature at the inlet in channel (for instance warm air) and constant temperature of 

channel surfaces (for instance cold air) or vice versa. 

 

The simple model can be used for simple and quick testing of several design arrangements 

of the geometry on two substantial results: recovered heat output between warm and cold air 

and consumed mechanical input due to the flow resistance. Only the design, which seems to 

be hopeful, i.e. of relative small flow resistance and of relative high heat recovery, is suitable 

to verify on enlarged model and finally by experiment, too. 

 

The more complicated model contains 1+1 layers of cross flows with different inlet 

temperatures (warm + cold) and with heat transfer surface between them. The outside surfaces 

are defined as thermally insulated; really here are next layers of cross flows, where the heat 

transfer is realized, too. Such model observes the heat transfer between two adjoining layers 

of cold and warm air. It is possible to suppose that the really transferred heat could be similar 

to the reality and the flow resistance is proportional to the lengths of modeled channels.  
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Actual standard PC enables to simulate the flow and heat exchange in 1+1 layer of cross 

flow heat exchanger of outlines 0.8x0.8 m approx. Several results of such testing cases are 

presented as fields of important flow field parameters and operational characteristics as 

graphs. 

 

Probably the best solution gives the heat transport surface created as narrow corrugated 

channels. The optimizing of ribs shape and their arrangement by numerical simulation will 

determine the amplitude and period of the channel axis, the rib pitch and height, where the 

minimum rib thickness is given by used production technology.  
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Abstract. We work with the numerical solution of the turbulent compressible gas flow, and
we focus on the numerical solution of these equations, and on the boundary conditions. In this
work we focus on the inlet and outlet boundary condition with the preference of given mass flow.
Usually, the boundary problem is being linearized, or roughly approximated. The inaccuracies
implied by these simplifications may be small, but it has a huge impact on the solution in the
whole studied area, especially for the non-stationary flow. The boundary condition with the
preference of mass flow is sometimes being implemented with the use of some iterative process,
guessing the correct values (for the pressure, density, velocity) in order to match the given mass
flow through the boundary. In our approach we try to be as exact as possible, using our own
original procedures. We follow the exact solution of the initial-value problem for the system
of hyperbolic partial differential equations. This complicated problem is modified at the close
vicinity of boundary, where the conservation laws are supplied with the additional boundary
conditions. We complement the boundary problem suitably, and we show the analysis of the
resulting uniquely-solvable modified Riemann problem. The resulting algorithm was coded
and used within our own developed code for the solution of the compressible gas flow (the
Euler, NS, and RANS equations). The examples show good behaviour of the analyzed boundary
conditions.
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1 INTRODUCTION

The physical theory of the compressible fluid motion is based on the principles of conser-
vation laws of mass, momentum, and energy. The mathematical equations describing these
fundamental conservation laws form a system of partial differential equations. We focus on
the numerical solution of these equations. We choose the well-known finite volume method
to discretize the analytical problem, represented by the system of the equations in generalized
(integral) form. To apply this method we split the area of the interest into the elements, and we
construct a piecewise constant solution in time. The crucial problem of this method lies in the
evaluation of the so-called fluxes through the edges/faces of the particular elements. We use
the analysis of the exact solution of the Riemann problem for the discretization of the fluxes
through the boundary edges/faces. We use own algorithms for the solution of the boundary
problem, and we use it in the numerical examples.

2 THE RIEMANN PROBLEM FOR THE EULER EQUATIONS

For many numerical methods dealing with the two or three dimensional equations, describing
the compressible flow, it is useful to solve the Riemann problem for the 3D split Euler equations.
We search the solution of the system of partial differential equations in time t and space (x, y, z)

∂%
∂t

+ ∂%u
∂x

= 0
∂%u
∂t

+ ∂(p+%u2)
∂x

= 0
∂%v
∂t

+ ∂%uv
∂x

= 0
∂%w
∂t

+ ∂%uw
∂x

= 0
∂E
∂t

+ ∂u(E+p)
∂x

= 0,

(1)

equipped with the initial conditions

%(x, t) = %L,v(x, t) = vL, p(x, t) = pL, x < 0, (2)

%(x, t) = %R,v(x, t) = vR, p(x, t) = pR, x > 0. (3)

Vector v = (u, v, w) denotes the velocity, % density, p pressure, E = %e + %|v|2 is the total
energy, with e denoting the specific internal energy. We assume the equation of state for the
calorically ideal gas

e =
p

%(γ − 1)
.

‘Split’ means here that we still have 5 equations in 3D, but the dependence on y, z (space coor-
dinates) is neglected, and we deal with the system for one space variable x. The system (1) is
considered in the set Q∞ = (−∞,∞) × (0,+∞). The solution of this problem is fundamen-
tally the same as the solution of the Riemann problem for the 1D Euler equations, see [3, page
138]. In fact, the solution for the pressure, the first component of the velocity, and the density
is exactly the same as in one-dimensional case. It is a characteristic feature of the hyperbolic
equations, that there is a possible raise of discontinuities in solutions, even in the case when the
initial conditions are smooth, see [5, page 390]. Here the concept of the classical solution is
too restrictive, and therefore we seek a weak solution of this problem. To distinguish physically
admissible solutions from nonphysical ones, entropy condition must be introduced, see [5, page
396]. By the solution of the problem (1),(2),(3) we mean the weak entropy solution of this
problem in Q∞. The analysis to the solution of this problem can be found in many books, i.e.
[3], [5], [6].
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Further we are concerned with the one-dimensional Euler equations.

∂q

∂t
+
∂f(q)

∂x
= 0, in Q∞ = (−∞,+∞)× (0,+∞) (4)

with notation q = (%, %u,E)T, f(q) = (%u, %u2 + p, (E + p)u)T. We assume equation of
state for ideal gas holds

p = (γ − 1)(E − %u2/2) in Q∞.

u denotes velocity, % density, p pressure. E denotes total energy. The system is hyperbolic. The
Riemann problem for hyperbolic system (4) consists in finding its entropy weak solution inQ∞,
which satisfies the initial condition formed by two known constant states qL, qR

q(x, 0) = qL = (%L, %LuL, EL)T, x < 0, (5)

q(x, 0) = qR = (%R, %RuR, ER)T, x > 0. (6)

The physical analogue to this problem is so-called shock-tube problem.
The general theorem on the solvability of the Riemann problem can be found in [3, page 88].

The solution q = q(x, t) of Riemann problem (4),(5),(6) is piecewise smooth and its general
form can be seen from figure 1, where a system of half lines is drawn. These half lines define
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Figure 1: Structure of the solution of the Riemann problem (4),(5),(6)

regions, where q is either constant or smooth. Let us define the open sets called wedges (see
figure 1):

ΩL = wedge(L−∞, sHL),
ΩHTL = wedge(sHL, sTL),
Ω?L = wedge(sTL, u∗),

Ω?R = wedge(u?, sTR),
ΩHTR = wedge(sTR, sHR),
ΩR = wedge(sHR, L+∞).

The solution in ΩL, Ω?L, Ω?R, ΩR is constant (see e.g. [3, page 128])

q|ΩL = qL,
q|Ω?L = q?L,

q|Ω?R = q?R,
q|ΩR = qR.

Exact solution of the Riemann problem has three waves. The wedges ΩL and Ω?L are separated
by left wave (either 1-shock wave, or 1-rarefaction wave). There is a contact discontinuity in
between regions Ω?L and Ω?R. Wedges Ω?R and ΩR are separated by right wave (either 3-shock
wave, or 3-rarefaction wave). There are four possible wave patterns in the solution.

• Contact Discontinuity Pressure p and velocity u don’t change across contact disconti-
nuity, which separates Ω?L and Ω?R region in general, and moving at speed u?

p|Ω?L∪Ω?R = p? ,
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u|Ω?L∪Ω?R = u? ,

In general, there is a discontinuity in density % across half line x
t

= u?

%|Ω?L 6= %|Ω?R in general.

It is clear, that there must be a jump in temperature, if there is a jump in density, but not
in pressure. There is also a jump in entropy. Contact discontinuity is sometimes called
entropy wave. In reality, contact discontinuities are smeared out due to diffusive effects,
which are neglected and not included in hyperbolic system (4).

It is more convenient to use the vector of primitive variables rather then the vector of conser-
vative variables in solving the Riemann problem. Using the theory in [3], [5], [6], we can write
the solution for the primitive variables as

(%, u, v, w, p)|ΩL = (%L, uL, vL, wL, pL),
(%, u, v, w, p)|Ω?L = (%?L, u?, vL, wL, p?),
(%, u, v, w, p)|Ω?R = (%?R, u?, vR, wR, p?),
(%, u, v, w, p)|ΩR = (%R, uR, vR, wR, pR).

Here we show the equations for the primitive variables in ΩL∪ΩHTL∪Ω?L. For the solution
of the whole system see [3].

• 1-shock wave
One of the possible wave patterns connecting ΩL and Ω?L is a shock wave. Region ΩHTL

degenerates into single half-line. Primitive variables %, u, p “jump“ accross this wave. It
is u? < uL, p? > pL. Inviscid shock jump relations can be derived, we call them Rankine-
Hugoniot relations. These leads us to following relations across the 1-shock wave (see 2,
or [3, page 125])

u? = uL − (p? − pL)

 2
(γ+1)%L

p? + γ−1
γ+1

pL

 1
2

(7)

%?L = %L

γ−1
γ+1

pL
p?

+ 1
pL
p?

+ γ−1
γ+1

(8)

s1 = uL − aL
√
γ + 1

2γ

p?
pL

+
γ − 1

2γ
, (9)

s1 denotes speed of the 1-shock wave. Half line x
t

= s1 shapes the boundary between ΩL

and Ω?L. It can be shown (see [2]), that (7) can be rewritten in the form

p? = E1Ls(u?), (10)

where

E1Ls(u) = pL +
γ + 1

4
%L(uL − u)2 + (11)

+
(uL − u)

2

√
4%LγpL +

(
γ + 1

2

)2

%2
L(uL − u)2,

and u < uL.
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• 1-rarefaction wave
Another possible left wave pattern is rarefaction wave. It forms ΩHTL region.Variables
changes smoothly within this wave. Across the 1-rarefaction wave p? ≤ pL, u? ≥ uL.
Following equations are true.

u? = uL +
2

γ − 1
aL

1−
(
p?
pL

)(γ−1)/2γ
 (12)

%?L = %L

(
p?
pL

) 1
γ

(13)

sTL = u? − aL
(
p?
pL

)(γ−1)/2γ

. (14)

Here aL =
√
γ pL
ρL

is the speed of sound in the ΩL. sTL is speed of the tail of the 1-
rarefaction wave. Speed of the head of the rarefaction wave can be expressed

sHL = uL − aL. (15)

Half line x
t

= sTL shapes the boundary between ΩL and ΩHTL. Pressure positivity in (12)
gives condition u? < uL + 2

γ−1
aL. Equation (12) can be written in the form

p? = pL

−u? + uL + 2
γ−1

aL
2

γ−1
aL


2γ
γ−1

. (16)

State variables in ΩHTL changes continuously, and can be expressed using equations (see
[3], (3.1.97), page 118.)

%(x, t) = %L

[
2

γ + 1
+

γ − 1

(γ + 1)aL

(
uL −

x

t

)] 2
γ−1

, (17)

u(x, t) =
2

γ + 1

[
aL +

γ − 1

2
uL +

x

t

]
, (18)

p(x, t) = pL

[
2

γ + 1
+

γ − 1

(γ + 1)aL

(
uL −

x

t

)] 2γ
γ−1

. (19)

We combine both possibilities (10), (16) and we get equation for pressure p? using values
%L, uL, pL

p? =


2pL+ γ+1

2
%L(uL−u?)2+(uL−u?)

√
4%LγpL+%2L( γ+1

2
)2(uL−u?)2

2
, u? < uL

pL

(
−u?+uL+ 2

γ−1
aL

2
γ−1

aL

) 2γ
γ−1

, uL ≤ u? < uL + 2
γ−1

aL.
(20)

Combining (8) and (13) we get equation for density %?L and pressure p?

%?L =


%L

γ−1
γ+1

pL
p?

+1
pL
p?

+ γ−1
γ+1

, p? > pL

%L
(
p?
pL

) 1
γ , p? ≤ pL.

(21)
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Let us denote sL? the “wave speed” as follows:

sL? =

{
s1, p? > pL
sTL, p? ≤ pL.

In case of 1-shock wave it denotes s1 wave speed, in the case of 1-rarefaction wave it is the
speed of the tail of the wave sTL. We combine (9) and (14) to obtain relation between sL? and
p?:

sL? =

 uL − aL
√

γ+1
2γ

p?
pL

+ γ−1
2γ
, p? > pL

u? − aL
(
p?
pL

)(γ−1)/2γ
, p? ≤ pL.

(22)

There are four unknowns in Ω?L to resolve in order to get the solution across left wave and
the position of this wave. Relations of these unknowns %?L, p?, u? and the wave speed sL? to
left state variables %L, uL, pL are given by three equations (20),(21),(22). To get state variables
across left wave, i.e. in ΩL ∪ ΩSTL ∪ Ω?L, and position of the wave, we have to add another
equation into the system (20),(21),(22). There is a jump in density across contact discontinuity.
This brings another unknown %?R to unknowns %?L, p?, u?,sL?. We have to add two properly
chosen equations into this system of equations in order to get uniquely solvable system for 5
unknowns sought in ΩL ∪ ΩSTL ∪ Ω?L ∪ Ω?R region.

3 OUTLET BOUNDARY CONDITION BY THE PREFERENCE OF MASS FLOW

In this section, we attempt to solve the incomplete modified Riemann problem for the Euler
equations (4),(5), seeking the solution in the general form of the Riemann problem solution,
consisting of 4 constant states separated by 3 waves. Variables %L, uL, pL are known from the
initial condition, also the speed of sound aL is known. We add the boundary condition for the
mass flow in Ω?L given as

u?%?L = G?, (23)

where G? ≥ 0 is given constant (G? = massflow
face area

). Here u?, %?R denotes unknown parts of
the solution in the region Ω?R. Velocity u(x, t) and density %(x, t) are constant in this region,
as was mentioned in 2. We are interested in the solution with u? > 0, and sL? < 0, which
guarantees the possibility of the values to be prescribed at the boundary. In general, there are
two possibilities of the wave pattern, which may interest us.

• 1-shock wave
Here, we are interested in the solution with s1 < 0, u? > 0. Let us construct the function
FS(u), using the relations (20),(8)

FS(u) = u%?L(u)−G?, (24)

where

%?L(u) = %L
(γ − 1)pL + (γ + 1)p(u)

(γ + 1)pL + (γ − 1)p(u)
,

with

p(u) = pL +
γ + 1

4
%L(uL − u)2 +

(uL − u)

2

√
4%LγpL + %2

L(
γ + 1

2
)2(uL − u)2.

The sought velocity u? is the root of this function FS(u). It is s1 < 0 for u? <

uX = uL
2+(γ−1)M2

L

(γ+1)M2
L
, with M2

L = u2
L%/γp, see [2]. The first derivative is F ′S > 0 for
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u < min{uL, uX}. The iterative process can be used to compute the solution for the
velocity u? to any desired accuracy. The problem has a solution with the 1-shock wave
if FS(min{uL, uX}) > 0. Knowing the velocity u?, we use the relations shown above in
(24) to compute the pressure p? and the density %?L.

Remark 1. Similarly to (24), it is possible to construct the function for the pressure. Let
us use the Rankine–Hugoniot conditions across the 1-shock wave s1(%?L−%L) +uL%L =
u?%?L. We construct the function with the use of (8),(9)

H(p) = s1(p) (%?L(p)− %L) + uL%L −G,

where

%?L(p) = %L
(γ − 1)pL + (γ + 1)p

(γ + 1)pL + (γ − 1)p
, s1(p) = uL − aL

√
γ + 1

2γ

p

pL
+
γ − 1

2γ
.

It is s′1(p) < 0, %′?L(p) > 0 in the interval 〈pL,∞) . Further it is (%?L(p)− %L) > 0
in this interval. We are interested in the solutions with s1(p) < 0, which is satisfied
for p > pX = pL

[
1 + 2γ

γ+1
(M2

L − 1)
]
, see [2], or analysis in [4, page 59]. The first

derivative is H ′(p) = s′1(p) (%?L(p)− %L) + s1(p)%′?L(p) < 0 in 〈min{pL, pX},∞) , and
H(min{pL, pX}) = uL%L −G. Now we may write

H(p(u)) = u%?L(u)−G = FS(u).

The first derivative is then F ′S(u) = H ′(p)p′(u) > 0. Figure 2 shows the graph of the
function u%?L for the chosen left-hand side initial conditions %L, uL, pL.

0 uX uL
(shock)

u%?L(u)
s1(u)

(shock speed)

pL pX

s1(p) (%?L(p)− %L) + uL%L

s1(u)
(shock speed)

Figure 2: Example of the function u%?L(u) (representing the massflow in the Ω?L region), here γ = 1.4, %L =
1.25, pL = 100000, uL = 500. Then it is uX < uL. The function for the pressure is shown at right.

• 1-rarefaction wave
Let us assume the solution with the 1-rarefaction wave. From (12),(13),(23) it is

u?%L

[
1− γ − 1

2aL
(u? − uL)

] 2
γ−1

−G? = 0.

The velocity u? is the root of the function

FR(u) = u%L

[
1− γ − 1

2aL
(u− uL)

] 2
γ−1

−G?, (25)
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defined in the interval uL < u < uL+ 2aL
γ−1

. It is FR(uL) = %LuL−G?. The first derivative

F ′R(u) = %L
[
1− γ−1

2aL
(u− uL)

] 2
γ−1

[
1− u

aL− γ−1
2

(u−uL)

]
is zero at the points u1 = uL +

2aL
γ−1

, u0 = γ−1
γ+1

(
uL + 2aL

γ−1

)
. Derivative F ′R(u) > 0 in the interval (0, u0) and F ′(u) < 0

for u ∈ (u0, u1) . The maximum of the function FR is at the point u0. We are interested
in the solution with sTL < 0. This is satisfied only fo u? < u0.

The problem has a solution with the 1-rarefaction wave, if uL < u0 and FR(uL) ≤ 0
and FR(u0) ≥ 0. It is possible to compute the value u? to any desired accuracy using the
iterative method. With the velocity u? known, we may use the relations (16), and (13). It
is

p? = pL

[
1− γ − 1

2aL
(u− uL)

] 2γ
γ−1

, %?L = %L

(
p?
pL

) 1
γ

.

Examples
Let γ = 1.4, %L = 1.25, pL = 100000. Figures 3, 4 show the graph of the function u%?L for

various chosen velocities uL.
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Figure 3: Examples of the function u%?L(u), here uL = 20 (left), and uL = −10 (right)..
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Figure 4: Examples of the function u%?L(u) for uL = 500 (left), and uL = 100 (right).

Algorithm 1D
Here we present the possible algorithm for the solution of the state values U, P,R at the

boundary.

I n p u t :
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G? . . . massflow
state inside the boundary element (as a limit to the boundary face)
%L . . . density , uL . . . velocity , pL . . . pressure

Outpu t :
state values at the boundary
R . . . density , U . . . velocity , P . . . pressure

Algo r i t hm :
i f F (uL) > 0 t h e n
U = r o o t o f FS(u), u ∈ (0,min{uX , uL}), (24) . Use (20), (8).

e l s e
i f uL > u0 t h e n
U = uL, P = pL, R = %L

e l s e
i f (u1 < u0 )
U = u1 − ε, use (16), (13)

e l s e
i f F (u0) < 0 t h e n
U = u0, use (16), (13)

e l s e
U = r o o t o f FR(u), u ∈ (uL, u0), (25) . Use (16), (13).

end
e n d i f

end
end

Algorithm 3D
Here we present the possible algorithm for the solution of the state values at the boundary in

3D.

I n p u t :
G? . . . massflow
~n . . . unit outer normal to the face,
state inside the boundary element (as a limit to the boundary face)
%L . . . density
~v = (v1, v2, v3) . . . velocity in global coordinate system
pL . . . pressure

Outpu t :
state values at the boundary
R . . . density
~V = (V1, V2, V3) . . . velocity in global coordinate system
P . . . pressure

Algo r i t hm :
1 . uL = ~v · ~n = v1n1 + v2n2 + v3n3

2 . use Algorithm 1D t o compute U,R, P

3 . ~V = (n1(U − uL) + v1, n2(U − uL) + v2, n3(U − uL) + v3)
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4 INLET BOUNDARY CONDITION BY THE PREFERENCE OF MASS FLOW AND
TOTAL TEMPERATURE

In this section, we analyze the incomplete modified Riemann problem for the Euler equations
(4),(5), seeking the solution in the general form of the Riemann problem solution, consisting
of 4 constant states separated by 3 waves. Variables %L, uL, pL are known from the initial
condition, also the speed of sound aL is known. We add the complementary condition for the
mass flow and the total temperature in Ω?R given as

u?%?R = G?, (26)

θ?R = θ0

(
1− γ − 1

2

u2
?

a2
0

)
, with u? > −

√√√√ 2a2
0

γ − 1
, (27)

where G? ≤ 0 is given constant (G? = massflow
face area

). Here u?, %?R denotes unknown parts of
the solution in the region Ω?R. Further θ0 is the prescribed total temperature, and a2

0 = γRθ0,
with γ and R being gas constants. We are interested in the solution with u? < 0 (inlet boundary
condition), then the computed values can be prescribed at the boundary. In general, there are
two possibilities of the wave pattern, which may interest us.

Let us use the equation of state in the Ω?R, giving

%?R =
p?
Rθ?R

, (28)

where p? is the unknown pressure in the Ω?R. The equation (20), introduced in section 2, can
be used for this pressure. Now equation (26) can be written as

u?
p?
Rθ?R

= G?, (29)

where p?, θ?R satisfy (20), (27). We seek the unknown velocity u? as a root of the function

F (u) = u
p(u)

Rθ(u)
−G? defined for u ∈

(
−∞, uL +

2

γ − 1
aL

)
∩

−
√√√√ 2a2

0

γ − 1
, 0

 , (30)

where

θ(u) = θ0

(
1− γ − 1

2

u2

a2
0

)
, u ∈

−
√√√√ 2a2

0

γ − 1
, 0



p(u) =


2pL+ γ+1

2
%L(uL−u)2+(uL−u)

√
4%LγpL+%2L( γ+1

2
)2(uL−u)2

2
, u < uL

pL

(
−u+uL+ 2

γ−1
aL

2
γ−1

aL

) 2γ
γ−1

, uL ≤ u < uL + 2
γ−1

aL.

The first derivatives of these functions are θ′(u) = −θ0
γ−1

2
2u
a2o
> 0, p′(u) < 0 in the its definition

interval. Then it is

F ′(u) =
p(u)

Rθ(u)
+ u

p′(u)Rθ(u)− p(u)Rθ′(u)

R2θ2(u)
> 0.

Further it is lim
u−>−

√
2a2

0
γ−1

F (u) < 0 ,and F (min{uL + 2
γ−1

aL, 0}) > 0. The function F (u) is

monotone, and the equation (29) has a unique solution if uL + 2
γ−1

aL > −
√

2a20
γ−1

.
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Examples
Let θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000. Figures 5-8 show the graph of the

function F (u) and the function u%?R(u) for various chosen velocities uL.

−
√

2a20
γ−1

0uL

shock

F (u)

uL0

shock

F (u)

Figure 5: Graph of the function F (u) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000, uL =
50, G? = −200. The right picture shows detail in the restricted interval.

−
√

2a20
γ−1

0uL

shock rarefaction

F (u)

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

0uL

shock rarefaction

F (u)

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Figure 6: Graph of the function F (u) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000, uL =
−50, G? = −200. The right picture shows detail in the restricted interval.

Remark.
The equation (26) can be written as

u?p? = G?Rθ0

(
1− γ − 1

2

u2
?

a2
0

)
. (31)

Now we may use (20), and seek the velocity u? as a root of the function

F (u) = up(u)−G?Rθ0

(
1− γ − 1

2

u2

a2
0

)
,

with

p(u) =


2pL+ γ+1

2
%L(uL−u)2+(uL−u)

√
4%LγpL+%2L( γ+1

2
)2(uL−u)2

2
, u < uL

pL

(
−u+uL+ 2

γ−1
aL

2
γ−1

aL

) 2γ
γ−1

, uL ≤ u < uL + 2
γ−1

aL.

The first derivative is
F ′(u) = p(u) + up′(u) +G?Rθ0

γ − 1

2

2u

a2
0

.
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Figure 7: Graph of the function F (u) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000, uL =
−500, G? = −200. The right picture shows detail in the restricted interval.
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Figure 8: Graph of the function F (u) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000, uL =
−2000, G? = −200. The right picture shows detail in the restricted interval.

It is p(u) > 0, p′(u) < 0, u < 0, G? < 0, and therefore it must be F ′S(u) > 0. Further it

is F (0) = −G?Rθ0 > 0 for G? < 0, and F (−
√

2a20
γ−1

) < 0. We seek the root of this function

in the interval u ∈
(
max{uL, A},min{0, uL + 2

γ−1
aL}

)
. Figures 9, 10 show the graph of the

function F (u) and the function u%?R(u) for chosen velocities uL and input data.
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Figure 9: Graph of the function F (u) (left) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL = 100000, uL =
−50, G? = −200. The right graph shows the massflow function u%?R(u).
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Figure 10: Graph of the function F (u) (left) for given values θ0 = 273.15, γ = 1.4, %L = 1.25, pL =
100000, uL = −500, G? = −200. The right graph shows the massflow function u%?R(u).

Algorithm 1D
Here we present the algorithm for the solution of the state values U, P,R at the boundary.

I n p u t :
G? . . . massflow
θ0 . . . total temperature
state inside the boundary element (as a limit to the boundary face)
%L . . . density
uL . . . velocity
pL . . . pressure

Outpu t :
state values at the boundary
R . . . density , U . . . velocity , P . . . pressure

Algo r i t hm :

1 . a2
0 = γRθ0, aL =

√
γpL
%L
, A = −

√
2a20
γ−1

.

i f (uL + 2
γ−1

aL < A ) t h e n
ERROR, NO SOLUTION. bad input data - low temperture at the inlet

e l s e

F (uL) = uLpL −G?Rθ0

(
1− γ−1

2

u2L
a20

)
i f (F (uL) > 0 ) t h e n
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U = root of FS(u) = up(u)−G?Rθ0

(
1− γ−1

2
u2

a20

)
, u ∈ (A, uL〉 ,

p(u) =
2pL+ γ+1

2
%L(uL−u)2+(uL−u)

√
4%LγpL+%2L( γ+1

2
)2(uL−u)2

2
.

e l s e
U = root of FR(u), u ∈

(
max{uL, A},min{0, uL + 2

γ−1
aL}

)
,

FR(u) = up(u)−G?Rθ0

(
1− γ−1

2
u2

a20

)
, p(u) = pL

(
−u+uL+ 2

γ−1
aL

2
γ−1

aL

) 2γ
γ−1

.

e n d i f
use (26), (20) : R = G?/u?, P = p(u?).

e n d i f

Algorithm 3D + massflow + total temperature + tangential velocity
Here we present the possible algorithm for the solution of the state values at the boundary

face in 3D.

I n p u t :
G? . . . massflow
θ̃0 . . . total temperature
~n . . . unit outer normal to the face, ~o, ~p are tangential directions (|~o| = 1, ~p = ~n× ~o)
vt, wt . . . tangential velocity components, vt in the direction ~o, wt in the direction ~p
state inside the boundary element (as a limit to the boundary face)
%L . . . density
~v = (v1, v2, v3) . . . velocity in global coordinate system
pL . . . pressure

Outpu t :
state values at the boundary
R . . . density
~V = (V1, V2, V3) . . . velocity in global coordinate system
P . . . pressure

Algo r i t hm :
1 . θ0 = θ̃0

(
1− γ−1

2γRθ̃0
(v2
t + w2

t )
)
, a2

0 = γRθ0, uL = ~v · ~n = v1n1 + v2n2 + v3n3

2 . use Algorithm 1D t o compute U,R, P

3 . ~V = (n1U + o1vt + p1wt, n2U + o2vt + p2wt, n3U + o3vt + p3wt)
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5 EXAMPLES

The developed software with presented boundary conditions was used for the simulation
of the compressible turbulent flow in the 3D axis-symmetrical channel. Axis x is the axis of
symmetry. At the geometry crosscut shown in figure 11., the inlet is located at the upper part of
the boundary, the outlet is located left. We used the following setup in the computation:

• initial condition - constant state in the whole domain,
θo = 288.15, vo1 = 0, vo2 = 0, vo3 = 0, po = 101325.

• inlet boundary condition - total quantities and velocity direction
The boundary condition conserving the total pressure, total temperature, and zero tangen-
tial velocity, with θo = 288.15, po = 101325.

• outlet boundary condition (left) - preference of the mass flow
The boundary condition shown in Section 3, was used, with G? = 4.301 in average. At
each face, the value G? was computed (in each iteration) in order to match the average
(across the whole boundary).

• walls - wall boundary condition
The boundary condition preffering the zero normal velocity was used in the case of the
inviscid flow. For the viscous flow, this condition was modified by the zero velocity
at the wall, and wall temperature θWALL = 288.15 was set. Further kWALL = 0 and
ωWALL = cω

6µ
β%y2s

, cω
6
β

= 120. Here by ys we mean the distance between the face and the
center of the neighbouring element.

The computational mesh in 2D crosscut consisted of 73x89 quadrilaterals.

Figure 11: 3D axis-symmetrical turbulent flow, 3D geometry shape, results at chosen 2D crosscuts.
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Another example with for different setup was computed, x is the axis of symmetry. At the
geometry crosscut shown at figure 12., the inlet is located at the upper part of the boundary, the
outlet is located left. We used the following setup for the computation:

• initial condition - constant state in the whole domain,
θo = 273.15, vo1 = 0, vo2 = 0, vo3 = 0, po = 101325.

• inlet boundary condition - total quantities and velocity direction
The boundary condition conserving the total pressure, total temperature, and zero tangen-
tial velocity, with θo = 273.15, po = 101325.

• outlet boundary condition (right) - preference of the mass flow
The boundary condition shown in Section 3, was used, with G? = 4.0 in average. At each
face, the value G? was computed (in each iteration) in order to match the average (across
the whole boundary).

• walls - wall boundary condition
The boundary condition preffering the zero normal velocity was used in the case of the
inviscid flow. For the viscous flow, this condition was modified by the zero velocity
at the wall, and wall temperature θWALL = 273.15 was set. Further kWALL = 0 and
ωWALL = cω

6µ
β%y2s

, cω
6
β

= 120. Here by ys we mean the distance between the face and the
center of the neighbouring element.

The computational mesh in 2D crosscut consisted of 73x97 quadrilaterals.

Figure 12: 3D axis-symmetrical turbulent flow, 3D geometry shape, results at chosen 2D crosscuts.
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Figure 13: 3D axis-symmetrical turbulent flow, density isolines and velocity profile at the outlet, 2D crosscut.
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The following example demonstrates the capabilities of the new boundary condition in the
use with the unstationary gas flow. Here x is the axis of symmetry. At the geometry crosscut
shown at figure 14., the inlet is located at the left part of the boundary, the outlet points away
from axis x.

We used the following setup for the simulation:

• initial condition - constant state in the whole domain,
θo = 875.00, vo1 = 0, vo2 = 0, vo3 = 0, po = 101905.

• inlet boundary condition - total quantities and velocity direction
The boundary condition conserving the total pressure, total temperature, and zero tangen-
tial velocity, with θo = 875.00, po = 101905.

• outlet boundary condition (right) - preference of the mass flow
The boundary condition shown in Section 3, was used, with G? = 0.75 in average. At
each face, the value G? was computed (in each iteration) in order to match the average
(across the whole boundary).

• walls - wall boundary condition
The boundary condition preffering the zero normal velocity was used in the case of the
inviscid flow. For the viscous flow, this condition was modified by the zero velocity
at the wall, and wall temperature θWALL = 875.00 was set. Further kWALL = 0 and
ωWALL = cω

6µ
β%y2s

, cω
6
β

= 120. Here by ys we mean the distance between the face and the
center of the neighbouring element.

The computational mesh in 2D crosscut consisted of 89x87 quadrilaterals.
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Figure 14: 3D axis-symmetrical turbulent flow, 3D geometry shape, results at chosen 2D crosscuts.
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6 CONCLUSIONS

In this paper we worked with the system of equations describing the copressible gas flow
in 3D. The so-called Riemann problem for the 3D split Euler equations was analyzed, together
with the algorithms for the solution of the boundary problems by the preference of mass flow.
The suggested algorithms were encoded into own-developed software for the solution of the
compressible gas flow. Numerical examples show the use of these original boudary conditions.
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Abstract. The aim of the study is to compare the LES of corner separation, considered as a
reference, in the LMFA-NACA65 linear compressor cascade to RANS simulations using Wilcox
two-equation models (k − ω). The LES was carried-out by Gao et al. [1] using the Shear-
improved Smagorinsky model (SISM), and has been validated by comparison with the exper-
imental data obtained by Ma et al. [2]. Two steady RANS simulations are carried out using
k− ω models: Wilcox 1988 model and Wilcox 1988 model with quadratic constitutive relation.

First, the analysis will consider the total pressure losses on a two-dimensional section down-
stream of the cascade. The Reynolds stresses and the turbulent kinetic energy budget are anal-
ysed within the separation region, on a two-dimensional section at the trailing edge of the blade.
The RANS simulations mostly overestimate the total pressure losses and the size of the corner
separation, compared to the LES and the experiment. The RANS simulations also overesti-
mate the level of the Reynolds stresses and the terms of the turbulent kinetic energy budget,
compared to the LES. The quadratic constitutive relation yields some modifications, but not
significant enough to have results comparable to LES.

6999



J.-F. Monier, F. Gao, J. Boudet, L. Shao and L. Lu

1 INTRODUCTION

The economical and environmental cost reduction in jet engines is linked with the capacity
to reduce their size and mass, i.e. increasing the pressure ratio. This leads to an increase of
the blade loading, which is known to worsening the three-dimensional flow phenomena. One
of those phenomena is the corner separation, i.e. the separation occurring when two orthogonal
boundary-layers interact. For a compressor it occurs at the junction of the end-wall and the blade
suction side. The corner separation has been investigated experimentally on linear compressor
cascades [3, 4, 2, 5], and numerically [6], but its physics is not yet entirely understood.

Numerical simulations give access to a lot of information on the flow behaviour, and are
widely used for turbo-machinery development. Reynolds-averaged Navier-Stokes (RANS) sim-
ulations are commonly used by industries. In the case of corner separation, RANS simulations
tend to over-predict its size and intensity [7, 8, 9]. Bordji et al. [10] found that using a non-
Boussinesq constitutive relation (the quadratic constitutive relation, referred to as QCR [11])
yields better results for external flows. Large-eddy simulation (LES) is able to simulate three-
dimensional secondary flows [12] and is better at simulating corner separation [1, 13] but at a
much greater computational cost, which keep industries from using it for conception.

The turbulence physics simulated by both RANS and LES (validated against experimental
results) are investigated in order to understand why RANS simulations fail to predict correctly
the corner separation characteristics. Reynolds stresses and turbulent kinetic energy budgets
from LES and RANS with both original Wilcox k − ω model and QCR version are compared
at the trailing edge of the blade.

2 EXPERIMENTAL SET-UP

Ma et al. [2, 5] lead an experimental campaign on the LMFA-NACA65 linear cascade. The
sketch of the experimental set-up is given figure 1. The blade has a chord c = 150.0mm, a
stagger angle γ = 42.7◦, a pitch s = 134.0mm and a span h = 370.0mm. Inlet velocity is set to
40m/s, which gives a chord-based Reynolds number of 3.82 × 105. Experimental results used
in this paper were acquired for an incidence angle i = 4◦, where a corner separation has been
found. More information concerning the experiment can be found in Ref.[2, 5, 14].
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Figure 1: Sketch of the LMFA-NACA65 experimental set-up
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3 NUMERICAL METHODS

3.1 Notations

In order to avoid any ambiguity on the notations, the symbols denoting the ensemble average
and the low frequency filter are kept in the equations. The ensemble average of a quantity ϕ is
noted 〈ϕ〉, the Favre ensemble average is noted [ϕ] ([ϕ] = 〈ρϕ〉 / 〈ρ〉), the low frequency filter is
noted ϕ and the Favre low frequency filter is noted ϕ̃ (ϕ̃ = ρϕ/ρ). Moreover, the fluctuating part
of the low-frequency filtered quantity is noted ϕ′ (thus, ϕ = 〈ϕ〉+ϕ′) and the Favre fluctuating
part of the Favre low frequency filtered quantity is noted ϕ′′ (thus, ϕ̃ = [ϕ̃] + ϕ′′).

The coordinate system used is the same as in the experiment (Fig. 1). By convention, x and
x1 both represent the stream-wise direction, y and x2 both represent the pitch-wise direction
and z and x3 both represent the span-wise direction. Consequently, u and u1 both represent
the stream-wise velocity, v and u2 both represent the pitch-wise velocity and w and u3 both
represent the span-wise velocity.

3.2 General specifications

The numerical simulations have been carried out with the solver Turb’Flow, a compressible
code developed at LMFA relying on finite volume discretization. Turb’Flow specifications are
given in Ref.[15].

3.3 Large-Eddy Simulation

The LES, done by Gao [1], uses a mesh well defined close to the walls (' 200× 106 points,
y+ ' 1). The spatial scheme is a 4-point Jameson centered scheme [16] with an artificial vis-
cosity coefficient of 0.002 [17]. The temporal scheme is a 3-step Runge-Kutta scheme with a
constant time step of 2.5 × 10−8s, corresponding to a CFL (Courant-Friedrichs-Lewy condi-
tion) number close to 0.95. The LES relies on the SISM (shear-improved Smagorinsky model)
subgrid scale model of Lévêque et al. [18]:

µSGS = ρ (Cs∆)2
(∣∣∣S̃∣∣∣− ∣∣∣〈S̃〉∣∣∣) , with

∣∣∣S̃∣∣∣ =
(

2S̃ijS̃ij

)1/2
and Cs = 0.18 (1)

where µSGS is the sub-grid scale viscosity, ρ is the density, Cs is the constant of the original
Smagorinsky model, ∆ is a measure of the grid spacing (practically, the cubic root of the grid
cell volume) and S̃ is the low frequency strain rate tensor. The average 〈 〉 is estimated with
an exponential smoothing [19], with a cut-off frequency of 533 Hz based on the ratio between
twice the free-stream velocity and the chord. Complete details of the LES specifications are
given in Ref. [1].

The Reynolds stresses extracted from the LES results are defined as follow:

τ t = −〈ρu′′ ⊗ u′′〉 (2)

A Reynolds stress budget can be extracted, following the method of Gao [20]. The turbulent
kinetic energy budget (referred to as TKE budget) is then deduced from the Reynolds stress
budget diagonal terms addition (k = 1

2
u′′i u

′′
i ). Theoretically, the TKE budget is balanced. How-

ever, there is practically a residual, with a dissipative effect. This residual represents the various
numerical dissipations, such as numerical scheme dissipation. A term of numerical dissipation,
noted Ξ and calculated as the opposite of the residual, is added in the budget to close it.
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∂ 〈ρk〉
∂t

= 0 = − ∂

∂xj
(〈ρk〉 [ũj])︸ ︷︷ ︸

Advection

−
〈
ρu′′i u

′′
j

〉 ∂ [ũi]

∂xj︸ ︷︷ ︸
Production

− ∂

∂xj

(〈
ρku′′j

〉)
︸ ︷︷ ︸

Turbulent
diffusion

−∂ 〈u
′′
i p
′〉

∂xi︸ ︷︷ ︸
Pressure
diffusion

+

〈
p′
∂u′′i
∂xi

〉
︸ ︷︷ ︸

Pressure
dilatation

− 〈u′′i 〉
∂ 〈p〉
∂xi

+
∂ 〈τ iju′′i 〉
∂xj︸ ︷︷ ︸

Viscous
diffusion

−
〈
τ ij
∂u′′i
∂xj

〉
︸ ︷︷ ︸

Viscous
dissipation

+
∂
〈
Πiju

′′
i

〉
∂xj︸ ︷︷ ︸

SGS
diffusion

−
〈

Πij
∂u′′i
∂xj

〉
︸ ︷︷ ︸

SGS
Dissipation

+Ξii︸︷︷︸
Numerical
dissipation

(3)

The LES TKE budget, presented in equation (3), shows more terms than the RANS equation
of k. In order to compare these two, some terms are grouped. Production and numerical dis-
sipation are kept apart. The dissipation term is the sum of the viscous dissipation and the SGS
dissipation. All the other terms are summed to form the transport term.

3.4 Reynolds-Averaged Navier-Stokes

The RANS simulations use the reference mesh from Gao [20] for the incidence i = 4◦. This
mesh is a coarser version of the LES mesh (' 2.8× 106 points) with no trip bands (cf. Fig. 2).
The spatial scheme is a 4-point Jameson centered spatial scheme with an artificial viscosity
coefficient of 0.02. The temporal scheme is a 5-step Runge-Kutta scheme with a CFL number
of 0.7. Two turbulence models are investigated, the original Wilcox k − ω model [21] and a
modified version using the QCR from Spalart [11]. The inlet conditions (density, velocity and
turbulent variables) are extracted from a 2-D flat plate boundary layer simulation at the position
where momentum boundary layer thickness δ1 matches the experiment. The outlet is set to a
partially non reflective pressure condition. The walls boundary conditions are set to non-slip
adiabatic. The lateral boundary conditions are set to periodic. The mid-span boundary condition
is set to symmetry, given that only half the channel is simulated.

xy
z

end-wall

inlet

outlet
mid-

spa
n

(a) View of the computational domain

Leading edge Trailing edge

x

y

z

(b) View of the blade-to-blade mesh

Figure 2: Views of the computational domain and the mesh. The mesh is coarsened in order to be displayed.
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The original Wilcox k−ω model [21] calculates the Reynolds stress tensor τ t using Boussi-
nesq constitutive relation:

τt,ij = 2µtS
(0)
ij −

2

3
δij 〈ρ〉 [k] , where µt = 〈ρ〉 [k]

[ω]
(4)

with δij the Kroeneker symbol and S(0) the zero-trace strain rate tensor:

S
(0)
ij = Sij −

1

3
δij
∂ [uk]

∂xk
; Sij =

1

2

(
∂ [ui]

∂xj
+
∂ [uj]

∂xi

)
(5)

The k and ω budget equations are :

∂ 〈ρ〉 [k]

∂t
= 0 = 〈τ t,ij〉

∂ [ui]

∂xj︸ ︷︷ ︸
Production

−∂ 〈ρ〉 [k] [uj]

∂xj︸ ︷︷ ︸
Advection

+
∂

∂xj

(
µ
∂ [k]

∂xj

)
︸ ︷︷ ︸

Molecular
diffusion

+
∂

∂xj

(
µt

σk

∂ [k]

∂xj

)
︸ ︷︷ ︸

Turbulent transport &
pressure diffusion

−ck 〈ρ〉 [k] [ω]︸ ︷︷ ︸
Dissipation

(6)

∂ 〈ρ〉 [ω]

∂t
= 0 = cω1

[ω]

[k]
〈τ t,ij〉

∂ [ui]

∂xj︸ ︷︷ ︸
Production

−∂ 〈ρ〉 [ω] [uj]

∂xj︸ ︷︷ ︸
Advection

+
∂

∂xj

((
µ+

µt

σω

)
∂ [ω]

∂xj

)
︸ ︷︷ ︸

Turbulent transport,
pressure diffusion &
molecular diffusion

−cω2 〈ρ〉 [ω] 2︸ ︷︷ ︸
Dissipation

(7)
where ck = 0.09, cω1 = 5/9, cω2 = 3/40, σk = 2.0 and σω = 2.0. Advection, molecular
diffusion and turbulent transport terms are summed to form a transport term in the following
analysis.

The QCR, proposed by Spalart [11], is a modification of Boussinesq constitutive relation in
order to take into account the important effect of vorticity. The version we implemented is the
modified one from Mani [22] in order to take into account the compressible part, given that
Turb’Flow is a compressible solver:

τQCR
t,ij = τt,ij − cQCR (Oikτt,jk +Ojkτt,ik) (8)

where τ t is the Boussinesq Reynolds stress tensor (Eq. (4)) and O is the normalised rotation
tensor:

Oij =

∂[ui]
∂xj
− ∂[uj ]

∂xi√
∂[uk]
∂xl

∂[uk]
∂xl

and cQCR = 0.3 (9)

The k and ω equations remain the same as in the original model except that τQCR
t is used

instead of τ t in the production terms.

4 TOTAL PRESSURE LOSS

Total pressure losses are an important criterion for compressor efficiency. The total pressure
loss coefficient Cpt is defined as:

Cpt =
Pt∞ − Pt

Pt∞ − Ps∞
(10)
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where Pt is the local total pressure, Pt∞ is the reference total pressure and Ps∞ is the refer-
ence static pressure. For the RANS simulations, the reference pressures where taken 100mm
upstream the leading edge, at a height of h/4.

1.4 1.6 1.8 2.0 2.2

y/s

0.0

0.1

0.2

0.3

0.4

z/
h

0.05

0.05 0.10

0.10
0.15

0.15

0.20
0.25

0.25

0.
30

0.35
0.40

0.45
0.05

0.15

0.25

0.35

0.45

0.55

(a) Experiment

1.4 1.6 1.8 2.0 2.2

y/s

0.0

0.1

0.2

0.3

0.4

0.5

z/
h

0.05

0.05

0.
05

0.
05

0.10

0.
10 0.15

0.20

0.25

0.30

0.350.400.45 0.500.55

(b) LES

1.4 1.6 1.8 2.0 2.2

y/s

0.0

0.1

0.2

0.3

0.4

0.5

z/
h

0.05

0.05

0.05

0.10

0.10

0.15

0.15

0.20
0.25

0.30

0.35 0.40 0.450.50

(c) RANS Wilcox 88

1.4 1.6 1.8 2.0 2.2

y/s

0.0

0.1

0.2

0.3

0.4

0.5

z/
h

0.05

0.05

0.05

0.10

0.10

0.15

0.150.20

0.25

0.300.350.40 0.450.50

(d) RANS Wilcox 88 -
QCR

Figure 3: Total pressure loss coefficient on the outlet plane at 1.907ca. (cf. Fig.1).

Experimental total pressure losses (Fig. 3a) and LES total pressure losses (Fig. 3b) are very
similar. They both exhibit a triangular form for the corner separation wake, and display levels
of pressure loss very similar. These results legitimate the usage of LES as a reference.

The RANS simulations over-predict the losses in each case. The use of a non-linear consti-
tutive relation (QCR) yields almost no effect on the results (Fig. 3d) compared to the original
Wilcox model (Fig. 3c). The wake of the corner separation is notably twisted in the RANS
simulations. This could be an effect of the over-prediction of the size and intensity of the corner
separation.

5 REYNOLDS STRESS TENSOR

The Reynolds stresses give a lot of information on the physics simulated. They are by nature
a measure of the effect of the turbulence, thus they give a measure of the quality of the turbu-
lence model for RANS simulations when compared with LES. Both normal stresses and shear
stresses are affected by constitutive closure, so both have to be investigated against LES.

The Reynolds stresses are extracted at the trailing edge of the blade (x = 1.0ca), on a rect-
angular surface covering the pitch. The plane position is given in Fig. 4.

In the following subsections, the Reynolds stresses are normalised by the product of a ref-
erence density (〈ρ∞〉 for LES, 〈ρ∞〉 for RANS simulations) times a reference velocity squared
([ũ∞]2 for LES, [u∞]2 for RANS). The reference densities and velocities are taken 100mm up-
stream the leading edge, at a height of h/4.

5.1 Reynolds normal stresses

The Reynolds normal stresses (τt,11, τt,22 and τt,33) are the main terms of the Reynolds stress
tensor concerning intensity.

Figure 5 shows that both RANS simulations (Fig. 5b and 5c) over-predict the intensity of the
first Reynolds normal stress compared to LES (Fig. 5a). The modification of the constitutive
relation yields almost no effect in this case, τt,11 and τQCR

t,11 are similar.
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Density [kg.m-3]
1.2220
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x
y

z

Figure 4: Extraction plane for the Reynolds stresses. Limiting streamlines are plotted for the RANS case, coloured
by density.
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Figure 5: τt,11 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,11 for RANS

simulation with QCR Wilcox k − ω model (c)

Figure 6 shows that the second Reynolds normal stress follows the same trend as the first
one. The RANS simulations (Fig. 6b and 6c) still over-predict the intensity of τt,22 compared
to LES (Fig. 6a). However, the QCR has a more visible impact than previously. Compared to
the Boussinesq closure, the QCR yields a lower minimum, more comparable with the minimum
found by LES. However, both RANS simulations fail to represent the boundary-layer of the
blade, visible in the LES for y/s ' 0.8.

Figure 7 shows that the third Reynolds normal stress follows the same trends as the first
and second ones. The RANS simulations (Fig. 7b and 7c) over-predict the intensity of τt,33
compared to LES (Fig. 7a). The impact of the QCR is noticeable on this term, compared with
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Figure 6: τt,22 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,22 for RANS

simulation with QCR Wilcox k − ω model (c)
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Figure 7: τt,33 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,33 for RANS

simulation with QCR Wilcox k − ω model (c)

the original Wilcox model. It weakens the minimum of the Reynolds stress in the middle of the
separation, but not enough to yield a value comparable with the LES.

5.2 Reynolds shear stresses

Reynolds shear stresses (τt,12, τt,13 and τt,23) are of a lower intensity than the normal stresses.
Figure 8 shows that the first Reynolds shear stress is totally mispredicted by the RANS

simulation with the original Wilcox turbulence model (Fig. 8b), compared to the LES (Fig. 8a).
The minimum of this Reynolds shear stress should be close to the corner according to LES,
and it should be more intense. The QCR modification improves the results by reducing the
minimum and widening the area of negative stresses. It is still not enough to have the same
levels, position, or the same physical behaviour as LES. Besides, both RANS simulations fail
to predict the existence of stresses in the boundary-layer of the blade, visible in the LES for
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Figure 8: τt,12 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,12 for RANS

simulation with QCR Wilcox k − ω model (c)

y/s ' 0.8.
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Figure 9: τt,13 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,13 for RANS

simulation with QCR Wilcox k − ω model (c)

At the opposite, figure 9 shows that the second Reynolds shear stress is totally over-predicted
by both RANS simulations (Fig. 9b and 9c) compared to LES (Fig. 9a). The area of the
maximum plotted level is about ten times larger for RANS simulations than for LES, and QCR
yields almost no differences from Boussinesq constitutive relation. The Wilcox model fails
completely to predict this shear stress.

The third Reynolds shear stress follows the same trends as the second one, as shown in
Fig. 10. The area of the maximum plotted level is about ten times larger for RANS simulations
(Fig. 10b and 10c) than for LES (Fig. 10a), and QCR yields almost no differences with Boussi-
nesq constitutive relation. Moreover, the stress maximum for both RANS simulations is further
from the corner than for the LES.
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Figure 10: τt,23 for LES (a), for RANS simulation with original Wilcox k − ω model (b) and τQCR
t,23 for RANS

simulation with QCR Wilcox k − ω model (c)

5.3 Synthesis

The comparisons between the RANS simulations and the LES have shown that the RANS
simulations lead to a strong over-prediction of the Reynolds stresses compared to LES, except
for τt,12 whose amplitude is under-estimated. The Boussinesq constitutive relation and the QCR
yield similar results in many cases, except for the Reynolds normal stress τt,33 and the Reynolds
shear stress τt,12, where the influence of the QCR is beneficial. It is still not sufficient to correct
the Wilcox k − ω model. The effect of turbulence is badly predicted in both RANS cases. The
Reynolds stresses over-prediction can be put in parallel with the over-prediction of the total
pressure loss. However, we do not know yet if the over-prediction of the separation leads to the
over-prediction of the Reynolds stresses, or if the opposite occurs. The informations gathered
do not allow to conclude yet.

6 TURBULENT KINETIC ENERGY BUDGET

The turbulent kinetic energy budget shows how the turbulent kinetic energy is created, trans-
ported and dissipated. For RANS, it measures the capacity of the turbulence model to represent
correctly the physics of the local turbulent kinetic energy equilibrium.

The TKE budget is extracted at the trailing edge of the blade (x = 1.0ca), on the same
rectangular surface as for the extraction of the Reynolds stresses. The plane position is given in
figure 4.

In the following subsections, the TKE budget terms are normalised by the ratio of the dy-
namic viscosity on the reference density squared (〈ρ∞〉2 for LES, 〈ρ∞〉2 for RANS simulations)
times a reference velocity to the fourth power ([ũ∞]4 for LES, [u∞]4 for RANS). The reference
densities and velocities are taken 100mm upstream the leading edge, at a height of h/4.

In some of the LES figures, horizontal and vertical lines are visible. These do not represent
any physical phenomenon, but are a consequence of the interpolation over many blocks of the
computational domain for visualization.

7008



J.-F. Monier, F. Gao, J. Boudet, L. Shao and L. Lu

6.1 Production

The production term represents the way turbulent kinetic energy is produced. Given its
meaning and its expression, it is positive.
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Figure 11: Turbulent kinetic energy production term.

The main area of production is in the separation, close to z/h = 0.1 (Fig. 11a). In the RANS
simulations, all the Reynolds normal stresses are over-predicted. Consequently, the production
term is over-predicted (Fig. 11b and 11c). The maximum is located upper in the span-wise
direction for the RANS simulations than for the LES. The effect of the QCR is clearly visible,
the intensity of the production term is more important and the area of high production is wider
than for the Boussinesq constitutive relation.

6.2 Dissipation

The dissipation term of the TKE budget represents the damping of the turbulent kinetic
energy.

For the LES, the major part of the dissipation occurs close to the blade, in the blade boundary-
layer (Fig. 12a). A small amount of dissipation occurs also in the area of maximal production,
on the corner-separation upper boundary. For the RANS simulations, similar levels of dissipa-
tion are observed in the blade boundary layers, but a strong dissipation is observed on the area
of maximal production (Fig. 12b and 12c), in the corner separation. This is a known problem of
RANS turbulence models, production and dissipation are superposed, with a small amount of
transport (Ref. [23]). It is a non-physical behaviour. QCR slightly reduces the intensity of the
dissipation term compared to Boussinesq constitutive relation.

6.3 Transport

The transport term is constructed to take into account all the transport effects. It can be
positive (energy is added) or negative (energy is taken).

The LES transport term shows a physical behaviour (Fig. 13a). The TKE is taken from the
area of production to be transported to the dissipative place, mostly close to the blade wall. The
RANS models show no significant transport (Fig. 13b and 13c). The Wilcox turbulence model
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Figure 12: Turbulent kinetic energy dissipation term.
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Figure 13: Turbulent kinetic energy transport term.

does not transport turbulent kinetic energy but produces and dissipates it in the same place. The
QCR yields no significant effect on the transport term.

6.4 Numerical dissipation

The numerical dissipation is a non physical term accounting for the purely numerical effects
on the TKE budget. For LES, it gives a measure of the quality of the simulation and budget
extraction. For RANS, the modelled TKE equation is directly solved, so the residual should be
driven to zero.

The LES numerical dissipation term is not negligible compared to the other budget terms
(Fig. 14a) but remains moderate. It is negative and thus corresponds to dissipation. Its mini-
mum is almost four times smaller in absolute value than extrema of production term or dissi-
pation term in absolute value. The RANS simulations (Fig. 14b and 14c) show a numerical
dissipation term not negligible, contrary to what was expected. This is not due to a default
of the budget reconstruction, but to the use of a production term limiter. The original Wilcox
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Figure 14: Turbulent kinetic energy numerical dissipation term.

k − ω model tends to over-predict k production at some points where anisotropy is important,
such as leading-edge stagnation point or inside the corner separation. This default is inherent to
two-equation models using Boussinesq constitutive relation [24]. To counterpart it, a strategy
of k production limitation is implemented in Turb’Flow, in the form of a clipping of the pro-
duction term [25]. Because the clipping is not implemented in the TKE budget extraction, the
production term is more intense, and a non-null numerical dissipation term appears. The QCR
closure introduces anisotropy in the Reynolds stresses. Far from decreasing the k production
limiter effect, it increases it, by increasing the value of production and decreasing the value of
dissipation (Fig. 14c).

7 CONCLUSIONS

• Large-eddy simulation yields good results according to the experiment, and was used as
a reference to analyse RANS simulations.

• Large-eddy simulation yields results physically conclusive for the fine behaviour of the
turbulence, for Reynolds stresses and turbulent kinetic energy budget.

• The RANS simulations analysed failed to represent correctly the Reynolds normal and
shear stresses. An important over-prediction or under-prediction was observed.

• The QCR closure model yields some modifications, mainly on two terms, τt,33 and τt,12,
but not significant enough to have results comparable to LES.

• The RANS simulations fail to represent the turbulent kinetic energy budget. The main
failure comes from the impossibility to represent correctly the transport of turbulent ki-
netic energy.

• The QCR tends to activate more the k-production limiter in the corner separation than the
Boussinesq closure.
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Abstract. In this paper, the shallow water problem with sloping water bottom is discussed. 

By treating the incompressible condition as the constraint, a constrained Hamilton variation-

al principle is presented for the shallow water problem. Based on the constrained Hamilton 

variational principle, a shallow water equation based on displacement and pressure (SWE-

DP) is developed. A hybrid numerical method combining the finite element method for spatial 

discretization and the Zu-class method for time integration is constructed for the SWE-DP. 

The correctness and effectiveness of the proposed SWE-DP are verified by using three clas-

sical numerical examples. Numerical examples show that the proposed method performs well 

in the simulation of the shallow water with sloping depths and can correctly deal with wet-dry 

interfaces.
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1 INTRODUCTION 

The theory of shallow water is widely applied in engineering such as the offshore engineer-

ing and the environment engineering; because of its importance, it has been studied extensive-

ly[1-3]. At present, a great number of theoretical models have been proposed for simulating 

shallow water problems, such as the KdV equation, Saint-Venant equation (SVE) and Boussi-

nesq equation[2, 4-7]. However, all these equations are based on the Euler coordinate. The 

water equations constructed using the Euler coordinate consist of the convective and source 

terms. The existence of the convective term make the numerical scheme should be designed 

carefully. The most widely used method may be the finite volume method[1], because its dis-

crete scheme can preserve the mass and momentum. However the source term often destroy 

the conservativeness of the finite volume method[2], which results in the harmonious problem 

of numerical solutions, i.e., the numerical still water cannot keep motionless[3, 4]. The har-

monious problem of numerical solutions is one of the two most difficult problems in compu-

tational shallow water dynamics. Another one is the wetting/drying condition for shallow 

water flow which often lead to some numerical problems such as the mass loss and the nega-

tive water depth[5]. 

Generally, an efficient and modern numerical scheme for the nonlinear shallow water 

problem has to satisfy two requirements: 1) preserve the motionless steady states; 2) allow the 

occurrence of dry states[3, 4, 6]. However, in the Euler framework it is very difficult to satisfy 

these two requirements simultaneously. Fortunately, the shallow water problem can also be 

studied using the Lagrange coordinate, and these two requirement can be satisfied easily in 

the Lagrange coordinate. In Ref. [9], Tao applied the Lagrange coordinate to discuss the sud-

den starting of a floating body in deep water. In Ref. [10], Tao and Shi applied the Lagrange 

coordinate to discuss the problem of hydrodynamic pressure on a suddenly starting vessel. In 

Ref. [11], Shi employed the Lagrange coordinate to discuss the nonlinear wave induced by the 

acceleration of a cylindrical tank. In the Lagrangian method, the displacements are viewed as 

unknown variables. One advantage of the Lagrangian method is that the nonlinear boundary 

condition on the free surface can be exactly satisfied[9-11]. However, it should be mentioned 

that in Refs. [9-11], the authors obtained the hydrodynamics equations based on Newton's law 

rather than the Hamilton variational principle. Undoubtedly, it is important to find a variation-

al principle for the hydrodynamics problem. And it is very hard to find this variational prin-

ciple in the Euler description. However, it is easy to obtain a Hamilton variational principle by 

means of the Lagrangian method. Based on the Hamilton variational principle, numerical me-

thods that have been successfully developed and widely applied in structural dynamics, such 

as the finite element method[12] and symplectic method[13], can be applied to simulate the 

shallow water problem. The symplectic method preserves the symplecticity and energy of the 

system and, hence, performs better than the traditional non-symplectic method, especially for 

problems that require extensive numerical simulation[13].  

Recently, Wu and Zhong[7] proposed a constrained Hamilton variational principle for the 

shallow water problem. In the constrained Hamilton variational principle, the incompressible 

condition is treated as the constraint, and the pressure is seen as the Lagrangian multiplier. 

According to the constrained Hamilton variational principle, a shallow water equation based 

on displacement and pressure (SWE-DP) is developed. To numerically solve the SWE-DP, 

they developed a hybrid numerical method combining the finite element method for spatial 

discretization and the Zu-class method for time integration. Their method is symplectic and 

can preserve the volume numerically. However, in Ref. [7], authors only considered the shal-

low water with even bottom. The wetting/drying condition and the sloping water bottom was 

not discussed. In this study, we extend the method proposed in Ref. [7] to the shallow water 
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with sloping water bottom and wet-dry interface. In Section 2, a SWE-DP for the shallow wa-

ter flow with sloping bottom and wet-dry interface is constructed. In Section 3, a hybrid nu-

merical method combining the finite element method for spatial discretization and the Zu-

class method for time integration is established for the proposed SWE-DP. In Section 4, three 

classical numerical examples are applied to verify the correction of the proposed SWE-DP 

and the effectiveness of the proposed numerical method. At last Section, some conclusions are 

presented. 

2 HAMILTON VARIATIONAL PRINCIPLE OF SHALLOW WATER WAVES 

x

z

L
w

u

P0

 0z x

 z h x 

 z x d x 0d x

 

Fig. 1 The considered model 

Consider a shallow water domain shown by Fig. 1. The water bed profile is defined by 

 z h x  , in which 0 x L  . The initial water surface is  0z x .  , ,u x z t  and 

 , ,w x z t  represent the displacements of the particle, which is localized at  ,x z  initially, at 

time t  in x  and z , respectively, and the location of the particle at time t  is denoted by 

 ,  , in which  

    , , , , ,x u x z t z w x z t     . (1) 

According to Ref. [7], the action integral of the two-dimensional water can be shown as 

  
0

d
t

S T U R s    (2) 

where T , U  and R  are kinetic energy, potential energy and constrained term, i.e.,  

  
 

 0 2 2

0

1
d d

2

L x

h x
T u w x z






     , (3) 

  
 

 0

0
d d

L x

h x
U g z w x z






   , (4) 

 
 

 0

0
d d

L x

h x
R p x z






   , (5) 

p  is the pressure, and   is the water volume strain, which can be written as 

 x z x z z xu w u w u w     . (6) 

For the shallow water flow, it can be assumed that the horizontal displacement is indepen-

dent of the vertical coordinate z , i.e,    , , ,u x t u x z t , hence the water volume strain can be 

simplified as 
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 x z x zu w u w    . (7) 

According to the incompressible condition, the water volume strain should be rigorously 

zero 0  , hence we have 

     
 

 
1 1 1, or ,

1

x

z x z

x

u x
w u w x z

u x


   

 .
 (8) 

Equation (8) shows that the vertical displacement distributes linearly along the vertical 

coordinate z . Let the vertical displacements at the bottom and the surface be denoted by  

        , , , , ,0, ,w x h t x t w x t x t    , (9) 

the vertical displacement can be written as: 

      0

0 0

, , , ,
zz h

w x z t x t x t
d d


 


  . (10) 

Combining Eq. (8) and Eq. (10) gives 

 
 ,

1

x
z

x

x tu
w

u h

 
  


. (11) 

At the bottom,  z h x  ,    , , ,w x h t x t  , and the horizontal displacement is  ,u x t , 

hence  

      ,x t h x h x u    . (12) 

Substituting Eq. (12) into Eq. (10) yields 

    
0

, ,
z h

w x z t d z h x u
d


      (13) 

where  ,d x t  is the water depth which can be expressed as 

          0, ,d x t x t h x u d x h x     . (14) 

Substituting Eq. (13) into Eq. (4), the potential energy is obtained: 

 

 
 

 

 

0

0

0 0
0 0

d d

1
d d

2

L x

h x

L L

U g z w z x

gd d x gd h x u x





 


 

  

 

 
. (15) 

In terms of Eq. (13), the vertical velocity is  

      
0

, , , x

z h
w x z t d x t h x u u

d


    . (16) 

For the shallow water problem, the nonlinear effect of the vertical velocity can be ignored, 

hence we have 

    
0

, , , x

z h
w x z t d x t h u

d


   . (17) 
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Then substituting Eq. (17) into Eq. (3) yields 
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d d
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. (18) 

The pressure at the water surface is zero. Let the pressure at the bottom be denoted by 

     , , ,p x h x t x t  . (19) 

We assume that the pressure distributes linearly along the vertical coordinate z , i.e., 

    0

0

, , ,
z

p x z t x t
d





 . (20) 

Substituting Eq. (13) into Eq. (7), the water volume strain can be written as  

  
0

1 1x x

d
u u

d


 
    

 
. (21) 

Substituting Eqs. (20) and (21) into Eq. (5) yields 

   0
0

1
1 d

2

L

xR d u d x     . (22) 

In terms of Eqs. (15), (18) and (22), the action integral of the shallow water wave can be 

written as 
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. (23) 

Taking the first variation of the action integral, i.e., 0S  , gives 
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. (24) 

At the boundaries 0x   and L , the displacement are often known or the water depths are 

rigorously zeros, hence, we have  

    0 or 0, 0,d x u x x L    . (25) 
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Combining Eq. (24) with Eq.(25) yields 
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   (26) 

which is the shallow water equation based on displacement and pressure (SWE-DP). 

3 NUMERICAL TREATMENT  

It is necessary to develop a numerical method for the SWE-DP. In this section, a hybrid 

method combining the finite element for the spatial discretization and Zu-class method for the 

time integration is presented in detail. 

3.1 Discretization in space 

The proposed SWE-DP (26) is derived in terms of the constrained Hamilton variational 

principle. Hence, it is a natural choice to use the finite element method for spatial discretiza-

tion. Let the region  0, L  be divided into eN  basic elements with dN  nodes; see Fig. 2.   

1u 2u
dNu1

1

d 2

2

d



Ne

Ne

d


 

Fig. 2 The finite element mesh 

On the nth element, the horizontal displacement  u x
 
is approximated by the linear func-

tion, and  d x  and  x  are treated as constant values, i.e.,  

      1
1, ,n n

n n n n

n n

x x x x
u x u u d x d x

x x
 



 
   

 
, (27) 

where nx  is the node location in x , nx  is the length of the nth element, nu  is the node hori-

zontal displacement, nd  is the water depth evaluated at the mid-point of the nth element, and 

n  is the pressure of the water bottom evaluated at the mid-point of the nth element. In terms 

of Eq. (27), the incompressible condition on the nth element can be approximated as 

 1
0,1 n n

n n n n

n

u u
d x x d

x


 

    
 

. (28) 

The kinetic energy can be approximated as 

 T T T1 1

2 2
u d duT       u M u d M d d M u  (29) 

in which  
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and 

 

e e

d
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The potential energy can be approximated as 

 T T

d hU  g d g h  (33) 

where 

 

     

      

   

d d e

T

T 11
,1 , ,

T

, 1 ,,1 ,2 1 ,2 ,3 2T

T
T

1 1

, 0 , 0

, ,
2 2 2 2

2 2 2

, ,

,
2

e

d

d d

Nn n
h u u n u N

d N d N Nd d d d

d

n n N N

d n n u n n

xx xx
g g g

g g xg g x g g x

h x u h x u h x u

g
g d x g gd x








    
   

  

     
 
 
 

   

 



g

g

h
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The Lagrangian modified term can be approximated as： 

 T T T T T TR      λ Δd d ΛCu λ s λ Δd λ DCu λ s  (35) 

in which  
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In terms of Eqs. (29), (33) and (35), the action integral can be approximated as 

 

T T T T T

0
T T T

1 1

2 2
d

1 1 1

2 2 2

u d du d h
t

S 

 
    

  
   
  



    u M u d M d d M u g d g h

β Δd β DCu β s

, (37) 

in which u  and d  are the horizontal displacement vector and the water depth vector, respec-

tively, and β  is the pressure vector. 

In the integrand of Eq. (37), the summation of the first three terms represents the kinetic 

energy, the summation of the fourth and fifth terms represents the potential energy and the 

summation of the last three terms represents the constrained term. Calculating the first varia-

tion of S  gives  

 

T 0.5 0

0.5 0.5 0

0

T

u du h

d du d

    


    
   




 
xM u M d h g C Bd

M d M u g Δβ BCu

Δd DCu s

 (38) 

which constitutes a system of differential algebraic equations (DAES). 

3.2 The Zu-class method 

The nonlinear DAES (38) is obtained from the first variation of Eq. (37), which corres-

ponds to a constrained Hamilton system. For the Hamilton system, the symplecticity is a cha-

racteristic property. As the symplectic method can preserve the property of symplecticity and 

the approximate energy necessary for a long time computation, it is often used to simulate the 

Hamilton dynamical system. However, for the constrained Hamilton system, it is required for 

a time integration method to preserve not only the symplectic structure of the Hamilton sys-

tem but also all the constraints. In Ref [8], a method preserving all the constraints was devel-

oped by Zhong et al. The numerical experiment about the double pendulum presented in [8] 

shows this method can preserve energy well. In Ref [9] it was named as the Zu-type method. 

In Ref [10], the Zu-type method was proved to be symplectic. In the Zu-type method, the con-

straint conditions are satisfied strictly at the integration points, and the orbit is treated as the 

geodesic in the state space and is, therefore, approximated by using the time finite element 

method. In this sub-section, the Zu-class method will be employed to solve the DAES(38). 

Let the time domain be discretized as 

 0 1, , , , ,k kt t t t t k t    , (39) 
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where t  is the time step. Let the velocities in  1,k kt t  be approximated as 

      1 1
1, , ,k k k k

k k k kt t t t t
t t

 


 
  

 


u u d d
u d , (40) 

where  k kt# # , and the displacements be approximated as 
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k kt t t t t 



 
  

u u d d
u d . (41) 

The pressure is approximated to be a constant, i.e.,  

    1, ,k k kt t t t  β β . (42) 

By substituting Eqs. (40)-(42) into Eq. (37), the kinetic energy, potential energy and con-

strained term can be approximated as 
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Substituting Eq. (43) into the action integral and taking the first variation gives 
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, (44) 

where up  and dp  are the momentum vectors  

 T ,u u du d d du     p M u M d p M d M u . (45) 

Eq. (44) is a system of nonlinear algebraic equations that can be solved by using the New-

ton iteration method. If dM  and duM  in Eq. (44) are replaced with dM  and duM  ( 1  ), 

Eq. (44) can be used to analyze the shallow water problem ignoring the effect of the vertical 

acceleration. In this case, the results are in agreement with the SVE solution. 
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4 NUMERICAL EXAMPLES 

In this section, three classical numerical examples, which have been used frequently by 

many researchers to test different numerical methods[11-13], are used to verify the correction 

of the proposed SWE-DP and the effectiveness of the proposed numerical method. 

4.1 Evolution of shorelines over a parabolic topography 

Analytical solutions of the nonlinear shallow water equations were derived by Sampson et 

al.[11] for a perturbed flow in 1-dimensional container with a parabolic bed profile. This pro-

vides a perfect test for the present method in dealing with bed sloping source term and wet-

ting/drying condition. The initial water domain is shown by Fig. 3.  

-5000 -3000 -1000 1000 3000 5000
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15

Bed profile

Water surface

x

z

 

Fig.3 The water profile at 0 st   

The Bed profile is defined by 

  
2

0 0

x
h x h h

a

 
   

 
 (46) 

where 0 10 mh  , 3000 ma  . The analytical horizontal displacement and water surface are 

shown as 

    
2

0

, 1 cos
2

a
u x t B t

gh
    (47)   

and 

     
2 2 2

02

2

0

21
, cos , cos 2 ,

8 4

gha B B
x t B t x u x t t

g g h g a
           , (48) 

respectively, in which 5 m sB  , 210 m sg  ,  0 s, 6000 st .  

7023



Feng Wu, Wan Xie Zhong 

 

 

Fig.4 Water surface elevation at different times: (a) 1000 st  ; (b) 2000 st  ; (c) 3000 st  ; (d) 4000 st  ; (e) 

5000 st  ; (f) 6000 st  ; 

(a) (b)

 

Fig.5 Location of shorelines: (a) Left shoreline; (b) Right shoreline. 

Numerical simulation is performed with a time step 1st   and a uniform grid with 

e 300N   elements. Fig. 4 shows the predicted water surface elevation at different times. Fig. 

5 shows the predicted locations of left and right shorelines. Excellent agreements are observed 

between the numerical prediction and analytical solutions from Figs. 4-5, which validates that 

the proposed method is able to deal with the shallow water with complex bed topographies 

and wet-dry interfaces. 

4.2 Spreading of a drop of shallow water 

Consider the spreading of a parabola-shaped two-dimensional drop of shallow water on a 

horizontal plane. The drop is initially confined to 1x   according to  

  
2

0

1 for 1

0 for 1

x x
z x

x


  
  



, (49) 

and at rest. Upon releasing the drop, it spreads under the effect of gravity. The gravitational 

acceleration is 21m sg  . The temporal evolution of this system has been analytically inves-
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tigated by Frei[14]. He noted that the parabolic shape is always retained and that the velocity 

across the drop is a linear function, i.e.,  

    
2

1, 1 , tx t u x


  
 


    

      
     

  (50) 

in which,   is defined by Eq. (1),   describes the half-width of the drop, and t t     is 

the velocity of the leading edge. Following Refs. [14, 15], the  t  is obtained numerically as 

the root of the follow equation  

    1
1 ln 1

2
t         

 
, (51) 

and 

 12 1t   . (52) 

The proposed SWE-DP is used to model this problem, and the numerical simulation is per-

formed with e 100N   elements. The time step is selected as 0.01st  , and the numerical 

simulation lasts for 2 s . To ignore the effect of the vertical acceleration, dM  and duM  in Eq. 

(44) are replaced with 0.001 dM  and 0.001 duM , respectively. The analytical solutions and the 

numerical results computed using the proposed method are compared in Figs. 6-7.  The ex-

ample used here was also discussed in Ref. [16] where the SVE was used to model the drop 

and the second order high resolution algorithm was applied to solve the SVE. The numerical 

velocities given in Ref. [16] is also displayed in Fig. 7.  

It can be observed from Figs. 6-7 that the numerical results computed using the proposed 

method are in excellent agreement with the analytical solution. However the numerical veloci-

ties given in Ref. [16] are different from the analytical solutions at the left and right moving 

wet-dry interfaces. Hence it can be concluded that the proposed model can correctly handle 

the problem of wet-dry interfaces, and perform better than the SVE. 

  

                              Fig.6 Water free surface                                              Fig.7 Comparison of velocity 

4.3 Dam break on dry bed 

Consider a reservoir with length 150 m and water depth 10 m; see Fig. 8. Suppose that the 

right dam is broken suddenly and the water pour out of the reservoir. The right side of the 

dam is the dry bed. Initially, the water surface is defined as 
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0, if

h x x
z x

x x



  


 (53) 

where 0 150 mx  and 
0 10 mh  . The initial velocity is  ,0 0 m su x  . The gravitational ac-

celeration is 9.81m sg  .  

0 150
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 mx




m
z
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water dam

 

Fig. 8 The dam 

The analytical solution of this problem is given as[13] 
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and 

  

0 0
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0 0 0 0 0
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  (55) 

where   is defined by Eq. (1). Numerical simulation is performed with a time step 

0.01st   and a uniform grid with e 300N   elements. The numerical simulation lasts for 6 

s. To ignore the effect of the vertical acceleration, dM  and duM  in Eq. (44) are replaced with 

0.001 dM  and 0.001 duM , respectively. Fig. 9 shows the predicted water surface elevation at 

6 st  . Fig. 10 shows the predicted discharges u   at 6 st  . Excellent agreements are ob-

served between the numerical prediction and analytical solutions from Figs. 9-10, which vali-

dates that the proposed method is able to deal with the shallow water with wet-dry interfaces. 
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                           Fig. 9 Water surface at 6 s                                         Fig. 10 Water discharge at 6 s 

5 CONCLUSIONS  

A constrained Hamilton variational principle for shallow water with sloping bottom is de-

veloped. Based on the constrained Hamilton variational principle, a shallow water equation 

based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method 

combining the finite element method for spatial discretization and the Zu-class method for 

time integration is constructed for the SWE-DP. Three numerical examples are used to test 

correctness of the proposed SWE-DP and the effectiveness of the hybrid numerical method 

proposed for the SWE-DP. Numerical examples show that the proposed method performs 

well in the simulation of the shallow water with sloping depths and wet-dry interfaces.  

In this paper, we only consider 1-dimensional shallow water. However, the basic ideas 

could be expanded to other hydrodynamics problems. We believe that the displacement me-

thod will play a major role in accurately and efficiently simulating hydrodynamics problems. 

In our next work, the proposed method will be expanded to shallow water with two dimen-

sions. 
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Abstract. Immersed boundary methods (IB) are a set of methods to deal with non-body con-
forming grids. This requires forcing the boundary conditions in the vicinity of the immersed
surface. In this work, the embedded object is represented as a set of line segments along with
their outward unit normal vectors. The flow domain is categorised into field cells, band cells
or interior cells using a signed distance based approach. Although IB methods have been
widely used for incompressible flows, it’s application to high speed flows is relatively less. The
proposed work attempts to construct an IB method suitable for compressible flow applications.
Velocity boundary conditions are applied using an inverse distance based approach near no-slip
walls and a signed distance based approach for slip walls. Different flow problems are simu-
lated: expansion fan, supersonic flow past ramp channel and supersonic flow past NACA0012
airfoil which are inviscid simulations, subsonic viscous laminar flow past a ramp channel and
flow past a cylinder (to simulate Von Karman vortex streets) which are viscous simulations. In
each case, a comparison is made with simulations using body fitted grids or experimental data
to validate the solution.
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1 Introduction

Immersed boundary methods (IB) are a set of methods to deal with non-body conforming
grids. For simulating flow past bodies of arbitrary shape, generation of a curvilinear structured
mesh can be very difficult in many cases and lead to loss of grid quality (high skewness). An
alternative approach is to use unstructured grids for complex geometries or cases with multi-
ple or moving bodies. In practice, development of a 3-D solver takes reasonable amount of
effort and time and switching to an unstructured solver may not be feasible. Further, structured
solvers are more amenable to higher order upwinding schemes, which are commonly used in
high-speed flow solvers, and also typically easier to develop compared to their unstructured
counterparts. In this context, another approach which retains structured grids but can deal with
complex geometries with less computational effort (compared to construction of a new solver)
is the immersed-boundary method. In this method, the flow variables are re-constructed near
the vicinity of the body so that the flow feels the presence of the same. This requires the ap-
plication of solution forcing in the vicinity of the immersed body. In this work a novel forcing
mechanism suitable for the finite volume approach is used. The exact methods adopted and its
effectiveness is the focus of this paper.

Although IB methods have been widely used for incompressible flows, it’s application to
high speed flows is relatively less. Peskin C S proposed the immersed boundary method [1, 2, 3]
to simulate flow past heart valves. Goldstein et al. [4] extended Peskin’s work to model no slip
boundaries in IB using an external force field. Mohd Yusof [5] combined IB with B-splines to
allow simulation of complex moving geometries. Faldun et al. [6] proposed an IB method for
simulating unsteady three-dimensional incompressible flows in complex geometries. Choi et
al. [7] developed an IB method for incompressible methods based on a signed distance based
approach. For compressible flow simulations, Ghias et al. [8] proposed a sharp interface based
IB method. Ghosh et al. [9] extended the signed distance based approach of Choi et al to com-
pressible flows.

In this work, the embedded object is represented as a set of line segments. The flow domain
is categorised into field cells or interior cells using a signed distance function [7]. The proposed
work attempts to construct an IB method suitable for compressible flow applications. The flow
variables in the immediate vicinity of the immersed surface (at the interfaces between interior
cells and field cells) are re-constructed such that the flow around the embedded object feels the
presence of the same. Tangential velocities are reconstructed to ensure no-slip, and heat and
mass fluxes are set to zero at the interface between such cells and field cells for a stationary
embedded surface. The IB method is integrated into a finite volume solver for structured grids.

A 3-D Navier-Stokes laminar flow solver with explicit time stepping has been developed
based on finite volume methods for structured grids. The solver has a modular design with
support for multiple flux reconstruction schemes and higher order extensions to space and time-
integration. All simulations performed as a part of this work uses the AUSM flux-splitting
scheme of Liou and Steffen [10] to construct the interface fluxes. The Piecewise Parabolic
Method (PPM [11]) has been used to reconstruct the state at the cell interfaces. For steady
state simulations, the convergence of the simulation was ascertained by the normalised residue
(resnorm). The resnorm was calculated as the L2 norm of the residue from flux computations.
For the steady-state problems simulated in this paper, a resnorm drop of at least 5 orders of mag-
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nitude was observed. A python backend has also been developed to automate post-processing
using the VisIt visualisation package [12].

2 Immersed Boundary Formulation: Geometric Aspects

This section deals with representation of the immersed surface and the method of classifi-
cation of fluid cells based on proximity to the immersed body. The method is currently imple-
mented for 2D objects and the following implementation is valid for 2D flows.

2.1 Representation of the immersed surface

The immersed surface is represented by a set of line segments (Immersed Boundary (IB)
line) along with their outward unit normal vectors. The manner in which the IB surface is
represented has a bearing on the manner in which the velocity forcing is imposed. The use of
line segments for representing the IB makes the process less memory intensive compared to
methods in which immersed surfaces are represented as points [7, 9]. For example, to simulate
the flow past a ramp, treated as an IB, the present method requires two line segments in place
of a dense cloud of points. This treatment can be extended for moving surfaces as well with
velocities provided at the IB lines.

2.2 Classification of cells

Given an immersed boundary, the cells in the computational domain are divided as:

• field cells: Cells with their centre external to the immersed boundary. Fluid flow equations
are integrated in these cells.

• interior cells: Cells with their centre internal to the immersed boundary. The state vari-
ables are not updated with time at these cells.

• band cells: Interior cells which have at least one field cell as neighbour. Such cells are
reclassified as band cells. Modified boundary conditions are applied for these cells.

• band faces: A face lying between a field and band cell. The state reconstruction at these
faces is done in order to achieve a forcing on the solution in the field cell straddling it.

The classification of internal or external is based on the relative position of the cell centre
with respect to the outward normal vectors of the immersed boundary. There are algorithms
which can be used from computational geometry to find if a point lies inside or outside a poly-
gon, but a different approach is sought here. For each cell the following information is needed:
the nearest IB line, external or internal to the IB, and the distance to the nearest IB line.

Given a cell centre and the ith IB line (as shown in figure 1), the cell centre is projected to
the IB line along the normal with intersection point ~rNC . Equation 1 can be used to solve for
~rNC by solving for αi and βi and the intersection point can be found using equation 2.
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Figure 1: Cell centre C and IB line

~rSi
+ αi (~rEi

− ~rSi
) = ~rC + βin̂i (1)

~rNC = ~rC + βin̂i (2)
d = |~rC − ~rNC |

dsigned =
βi
|βi|

d (3)

The algorithm is as follows:

• A bounding circle is determined first by finding the centroid of the IB surface and deter-
mining a radius based on the maximum X and Y extents of the IB. All cells whose center
lie outside the bounding circle are deemed as field cells. The cells inside the circle are
classified as per the procedure explained below.

• Solve for αi and βi as above and find intersection point ~rNC for every IB line.

• Find closest IB line using d.

• if αi /∈ [0, 1], set ~rNC as ~rSi
or ~rEi

which ever is closer and reset d.

• if βi < 0, ~rC is marked as exterior, else interior.

• The signed distance dsigned is evaluated as per equation 3.

• Interior cells with at least one exterior cell as its neighbour are marked as band cells.

• Faces which lie between a field cell and a band cell are marked as band faces.

Figure 2: Sample concave region where algorithm fails

The signed distance based classification fails at concave junctions of IB or at sharp corners
for cell centres with αi /∈ [0, 1]. At such cases, some external points are wrongly marked as
interior. The situation is shown in figure 2 where the cell centre ~rC1 would be marked as internal
as it lies in the opposite direction of the normal of IB line 1 (i.e., n̂1.(~rC1 − ~rNC) < 0) and the
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vertex E1 is chosen as ~rNC . The thick lines are the IB lines 1 and 2. Hence the above algorithm
is modified as follows:

• if αi /∈ [0, 1], set ~rNC as ~rSi
or ~rEi

which ever is closer and reset d

– Find neighbouring IB line ’j’ which shares common vertex ~rNC

• if (~rC − ~rNC) . (n̂i + n̂j) ≥ 0: mark cell as external. Else mark as internal

• In figure 2, to evaluate the status of cell centre ~rC1 , IB line 2 becomes the neighbouring
IB line and n̂2 = n̂j

Figure 3: Cell classification around NACA-0012 airfoil. Top - full airfoil. Bottom - zoomed
near the leading edge

The classification of field (or exterior), interior and band cells is shown in figure 3. The white
cells are field cells, blue are band cells, red are interior cells and the thick black lines are the
band faces. The NACA-0012 airfoil is shown as a red line.
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3 Immersed Boundary Formulation: Solution Forcing

In this work, all boundary conditions are applied at the band faces as the values reconstructed
at the faces will be used for flux computations. This will affect the evolution of the solution at
the field cells neighboring the IB. The idea is to implement the state / flux reconstruction at the
band face such that the flow adapts to the embedded surface in physically correct manner. The
details of this procedure are explained in the following sub-sections.

The left and right values at a face are reconstructed depending on the spatial accuracy desired.
For a first order upwind scheme, the states at the left element is directly taken as the left state
of the face and vice-versa. However, higher order accurate methods use a wider stencil to
interpolate the values at a face. For example, the Piecewise Parabolic Method (PPM [11]), uses
the cell centred values of 4 cells to reconstruct the state at a face. However, near the boundary,
the stencil is narrower and the reconstructed state is the average of the values at the neghbouring
cell centres.

• Band faces are boundary faces which separate the band cells and field cells. Hence the
band cells are like the ghost cells of body fitted grids.

• The boundary conditions are imposed at these faces but only using the field cell values.

3.1 Velocity forcing

In order to arrive at the velocity forcing, the boundary conditions imposed for body con-
forming grids are studied. For body fitted grids, it is assumed that the ghost cell centre is
a mirror of the interior cell centre about the face. As a result, the following can be said:
qface = 1

2
(qghost + qinterior). It should be noted that for body fitted grids, qghost is enforced

and qface is calculated using the former. For the present immersed boundary method, the re-
verse is done.

For body fitted grids, the following velocity boundary conditions are applied:

• Slip wall: ~uG = ~uI − 2 (~uI .n̂) n̂, i.e., the normal component is flipped

• No slip wall: ~uG = −~uI

It is assumed that the parallel and normal components of velocity (with respect to the bound-
ary face) vary linearly or remain constant. Based on the above boundary conditions, the follow-
ing velocity profile is arrived at as shown in figure 4 and 5. It should be noted that in both the
cases, the normal component of velocity vanishes at the face.

Using the above assumption of linear variation for the normal component of velocity (with
respect to nearest IB surface), a similar velocity profile can be imposed near the IB surface (at
the band face). The following points are taken into consideration for this:

• The distance between the IB and the band face (dface), the distance between the field cell
centre and IB (dF ).

• The normal component of velocity should flip in sign if the face is interior to the IB.
Hence signed distance is used.
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Figure 4: Slip wall velocity
boundary condition (body
fitted grid)

Figure 5: No Slip wall
velocity boundary condition
(body fitted grid)

• The normal and parallel directions are with respect to the nearest IB line. The normal
vectors are the outward normal vectors of the IB and not the face of a finite volume cell.

• It is found that when the band face is below the IB, the velocity reconstruction at the
band face using signed distances causes numerical instability. Hence a limiter is added as
follows: dface = min(0., dface)

• For no slip walls, an inverse distance based approach is used as per equation 5. Only
the parallel component of the velocity (with respect to the nearest IB line) is used. This
results in zero normal component of uface (with respect to nearest IB line).

• The velocity reconstruction at the band face is schematically shown in figure 6.

The equations for velocity forcing are summarised below. Equation 4 describes the velocity
reconstruction for slip wall and equation 5 for no slip wall:

Slip wall: ~uface = ~uF −
((

1− dface
dF

)
~uF .n̂IB

)
n̂IB (4)

dface = min(0, dface)

No Slip wall: ~uface =

~u||F
dF

+
~u||IB
dIB

1
dF

+ 1
dIB

(5)

~u||F = ~uF − (~uF . n̂IB) n̂IB

~u||IB = ~uIB − (~uIB . n̂IB) n̂IB
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Figure 6: Velocity reconstruction at band face

3.2 Gradients at band faces

For viscous flows, the gradients at band faces are recomputed for the velocity components
and temperature. The gradient is constructed as:

~∇φ =
2 (φF − φface)
0.5 ∗ (VF + VB)

Aface n̂face (6)

φ = {u, v, T}
VF = Volume of field cell
VB = Volume of band cell

In equation 6, the normal vector should be in the same direction as a vector from the band
cell centre to field cell centre. If not, care should be taken to enforce the same.

3.3 Pressure and density forcing

The fluid flow solver, in which the IB formulation is currently implemented in, uses pressure,
density and velocity as the primitive variables. The forcing for density will change if the wall
is to be an isothermal wall or an adiabatic wall. Equation 7 describes the pressure forcing at the
band faces and equations 8 and 9 describe the density forcing for adiabatic and isothermal IB
surfaces. The equations are described below:

Pface = PF (7)
Adiabatic wall : ρface = ρF (8)

Isothermal wall : ρface =
Pface
RTface

=
PF

RTwall

=
ρFTF
Twall

(9)

Twall = Temperature at nearest IB surface
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Using equations 7 and 8 in equation 6, it is observed that the gradient of temperature across
a band face becomes zero for an adiabatic wall. Currently, pressure at a band face is set to be
the same as that at the corresponding field cell. The current work studies the effect of such an
assumption in the flow solution. Future work will involve other forms of interpolation in order
to improve the accuracy of pressure near the surface.

4 Results

4.1 Expansion fan

Supersonic flow past a convex corner of angle −10◦ was simulated. The resulting expansion
fan was studied for ratio of flow properties across it. The simulation is part of ”AIAA code
validation project” [13], where an expansion fan is simulated for free-stream Mach number of
2.0 with grid size of 120x60 cells. The simulation is higher order in space with PPM [11] and
uses HLLE scheme [14] for flux splitting. The underlying grid for the Immersed Boundary (IB)
method uses 120x120 cells while the immersed surface contains 2 lines to represent it. The
Mach number contours are compared with the solution from body fitted grid (BFG) in figure 7
and a table of results is shown in table 1. The inlet conditions are:

• M∞ =M1 = 2.0 • P∞ = P1 = 101325
• ρ∞ = ρ1 = 1.225 • V∞ = V1 = 680.588

Figure 7: M∞ = 2.0: Expansion Fan Mach number contours - BFG (top) and IB (bottom)
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State ratio Theoretical BFG IB
M2

M1
1.1915 1.1919 1.192

P2

P1
0.5471 0.5479 0.5479

ρ2
ρ1

0.65 0.6504 0.6504
V2
V1

1.0931 1.0941 1.0941

Table 1: M∞ = 2.0: Comparison of state variables across an expansion fan

4.2 Ramp channel inviscid supersonic flow

A supersonic, inviscid flow over a ramp channel was simulated at free stream Mach number
M∞ = 2.2. The ramp starts from (0.25, 0) and ends at (0.5, 0.067). The channel has a height of
0.2 before the ramp and is of total length 1.0. This problem is simulated to check the accuracy
with which the IB method captures attached oblique shocks which is very important for any
high-speed flow solver. The top and bottom part of the domain are slip walls. A grid size of
181 x 65 cells was used for both the body fitted and IB methods. The Mach number contours
are compared in figure 8. The pressure plot along a streamline very close to the bottom wall is
shown in figure 9.

Figure 8: M∞ = 2.2: Ramp Channel Mach number contours - BFG (top) and IB (bottom)

It is seen that while there is a good agreement in the contour plot, the surface pressure is not
so accurately captured by the IB method. The surface pressure is presently calculated in VisIt
but should ideally not use any interior cell data which has not been ensured at present. Ide-
ally this needs to be extracted from the solution using suitable interpolation procedure which
neglects interior cell data and will be developed. Hence, a more thorough surface pressure ex-
traction method is to be developed for the IB.
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Figure 9: M∞ = 2.2: Ramp Channel Pressure Along Streamline

4.3 NACA-0012 Inviscid Supersonic Flow

An inviscid supersonic flow of Mach number M∞ = 1.2 was simulated past NACA-0012
airfoil to determine the ability of the IB method in capturing detached shocks. The underlying
grid size is 381 x 141 cells with 200 IB lines representing the airfoil surface. The Mach number
contours are compared with results from Oscar et al. (figure 7 in [15]). The Mach number
contours from IB is shown in figure 10 and that from Oscar et al. is shown in figure 11. The
Mach number contours show good agreement with the results presented by Oscar et al.

Figure 10: M∞ = 1.2: Mach number contours for flow past NACA-0012 (IB method)
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Figure 11: M∞ = 1.2: Mach number contours for flow past NACA-0012 (Oscar et al. [15])

The shock position is mentioned as -0.46 from the leading edge of the airfoil in Oscar et al.,
but only the location of the end of the shock is mentioned. The location of the start of the shock
is -0.512 from the leading edge of the airfoil in the current simulation, which agrees well with
the result from Oscar et al. The shock simulated in the present simulation by the IB method is
thinner.

4.4 Ramp channel viscous subsonic flow

A viscous flow of Re = 6829 past the same ramp channel (Re based on channel height of
0.2) was simulated. The Mach number and pressure contours for the body-fitted grid (BFG)
case and immersed boundary (IB) case are compared in figures 12 and 13. The surface pressure
plot for the IB method is compared with BFG, result from REACTMB code [9] and Abaqus
(commercial FEA package from Dassault Systems) in figure 14.

The Mach number contours look very similar, and except for the noticeable difference in
the local pressure minima at the end of the ramp, the pressure contours compare well. It can
be seen that the pressures from the BFG and REACTMB code are almost the same while the
FEA package predicts slightly lower pressures, but the difference is only 0.6%. As mentioned
earlier, a more thorough surface pressure extraction method is to be developed for the IB.
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Figure 12: Re = 6829: Ramp Channel Mach number contours - BFG (top) and IB (bottom)

Figure 13: Re = 6829: Ramp Channel Pressure contours - BFG (top) and IB (bottom)

4.5 Viscous laminar flow past a cylinder

A viscous laminar flow past a circular cylinder is simulated for Reynolds numbers 100 and
478. There occurs a periodic shedding of vortices from the cylinder leading to the formation
of the Von Karman vortex street. The domain is a rectangular with a circular diameter of 0.01
as shown schematically in the documentation of Caelus software (CFD solver from Applied
CCM). The underlying grid size is 351 x 401 cells with 50 IB lines representing the cylinder
surface. The instantaneous vorticity contours are plotted in figure 15.

Pressure was probed downstream of the cylinder for both the cases as a function of time.
The frequency of shedding was calculated by taking the FFT (Fast Fourier Transform) of the
above data. The Strouhal number (St) was then computed using the relation in equation 10
and compared with (i)experimental data obtained from figure 4 of [16] and (ii)a similar IB
simulation from [7]. The results are tabulated in table 2.
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St =
fd

V∞
(10)

f = frequency of vortex shedding
d = diameter of cylinder

V∞ = free stream velocity

Reynolds Number Experimental Other Simulations IB

100 0.164 to 0.175 0.164 [7] 0.164

478 0.205 to 0.21 - 0.222

Table 2: Comparison of Strouhal number for flow past cylinder

It is seen that the IB results agree very well with experimental data and previous IB simula-
tions.
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Figure 15: Instantaneous vorticity contours for Re = 100 (top) and Re = 478 (bottom)

5 Conclusions

A novel immersed boundary method suitable for finite volume methods is presented and
tested for (i) compressible and incompressible (low speed) flows, (ii) inviscid and viscous flows,
(iii) steady state and unsteady simulations with mostly good agreement with computations using
body fitted grids and experiments. It is seen that while the boundary shape is captured effec-
tively, the surface pressure is not smooth as compared to the surface pressures obtained from
body fitted grids. A better method needs to be developed to extract the surface pressures for
IB simulations. However, considering the potential of IB methods in solving a wide class of
problems involving flow past objects of arbitrary shape while still employing structured grids,
the results obtained are encouraging.
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Abstract. This paper reports a numerical study of natural convection problem between vertical
plates with asymmetric heating. Influence of perturbation conditions outside of the channel
on flow structure and on the heat transfer rate are investigated. The effect of temperature
consists of considering a gradient of temperature between the bottom and top of the channel
in order to obtain a thermal stratification. The effect of surface radiation on the laminar air
flow with a thermal stratification is investigated by considering temperature of grey bodies.
Results show that these weak perturbations outside the channel are a real influence on flow and
that the influence of thermal stratification is more important than surface radiation. Numerical
simulations have been carried out at modified Rayleigh number Ra=5.105 (laminar regime) and
with Prandtl number Pr=0.71.
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Nomenclature

A surface of the heated wall
qri net radiative heat flux
Ra Rayleigh number
Rab modified Rayleigh number
ṁin mass flow rate entering through bottom-end
ṁout mass flow rate exiting through top-end
ṁes mass flow rate entering through top-end
T temperature
T0 reference temperature
Tbottom body temperature of grey surface bottom-end
Ttop body temperature of grey surface top-end
b width of the channel
u, v velocity components
t time
UCN characteristic velocity
~ey coordinates axes
~v velocity vector

dw width of the downward flow
lw length of the downward flow
H height hot plate of channel
J̃i radiosity linear system
Nu1 Nusselt number on the heated plate
Nu1 Mean Nusselt number on the heated plate
p pressure
Pr Prandtl number
Greek Symbols
∆T temperature difference scale
ε emissivity
κ thermal conductivity
ν kinematic viscosity
Φ heat flux
Ψ stream function
σ Stefan-Boltzmann constant
θ dimensionless temperature

1 INTRODUCTION

The heated vertical open-ended channel is representative of practical interest such as the
chimney, the solar panel, or the Trombe wall. The problem of natural convection in verti-
cal channels has been the focus of extensive investigations [10]. Authors studied free con-
vection between vertical flat plates with symmetric or asymmetric heating, with uniform heat
fluxes or constant temperatures[4]. There are several ways to take into account the surrounding
conditions. The channel can have adiabatic extensions, be closed in cavities or open domain
[7, 1, 2, 17, 16]. These different strategies lead to an increase in size of the computational do-
main which proves to be expensive, both in memory and in computational time [19]. Moreover,
interactions between the channel and surroundings are not correctly estimated by these strate-
gies [3, 12, 13, 14]. Indeed, thermal stratifications are often not considered although experi-
mental studies show its existence. As the same, except some studies in literature [6, 15], major
of numerical investigations overlooked surface radiation in natural convection case. Moreover,
several studies [6, 20, 21] confirmed that radiation transfer represent significant percent in heat
transfer global.

The influence of thermal stratification on the laminar air flow induced by natural convection
in vertical, asymetrically-heated channels is discussed. Studies conducted by the French Re-
search Group AMETh [9] on natural convection in open-ended channels are taken as the base
case for carrying out the computations. The thermal stratification is created by setting a con-
stant bottom temperature different from the top temperature, in order to obtain a weak gradient
of temperature between the entrance and the exit of the channel. The influence of external sur-
face radiation is also investigated and temperature of grey bodies (bottom and top channel) are
set to values in agreement with thermal stratification outside the channel.
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2 DESCRIPTION OF TEST CASE

A vertical parallel plate channel of width b and heightH is formed by two walls, one partially
heated at a constant and uniform heatflux Φ on its half middle section and the remaining walls
are adiabatic (see Figure 1 ).

The fluid flow is assumed laminar and two-dimensional. Accounting for the small relative
temperature difference occurring between the heated wall and the aperture, the Navier-Stokes
and energy equations are expressed with the Boussinesq approximation. The viscous dissipation
term in the energy equation is neglected. The energy equation and the one dealing with radiant
interchanges amongst surfaces is coupled through the thermal boundary conditions.

2.1 Heat and fluid flow equations

The governing flow and heat transfer equations, written in dimensionless and conservative
form, read:

∇ · ~v = 0 (1)

∂~v

∂t
+∇ · (~v ⊗ ~v) = −∇p+ PrRa

−1/2
b ∇2~v + Prθ−→ey (2)

∂θ

∂t
+∇ · (~vθ) = Ra

−1/2
b ∇2θ (3)

with the reduced dimensionless temperature θ = T−T0
∆T

. The reference temperature T0 is set
to 298.15 K. The dimensionless parameters governing the fluid flow and heat transfer are the
Prandtl number Pr = ν

κ
set to 0.71, the Rayleigh number Rab = gβ∆Tb3

νκ
set to Rab = 5 · 105

and characteristic velocity UCN = κ
Ra

1/2
b

b
.

2.2 Surface radiation

For a given temperature distribution on the channel internal surfaces, the surface radiation
problem is fully described by the linear system for radiosity J̃i (W/m2). The net radiative heat
flux resulting from surface radiation, which is defined in the hemisphere of a surface element,
can be calculated by:

qri =
εi

1− εi
(σT 4

i − J̃j) (i = 1, 2, ...,m) (4)

where σ is the Stefan-Boltzmann constant, m is the total number of surface elements, εi is the
emissivity of the surface element i and J̃i (W/m2), the linear system for the radiosity.

In this paper, we consider that the emissivity of internal walls is equal to 0.1 and the emis-
sivity of the surfaces corresponding to the bottom-end and top-end, are set to 0.9. The original-
ity of this study is temperature of bottom body and top body which are different to reference
temperature. Indeed, surface radiation is only considered in thermal stratification case. As a
consequence, bottom and top body can have a temperature as if they are located at a distance
from the aperture of the channel, in a stratified ambient air.

2.3 Boundary Conditions

Boundary conditions have been the focus of several studies [5], [9] [22] [14]. According
to latest results produced by [5], pressure boundary conditions at the top and bottom sections
improved results when they are based on Local Bernoulli relation.
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Three configuration cases are referenced in this paper. In each case, the conditions at the
solid walls are the same as those in [9]; only the thermal boundary conditions are modified.

• Reference case: it’s the case of AMETh [9] with Local Bernoulli (LB-LB) type of pres-
sure boundary conditions at bottom and top of the channel. Thermal boundary conditions
at bottom/top are:
θ(x, 0) = 0 and θ(x, 2H) = 0

• Thermal stratification case: it consists of setting a low dimensionless temperature at the
bottom, set to −0.01, in order to obtain a gradient of temperature at the outside of the
channel. Thermal boundary conditions at the bottom/top are:
θ(x, 0) = −0.01 and θ(x, 2H) = 0.

• Radiation surface and thermal stratification: the channel consists of 4 gray-diffuse, ver-
tical surfaces (the three parts of left-hand side wall and the adiabatic right-hand side
wall) and two horizontal surfaces regarded as grey radiators at an effective temperature
of Trad = −0.03 and Trad = 0.03, respectively.
The emissivity of vertical surfaces are set to ε = 0.1 and emissivity of horizontal surfaces
are setted to ε = 0.9. Thermal boundary conditions at the bottom/top:
θ(x, 0) = −0.01 and θ(x, 2H) = 0
and horizontal surface temperature are set to:
Tbottom body = −0.03 and Ttop body = 0.03

2.4 Monitored variables

2.4.1 Dynamic quantities

• Mass flow rate entering into the channel at y = 0:

ṁin =

∫ 1

0

v(x, 0) dx (5)

• Mass flow rate entering into the top section of the channel y = 2H:

ṁes =

∫ 1

0

|v(x, 2H)|v(x, 2H)

2
dx (6)

• Mass flow rate exiting the channel at y = 0:

ṁout =

∫ 1

0

v(x, 2H) dx (7)

2.4.2 Thermal quantities

• Local nusselt number corresponds to the inverse of temperature at the left wall:

Nu1(y) =
1

θ(0, y)
(8)

• Average of Nusselt number on the heated wall:

Nu1 =
2

A

∫ 3H
2

H
2

Nu1(y) dy (9)

where A is the surface of the heated wall.
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Figure 1: Geometry of the parallel-plate channel

2.4.3 Characterization of flow patterns

• The width of downward flow at the top-end of the channel (y = 2H) is calculated from :

dw = b− x1 with Ψ(x1, 2H) = Ψw (10)

Ψw the value of the stream function along the right plate arbitrary set to zero.

• The length of downward flow in top-end section is also deduced from the stream function
set to zero: lw = 2H − y1 where y1 is the such that v(y1) = 0 along the right plate.

2.5 The channel geometry

3 RESULTS

3.1 Impact on dynamic quantities and on flow field

Thermal stratification has a more significant influence on dynamic quantities than surface
radiation. Figure 3 displays the vertical component of the velocity in different horizontal sec-
tions of the channel. Major differences are shown in the entrance section at y = 0. Indeed,
in thermal stratification case, the velocity at y = 0 consists essentially of a flat profile and it
turns out to be parabolic without thermal stratification. The taking account of surface radiation
do not modify the profile of vertical component of the velocity. This flat velocity profile at the
entrance makes the mass flow rate in the channel decline. As reported in Table 1, the mass flow
rate at the bottom of channel significantly decrease of 73% in thermal stratification case, and
65% with surface radiation. As a consequence, a plug-flow in the channel is produced. This
result is in good agreement with the experimental studies realized by [8] and [14]. Therefore,
thermal stratification and surface radiation reduces the mass flow rate at the bottom.

However, flow penetrates deeper into the channel in thermal stratification case and also with
surface radiation. The development of the dynamic layer along the left plate wall at the entrance

7049



D. Ramalingom, A. Bastide

Figure 2: Streamtraces for (a) Reference case, (b) Thermal stratification case and (c) Thermal stratification with
radiation

of the heated region at y = H
4

is visible in Figure 3. The return flow penetrating through the top
section at y = H is also visible with a negative value of vertical component of velocity. This
observation is confirmed by the accurate measurements of dw and lw which are reported in Table
1. The depth of the pocket of recirculation increases of 67%. As the same, the mass flow rate in
entrance at the top of the channel significantly increases: +144% in thermal stratification case
and +207% when considering surface radiation. Figure 2 shows the pocket-like streamlines.The
taking account of surface radiation modifies the flow structure much at the top section than in
the remainder of the channel. This recirculation, fed by fluid drawn into the top section of the
channel adjacent to the adiabatic wall, creates a vortex at the top section of the channel. More-
over, the size of the vortex increases by considering surface radiation and setting a temperature
to grey bodies surface. Observation of vortex at the exit of channel has been already made by
[11] and [18]. So, thermal stratification produces a vortex-like structure at the top region of the
channel. The taking account of surface radiation alters significantly the structure of the flow at
the top region of the channel. This can be explained by the influence of the temperature of the
surface body of the top aperture of the channel.

Although all these effects, the flow stays in steady-state in thermal stratification case and
with surface radiation.

Dynamic quantities ṁin ṁout ṁes dw lw
Reference Case 5.91 5.91 1.61 0.61 4.05

Thermal stratification Case 1.58 1.58 3.93 0.68 6.78
Radiation and thermal stratification case 2.05 2.05 4.94 0.90 6.22

Table 1: Dynamic quantities

3.2 Impact on thermal quantities

Temperature field is not significantly altered by thermal stratification and surface radiation.
Figure 4 shows the effect of thermal stratification on the temperature distributions along the
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two vertical walls. As it can be seen, dimensionless temperature of right plate increases range
from −0.01 below the channel bottom-end to 0.002 above the channel top-end when a low
thermal stratification. Right wall temperature remains low and close to that of the fluid entering
at the bottom of the channel. The taking into account of surface radiation slows down its
heating. In the reference case, the maximum temperature is reached at the upper region of the
channel instead of the mid-height in other configuration cases. So, as observed by [8] in their
experimentation, thermal stratification increases slightly plates temperature. However local and
mean Nusselt indicated in Table 2 decrease up to -2.5% in presence of thermal stratification and
surface radiation. As a consequence, heat thermal transfer is reduced. This result is in good
agreement with [8].

Thermal quantities Nu1(H
2

) Nu1

Reference case 6.27 6.74
Thermal stratification case 6.16 6.62

Radiation and thermal stratification case 6.16 6.56

Table 2: Thermal quantities

4 CONCLUSIONS

In presence of a small thermal stratification outside of the channel, the flow structure at the
top end of the channel is strongly impacted : the depth of the recirculation flow and the mass
flow in entrance at the top section increase. The principal influence is the creation of a vortex
penetrating the channel at the top end. The impact of surface radiation is essentially observed
at the top section of the channel, where the dimensionless temperature of grey body has been
set to 0.03. The vortex observed is larger and streamlines are tighter near the left wall.

Thermal quantities are slightly altered by thermal stratification and surface radiation. Tem-
perature of the right wall increases but remains low and close to the temperature of the fluid
entering at the bottom of the channel.

In conclusion, thermal stratification outside the channel has a significant effect on the flow
structure and on dynamic quantities. In present study, thermal stratification has been investi-
gated with a weak constant variation at the bottom of the channel. It could be interesting to
more quantify the thermal stratification effect on flow and identify others sensible parameters
like pressure or aspect ratio.
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Figure 3: Vertical velocity profiles (a) at the bottom of the channel(y=0), (b) at the inlet of heated wall section
(y=H/4), (c) at the mid-height of the channel (y=H/2), (d) at the end of the heated wall section (3H/4), (e) at the
top section of the channel (y=H)

7052



D. Ramalingom, A. Bastide

0.0 0.2 0.4 0.6 0.8 1.0
−0.05

0.00

0.05

0.10

0.15

0.20

D
im

e
n
si

o
n
le

ss
 T

e
m

p
e
ra

tu
re

(a) Left Wall

Reference

Thermal Stratification

Thermal stratification and radiation

0.0 0.2 0.4 0.6 0.8 1.0
Height channel y/H

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

D
im

e
n
si

o
n
le

ss
 T

e
m

p
e
ra

tu
re

(b) Right Wall

Reference

Thermal Stratification

Thermal stratification and radiation
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Abstract. The physical experiment conducted at the Moscow State University of Civil 

Engineering (MSUCE) has revealed that the pressure of a gas explosion in a room with a 

window and a hole in an adjacent room in the more than two times higher than a similar 

explosion in a single room. In the experiment, the ignition is located in the center of the room 

and there was no gas in the adjacent room. 

Our numerical experiments confirm this fact. Calculations were performed using the 

software “Vulkan-2M”, which is based on the method of large particles. Simulated room 

consisted of two chambers size of 0.5m x 0.5m x 0.5m each with a hole size of 0.15m x 0.15m 

between them. The first chamber was filled with a stoichiometric mixture of propane-air and 

had a window size of 0.15m. 

Pressure increasing effect reaches a maximum when the ignition is in the area between the 

window and the center of the first chamber. The pressure is increased more than twice in this 

case in comparison with a single blast chamber. The effect is minimal when the ignition is 

closer to a window or a hole between the chambers. These results can be used to assess the 

risk of explosion. 
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1 SHORT REWIEV 

Researchers from Moscow State University of Civil Engineering (MSUCE) (Mishuev 

A.V., Kazionnov V.V., Gromov N.V. and others) [1] described the effect of increasing the 

pressure of the explosion in the presence of an adjacent chamber, connected to the vented 

explosion chamber. They found an increase in overpressure of 2.5 times compared to the same 

explosion without a hole between the chambers. These results are consistent with earlier 

studies of Molkov V.V. [2]. 

The rules of the European Union [3, 4], the USA [5, 6, 7] and Russia [8, 9, 10] does not 

take into account the effect of the adjacent cameras on the development of explosion. In spite 

of the different standards, the style and the different calculation formulas, all these documents 

have a common drawback. Their results based on the quasi-static pressure in the room that is 

not taken into account the distribution of the parameters of the gas in the chamber volume. 

The method of quasi-static pressure makes it possible to determine the shape and the flame 

front area based only on the phenomenological models, in which there is no turbulence. It is 

not possible to use such a model to account for the maximum pressure in the event of an 

adjacent room. Only experimental researches or CFD-methods can solve this problem. 

However, such studies have not been conducted in Europe, even in such research centers as 

the FM Global (Toronto, USA) [11], known for his experimental work. 

Article by software developers FLACS [12] close to the theme of this work. This article 

describes the development of simulation of a gas flame in the two adjacent chambers filled 

with gas. However, the authors are more interested in the accuracy of numerical model than in 

the mechanics of explosion and hazard assessment. 

Vodyanik V.I. [13] also considered the development of a flame inside two communicating 

vessels. In his experiment, the gas fills both of the vessel before the explosion, so that the 

results are not relevant to the subject. 

To this is the closest Molkov’s [2] study in which he analyzes pilot burst in the tank from 

which the volume of 2 m3 gas out through line into another tank volume 3.5 m3 which was 

filled with air. He found that in some experiments the pressure in the receiving vessel during 

the explosion becomes greater than the pressure in the first tank. 

In addition, he established the dependence of explosion from the ignition location of the 

device in the first tank, which allowed him to explain the reason for this effect. Unfortunately, 

the studies were not specific for the explosion in the room such as the kitchen where there is a 

window through which the gases vented to the atmosphere apart holes between rooms. 

Thus, the research of scientists from MSUCE are new in this issue. 

2 THE HYPOTHESYS 

It is known that the place of ignition of gas in the room greatly affect the development of 

the explosion [3, 5, 11]. These researches show that the farther the place of gas ignition from 

vent, the greater the maximum explosion pressure. Experimental studies were conducted 

which confirmed earlier [14, 16] these data, it was found that the impact of this effect (from 0 

to 20 times with the difference from maximum pressure) is more complex in dependence on 

the window size and shape of the room. In this context, and based on the experience 

Molkov V.V. We can expect that somewhere a source of ignition in explosions in two 

adjoining rooms, one of which is filled with gas, and the window will also affect the 

development of the explosion. 

We offer three versions of the explosion in this case. 
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The first case. The source is located near the hole in the next room. The products of 

combustion will flow into the next room, not gas-air mixture. In this case, the adjacent room 

will act as a damper. 

The second case. Upon ignition of the mixture near the center of the room, it can be 

expected that the gas mixture will fall into the next room, where it will burn. However, hole 

will turbulence mixture, it should dramatically increase the area of the flame front and 

explosion pressure. 

The third case. The gas is ignited near the window. In this case, the maximum amount of 

mixture enters the next room. But it enters into force known pressure lowering effect of an 

explosion if ignited near a window. The explosion pressure will depend on the ratio of these 

two factors. 

Therefore, we decided to investigate the relationship between the maximum pressure of 

gas explosion and ignition of the gas mixture space. 

3 RESEARCH TOOLS 

In drawing up the mathematical model of the process, we have made the following 

assumptions concerning the simulated environment: 

1. The initial mixture of propane-air is a homogeneous and stoichiometric; 

2. The difference between the thermodynamic characteristics of the original mixture and 

the combustion products is negligible; 

3. The gases in the physical process is inviscid and are ideal fluid; 

4. The combustion reaction occurs at the boundary of the original mixture and the 

combustion products. 

Given the assumptions, the problem is reduced to modeling the dynamics of the gas with 

uniform properties by using one of the methods for the unsteady multidimensional problems 

of fluid mechanics (CFD). The choice of a particular method is limited by arbitrary geometry 

of the computational domain, as well as the possibility of taking into account the availability 

of features in the simulated currents. As a basic system of equations to describe the dynamics 

of the medium was used known system of Euler equations in divergence form, closable 

equation of state.  

On the domain of integration is superimposed Euler (fixed) grid of rectangular cells with 

sides x, y и z. Numerical solution of the system is carried out by large particles method, 

LPM [16], which is based on the idea of Harlow n particles in the cell, allowing splitting of 

physical processes. However, in the LPM instead small solids particles replaced by a single a 

drop of liquid, fill the entire volume of the cell. Method of large particles as well as other 

modern methods such as Godunov method [17], FLACS [12] et al., allow us to study the 

gasdynamic flow without a priori information about the structure of the solution. The 

calculation consists of repetitive time steps. In turn, each such step includes three steps: 

1. "Euler" stage, when neglected all effects associated with the movement of the fluid 

(mass flow through the faces of the cells is not); 

2. "Lagrangian" stage, where the calculated mass flow through the cell boundaries; 

3. The final stage, which determines the final flow parameters based on conservation laws 

for each cell and the entire system as a whole. 

The system includes equations that describe the process of heat and mass transfer with the 

environment and the process of propagation the flame. Cooling processes on the chamber 

walls are estimated based on physical experiments carried out according to pressure drop in 

the explosion in a closed chamber. To calculate the flow through the open border to border 
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pressure cell is assumed equal to the average between the pressures in the chamber and 

atmospheric. 

Two additional parameters, "the mass fraction of combustion products in the chamber," 

and "the mass fraction of the formation of the products of combustion", introduced for the 

simulation of flame propagation. The first parameter in the cell determined by the position of 

the flame front, which moves toward the initial mixture at a rate equal to the sum of the gas 

flow velocity and the normal combustion rate. The second parameter, the mass fraction of 

newly formed products of combustion is determined by taking into account only the normal 

burn rate, and takes into account only if the flame front is located within the cell. 

In the system of equations in the equation of conservation of momentum, we have taken 

into account the effect of buoyancy. 

The computer model uses 7 types of cells: 
– calculated cells - which are carried out of the equation; 

– border cells  provide impermeability condition; 

– flow cells - which connect the cells of calculated area with the atmosphere; 

– flame front - cells in which combustion occurs; 

– cells with the products of combustion; 

– air cells - which are filled with air; 

– non-calculated cells - which are located behind the border and fix their properties. 

Fig. 1 shows a diagram of the calculated volume that is represented by two cameras, one of 

which (left) filled with gas, and the second - the air. Overall dimensions make 0.5x0.5x1.0 m. 

Designated ignition of the gas mixture are in the left chamber. Ribs cells taken equal 

x=y=z=0.01 m, so that only received about 100,000 cell, the time step t=5∙10-7 s with 

that by a wide margin meets the criterion of stability Courant - Friedrichs - Lewy. This margin 

is accepted, because the equations describing the propagation of flame, adversely affect the 

stability of the account. 

On fig. 2 shows a typical picture of the explosion. In this case, the vector lines are shown as 

lines Bezier, flame front - red cells, and other gases are painted on a scale that the higher the 

temperature, the lighter background. 

4 THE SIMULATION RESULTS 

a) An explosion in solitary chamber 

In the first stage, experiences were conducted with a gas explosion in a solitary chamber 

with disconnecting adjacent chamber. The simulation results shown in figure 2. 

It is seen that with the appearance of the flame front starts expiration of the initial mixture 

to the atmosphere. The flame front initially increases as a sphere, and then starts to be pulled 

towards the vent. As soon as the flame front will come to the vent, begin to expire the flame 

cell. In the last step, expire only products of combustion. Released source mixture of gas 

burns outside the chamber in the atmosphere. 

According to the data, is shown in figure 3, it is evident that the time of fire is not exceed 

0.6 seconds at any position of the igniter in chamber. In addition, it traced unique relation 

between the parameters of the explosion and the place of ignition of gas.  
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Figure 1: Calculated scheme 2-chamber unit (dimensions in cm) 

Firstly, the farther from the window is igniter, the shorter the time of the explosion, the 

more the primary mixture is ejected in atmosphere out and flame particles. Second, the farther 

from the window ignition occurs, the greater the pressure of an explosion (fig. 4), in this case 

a factor of 2, which confirms the above results known. In a graph, this result is shown in fig. 7 

(curve 1). 

b) explosion in chamber in the presence of adjacent chamber 

At first glance, the presence of the adjacent chamber with the explosion (fig. 4) should lead to 

a simple damping process in its dynamic development. It is certainly true, but not entirely so. 

At first, with increasing pressure in the first chamber starts flowing gas mixture it into the 

next. Due to the leak, mixture begins to increase the pressure in the adjacent cell. Therefore, 

the amount of the mixture received into an adjacent chamber can be estimated by the pressure, 

which is reached in an explosion. In this case, the excess pressure is from 6 to 20 barg. 

Therefore, in the adjacent volume chamber gases arrive from 6 to 20% of the chamber 

volume. This, of course, raises the question, what kind of gas is supplied to an adjacent 
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camera? The answer is quite simple. Composition of gas entering in the adjacent chamber it 

depends on whether approached to the hole of the flame front or not. If you have not yet 

approached the combustion front, only the initial mixture is fed into an adjacent chamber 

when approached, they begin to enter the combustion products. 

Figure 2: The picture of gas explosion in solitary chamber when ignition in position 3 
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Figure 3: Dynamics of explosion pressure depending on the position igniter in the solitary chamber 

 

 

 

 

 

 

 

 

 

 

 

 

25ms 50ms 

75ms 100ms 

125ms 150ms 

175ms 200ms 

Atmosphere - free boundary flow the chamber 

7061



Polandov Yu.Kh., Dobrikov S.A. 

 

The change in time of pressure in the explosion chambers is shown in fig. 5 and 6. The 

number of each curve corresponds to the number igniter place according to fig. 1. The greatest 

pressure reaches values in position 2. When you install the ignition at the passage into the 

adjoining chamber, the pressure of the explosion nearly corresponds to the pressure in solitary 

confinement. In addition, when installing igniter close to the vent, pressure is lower than the 

maximum, but higher than in solitary confinement. 

It is understood that the earlier the ignition of the mixture in the adjacent cell, the higher 

pressure will be in the first chamber.  This effect is particularly strong if the ignition happens 

when the pressure in the first chamber increases. However, the closer to the passage of 

ignition occurs, in the adjacent room is less than the initial mixture. In this case, the "help" the 

adjacent room to increase the pressure will decrease.  

c) Comparing the results of numerical and physical experiments 

Comparison of numerical simulation results and the results that have been obtained 

researchers at the MSUCE shown in figure 7. 

 

 

 

   

   

   

   

   

Figure 4: The picture of gas explosion in solitary confinement at position igniter 3 
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Figure 5: The development of pressure in the explosion in the chamber together with the adjacent chamber at 

different positions ignition 
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Figure 6: Regression curves Pmax = P (L), 

where Pmax - maximum pressure in the explosion; 

L - the distance from the vent, cm; 

1 - single chamber; 2 - together with the adjacent 
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Figure 7: Comparison of the results of computing and physical experiments 

Symbol  denotes the result of a physical experiment in MSUCE. 

It must be borne in mind that the installation had different geometrical dimensions, 

although the ratio (V2/3 / F)c= 11.1, and (V2/3 / F)e= 12, where V - volume of the first chamber, 

m3 and F - m2 vent area, both systems have similar values. If in addition to this, use the 

relative pressure and the distance from the ignition space by entering them in the calculations 
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and the physical experiment, it seems a formal opportunity to make such a comparison. It is 

best to do this by plotting P2i max /P1i max=f (L/L0), where P2i max - maximum explosion pressure 

with the adjacent chamber in 1th position; P1i max - the maximum pressure in the explosion in 

solitary chamber in the 1 - position; and L/L0, where L - distance from Vent to the place of 

installation of igniter and L0 - distance from vent to pass into the adjoining chamber. We see 

an acceptable coincidence. It is understood that the proposed dimensionless quantities not 

fully correspond to the concept of criteria but they allow somehow compare with each other 

the results obtained under various conditions. 

5 CONCLUSION 

These results confirms the hypothesis about the influence of gas ignition locations for the 

development of the explosion in the chamber. It was found that when ignited gas near passage 

into the adjoining chamber explosion pressure is almost the same as in an explosion in a 

separate room. Influence of combustion is shown at center of the chamber and, especially, in 

the space between the center and vent. However, when ignited near the vent begins to affect 

other effect: release of combustion products with a high temperature of the flame, resulting in 

the effect of the adjacent rooms on the development of the process is reduced.  
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Abstract.
Turbulence modeling leads to a multiscale problem in which there is a very thin boundary

layer that requires most computational time for its resolution. The paper addresses a novel
approach based on non-overlapping domain decomposition. It allows us to avoid calculations
of the region with high gradients in the vicinity of the wall while retaining sufficient overall
accuracy. The technique is introduced in application to low-Reynolds number RANS models.
The domain decomposition is achieved via the transfer of the boundary condition from the
wall to an interface boundary. If the governing equations in the inner domain are simplified,
then the interface boundary conditions are of Robin type. These boundary conditions can be
obtained in an analytical form despite the fact that they are nonlinear. Possible ways to achieve
a reasonable trade-off between efficiency and accuracy are discussed.

The obtained interface boundary conditions are mesh-independent. They can be used to
avoid computationally expensive resolution of a high-gradient region near the wall. Moreover,
once the solution is constructed in the outer region, the near-wall profile can be restored if
required. In two extreme cases, if the interface boundary is too close to the wall or too far from
it, the so-constructed solution to the problem automatically corresponds to the low- and high-
Reynolds number RANS models, respectively. Different applications are considered including
unsteady problems and complex geometries. It is shown that in comparison to the low-Reynolds
number models the near-wall domain decomposition approach allows the computational time
to be reduced by one order of magnitude whilst practically retaining the accuracy.

The developed approach proved to be quite robust and relatively universal. It does not con-
tain any tuning parameters. The technique might be extended to other multiscale problems.
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1 INTRODUCTION

Numerical modeling turbulent flows near walls is still computationally very expensive. The
problem is that nearby the wall there is a very thin laminar boundary layer due to the no-slip
boundary condition and damping effect of the wall. The thickness of the laminar sublayer is
about 1% of the entire thickness of the boundary layer. However, resolution of this region takes
up to 90% of the total computational time [17] because of high gradients of the solution. One
possible way to avoid this problem is the use of high Reynolds number (HRN) models. In this
case the flow structure above the laminar sublayer is deliberately not resolved. Instead of this the
solution is represented by approximate boundary conditions which are usually set at the nearest
to the wall cell. Such Dirichlet boundary conditions are often called the wall functions. In the
core flow the governing Reynolds Averaged Navier-Stokes rquations (RANS) do not depend on
the distance to the wall in contrast to the original low Reynolds number (LRN) RANS models.
Thus, all information on the wall is supposed to be included in the wall functions. As noted in
[11], this approach should be treated as a domain decomposition in which the solution in the
inner near-wall layer is replaced by the wall functions.

As mentioned above, the wall functions represent an approximate solution in the inner layer.
They can be obtained in one way or another one. First wall functions were based on the analyt-
ical solution for a plate [18], [12] and its semi-empirical modifications (see e.g. [13], [14]) to
make them more universal. More advanced wall functions such as [15], [16] are not restricted
by approximate local solutions. They take into account the solution in the outer (core) region
via iterations. The solution in the inner region is obtained by solving boundary layer equations
either numerically or analytically. In the latter case the solution of the governing equations
is supposed to be approximate. In this case a domain decomposition can be realized with a
Dirichlet-Dirichlet (D-D) iterative algorithm [19].

As shown in [9], the interface boundary condition (IBC) between the inner and outer regions
can be obtained via transfer the boundary condition from the wall to the interface boundary. In
this approach, the wall boundary conditions and governing equations are equivalently replaced
by the IBC [10]. If the governing equations in the inner layer are of boundary-layer type and
locally one-dimensional, the transfer of boundary condition can be exactly realized [10]. One
can prove that in the case of a Dirichlet boundary condition set at the wall the IBC is always
of Robin type. In a more general formulation the IBC must be nonlocal in both space and time
[7], [3]. In [7] for a model equation it is demonstrated that if the flow along the wall changes
rapidly enough, then the IBC must be nonlocal, otherwise essential effects can be lost. In turn,
in [3] for a model unsteady equation it is shown that if the solution is essentially unsteady, then
the IBC must be nonlocal in time and contain a memory term. In [4] the approach was success-
fully applied for modeling laminar-turbulent transition. In general the opportunity to replace
the solution in the inner region by an interface pseudo-differential equation follows from the
theory of generalized Calderón–Ryaben’kii’s potentials that are proved to be projections [8].
The technique of boundary condition transfer can be applied to the LRN models straightfor-
ward [5]. In this case the distance between the interface boundary and wall is the parameter
reflecting the trade-off between the accuracy and time consumption [1]. As shown in [1], in
comparison with the LRN models the near-wall domain decomposition approach can reduce
the computational time by one order of magnitude whilst the accuracy dropping by about 1%.
In [1] the near-wall domain decomposition technique was implemented with different RANS
models and successfully applied to a few industrial problems.

In the current paper the approach is described in a general formulation. The algorithm of
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realization is given in detail. The approach is compared against standard methods. Examples of
practical applications are provided. Some prospectives for future realization are also discussed.

2 NEAR-WALL DOMAIN DECOMPOSITION

Consider first a domain decomposition for a 1D non-linear equation defined in an interval
Ω := [0, ye]:

Ly(U) = f, (1)

U (0) = U0, (2)

U (ye) = U1.

where Ly is a non-linear differential operator of second order.
Next, we split the interval Ω into two intervals Ω− := [0, y∗] and Ω+ := [y∗, ye]. To transfer

the boundary condition from the wall (y = 0) to y = y∗ one can use the nonlinear potentials
introduced in [6]. The IBC is formulated as follows:

Uy = Ψ(U, f). (3)

Although being exact, such a boundary condition is essentially nonlinear and not easy to be
used.

To simplify the IBC, presume that in the inner region the governing equation is of boundary-
layer type: Ly(U) ≡ d

dy
(µU), where µ is the efficient viscosity coefficient, then the IBC is

reduced to a Robin boundary condition formulated at y∗ [10]:

U ′ =
U − U0

I1
+
I1IS1 − IS2

µ∗I1
, (4)

where I1 =
∫ y∗
0

µ∗

µ
dy, IS1 =

∫ y∗
0
fdy, IS2 =

∫ y∗
0

µ∗

µ

∫ y′
0
fdydy′, µ∗ = µ(y∗).

In 1D case the boundary equation (4) fully replaces the solution of the problem in the inner
region Ω− for the outer region Ω+. This means the solution of boundary value problem (1),
(2) must satisfy equation (4). In turn, it is easy to prove that condition (4) is unique. In the
linear case equation (4) would be totally independent of the solution in the outer region. In our
consideration the dependance is weak. It is only revealed via the turbulent viscosity coefficient
that depends on the solution in the entire region. It is worth noting that it is impossible to obtain
the solution in the outer region without the solution in the inner region. However, it is possible
to transfer the boundary condition from the wall to the interface boundary without knowledge
of the solution in the outer region even in the nonlinear formulation. In turn, it is impossible to
obtain the solution in Ω− with boundary condition (4) because this condition is the consequence
of the governing equation and wall boundary condition.

The IBC are formulated in a universal form (4) for all variables but the normal to the wall
velocity. The problem is that the conservation law of mass is not directly used in the IBC. It
might be violated if the approximation does not guarantee the integral conservation law in the
inner region as a whole. In this case a Dirichlet boundary condition for the normal velocity
suggested in [1] can be used.

To obtain the solution in the entire region via the near-wall domain decomposition, the proce-
dure is the following. First, one should obtain the solution in the outer region Ω+ with boundary
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condition (4) at the left-hand side. Next, a boundary value problem (BVP) is to be solved in the
inner region Ω+ with the Dirichlet boundary condition at the right-hand side. This boundary
condition becomes known once BVP in the outer region has been solved. It is not always nec-
essary to solve the BVP in the inner region since the friction at the wall is immediately related
with the friction τw at the interface boundary:

τw = µ(y∗)
dU

dy
−
∫ y∗

0

fdy. (5)

In boundary equation (4), µ represents the sum of laminar and turbulent viscosity coeffi-
cients. It is to be noted that the IBC (4) is exact even in the nonlinear case when the turbulent
viscosity coefficient, µt, depends on the solution. To simplify the use of boundary condition
(4), one can use available approximations for µt nearby the wall. Some examples are given in
[1]. Apart from a piece-wise linear approximation used in [15] for the analytical wall functions,
the others are nonlinear because they depend on the wall friction.

Thus, the entire algorithm is as follows:
10. Select an approximation for the near-wall turbulent viscosity coefficient µt.
20. Select an initial approximation for τw (for nonlinear approximations of µt).
30. Calculate IBC (4).
40. Solve BVP in the outer region with the IBC.
50. Update τw via (5)
60. Update the near-wall turbulent viscosity profile.
70. Repeat the procedure from stage 3.
If necessary, in stage 5 BVP in the inner region can be solved with Dirichlet boundary con-

ditions at y∗ obtained from the solution in the outer region. The governing equations in the
inner region are sufficient to calculate the turbulent viscosity coefficient. In this case, stage 1
can be avoided. In multidimensional case, the IBC can be nonlocal [7]. Alternatively, in the
inner region the governing equations can be of boundary-layer type because nearby the wall the
normal derivatives are predominant. In this case, the transfer of boundary conditions can be
locally one-dimensional.

It is interesting to compare the approach against the advanced-wall-function techniques [15],
[16]. First, one should note that the wall functions are only applied to the HRN models. The key
point is that the interaction between the inner and outer regions is carried out via D-D iterative
methods. As noted above, the IBC (4) is unique regardless the approach. This means in the
D-D algorithms with wall functions the derivative U ′ is taken from the previous iteration. Since
it is a leading term, the number of iterations should significantly increase. In turn, this damages
the robustness. In the linear case the near-wall domain decomposition would be exact and not
require iterations in contrast to the D-D algorithm. In the linear case the near-wall domain
decomposition would be exact and not require any iterations in contrast to the D-D algorithm.
It is to be noted that the IBC are mesh independent. They are formulated in a differential form.
The coefficients in the IBC can be calculated either analytically or numerically. In the latter case
the mesh in the inner region is not related with the mesh in the outer region at all. Therefore,
the IBC can be easily implemented in a code via a separate routine.

As mentioned above, the introduced technique can be applied to LRN RANS models straight-
forward. If in the inner region the problem is solved approximately, then there is a trade-off
between the computational time and accuracy. Consider two extreme cases. If y∗ tends to zero,
then the solution model becomes equivalent to the LRN model. However, the effect of the ap-
proach vanishes. In turn, if y∗ is big enough, then the computational time should significantly
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drop by the cost of accuracy. In this case the approach becomes similar to HRN models with
respect to the accuracy of prediction because the laminar sublayer region is not resolved.

The approach represents an approximate non-overlapping near-wall domain decomposition
(NDD). It is natural to expect that the computational time with the NDD should significantly be
less than that without it. The justification is the following. The computational time to inverse
an operator is proportional to its condition number. One can show that in the case of the Navier-
Stokes equations the condition number is approximately proportional to the ratio between the
maximal and minimal space steps squared. For the sake of simplicity, consider a mesh which is
adaptive in the direction normal to the wall. Obviously, the condition number in the outer region
should decrease rapidly as y∗ increases so should do the computation time. In turn, since the
inner region is only approximately resolved, the error of prediction should inevitably decrease.

The trade-off between the computational time and accuracy was investigated in [1] for a
two-dimensional asymmetric diffuser test case. The sketch of the diffuser is given in Fig. 1.

In Figure 2 a relative computational time is shown for the SST model [20]. Here, e represents
a relative error in computation of the skin friction. One can see that the near-wall domain
decomposition can reduce the computation time by one order of magnitude whilst the error is
just about one percent. The approach with the wall functions requires approximately the same
time but the error is above 100% in this case. The results are shown for the SST model (LRN),
NDD and scalable wall functions [13] (HRN).

The skin friction distribution along the inclined wall at different y∗ is given in Figure 3.
The solid dot line represents the experimental results by Buice and Eaton [21]. Computational
results demonstrate that dependence of the solution on y∗ is not essentially sensitive to y∗ [10],
[5], [1], [2] if y∗ is small enough. The variation of y∗ by one order of magnitude leads to
the change of the solution as much as a few percent. Thus, a reasonable value of y∗ can be
easily evaluated from either general information of the solution to be obtained or preliminary
calculations on a coarse mesh.

In the future the approach can be extended to unsteady problems and nonlocal effects. Pre-
liminary development of this technique was carried out in [3] and [5], respectively.

Figure 1: Two-dimensional asymmetric diffuser.
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Figure 2: Trade-off between the accuracy and computational time for a two-dimensional asymmetric diffuser
[1]. Low-Reynolds number SST model (LRN) [20], near-wall domain decomposition (HRN) and scalable wall
functions (HRN) are used. e is the relative error of prediction with respect to LRN.

Figure 3: The skin friction distribution along the inclined wall of the diffuser for different y∗ [1].
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Abstract. Soil erosion plays an important role for climate, health and environmen-
tal issues. In this study, we focus on the transport of solid particles over a dry rough
bed and their interaction with Gaussian hills. For this aim, we use large-eddy simu-
lations (LES) performed with the atmospheric code ARPS. To follow the trajectories
of the solid particles, a Lagrangian model is coupled with the LES, according to
Vinkovic [1]. Different empirical models have been developed to take into account
the interactions of particles with the rough bed, especially the takeoff, the rebound
and the deposition.

A rough boundary layer at different external velocities is first simulated. The
solid particle mass flux as function of the friction velocity is plotted and compared
to classical analytical and empirical results in the Shields diagram.

Then, LES velocity and concentration profiles are compared to the experiments
on solid particle dispersion downstream of Gaussian hills, by Simoëns et al. [2].
Special attention is given to the trapping of solid particles inside the recirculation
bubbles. Regions of high particle deposition or erosion are identified. The influence
of the distance between two consecutive hills is evaluated.
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1 INTRODUCTION

Desertification and soil degradation are major issues for semi arid regions. Ero-
sion is a very complex process which involves large spatial scales and their interac-
tion with soils. Numerical simulations can play a very important role for detailed
studies of erodible zones.

Obstacles and hills greatly modify flow characteristics of the incoming bound-
ary layer and in some occasions create large recirculation zones where particles
can be trapped and deposited. Bi-dimensional hills are widely used as idealized
topographical elements in studies of flows over wall-mounted obstructions. Flows
around various kinds of 2D hills have been studied in the past using analytical, nu-
merical, laboratory and in-situ investigations ([3], [4], [5], [6]). Using wind-tunnel
measurements, Cao and Tamura [4] highlighted the importance of the lee-side flow
separation behind a steep hill.

Our aim is to evaluate the effects of recirculation zones generated by hills on the
solid particle mass flux. To this purpose, an experimental campaign was conducted
in the frame of the NFS/ANR Sino-French program PEDO-COTESOF “Particle
EMission and Deposition Over Complex Terrain for Soil Fixation (PC09). Parti-
cle dispersion over one or two hills was investigated [2]. At our best knowledge,
this is the only experimental case that produces both aerodynamic description, re-
circulation zones and solid particle concentration. Our purpose is to further study
the link between the recirculation zone and particles deposition through numerical
simulations.

The large eddy simulation approach allows the computation of instantaneous
large turbulent structures able to produce ejections and sweeping events respon-
sible for the takeoff and deposition of solid particles. This method, coupled with
Lagrangian tracking of solid particles is particularly well suited to study saltation.
LES coupled with a Lagrangian model has already been used for the study of sand
saltation over a flat surface by [1] or [7].

Since the work of [8], research on saltation has concentrated on finding a descrip-
tion of the physical processes of interactions between the particles and the ground.
The threshold velocity at which saltation is initiated was studied through wind-
tunnel and in-situ experiments ([8], [9], [10], [11]). The behavior of rebounding and
ejected particles was investigated through collision experiments between propelling
solid particles and a static bed of similar particles ([12], [13]). Most of these models
are presented in Shao [14]. Those studies have come to the parametrization of the
ejection [15] or the rebound of particles from the surface [13]. From these models,
a numerical method has been developed here to simulate solid particle transport and
interaction with a rough bed with obstacles.

In the section 2, the flow governing equations and the numerical method are
presented. Then, physical models related to particle motion are described. Com-
putational results in the turbulent boundary layer and over one or several hills are
discussed in the last section.

2 LARGE EDDY SIMULATION AND NUMERICAL DETAILS

Simulations are performed with The Advanced Regional Prediction System (ARPS
version 5.15) code, developed at the university of Oklahoma for atmospheric flows
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[16]). The Navier-Stokes equations in the LES approach are filtered in order to sep-
arate the small scales from the large scales. The semi-compressible filtered Navier
Stokes equations, including momentum, heat (potential temperature), mass (pres-
sure) and the equation of state are solved. Subgrid scale turbulence is modeled
through a 1.5 order turbulence closure scheme that requires the resolution of a sub-
grid scale kinetic energy equation (Yoshizawa & Horiuti [17]).

A fourth-order finite difference method is used for the spatial integration of
the equations. The time discretization is performed using a second-order implicit
Crank-Nicholson method. The code is parallelized by a domain decomposition
method. The full model equations and the numerical method are detailed in [16].

Since this study focuses on particle take-off and deposition, accurate wall mod-
eling is very important for the quality of the simulations. A wall model, based on
the equilibrium flow assumption have been initially developed in ARPS. Bound-
ary conditions on the solid wall are imposed through surface fluxes of momentum.
The roughness sublayer above rough surfaces presents complex interaction between
wakes developing behind roughness elements. Based on direct numerical simula-
tions and wind -tunnel experiments available in the literature, a generalized wall
function for the roughness sublayer over periodical roughness elements has been
developed by Huang et al. [18]. This law is used to estimate the friction velocity in
the surface fluxes of momentum.

A method for generating three-dimensional, time-dependent turbulent inflow data
for simulations of complex spatially developing boundary layers [19] is used to for
the inlet conditions. The approach is based on extraction/rescaling techniques that
produce instantaneous planes of velocity data from a downstream station far from
the inlet.

3 MOTION OF SOLID PARTICLES

Equations for the motion of solid particles have been presented in [1]. Only the
main features are summarized in this article.

3.1 Lagrangian solid particles tracking

The acceleration of the particle is determined by the forces acting on the particle.
For the range of particles considered in this study, simplified equations including
only the aerodynamic drag Fd and the gravity forces Fg are considered:

d~xp
dt

= ~vp(t) (1)

d~vp
dt

=
~v(~xp(t), t)− ~vp(t)

τp
f(Rep) + ~g (2)

where ~vp is the velocity of the particle, ~v(~xp(t), t) is the velocity of the fluid at the
particle position and ~g is the acceleration of gravity. The particle relaxation time is
given by:

τp =
ρpd

2
p

18ρfν
(3)

and

Rep =
|~vp − ~v|dp

ν
(4)
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is the particle Reynolds number. Here, dp is the particle diameter, ρp the particle
density, ρf the fluid density and ν the fluid viscosity. Effects of nonlinear drag are
incorporated through f(Rep). In this work, an empirical relation is used [20].

f(Rep) =

{
1 + 0.15Re0.687p if Rep < 1000
0.0183Rep otherwise

(5)

The Lagrangian equations and the Navier Stokes equations are solved simultane-
ously and a second order Runge-Kutta scheme is used for the time integration. The
different variables of the Navier-Stokes equations are only available at the discrete
mesh nodes. They need to be interpolated on the trajectories of the fluid particles. A
tri-linear scheme of quadratic Lagrange polynomials developed by Casulli & Cheng
[21], is used for the interpolation.

3.2 Two-way coupling

A two-way coupling model is used to take into account the influence of the solid
particles on the fluid. Small particles, with much larger density than the surrounding
fluid, act as if they were an extra burden to the fluid. The momentum transfer from
particles to fluid is modeled by adding a drag force to the fluid momentum equation.
This force is modeled as follows:

~f = − 1

ρfVgrid

Np∑
p=1

mp
~v(~xp(t), t)− ~vp(t)

τp
f(Rep) (6)

where Vgrid is the volume of the fluid grid cell, Np is the number of numerically
resolved particles in the grid cell and mp the mass of a particle.

3.3 Take-off model

To evaluate the aerodynamic entrainment rate, a new take-off criterion has been
developed based on the instantaneous evaluation of the different forces exerted on
the particle. The threshold friction velocity is the minimum friction velocity re-
quired for wind erosion to occur.

The driving force for the lift-off of sand particles is the aerodynamic lift Fl. Ac-
cording to Mollinger & Nieuwstadt [22], the mean lift force can be expressed as:

Fl = 15.5ρν2
(
u2∗dp
ν

)1.87

(7)

where u∗ is the friction velocity and dp is the diameter of the particle.
The gravity force Fg and the inter-particle cohesive force Fad act as retarding

forces. The gravity force is equal to:

Fg =
1

6
(ρp − ρf )gd3p (8)

According to Zimon [23] the cohesive forces can be modeled as:

Fad = Cdp (9)

where C is a parameter set to C = 1.43× 10−5Nm−1.
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The role of turbulent structures on the initiation of particle motion has to be
accounted for as well. There is experimental evidence of the presence of sweep
events at the time of grain entrainment. In our model, the particle lifts off when it is
located within a sweep event and when the driving force is greater than the retarding
forces.

Fl >> P + Fad (10)

The friction velocity is estimated locally from the velocity fluctuations u′ and w′

by:
u∗ =

√
u′w′ (11)

The experimental results of Diplat [10] showed that the duration of energetic
near-bed turbulent events is also relevant in predicting grain entrainment. Thus, the
product of the force by its duration, or impulse, is a more appropriate parameter for
identifying flow conditions leading to particle take-off. Based on these conclusions,
our criterion has been adapted to satisfy the following equation at each time step t:∫ t+τp

t
(Fl − Fadh − P )dt > mpvp0 (12)

where the threshold lift-off velocity vp0 is equal to vp0 =
√

2gdp.

3.4 Rebound model

Due to gravity, sand particles fall and impact the ground. Some of them remain
on the ground, others rebound on the soil and can eject several new grains from
the bed. In this study, the splash effects are not accounted for according to the
experimental set-up.

The velocity after the rebound is characterized by its rebound angle θr and its
norm vr. They are modeled following a formulation proposed by Beladjine et al.
[13]. The effect of local hill bed slope is also taken into account in the modeling of
particle-wall collisions.

4 EXPERIMENTAL SET-UP

The flow field around one or two hills with various spacings was studied using
particle image velocimetry (PIV) measurements. A Gaussian hill shape was used
with a maximal slope on the lee side equal to 31o. With a model/field scale of 1 :
10000, the experimental configuration is consistent with an atmospheric turbulent
boundary layer of 150m and an equivalent dune height of 20m. In the case of
the experiments over two hills, two different spacings 3H and 8H , H being the hill
height, were used. Three regimes were studied with external velocities ranging from
5.6m/s to 11.2m/s. Experiments have been performed on both smooth and rough
walls.

Powered by an upward-moving piston at a fixed place, particles were continu-
ously introduced into the flow via a 20cm × 10cm slot upstream of the Gaussian
hills. The grains have a mean diameter of 200µm with variations between 170µm
and 250µm and a density of 1000kg/m3. No splash effects were considered. Parti-
cle concentration and velocity profiles were obtained using digital image treatment.
For more details on the experimental set-up, readers are referred to Simoëns al.[2].
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5 PARTICLE SALTATION IN A BOUNDARY LAYER

To validate the particles transport models, simulations of turbulent boundary lay-
ers at different external velocities ranging from 5.6m/s to 20m/s are first per-
formed. The mean diameter of the particles and their density are the same as in
the experimental set-up.

Rough boundary conditions are applied at the wall. To mimic the experiment, the
splash effect is not accounted for in our simulations and particles are lift through the
take-off process. The saltation process is highly dependent on the friction velocity.
The global behavior of particles in a turbulent flow can be characterized by the
Shields number:

Sh =
u2∗

σpgdp
(13)

where σp = ρp/ρf −1. The Shields number measures the transport capacity of solid
particles by the flow.

The saltation flux Q is a crucial parameter for the study of wind erosion The
streamwise mass flux is computed as follows:

qx(x, z) =
1

∆xpLy∆zp
Σpmpup (14)

wheremp and up are the mass and the streamwise velocity of the particles present in
the volume ∆xpLy∆zp. Ly is the length of the domain in the transversal direction.
∆xp and ∆zp are taken as 0.1H where H is the height of the boundary layer. The
saltation mass flux, Q, is the vertical integration of the streamwise flux qx:

Q(x) =
∫ ∞
0

qx(x, z)dz (15)

Various saltation models that relate the saltation flux to the characteristics of the
flow and of the solid particles through empirical formulas are available in the litera-
ture (Bagnold [8], Cresseyls et al. [25], Owen [24], Sorensen [9]). Relationships of
Bagnolds and Owen predict cubic dependence of Q on the friction velocity whereas
the models of Sorensen (1991) [9] , and Creyssels et al. [25] predict a dependence on
u∗2. On figure 1, simulation results are compared with the experiments and the dif-
ferent empirical formulas. The flux is normalized by the total flux Q0 = ρpdp

√
gdp.

For low Shields numbers (Sh < 0.1) a transitional zone appears starting from the
threshold range of particle saltation. For high Shields numbers (Sh > 0.1), our
results exhibit a similar behavior to the empirical formula of Sorensen [9]. The
absence of the splash effect in our simulation could explain the shift between our
results and the other saltation models.

6 PARTICLE SALTATION BEHIND GAUSSIAN HILLS

Simulation results for the solid particles transport over one or two hills are now
presented. Results are compared with the experimental results obtained with the
external velocity of U∞ = 11.2m/s on a rough wall. The computation domain
includes an upstream Gaussian hill, 80H after the inlet and two Gaussian hills sep-
arated by a distance of 3H or 8H . The center of the valley between the double hills
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Figure 1: Saltation mass flux as a function of the Shields parameter

is located at 71H after the first hill. Table 1 summarizes the domain size and the
mesh resolution for all the simulations.

Nx ×Ny ×Nz Lx/H Ly/H Lz/H ∆x/H ∆y/H ∆zmin/H

1763× 63× 100 176 6 15 0.1 0.1 0.05

Table 1 Computational parameters

6.1 Shear stress and recirculation zones

The wall shear stress, which is of primary importance for the entrainment of solid
particles, is presented in figure 2. A negative wall shear stress indicates the presence
of a recirculation bubble. The friction velocity in regions where flow adheres to the
wall is marked in red and backflow regions inside the recirculation zones are marked
in blue. For the single hill configuration, a recirculation zone of approximatively 6H
appears on the lee side of the hill. This is in agreement with the experimental results
of Simoëns et al. [2]. The flow evolution before the first hill is similar in the three
cases.

For the double hill configuration, two recirculation zones, respectively between
and behind the two Gaussian hills appear. As the hill spacing increases from 3H
to 8H , we can see an expansion of the inter-hill vortex and a deflation of the lee-
side recirculation bubble. The size of the recirculation zone between the two hills is
limited by the valley size. For the 8H case, the second recirculation zone is smaller
than for the 3H case which is itself smaller than the recirculation zone behind the
single hill. The double hill case with 3H spacing behaves as much as a whole to the
incoming flow and the effects of the double-hill configuration are negligible starting
from X/H = 6.
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Figure 2: Shear velocity u∗ along the hill surface, (a) single hill, (b) 3H, (c) 8H

6.2 Particles concentration

Results for the particle concentration are presented for the single hill and for the
two hills. For all the plots, the solid lines represent LES results whereas symbols
represent experimental results. Profiles are normalized by the maximal concentra-
tion at each section. For the single hill, the coordinate origin is fixed at the center of
the Gaussian hill and for the two hills, at the middle distance between the two hills.
The concentration profiles describe how the particles react to the change of terrain
from a flat surface to a steep, transverse hill.

The figure 3 presents the concentration profiles around one hill at different sec-
tions. The first profile at x/H = −25 corresponds to the concentration profile near
the downstream edge of the sandbox. The other profiles present the concentration
evolution around the hill. For all the profiles, the agreement between simulation and
experimental results for the locations of the concentration peak is reasonable. The
simulation seems to overestimate the saltation height growth behind the Gaussian
hill. In the simulation results, a higher percentage of solid particles is moved into
the upper part of the boundary layer behind the hill at x/H = 1.5 and x/H = 3.
This upward migration is less pronounced in the experiments. Besides, in those
zones, the simulation apparently underestimates the quantity of solid particles near
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the ground inside the recirculation zone compared to the experiments. This result
could be explained by the fact that solid particles, impacting the windward side of
the hill, are abruptly redirected upwards due to high hill slopes. As an inertial effect,
these rebounding grains maintain this upward motion and reach high layers of rapid
flow motion, which immediately evacuate them downstream of the hill.

Figure 3: Concentration profiles at the end of the sandbox and around a single hill. Symbols -
experiments, lines - LES.

Figure 4 presents the same plots for the case of two consecutive hills separated by
3H . A better collapse with the experimental profiles is achieved around the second
hill. Compared to experimental results, a smaller fraction of particles is present
inside the wall vortex between the crests. The simulation overestimates the quantity
of the incoming particles over the top of the first hill.

Figure 4: Concentration profiles for the 3H case. Symbols - experiments, lines - LES.

In figure 5, the concentrations profiles around the two hills with 8H distance are
plotted. Similar to figure 4, the simulation apparently underestimates the quantity of
solid particles passing between the two hills compared to the experimental results.
We note that the global evolution of concentration peaks is similar between the 3H
and the 8H cases. This implies a weak influence of the hill spacing on the overall
evolution of mean particle concentration.

6.3 Near wall particle transport and deposition

Our goal is to explore the link between particle trapping and the flow characteris-
tics inside the recirculation zones. To this purpose, regions of preferential deposition
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Figure 5: Concentration profiles for the 8H case. Symbols - experiments, lines - LES.

in the recirculation zones between and after the hills are identified. The net deposi-
tion of particles is defined as the accumulation λD scaled by the packing density at
the sandbox λbox. The net deposition is computed during a period of ∆T = 30δ0/u∗,
δ0 being the depth of the incoming boundary layer. Regions with λD < 0 indicate
net erosion, whereas λD > 0 indicate net deposition. An instantaneous map of the
net accumulation is shown in Figure 6 for the three different hill spacings. Areas of
erosion are marked in red and deposition zones are marked in yellow.

The sporadic areas of net erosion are weak and more likely to occur on the wind-
ward face of the hill. The net deposition of particles is more important and most
of the time located in the recirculation zones behind and between hill crests. The
accumulations due to the deposited grains are in general one, even two orders of
magnitude sparser than that at the sandbox. Not surprisingly, the regions of high
deposition are located at the junction of positive and reverse transport, where the
friction velocity and the mean lift force are weak. This could be explained by the
fact that instantaneously frequent alterations take place in the direction of particle
transport in these areas. For the particles already trapped by the recirculation zones,
this back and forth motion may lead to a final deposition. Due to a weak lift force,
particles spend a longer time immobilized on the wall and therefore contribute to
the net accumulation in these regions.

7 CONCLUSIONS

The paper presents a numerical study of the physical problem of soil erosion by
wind. The particle transport inside a turbulent boundary layer in the presence of ob-
stacles is studied to improve our knowledge on wind erosion and particle deposition
over complex terrains.

The simulation results are compared to the PC09 experiments of Simoëns et al.
[2]. The flow between and behind Gaussian hills is dominated by large recirculation
zones. The predicted particle concentration is in overall agreement with the experi-
ments. A mapping of particle accumulation on the wall reveals preferential particle
deposition at the junction between regions with mean and adverse particle transport.
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Figure 6: Instantaneous map of the net accumulation of solid particles. Red - erosion, yellow -
deposition., (a) single hill, (b) 3H, (c) 8H

were also performed on the P2CHPD parallel cluster.
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[2] Simoëns S. , Saleh S., Le Ribault C. , Belmadi M., Zegadi R. , Allag F., Vignon
J.M., Huang G., ”Influence of Gaussian hill on concentration of solid particles
in suspension inside Turbulent Boundary Layer”, Procedia IUTAM, 17 , pp.
110-118, 2015

[3] Jackson P.S., Hunt J.C.R. Turbulent wind flow over a low hill, Quarterly Jour-
nal of the Royal Meteorological Society, 101 , 929-955, 1975

[4] Cao S., Tamura T. Effects of roughness blocks on atmospheric boundary layer
flow over a two-dimensional low hill with/without sudden roughness change,
Journal of wind engineering and industrial aerodynamics, 95, 679-695, 2007

7084



G. Huang , C. Le Ribault, S. Simoëns, I. Vinkovic, J.M. Vignon
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Abstract. This paper introduces the innovative modification of the Savonius wind turbine being
able to significantly increase efficiency in comparison with the classic design. This innovative
design is equipped with a stator directing the flow. The presence of the stator increases the
active surface area and generates higher torques acting on a shaft. Additionally, it makes it
possible to take better advantage of wind energy and compensate the effect of larger active
surface area. The larger the stator angle the higher the efficiency. One of the biggest problem
of the classic design, namely its relatively low efficiency, is overcome.

The results of an experimental investigation, carried out in the closed return wind tunnel,
are presented for various conditions and configurations. These include the most important
characteristic such as the torque and power coefficient as a function of the tip speed ratio.
Furthermore, a three dimensional numerical analysis of the transient phenomena occurring
in the innovative turbine is investigated. Evaluation and comparison criteria are proposed in
order to evaluate and compare various designs and solutions. This makes it possible to explain
the increased efficiency of the innovative design.
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1 INTRODUCTION

The innovative vertical-axis wind turbine [2], shown in figure 1, is a modification of the
Savonius classic design. It is equipped with an adjustable stator directing the flow and increas-
ing the active surface area. This makes it possible to generate higher torques acting on a shaft
and to take better advantage of wind energy and compensate the effect of larger active surface
area. Thus one of the biggest problem of the classic design, namely its relatively low efficiency,
is overcome.

Figure 1: Innovative design.

The classic Savonius rotor has the simplest design of all devices converting wind into other
energy forms. Despite numerous advantages, such as low noise, simplicity of design, applica-
bility for a wide range of wind velocities, one of drawbacks of the classic design is its relatively
low efficiency. It appears that the proposed modifications of Savonius like rotors in available
literature have been developed using a trial and error method. This is because the flow struc-
ture inside the rotor is complicated and that is why in past investigations were limited only to
laboratory tests [1, 6, 11, 10]. Recently attempts were made to analyse the structure of the flow
through the Savonius rotor numerically [7, 9]. Most of data presented on the numerical aspect
are mostly two-dimensional.

The main goal of this paper it to present results of an experimental investigation and to com-
pare them with a three dimensional numerical analysis of the transient phenomena occurring in
the innovative turbine. Furthermore, evaluation and comparison criteria are proposed in order
to evaluate and compare various designs and solutions. An attempt to explain the increased
efficiency of the innovative design has been also undertaken.

2 EXPERIMENTAL RESULTS

2.1 Coefficients

The most important characteristics of the wind turbines include the torque CT and power CP
coefficients. Both of them are expressed as a function of the rotor tip speed ratio λ

λ =
ωD

2U
. (1)

The tip speed ration represents the ratio between the tangential speed of the tip of a blade and
the velocity of the wind U . In the above definition ω stands for angular velocity and D is the
diameter of the rotor.
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The former of the mentioned non-dimensional quantities, i.e. CT , is defined as

CT =
T̄

1
4
ρU2D2H

(2)

where H is the rotor’s height and ρ represents the density. For transient flows the average value
of time dependent torque T (t) is considered. This means that we deal with the distribution of
CT as a function of the angular position of the rotor α. The average value T̄ is given by

T̄ =
1

∆t

t+∆t∫
t

T (t)dt (3)

where ∆t stands for the time of one revolution. If the time step of the transient CFD calculations
is constant we can approximate the integral average with the arithmetic average. The formal
definition of the former non-dimensional quantity, i.e. power coefficient, is

CP =
ωT̄

1
2
ρU3HD

. (4)

Again, this is valid for transient flows, which is typical for the Savonius rotor operation. The
non-dimensional quantities distributions as a function of λ are the basis for comparison the
innovative design with the traditional solution or other studies.

Figure 2: Experimental setup.

2.2 Results

The experimental setup is shown in figure 2. This figure presents the test section of the closed
return wind tunnel with one side of the section open. The two-stage Savonius rotor equipped
with an adjustable stator is visible. A pitot tube located at the inlet to the test section is utilised
in order to determine the wind speed. Furthermore, the rotational speed of the rotor and the
torque acting on the shaft are also measured.

The wind tunnel can attain maximal velocity of about 50 m s−1. Experimental results forU ≈
10 m s−1 are shown in figures 3 and 4. Three different configurations are discussed here, namely
the classic Savonius design and the innovative design equipped with a stator at 40◦ and 60◦ angle
of attack. Figure 3 presents the power CP and figure 4 torque coefficient CT distributions as
a function of tip speed ratios λ. In order to indicate the uncertainty in measurements absolute
errors are superimposed.
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Figure 4 shows that the torque coefficient distributions of the modified design are lower in
comparison with the original Savonius wind turbine even that the higher torques acting on a
shaft. This may be explained by the larger active surface area HD for the modified design in
equation (2). Furthermore, the effect of larger active surface areaHD can is compensated by the
same stator directing the flow and generating higher torques. Figure 3 shows the distribution of
CP as a function of λ. The larger the stator angle of atack the higher the efficiency. Obviously,
the innovative design with the stator at 40◦ and 60◦ is always more efficient for the same wind
speed ∼ 10 m s−1. This shows that even for low wind speeds the innovative design if more
efficient and may be regarded as an advantage of the proposed design over the Savonius wind
turbine.
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Figure 3: CP distribution as a function of λ.
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Figure 4: CT distribution as a function of λ.

3 NUMERICAL CALCULATIONS

3.1 Governing equations

The numerical calculations have been performed by means of CFD. The turbulent flow of
air is regarded as an incompressible medium. RANS approach has been utilised in order to
model the turbulence, namely the two-equation Shear Stress Transport turbulence model [8].
The average form of mass conservation equation has the form

∇ · Ū = 0. (5)

The Reynolds equation is

ρ
dŪ

dt
= ρ~g −∇pe +∇ ·

(
2µtD̄

)
, (6)

where the effective pressure pe := 〈p〉 + 2/3ρk and the effective viscosity consists of the eddy
and molecular components µe := µt + µ. Two additional transport equations are those for
modelled kinetic energy of velocity fluctuation which arises from Reynolds stress transport
equation

ρ
dk

dt
= 2µtD̄

2 +∇ ·
((

µt
σk3

+ µ

)
∇k
)
− Cµρkω (7)

and the turbulent frequency ω. This is analogous to k transport

ρ
dω

dt
= α3

ω

k
2µtD̄

2 +∇ ·
((

µt
σω3

+ µ

)
∇ω
)
− β3ρω

2 + (1− F1)
2

ω
ρσω3∇k · ∇ω. (8)
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The eddy viscosity is defined as µt = ρkω−1. Constants marked with the subscript 3, namely
σk3, σω3, α3, β3 are linear combinations of constants from the component models.

Figure 5: Flow domain.

3.2 Boundary conditions and mesh

The flow domain resembles a wind tunnel with one side partially open to the atmosphere
as shown if figure 5. It is divided into parts merged by means of interfaces. These include
the rotating rotor and the steady wind tunnel and surrounding area. The boundary conditions
selected here include tunnel inlet with a prescribed velocity 10.5 m s−1 and medium turbulent
intensity conditions. Furthermore, the so called ‘far field’ condition is chosen with prescribed
constant atmospheric pressure. The surrounding area is limited by symmetry planes and wind
tunnel walls are modelled as no slip wall. The same concerns the rotor. The only difference
being the rotating frame of reference.

The domains have an unstructured grid consisting of mostly tetrahedral elements. The total
number of elements covering the flow area is about 9 million. In order to properly resolve flow
near the wall special elements around the blades are generated. The wall function approach has
been used to provide near wall boundary conditions for the mean flow. The average value of
y+ distribution does not exceed 2 for all the time steps. Finally, the time step of the transient
calculations corresponds to 4◦ of revolution and the angular velocity of the rotor corresponds to
4 revolutions per second.
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Figure 6: Experiment vs numerical prediction.
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3.3 Results of calculations

Figures 6 show the experimental values of CP versus CFD calculations for two selected
designs as a function of λ. These include the classic Savonius rotor and the innovative design
equipped with a stator at 40◦ angle of attack. Circles correspond to the numerical prediction.
Good agreement is visible.

Figures 7 present the torque coefficient CT distribution as a function of revolution angle α
for three different configurations, namely Savonius rotor and an innovative design equipped
with a stator at 40◦ and 60◦ angle of attack. These are results of transient calculations. The four
peaks per curve are visible due to the two rotors rotated by an angle relative to each other. The
torque coefficient distributions of the modified design are lower in comparison with the original
Savonius wind turbine. This is because the presence of the stator increases the active surface
area HD.
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Figure 7: CT distribution as a function of the angu-
lar position of the rotor α.
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Figure 8: Λ2 distribution as a function of the angu-
lar position of the rotor α.

4 COMPARISON CRITERIA

The proposed criteria allow for evaluation and comparison of various designs and solutions.
Invariants of velocity gradient tensors ∇U, or its decomposition

∇U = D + A (9)

are often used [3] in turbulence modelling. This is because they contain all the necessary in-
formation that are responsible for kinetic energy dissipation and vortex stretching [13]. In the
above equation D is the rate-of-strain tensor and A represents the spin (vorticity) tensor.

The vorticity measureQ, firstly investigated in [4], is defined by means of the integral of the
velocity gradient tensor second invariant in the following form

Q =

∫∫∫
V

tr (∇U)2 dV =

∫∫∫
V

(
trD2 − ‖A‖2

)
dV . (10)

The above criterion represents a global balance between the power of energy dissipationNd and
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vortex structures by means of the vorticity magnitude or enstrophy E∗

Q =
Nd

2µ
− E∗. (11)

These structures are generated by the rotor and may affect the efficiency [12]. Another criterion
λ2 [5] is investigated in this paper. The vorticity measure Λ2 is defined by means of the integral
of the λ2 in the following form

Λ2 =

∫∫∫
V

λ2

(
D2 + A2

)
dV (12)

where λ2(D2 + A2) represents the second ordered eigenvalue of tensor D2 + A2. The three
eigenvalues are ordered as follows λ1 ≥ λ2 ≥ λ3.

Figure 8 shows the distribution of the vorticity measure Λ2 defined by means of equation (12)
which can be used to compare various designs. The higher the efficiency the higher the values
of Λ2. Equation (12) is appropriate for individual time steps, while for the total revolution it is
necessary to use the time average of Λ2 instead

〈Λ2〉 =
1

∆t

t+∆t∫
t

Λ2 dt. (13)

The above time integral (13) can be used directly to evaluate specific turbine in terms of a vor-
ticity measure. This is summarised in table 1 where the ratio of 〈Λ2〉 to 〈Λ2S〉 of the respective
Savonius design is listed. It follows previous observations and makes it possible to anticipate a
relationship between vorticity measure and efficiency of a turbine.

Cinfiguration 〈Λ2〉/〈Λ2S〉
Savonius 1.000
40◦ 2.543
60◦ 2.834

Table 1: 〈Λ2〉/〈Λ2S〉 values for different configurations.

5 CONCLUSIONS

Conclusions can be summarised in the following points:

• Usually, all data presented on the numerical aspect in the available literature are mostly
two-dimensional and steady state. A three dimensional numerical analysis of the transient
phenomena occurring in the innovative turbine is investigated here.

• Wind tunnel experiments prove that the innovative modification of the classic Savonius
shows higher efficiency for the same wind speed.

• The increased efficiency is due to presence of the stator which directs the air and makes
it possible to take better advantage of its energy.
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• A relationship between vorticity measure and efficiency of a turbine can be anticipated.
The proposed criteria are related to the vortex structures being generated by the rotor and
affecting pressure distribution around it and thus the performance. The time integral of
this measures can be used directly to evaluate specific turbine.
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Abstract. This paper first presents a comparison particularly in terms of accuracy between
four nonlinear potential flow models for simulation of nonlinear free surface water waves. The
performance of the wave models is compared in five test cases in 2D for which measurement
data was also available. Three cases involved wave groups propagating over a flat bottom and
producing a focusing event, and two cases involved irregular waves propagating over sloping
bottom. After the comparison study, one of the potential flow solvers was selected for one-way
coupling with a viscous flow solver. Details of this coupling are presented along with some
information about the viscous flow solver in question. Here strong suits of both solvers are uti-
lized to simulate nonlinear water waves in an accurate and efficient manner. Even though only
simulating nonlinear waves is discussed in the paper, this work was considered as a stepping
stone to later focus on hydrodynamic wave loading on structures and wave-structure interaction
using this coupling. In the end results showed that such a coupling can indeed be a valuable tool
to study wave motion. In all the simulations, comparison with the measurements demonstrated
good agreement, and the convergence behavior of the coupled solver was acceptable.
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1 INTRODUCTION

Numerical simulation of nonlinear wave-wave, wave-bottom and wave-structure interaction
is a challenging endeavor. Even though a myriad of numerical models have been available to
investigate these problems, current levels of computational power require making smart deci-
sions to have a balance between accuracy and efficiency. In typical wave-structure interaction
applications, viscous effects are generally important near the structure and in regions of strong
wave breaking. Naturally a domain decomposition strategy comes to one’s mind, where viscous
flow solvers are used only in areas where viscous effects may be important, and potential flow
models (or other economical but sufficiently accurate models) are used in the rest of the domain.
For fully nonlinear, multi-phase and unsteady CFD computations ReFRESCO [1] has been ex-
tensively used at the Maritime Research Institute in the Netherlands (MARIN) (for information
visit http://www.refresco.org). In order to find a wave model that can be used in combination
with ReFRESCO, we first conducted an inventory study on some of the existing codes. The
functionalities and performances of the codes were analyzed in various test cases. Then one of
these codes was chosen for one-way coupling with ReFRESCO, and the results of this coupling
are presented.

Domain decomposition is not the only application area for the potential flow models. These
models can also be used to study statistics of extreme waves, reproduce basin waves in a nu-
merical environment, and calculate kinematics underneath waves which then can be used to
calculate forces using Morison type equations.

After a detailed survey on the existing codes, four were selected for consideration. Below
some information about these codes is given, and some of their features are listed in Tab. 1.

1. HAWASSI (LabMath Indonesia - University of Twente)
The acronym HAWASSI stands for Hamiltonian Wave-Ship-Structure Interaction, and the
code was developed at LabMath Indonesia and the University of Twente. Programming
language is MATLAB. The website http://hawassi.labmath-indonesia.org contains infor-
mation about the software and its functionalities. HAWASSI is not open source, but a
demo version with limited functionalities can be downloaded from the website. The soft-
ware comes in two versions: HAWASSI-AB (Analytic Boussinesq) and HAWASSI-VBM
(Variational Boussinesq Model). In this work only HAWASSI-AB was used, and it is sim-
ply referred to as HAWASSI in the remainder of this document. For more information
about the model, see [2, 3, 4, 5].

2. SWASH (Delft University of Technology)
The acronym SWASH stands Simulating WAves till SHore. This open source code has
been developed based on the work of [6, 7, 8, 9]. The source code was written in FOR-
TRAN 90 and can be downloaded from http://swash.sourceforge.net, which also con-
tains a detailed description of the software and its functionalities. SWASH can be used
freely under the terms of the GNU General Public License, and it can be implemented
on Microsoft Windows, Linux, Unix and Mac OS/X, provided a Fortran 90 compiler is
available.

3. OceanWave3D (Technical University of Denmark)
OceanWave3D is a fully nonlinear and dispersive potential flow model. It is distributed
under the GNU General Public License. The base code was developed at DTU Mechanics
between 2006 and 2008 by Allan P. Engsig-Karup, and was entirely rewritten at DTU
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Informatics between 2008 and 2011 (current version) by Allan P. Engsig-Karup with
contributions from various researchers. The model is described in [10]. Even though
the software exists in several versions (FORTRAN 90 and C++), only the FORTRAN 90
version has been made available to public. The source code can be downloaded from
https://github.com/apengsigkarup/OceanWave3D-Fortran90.

4. HOS-NWT (École Centrale de Nantes)
HOS-NWT is a Numerical Wave Tank based on the High-Order Spectral (HOS) method.
It has been developed at École Centrale de Nantes, and is currently used in several re-
search projects. The source code is written in FORTRAN 90 and can be downloaded from
https://github.com/LHEEA/HOS-NWT. The software is distributed under the terms of the
GNU General Public License. The description of the model can be found in [11, 12].

2 RESULTS FROM THE COMPARISON OF THE WAVE MODELS

In this section we present the results from the simulations with HAWASSI, SWASH, Ocean-
Wave3D, and HOS-NWT. We consider five test cases for which measurement results are also
available from MARIN. The tests consist of three wave groups propagating over a flat bottom,
and two irregular waves propagating over a slope. The details of the tests will be given in the
corresponding section.

In the experiments a piston-type wavemaker is used at one end of the basin to generate waves.
The motion, velocity and acceleration of the wavemaker was available from the experiment. At
the other end of the basin a beach is installed to minimise reflections. The wave elevation was
measured at various stations in the basin. All the data was provided at 50Hz.

The numerical simulations were all carried out in 2D. The waves are generated using the
information from the piston-type wavemaker in SWASH (velocity of the wavemaker), Ocean-
Wave3D (velocity of the wavemaker) and HOS-NWT (motion of the wavemaker). With HAWASSI

Kinematics Bathymetry Workaround for Parallelization Wave generation
wave breaking Piston Flap Time trace

SWASH (MPI)

OceanWave3D Not yet public! (MPI)

HOS-NWT Available after post-proc. Work is ongoing!

HAWASSI Available after post-proc.

Table 1: Features of the codes selected for comparison. The version numbers of the codes are:
SWASH2.00, HOS-NWT1.1, OceanWave3D0.99, and HAWASSI1.0. SWASH, HOS-NWT and
OceanWave3D are open source, and capable of running 3D simulations. Using HAWASSI re-
quires a licence, and only 2D simulations can be performed with this software. Green indicates
that the code has the corresponding feature while red indicates that it does not or the work is on-
going. Kinematics: The code calculates the kinematics at each time level during the simulation
in the entire domain. Bathymetry: Effects of bathymetry are included in the model. Workaround
for wave breaking: In case of wave breaking, the code does not stop the simulation, but rather
activates an ad hoc numerical workaround for continuation of simulation. Parallelization: A
parallel version of the code is available and open source. Piston: It is possible to use infor-
mation from a piston type wavemaker. Flap: It is possible to use information from a flap type
wavemaker. Time trace: It is possible to use time trace of wave elevation from a measurement
station.
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the wave elevation history at the measurement location closest to the wavemaker was used. Ad-
ditionally, we carried out grid and time step refinement with the codes. The results presented
in this paper were obtained from the convergence study. For the sake of brevity, details of the
convergence study are not presented here, but some information about the grid and time step for
each code in each test case will be given in the corresponding section.

In order to compare the performance of the codes, we will use both qualitative and quantita-
tive information. For qualitative assessment, we will provide wave elevation histories at various
measurement stations. For quantitative assessment, we will resort to analyzing wave elevation
histories in order to calculate characteristics of the waves. The significant wave height Hm0 ,
variance quotient, correlation, and relative error in L2 will be provided in tables. Hm0 is ap-
proximated as 4 times the square root of the variance. The correlation between the simulation
and measurement is calculated by the ’cosine’ correlation,

corr (ηe, ηs) =
ηe · ηs
‖ηe‖ ‖ηs‖

. (1)

This measures how well the experiment and the simulation align linearly, that is how well they
point in the same direction. Therefore, this is especially useful to measure the phase shift errors
in the simulation. The maximum value of 1 indicates that the simulation and the experiment are
in phase, whereas the minimum value of -1 shows that the simulation is in counter phase with
the experiment.

Additionally we will also use the relative error in L2 between the measurement and the
simulation,

‖ε‖2 =
‖ηe − ηs‖2
‖ηe‖2

. (2)

It is important to note that the relative error in L2 may not be the ideal measure to compare
the wave elevation from the simulation and experiment, since even small phase shifts can cause
large error values. Nonetheless, it will give us an indication of the total error in the results.

We will also provide quantitative information particularly about the focused wave. In that
respect we will pay attention to the crest height, trough depth, wave height, and time instance
where the maximum amplitude occurs.

2.1 Wave groups propagating over a flat bottom

In this section we investigate the performance of the four codes in tests of propagating wave
groups over a flat bottom. The tests consist of two focusing wave events, and a model scale of
an irregular wave widely known as the Draupner wave or New Year’s wave. The water depth
is 1m and the length of the basin (from piston to the point where the beach intersects with the
calm water surface) is 195.4m. The wave elevation was measured by six wave probes which
were all located within the first 54m of the basin, see Tab. 2.

W1 W2 W3 W4 W5 W6

Distance to wave generator (m) 10 20 40 49.5 50 54

Table 2: Location of the wave probes in the basin for the tests with a flat bottom.
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2.1.1 Small-amplitude focusing wave (Experiment run number:202002)

Results for the test case 202002 were obtained using the following numerical settings. With
SWASH, the grid resolution in the horizontal direction was ∆x = 0.01m, and 20 layers were
used in the vertical direction. CFL number was allowed to be between 0.2 and 0.5. With
OceanWave3D, ∆x = 0.01m, and 20 layers were used in the vertical direction with clustering
towards the free surface. Half-width stencils were set to 3 and maximum CFL number was set
to 0.5. With HOS-NWT, the number of point/modes were Nx = 2048, Nz = 65, and the HOS
order was set to M = 5. Finally with HAWASSI, 212 points were used in the simulations with
a time step of 0.02s.

At the measurement location W2, we observe that the wave signals from the four codes are
overall similar as shown in Fig. 1a. However, it is possible to observe that HAWASSI, compared
to the other three codes, slightly overestimates the wave heights, and results in slightly larger
phase shifts especially for shorter waves.

At the measurement location W4 which is half a meter upstream of the focal point W5, we
start to observe occurrence of a focussed wave as depicted in Fig. 1b. Focusing takes place
at W5 as illustrated in Fig. 1c at t = 109.34s, and information about the focused waves at
W4 and W5 is listed in Tab. 3. The results show that SWASH, OceanWave3D and HOS-NWT
perform somewhat similarly. SWASH and HOS-NWT produce the smallest phase shift error.
SWASH produces the smallest wave heights at both W4 and W5 underestimating both the crest
height and trough depth of the focused waves. HAWASSI yields the largest phase shift and
overestimates the trough depths at W4 and W5, however it estimates the crest heights more
accurately than the other three codes at both locations. Considering both amplitude and phasing
HOS-NWT performs better than SWASH and OceanWave3D.

Experiment HAWASSI SWASH OceanWave3D HOS-NWT

W4

Crest (m) 0.046 0.044 0.042 0.041 0.043
Trough (m) -0.037 -0.04 -0.035 -0.038 -0.037
Wave height (m) 0.083 0.084 0.077 0.079 0.08
tpeak (s) 109.04 108.91 109.0 108.97 109.0

W5

Crest (m) 0.055 0.055 0.049 0.052 0.052
Trough (m) -0.025 -0.029 -0.024 -0.027 -0.025
Wave height (m) 0.08 0.084 0.073 0.079 0.077
tpeak (s) 109.34 109.22 109.33 109.3 109.33

Table 3: Maximum crest height, minimum trough depth, wave height, and time instance of the
maximum amplitude from the measurement and simulations at W4 and W5 for the case 202002.

2.1.2 Large-amplitude focusing wave (Experiment run number:203001)

In the test case 203001, the same settings as the case 202002 were used for the four codes.
Figure 2a displays wave signals from the experiment and the three codes at W2. Here, close
observation of the wave signals reveals that SWASH performs slightly better than the other three
codes yielding smaller phase shift, and estimating wave heights more accurately.

At the measurement locations W4 and W5 which are only half a meter apart from each other,
we observe the focusing event as demonstrated in Figs. 2b and 2c. At both locations we detect
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Figure 1: Comparison of the wave signals at the measurement location W2, W4 and W5 for the
case 202002.
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three peaks in the wave signals. Table 4 lists the information about the three peaks at W5,
which occur at t = 105.75s, t = 106.56s, and t = 107.86s. For these three peaks HAWASSI
results in the largest phase shift compared to the other codes. Analyzing the peaks occurring
at t = 106.24s and t = 107.6s at W4 we observe that the wave crests are distorted in the
wave signal from HOS-NWT. When we look at the wave profile of the highest peak occurring
at t = 107.86s at W5, we also notice some distortion in the wave crest from SWASH. For
the highest peaks at both W4 and W5 the agreement between the OceanWave3D result and the
experiment is good. Overall, OceanWave3D shows a better performance than the other three
codes in this test case. In the simulations with HAWASSI and OceanWave3D the mechanisms
to prevent wave breaking from happening were activated. With SWASH more than 10 layers
in the vertical direction were used, and in the SWASH manual [13] it is mentioned that no
additional measure needs to be taken in such a situation to account for wave breaking. With
HOS-NWT no ad hoc measure was taken for wave breaking because HOS-NWT did not yet
have a mechanism for this purpose. All these choices influenced the results inevitably, and the
extent of this influence should not be underestimated. When the mechanisms for prevention of
wave breaking are activated, the user is usually left to find a value for a strength parameter. Since
there is not a clear guideline for the value of this parameter (typically there are only minimum
and maximum limits), different values were chosen and their effects were observed. The results
shown in this paper were those which were in the best agreement with the measurements.

Experiment HAWASSI SWASH OceanWave3D HOS-NWT

P1

Crest (m) 0.029 0.054 0.012 0.038 0.040
Trough (m) -0.051 -0.062 -0.023 -0.059 -0.061
Wave height (m) 0.08 0.116 0.035 0.097 0.101
tpeak (s) 105.75 105.5 105.62 105.64 105.68

P2

Crest (m) 0.08 0.071 0.073 0.072 0.088
Trough (m) -0.079 -0.082 -0.102 -0.087 -0.072
Wave height (m) 0.159 0.153 0.175 0.159 0.16
tpeak (s) 106.56 106.32 106.6 106.42 106.44

P3

Crest (m) 0.106 0.102 0.093 0.099 0.113
Trough (m) -0.039 -0.043 -0.029 -0.038 -0.045
Wave height (m) 0.145 0.145 0.122 0.137 0.158
tpeak (s) 107.86 107.66 107.92 107.79 107.8

Table 4: Maximum crest height, minimum trough depth, wave height, and time instance of the
three peaks at W5 for the case 203001.

2.1.3 The Draupner Wave (Experiment run number:204001)

The last test case over a flat bottom is the model scale of an irregular wave widely known as
the Draupner Wave or New Year’s wave. For this test case, the same settings as the case 202002
were used with SWASH and HOS-NWT, but we had several difficulties with OceanWave3D.
The results from OceanWave3D were obtained on a grid with ∆x = 0.2m, and 5 layers in the
vertical direction. The time step was 0.02s. Any attempt to refine the grid or change the time
step was unsuccessful, as the solution diverged in all those attempts. This problem was reported
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Figure 2: Comparison of the wave signals at the measurement location W2, W4 and W5 for the
case 203001.
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back to the developers of the OceanWave3D code. With HAWASSI, 211 points were used in the
simulations with a time step of 0.02s.

At W2, W3, W4, W5 and W6, the wave signals from the three codes were analyzed, and
the quantitative information about simulation accuracy is listed in Tab. 5. Similar to the test
cases 202002 and 203001, a focussing event takes place in the case of 204001, and the wave
probe W5 records the most extreme event occurring at t = 164.6s. The information about the
focussed wave in particular is also provided in Tab. 6.

At the measurement station W2, we observe a good performance from all the codes resulting
in at least 90% correlation with the experiment. Especially in the bottom plot of Fig. 3 where
more energetic part of the wave group is illustrated, we observe a good agreement between the
four simulations and the experiment. In the less energetic part of the wave group, however, we
notice a clear difference between OceanWave3D and the other codes as shown in the middle
plot of Fig. 3. This difference can be attributed to the low grid resolution in the OceanWave3D
simulation, since these short and small waves are possibly not resolved on the grid. This also
causes OceanWave3D to generate the highest relative error in L2.

Among all the measurement stations, W5 records the most extreme event taking place at
t = 164.6s. When we look at the values in Tab. 5, we see that OceanWave3D and HOS-NWT
correspond with the experiment in a better fashion than SWASH and HAWASSI at W5. We
notice this outcome also in the close-up view of the focusing event shown in the bottom plot of
Fig. 4.

2.2 Wave groups propagating over a slope

In this section, we will present results from simulations with irregular waves propagating
over a slope. These tests were not carried out with HOS-NWT since bathymetry effects had
not been included in the model of HOS-NWT when this study was conducted. The geometrical
setup, the details of the bathymetry, and the positions of the measurement stations are shown
in Figure 5. The waves were generated with a piston-type wavemaker making only horizontal
translations. 143.41m away from the wavemaker the slope with a steepness of 5% starts. The
water depth in the deeper part is 0.6m, and the water depth in the shallower part is 0.3m. In the
experiment, a beach is located at 173.41m away from the wavemaker. We will consider two test
cases listed in Table 7. The duration of the experiment in both cases was nearly 1840s, but we
carried out the simulations only for 500s which contains approximately 316 waves.

2.2.1 Test case:103001

Results for the test case 103001 were obtained using the following numerical settings. With
SWASH, the grid resolution in the horizontal direction was ∆x = 0.025m, and 20 layers were
used in the vertical direction. CFL number was allowed to be between 0.2 and 0.5. With
OceanWave3D, ∆x = 0.025m, and 20 layers were used in the vertical direction with clustering
towards the free surface. Half-width stencils were set to 2 and maximum CFL number was set
to 0.5. Finally with HAWASSI, 211 points were used in the simulations with a time step of
0.08s.

At the measurement stations the wave signals were analyzed, and the quantitative informa-
tion about simulation accuracy is listed in Table 8. We observe that HAWASSI underestimates
wave heights at all measurement stations, while SWASH and OceanWave3D overestimate them.
This can be seen in both Hm0 and variance quotient values from the three simulations. For this
test case OceanWave3D generally shows better performance than the other codes producing
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Figure 3: Comparison of the wave signals at the measurement location W2 for the case 204001.
Top plot shows the complete time history, and the other two plots show close-up views of the
two parts of the top plot.
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Figure 4: Comparison of the wave signals at the focal point W5 for the case 204001. Top plot
shows the complete time history, middle plot shows the close-up view of the wave group, and
the bottom plot shows the freak-like wave which occurs at t = 164.6s.
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HAWASSI SWASH OceanWave3D HOS-NWT

W2

Hm0 (sim, exp) (m) (0.075, 0.069) (0.069, 0.069) (0.070, 0.069) (0.071, 0.069)
Variance quotient 1.17 1.0 1.02 1.06
Correlation 0.91 0.94 0.90 0.97
L2 norm 0.44 0.34 0.45 0.21

W3

Hm0 (sim, exp) (m) (0.075, 0.072) (0.067, 0.072) (0.069, 0.072) (0.070, 0.072)
Variance quotient 1.07 0.87 0.92 0.95
Correlation 0.87 0.87 0.88 0.93
L2 norm 0.52 0.50 0.48 0.36

W4

Hm0 (sim, exp) (m) (0.075, 0.071) (0.068, 0.071) (0.069, 0.071) (0.070, 0.071)
Variance quotient 1.11 0.93 0.96 0.98
Correlation 0.85 0.85 0.84 0.89
L2 norm 0.55 0.54 0.56 0.45

W5

Hm0 (sim, exp) (m) (0.075, 0.07) (0.068, 0.07) (0.069, 0.07) (0.071, 0.07)
Variance quotient 1.15 0.94 0.97 1.03
Correlation 0.84 0.87 0.89 0.91
L2 norm 0.58 0.50 0.45 0.42

W6

Hm0 (sim, exp) (m) (0.074, 0.071) (0.067, 0.071) (0.069, 0.071) (0.071, 0.071)
Variance quotient 1.11 0.91 0.95 1.00
Correlation 0.81 0.86 0.88 0.89
L2 norm 0.64 0.51 0.47 0.46

Table 5: Quantitative information concerning simulation accuracy for the case 204001.

Experiment HAWASSI SWASH OceanWave3D HOS-NWT

Crest (m) 0.187 0.18 0.152 0.165 0.187
Trough (m) -0.117 -0.092 -0.143 -0.119 -0.16
Wave height (m) 0.304 0.272 0.295 0.284 0.347
tpeak (s) 164.6 164.76 164.56 164.66 164.66

Table 6: Maximum crest height, minimum trough depth, wave height, and time instance of the
maximum amplitude for the freak-like wave at W5 from the case 204001.

Run number Hs (m) Tp (s)

103001 ∼= 0.06 1.697
104001 ∼= 0.06 2.121

Table 7: Characteristics of the irregular waves propagating over a slope.

better correlation and smaller relative error in L2. Measurement station W12 attracts our atten-
tion because this is where the three codes show their worst performance. Further investigation
may be worthwhile to find an explanation for this observation.
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Figure 5: Setup of the experiment for the tests with irregular waves propagating over a slope.
Piston-type wave generator is located at the left end of the basin. Wave elevations are measured
at W2, W12, W13, W15 and W17. Slope has a steepness of 1:20. A beach is located at 173.41m
away from the wavemaker (not shown in the figure). Distances are given in meters, and are not
on scale.

HAWASSI SWASH OceanWave3D

W2

Hm0 (sim, exp) (m) (0.056, 0.06) (0.063, 0.06) (0.064, 0.06)
Variance quotient 0.88 1.15 1.16
Correlation 0.91 0.85 0.88
L2 norm 0.41 0.57 0.52

W12

Hm0 (sim, exp) (m) (0.053, 0.054) (0.059, 0.054) (0.058, 0.054)
Variance quotient 0.95 1.18 1.17
Correlation 0.52 0.45 0.80
L2 norm 0.97 1.10 0.67

W13

Hm0 (sim, exp) (m) (0.054, 0.056) (0.06, 0.056) (0.059, 0.056)
Variance quotient 0.92 1.11 1.09
Correlation 0.84 0.75 0.90
L2 norm 0.55 0.73 0.46

W15

Hm0 (sim, exp) (m) (0.055, 0.06) (0.062, 0.06) (0.061, 0.06)
Variance quotient 0.86 1.07 1.05
Correlation 0.83 0.73 0.91
L2 norm 0.57 0.75 0.43

W17

Hm0 (sim, exp) (m) (0.054, 0.058) (0.054, 0.058) (0.06, 0.058)
Variance quotient 0.88 0.87 1.09
Correlation 0.67 0.70 0.89
L2 norm 0.79 0.76 0.48

Table 8: Quantitative information concerning simulation accuracy for the case 103001.
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2.2.2 Test case:104001

In the test case 104001, the same settings as the case 103001 were used for the three codes.
Table 9 lists quantitative information about simulation accuracy based on the analysis of the
wave signals at the measurement stations. HAWASSI, SWASH and OceanWave3D show a
good agreement with the experiment at the measurement station W2. Here the correlation with
the experiment is 95% with HAWASSI, 94% with SWASH, and 90% with OceanWave3D. As
the wave propagates, we observe that both HAWASSI and SWASH fail to achieve these high
correlation values at the other measurement stations. OceanWave3D, however, maintains high
correlation values at all the five stations: 90% at W2, 88% at W12, 90% at W13, 91% at W15,
and 89% at W17. Also, at W12, W13, W15 and W17 OceanWave3D yields much smaller errors
in L2 than the other two codes.

HAWASSI SWASH OceanWave3D

W2

Hm0 (sim, exp) (m) (0.06, 0.062) (0.065, 0.062) (0.064, 0.062)
Variance quotient 0.92 1.10 1.06
Correlation 0.95 0.94 0.90
L2 norm 0.32 0.37 0.45

W12

Hm0 (sim, exp) (m) (0.058, 0.063) (0.062, 0.063) (0.061, 0.063)
Variance quotient 0.84 0.98 0.96
Correlation 0.64 0.60 0.88
L2 norm 0.82 0.89 0.49

W13

Hm0 (sim, exp) (m) (0.06, 0.067) (0.064, 0.067) (0.063, 0.067)
Variance quotient 0.80 0.91 0.90
Correlation 0.85 0.78 0.90
L2 norm 0.53 0.64 0.43

W15

Hm0 (sim, exp) (m) (0.063, 0.072) (0.068, 0.072) (0.067, 0.072)
Variance quotient 0.76 0.88 0.87
Correlation 0.85 0.76 0.91
L2 norm 0.53 0.67 0.42

W17

Hm0 (sim, exp) (m) (0.062, 0.064) (0.068, 0.064) (0.067, 0.064)
Variance quotient 0.96 1.13 1.11
Correlation 0.71 0.66 0.89
L2 norm 0.76 0.85 0.48

Table 9: Quantitative information concerning simulation accuracy for the case 104001.

2.3 Summary and discussion

* For a comparative study in simulation of free surface water waves, four codes were se-
lected: SWASH, OceanWave3D, HOS-NWT and HAWASSI. SWASH, OceanWave3D
and HOS-NWT are open source and capable of running simulations in 3D, while HAWASSI
requires a licence and can only run simulations in 2D. Nevertheless, a demo version of
HAWASSI with fewer functionalities can be downloaded from its website.
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* To assess their performance, a set of wave measurements is used; three wave groups
propagating on a flat bottom and two irregular waves propagating on a slope. Since the
design of HOS-NWT does not address varying bathymetry, this code is only used in the
cases with flat bottom.

* The performance of HAWASSI in terms of computational cost is superior by a clear mar-
gin; in many cases the duration of simulation was close to the duration of real-time. This
suggests that HAWASSI can be an ideal candidate to investigate statistics of extreme
waves and wave groups. Computational cost of the other three codes was in the same or-
der of magnitude. Therefore, a detailed analysis on this subject is not provided here. Even
though grid and time step refinement studies were conducted, these were not presented
here for the sake of brevity.

* In some cases, there were divergence issues with the OceanWave3D solution. At the time
this paper was compiled, these issues were still not resolved. An important note is that
when the solution diverges, the code does not stop the simulation, but rather continues un-
til the end of the pre-specified simulation time. This is inconvenient, and it may inevitably
waste computational resources.

* OceanWave3D allows using the velocity of only piston type wavemaker when the repro-
duction of basin waves is in question. This unfortunately limits the applicability of the
code. Through personal communication OceanWave3D developers noted that there is
currently no plan to include the use of flap type wavemaker information. This suggests
that if this functionality is needed in a test case, either SWASH or HOS-NWT can be
used.

* Various robustness issues were detected with SWASH. The code sometimes stops the
simulation with a warning which does not give a clear indication of what went wrong.
On the other hand, SWASH has some unique features, for example, it is the only code
which can run a simulation on varying bathymetry using the information from a flap
type wavemaker. SWASH also contains models for conservative transport of salinity,
temperature and suspended sediment. The software has a well-written manual and an
active user-community.

* HOS-NWT has some important limitations in functionality, for example, the code lacks
a numerical workaround for wave breaking (through personal communication we were
informed that the work on this subject is ongoing), and bathymetry effects are not incor-
porated into the model. Nevertheless the code showed a good performance in the test
cases, and future improvements on its design will be monitored closely.

* Running simulations in parallel is an important functionality especially in 3D problems.
One of the objectives in this work is to couple one of these codes with ReFRESCO which
is mostly used in parallel. When ReFRESCO is run in parallel and the other code in
serial, the efficiency of parallel computation may be compromised. At the moment only
SWASH and OceanWave3D have parallel versions, and only SWASH has parallel open
source version. Through personal communication OceanWave3D developers stated that
the licence for the parallel version of OceanWave3D is not yet available.

* SWASH and OceanWave3D have the kinematics available in the entire domain at every
time step. HOS-NWT and HAWASSI calculate the kinematics during a post-processing
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step. This feature is an important requirement especially when coupling one of these
codes with ReFRESCO is in question.

* Results indicate that none of the codes is clearly superior to the other ones especially in
terms of accuracy. After an overall assessment of the codes based on their functionalities,
accuracy, robustness and efficiency, OceanWave3D is selected for one-way coupling with
ReFRESCO. However, the improvements on all the four models in the future will be
monitored closely.

3 ONE-WAY COUPLING WITH REFRESCO

3.1 ReFRESCO Code

ReFRESCO (http://www.refresco.org) is a community based open-usage CFD code targeted
for Maritime World problems. It solves multiphase (unsteady) incompressible viscous flows
using the Navier-Stokes equations, complemented with turbulence models, cavitation models
and volume-fraction transport equations for different phases [1] (in this particular case at hand
both the air and water phases are modelled). The equations are discretized using a finite-volume
approach with cell-centered collocated variables, in strong-conservation form, and a pressure-
correction equation based on the SIMPLE algorithm is used to ensure mass conservation. The
implementation is face-based, which permits grids with elements consisting of an arbitrary
number of faces and if needed h-refinement (hanging nodes). Time integration is performed
implicitly with first or second-order backward schemes. This means that there are no Courant
number stability limitations, contrary to other codes used for tackling free-surface and wave
problems [14]. However, small Courant numbers are important for a good balance between
spatial and temporal discretizations, and also help the iterative convergence of the non-linear
problem.

In a free-surface capturing method, such as the one here used, the discretization of the con-
vective terms, both for momentum and volume-fraction transport equations, have an important
effect in the robustness and in the accuracy of the solutions [15]. For the momentum a stan-
dard 2nd order unstructured-grids QUICK scheme is used. For the volume-fraction transport
equation, it is known that in order to keep the free-surface interface sharp, compressive or anti-
diffusive schemes have to be used [1]. In ReFRESCO one has several of these schemes, such
as the well-known HRIC [16] and CICSAM [17]. However, these are Courant-number depen-
dent and keep the compressive character only for Courant numbers lower than 1, which for an
time-implicit code and for steady calculations is troublesome if not questionable. Therefore,
in ReFRESCO, a compressive scheme ReFRICS is used for which the compressive character
of the scheme is only based on the direction of the grid lines and the free-surface normal, and
where there are no restrictions on the Courant number. For the rest of the discretization, the dif-
fusion terms are treated using central schemes and the time derivatives using a three-time-level
implicit scheme.

ReFRESCO (v2.2.0) is currently being developed, verified and its several applications vali-
dated at MARIN (in the Netherlands), in collaboration with IST (in Portugal), USP-TPN (Uni-
versity of Sao Paulo, Brasil), TUDelft (Technical University of Delft, the Netherlands), So-
ton (University of Southampton, UK), UTwente (University of Twente, the Netherlands) and
Chalmers (Chalmers University, Sweden).
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3.2 Coupling Procedure

For the sake of brevity we will not present the mathematical and numerical designs of Ocean-
Wave3D and ReFRESCO. For this purpose several references were previously mentioned. For
one-way coupling of OceanWave3D with OpenFOAM R©, see [18].

The information transfer from OceanWave3D to ReFRESCO takes place only at the inflow
boundary of ReFRESCO, see Fig. 6. This transfer can be carried out in two ways:

1. One-way coupling of the two codes: Solutions in both codes advance in time simultane-
ously, and ReFRESCO calls OceanWave3D at every time step to receive the flow infor-
mation. This information is then interpolated onto the inflow boundary of ReFRESCO.

2. Running simulation in each code separately and consecutively: First the simulation is
performed using the potential flow solver, and the flow information in the relevant part
of the domain is stored to a file. Secondly this file is read by ReFRESCO to assign val-
ues to the flow variables at the inflow boundary. Any one of the three codes (SWASH,
OceanWave3D and HOS-NWT) can very well be used in the first step as long as all the
necessary flow information is outputted and stored to a file. This method allows Re-
FRESCO to have a very flexible environment in order to generate waves. Furthermore,
since the complete solution history is at the disposal of the user before starting the simula-
tion in ReFRESCO, a certain part of that history can be cropped and sent into ReFRESCO
instead of the complete history.

Figure 6: An example layout of the OceanWave3D and ReFRESCO domains, and the one-way
coupling.

Both methods should produce the same result since the information that is transferred into
ReFRESCO is essentially the same, only the way it is transferred changes. Therefore, in the
remainder of this paper we will show results from only the first method.

In this method solutions in both codes advance in time simultaneously, and ReFRESCO
calls OceanWave3D at every time step to receive the flow information. This information is
then interpolated onto the inflow boundary of ReFRESCO. Both codes use the same time step,
therefore no interpolation in time is necessary between the two solutions. At the beginning of
each time step, the velocity and free surface elevation values are received from OceanWave3D,
and imposed at the inflow boundary of the ReFRESCO domain. Since both codes use different
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computational grids, the information from OceanWave3D has to be interpolated onto the grid
of ReFRESCO. This is the only interpolation procedure used in the entire one-way coupling
of both codes. The interpolation is done in the computational domain of OceanWave3D. The
target value of a flow quantity ψtarget (x + δei) at the location x + δei whose nearest neighbour
point located at x is calculated using the following finite Taylor series

ψtarget (x + δei) =
2a∑
n=0

δn ∂nψ

n! ∂xni
(x) (3)

where a is user-defined. The gradients ∂nψ/∂xni were computed previously during the dis-
cretization of the governing equations. The number of terms in the Taylor series, 2a + 1, is
consistent with the size of the finite difference stencil of the solver. Therefore both the Taylor
series and the computed wave solution have a consistent numerical discretization error.

3.3 Results from the ReFRESCO-OceanWave3D coupling

In order to refer to OceanWave3D/ReFRESCO coupling, simply ReFRESCO will be used in
the remainder of this document. A close-up view of a typical grid used in the simulations with
ReFRESCO is shown in Fig. 7. The grid is finely spaced near the undisturbed interface between
water and air, but becomes coarser towards the bottom and top boundaries of the domain. Along
the horizontal direction no grid stretching was applied. The size of the grid cells near the
undisturbed interface is given below in each test case.

Figure 7: Close-up view of a typical grid used for the wave simulations.

In all the test cases, a three-level time discretization scheme is used. The time step was
fixed throughout the simulations for all equations. Convergence tolerance is set to 10−4 for
the infinity norm of the residuals of all the flow variables. In order to achieve such a residual
decrease, the maximum value for the number of outer loops was set to 150.

The momentum and volume fraction equations are solved using GMRES with BJACOBI
preconditioner, while the pressure correction equation is solved using CG with BJACOBI pre-
conditioner. No turbulence model is used.

Dynamic viscosity of water is set to 1.002× 10−3kg ·m−1 · s−1, and air to 1.824× 10−5kg ·
m−1 · s−1. For the density values of water and air, 998kg · m−3 and 1.118kg · m−3 are used,
respectively.

The same boundary conditions are used in all the simulations with ReFRESCO, which are
shown in Fig. 8. The outflow boundary, where the Sommerfeld boundary condition [19] is
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applied, is positioned in such a way that reflected waves do not disturb the solution in the part
of the domain where wave probes are located.

Figure 8: Boundary conditions for the simulations with ReFRESCO.

3.3.1 Small-amplitude focusing wave (Experiment run number:202002)

The wave probe W3 is the inflow boundary of ReFRESCO, where the quantities from Ocean-
Wave3D are imposed, see Tab. 2 for the locations of the wave probes. Three grid resolutions are
considered with ReFRESCO: (∆x = 0.04m, ∆z = 0.016m), (∆x = 0.02m, ∆z = 0.008m),
and (∆x = 0.01m, ∆z = 0.004m). Time step size is equal to 0.005s, and the simulation is
carried out for 120s.

Figure 9 shows the wave signals at the measurement stations W4 and W5. We observe that
the result on the coarse grid shows relatively larger deviations in terms of both wave height and
phase shift compared to the medium and fine grids. The results on the medium and fine grids
are, however, considerably similar and in good agreement with the measurement.

The residual history with time is plotted in Fig. 10 for the three grid resolutions. Note that
only the last residual value for each time step is plotted for all the flow variables. The residuals
for all the flow variables generally decrease around 5 orders of magnitude on all the three grids.
The only exception to this is observed on the fine grid between t = 107s and t = 111s, where
3.5 orders of magnitude decrease is achieved for some time levels, see Fig. 10c. When we
look at the wave elevation histories from the wave probes W4 and W5, we notice that this time
window coincides with the focusing event. During the focusing event the flow exhibits the
highest velocities, which results in a considerable increase in the CFL number, see Fig. 11.
This can be the cause for the relatively higher residuals on the fine grid. Small CFL numbers
observed for the large part of the simulation result in small discretization errors and help the
iterative convergence of the non-linear problem.

3.3.2 Large-amplitude focusing wave (Experiment run number:203001)

Similar to the previous test case, the wave probe W3 is the inflow boundary of ReFRESCO,
where the quantities from OceanWave3D are imposed, see Tab. 2 for the locations of the
wave probes. Three grid resolutions are considered with ReFRESCO: (∆x = 0.04m, ∆z =
0.024m), (∆x = 0.02m, ∆z = 0.012m), and (∆x = 0.01m, ∆z = 0.006m). Time step size
is equal to 0.005s, and the simulation is carried out for 120s.

Similar to the test case 202002, the coarse grid seems inadequate as deviations from the
experiment are relatively larger compared to the other two grids, see Fig. 12. It can also
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Figure 9: Comparison of the wave signals at the measurement locations W4 and W5 for the
case 202002.

be observed that no further grid refinement is necessary as the results from the medium and
fine grids are considerably close. The agreement between the experiment and ReFRESCO
simulations on the medium and fine grids is acceptable.

The residual history with time is plotted in Fig. 13 for the coarse grid with the resolution
of (∆x = 0.04m, ∆z = 0.024m). On this grid we observe that nearly 5 orders of magnitude
decrease in error is achieved for almost the entire simulation. However, for some time levels, we
observe a temporary increase in residuals. Even though not shown here, this increase becomes
more pronounced on the medium and fine grids, and the residuals decrease at approximately
3 order of magnitude on these two grids. These relatively high errors take place around the
focusing event where high velocities are observed in the simulation. This results in a sharp
increase in the CFL number which almost reaches the value of 6 on the fine grid, see Fig. 14.
Even though the order of magnitude of the residuals can be acceptable for wave simulations, an
investigation into possible modifications in the settings of the solvers for a better convergence
behavior can be worthwhile.
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(a) Coarse grid (∆x = 0.04m,∆z = 0.016m)
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(b) Medium grid (∆x = 0.02m,∆z = 0.008m)
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(c) Fine grid (∆x = 0.01m,∆z = 0.004m)

Figure 10: Residuals in L2 on the three grid resolutions for the case 202002.

7115
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Figure 11: History of CFL number on the three grid resolutions for the case 202002.

4 CONCLUSIONS

* In this study several objectives were set and realized. The first objective was to conduct
an inventory study on the existing potential flow codes which can be used for simulating
nonlinear waves. Then an overall assessment of these codes had to be made in order to
explore their features and investigate their performances. The final objective was to use
these codes in order to generate waves in ReFRESCO.

* After a survey on the existing models, four codes were selected: SWASH, OceanWave3D,
HOS-NWT and HAWASSI. The functionalities and performances of these codes were
analyzed. After careful consideration, OceanWave3D was selected for one-way coupling
with ReFRESCO.

* Various simulations were carried out with the ReFRESCO\OceanWave3D coupling. Grid
refinement study was conducted and convergence behavior of ReFRESCO was moni-
tored. Results indicated that the ReFRESCO\OceanWave3D coupling is a valuable tool
to investigate wave motion in an accurate and efficient manner. In all the simulations,
comparison with the measurements demonstrated good agreement, and the convergence
behavior of ReFRESCO was acceptable.

* Future work will include testing the ReFRESCO\OceanWave3D coupling in various 3D
problems particularly focusing on hydrodynamic wave loading on structures and wave-
structure interaction.
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Figure 12: Comparison of the wave signals at the measurement locations W4 and W5 for the
case 203001.
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Figure 13: Residuals in L2 on the coarse grid with the resolution of (∆x = 0.04m,∆z =
0.024m) for the case 203001.
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Figure 14: History of CFL number on three grid resolutions for the case 203001.
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Abstract. The present work is devoted to the study of the optimal control of the two-mass vi-

bration propulsion system in a viscous incompressible fluid. The study of the motion is car-

ried out in two stages. At the first stage the simplified model of a viscous fluid is considered. 

On the basis of this model, the problem of the optimal control of the vibration system is solved 

in terms of minimizing energy consumption. The obtained optimal laws are studied at the se-

cond stage on the basis of the direct numerical simulation. 
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1 INTRODUCTION 

The design of the effective vibration propulsion systems is one of the key vectors of the 

development of the modern micro-robotics. Currently, there are several popular implementa-

tion concepts of such propulsion systems for moving micro-devices in a resistant medium. 

One of them is based on the use of the mobile internal mass. This type of devices usually 

called vibration-driven robots. They represent a multi-body system that are consisted of a 

closed shell, placed in a resistant medium, and moving internal parts. The periodic motion of 

the inner system of the bodies (the internal mass) causes motion of the shell, which can be 

used (in the case of a nonlinear medium resistance) for directional motion in space. The obvi-

ous advantages of such a propulsion are the shell tightness and lack of moving external parts, 

which allow to use such micro-devices for non-destructive inspection of miniature technical 

objects. 

Research of movement capabilities of multi-body vibration propulsion systems were con-

ducted earlier for medium with different resistance laws. In [1-3] the possibility of motion in 

an ideal fluid with related deformations of the outer shell was considered, articles [4, 5] were 

devoted to the study of the movement on a rough plane in the presence of a Coulomb friction, 

in [6] the movement on the liquid interface was studied. Movement in the Newtonian fluid 

was considered in [7-11]. 

Problems of optimal motion control of vibration multi-body systems in a viscous fluid 

were discussed in studies [9, 10]. In [9] the problem of optimization of the movement of the 

robot was solved in the presence of an arbitrary power law relationship between the velocity 

and the resistance forces, including the square law, which is often used as an approximation 

for the resistance forces resulting from the motion of a body in a Newtonian fluid. In [10] vi-

bration-driven robot motion in a viscous fluid was optimized for the case, when the resistance 

law was designed on the basis of experimental data for a sphere moving in a viscous fluid. 

However, all these problems of optimization were solved on the basis of quasi-stationary 

models, when the drag force is uniquely determined by the velocity of the body movement. In 

fact, the hydrodynamic resistance is defined by fluid flows that have been formed around the 

body during the whole time of motion. In general, the forces cannot be described solely in 

terms of instantaneous velocity and should be determined by the history of the entire move-

ment. Developing the correct model of the drag description requires a large-scale study of the 

interaction of the vibration system with a viscous fluid. 

In this paper, the research in this direction is carried out for the two-mass model of vibra-

tion-driven robot consisting of the outer spherical shell and a movable internal mass, which 

makes periodic oscillations along the axis passing through the center of the body. 

As a first approximation, a simplified model of a viscous medium is considered, in which 

the hydrodynamic force is represented as the sum of the viscous and Basset history compo-

nents. The viscous component is responsible for the viscous friction force. The history com-

ponent is responsible for accounting of the movement history is selected in the form proposed 

in [12]. On the basis of this model the problem of optimal control of the vibration system is 

solved in terms of minimizing energy consumption. 

The obtained optimal laws are studied in the second phase with on the basis of the direct 

numerical simulation. The complete problem of interaction of vibration system with a viscous 

incompressible fluid motion is considered, when the fluid flow is described by the full system 

of Navier-Stokes equations. Axisymmetric and three-dimensional formulations are discussed. 

Numerical model are implemented in the OpenFOAM package. 
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2 MODEL OF TWO-MASS VIBRATION SYSTEM 

Let us consider a system of two bodies. The body of a spherical shape (shell) with mass 

M is in a viscous liquid, and a shell with mass m  (hereinafter, the internal mass) moves in-

side it. The longitudinal periodic movements of the internal mass relative to the shell, in 

which the whole system moves as a whole, are investigated. Let us denote the body velocity 

through u  and the movement and velocity of the internal mass relative to the shell as x  and 

v x . The basic equation which describes the motion’s velocity ( )u t  of the shell under the 

given law ( )x t  of the motion of the internal mass has the form 

   ( )m M u R u mx     (1) 

Here, R  is the liquid resistance force to the shell’s movement. For any given periodic law 

( )x t  with period T  (1) uniquely determines with the same period the periodic function ( )u t , 

and ( )x t  plays the role of the kinematic control. 

Energy consumptions for the movement of the body with an internal propulsion (movable 

internal mass) is conveniently characterized by a the energy coefficient (EC)  

   
0

0
( ) 0,

, min ( ) , min ( )vbr
R u u U u U

vbr

N
N N u N N u

N


  
    

as the ratio of the minimum power 0N  required for movement of the body at an average ve-

locity U  to the power vbrN consumed for moving at the same velocity of vibration-driven ro-

bot. 

 

3 OPTIMIZATION PROBLEM 

The formulation of the optimization problem consists of finding such a periodic law ( )x t  

of internal mass oscillations which for a fixed period T  of oscillations and given average ve-

locity U  of the shell movement will minimize the power of the internal propulsion ( )N u . 

The convenience of this formulation is that the original problem is thus reduced to the prob-

lem of finding the periodic function ( )u t  with period T  that provides a minimum for function 

( )N u  within the constraints u U  and 0R  . 

As an approximation of the resistance law let us consider widely used in the case of high-

frequency oscillations [16] dependence 

 
 

2 21
[ ] 6

2

t

x

du d
R u C a u u a d

t


  

 

 


  (2) 

The difference between the quasi-stationary approximation (used earlier in [10, 11]) and (2) 

consist in the addition Basset forces. The resistance is determined by not only the current val-

ue of the velocity, but also by the whole history of the motion. We consider the important 

special case constxC of the quadratic viscous resistance. 

By normalizing velocity u  on U  and time t  on period T , we write down the problem of 

the optimal control of the shell movements in the following form:  

 
 min min [ ] [ ]V HN N u sN u 

 
(3) 

 1u   (4) 

 0u u   (5) 
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The minimization in (3) is carried out on a set of periodic functions with a unit period that 

satisfy constraints (4) and (5). When writing (5), it is further taken into account that 0HR   

for any periodic function u . The only dimensionless parameter of problem (3)  

 
12

x

s
C U T




  (6) 

sets the degree of the nonstationarity of the shell’s motion by characterizing the ratio of Bas-

set forces to viscous forces. If 0s   the problem (3) - (5) of optimal control of body motion is 

quasi-stationary problem with the quadratic resistance law, the decision of which is described 

in [10]. 

The problem (3) - (5) was solved numerically with grid methods. The obtained optimal 

laws of motion are biphasic. They consist of a slow forward movement phase and a fast 

backward movement phase. 

Figure 1 shows that the most significant change in the optimal motion law occurs in the 

range of s  from 0.1 to 1. If s  is less than 0.1, the law of motion is close to the quasistationary 

0 ( )u t  obtained by neglecting the Basset forces. At s  larger than 3, in contrast, viscous friction 

forces can be ignored. Here ( ; )u t s   practically coincides with ( ) ( ; )u t u t   . 

 

Figure 1. The optimal law of motion )(tu  for different values s . 

In Figure 2 the solid line shows the dependence of the main integral characteristic, which is 

the energy coefficient 
max , on parameter s. The dashed lines in this figure indicate 

(0)

max 0.079   and the asymptotic 1

max ( )s s  

  ( s). The value 056.0  is calculated 

by the power of Basset forces for ( )u t  according to the formula    1

  uNH . As might 

be expected, the energy coefficient decreases monotonically with an increase of parameter s , 

which corresponds to additional power losses of the propulsion to overcome Basset forces. 
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Figure 2. Dependence of the energy coefficient max  on the parameter s - a solid line (dashed line - asymptotic 

behavior at the 0s  and s ). 

4 NUMERICAL MODELING  

4.1 Problem description 

Approximation of the hydrodynamic forces that was proposed in the previous section 

contains only the simplest representation of Basset history term. To develop more accurate 

model of the interaction of the vibration system with a viscous fluid a more detailed analysis 

of the components of the hydrodynamic force is required. For this purpose in the second part 

of the research a numerical simulation of the movement of a vibration-driven robot in a 

viscous fluid is carried out on the basis of the full Navier-Stokes equations.  

Motion laws are selected from the results of the optimization problem presented in the 

previous section. The velocity of the shell is defined up to a constant, which is determined 

from the conditions of periodicity of the internal mass and the shell motion. 

The resulting problem depends on two dimensionless parameters: the Reynolds number 

(Re) and the dimensionless period of the movement ( 0T ) that are defined as follows 



DUmRe , 
D

TU
T m0 . 

Here mU  is the maximal absolute value of velocity of the shell, D  is the diameter .of the 

shell. The dimensionless parameters )(Re, 0T  have the following interconnection with the 

parameter s  of the optimization problem 

Re

112

0TU

U

C
s

mx 
 . 

A numerical model for the simulation of the interaction of the vibration system with a 

viscous fluid is constructed in OpenFOAM package on the basis of the numerical schemes 

presented in [13, 14]. 

4.2 Results 

The numerical modeling was carried out in the range 300 <Re <2500 of Reynolds numbers 

for the fixed value of dimensionless period 400 T . The law of the shell motion was chosen 
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on the basis of the data of analytical model, so that it provides a theoretically high efficiency 

in the whole study area. The corresponding dependence )(tu  is shown in Figure 3. 
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Figure 3. Motion law of the shell 

Despite the high value of the maximum Reynolds number the flow structure around the vi-

bration-driven robot retains axisymmetric in the investigated range of Re. This is due to the 

fact that the maximum speed of motion is reached in the time interval (see. Figure 3) that is 

too short for asymmetry development. At the same time, the velocity values of the direct mo-

tion phase are an order of magnitude smaller than the maximum, so all asymmetric disturb-

ances are damped during this phase. In Figure 4 the main flow patterns observed in the 

investigated range of Re are presented. Visualization is made with colored weightless parti-

cles. In the first case (Figure 4, left), in the wake of the body there is irrotational fluid motion. 

Such a regime is observed in the range Re <2000. In the second case, the wake consists of 

gradually dissipating vortex rings (Figure 4, right). 

 

  

Figure 4. Flow patterns for parameter values 400 T , Re=500 (left) and 400 T , Re=2500 (right). 

The efficiency of motion grows with increasing Reynolds number. Dynamics of change of 

the energy coefficient   is shown in Figure 5. However, values of  obtained in numerical 

simulation are more than two times lower than predicted by the theoretical model. To analyze 

the reasons for this discrepancy, the structure of the forces acting on the vibration-driven ro-

bot is studied. 

7126



Artem Nuriev and Olga Zakharova 

 

 

Figure 5. Dependence of the energy coefficient   on the parameter Re. 

The resulting force is represented as the decomposition into viscous, inertial and history 

components in the following form 

  



t

bmDbmD d
t

a
СtaCtutuCtСCCR 



 )(
)()()(),,,( .  (7) 

To do such decomposition using the assumptions constDC , constmC , constbC , 

that were applied in optimization problem, is impossible. Since we are dealing with two-phase 

regimes of motion, it is possible to assume that the coefficient of viscous forces 
DС  can take 

two values 
dС 

 if 0)( tu  and 
dС 

 if 0)( tu , and the coefficients of the inertia and Basset 

forces (
mС , 

bС ) are constants.  

In order to determine the unknown coefficients the minimization problem is solved: 

  min),,,,(),,,(
1

2num  




N

i
iimbddmbdd RtCСCCRCСCCL , 

0R . 

Here L is a standard deviation function and 
numR  is computed force. Finally we find the com-

bination ),,,( mbdd CСCC  for each Reynolds number. The proposed relationship (7) makes it 

possible to construct a good approximation of force 
numR  in the entire range. 

Coefficient 
mС  almost independent on the Reynolds number. The values of coefficient bС  

are quite small, so the third term of decomposition (3.21) has a very small influence. The val-

ues 
dС 

 and 
dС 

 change with increasing Reynolds number, they are shown on Figure 6. As 

we can see they are close to the experimental dependence [15] for the forces acting on a 

sphere in the stationary viscous flow. 

The resulting force approximation differs from the one used in the section 3. This explains 

the differences in the estimates of the effectiveness of the resulting motion. The next step is to 

use it to solve the optimization problem. As the first results show, a new representation of 

forces does not introduce significant changes in the form of optimal laws of motion. That 
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probably will allow to achieve a good consistency in the results of analytical and numerical 

models. 
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Figure 6 Resistant force. Markers are dС  and dС  values, solid line is the experimental dependence 

[15]. 
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Abstract.
Internal wave attractors have received great attention since its discovery in 1995 by Leo

Maas ([1, 2]). Now convectional theory describing the formation of attractors is generally
accepted, and the principal interest of researchers in recent years is focused on nonlinear inter-
actions. A number of theories had been proposed and now nonlinear interaction due to triadic
resonance is accepted as a principle cause of instability of attractors, in which case the par-
ent wave of large amplitude gives birth to two daughter waves, such that conditions of triadic
resonance are fulfilled for all the three waves [3]. All this presumes that wave-wall interaction
participate in the process only by focusing-defocusing of energy on the inclined boundaries.
Here we address interactions of large amplitude internal waves with the boundaries in real
laboratory conditions, where Prandtl-Schmidt number is equal to 700. We show that large am-
plitude waves produce folded structures which are clearly visible on density-gradient images,
as if produced by “kneading the dough”. These structures are not quickly dissipated due to
high Schmidt number and with time they propagate to the interior of the domain, as was shown
by our numerical simulation. These structures have visible impact on the instability of attractor
and the whole picture of turbulent motion for large amplitudes. The mechanism of interaction
of these structures with internal gravity waves structures is the subject of further research. Nu-
merical simulation is quite challenging due to high Prandtl-Schmidt number and small scale of
the folded structures in highly nonlinear regimes. Also study is performed on large time scales.
As a consequence most of conventional computational approaches give unreliable results. We
have applied spectral element approach base on code nek5000 by Paul Fischer. It allowed us
to carefully follow the fine space structures on large time scales.
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1 INTRODUCTION

Global and local atmospheric motions continue to be pivotal subjects of research, since only
deep understanding of such processes may give insights on climate change, pollutants concen-
trations, and forecasts, short-term as well long-term. In contrast to the atmosphere of the Earth,
the driving force of the Ocean is not a classical heat engine. Vertical transfer mechanisms of
energy due to thermal processes and wind over the surface play significant role mostly in the
vicinity of the surface of the Ocean. Meanwhile the global dynamics of the Ocean is greatly
affected by deep water processes and mixing [4, 5, 6, 7, 8], which were studied in much a lesser
extent, experimentally and theoretically.

Internal waves in stratified media give an important class of energy transfer in the Ocean.
They may form due to tidal motions or flows past orography [9]. In 1995 Leo Maas discovered
an amazing feature of internal gravity waves: in some geometries the waves, emitted by source
of constant frequency, may form after multiple reflections from boundaries certain pathways [1].
These pathways, which were named internal waves attractors, accumulate almost all the energy
of the wave motions in the containers. The works by Leo Maas were followed by a great amount
of works devoted to formations and behavior of the attractors, so now we have conventional
theory for the appearance of small amplitude internal wave attractors.

This is why the principal focus of researches is now on the nonlinear properties of large am-
plitude internal wave attractors. For such cases the motion can not be described with the help of
linearised equation. Internal wave attractors may become unstable, turbulent, they may change
structure with time, change background stratification and manifest other nonlinear properties.

In recent years in ENS de Lyon a number of methods for analysis of experimental results have
been developed ([10, 11, 12, 13, 3]). Despite remarkable success in experimental study of wave
attractors there are significant intrinsic constraints in convectional experimental approaches like
PIV or Schlieren. These constraints can be overcomed by direct numerical simulation, provided
that it is reliable. The experimental setup possess very large scales interval because of very high
Prandtl-Schmidt number. This is why till recently such numerical research were not possible,
and numerical modelling dealt with linear modes only, as in ([14, 15]). In these works finite
volume method was used for numerical simulation, and realisation of finite volume method was
based on MIT code of general circulation model. These papers supported the theory of forma-
tion of internal wave attractors. At the same time the authors confessed that their numerical
approach could only give insight on formation of the attractor but it is not reliable on large time
intervals or in strongly nonlinear modes due to high numerical viscosity. Only recently careful
3D direct numerical simulation was carried out, and for the first time hydrodynamical fields of
the experiments and direct numerical simulation were in correspondence within 10% for linear,
as well for nonlinear modes ( [16, 17]). Now direct numerical simulation is planned to model
more complicated configurations and highly nonlinear modes with overturning and mixing.

Internal waves in continuously stratified fluid differ from more “conventional” types of
waves, such as electromagnetic or acoustic waves, by very peculiar dispersive relations: first
– they are highly anisotropic, and second – temporal frequency depends only on direction (i.e.
angle with vertical direction), and don’t depend on magnitude of the waves vector. Internal
waves may seem unimportant from “practical point” of view since usually they are consid-
ered in linear approximation with quite small amplitude. But actually the may have influence
on background stratification and on transport of admixtures and pollutants. The influence on
background stratification may occur due to interaction with the boundaries, which is always
nonlinear. If the amplitude of the waves is high enough, the overturning may happen. Prob-
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ability of such events may be estimated with the help of Miles – Howard necessary condition.
In recent years understating of internal waves dynamics was greatly improved due to numerous
experimental laboratory works. Usually internal waves are modelled with the density stratifica-
tion due to salt solution in a tank filled using double-bucket method. In 1995 [1] and 1997 [2],
first theoretically, and next experimentally the internal waves attractors were discovered. Later
numerous works were devoted to theoretical investigation, laboratory and numerical experi-
ments. Most of them were devoted to very small amplitudes almost corresponding to linear
equations. In internal waves of larger amplitudes vorticity becomes significant. Interaction with
the boundaries becomes much more complicated. In this work we show that this interaction
produce folded structures which may propagate inside the domain and interact with the main
flow.

2 MATHEMATICAL SETUP

In mathematical setup we will try to model as close as possible the experimental setup [3].
The sketch of the experimental installation is shown in Figure 1.

L1 A
A

A
A
A

A
A
A

A
A
A
A

L2

H

α ?

~g

- x

6
y

Figure 1: Computational domain in 2D case.

A salt solution is confined in the shown trapezoidal domain, all the boundaries are fixed
except for the left one, which oscillates around mid-height point and has the shape of demi-
cosine of vertical coordinate.

We will represent density as ρ = ρm + ρs(t, x, y, z) = ρm + ρs,0(z) + ρ′(t, x, y, z), where
ρm – density with minimal salinity and ρs = ρs,0(z) + ρ′s(t, x, y, x) – density increase due to
increase of salinity, ρm + ρs,0(z) – initial state. It can be easily shown that such conditions can
be modeled by Boussinesq approximation of full Navier – Stokes equations, so we will use the
following system of equation for mass, impulse a salt conservation:

∂~v

∂t
+ vk∇k~v = −∇ p̃

ρ0
+ ν∆~v + s~g (1)

∂s

∂t
+ vk∇ks = λ∆s (2)

7132



First A. Author, Second B. Author and Third C. Author

div~v = 0 (3)

The most important assumption for Boussinesq approximation ρs/ρm << 1 is obviously
satisfied.

Viscosity and diffusion are assumed to be constant.
Initially, the fluid is in rest, and concentration of salt decreases with height.
If fluid density decrease with height, fluid particle that does get displaced vertically tends to

be restored to its original level; it may then overshoot inertially and oscillate about this level.
Let the unperturbed state of the layer have the density

ρ(x, y, z, t) = ρm + ρ0(z), (4)

where ρm is the space average of the unperturbed state. Then the net gravitational force on a
fluid particle after vertical displacement ζ is −dρ0

dz
ζ~g , so

d2ζ

dt2
=

dρ0
dz

g

ρ0
ζ, (5)

which is actually an equation of oscillator so there naturally appears a notion of buoyancy
frequency, (or Brunt-Väisälä frequency), the angular frequency at which a vertically displaced
parcel will oscillate within a statically stable environment ρ(z) = ρm + ρ0(z):

N(z) =

√√√√− g

ρ(z)

dρ(z)

dz
(6)

To understand the basic properties of the system we may linearise to see how it behaves when
the amplitudes of oscillations are small.

In case of constant buoyancy frequency the linearized system of equations is:

ρm
∂~v

∂t
= −∇p + ρ′~g (7)

∂ρ′

∂t
+ vz

dρs,0(z)

dz
= 0 (8)

div(~v) = 0 (9)

ρ = ρm + ρs(t, x, y, z) = ρm + ρs,0(z) + ρ′(t, x, y, z).
If we will concider wavelike solution, periodic in space and time

f = F exp i(ωt− (~k, ~r)) (10)

ω2 = N2
(
1− k2z/k2

)
= (N |sinθ|)2, (11)

where θ is the angle between the vertical axis and ~k = exkx + eyky + exkz = exksinθ + . . .
Waves exist for any value of the angular frequency from zero up to N.

Here we see two most important features of linear waves in weakly stratified fluid of constant
bouyancy frequency: direction of propagation of waves is derermined by frequency of pertur-
bations, and after reflection from rigid surface the modulus of angle with vertical is preserved.

A tank is filled with salty water using double-bucket method. The stratification is almost
perfectly linear, except for the 2 cm. layer near the top of tank. The size of tank is 46 cm length,
32 cm. height, 17 cm. In our recent work [17] we examined 3D effects on the dynamics of at-
tractor and we showed very good correspondence of experiments and 3D numerical simulation,
and we explained discrepancies observed in previous 2D numerical simulation [14].
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2.1 Boundary conditions

The upper boundary is stress free, the bottom and right boundary are rigid with no-slip
condition, the left vertical boundary oscillate according to a given law.

xb(0, y, t) = a cos(πy/H) cos(ω0t). (12)

If amplitudes are small this condition can be replaced by condition on velocity on fixed
boundary:

u(0, y, t) = aω0cos(πy/H)sin(ω0t), v = 0. (13)

At t = 0 the fluid is in rest and stratified with constant buoyancy frequency N .

3 DIRECT NUMERICAL SIMULATION

Figure 2: Results of DNS with moderate amplitude a = 0.25cm. Density field and horizontal component of
velocity before and after PSI.

Numerical computations are performed with the help of spectral element methods [18, 19].
The geometry of the numerical setup closely reproduces the experimental one. The full system
of equations being solved consists of the Navier-Stokes equation in the Boussinesq approxima-
tion, the continuity equation and the equation for the transport of salt. Typical meshes used in
calculations consist of 50 thousands to half-million elements, with 8 to 10-order polynomial de-
composition within each element, time discretization from 10−4 to 10−5 of the external forcing
period.

As shown in [17], comparison of our experimental and numerical results are in beautiful
agreement, not only qualitative but also quantitative.

Small amplitude behaviour is well predicted by linear theory [1, 2, 20]. The resulting motion
is similar to the shown in first row of Figure 2: the internal wave attractor is formed. With
higher amplitude we will get unstable wave attractor, which is shown in Figure 2: the first row
shows the attractor just after it’s formation, and the pictures in second row show the developing
triadic resonance. At the same time no significant interaction with the walls, except for well
predicted reflections, can be noted.

In Figure 3 you can see sequence of snapshots for twice higher amplitude a = 0.5cm. Here
you can see appearance of folding in the wall regions. Layers of high concentrations are first
formed due impermeability of the walls and rotational motion of waves. Next they begin to
propagate inside the domain, where they interact with the background flow.
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Figure 3: Results of DNS with large amplitude a = 0.5cm. Time-evolution of horizontal component of density
gradient ∂ρ/∂x
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4 CONCLUSIONS

Direct numerical simulation of large amplitude internal wave attractors have shown the pres-
ence of folding structures in the wall regions of the container. They appear as a result of oscillat-
ing wave-like rotating motions of fluid near the boundaries. Since the boundaries are imperme-
able for salt and ratio of diffusion of motion and of concentration is very high (Sm=700), these
folding structures are not quickly dissipated and propagate to the interior of the domain, where
they interact with the background flow and influence mean stratification on long time periods.
Since the precess is highly nonlinear and application conventional numerical methods is of-
ten criticized, careful experimental investigation is now needed fully describe this phenomena.
Qualitative assessment of vertical transport and impact on background stratification is needed
to describe interaction of the wave attractor and folded structures.
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Abstract. In the chemical industry are widely used fluidized bed apparatus. The advantage of 
them is the high speed of heat and mass transfer between components of the reaction, which 
are in different aggregation states. Studies of large-scale apparatus are hindered big sizes 
and plurality of structural elements. Often such apparatus operate at high temperatures (500-
900 C), which further complicates the study. In this paper we consider a fluidized bed reactor 
block intended for the dehydrogenation of isobutane. In numerical simulation of fluidization 
was extended Eulerian-Eulerian approach. Differential equations that describe the hydrody-
namic and thermal processes in the field of computational model of the reactor were solved in 
ANSYS Fluent CFD for axisymmetric unsteady flow scheme. At full simulation of the unit of 
the reactor in differential equations for the mass fraction of components of the gas mixture is 
necessary to consider changes related with chemical reactions. In the model used for this 
purpose it is necessary to add terms to the equations of mass transfer and absorption of heat 
depending primarily on the gas temperature and catalyst concentration. In this paper we’ll 
restrict considering the minimum number of components of the reaction (raw materials – iso-
butane, product - isobutylene). For a given chemical reaction is written User Defined Func-
tions (UDF). The influence of the ambient gas, the catalyst and the time step on the progress 
of chemical reaction in the volume element is studied. Numerical calculations were carried 
out, due to them circulating streams in the apparatus, the temperature field distribution of the 
catalyst and the conversion of the feeding gas-raw were analyzed. 
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1 INTRODUCTION 
In the chemical industry fluidized bed apparatus are widely used. The advantage is the high 

rate of heat and mass transfer between the reaction participants being in different aggregate 
states. It is known a large number of works devoted to the experimental results and construct-
ing on their basis simplified models of fluidization and recommendations for the fluidized bed 
apparatus operations (e.g. [1-5]). Although such apparatus are used in the industry for over 
fifty years, interest in the study of the properties and possibilities of the fluidized bed use is 
not dried up due to the advent of new and modernization of existing apparatus and technolo-
gies. 

In numerical simulation of fluidization Euler-Euler approach was extended, when the car-
rier (gas, liquid) and discrete (solid) phase are considered as continuous. To account for fea-
tures of movement in a fluidized bed, by analogy with the kinetic theory of gases, is added the 
equation describing the change in the kinetic energy of the granules due to their collision (e.g. 
[3]). Ability of numerical implementation of the equations, describing the fluidized bed, al-
lows calculations of different variations of the fluidization process, that are of interest both in 
terms of fundamental research and practical application. 

Each structural element in particular the feed supplying device to the reactor contributes to 
the apparatus efficiency. Changes in the character of the movement and concentration of par-
ticles along the wall with deflectors are shown in [6]. In works [7, 8] by numerical simulation 
the effect of ring baffles located on the walls of the cylindrical apparatus on the hydrodynam-
ics of the fluidized bed was analyzed. Experimental studies with internal elements in a liquid-
solid fluidized bed are presented in [9]. Investigations of fluidized bed processes in the col-
umn with an inner cylinder were experimentally made in [10]. Modelling and comparative 
analysis of two large fluidized bed units with various feed gas supply devices is carried out in 
[11]. Investigations of [12] describe a numerical simulation of the fluidized bed and the kinet-
ics process of olefins production from methanol. There are various mathematical models, for 
example, to the forces of resistance, viscosity and heat transfer, analysis of the applicability of 
the investigated parameters, for example, in [13, 14], performing numerical simulations. 

A mathematical model and a numerical study of the chemical parameters of the fluidized 
bed reactor unit, intended for the dehydrogenation of isobutane to isobutylene, were made in 
this paper. A simplified model of the basic chemical reaction was constructed. The fields of 
the catalyst concentration, temperature fields and fields of dehydrogenation reaction product 
were obtained. The analysis of the circulation flows was carried out. The effect of slight struc-
tural modifications on the efficiency of the reaction product formation was carried out. The 
change of the circulating gas flow and catalyst due to the changes in apparatus construction 
was shown. The effect of fractional composition of the catalyst on the efficiency of the reac-
tion product was demonstrated. It was obtained that formation of circulating flow is sensitive 
to the particle size selection. 

2 PROBLEM FORMULATION 
Chemical unit of the fluidized bed reactor intended for the dehydrogenation of isobutane is 

considered. Reactor has a cylindrical form and a height of the operating area is 11 meters and 
5.2 meters in diameter. At the bottom of the reactor a feeder of gas feedstock is located. The 
load on the reactor unit feed is 20-40 tonnes per hour at a temperature of 550 ° C. Used gas 
feedstock is isobutane fraction of the following composition: 
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Component Н2 i-С4Н10 n-C4H10 i-С4Н8 n-C4H8 С4Н6 
Mass 
fraction,.% 0.3-1.0 91-90 0.5-2.0 5.0-7.2 0.2-1.3 

0.01-
0.05 

 
Table 1: Fractional composition of the gas feedstock. 

There is aluminum chrome microspheroidal catalyst in the reactor with the particle diame-
ters of 20-200 microns. A vertical pipe feeding regenerated catalyst at a temperature of 
650 °C is along the axis of the reactor. The pipe length is of 7 m. The process of catalyst cir-
culation from the reactor to the regenerator and back is continuous and the volume flow rate 
of the circulating catalyst is 60-100 tons per hour. Channel for discharging the catalyst into 
the regenerator is at the bottom part of the reactor. In the middle of the reactor in the working 
area angular falling type lattices with a free cross section about 30% are located. In the upper 
part of the reactor 6 pairs of cyclones are arranged for separation of exhaust gas from the reac-
tor and returning the catalyst particles getting into the working zone of the reactor. Figure 1 
demonstrates a scheme of meridian section of the reactor unit. 

 
Figure 1: Scheme of meridian section of the reactor unit. 

The main chemical reaction in the block is the dehydrogenation of isobutane, accompanied 
by the hydrogen evolution and heat absorption: 

 4 10 4 8 2C H C H H H.↔ + +∆  (1) 

Dehydrogenation of С3-С5-paraffins is thermodynamically feasible only at temperatures 
300-900 °C [15]. With non-localized energy supply to the hydrocarbon molecule the conver-
sion will follow the path of cracking. Therefore, the dehydrogenation of paraffins can be carry 
out practically only in the presence of catalysts, that selectively increase the rate of dehydra-
tion by changing its activation energy, but not affectng the rate of reaction chain breaking. In 
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industrial processes the dehydrogenation of C3-C5 paraffins is carried out at temperatures of 
520-620 °C and at a pressure close to atmospheric pressure or under vacuum [15]. At a tem-
perature of 550-580 °C in the dehydrogenation of isobutane to aluminum chrome catalyst de-
hydrogenation reaction yield product (isobutene) is 35-50 % of mass fraction, cracking 
products is ∑(С1-С3) = 3-7 % of mass fraction, isomerization (n-butylene ) = 0.2-0.5% of 
mass fraction, the oligomerization product yield (divinyl) is not more than 0.2% of mass frac-
tion. The amount of coke formed on the catalyst is 0.2-2% of mass fraction. To remove high 
molecular hydrocarbon deposits use periodic catalyst regeneration by burning out the coke 
from the catalyst surface with fuel gas and air at a temperature of 650-670 °C. 

3 MATHEMATICAL MODEL AND NUMERICAL SIMULATION 
Considering chemical reactor unit consists of a large number of structural elements. The 

constructing of a three-dimensional mathematical model with all structural parts would lead to 
a great cost of calculation time. The cylindrical form of unit, the central pipe and circular ar-
rangement of gas supply nozzles and cyclones allows the use of the model of axial symmetry. 
It is considered that an arbitrary meridional cross-section of the unit fully describes the pro-
cesses taking place in the reactor. The geometry used in calculations corresponds to the figure 
1. The axisymmetric model assumes that the reactor model is constructed by the geometry 
(shown in the figure) rotating around the axis of symmetry. The geometrical sizes of the mod-
el correspond to the geometric sizes of the test reactor unit. 

3.1 Fluidized bed model  
In the numerical simulation of a fluidized bed in a chemical reactor the continuous multi-

phase model was used, supplemented by kinetic theory of gases for the accounting the colli-
sions of solid particles. At the same time several phases may be considered: gas, liquid or 
solid in any combination. For each of the phases holds the laws of mass conservation, mo-
mentum and energy. 

The equation of mass conservation for the i-th phase is: 

 ( ) 0,i i
i i iv

t
α ρ α ρ∂

+∇⋅ =
∂

  (2) 

where for the i-th phase: iα  is volume fraction, iρ  is real density, iv  is velocity. 
The equation of momentum conservation for the i-th phase can be expressed as: 

 ( ) ,i i i
ii i i i i i i ij

j

v v v p g R
t

α ρ α ρ α t α ρ∂
+∇⋅ = − ∇ +∇⋅ + +

∂ ∑
     (3) 

where p is pressure, it  is stress tensor in the i-th phase, ijR


 is the interaction force between 
the i-th and j-th phases. In equation (3) the stress tensor is written as: 

 ( ) 2
3

T
i i i i i i i i iv v v It α µ α λ µ = ∇ +∇ + − ∇⋅ 

 
   , (4) 

where ,i iµ λ  are shear and bulk viscosity, I  is unite tensor. 
Interfacial interaction force is written as 

 ( ),ij ij i jR K v v= −
    (5) 
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where ijK  is interfacial interaction coefficient. 
The equation of energy conservation for the i-th phase is: 

 ( ) : ,i i i i
ii i i i i i ij

j

h pv h v Q
t t

α ρ α ρ α t∂ ∂
+∇ ⋅ = + +

∂ ∂ ∑   (6) 

where ih  is enthalpy of the i-th phase, ijQ  is heat transfer rate between i-th and j-th phases. 
At movement of microspheroidal solid phase, consisting of granules, particles collide. As a 

result of the collision changes the kinetic energy of the granules. To account for the interac-
tion of solids particles is used equation with the change of energy through a change in tem-
perature of the particles [26]: 

 ( ) ( )3 ( ) : ,
2

i i i
ii i i i i i i i i ijv p I v k

t θ θ
α ρθ α ρ θ t θ γ φ∂ +∇ ⋅ = − + ∇ +∇⋅ ∇ − + ∂ 

   (7) 

where ip  is granules pressure of the i-th solid phase, ikθ  is diffusion coefficient of granules 
energy, iθ  is granules temperature of the i-th solid phase, iθγ  is dissipation of energy because 
of particles collision, ijφ  is energy exchange between the i-th solid phase and the j-th liquid 
(gaseous) phase. 

Written system of equations is not closed. To close the system use relationships obtained 
from experimental studies of the fluidized bed. 

In fluidized bed models the force of interaction between phases is written in the form (5), 
where the coefficient of interfacial interaction ijK  obtained in experimental studies, depend-
ing on types of the interacting phases. It is considered, that ij jiK K= . In the case of the inter-
action of two phases liquid or gaseous type the resistance is determined by the Schiller and 
Naumann model [17]. In the case of interaction between two phases, that are liquid (gaseous) 
phase (the i-th phase) and the granular solid phase (j-th phase) in (5) used Syamlal and O'Bri-
en model [18]. In the case of interaction between two solid granular phases in equation (5) 
interfacial interaction coefficient is taken according Syamlal O'Brien model [19]. 

The term iθγ  in equation (7) to the temperature of solid phase particles granules character-
ize the rate of energy dissipation in the i-th solid phase caused by collisions between phase 
particles. Energy dissipation due to the particles collision is written in the expression, ob-
tained in Lun et al. model [20]. Coefficient of heat transfer intensity between i-th and j-th 
phase is determined for the interaction of the two liquid phases by expression of Ranz and 
Marshall model [21, 22]. In the case of granular solids for Nusselt number calculation at the 
heat exchange between the i-th solid phase and j-th liquid (gaseous) phase use an expression 
from the work of Gunn model [23]. For the heat exchange intensity balance relations 

ij jiQ Q= −  and 0iiQ =  are performed. 
The motion considered in the reactor at the accepted loads of gas feedstock and parameters 

of the used catalyst was turbulent. In the model allowed to calculate solutions used k ε−  tur-
bulence model in which the motions of "secondary" granular solid phases were generated on 
the background of the turbulent motion of "primary" gas phase. 

3.2 Chemical reaction model  
Let us consider the basic chemical reaction only. It is described by the relation (1). The 

equation for the reaction product of can be written as: 
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 ( )prod
cat feedstock feedstock

m
V f T

t
ρ

∂
= ⋅ ⋅

∂
, (8) 

where prodm  is mass of the dehydrogenation (isobutylene) reaction product, catV  is volume 
fraction of catalyst, prodρ  is the product (isobutylene) density, ( )feedstockf T  is function that de-
termines the conversion depending on the feedstock gas temperature.  

The function ( )feedstockf T  is based on the approximation of the experimental data and is: 

 19702.791( ) 734.9314 .feedstock
feedstock

f T
T

= −  (9) 

The dependence of the functions in the range of the temperature change from 550 to 
650 °C is presented in Figure 2. 

 
Figure 2: Function of conversion depending on the feedstock gas temperature. 

3.3 CFD solver  
Differential equations that describe the hydrodynamic and thermal processes in the field of 

computational model of the reactor were solved in CFD ANSYS Fluent package for axisym-
metric unsteady flow scheme. The entire computational domain, shown in Figure 1, was di-
vided into elements of a triangular or rectangular shape in different subregions of the 
computational domain, the dimensions of which were sufficient to determine the characteris-
tic of the investigated phenomenon factors. For specified initial distribution of the catalyst in 
the reactor, after a while the flow entered a quasi-stationary mode. Hydrodynamic and thermal 
characteristic pictures of the reactor work calculated on this mode. Mass transfer due to the 
chemical reaction is implemented as a plug-in user-defined function (UDF). Time to quasi-
stationary mode of one calculation depended on the conditions of the computational experi-
ment and the average value of the order of 60 seconds of real time reactor’s unit operation. 

In each of the selected items are solved described above equations of the mathematical 
model of fluidized bed. Accordingly, the partition into a greater number of elements leads to a 
better accuracy of the calculations, but also leads to increase in the required computer re-
sources. In this work, in calculations carried out the average number of finite elements was 
500 thousand. Partitioning into finite elements near the gas feedstock supply models or arrays 
of nozzles built small enough to maximally correct reflect features of hydrodynamics and heat 
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and mass transfer relatively to the processes taking place in the operating chemical reactor. 
The average size of discrete element faces is 5 mm. 

Boundary conditions were set on all elements of each of the constructed model of the reac-
tor unit in accordance with the operating mechanism and used the solver. As the reactor mod-
el assumes rotationally symmetric, so on the axis of the constructed model was set conditions 
of axial symmetry. On all impermeable surfaces were conditions as walls. On models of gas 
feedstock supply nozzles and the outlet of the centrally located pipe of catalyst feed used ve-
locity-inlet conditions (the value of the flow rate). Velocities were set according to the bal-
ance of the gas and catalyst flow rate. Temperatures of gas supplied and the catalyst were 
placed at 550 °C and 650 °C respectively. Outflow conditions (free output stream) were set in 
the area at the top of the reactor model for a gas outlet and at the bottom zone of the reactor to 
simulate the flow of catalyst into the regenerator. Also, through the part of free outlet stream 
at the top of the reactor there is a remove of fine catalyst particles. In the operating reactor 
particles from the top part return back into the working area over lattices with the help of cy-
clones. In constructed model on the output channels of cyclones were set velocity-inlet condi-
tions in accordance with a flow rate of catalyst through the outlet channel in the upper part of 
the reactor. 

4 RESULTS AND DISCUSSION  

4.1 Results for base case of reactor  
First were performed calculations for monodisperse catalyst. Particles size was selected of 

100 microns. Operating time of the reactor unit is 90 seconds. Further calculation for two-
fractional catalyst was carried out: a coarse fraction is 100 microns (80%), fine fraction is 50 
microns (20%). Figure 3 shows the field of catalyst concentration and volume fraction of the 
reaction product of: a is for monodispersed catalyst, b is for polydisperse catalyst. The blue 
color corresponds to the absence of the phase under consideration. 

 
Figure 3: Calculation results. 
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It is evident that product formation corresponds to the catalyst concentration. In both cases 
there is an area with a low concentration of catalyst and product around the central tube. De-
tailed analysis has shown that we can see a downflow along pipe of incoming catalyst at a rate 
of about 2.5 m/s. In general, the presence of fine fraction contributes to a more intensive cir-
culation and more uniform distribution of the catalyst in the unit. The volume of the reaction 
product located in unit in the case of monodisperse catalyst is 40% and for the case of poly-
disperse catalyst is 44%. 

4.2 Reactor optimization variants  
Two versions of a slight unit modification have been proposed to improve performance. 

The aim was to redirect flow downward along the tube of incoming hot catalyst into the cen-
tral zone of the reactor. Following this purpose two variants of modifications were suggested. 
a) The dispenser on pipe outlet, which should increase penetration of the catalyst into the 
heated reactor zone midway between the central pipe and the outer wall. Considered a deflec-
tor on the end of catalyst feed pipe. 
b) Deflectors along the tube in the lattices zone provide catalyst redirection in the inter-lattice 
space. Number - between all the lattices. Slope - 45 degrees. Length - so that the edge of the 
deflector cover the edge of the lattice. Position - above the lattice, with a small gap between 
deflector and the lattice. 

Figure 4 shows volume fraction of the reaction product fields for monodisperse and poly-
disperse two-fractional catalyst: a is the base of the reactor configuration; b is the presence of 
the deflector at the end of the catalyst feed pipe; c is the case with deflectors along the central 
tube. 

Table 2 shows calculation results for volume fraction of the reaction product in the unit 
without modifications and with two variants of slight modifications. 

 

Calculation 
variant 

Basic variant Modification 1 Modification 2 
mono-
disperse 

poly-
disperse 

mono-
disperse 

poly-
disperse 

mono-
disperse 

poly-
disperse 

Volume frac-
tion, % 40 44 49 42 36 41 

 
Table 2: Volume fraction of the reaction product for different variants of the reactor constructions. 

It is shown from Figure 4 and Table 2 that the presence of fine particles, zone of reaction 
product formation and the volume fraction are just about the same for all three cases. This is 
due to the fact that the presence of fine phase determines circulating flows in the unit, pushing 
and pulling the larger particles. Since the fine particles are moving fast on the carrier gas 
background phase, then they are less sensitive to small structural modifications. 

A completely different picture is observed while considering in numerical simulation only 
one averaged fraction of coarse particles. The coarse particles have more inertia and respond 
to the geometrical features of the reactor unit. In original variant of the apparatus one global 
circulation flow on the whole volume of the unit is formed. The use of deflectors on the tube 
(modification 2) forms a main circulating flow in the upper part of the apparatus and a few 
smaller on the bottom. Such modification degrades the production at the bottom unit, and de-
creases overall efficiency. Throw the coarse particles in the middle zone of the reactor (modi-
fication 1) showed the best result because of breaking a single global circulation flow. 
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Figure 4: The results of calculations for units with modifications. 

Calculations in this work were made for the averaged coarse fraction of catalyst of 100 mi-
crons, with an average speed of the cross section of the apparatus of 0.3 m / s. Note that the 
sensitivity of circulating flows formation of the reaction product does not depend only on the 
apparatus geometrical characteristics, but also on the fraction of the catalyst composition. The 
particle size of the main coarse fraction at specified gas flow rate will also determine the ap-
paratus efficiency. 
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5 CONCLUSIONS  

• A model of large-scale industrial fluidized bed reactor is constructed. The mathematical 
model is based on the Euler approach in describing discrete phase of particles motion as 
a continuous. Numerical implementation was carried out using Ansys Fluent software. 

• A simplified chemical reaction model of isobutane to isobutylene dehydrogenation is 
constructed. The model is implemented and connected to a user-defined function (UDF). 

• The fields of catalyst concentration, temperature field and the field of dehydrogenation 
reaction product were obtained. The analysis of circulation flows was carried out. 

• The effect of slight structural modifications on the efficiency of product formation is in-
vestigated. The change of circulating gas flows and catalyst due to the change in appa-
ratus construction is shown. 

• The analysis of catalyst fractional composition effect on the efficiency of the reaction 
product was carried out. The sensitivity to the formation of circulating flow on the range 
of particle size is shown. 
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Abstract. In the last recent years, thanks to the increasing power of the computational ma-
chines, the interest in more and more accurate numerical schemes is growing. Methods based
on high-order approximations are nowadays the common trend in the computational research
community, in particular for CFD applications.

This work is focused on Powell-Sabin (PS) finite elements, a finite element method (FEM)
based on PS splines. PS splines are piecewise quadratic polynomials with a global C1 conti-
nuity, defined on conforming triangulations. Despite its attractive characteristics, so far this
scheme hasn’t had the attention it deserves. PS splines are adapted to unstructured meshes
and, contrary to classical tensor product B-splines, they are particularly suited for local re-
finement, a crucial aspect in the analysis of highly convective and anisotropic equations. The
additional global smoothness of the C1 space has a beneficial stabilization effect in the treat-
ment of advection-dominated equations and leads to a better capturing of thin layers. Finally,
unlike most of other typology of high-order finite elements, the numerical unknowns in PS ele-
ments are located in the vertices of the triangulation, leading to an easy treatment of the parallel
aspects.

Some geometrical issues related to PS elements are discussed here, in particular, the gen-
eration of the control triangles and the imposition of the boundary conditions. The PS FEM
method is used to solve the compressible Euler equation in supersonic regime. A classical
shock-capturing technique is used to reduce the oscillation around the discontinuity, while a
variational multiscale formulation is used to introduce numerical diffusion in the streamwise
direction. Some typical numerical examples are used to evaluate the performance of the PS
discretization.
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1 INTRODUCTION

Numerical methods with high degrees of regularity are of interest in many physical appli-
cations, such as magnetohydrodynamics, shells analysis and vibrations. In particular, finite-
element methods based on spline shape functions have raised a particular interest in the recent
years. On one hand, C1 spline methods allow to discretize higher-order derivatives (that is,
derivatives of order superior to the second), and on the other hand, they provide accurate geo-
metrical representation of the computational domain, see for example [1, 3] in the context of
Isogeometric Analysis. Moreover, it has also been shown recently that the additional global
smoothness of the spline interpolant introduces stability to the numerical solution for highly
convective equations, see [1] and [7], and also for turbulence computations, see [2]. Hence,
finite element methods based on spline shape functions can be advantageous also in the context
of fluid-dynamic problems.

Nowadays, splines are extensively used in the graphical design industry to create smooth
surfaces. The success of splines is basically due to the fact that they have very attractive and
unique characteristics: they have a compact representation, they are able to represent curves
and surfaces with an arbitrary level of regularity, simply increasing the polynomial degree of
the basis, and they are efficient in terms of locality, that is, they can be modified locally by
moving a control point, without perturbing the rest of the curve. Spline curves are usually
represented as a linear combination of basis functions, called B-splines. The basis functions
of a given order p are defined with a recursive relation starting with piecewise constant basis
functions (that is, p = 0),

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ),

where the points ξi are the knots of the spline, i = 1, 2, . . . , n + p + 1, and n is the number of
basis functions. Hence, the spline curve expressed as a combination of B-splines is

S(ξ) =
n∑
i=1

Bi,pPi, (1)

where Pi are the control points of the spline.
Starting from the one-dimensional case (1), B-splines can be extended to higher dimensions

through a tensor product representation. However, tensor product B-splines are restricted to
structured rectangular meshes. The refinement procedure with tensor B-splines relies on the
insertion of knots, leading hence to a global modification of the domain discretization. Thus, no
local refinement is possible. Various solutions are proposed in literature to solve this limitation,
for example, the introduction of T-splines in [3].

This work is focused on another approach, based on the definition of bivariate splines on
irregular triangulations, that is, Powell-Sabin (PS) splines [5, 6, 7, 8]. PS splines are piece-
wise quadratic polynomial with C1 continuity, defined on a unstructured triangulation of the
domain. The major advantage with respect to tensor product B-splines is that PS splines allow a
straightforward adaptive refinement of the mesh, which is a key ingredient in the simulation of
anisotropic equations. Another advantage of PS elements is related to the fact that the unknowns
are concentrated on the nodes of the triangulation. This means that there are no unknowns on
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the element faces or in the interior of the elements. This is not the case for other C1 interpola-
tion techniques, such as, for example, the Clough-Tocher elements. The consequence is that the
stencil is the same for each node of the mesh, which produces a linear system matrix with a reg-
ular block shape that facilitates the implementation aspect, enhances the parallel performance
and improves the efficiency of the linear system solution.

In this work, a PS finite element method is presented for the solution of the two dimensional
(2D) compressible Euler equation in supersonic regime. A SUPG stabilization technique is used
to introduce numerical dissipation in the streamwise direction only, and an isotropic diffusion
terms is added to avoid oscillation around the discontinuities.

The outline of the paper is as follows. Section 2 introduces the PS splines and their represen-
tation. Section 3 deals with the geometrical and mathematical tools to define the PS elements
and in particular the generation of the shape functions. A detailed discussion is also given on the
imposition of the boundary conditions. Finally, in Section 4 two classical numerical examples
are presented.

2 POWELL-SABIN SPLINES

In this section is introduced the framework and the notation to define spline functions on a
triangulation of a polygonal domain. Starting from the definition of bivariate polynomials on a
triangle, the goal is to obtain an interpolant of a generic function with C1 continuity. Consid-
ering a single triangle Ωk of vertices Vi = (xi, yi), with i = 1, 2, 3, any bivariate polynomial
p(x, y) of degree ≤ 2 in the space Π2 = {

∑2
i=0

∑2−i
j=0 ai,jx

iyj, ai,j ∈ R} can be written in the
Bernstein-Bézier representation

p(x, y) := p(ξ) =
∑

i+j+k=2
i,j,k≥0

bi,j,kB
2
i,j,k(ξ(x, y)), (2)

where ξ = (ξ1, ξ2, ξ3) are the barycentric coordinates of a point (x, y) ∈ R2 and B2
i,j,k(ξ) are

the Bernstein polynomials of degree 2 in Ωk, that is

B2
i,j,k =

2!

i!j!k!
ξi1ξ

j
2ξ
k
3 . (3)

The set of Bernstein polynomials B2
i,j,k(ξ) is a basis for the space of polynomials Π2, see [4],

hence the six coefficients bi,j,k uniquely define the second order polynomial p(x, y) and they are
called the Bézier ordinates with respect to the triangle Ωk

1.
Let Ω ⊂ R2 be a polygonal domain with boundary ∂Ω. Let T be a conforming triangulation

of Ω with vertices Vl, l = 1, . . . , Nv and elements Ωe, e = 1, . . . , Ne. Defining S2
1 as the

linear space of piecewise quadratic polynomials on T , the following interpolation problem is
considered: given any set of triples (fl, fxl, fyl), l = 1, . . . , Nv, find s(x, y) ∈ S2

1 such that,

s(Vl) = fl,
∂s

∂x
(Vl) = fxl,

∂s

∂y
(Vl) = fyl, l = 1, . . . , Nv. (4)

It is clear that such a problem has no solution in general: in fact, problem (4) requires the
imposition of nine parameters to define the second order polynomial on each triangle, while
only six coefficients are available, see equation (2).

1Note that (2) can be expanded as p(ξ) = b2,0,0ξ
2
1+b0,2,0ξ

2
2+b0,0,2ξ

2
3+2b1,1,0ξ1ξ2+2b1,0,1ξ1ξ3+2b0,1,1ξ2ξ3.
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Thus, to obtain a solution to the interpolation problem (4), one possibility is to subdivide
each triangle in sub-triangles and to define the interpolant in the refined triangulation. One of
the solutions proposed by Powell and Sabin in [5] is based on the subdivision of each triangle
in T into six smaller triangles (PS6-split). Hence, the conditions in (4) are imposed only on the
vertices of the original triangulation, while in the other added nodes only C1 continuity of the
interpolating function is imposed. More details can be found in [5].

The so called Powell-Sabin refinement of T is denoted with T ∗ and is obtained dividing each
triangle in T in six sub-triangles. The procedure to define T ∗ is described in [7] and reads as
follows.

• Select a split point Ck inside each triangle Ωk and connect it to the three vertices of Ωk.

• For each pair of triangles Ωp and Ωq, with a common edge, connect the two points Cp and
Cq. If Ωp is a boundary triangle, connect also Cp to an arbitrary point on the boundary
edge.

The PS refinement defines also a set of points, called PS points, associated to each vertex.
The PS points associated to the vertex Vl are defined as the midpoints of all the edges of the
PS refinement containing Vl, plus the point Vl itself. The PS points are fundamental for the
definition of the shape functions as explained in the next section.

Having defined the PS refinement T ∗, the linear space of piecewise quadratic polynomials
with C1 continuity can be denoted as S1

2(T ∗). Each element S1
2(T ∗) is uniquely defined by

its values and derivatives at the vertices of T , thus the functional space S1
2(T ∗) has dimension

3Nv.

3 POWELL-SABIN FINITE ELEMENTS

In this section PS splines are introduced in a finite-element framework to solve partial differ-
ential equations, defining shape functions belonging to the space S1

2(T ∗). Hence, it is necessary
to express each element s(x, y) ∈ S1

2(T ∗) as a linear combination of PS spline basis functions,
that is

s(x, y) =
Nv∑
l=1

3∑
r=1

cl,rB
(r)
l (x, y),

where the functions B(r)
l are called Powell-Sabin B-splines and cl,r are the coefficients of the

representation.
Each B-spline B(r)

l (x, y) can be seen as the solution of the interpolation problem (4) with
all (fi, fxi, fyi) = 0 except for (fl, fxl, fyl) = (α, β, γ) 6= 0. The quantity (α, β, γ) is called a
triple and represents the value of the function and the derivatives with respect the Cartesian axes
in a given vertex. Then, it is easy to see that each basis B(r)

l , r = 1, 2, 3, vanishes outside the
moleculeMl of vertex Vl defined as the union of all triangles Ωe containing Vl. This guarantees
the compactness of the support for PS B-splines.

In principle, it is possible to define the PS B-splines simply choosing, for each vertex
Vl ∈ T , three linearly independent vectors (αl,r, βl,r, γl,r), r = 1, 2, 3, and solving the in-
terpolation problem (4). This procedure generates three linearly independent basis functions
for each vertex. However, in a finite element context, it is interesting to work with normalized

7152
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B-splines, that is, basis functions that form a partition of unity on Ω, i.e.

B
(r)
l (x, y) ≥ 0 ∀x, y ∈ Ω,

Nv∑
l=1

3∑
r=1

B
(r)
l (x, y) = 1 ∀x, y ∈ Ω,

which leads to the following constrains on the triples

3∑
r=1

αl,r = 1,
3∑
r=1

βl,r = 0,
3∑
r=1

γl,r = 0.

This property is also crucial to ensure the completeness of the basis.
The procedure proposed in [8] allows to obtain PS B-splines that form a partition of unity

and with good characteristic from a numerical point of view. It is based on the fact that each
set of three independent B-splines associated to a vertex Vl uniquely define a control triangle
Tl = (Ql,1,Ql,2,Ql,3) for the PS spline, with vertices Ql,j = (Xl,j, Yl,j), j = 1, 2, 3. The
control triangle of a PS spline as a role similar to the control polygon for univariate splines in
terms of control of the shape of the spline. In fact, in [8] it is shown that the control triangle
and the coefficients cl,j define three control points (Xl,j, Yl,j, cl,j) defining a spatial plane that is
always tangent to the spline surface at the vertex Vl. Optimal shape functions from a numerical
point of view are associated to a minimal area control triangle [8].

The points Ql,j are related to the three triples and the vertex Vl via the linear systemαl,1 αl,2 αl,3
βl,1 βl,2 βl,3
γl,1 γl,2 γl,3

Xl,1 Yl,1 1
Xl,2 Yl,2 1
Xl,3 Yl,3 1

 =

xl yl 1
1 0 0
0 1 0

 . (5)

The positivity of the B-splines associated to the vertex Vl is guaranteed if all the barycentric
coordinates with respect the control triangle Tl of all the PS points associated to Vl are positive.
This means geometrically that all the PS points associated to Vl are contained in the control
triangle Tl, see Figure 1.

Hence, the procedure of computing the three shape functions for each vertex is:

• find a suitable control triangle for the vertex Vl that contains all the PS points associated
to Vl;

• compute the triple defining the three shape functions solving the linear system (5).

The control triangles for each vertex are constructed looking for the minimal area triangle that
contains all the PS points. This lead to an optimization problem consisting in circumscribing a
convex polygon with a minimal area triangle. An optimal algorithm is proposed by O’Rourke
in [9] for solving such a problem, with a computational cost O(n), with n the number of PS
points. This is the algorithm used here in the numerical tests. In Figure 1 is depicted an example
of control triangle, with the relative PS control points, obtained with the O’Rourke algorithm.

In order to understand the role of the control triangle in the definition of the basis functions,
a comparison of the condition number of the linear system matrix as been carried out for three
structured computational meshes for a square domain [0, 1]×[0, 1]. In the first case, the minimal
area triangle have been used to compute the basis. In the second case, the minimal area triangle
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Vl

Figure 1: Powell-Sabin control triangle and relative Powell-Sabin points for the vertex Vl.

Table 1: Condition number comparison for the stiffness matrix and the mass matrix obtained with optimal and
non-optimal control triangles in a square domain: Ne is the number of triangular elements of the mesh, h is the
element size.

Cond. numb. of the stiffness matrix Cond. numb. of the mass matrix
Ne h optimal non optimal optimal non optimal
200 70.71E-03 83 389 171 4466
800 35.36E-03 326 453 163 4466

3200 17.68E-03 1305 1585 154 4469

has been expanded moving (to a distance equal to five times the original one) each vertex along
the line joining the vertex with the node to which the triangle belongs. Table 1 shows the results:
it is possible to notice how increasing the control triangle area degrades the condition number
of mass matrix and the stiffness matrix.

4 STABILIZED APPROXIMATION OF THE EULER EQUATIONS WITH POWELL-
SABIN ELEMENTS

The 2D inviscid Euler equations of gas dynamics are considered,

∂ρ

∂t
+ ∇·(ρu) = 0

∂ρu

∂t
+ ∇·(ρu⊗ u + pI) = 0

∂ρE

∂t
+ ∇·((ρE + p)u) = 0

(6)

where ρ is the density, u is the velocity vector, E is the total energy, I is the identity matrix
and p is the pressure, which is defined by the equation of state p = (γg − 1)ρε, γg = 1.4 is the
ratio of specific heats and ε = E − 1/2‖u‖2 is the internal energy.

Problem (6) is recast in a conservative form,
∂U

∂t
+ ∇·F = 0, (7)

having defined the vector of conservative variables U = (ρ, ρu, ρv, ρE)T and the flux tensor F
with components, in Cartesian coordinates,

F =
[
F x F y

]
, F x =


ρu

ρu2 + p
ρuv

(ρE + p)u

 , F y =


ρv
ρuv

ρv2 + p
(ρE + p)v

 ,
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where u and v are the x and y components of the velocity vector.
A stabilized formulation based on PS splines is considered to solve problem (7). To simplify

the presentation, in an abuse of notation, the same symbol is used for the numerical approxima-
tion, belonging to the finite dimensional space, and the exact solution U . Hence, the stabilized
finite element problem corresponding to (7) reads: find U ∈ [S1

2(T ∗)]4 such that∫
Ω

V · ∂U
∂t

dΩ−
∫

Ω

∇V ..F dΩ +

∫
∂Ω

FV · n dΓ +DSUPG +DSC = 0, (8)

for all V ∈ [S1
2(T ∗)]4. The terms DSUPG and DSC are the stabilization terms and they will be

discussed later.
A fully implicit first-order time integration scheme is employed to approximate the time

derivatives. The non-linear convective term is linearized using a Newton-Raphson procedure of
the type ∫

Ω

∇V ..Fk dΩ ≈
∫

Ω

∇V .. Ak−1U k dΩ,

where k stands for the current N-R iteration and the third order tensor A is the Jacobian of the
flux,

A =
∂F
∂U

,

and can be expressed as a second order tensor for each Cartesian direction, that is

∂F x

∂U
=


0 1 0 0

γg−1

2
‖u‖2 − u2 (3− γg)u (1− γg)v γg − 1
−uv v u 0

γg−1

2
u‖u‖2 − uH −u2(γg − 1) +H (1− γg)uv γgu

 ,

∂F y

∂U
=


0 0 1 0
−uv v u 0

γg−1

2
‖u‖2 − v2 (1− γg)u (3− γg)v γg − 1

γg−1

2
v‖u‖2 − vH (1− γg)uv −v2(γg − 1) +H γgv

 ,

having defined the entalpy, H = E + p/ρ.

4.1 Imposition of the boundary conditions

Solid walls and free-stream boundaries are considered for defining the boundary conditions
of system (6). Walls are considered as slip boundary conditions, that is, the normal component
of the flux is set to zero on a wall. This kind of condition does not entail particular problems, and
it is weakly imposed by the boundary integral in (8). On the contrary, inlet and outlet boundary
conditions are imposed setting different components of the unknown vector at the boundary
nodes, depending on the subsonic/supersonic regime at the boundary, see [15]. The problem of
imposing boundary values deserves particular attention in the framework of PS finite elements.
Since these kind of conditions are typically set on straight boundaries, the interest is focused on
imposing boundary values with PS elements on polygonal boundaries.

A careful choice of the control triangle associated to the boundary node Vl simplify the
task of imposing boundary values. Two different cases must be considered: the boundary node
belongs to two edges forming an angle different to π, or equal to π. From equation (5), the
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following relations are derived

αl,1Ql,1 + αl,2Ql,2 + αl,3Ql,3 = Vl, (9)
βl,1Ql,1 + βl,2Ql,2 + βl,3Ql,3 = ex, (10)
γl,1Ql,1 + γl,2Ql,2 + γl,3Ql,3 = ey, (11)

where ex and ey are respectively the unity vector in the x and y directions. Equation (9) states
that (αl,1, αl,2, αl,3) are the barycentric coordinates of the vertex Vl with respect to the control
triangle, while (10) and (11) mean that (βl,1, βl,3, βl,3) and (γl,1, γl,2, γl,3) are respectively the
barycentric coordinates of the vectors ex and ey with respect to the control triangle.

In the case Vl forms an angle different from π, if the control triangle has two sides aligned
with the two boundary edges as in Figure 2 (left), from equation (9) derives that only one shape
function has value different from zero in Vl. This allows to directly set the boundary value to the
unknown associated to the non-zero shape function. Moreover, from (10) and (11) derives that
the other two shape functions have zero derivative in the directions the two edges concurring in
Vl. In particular, using the notation depicted in Figure 2 (left) where triangle vertices are now
called A,B and C, it results

αl,B = αl,C = 0, (⇒ αl,A = 1),{
βl,B
γl,B

}
· t = 0,{

βl,C
γl,C

}
· r = 0.

Denoting with U the component of U to be imposed, and û the L2 projection of the prescribed
values on the space of univariate quadratic splines on ∂Ω, the resulting equations relative to the
unknowns of the vertex Vl are

Ul,A = û(Vl),

Ul,A

{
βl,A
γl,A

}
· r + Ul,B

{
βl,B
γl,B

}
· r = ∇û(Vl) · r,

Ul,A

{
βl,A
γl,A

}
· t + Ul,C

{
βl,C
γl,C

}
· t = ∇û(Vl) · t,

that is

Ul,A = û(Vl),

Ul,B =

∇û(Vl) · r − û(Vl)

{
βl,A
γl,A

}
· r{

βl,B
γl,B

}
· r

,

Ul,C =

∇û(Vl) · t− û(Vl)

{
βl,A
γl,A

}
· t{

βl,C
γl,C

}
· t

,
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Figure 2: Control triangles for imposing boundary values: on an angle different from π (left) and equal to π (right).

where Ul,A, Ul,B, Ul,C are the unknowns related to the shape functions with respectively triples
(αl,A, βl,A, γl,A), (αl,B, βl,B, γl,B) and (αl,C , βl,C , γl,C).

In the case Vl belongs to a plane angle, if the control triangle is aligned with the boundary as
in Figure 2 (right), there is one shape function with zero value on Vl, see equation (9). Hence,
the unknown related to this shape function is not affected by the boundary condition. Moreover,
again equations (10) and (11) guarantee that the same shape function has zero derivative in the
direction parallel to the boundary. Thus, with reference to Figure 2 (right), results

αl,A = 0, αl,B 6= 0, αl,C 6= 0,{
βl,A
γl,A

}
· r = 0,

leading to the following relations for the unknowns in the vertex V l

Ul,Bαl,B + Ul,Cαl,C = û(Vl),

Ul,B

{
βl,B
γl,B

}
· r + Ul,C

{
βl,C
γl,C

}
· r = ∇û(Vl) · r,

that is

Ul,B =

(
û(Vl)

{
βl,C
γl,C

}
− αl,C∇û(Vl)

)
· r(

αl,B

{
βl,C
γl,C

}
− αl,C

{
βl,B
γl,B

})
· r

,

Ul,C =

(
û(Vl)

{
βl,C
γl,C

}
− αl,C∇û(Vl)

)
· r(

αl,B

{
βl,C
γl,C

}
− αl,B

{
βl,C
γl,C

})
· r

.

4.2 Stabilization by artificial viscosity

Stabilized formulations are obtained adding extra terms in the Galerkin weak form, with
the goal of reducing the instabilities with the introduction of artificial viscosity. Here, two
stabilization terms are considered.

The first term is the streamline upwind Petrov-Galerkin (SUPG) term, used to produce a
stable upwind discretization without introducing excessive numerical dissipation. The SUPG
method was introduced by T. Hughes in [11] and it is one of the most established stabilized for-
mulations in finite element flow computations. The SUPG method introduces a certain amount
of artificial viscosity in the streamline direction only.
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The second stabilization term is a shock capturing term, and it is used to prevent oscillations
around the discontinuities arising in the solution in supersonic regimes. These spurious oscil-
lations might lead to severe accuracy loss or stability problems. Differently from the SUPG
stabilization term, the shock-capturing stabilization term introduce an isotropic artificial diffu-
sion, but only in a sharp zone surrounding the discontinuities.

Since a first order time discretization is employed, a simplified version of the SUPG stabi-
lization term is used

DSUPG =
Ne∑
e=1

∫
Ωe

AT∇V ..
(
τSUPGA∇U

)
dΩe, (12)

which does not take into account the complete residual of the original equation, but only the
convective term.

The shock capturing stabilization term is

DSC =
Ne∑
e=1

∫
Ωe

∇V ..
(
τSC∇U

)
dΩe. (13)

The terms τSUPG and τSC are stabilization matrices. Various options to compute these terms can
be found in literature. In this work, for the SUPG stabilization term, two options have been
retained: the first one is a simple diagonal matrix

τSUPG ≡ τSP = τI,

and a constant value τ is used in the whole mesh, τ = dt/2, being dt the time step. The second
choice, denoted τTz, is inspired by the work of Tezduyar [13]

τTz =
(
(1/2dt)(−2) +

3∑
r=1

3∑
q=1

∣∣u ·∇B(q)
r

∣∣ )(−1/2)
.

For the shock-capturing operator, two choices described in [13, 12] are retained, and are
described using four sensors. The first sensor is based on the relative density variation and it is
defined, in each element, as

[∇̃ρ]e =
3∑
r=1

3∑
q=1

∣∣∣∣∣∇ρ ·∇B
(q)
r

|∇ρ|

∣∣∣∣∣ .
The second sensor is based on the relative gradient according to the principle axes and is written

[∇̃U ]e =

(
2∑
d=1

∥∥∥∥∂U∂xd
∥∥∥∥2
) 1

2

,

while the third sensor scales the with the values of the unknowns

[Ũ ]e = ‖U‖ .

Finally the fourth sensor takes into account the local relative convective flux

[A∇̃U ]e = ‖A∇U‖ .
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Hence, the first shock capturing artificial viscosity is defined as a combination of the sensors
with a managing parameter β as follows

τSC1(β) = [∇̃ρ]e[∇̃U ]−(2−β)
e [A∇̃U ]−βe ,

and the second
τSC2(β) = [∇̃ρ]e[∇̃U ]−(2−β)

e [Ũ ](1−β)
e [A∇̃U ]−βe .

In [12], it is suggested to use β = 1 is for smooth shocks and β = 2 for strong shocks. A
compromise between the two definitions is proposed,

τSC =
τSC(β = 1) + τSC(β = 2)

2
,

and it is the choice used in this work.

5 NUMERICAL TESTS

5.1 Numerical simulation of a supersonic flow past a forward facing step

This is classical test case for 2D numerical codes for supersonic flows and a detailed descrip-
tion can be found in [14]. It consists in a supersonic flow entering an infinite long wind tunnel
with a step. The interaction of the supersonic flow with the step and the tunnel walls creates a
typical patter of shock reflections.

The numerical set up of the simulation is as follows (see Figure 3): the computational domain
has dimensions 3 × 1 length units, and the step is 0.2 length units high and it is located at 0.6
length units from the left boundary. The flow is entering from the left boundary with a uniform
horizontal Mach 3 velocity and pressure p = 1. The tunnel walls are non-slip boundaries,
while the right boundary is a free exit. The simulation is started setting the variables at the inlet
boundary values. No particular treatment is done for the corner of the step, which represent
a singular point and it is known for introducing numerical errors, and no positivity correction
was needed for the test cases here illustrated. However, with strong refinement in the corner, a
negative pressure was developed in a point few elements after the corner and would require a
special treatment. This point is still under investigation.

For the SUPG stabilization, the simple τSM is used. For the shock capturing term, the form
τ̃SC1 is retained. The time step dt is linearly incremented at the beginning of the simulation,
until reaching a final CFL=1. In order to compare the results with [16], four computational
meshes are employed with decreasing element size h = 1/40, 1/80, 1/160, 1/320. The results
for a simulation time t = 4 are depicted in Figure 4 for the density variable. A correct shock
reflection pattern is obtained and the results are globally similar to the reference [16]. While the
Mach steam is almost completely disappeared in the finest mesh, as expected, there is no Kelvin-
Helmholtz instabilities near the top of the domain. This could be due to the extra diffusion
introduced by the triangular discretization, with respect the quadrangular used in [16], and it is
still not fully understood.

In Figure 5 is also shown the shock profile on a horizontal line at y = 0.1, for the four
meshes, with a comparison with the element size. It is possible to notice that there are no
overshoots in the solution across the discontinuity and the shock is spread across about four
element widths, which is acceptable.
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Figure 3: Forward facing step case: computational domain and boundary conditions.

h= 1/40

h= 1/80

h= 1/160

h= 1/320

Figure 4: Forward facing step problem: density ρ, 30 equally spaced contour lines at t = 4.
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Figure 5: Forward facing step case: shock profile at a section y = 0.1 for the four meshes. The discretization is
also displayed.

5.2 The Double Mach reflection test

The second test case considered is the Double Mach reflection test, also introduced in [14].
It represents the impinging of a strong shock wave, at Mach 10, against an oblique wall, which
produce a typical reflected shock with a curved shape, and a bubble of denser gas. The set up of
the test is the following, see Figure 6 : the computational domain is a box of dimensions 3× 1,
and a wall boundary condition is set in the lower boundary starting from x = 1/6. The right
boundary and the remaining of the lower boundary (from x = 0 to x = 1/6) is set to an outflow
boundary, while the left and the top boundaries are inlet boundaries. In the upper boundary, a
time variable condition is set, simulating the traveling of the shock wave to the right. In the
initial condition, the shock wave creates an angle of 60◦ from the x axis and impinges the wall
at x = 1/6. Post-shock conditions are set to the right of the wave, pre-shock to the left.

In order to avoid spurious oscillation of the solution in the first steps of the simulation, the
fields are initialized with a smooth shock profile in the domain, with the discontinuity smeared
over four elements. Moreover, the time step is increased with a cubic ramp until reaching a
CFL=1 in 100 time steps.

For the SUPG stabilization, similar results are obtained for τSM and τTz. The shock-capturing
stabilization however resulted more critical in this case: the parameter τ̃SC1 used in the previous
case resulted too diffusive, hence the form τ̃SC2 is used instead. As in [16], four meshes are
considered for comparison purpose, with element size h = 1/60, 1/120, 1/240, 1/480. Again,
a stable solution is obtained with a sharp shock resolution. However, the shock patterns inside
the bubble is not obtained, and further investigation are needed. A positivity correction was
used in this case: the value of the internal energy is artificially set to 10−5 in those Gauss points
where a negative value is obtained.

6 CONCLUSIONS

In this paper is presented a finite element method based on Powell-Sabin (PS) splines, for the
solution of the 2D compressible Euler equations in supersonic regime. The mathematical and
geometrical tools to define the PS shape functions are presented, in particular, the subdivision
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Figure 6: Double Mach reflection case: computational domain and boundary conditions.

of the elements that allows to define the PS splines as piecewise second order polynomials in
each sub-triangle, the definition of the PS points and the control triangles.

A stabilized formulation is adopted, with SUPG and shock-capturing term. A simple isotropic
artificial diffusion technique is adopted for the shock capturing term. Two classical examples
are shown: the Woodward and Colella forward-facing step with Mach 3 flow and the Double
Mach reflection test. Satisfactory results are obtained in terms of stabilization of the solution
and resolution of the discontinuities. Further investigations are needed to understand the differ-
ences with the results with the reference solution and to set up an efficient positivity correction
procedure.
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Abstract.
This work proposes and assesses two numerical models for solving high-speed condensing

flows in metastable conditions. Each model involves a set of governing equations (mass, mo-
mentum, and energy) for the mixture or the continuum phase, i.e. the vapor, and two additional
transport equations to characterize the dispersed phase. Such relations are formulated through
the so-called method of moments that allows to represent the wetness fraction and the number
of droplets of the liquid.

The transport relations are discretized in space by means of a new coupled up-wind scheme.
A segregated implicit time integration strategy is exploited to hasten the convergence of the full
system to steady-state. The performance and accuracy of both models are thoroughly inves-
tigated on a reference quasi-1D problem and confronted against experimental data and more
advanced two-phase flow models.

Results show that experimental observations are adequately predicted, especially concern-
ing the droplets dimension. It is additionally inferred that the new upwind flux is beneficial
to improve robustness of the underlying numerical methods. Finally, it is demonstrated that
the continuum phase model outperforms the mixture one in terms of numerical stability and
computational cost, thereby making it very promising for the extension to multi-dimensional
problems.
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NOMENCLATURE

Acronyms
EoS Equation of State
ORC Organic Rankine cycle
GDE General Dynamic Equation

Symbols
A Numerical flux jacobian
a1 A matrix component
a2 |A| matrix component
Ac Cross sectional area
b1 A matrix component
b2 |A| matrix component
c1 A matrix component
c2 |A| matrix component
e Internal energy
F Numerical flux
f Distribution function
G Growth rate
h Enthalpy
J Nucleation rate
Leig Left eigenvectors matrix
M Mach number
m Mass
N Droplet number per unit total

mass
P Pressure
Q Source terms vector
R Droplet radius
Reig Right eigenvectors matrix

S Source term (mass balance)
T Temperature
t Time
U Solution vector
V Generic vector (residual jaco-

bian)
v Velocity
x Space coordinate
Y Liquid mass fraction

Greek letters
α Steam volume fraction
β Empirical parameter (in J)
γ Heat capacity ratio
Λ Eigenvalues matrix
µj Moment of order -j
ρ Density

Subscripts
* Critical, correspondent to the

Gibbs free energy maximum
0 Total property
average Average properties on the do-

main (integral approximation)
c Continuum phase
d Dispersed phase
inlet Domain inlet
m Mixture
outlet Domain outlet
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1 INTRODUCTION

Metastable condensation of transonic and supersonic flows is subject of abundant numerical
and experimental research. The accurate characterization of homogeneous condensation, which
occurs when liquid particles (nuclei) can durably form in a supersaturated high-speed vapor,
is extremely relevant in a variety of industrial processes, whereby the release of latent heat
produces unwanted fluid-dynamic penalties. Typical examples are homogeneous condensation
in low-pressure steam turbines [1] or in converging-diverging nozzles [2].

The numerical computation of condensing flows can be approached in three different ways
[3] commonly classified in i) Eulerian-Lagrangian (EL) methods, ii) Eulerian-Eulerian (EE)
methods, and iii) method of moments (MM). The key difference among them lies in the treat-
ment of the additional transport equations used to describe the second (dispersed) phase. No-
tably, the EL and EE approaches model the entire spectrum of droplet sizes, while the MM
accounts only for the low-order statistical moments of the size distribution.

A first comparison amongst the three models was performed in [3]. The study pointed out
that the EL method features the highest accuracy at the expense of high computational cost.
Moreover, the extension to unsteady simulations and flows characterised by slip between phases
is particularly challenging. The full EE method has a similar accuracy compared to EL. How-
ever, it is affected by severe numerical instabilities that may compromise the convergence rate.
Results showed that the cost of simulations with the EE was 50% more demanding than with
the EL.

The MM, originally introduced by Hill [4] and increasingly adopted in many research studies
[5, 6, 7], exhibited substantial computational efficiency gain with respect to EL and EE meth-
ods, thus is deemed the most suitable model for multi-dimensional calculations in engineering
applications. However, the accuracy obtained may be considerably lower, especially regarding
the droplets dimension. [3] reported a discrepancy of about 20% on the average droplets radius
compared to experimental data.

In the context of MM, two formulations can be devised to describe the motion of the two-
phase mixture. The former, referred to as mixture formulation [8], expresses the mass, mo-
mentum, and energy balance in terms of mixture properties, whereas the latter, referred to as
continuum phase formulation, specifies the conservation laws in terms of vapor phase. For this
last case, no examples are found in the literature, and this work refers to the framework devised
in [9] for the EE method.

The aim of this work is to compare the two formulations in order to establish an efficient
numerical framework for the resolution of multi-dimensional condensing flows. To this pur-
pose, a quasi 1-D model is employed. The transport equations are discretized in space by a
novel upwind scheme while the whole system of conservation laws is integrated in time using
an implicit method to enhance the numerical stability as well as the convergence to steady-
state. The results are carried out on a widely popular nozzle test case in which non-equilibrium
condensation takes place.

The paper is structured as follows: the first section describes the governing equations and
the necessary closure relations. The second section reports the numerical resolution adopted.
Finally, the last section reports the validation of the models and debates the results of the MM
against reference solutions obtained with the EL and the EE.
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2 GOVERNING EQUATIONS

This work considers quasi 1-D condensing flows. In principle, eight governing equations are
needed to obtain the averaged properties of the liquid and vapor phase, namely their thermody-
namic states, the velocities, the liquid mass fraction and the droplet radius.

For condensing flows with limited liquid mass fractions, the following assumptions proved
to be adequate: i) the liquid and vapor are in mechanical equilibrium, ii) no slip between the
two phases, and iii) the temperature of the dispersed phase is determined through a capillarity
model. As a result, three conservation laws supplemented by two transport equations for the
dispersed phase properties are sufficient to characterize the mixture.

2.1 Conservation laws

The mass, momentum, and energy balance for the continuum phase are written as

∂ρc
∂t

+
∂ (ρcvc)

∂x
= Sc − ρcvc

∂Ac

∂x

1

Ac

, (1)

∂ρcvc
∂t

+
∂ (ρcv

2
c + pc)

∂x
= Scvc − ρcv

2
c

∂Ac

∂x

1

Ac

, (2)

∂(ρce0,c)

∂t
+

∂ (ρch0,c)

∂x
= Sch0,d − ρch0,c

∂Ac

∂x

1

Ac

, (3)

where ρc is the phase density, vc the velocity, Pc the pressure, eo,c the total internal energy, ho,c

the total enthalpy, Ac is the cross sectional area and Sc is the source term accounting for mass
exchange through the liquid-vapor interface, defined as

Sc = −ρm
3Y

R

∂R

∂t
, (4)

in which R is the averaged droplet radius and Y is the liquid mass fraction. The mixture
equations can be retrieved by substituting in eq.(1) the mixture properties and neglecting Sc.
For the sake of conciseness, mixture and the continuum phase approaches are referred to as
model (a) and (b), respectively, hereafter.

Important differences arise between the two models: model (b) may suffer from more severe
stiffness due to condensation source terms. On the contrary, in model (a) the thermodynamic
non-equilibrium of the vapor phase renders the computation of the mixture properties iterative
[8]. This procedure entails an extra computational burden and may affect the solver robustness.
Eventually, note that the validity of model (b) is restricted to vapors containing negligible liquid
volume fractions [9].

2.2 Method of Moments

As aforementioned, the method of moments replaces the full droplet size distribution with
its low-order statistical moments. The generic moment of order -j is defined as

µj =

∫ ∞

0

Rjfdr, (5)

where f is the distribution function, i.e. the radial derivative of the droplet number density, such
that the total number of droplets N is equal to

N =

∫ ∞

0

fdr. (6)
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As described in [5], the conservation law for each moment stems from the GDE (General Dy-
namic Equation) and eq.(5), obtaining

∂

∂t
(ρmµj) +

∂

∂x
(ρmµjvm) = j ·

∫ ∞

0

ρmR
j−1Gfdr + ρmJ(R∗)R

j
∗, (7)

where G is the growth rate, R∗ the critical radius, and J the nucleation rate.
These equations are usually solved through the method proposed in [4]. Nevertheless, though

the model well correlates the experimental data for the continuum phase, as reported in [3],
the method involves the resolution of four equations instead of the two theoretically required.
Moreover, G can be only expressed as linear combination of R in the form

G = k1R + k2, (8)

where k1 and k2 are two parameters depending on the thermodynamic properties of the two
phases. As outlined in [3],[7], the discrepancy between the experimental and numerical droplet
averaged radius is larger than 20%.

For these reasons, this work adopts a 2-equations method. Thus, the transport equations for
the moments of order -0 and -3 are finally written as

∂

∂t
(ρmµ0) +

∂

∂x
(ρmµ0vm) + ρmµ0vm

∂Ac

∂x

1

Ac

= ρmJ(R∗), (9)

∂

∂t
(ρmµ3) +

∂

∂x
(ρmµ3vm) + ρmµ3vm

∂Ac

∂x

1

Ac

= ρmJ(R∗)R
3
∗ + 3ρmR

2GN, (10)

where µ0 and µ3 are

µ0 =

∫ ∞

0

fdr = N, (11)

µ3 =

∫ ∞

0

R3fdr = R3

∫ ∞

0

fdr = NR3. (12)

The remaining terms in eq. (9) and(10), namely the growth rate G, the nucleation rate J , the
critical radius R∗, are taken from [7].

2.3 Thermophysical model

The thermodynamic model used for the continuum phase is the polytropic Van der Waals
EoS (Equation of State), that allows to account for metastabilities in the two-phase region.
The enthalpy as well as the saturation temperature and pressure are taken from [11], while the
density and the capillarity model are as in [9]. Finally, the surface tension is given by [12],
whereas viscosity and thermal conductivity are determined through the Chung’s model [13].

The thermodynamic properties for the mixture can be retrieved following the procedure in
[8] by using the quasi-Newton algorithm. Furthermore, the speed of sound of the mixture is
estimated through the expression

cm =

[(
1− ρm

ρd
Y

)
1

c2c
+

(
ρm
ρd

Y

)
1

c2d

]− 1
2

. (13)

Appendix A shows the procedure to obtain such relation.
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3 NUMERICAL METHOD

The balance equations for either mixture or continuum phase are discretized using a cell-
centered finite volume scheme of first order of accuracy [10]. The source terms are directly
incorporated in the numerical flux without special treatment. On the contrary, the transport
equations are discretized by using an upwind scheme specifically conceived in this study, which
is further detailed in the following. The full set of governing equations is advanced in time by
an implicit, segregated strategy. More precisely, at each iteration the mass, momentum, and
energy equations are solved assuming frozen droplet properties.

3.1 Upwind scheme for transport equations

As can be observed, the last term of eq.(10) is a function of the radius R of the dispersed
phase. Since R is in turn a combination of µ0 and µ3 through eq.(12) it can be readily incorpo-
rated in the left hand-side of eq.(10) by a simple algebraic manipulation as

∂

∂t
(ρmµ3) +

∂

∂x
(ρmµ3vm) +

ρmµ3vm
Ac

∂Ac

∂x
= ρmJ(R∗)R

3
∗ +

∂

∂x

(∫
3ρmR

2GNdx

)
. (14)

The last integral is approximated as

∫
3 · ρmR2GNdx = 3

(
ρmR

2GN
)
average

· (x− xinlet) =

xout∑
i=0

3

(
ρmR

2GN
∆x

xoutlet − xinlet

)
i

· (x− xinlet) , (15)

where xinlet and xoutlet are the inlet and outlet abscissas of the domain. Concisely, the 2 transport
equations can be written as

∂

∂t
U +

∂

∂x
F = Q, (16)

where

U =

[
ρmµ0

ρmµ3

]
=

[
ρmN

ρmNR3

]
, (17)

Q =

[
ρmJ(R∗)

ρmJ(R∗)R
3
∗

]
− U · vm

∂Ac

∂x

1

Ac

, (18)

F =

[
ρmµ0vm

ρmµ3vm −
∑xout

i=0 3
(
(ρmµ0)

1
3 (ρmµ3)

2
3 G · ∆x

xoutlet−xinlet

)
i
· (x− xinlet)

]
. (19)

The final up-wind flux is given by

F i+j
2

=
Fi + Fj

2
− |A| i+j

2

Uj − Ui

2
, (20)

in which the physical flux F is approximated for every cell -i as

i∑
j=1

3

(
ρmR

2GN · ∆x

xoutlet − xinlet

)
j

(21)

Appendix B reports the spectral decomposition of A while Appendix C illustrates the derivation
of the Jacobian.
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4 VALIDATION AND ASSESSMENT OF THE NUMERICAL MODELS

In this section, the results of model (a) and (b) are compared with the experimental data re-
ported in [3] and with existing numerical solutions obtained with more sophisticated methods.
The selected test case is the well-established Moore nozzle A, which is representative of super-
sonic wet-steam flows occurring in turbine flow passages. The shape of the profile is reported
in Appendix D. All the calculations are performed on a 1000-cells grid.

Fig.1 shows the dimensionless pressure distribution along the nozzle for the present mod-
els, the Hill’s method [5] and experimental observations. No significant differences are found,
especially prior and after the onset of condensation.
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Figure 1: Pressure distribution along the nozzle, xthroat = 0

The pressure trends of both liquid and vapor are depicted in the T-s chart of Fig.2. The same
diagram shows the experimentally derived Wilson points, extrapolated from [14] for the consid-
ered pressure range. For the sake of clarity, the same curves are also displayed in the P-v plane
of Fig.3. When the steam subcooling is close to 50K (from Fig.2) and the continuum phase
reaches the Wilson point, condensation starts rapidly. The sudden release of latent heat leads to
a considerable static temperature rise of the continuum phase which is quickly brought back to
thermodynamic equilibrium. The amount of heat released is proportional to the nucleation rate,
see Fig.4, which shows a steep peak from 0 to 2 · 1021kg−1s−1 in a narrow portion of the nozzle
close to the throat.

A more in-depth physical explanation of the condensation phenomenon can be figured out
by inspecting Eq.(22), valid for ideal compressible channel flow with heat addition [15]

dP

P
=

γM2

1−M2

(
dAc

Ac

−
(
1 +

γ − 1

2
M2

)
dT0

T0

)
, (22)

in which M is the mach number, T0 is the total temperature, and γ the specific heat ratio. In
the early stage of condensation, the dominant term of Eq.(22) is the total temperature increase
which causes a sudden static pressure rise, usually referred to as condensation shock wave.
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The flow then departs from metastable conditions to reach thermodynamic equilibrium. As the
condensation proceeds, the nucleation rate J falls down, therefore the release of latent heat
and the total temperature variation reduce correspondingly. The flow motion is thus mainly
governed by the area variation dAc, which is positive for the given nozzle shape. Provided
that the flow remains supersonic downstream of the shock, the expansion continues along the
saturation line, as shown in both Fig.2 and 3.
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Figure 2: Liquid and vapor expansion reported in the T-s diagram for model (a)
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Figure 3: Liquid and vapor expansion reported in the P-v diagram for model (a)

As stated in [9], the liquid properties are barely dependent on the pressure in the specific
thermodynamic range considered (P < 0.25 bar), see Fig.6. Furthermore, the temperature
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Figure 5: Main terms of eq.(22) along the
nozzle, xthroat = 0

of the droplets Td is few degrees higher than the vapor, according to the capillarity model.
Therefore, it can be inferred that the dispersed phase expansion is located close to the saturation
line, with a slight temperature difference with respect to the steam, as proved by fig.2 and 3.

Fig.7 shows that the major deviations between the various models are located in the con-
densation region. In particular, the Lagrangian and the Hill’s method overestimate the pressure
local maximum, whereas the Eulerian simulation predicts a higher degree of subcooling. Note
however that the pressure slope between the two pressure extrema predicted by the three models
is very similar, suggesting a fairly close value of nucleation rate. On the other hand, model (a)
and (b) tend to underestimate the pressure bump. The reason can be partly attributed to the
inaccuracy of the thermodynamic model adopted for the calculations. As anticipated, this work
makes use of the polytropic Van der Waals EoS, arguably less accurate than the model devised
in [3].

The droplet averaged radius is recognized as remarkably challenging to detect for all two-
phase computational models. Fig.8 depicts the droplet radius along the nozzle. Unexpectedly,
the results of model (a) and (b) are in good agreement with the experimental data, with an
deviation of 5% (0.095µm diameter instead of 0.1µm nominal) for model (b) and much lower
for model (a). Conversely, the discrepancy for the Hill’s method has been found higher than
20% (with a diameter of 0.077µm) and even worse for the Eulerian approach, which features
deviations larger than 30%.

A numerical study was conducted to assess the convergence rate of model (a) and (b). The
benchmark is the so-called single phase simulation, where it is supposed the vapor expand-
ing in the nozzle without inception of condensation. Despite this simulation has no physical
meaning, it is commonly utilized as reference for examining the convergence properties of the
various methods. The simulations were carried out by discretizing the nozzle with 400 cells
and employing the Euler explicit integration scheme with CFL number equal to 1. Conver-
gence was achieved after reducing the residuals of all equations by five orders of magnitude.
Table 1 reports the final results. Notwithstanding comparable accuracy, model (a) is three times
more demanding than model (b). The rationale of this difference has been found in the iterative
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Figure 7: Detail of the pressure profile, com-
parison with [3], xthroat = 0
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Figure 8: Averaged droplet diameter along the nozzle, xthroat = 0

algorithm, i.e. quasi-Newton method, adopted for computing the mixture properties.
A final analysis was carried out to investigate the numerical stability of both models. Sev-

eral simulations were run on a mesh of 400-cells with the implicit method for progressively
increasing CFL numbers. Table 2 lists the obtained results in terms of maximum allowable
CFL number.

As expected, the maximum time step for the two-phase flow systems is significantly lower
than for the benchmark. This is mainly due to the stiffness introduced by the onset of conden-
sation which occurs at much faster time scale than wave propagation in the flow. On the other
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Benchmark Model (a) Model (b)
Iterations 5024 4700 4823

Physical time (s) 14 79 25

Table 1: Simulation time required for the benchmark (single-phase), model (a) and model (b),
explicit time integration, CFL=1

Benchmark Model (a) Model (b)
Maximum CFL 102 28 46

Table 2: Maximum allowable CFL for the benchmark (single-phase), model (a) and model (b).
The computations are performance with implicit time integration and constant CFL

hand, the comparison shows that model (a) allows for a maximum CFL that is nearly half of the
one of model (b).

5 CONCLUSIONS

In this study, two flow models based on the method of moments for quasi-1D condensing
flows were compared to more advanced approaches based on the lagrangian, the full eulerian,
and the Hill’s formulation. The governing equations were formulated in terms of mixture or
vapor phase (alternatively called continuum phase) properties while the method of moments
was used to characterize the liquid wetness fraction and droplets number. A novel upwind
flux was proposed to solve for the additional transport equations. Implicit time integration was
adopted to enhance convergence to steady-state.

Both models were tested on a reference nozzle case for which experimental data exist. The
results showed that both models are capable to predict the pressure distribution along the nozzle
with accuracy similar to that of the more sophisticated flow models. Remarkably, the computed
diameter of the droplets resulted very close to the experimental evidences.

Lately, a numerical study was conducted to assess the computational cost as well as the nu-
merical stability of the two models. It was inferred that the introduction of the up-wind flux for
the moments relations provided high robustness to the underlying numerical method. However,
the analysis revealed that the mixture model is approximately three times more demanding than
continuum phase model if solved by adopting the same CFL number and up to six times less
efficient for maximum CFL number warranting stability. The main motivation was found to be
associated with the iterative procedure used to retrieve the mixture properties.

Envisaged steps forward to the current work will include i) the investigation of a more effi-
cient iterative algorithm, ii) the coupling with more complex equations of state iii) the validation
of the models against condensing steam flows at high-pressure and ii) the extension to multi-
dimensions to be pursued in the framework of an existing open-source CFD solver.

REFERENCES

[1] J.B. Young, Two-Dimensional, Non-Equilibrium, Wet-Steam Calculations for Nozzles and
Turbine Cascades, Journal of Turbomachinery 114, 569-579, 1992

[2] D.G. Elliot, E. Weinberg, Acceleration of Liquids in Two-Phase Nozzles, Technical report
32-987, National Aeronautics and Space Administration, 1968

7175



L. Azzini, T.P. van der Stelt, M. Pini

[3] A.J. White, A comparison of modelling methods for polydispersed wet-steam flow,
International journal for numerical methods in engineering 57, pp. 819834 (DOI:
10.1002/nme.705), 2003

[4] P.G. Hill, Condensation of Water Vapour during Supersonic Expansion in Nozzles, Journal
of Fluid Mechanics, Vol. 25, part 3, pp. 593-620, 1966.

[5] F. Put, Numerical Simulation of Condensation in Transonic Flows, Thesis University of
Twente, Enschede, 2003

[6] A.G. Gerber, A. Mousavi, Application of quadrature method of moments to the polydis-
persed droplet spectrum in transonic steam flows with primary and secondary nucleation,
Applied Mathematical Modelling 31, pp. 15181533, 2007

[7] M. Giordano, S.J. Hercus, P. Cinnella, Effects of modelling uncertainties in condensing
wet-steam flows through supersonic nozzles, V European Conference on Computational
Fluid Dynamics ECCOMAS, Lisbon, Portugal,14-17 June 2010
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A Thermodynamic derivatives for a mixture

The speed of sound is defined as

cm =

(
∂P

∂ρm

) 1
2

sm

. (23)

The introduction of the continuum phase volume title αc and the use of the derivation prop-
erties allow to rewrite eq.(23) as

cm =

(
∂ρm
∂P

)− 1
2

sm

=

(
∂ (αcρc + (1− αc) ρd)

∂P

)− 1
2

sm

, (24)

thus,

cm =

[
αc

(
∂ρc
∂P

)
sm

+ (1− αc)

(
∂ρd
∂P

)
sm

+ (ρc − ρd)

(
∂αc

∂P

)
sm

]− 1
2

, (25)

Two simplifications are made: i) the derivative of αc is neglected and ii) the two derivatives at
smix constant are approximated with the derivative of each phase, at constant sc and sd respec-
tively. Furthermore, the volume title αc is defined as

αc =
Vc

Vm

= 1− Vd

Vm

= 1− ρm
ρd

Y. (26)

Therefore, the final expression for the speed of sound is

cm =

[(
1− ρm

ρd
Y

)(
∂ρc
∂P

)
sc

+

(
ρm
ρd

Y

)(
∂ρd
∂P

)
sd

]− 1
2

, (27)

thus,

cm =

[(
1− ρm

ρd
Y

)
1

c2c
+

(
ρm
ρd

Y

)
1

c2d

]− 1
2

. (28)

B Numerical flux derivatives for moments equations

B.1 Spectral decomposition

The flux jacobian A is determined from eq.(19) as

A =

(
∂F

∂U

)
=

[
a1 0
b1 c1

]
, (29)

in which

a1 =
∂F (1)

∂U(1)
= vm, (30)

b1 =
∂F (2)

∂U(1)
= −G

x− xinlet

xoutlet − xinlet

∆x (ρmµ0)
− 2

3 (ρmµ3)
2
3 , (31)

c1 =
∂F (2)

∂U(2)
= −2G

x− xinlet

xoutlet − xinlet

∆x (ρmµ0)
1
3 (ρmµ3)

− 1
3 + vm. (32)
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As A is lower triangular, the eigenvalues matrix Λ is equal to

Λ =

[
vm 0

0 −2G x−xinlet

xoutlet−xinlet
∆x (ρmµ0)

1
3 (ρmµ3)

− 1
3 + vm

]
. (33)

The right and left eigenvector matrices Reig and Leig are

Reig =

 vm−c1√
b21+(vm−c1)

2
0

b1√
b21+(vm−c1)

2
1

 (34)

and

Leig =
1

Det(Reig)

[
1 0

− b1√
b21+(vm−c1)

2

vm−c1√
b21+(vm−c1)

2

]
, (35)

where

Det(Reig) =

 vm − c1√
b21 + (vm − c1)

2

 . (36)

Therefore, |A| is written as

|A| = Reig|Λ|Leig =

[
a2 0
b2 c2

]
=

[
vm 0

b1(vm−|c1|)
vm−c1

|c1|

]
, (37)

B.2 Boundary conditions

The number of boundary conditions that can be imposed is given by the eigenvalue analysis.
From eq.(33), the first eigenvalue λ1 is always positive. On the other hand, λ2 may become neg-
ative. In this case, the condition on µ3 must be imposed at the domain outlet, but no information
are known a priori to set this value.

It is worth pointing out that the expression for λ2 in eq.(33) contains also an information
related to the mesh, i.e. ∆x, and not to the thermodynamics itself.

Furthermore, from the physics of the problem, it is arguably reasonable to impose the liquid
phase fraction at the domain inlet, and to extrapolate at the domain outlet the value coming from
inside.

C Residual jacobian determination

Eq.(37) can be substituted in eq.(19) obtaining

F i+j
2

=
Fi + Fj

2
− 1

2

[
a2 · Uj(1)

b2 · Uj(1) + c2 · Uj(2)

]
+

1

2

[
a2 · Ui(1)

b2 · Ui(1) + c2 · Ui(2)

]
=

Fi + Fj

2
− 1

2
Vj +

1

2
Vi.

(38)
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Therefore, the flux derivatives are

F i+j
2

Ui

=
1

2

∂Fi

∂Ui

+
1

2

∂Fj

∂Ui

− 1

2

∂Vj

∂Ui

+
1

2

∂Vi

∂Ui

, (39)

F i+j
2

Uj

=
1

2

∂Fi

∂Uj

+
1

2

∂Fj

∂Uj

− 1

2

Vj

Uj

+
1

2

Vi

Uj

. (40)

The physical flux derivative has already been shown in eq.(29), thus

∂Fi

∂Ui

,
∂Fj

∂Uj

= Ai, Aj. (41)

Despite of what happens for the conventional single phase, the physical flux Fi depends also on
Uj , due to the summatory in eq.(19). Therefore

∂Fi

∂Uj

(1, 1 : 2) = 0, (42)

∂Fi

∂Uj

(2, 1) = − xi − xinlet

xoutlet − xinlet

(
G∆x (ρmµ0)

− 2
3 (ρmµ3)

2
3

)
j
, (43)

∂Fi

∂Uj

(2, 2) = −2
xi − xinlet

xoutlet − xinlet

(
G∆x (ρmµ0)

1
3 (ρmµ3)

− 1
3

)
j
. (44)

The last terms in eq.(39) are developed as

∂Vj

∂Ui

(1, 1 : 2) = 0, (45)

∂Vj

∂Ui

(2, 1) = Uj(1)
∂b2

∂Ui(1)
+ Uj(2)

∂c2
∂Ui(1)

(46)

∂Vj

∂Ui

(2, 2) = Uj(1)
∂b2

∂Ui(2)
+ Uj(2)

∂c2
∂Ui(2)

(47)

and
∂Vi

∂Ui

(1, 1) = a2, (48)

∂Vi

∂Ui

(1, 2) = 0, (49)

∂Vi

∂Ui

(2, 1) = Ui(1)
∂b2

∂Ui(1)
+ b2 + Ui(2)

∂c2
∂Ui(1)

, (50)

∂Vi

∂Ui

(2, 2) = Ui(1)
∂b2

∂Ui(2)
+ c2 + Ui(2)

∂c2
∂Ui(2)

(51)

The same procedure for eq.(40) leads to

∂Vi

∂Uj

(1, 1) = 0, (52)
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∂Vi

∂Uj

(1, 2) = 0, (53)

∂Vi

∂Uj

(2, 1) = Ui(1)
∂b2

∂Uj(1)
+ Ui(2)

∂c2
∂Uj(1)

(54)

∂Vi

∂Uj

(2, 2) = Ui(1)
∂b2

∂Uj(2)
+ Ui(2)

∂c2
∂Uj(2)

(55)

and to
∂Vj

∂Uj

(1, 1) = a2, (56)

∂Vj

∂Uj

(1, 2) = 0, (57)

∂Vj

∂Uj

(2, 1) = Uj(1)
∂b2

∂Uj(1)
+ b2 + Uj(2)

∂c2
∂Uj(1)

, (58)

∂Vj

∂Uj

(2, 2) = Uj(1)
∂b2

∂Uj(2)
+ c2 + Uj(2)

∂c2
∂Uj(2)

(59)

Finally, all the quantities a2, b2, c2 are evaluated in

U i+j
2

= 0.5 · (Ui + Uj) , (60)

thus, the missing derivatives are

∂a2, b2, c2
∂Ui

=
∂a2, b2, c2

∂Uj

=
∂a2, b2, c2
∂U i+j

2

·
∂U i+j

2

∂Ui,j

=
1

2

∂a2, b2, c2
∂U i+j

2

, (61)

∂a2
∂U i+j

2

= 0 (62)

∂b2
∂U i+j

2

=
1

vm − c1

(
(vm − |c1|)

∂b1
∂U i+j

2

− b1
c1

∂U i+j
2

|c1|
c1

)
+

b1 (vm − |c1|)
(vm − c1)

2 · ∂c1
∂U i+j

2

, (63)

∂c2
∂U i+j

2

=
∂c1

∂U i+j
2

|c1|
c1

, (64)

in which
∂b1

∂U i+j
2
(1)

=
2

3

(
x− xinlet

xoutlet − xinlet

G∆x (ρmµ0)
− 5

3 (ρmµ3)
2
3

)
i+j
2

, (65)

∂b1
∂U i+j

2
(2)

= −2

3

(
x− xinlet

xoutlet − xinlet

G∆x (ρmµ0)
− 2

3 (ρmµ3)
− 1

3

)
i+j
2

, (66)

∂c1
∂U i+j

2
(1)

= −2

3

(
x− xinlet

xoutlet − xinlet

G∆x (ρmµ0)
− 2

3 (ρmµ3)
− 1

3

)
i+j
2

, (67)

∂c1
∂U i+j

2
(2)

= −2

3

(
x− xinlet

xoutlet − xinlet

G∆x (ρmµ0)
1
3 (ρmµ3)

− 4
3

)
i+j
2

. (68)
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D Nozzle geometry

The nozzle area Ac is given by

Ac(x) =


a0 + b0x+ c0x

2 + d0x
3 0.0 < x < 0.041837

a1 + b1x+ c1x
2 + d1x

3 0.041837 < x < 0.10612

a2 + b2x+ c2x
2 + d2x

3 0.10612 < x < 0.4

, (69)

in which x is expressed in m and Ac in m2. All the missing coefficient are reported in the table
below [7] .

a b c d
0 1.52·10−2 -5.1996·10−4 6.7416·10−1 -8.7727
1 1.533·10−2 8.0338·10−3 2.6189·10−2 7.3488·10−3

2 1.4926·10−2 1.4733·10−2 5.4451·10−5 -2.0589·10−4

Table 3: Nozzle profile coefficients
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Abstract. A Discontinuous Galerkin (DG) Method was applied for simulating the kinematics
of deforming interfaces. The level set method was used as an interface capturing method. The
numerical implementations were performed in the context of the in-house code BoSSS developed
at the Chair of Fluid Dynamics in Darmstadt University of Technology, see [1, 2]. As the higher-
order spectral representation of the variables in the DG method, results in a precise solution to
the level set advection equation, the interface kinematics could be accurately simulated without
having to solve the level set re-initialization equation. But the solution exhibits an appropriate
hp-convergence only if the gradient of the level set function does not have any singularity over
the domain of computation. For instance, the signed-distance level set function of a circle has
a singular gradient at the center of the circle. As the smoothed Heaviside and Delta functions
used in the multiphase flow calculations, are commonly expressed in terms of the level set
function, the level set function needs to remain signed distance in order to keep a uniform
smoothing width. The signed distance property of the level set function can be recovered by
solving the level set re-initialization equation. In order to obtain a solution with a monotonicity
preserving behavior, a Godunovs scheme was applied for approximating the Hamiltonian of the
re-initialization equation. Moreover, a notable stability improvement was achieved by adding
an artificial diffusion along the characteristic lines. The solution exhibits an appropriate hp-
convergence and almost no spurious movement of the interface was detected.
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1 Introduction

The flows consisting of fluids with different properties, are termed as the multiphase flows.
If the fluids are immiscible, they are separated by thin layers known as the interface. Interface is
the region across which, the fluid properties as well as some of the flow variables are subjected
to steep variations. In the context of the continuum mechanics, an interface is represented as
a geometrical surface with zero thickness which may result in mathematical singularities, see
[3]. A common approach to overcome the singularity problem is to make a diffuse interface
assumption according to which, the fluid properties are supposed to vary smoothly across the
interface, see [4].
A major issue in the numerical simulation of the multiphase flows is the manner of representing
the interface and simulating its kinematics. Several methods with different levels of the accu-
racy and robustness have been proposed, among which, the level set method, see [5], is a robust
one. The interface in the level set method is represented as the zero iso-value of a function
which is called the level set function. The implicit representation of the interface provides an
appropriate way for simulating the topological changes. Moreover, as the interface does not
need to be reconstructed, this method is quite suitable when a precise calculation of the curva-
ture is required. The accuracy of this method in simulating the interface kinematics is highly
dependent on the preciseness of the numerical method applied for solving the corresponding
advection equation, namely the level set advection equation. The discontinuous Galerkin (DG)
method, see [6], is a modern technique providing a framework where a higher-order approx-
imation can be implemented in a robust way. In this method, the variables are expressed in
each cell in terms of an orthonormal basis polynomial space (OBPS). As in this method the
in-cell variations are considered, an acceptable level of accuracy can be attained using a rather
low spatial resolution. In this way, the total number of the numerical degrees of freedom is
reduced although it is increased in each cell. The research presented in [7] is a well-known
pioneer study on applying the DG method for solving the level set advection equation. As a
consequence of the excellent accuracy they achieved, they claimed that the DG method is the
best technique for solving the hyperbolic equations, such as the level set advection equation.
But still a lack of Detailed hp-convergence analysis is notable in the literature. Although in
the DG-based level set method the level set function does not need to be signed distance, this
property is required for making a uniform diffusion thickness when a diffuse interface assump-
tion is made, see [8, 9]. The signed distance property of a level set function can be maintained
by solving an Eikonal equation termed as the level set re-initialization equation, see [10]. Ap-
plication of the DG method for solving the re-initialization equation has been only considered
in [9] yet. Although they have employed a set of the stabilization techniques successfully, a
lack of performing a procedural error analysis is obvious in their publications. The present
research is mainly motivated by the need of performing the mentioned lacks of the procedural
error analyses concerning the solutions to the level set advection and re-initialization equations.

2 An Overview on the Numerical Techniques for Simulating the Interface Kinematics

The methods proposed for the numerical representation of the interface, can be classified
into two categories, namely the surface methods and the volume methods, see [11]. The sur-
face methods consider the interface itself as an object, either explicitly or implicitly. Whereas,
the volume methods consider the phases at the either sides of the interface. Therefore, in the
volume methods in order to obtain the normal vector to the interface, the interface needs to be
reconstructed. As the interface curvature which is used to predict the surface tension effects, is
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the divergence of the normal vector, any inaccuracy in calculating the normal vector intensively
appears in the curvature. A common consequence of a non-precise prediction of the surface
tension effects is the formation of a set of spurious vortical flows, see [12]. Hence, a surface
method is often recommended when the surface tension effects is involved in the problem. The
difference between these two types of methods is schematically demonstrated in figures 1a and
1b. The front tracking method introduced in [13], as well as the level set method introduced

(a) Surface methods

(b) Volume methods

Figure 1 A schematic demonstration of the difference between the surface and volume
methods for the numerical representation of an interface

in [14], are the common methods which can be classified under the category of the surface
methods. The front tracking method explicitly represents the interface by a set of the connected
massless particles. The particles are advected through the domain in a Lagrangian way together
with a set of the conditions enforced on the interface. This method is very accurate if the inter-
face is reconstructed by passing a spline of higher-degree over the particles. But the necessity
of tracking a rather large number of particles makes this method expensive. Moreover, as the
particles need to keep an optimum distance to each other, several particles are necessary to be
added or removed during the simulation. In addition, a new reconnection procedure needs to be
performed after any change in the configuration of the particles. Furthermore, for the simulation
of the interface breakup or coalescence an ad-hoc procedure needs to be performed, see [15].
The level set method which is the subject of the present paper, was shortly introduced in section
1 and will be explained in detail subsequently. Although this method is highly robust, but there
is no guaranty for the area/volume conservation if the numerical method applied to solve the
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level set advection equation is not preciseness enough, see [5]. The particle level set method
which was introduced in [16], implements a different way for maintaining the area/volume con-
servation. Each side of the interface in this method is assigned to a distinguished set of the
massless particles which can be advected through the domain in a Lagrangian way. As the par-
ticles preserve the material characteristics in time, they can be used to reconstruct the interface
in the regions where an area/volume loss (or gain) occurs.
The marker and cell method introduced in [17], as well as the volume of fluid method intro-
duced in [18], are the common methods which can be classified under the category of the volume
methods. The marker and cell method represents the phases on the either sides of the interface
by a set of the massless particles which are advected through the domain in a Lagrangian way.
The interface is then reconstructed in the multi-phase cells using the distribution density of the
particles. This method is computationally very expensive due to requiring a large number of
the particles. Moreover, needing to add additional particles for making an accurate simulation
of the interface stretch, is an issue which reduces the robustness of the method. In the volume
of fluid method, an indicator function is assigned to the phases at the either sides of the inter-
face. The indicator function is commonly the volume fraction or the mass fraction of one of
the phases. Therefore, it has a Heaviside distribution over the domain. The interface kinemat-
ics is simulated in this method by solving an advection equation for the indicator function. In
the case of using a lower-order spatial discretization method, the Heaviside distribution of the
indicator function is numerically smeared out. The region over which, this incorrect interface
diffusion takes place, can be even developed by the velocity gradient in the direction normal
to the interface. On the other hand, a higher-order numerical representation of the Heaviside
distribution can lead to a numerical instability. Therefore, a lower-order method is used to-
gether with applying an interface reconstruction technique in order to prevent the development
of the diffusion region. The common interface reconstruction techniques include reconstruct-
ing an interface of degree zero introduced in [18], and reconstructing an interface of degree 1
introduced in [19]. Another common technique introduced in [20], is to compress the interface
by adding a compression term to the advection equation. Although the implementation of the
volume of fluid method is rather straightforward, the interface reconstruction techniques always
reduce the accuracy of the curvature calculation. But the main advantage of this method is that
the area/volume conservation is fulfilled. In [21], they used this property of the volume of fluid
method, together with the ability of the level set method in a precise calculation of the curva-
ture, for developing the idea of the coupled level set and volume of fluid method. The interface
kinematics in this method is simulated by solving the volume of fluid advection equation. The
normal vector which is used for a piecewise linear interface reconstruction, is obtained using
the level set function. The updated interface is then used to re-initialize the level set function in
order to maintain its signed-distance property.
Comparing the mentioned methods in terms of the accuracy, robustness and ease of the imple-
mentation, one can conclude that the classical level set method is an appropriate choice when
a solver for a higher-order approximation of the solution to the level set advection equation is
available, for instance, the code BoSSS where the DG method is applied.

3 Level Set Method for Modeling the Moving Interfaces

The interface in the level set method is represented implicitly as the zero-iso value of a func-
tion which is known as the level set function (Figure 2). The implicit representation provides
the ability of handling any topological changes of the interface. As it is shown in the picture,
although the level set function is defined over whole the domain, only its zero iso-value, sepa-
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ϕ = ϕ(x, y)

ϕ(x, y) = 0

Figure 2 Representing an interface as the zero iso-value of a level set function

rating the negative and positive regions of the function, is used for the interface representation.
Therefore, any function that its zero iso-value represents the interface, can be used as the level
set function. But the level set function is commonly designed to be a function that returns the
signed-distance to the interface. The signed-distance level set function ϕ(x, t) of an interface I
is defined as,

ϕ(x, t) =


−d(x, t), ϕ < 0,

0, ϕ = 0,

d(x, t), ϕ > 0,

(1)

where d(x, t) is the distance to the interface which is defined as,

d(x, t) = min(|x− xI(t)|), (2)

where xI(t) denotes the interface position. Parameterizing the interface with the surface coor-
dinates (ξI ,ηI ), the interface position can be determined by,

xI(t) = x(ξI , ηI , t). (3)

The value of the gradient of a signed-distance level set function is uniformly equal to 1. The
advantage of using a signed-distance level set function is that this level set function can be used
for constructing the distributions for which the distance to the interface is a parameter. For
instance, a smoothed Heaviside function defined as,

Hϵ(ϕ) =


0, ϕ < −ϵ,
1
2
+ ϕ

2ϵ
+ 1

2π
sin
(
πϕ
ϵ

)
, −ϵ ≤ ϕ ≤ ϵ

1, ϕ > ϵ,

(4)

3.1 Level Set Advection Equation

Following [10], the evolution of an interface I can be determined by,

dxI(t)

dt
=

∂x(ξI , ηI , t)

dt
= uI(x(ξI , ηI , t), t), (5)
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where uI denotes the interface velocity. As ϕ(x(ξI , ηI , t), t) is defined to be zero for all the
time, one can write,

dϕ(x(ξI , ηI , t), t)

dt
=

∂ϕ

∂t
+

∂ϕ

∂x1

∂x1(ξI , ηI , t)

∂t
+

∂ϕ

dx2

∂x2(ξI , ηI , t)

∂t
+

∂ϕ

∂x3

∂x3(ξI , ηI , t)

∂t

=
∂ϕ

∂t
+

∂ϕ

∂x1I

u1I +
∂ϕ

∂x2I

u2I +
∂ϕ

∂x3I

u3I = 0, (6)

where xi represents the components of x, and uiI represents the components of uI . Assuming
the interface I to be a material surface, for which the velocity of the interface is equal to the
velocity of the fluid particles located on the interface, one can write the equation describing the
advection of the level set function ϕ as,

∂ϕ

∂t
+ u ·∇ϕ = 0, (7)

where u is the velocity field.

3.2 Level Set Re-Initialization Equation

A signed-distance level set function keeps its signed-distance property if and only if the
advection field meets a condition as,

∇un ·∇ϕ = 0, (8)

where un is the component of the velocity field in the direction normal to the level set function,
obtained as,

un = u ·∇ϕ. (9)

According to this condition, a signed-distance level set function remains signed-distance if un

does not have any spatial variation in the direction normal to the level set function, see [22].
If the advection field does not meet the condition (8), the signed distance property can be recov-
ered by performing a re-initialization procedure that of course must not move the interface. It
means that the re-initialization procedure is supposed to affect the level set function except its
zero iso-value. The level set function can be re-initialized either by performing a geometrical
technique such as the fast marching method introduced in [23], or operating the re-initialization
over the field of level set function. The latter approach which was introduced in [24], is fol-
lowed in the present research.
In order to derive the re-initialization equation instructively, one can start with considering the
hyperbolic equation ()10) which describes the motion of the iso-values of a level set function in
their normal directions,

∂ϕ

∂t
+ (unN) ·∇ϕ = 0, (10)

where N represents the normal vector to each of the iso-values, see [5]. Since,

N ·∇ϕ =
∇ϕ

|∇ϕ|
·∇ϕ =

|∇ϕ|2

|∇ϕ|
= |∇ϕ|, (11)

equation (10) can be rewritten as,

∂ϕ

∂t
+ un|∇ϕ| = 0. (12)
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By solving the equation (12) in a time interval ∆t, the local value of ϕ increases by (∆t)un times
the value of its local gradient. In order to solve an Eikonal equation of the form |∇ϕ| = 1, one
can follow a pseudo-time stepping approach and solve an equation of the form of the equation
(12) with un = 1 and an additional source term 1 as,

∂ϕ

∂τ
+ |∇ϕ| = 1, (13)

where τ is a pseudo-time, see [25]. By solving the equation (13) in a pseudo-time interval ∆τ ,
the local value of ϕ increases by the difference of the value of its local gradient and 1. It should
be noted that the level set function has the negative sign on the opposite side of the interface.
Therefore, equation (13) takes the following form in the region ϕ < 0,

∂ϕ

∂τ
− |∇ϕ| = −1, (14)

The equations (13) and (14) together with the condition that the interface should not be affected
by the re-initialization, can be then combined into the following compact form proposed in [10],

∂ϕ

∂τ
+ Sign(ϕ0)(|∇ϕ| − 1) = 0, (15)

ϕ(x, 0) = ϕ0, (16)

where Sign(ϕ0) is a Signum function which is defined as,

Sign(ϕ0) =


−1 ϕ0 < 0,

0 ϕ0 = 0,

1 ϕ0 > 0

(17)

In [26], the re-initialization equation is rewritten in a more illuminating form as,

∂ϕ

∂τ
+w ·∇ϕ = Sign(ϕ0), (18)

where w is the characteristic velocity of the hyperbolic equation (18) and defined as,

w = Sign(ϕ0)
∇ϕ

|∇ϕ|
. (19)

Inclusion of the Signum function in the definition of the characteristic velocity implies that the
vector w points always outward the interface either within the region of ϕ0 < 0 or within the
region of ϕ0 > 0. It means that the re-initialization of the level set function is started from the
interface.
As it was mentioned before, the numerical representation of a jump may produce spurious spa-
tial oscillations leading to a numerical instability. Accordingly, for solving the re-initialization
equation (15), one needs to use a smoothed Signum function as an approximation to the exact
Signum function (17). Although in the literature, see [24], commonly an infinitely smoothed
Signum function is used as,

Signϵ→∞(ϕ0) =
ϕ0√

(ϕ0)2 + ϵ2
(20)
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in the present research we used a finitely smoothed Signum function as,

Signϵ(ϕ
0) =


−1 ϕ0 < −ϵ,
ϕ

ϵ
+

1

π
sin

(
πϕ0

ϵ

)
−ϵ ≤ ϕ0 ≤ ϵ,

1 ϵ < ϕ0,

(21)

in order to directly adjust the smoothing width. If the slope of the level set function is less or
much less than 1, the smoothing width of the smoothed Signum function increases and conse-
quently the speed of the characteristic lines is reduced. But if the slope is much higher than 1,
the smoothed Signum function becomes too steep that may result in the numerical instability.
In order to overcome this problem, it is proposed in [27] that an infinitely smoothed formulation
in terms of the updated level set function ϕ instead of the initial level set function ϕ0 is used as,

Signϵ→∞(ϕ) =
ϕ√

(ϕ)2 + (|∇ϕ|ϵ)2
. (22)

Multiplying ϵ by |∇ϕ| in the formulation (22), modifies the smoothing width in order to prevent
the numerical instability. As it was mentioned before, in the present research we prefer to use
a smoothed Signum function with a finite width. Accordingly, the following formulation is
constructed,

Signϵ(ϕ) =


−1 ϕ < −αϵ,
ϕ

αϵ
+

1

π
sin

(
πϕ

αϵ

)
−αϵ ≤ ϕ ≤ αϵ,

1 αϵ < ϕ

(23)

where

α =

{
1, |∇ϕ| ≤ 1,

|∇ϕ|, |∇ϕ| > 1,

4 Higher-Order Numerical Approximation

The numerical procedure of solving a scalar transport equation consists of two consecutive
stages including the spatial discretization and temporal integration. The spatial discretization
consists of representing the solution over a discrete domain and approximating the spatial dif-
ferential terms converting the PDE to a system of temporal ODEs. The time evolution of the
solution can be then obtained by performing a time integration. The present research is focused
on the higher-order approximation to the spatial variations of the solution. Generally speaking,
increasing the grid resolution is an essential way for improving the solution accuracy. However,
the rate of convergence is in a direct relation to the order of the spatial discretization. In the
case of applying a lower-order scheme, increasing the grid resolution leads to an error reduction
that is relatively small comparing to the additional computational cost, see [28]. An instructive
interpretation to this behavior can be made in the context of the Fourier analysis, see [29]: A
higher-order spatial discretization, in principle gives the ability of resolving the modes of the
solution which have higher wave numbers. Therefore, increasing the grid resolution results in
an error reduction with a higher rate. Another consequence of using the higher-order schemes
is reducing the numerical dissipation and dispersion errors, see [30]. These errors are quite
determinant in making accurate solutions to the hyperbolic conservation laws. For instance,
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considering a one-dimensional wave equation as,

∂ϕ

∂t
+ a

∂ϕ

∂x
= 0, (24)

with a as the wave speed, the dissipation error reduces the amplitude of the wave leading to
the dissipation of the wave, and the dispersion error affects the speed of the wave and produces
spurious oscillations. Therefore, if the solution to the equation (24) has high dissipation and
dispersion errors, it results in simulating a dissipative wave moving with a wrong speed. Hence,
a major advantage that a numerical method can have, is providing a context in which, a higher-
order spatial discretization can be formulated properly.

4.1 Spatial Discretization

The spatial discretization methods are principally classified into three categories including
the Finite Difference Method, the Finite Volume Method and the family of the spectral meth-
ods. The starting point in the procedure of a spatial discretization is converting the continuous
domain to a discrete domain, over which the numerical solution is represented and the spatial
differential terms are approximated.
A discrete domain in the finite difference method consists of a set of the nodes distributed in
a structured way. Whereas in the Finite Volume Method as well as the spectral methods, the
discrete domain is composed of a set of the sub-domains (cells) with arbitrary geometries which
can be distributed in an unstructured way.
The solution in the Finite Difference Method is represented by its nodal values. Each nodal
value together with the neighbour nodal values within a certain stencil, are associated with a
polynomial distribution of a certain degree. Therefore, in the context of the Finite Difference
Method, one can achieve a higher-order approximation by using a polynomial distributions of
higher-degree over an expanded grid stencil. But having to expand the grid stencil in order to
make a higher-order approximation, can be consider as a disadvantage of the Finite Difference
Method.
The solution in the Finite Volume Method is represented in each cell uniformly as the cell-
averaged value or with a linear variation limiting the order of approximation up to 2. In this
method, a PDE is converted to a system of temporal ODEs by integrating the PDE locally over
each cell. Although there is a discontinuous variation of the solution at the border of the cells,
each pair of the cells are connected via approximating the flux of the solution across the com-
mon border. As the numerical flux function is expressed in terms of the cell values, it can be
approximated with a higher-order by expanding the stencil of the cells, such as the 3rd-order
WENO (Weighted Essentially Non-Oscillatory) scheme proposed in [31] which is specifically
designed to handle steep variations in the solution.
The solution in the spectral methods is represented as a certain composition of a spectrum of
prescribed analytical functions. Therefore one can consider this type of methods as the mathe-
matical spectralizers. For instance, the solution ϕ(x, t) can be spectralized as,

ϕ(x, t) ≈ ϕ̃(x, t) =

NDoF∑
j=1

ϕ̂j(t)ϑj(x), (25)

where ϑj(x) represents the set of the analytical functions termed as the basis functions, ϕ̂j(t)
represents the corresponding coefficients, and NDoF denotes the number of the numerical de-
grees of freedom within the domain, over which the solution is spectralized. As the basis
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functions are prescribed, the solution is obtained by computing the unknown coefficients ϕj(t).
It can be shown that the spectral methods yield exponential convergence rate, see [30]. The
different spectral methods are distinguished based on the following characteristics:

• The domain, over which the solution is spectralized. In the spectral element methods such
as the DG method, the spectralization is performed over each cell separately. Whereas in
the the Finite Element Method as well as the Fourier Spectral Method, the spectralization is
commonly made globally or over a wider stencil.

• The type of the basis functions and the domain within which, they are defined. In the Finite
Element Method as well as the DG methods, the basis functions are defined within each cell.
Whereas in the Fourier Spectral Method, they are defined over the whole domain. As stated
in [32], the most suitable basis functions for the periodic problems are the trigonometric
functions. On the other hand, the orthogonal polynomials are proven to be appropriate for
the non-perodic problems.

• The third issue is the technique applied for determining the unknown coefficients ϕ̂n(t). For
the non-periodic problems, the unknown coefficients are commonly determined applying the
method of weighted residuals which is explained subsequently.

4.1.1 Method of Weighted Residuals

Considering the level set advection equation (7), as an approximate solution ϕ̃(x, t) does not
necessarily satisfy the equation, its substitution into the equation results in the appearance of a
residual term as,

∂ϕ̃

∂t
+∇ ·

(
ϕ̃u
)
= R(ϕ̃). (26)

The method of Weighted Residuals is based on seeking an approximate solution that satisfies
a certain restriction imposed on the residual function. The restriction is placed by equating the
Legendre inner product of the residual function and a test (weight) function to zero as,

⟨χj(x),R(x)⟩ =
∫
Ω

χj(x)R(x)dV = 0, j = 1, · · · , NDoF . (27)

Consequently, the equation (26) takes a form as,∫
Ω

χj(x)

[
∂ϕ̃

∂t
+∇ ·

(
ϕ̃u
)]

dx =

∫
Ω

χj(x)R(ϕ̃)dV , (28)

j = 1, · · · , NDoF ,

which is in fact a set of NDoF equations. The different Weighted Residuals methods are dis-
tinguished based on the test function they employ, see [30]. Among the different methods, the
Galerkin Weighted Residual method uses the same set of the functions as the test functions,
which is used as the basis functions. The Finite Element Method as well as the DG method
follow the approach of the Galerkin Weighted Residual method.
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4.2 Discontinuous Galerkin Method

4.2.1 Solution Representation

The DG method is classified in the category of the spectral element methods. The cell-wise
representation of the solution results in the solution discontinuity across the borders of the cells,
as it is shown in the figure 3. The amplitude of the discontinuities are adjusted by the grid
resolution as well as the degree of the spectral representation. The procedure of applying the

Figure 3 A DG-based representation of a solution with observed cell-boundary discontinuities

DG method starts with approximating the physical domain Ω bounded by ∂Ω by a discrete
domain Ωh bounded by ∂Ωh consisting of NC non-overlapping boundary conforming cells Ωh

k .
The DG field ϕhp,k(x, t) which is defined as the DG-based representation of a solution ϕ(x, t),
can be constructed over each cell Ωh

k employing an orthogonal basis polynomials space ϑj(x)
as,

ϕ(x, t)|Ωh
k
≈ ϕhp|Ωh

k
(x, t) =

NP∑
j=1

ϕ̂(t)jkϑjk(x), k = 1, · · · , NC , (29)

where NP denotes the dimension of the orthogonal basis polynomials space. The letter h in
the subscript hp, indicates the finite spatial resolution, and the letter p signifies the spectral
representation. The dimension of the orthogonal basis polynomials space which is required for
constructing a DG field of degree p, can be calculated as,

NP =
1

D!

∏
1≤l≤D

(p+ l), (30)

where D denotes the spatial dimension. It is more convenient to normalize the orthogonal basis
polynomials space by the L2 norm of each of the polynomials, resulting an orthonormal basis
polynomial space. The orthonormal basis polynomials space used in the present research is
constructed over a set of NP monomials applying the Gram-Schmidt algorithm. For instance
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following [37], the monomials space P := {1, x, y, x2, y2, xy} can be converted to an orthonor-
mal polynomial space P as,

Θ :=

{
1

2
,

√
3

2
x,

√
3

2
y,
√
5

(
3

4
x2 − 1

4

)
,
3

2
xy,

√
5

(
3

4
y2 − 1

4

)}

In order to obtain the coefficients ϕ̂(t) corresponding the DG-based representation of a solution
ϕ(x, t), the solution needs to be projected over the orthogonal basis polynomials space ϑjk(x)
by performing an inner product as,

ϕ̂(t)jk = ⟨ϕ(x, t), ϑjk(x)⟩ =
∫
Ωh

k

ϕ(x, t)ϑjk(x)dV , (31)

j = 1, · · · , NP ,

k = 1, · · · , NC ,

The procedure of solving an equation in the modal DG method, which is used in the present
study, is finalized by obtaining the coefficients ϕ̂(t). Then the solution values can be calculated
at any arbitrary point within the domain in the postprocessing stage.
As a result of the solution discontinuity across the borders of the cells, every point located on a
cell border corresponds to a pair of the asymptotic values, namely the inner-cell value and the
outer-cell value, denoted by ϕ−

hp(x
k) and ϕ+

hp(x
k), respectively. A conceptual representation of

these values is given in figure 4 for a 1D problem. As it is indicated in this figure, the solution
discontinuity is quantified by the jump operator JϕhpKxk which is defined as the difference be-
tween the inner- and the outer-cell values. The inner- and the outer-cell values are defined on
the border ∂Ωh,k of a cell Ωh,k as,

ϕ−
hp(x

k) := lim
ξk→xk

ϕhp(ξ
k), xk ∈

(
Ωh

k\∂Ωh
k

)
, (32)

ϕ+
hp(x

k) := lim
ξk→xk

ϕhp(ξ
k), xk /∈ Ω̄h

k, (33)

where
xk ∈

(
Ωh

k\∂Ωh
k

)
:= {xk ∈ Ωh

k : xk /∈ ∂Ωh
k},

and
xk /∈ Ω̄h

k ≡ xk /∈
(
Ωh

k

∪
∂Ωh

k

)
:= {xk : xk ∈ Ωh

k ∨ xk ∈ ∂Ωh
k}.

4.2.2 Approximation of the Partial Differential Terms

The DG method employs the Galerkin Weighted Residual method for the numerical approx-
imation of the partial differential terms. Considering the level set advection equation (7), this
method can be implemented by multiplying the NP members of the orthonormal basis polyno-
mial space ϑj as,
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Ωh
kΩh

k−1 Ωh
k+1xk

JϕhpKxk
ϕ−
hp(x

k)

ϕ+
hp(x

k)

Figure 4 A schematic representation of the discontinuity of the solution across each of the cell
borders

∫
Ωh

k

ϑjk(x)

[
∂ϕhp

∂t
+∇ · (ϕhpuhp)

]
dV = 0, (34)

j = 1, · · · , NP ,

k = 1, · · · , NC ,

leading to a matrix equation as,

∫
Ωh

k

ϑjk(x)

(
∂ϕhp

∂t

)
dV︸ ︷︷ ︸

TM

+

AM︷ ︸︸ ︷∫
Ωh

k

ϑjk(x)(∇ · (ϕhpuhp)︸ ︷︷ ︸
Non-Linear Flux:= f

)dV = 0, (35)

where the matrices are of the size 1 × NP . It is more convenient to consider the matrix corre-
sponding to each of the terms separately as TM and AM, denoting the time and the advection
matrices, respectively.

Time Matrix (TM) Substituting the DG-based representation of ϕ into this tensor yields,

TM :=

∫
Ωh

k

ϑjk(x)

(
∂

∂t

(
NP∑
i=1

ϕ̂ik(t)ϑik(x)

))
dV

=

NP∑
i=1

∂ϕ̂ik(t)

∂t

∫
Ωh

k

ϑjk(x)ϑik(x)dV

=

NP∑
i=1

dϕ̂ik(t)

dt
δji. (36)

where δji is the Kronecker delta function defined as,

δji =

{
1 , if j = i

0 , j ̸= i.
(37)
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Advection Matrix (AM) It should be noted that as the variable ϕ is the unknown variable
and the velocity field u is prescribed, this advection term is not a non-linear term. Taking an
integration by parts yields,

AM :=

∮
∂Ωh

k

ϑjk(x)nS · fdS −
∫
Ωh

k

f ·∇ϑjk(x)dV (38)

where nS is the normal vector to the cell border, directing outward of the cell. In the DG method,
although the solution can be discontinuous across the cell borders, each common border of two
adjacent cells must be assigned to a unique flux function f∗ which is called the numerical flux.
This explicit specification of the fluxes provides the conservative property of the DG method.
The numerical flux is required to be substituted only into the first term of the formulation (38)
as this term lives on the cell border where the adjacent cells are in connection. In order to
construct a numerical flux at a cell border, the solution needs to be reconstructed there. The
solution reconstruction in the DG method is commonly made by applying either a 1st-order
upwind scheme or a 2nd-order central scheme using the inner- and the outer-cell values. An
upwind numerical flux can be defined as,

f∗U =


ϕ−
hpu

−
hp,

u−
hp · nS + u+

hp · nS

2
≥ 0,

ϕ+
hpu

+
hp,

u−
hp · nS + u+

hp · nS

2
< 0.

(39)

The upwind scheme is appropriate if the spatial differential term represents a directional phe-
nomenon such as the advection. This is because this scheme is characterized by high dissipation
and low dispersion errors. The central scheme is a proper choice for the terms representing the
directionless phenomena such as the diffusion. This is because this scheme is characterized by
low dissipation and high dispersion errors. Therefore, if it is applied for a directional prob-
lems, it does not dissipate the non-resolved modes of the solution and advects them through
the domain with wrong speeds in wrong directions, leading to the formation of spurious spatial
oscillations, see [38, 30]. The central numerical flux can be defined as,

f∗C =
u−ϕ−

hp + u+ϕ−
hp

2
(40)

Substituting the numerical flux f∗ into the first term of the formulation (38), and substituting
the DG-based representation of f into the second term, yields,

AM :=

∮
∂Ωh

k

ϑjk(x)nS · f∗dS −
∫
Ωh

k

(
NP∑
i=1

f̂ik(t)ϑik(x)

)
·∇ϑjk(x)dV

=

∮
∂Ωh

k

ϑjk(x)nS · f∗dS −

(
NP∑
i=1

f̂ik(t)

)
·
∫
Ωh

k

ϑik(x)∇ϑjk(x)dV . (41)

Source Matrix (SM) In the case of having an extra source term sϕ in the equation, imple-
menting the Galerkin Weighted Residual method results in a source matrix SM as,

SM :=

∫
Ωh

k

ϑjk (sϕ)) dV . (42)
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Substituting the DG-based representation of sϕ as sϕ =
NP∑
j=1

ŝ(t)jkϑjk(x), yields,

SM :=

∫
Ωh

k

ϑjk(x)

(
NP∑
i=1

ŝϕ,ik(t)ϑik(x)

)
dV

=

NP∑
i=1

ŝϕ,ik(t)

∫
Ωh

k

ϑik(x)ϑjk(x)dV

=

NP∑
i=1

ŝϕ,ik(t)δji. (43)

4.2.3 Gradient Calculation

The gradient of a variable ϕ in the DG method can be calculated in two different ways
including,

• Broken gradient: In this method, considering the DG-based representation of the vari-

able as ϕ =
NP∑
j=1

ϕ̂(t)jkϑjk(x), the gradient can be obtained by differentiating the pre-

scribed orthonormal basis polynomial space ϑjk(x). Therefore, denoting the gradient by
G = ∇ϕ, its DG-based representation can be obtained as,

NP∑
j=1

Ĝjk(t)ϑjk(x) =

NP∑
j=1

ϕ̂jk(t)∇ϑjk(x) (44)

• By-flux gradient: In this method, each component of the gradient vector is written in the
form of a divergence as,

Gi = (∇i)ϕ ≡ ∇ · (eiϕ) , i = 1, 2, 3 (45)

where ei represents the standard bases. In this way, each component of the gradient term
takes the form of an advection term. Therefore, the same procedure described for the
numerical approximation of an advection term can be followed, together with using the
central scheme for determining the numerical flux. As it is shown in [39], this method
leads to a more accurate calculation of the gradient than the former method.

4.3 Boundary Condition

As it was explained before, the numerical flux can be determined at the cell borders using
a combination of the inner- and the outer-cell values ϕ+

hp and ϕ−
hp. If the cell border is a part

of the domain boundary ∂Ω, the outer-cell value is an unknown. If a value ϕB is imposed on
the boundary as a part of the problem definition (Dirichlet boundary condition), the unknown
outer-cell value can be determined in two ways, including the direct method as,

ϕ+
hp = ϕB, (46)

and the mirror method as,
ϕ−
hp + ϕ+

hp

2
= ϕB. (47)
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If the value ϕB is not specified, the unknown outer-cell value may be allowed to be equal to the
inner-cell value, which means a zero gradient of ϕ normal to the domain boundary (Homoge-
neous Neumann boundary condition).

4.3.1 Numerical integration

In the procedures of implementing the spatial discretization methods as well as in the post-
processing stages, one may require the numerical evaluation of definite integrals. The numerical
integration methods are commonly referred in the literature as the quadrature rules. Among the
different proposed methods, the Gaussian quadrature rules are highly efficient because of the
minimal number of evaluations. In principle, a Gaussian quadrature rule consists of evaluating
the integrand at a certain set of the integral points (quadrature points) and making a weighted
summation of the calculated values, see [40]. For instance, a 1D Gaussian quadrature rule over
a domain [−1,1] can be written as,∫ 1

−1

f(x)dx ≈
n∑

i=1

ωif(xi), (48)

where ωi represents the prescribed weighting functions and xi represents the quadrature points
which are distributed in a certain pattern within the domain of integration. The 1D version of a
Gaussian quadrature rule can be simply extended to the corresponding multi-dimensional ver-
sion by making the same distribution of the quadrature points over a multi-dimensional domain,
and employing a multi-dimensional weighting function.
If the integrand has a Heaviside distribution, the accuracy of the integration can not be improved
by increasing the order of quadrature rule. In this case, the accuracy can be improved by per-
forming a multistage division of each cell and applying a lower-order quadrature rule over each
sub-cell. This technique is commonly termed as the Brute Force integration.

4.3.2 Reference Cell

As a numerical grid consists of a set of the cells with various geometries and locations, it is
impractical to construct an orthonormal basis polynomial space within each of them. Moreover,
implementing a Gaussian quadrature rule for each of the cells is not a clever task. In order to
overcome this problem, one can introduce a reference element in another domain characterized
by the coordinates (ξ1, ξ2) which are related to the coordinates (x1, x2) using a transformation
as,

x = Tk(ξ) = Mkξ +Ak, k = 1, · · · , NC (49)

where Mk is a matrix which accounts for different types of linear deformation such as stretch,
rotation and shear, see [1]. The vector Ak performs the translation. As the centroid of the
reference cell is commonly located on (ξ1 = 0, ξ2 = 0), the vector Ak gives the coordinates of
the centroid of the cell Ωh

k . Figure 5 schematically shows a linear transformation between for
instance, a triangular reference cell and a triangular cell Ωh

k . According to this transformation,
a function f(x) can be transferred to its corresponding function g(ξ) as,

f(Tk(ξ)) =
1√

det(Mk)
g(ξ), k = 1, · · · , NC (50)
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ξ1

ξ2

Ωref

x1

x2

Ωh
k

x = Tk(ξ)

ξ = T−1
k (x)

Figure 5 A schematic representation of a linear transformation between the reference cell Ωref

and a cell Ωh
k

This transformation can be applied to transfer, for instance, a solution ϕhp(x, t) to ϕref (ξ, t),
and the orthonormal basis polynomial space ϑjk(x) to ϑj(ξ), where k = 1, · · · , NC and j =

1, · · · , NP . It should be noted that the values of the coefficients ϕ̂jk(t) stay the same in the
transformation as they are only time dependent functions. Furthermore, an integral over a cell
Ωh

k can be transferred to an integral over the reference cell Ωref as,∫
Ωh

k

dV = det(Mk)

∫
Ωref

dVref , k = 1, · · · , NC (51)

4.4 Time Integration

Considering a temporal ODE as,

ϕt ≡
dϕ

dt
= f(ϕ, t), (52)

the aim of a time integration method is to obtain a sequence of values ϕ̃0, ϕ̃1, · · · , ϕ̃n such that,

ϕ̃n ≈ ϕ(tn),

fn = f(ϕ̃n, t). (53)

There are two major families of the numerical time integration methods including the linear
multi-step methods and the Runge-Kutta methods, see [33]. The former obtain obtains the ϕ̃n+1

either explicitly using the values of the later time steps, or implicitly using the values of the both
later and previous time steps, in multiple steps, each of which includes a single stage. Whereas,
the latter obtains it explicitly in a single step from ϕ̃n to ϕ̃n+1, including multiple stages. The
multi-stage evaluation makes the Runge-Kutta methods more stable than the linear multi-step
methods. However, a possible consequence of using the higher-order schemes is the numerical
instability. The Runge-Kutta methods with the total variation diminishing (TVD) property can
prevent such a problem, see [34]. Considering the one-dimensional wave equation (24), the
total variation of the variable ϕ can be calculated by,

TV =

∫ ∣∣∣∣∂ϕ∂x
∣∣∣∣ dx. (54)

The time integration of equation (24) is TVD if,

TV (ϕn+1) ≤ TV (ϕn). (55)
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It can be proven that a TVD method is monotonicity preserving and also a monotone numerical
scheme is TVD, see [35]. A numerical scheme is monotonicity preserving if the following
properties are maintained in time, see [36]:

• No creation of any new extremum in the spatial distribution of the solution

• No decreasing values of the local minimums and no increasing values of the local maximums

It can be shown that the 1st-order forward (Euler) time integration method is a basic TVD
Runge-Kutta method, see [34]. The Euler method can be written as,

ϕ̃t =
ϕ̃n+1 − ϕ̃n

∆t
. (56)

Therefore, each stage of a multi-stage higher-order TVD Runge-Kutta method can be con-
structed by applying an Euler method and combining the results with the initial data using a
convex combination, see [5]. The convex combination is a linear combination with the positive
coefficients, where the summation of the coefficients is equal to one. For instance following
[34], the 3rd-order TVD Runge-Kutta method which is applied in the present study, can be
constructed as,

ϕ̃1 = ϕ̃n +∆tf 1 (57)

ϕ̃2 =
3

4
ϕ̃n +

1

4
ϕ̃1 +

1

4
∆tf1

ϕ̃n+1 =
1

3
ϕ̃n +

2

3
ϕ̃2 +

2

3
∆tf2

4.5 Solving the Level Set Advection Equation

The spatial discretization of the advection term included in the level set advection equation
(7) can be done using the DG method as explained in the section 4.2. The numerical flux is
determined using a 1st-order upwind scheme. Moreover, a 3rd-order TVD Runge-Kutta scheme
is used for the time integration as explained in the section 4.4.

4.6 Solving the Level Set Re-Initialization Equation

A stable solution to the re-initialization equation (15) can not be obtained by calculating the
components of ∇ϕ employing a central flux function and considering the term Sign(ϕ0)(|∇ϕ|−
1) as a source term. This approach does not necessarily result in a stable solution as it is not
monotonicity preserving.
The behavior of the re-initialization equation with respect to a numerical scheme, can be better
analyzed when it is considered as a Hamilton-Jacobi equation, see [5]. A general form of the
Hamilton-Jacobi equation can be written for the level set function ϕ(x, t) as,

∂ϕ

∂t
+H(ϕx, ϕy) = 0, (58)

where H is called the Hamiltonian, and ϕxi
represents ∂ϕ/∂xi. The difficulties in solving the

Hamilton-Jacobi equation arise from the fact that this equation develops solutions with singular
derivatives even if the initial condition is smooth, see [41]. In order to overcome this problem,
a generalized concept of the solution is proposed in [41] which is called the viscosity solution.
This name refers to the method of vanishing viscosity which is used to prove the existence of
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this type of solutions. The viscosity solution is a weak solution which does not need to be
differentiable everywhere, while its existence, uniqueness and stability hold under certain as-
sumptions. Therefore, the solution to every Hamilton-Jacobi equation needs to converge to a
viscosity solution. It is proved in [42] that the class of monotone schemes results in the solu-
tions which can meet this condition. Application of a variety of the monotone schemes, such
as the Lax-Friedrichs scheme, the Roe-Fix scheme and the Godunov’s scheme for solving the
Hamilton-Jacobi equations are investigated in [43]. Concerning the re-initialization equation as
an Hamilton-Jacobi equation, it is highly recommended in [5] to apply the Godunov’s scheme.
This approach is followed in the present research accordingly.

4.6.1 Godunov’s Scheme

The Godunov’s scheme was applied in [44] for solving the Hamilton-Jacobi equation. In
order to describe this scheme, we consider the variables Gi = ϕxi

(i = 1, 2) representing the
components of ∇ϕ in 2D. Having the DG-based representation of ϕ, the DG-based representa-
tion of each of the variables Gi can be obtained using the ”By-Flux” method as explained before.
In order to use the ”By-Flux” method, one needs to calculate the numerical fluxes f ∗

i = (eiϕ)
∗

(i = 1, 2), either by using an upwind method or a downwind method as,

f ∗U
i =

{
ϕ−ei, ei · nS ≥ 0

ϕ+ei, ei · nS < 0
(59)

f ∗D
i =

{
ϕ−ei, ei · nS < 0

ϕ+ei, ei · nS ≥ 0
(60)

where (i = 1, 2), and ϕ− and ϕ+ denote the inner- and outer-cell values of ϕ at the border of
a cell. In addition, ei represents the standard bases and nS denotes the normal vector to the
border of a cell. Following [45], the variables GU

i and GD
i (i = 1, 2), are introduced using

the numerical flux f ∗U
i and f ∗D

i respectively, for calculating Gi . In the Godunov’s scheme,
the Hamiltonian is approximated by a numerical Hamiltonian H̃ as a function of GU

i and GD
i ,

expressed as,

H(G1, G2) ≈ H̃(GU
1 , G

D
1 , G

U
2 , G

D
2 )

= extxextyH(G1, G2), (61)

where

extxH(G1, G2) =

{
min(H(GU

1 , G2), H(GD
1 , G2)), GU

1 ≤ GD
1

max(H(GU
1 , G2), H(GD

1 , G2)), GU
1 > GD

1

extyH(G1, G2) =

{
min(H(G1, G

U
2 ), H(G1, G

D
2 )), GU

2 ≤ GD
2

max(H(G1, G
U
2 ), H(G1, G

D
2 )), GU

2 > GD
2

The numerical Hamiltonian (61) is then considered as a source term in the equation and the
equation is solved by performing a time integration.
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4.6.2 Godunov’s Scheme for Solving the Level Set Re-initialization Equation

The term Sign(ϕ0)(|∇ϕ|−1) in the re-initialization equation corresponds to the Hamiltonian
in the Hamilton-Jacobi equation. A compact formulation representing the application of the
Godunov’s scheme for solving the re-initialization equation is proposed in [27] which can be
expressed in 2D as, Sign(ϕ0)(|∇ϕ| − 1)

≈

Sign(ϕ0)(
√

max[(GU+
1 )2, (GD−

1 )2] + max[(GU+
2 )2, (GD−

2 )2]− 1), Sign(ϕ0) ≥ 0

Sign(ϕ0)(
√

max[(GU−
1 )2, (GD+

1 )2] + max[(GU−
2 )2, (GD+

2 )2]− 1), Sign(ϕ0) < 0

(62)
where

GU+
i = max(GU

i , 0), GU−
i = min(GU

i , 0),

GD+
i = max(GD

i , 0), GD−
i = min(GD

i , 0), (63)

and (i = 1, 2). A 3rd-order TVD Runge-Kutta time integration scheme is used for this equation
as well.

5 Numerical Simulations and Results

This section is assigned to present a set of the test cases considered to investigate the ap-
plication of the numerical schemes discussed in the previous section for solving the level set
advection and re-initialization equations.

5.1 Error Calculation

The numerical results of the test cases considered in the present research are analyzed based
on measuring three kinds of the errors including ”volume/area loss”, ”interface L1-error” and
”L2-error”, which are briefly describes as follows:

Volume/Area Loss This error gives the difference between the volume/area occupied by the
computed interface and the correct volume/area. Supposing that the region occupied by the
interface corresponds to the negative part of the level set function, the volume/area of this region
can be calculated as,

Ω
h

(ϕ
hp

<0) =

∫
Ω

h

(ϕ
hp

<0)

dV (64)

Therefore the volume/area loss can be calculated in percentage as,

Area Loss = 100×
Ω

(ϕ
ref

<0)
− Ω

h

(ϕ
hp

<0)

Ω
(ϕ

ref
<0)

(65)

where ϕ
ref denotes a reference level set function which is compared to the calculated field of

the level set function.

Interface L1-Error This error gives an L1 measure on the spurious movement of the inter-
face. This error can be calculated as,

L1
I =

1

L

∫
Ω

h
|H(ϕ

hp
)−H(ϕ

ref

)|dV (66)
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where L is the interface circumference, ϕref is the reference level set function and H(ϕ) is the
Heaviside function. The interface L1-Error as well as the area loss are calculated in the present
research by taking a brute-force integration performing a five-stage cell division.

L2 Error This error gives an L2 measure on the accuracy of computing the field of a variable
such as the level set function ϕ. Having the reference field of the variable available as an analytic
function, the L2 error is calculated as,

L2
ϕ
hp

= ∥ϕhp − ϕref∥Ωh =

(∫
Ωh

[(

NC∑
k=1

NP∑
j=1

ϕ̂jkϑjk)− ϕref ]2dV

) 1
2

(67)

where ϕref is evaluated at the quadrature points in the procedure of the numerical integration.

5.2 Periodic Deformation of a Circle in a Swirl Flow

This section is assigned to verify the numerical solution to the level set advection equation
(7) by simulating the periodic deformation of an eccentric circle in a prescribed velocity field
corresponding to a time-dependent swirl flow. This test case which was originally considered
in [46], is an appropriate benchmark for investigating the dissipative and dispersive errors of a
numerical method applied for solving the level set advection equation.

Problem Description The domain of computation is a square with the lower-left corner lo-
cated at (0, 0) and the upper-right corner located at (1, 1). The initial geometry of the interface
is a circle with the radius R = 0.15, centered at (xc = 0.5,yc = 0.75). The signed-distance level
set function of the interface is defined as,

ϕ0(x) =
√
(x− xc)2 + (y − yc)2 −R, (68)

which corresponds to a singular gradient at the center of the circle. In order to investigate the
effects of such a singularity, a non-signed-distance level set function is considered additionally,
which does not correspond to a singular gradient. This function is expressed as,

ϕ0(x) = (x− xc)
2 + (y − yc)

2 −R2. (69)

Figures 6 illustrate the difference between the initial signed-distance and non-signed-distance
level set functions. As it is shown, the non-signed-distance level set function does not have a
sharp apex. Therefore, this function can be properly projected to an orthonormal basis polyno-
mial space of a certain degree. Figure 7 illustrates the difference between the broken gradients
of the signed-distance and non-signed-distance level set functions after one time step. As it is
shown in Figure 7a, the effect of the singularity is not limited to the center of the circle. In
order to reduce the size of the singular region, one can either make a grid refinement, or use an
orthonormal basis polynomial space of lower-degree.
The prescribed velocity field corresponding to the transient swirl flow, is defined as

u(x) = ux(x, y)ex + uy(x, y)ey

= sin(2πy) sin2(πx) cos

(
πt

T

)
ex

− sin(2πx) sin2(πy) cos

(
πt

T

)
ey (70)
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where the term cos(πt/T ) is multiplied for making a time periodicity in the interval T . The
value of T for this test case is 8.

ϕ

x

y

(a) Signed-distance

ϕ

x

y

(b) Non-signed-distance

Figure 6 Initial signed-distance and non-signed-distance level set functions of a circle. The
picture corresponds to p = 3 and NC = 10× 10. The red curve represents ϕ = 0 and the white

curves represent ϕ = −0.01 and ϕ = 0.01.

|∇ϕ|

x

y

(a) Signed-distance

|∇ϕ|

x
y

(b) Non-signed-distance

Figure 7 Gradients of the signed-distance and non-signed-distance level set functions of a
circle after one time step. The picture corresponds to p = 3 and NC = 10× 10.
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In order to improve the accuracy as well as the numerical stability, the velocity field is up-
dated in each sub-stage of the 3rd−order TVD Runge-Kutta integration which is implemented
in the present study. A vector plot of the velocity field is shown in figure 8.

Figure 8 The prescribed velocity vector field corresponding to a swirl flow

Numerical Settings This test case is assigned to perform two classes of the convergence
studies including the p-convergence study and the h-convergence study, employing both the
signed-distance and non-signed-distance level set functions. For the p-convergence study, the
orthonormal basis polynomial space of degrees p = 2, 3, 4, 5, 6, 7, 8, 9, 10 are used and the
domain is discretized to a set of the quadrilateral cells with the resolution NC = 40 × 40. For
the h-convergence study, the orthonormal basis polynomial space of degrees p = 3, 4, 5, 6, 7
are used and the domain is discretized to the sets of the quadrilateral cells with the resolutions
NC = 10 × 10, 20 × 20, 40 × 40, 80 × 80. The time step for this study is set to 0.000125
corresponding to the CFL number of 1/p2. In addition to the convergence studies, a case with
p = 4 and NC = 32 × 32 is considered in order to make a comparison with the available
results reported in the literature. A homogeneous Neumann boundary condition is imposed on
the entire boundary of the domain.

Results Figure 9 shows snapshots of the interface shape captured in one period of the defor-
mation using p = 7, NC = 160 × 160 and an initially non-signed-distance level set function.
The diagrams shown in the Figure 10 illustrate the p-Convergence studies on the area error,
interface L1-error and level set L2-error at t = T , employing both the initially signed distance
(denoted as SDLS) and initially non-signed distance (denoted as NSDLS) level set functions.
A major fact illustrated in all of these diagrams is that the singularity dramatically reduces the
p-convergence rate. Furthermore, as the interface L1-error measures a difference between the
Heaviside functions but not a difference between the fields of the level set functions, such a large
reduction in the p-convergence rate supports the argument that the negative effect of the singu-
larity is not limited to the point of the singularity even at t = T when the circle is reformed.
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(a) t = 0 (b) t = 0.1T (c) t = 0.2T

(d) t = 0.3T (e) t = 0.4T (f) t = 0.5T

(g) t = 0.6T (h) t = 0.7T (i) t = 0.8T

(j) t = 0.9T (k) t = T

Figure 9 Periodic deformation of an eccentric circle in a swirl flow. The picture corresponds to
p = 7 and NC = 160× 160. The level set function is initially non-signed-distance.

7205



R. Mousavi, F. Kummer, M. Oberlack, P. F. Pelz

10−3

10−2

10−1

100

101

2 3 4 5 6 7 8 9 10

A
re

a 
E

rr
or

 (
%

)

p

SDLS
NSDLS

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2 3 4 5 6 7 8 9 10

In
te

rf
ac

e 
L1 −

 E
rr

or

p

SDLS
NSDLS

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2 3 4 5 6 7 8 9 10

Le
ve

l S
et

 L
2 −

 E
rr

or

p

SDLS
NSDLS

Figure 10 p-Convergence study on the area error, the interface L1-error and the level set
L2-error at t = T for simulating the periodic deformation of a circle in a swirl flow. The grid

resolution is NC = 40× 40.

7206



R. Mousavi, F. Kummer, M. Oberlack, P. F. Pelz

Figure 11 shows the difference between the gradients of the initially signed-distance and non-
signed distance level set functions after one period of deformation. The left picture indicates
the footprint of the singularity over the domain. Table 1 demonstrates an h-Convergence study

(a) Signed− distance (b) Non− signed− distance

Figure 11 Gradient of the initially signed-distance and non-signed-distance level set functions
of a circle after one period of deformation in a swirl flow. The picture corresponds to p = 10

and NC = 40× 40.

on the level set L2-error, using the initially signed-distance and non-signed-distance level set
functions. This error is theoretically expected to behave as, see e.g. [6],

L2
ϕ = C(p)(h)p+1 (71)

where h denotes the characteristics cell size, p denotes the degree of the orthonormal basis
polynomial space and C denotes a coefficient which is dependent on p. According to this
expression, increasing the grid resolution is theoretically expected to result in an exponential
error reduction of order p + 1. The error reduction rate or the experimental error order (EEO)
can be calculated for each error with respect to the error corresponding to the coarser grid, as

L2
ϕ,1 = C(p)(h1)

O,

L2
ϕ,2 = C(p)(h2)

O,

O =
ln(L2

ϕ,2/L
2
ϕ,1)

ln(h2/h1)
, (72)

where O is the h-convergence rate or EEO. The third column of the table illustrates that using
an initially signed-distance level set function does not results in the expected h-convergence
rate which is p + 1. Moreover, it is almost the same for all degrees of the orthonormal basis
polynomial space. According to the fifth column of the table, employing an initially non-signed-
distance level set function results in the expected h-convergence rate, but not for all of the grid
resolutions. It means that using NC = 10× 10 and NC = 20× 20 is not suitable for this certain
problem with the corresponding specifications. Diagram 12 is made by plotting the errors listed
in table 1 versus the numerical degrees of freedom NDoF . This diagram illustrates that using
an orthonormal basis polynomial space of a higher-degree results in an accuracy which is more
than the accuracy achieved by the one with a lower-degree but with the same NDoF . This
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Table 1 h-Convergence study on the level set L2-error for simulating a periodic deformation of
a circle in a swirl flow

p NC
Signed Distance Non- Signed Distance

Level Set L2-Error EEO Level Set L2-Error EEO

3

10× 10 2.75E − 02 · · · 1.54E − 02 · · ·
20× 20 1.07E − 02 1.36 4.99E − 03 1.63

40× 40 3.80E − 03 1.50 7.20E − 04 2.79

80× 80 1.03E − 03 1.89 1.39E − 05 5.69

160× 160 2.98E − 04 1.78 2.76E − 07 5.66

4

10× 10 1.76E − 02 · · · 8.70E − 03 · · ·
20× 20 7.13E − 03 1.31 2.54E − 03 1.78

40× 40 1.89E − 03 1.92 6.73E − 05 5.24

80× 80 5.23E − 04 1.85 7.62E − 07 6.47

160× 160 1.49E − 04 1.81 1.55E − 08 5.62

5

10× 10 1.23E − 02 · · · 6.12E − 03 · · ·
20× 20 4.45E − 03 1.47 9.64E − 04 2.67

40× 40 1.11E − 03 2.00 1.01E − 05 6.58

80× 80 3.12E − 04 1.83 8.32E − 08 6.92

160× 160 8.79E − 05 1.83 8.60E − 10 6.60

6

10× 10 9.58E − 03 · · · 4.28E − 03 · · ·
20× 20 2.94E − 03 1.70 2.61E − 04 4.04

40× 40 7.52E − 04 1.97 2.14E − 06 6.93

80× 80 2.08E − 04 1.85 8.91E − 09 7.91

160× 160 5.73E − 05 1.86 4.36E − 11 7.67

7

10× 10 7.56E − 03 · · · 3.04E − 03 · · ·
20× 20 2.02E − 03 1.90 6.50E − 05 5.55

40× 40 5.37E − 04 1.91 3.29E − 07 7.63

80× 80 1.47E − 04 1.87 8.22E − 10 8.64

160× 160 4.03E − 05 1.87 2.72E − 12 8.24

signifies the computational efficiency achieved by applying the higher-order methods. Table 2
makes a comparison between the results obtained in the present research and a number of the
available results reported in the literature. As it is shown, the accuracy of the DG method is
much higher than the FV method even if a higher-order WENO flux function is employed.

5.3 Periodic Deformation of a Slotted Disk in a Swirl Flow

This section is assigned to verify the solution to the level set advection equation (7) by
simulating the periodic deformation of an eccentric slotted disk in a prescribed velocity field
corresponding to a time-dependent swirling flow expressed as the equation 70.

Problem Description The domain of computation is a square with the lower-left corner lo-
cated at (0, 0) and the upper-right corner located at (1, 1). The initial geometry of the interface
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Figure 12 Level set L2-error versus NDoF for simulating a periodic deformation of a circle in a
swirl flow

Table 2 Accuracy of the DG method comparing to a higher-order WENO Finite Volume
method for simulating the periodic deformation of a circle in a swirl flow

Method p NC NDoF SDLS Area Loss (%) L1-error
DG 1 4 32× 32 15360 Yes -3.81 4.38E-03
DG 1 4 32× 32 15360 No 0.1 7.73E-04
DG 2 4 32× 32 15360 No 0.71 5.5E-4
5th-Order WENO FV 3 0 128× 128 16384 Yes -39.8 3.1E-2
5th-Order WENO FV 4 0 128× 128 16384 Yes -0.71 1.4E-3

1 Present. 2 DG method [7]. 3 Classical level set method [47]. 4 Particle level set method [47]

is a notched disk with the radius R = 0.15, the slot length LSlot = 0.25 and the slot width
WSlot = 0.5, centered at (xc = .5, yc = 0.75). The manually constructed signed-distance level
set function of the interface is shown in the figure 13. The period of deformation is set to T = 8.

Numerical Settings The domain is discretized to a set of the quadrilateral cells with NC =
100 × 100, according to which, the slot passes 10 cells along its width. The degree of the
orthonormal basis polynomial space is set to p = 7. The time step is set to ∆t = 0.0002
corresponding to the CFL number of 1/p2. A homogeneous Neumann boundary condition is
imposed on the entire boundary of the domain.

7209



R. Mousavi, F. Kummer, M. Oberlack, P. F. Pelz

ϕ = −1.5

ϕ = 0

ϕ = 1.5

Figure 13 The initial signed distance level set function of a slotted disk. The picture
corresponds to p = 7 and NC = 100× 100.

Results Figure 14 shows snapshots of the interface shapes captured in one period of deforma-
tion, using p = 7. As it is shown in the figure, despite the complexity in the geometry of the
interface as well as the long period of deformation, the original shape of the interface is fairly
regained at t = T . The area loss is −1.85% and the interface L1-error is 0.000974.

5.4 Re-initializing the Level Set Function of a Circle

This section is assigned to verify the solution to the level set re-initialization equation (15)
by re-initializing the level set function of a circle. As a result of the simple geometry of the
interface, this test case clarifies the numerical challenges inherent in the application of the DG
method for solving the re-initialization equation.

Problem Description The domain of computation is a square with the lower-left corner lo-
cated at (−0.5,−0.5) and the upper-right corner located at (0.5, 0.5). The interface geometry is
a circle with the radius R = 0.25, centered at (xc = 0, yc = 0). The initial level set function of
the interface is analytically expressed as,

ϕ0(x) = 0.5 ·
(√

(x− xc)2 + (y − yc)2 −R
)
, (73)

which corresponds to a gradient value or a slope of 0.5. As it is discussed in the section 5.2, the
gradient of this level set function is singular at the center of the circle.

Numerical Setting The domain is discretized to a set of the quadrilateral cells with NC =
20 × 20, according to which, the circle passes 10 cells along its diameter. The degree of the
orthonormal basis polynomial space is set to p = 5. The time step is set to ∆t = 0.002
corresponding to the CFL number of 1/p2. The regularized Signum function 21 is used with
the smoothing parameter ϵ = h. As the signed distance property of a level set function needs
to be recovered only in the region where the interface diffusion takes place, the re-initialization
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(a) t = 0 (b) t = 0.1T (c) t = 0.2T

(d) t = 0.3T (e) t = 0.4T (f) t = 0.5T

(g) t = 0.6T (h) t = 0.7T (i) t = 0.8T

(j) t = 0.9T (k) t = T

Figure 14 Periodic deformation of an eccentric slotted disk in a swirl flow. The picture
corresponds to p = 7 and NC = 100× 100.
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equation is solved only in a narrow band around the interface in order to save the computational
cost. In the direction normal to the interface, the narrow band includes a cell which is cut by
the interface and one neighbor cell at each side. A homogeneous Neumann boundary condition
is imposed on the boundary of the narrow band.

Results Figure 15 shows the level set function re-initialized in a narrow band around the
interface. The red curve represents ϕ = 0 and the white curves represent ϕ = −0.075 and
ϕ = 0.075. As the re-initialization is not supposed to move the zero iso-value of the level set
function (the interface), only one red curve is observed in the picture. But as the other iso-values
can be moved, two iso-values corresponding to ϕ = −0.075 and two iso-values corresponding
to ϕ = −0.075 are formed after the re-initialization. Figure 16 shows the gradient value of

ϕ

x y

Figure 15 The level set function of a circle with the initial slope of 0.5 re-initialized in a
narrow band around the interface. The picture corresponds to p = 5 and NC = 20× 20.

the level set function after the re-initialization, implying spurious spatial oscillations in the
field of the level set function. Diagram 17 shows the pseudo-time history of the L2-error of

Figure 16 Gradient value of the re-initialized level set function of a circle. The initial slope of
the level set function is 0.5. The picture corresponds to p = 5 and NC = 20× 20.
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|∇ϕ| during the re-initialization. As it is shown, although the error decreases at the beginning
with an appropriate rate, the solution starts to diverge after a certain pseudo-time. This is in
connection with the spurious spatial oscillation observed in the figure 16. Following [9], the
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Figure 17 L2-error of |∇ϕ| during the re-initialization of the level set function of a circle. The
initial slope of the level set function is 0.5. The degree p = 5 is used with NC = 20× 20.

solution stability can be improved by adding an artificial diffusion along the characteristic lines
of the solution as,

∂ϕ

∂τ
+ Sign(ϕ0)(|∇ϕ| − 1)− νn

∂2ϕ

∂n2
= 0 (74)

where νn is the coefficient of the artificial diffusion and n is the interface normal vector which
is calculated as,

n =
∇ϕ

|∇ϕ|
.

As
∂ϕ

∂n
= n ·∇ϕ,

the diffusion term can be calculated as,

νn

(
∂2ϕ

∂n2

)
= νn(n ·∇(n ·∇ϕ)).

As |∇ϕ| = 1, therefore,
νn(n ·∇(n ·∇ϕ)) = 0,

which means that the diffusion term does not affect the solution in the steady state. Diagram
18 shows the effect of adding a diffusion term to the re-initialization equation. As it is shown,
using the diffusion coefficients νn = 0.0005, 0.001, 0.002 has a notable stabilization effect.
As adding a second-order term to the equation imposes more CFL restriction, a lower time step
is required in order to use larger diffusion coefficients. Table 3 reports the effects of adding a
diffusion term, on the area error, interface L1-error and the L2-error of the level set gradient after
performing a re-initialization. The errors, indicate that the spurious movement of the interface
as a result of the re-initialization, is quite small and it is further reduced by adding an artificial
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ν = 0, CFL = 1/p2

ν = 0.0005, CFL = 1/p2

ν = 0.001, CFL = 1/p2

ν = 0.002, CFL = 1/p2

ν = 0.004, CFL = 1/p2

ν = 0.008, CFL = 1/p2

ν = 0.004, CFL = 0.5/p2

ν = 0.008, CFL = 0.5/p2

Figure 18 Effect of the artificial diffusion on the L2-error of |∇ϕ| during the re-initialization
of the level set function of a circle. The initial slope of the level set function is 0.5. The degree

p = 5 is used with NC = 20× 20.

Table 3 Effects of adding a diffusion term to the re-initialization equation for re-initializing the
level set function of a circle. The degree p = 5 is used with NC = 20× 20.

ν = 0 ν = 0.002

Area Loss (%) −0.00136 −0.00154

Interface L1-error 4.0385E − 06 3.914E − 07

LS Gradient L2-error 2.616E − 05 4.762E − 06

diffusion to the re-initialization equation. Figure 19 shows the effects of the smoothing width ϵ,
the degree p and the characteristic cell size h as well as the artificial diffusion, on the pseudo-
time history of the L2-error of |∇ϕ|. As it is shown, increasing the smoothing width of the
Signum function improved the stability although it reduces the convergence rate. Moreover, it
is shown that increasing the degree of the orthonormal polynomial space, improves the stability
in addition to increasing the accuracy. Furthermore, it is shown that although increasing the
grid resolution improves the stability, it imposes more restriction on the CFL number. Figure 20
shows the pseudo-time history of the L2-error of |∇ϕ| to verify the conditional Signum function
(23) for re-initializing the level set functions with very small or very large initial slopes. The
diagrams indicate the proper performance of this Signum function.

7214



R. Mousavi, F. Kummer, M. Oberlack, P. F. Pelz

10−6

10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5

Le
ve

l S
et

 G
ra

di
en

t L
2 −

 E
rr

or

τ

ε = 0.5h

ε = 0.75h

ε = 1h

ε = 1.25h

ε = 1.5h

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5

Le
ve

l S
et

 G
ra

di
en

t L
2 −

 E
rr

or

τ

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

10−10

10−8

10−6

10−4

10−2

100

0 1 2 3 4 5

Le
ve

l S
et

 G
ra

di
en

t L
2 −

 E
rr

or

τ

h = 1/80, CFL = 1/p2

h = 1/40, CFL = 1/p2

h = 1/20, CFL = 1/p2

h = 1/80, CFL = 0.5/p2

h = 1/40, CFL = 0.5/p2

Figure 19 Effects of ϵ, p and h as well as the artificial diffusion, on the pseudo-time history of
the L2-error of |∇ϕ| during the re-initialization of the level set function of a circle. The initial

slope of the level set function is 0.5.
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Figure 20 pseudo-time history of the L2-error of |∇ϕ| to verify the Signum function (23) for
re-initializing the level set functions with very small or very large initial slopes

5.5 Re-initializing the Level Set Function of an Arc

This section is assigned to verify the solution to the level set re-initialization equation (15)
by re-initializing the level set function of an arc. This test case is mainly aimed to investigate
the h-convergence of the solution to the re-initialization equation. Such an investigation can not
be done for the test case 5.4 because of the singularity in the gradient of the signed-distance
level set function of a circle. On the other hand, if the re-initialization equation is solve over a
narrow band around the interface in order to leave the point of singularity outside the domain
of computation, the the narrow bands in different grid resolutions do not have the same thick-
ness. Therefore, in the present test case an arc with the center located outside the domain of
computation is considered and the re-initialization equation is solved over the entire domain.

Problem Description The domain of computation is a rectangle with the lower-left corner
located at (−0.5,−0.25) and the upper-right corner located at (0.5, 0.25). The interface geome-
try is a circular arc with the radius 0.625 centered at (xc = 0, yc = 0.625). The initial level set
function is analytically expressed by the equation 73 that corresponds to an initial slope of 0.5.
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Numerical Setting The domain is discretized to a set of the quadrilateral cells with NC =
10× 5, NC = 20× 10, NC = 40× 20. The degree of the orthonormal basis polynomial space
is set to p = 5, 6, 7. The time step is set to ∆t = 0.00025. A regularized Signum function
Sign(ϕ0) is used with the smoothing parameter ϵ of 0.1.

Results Figure 21 shows the level set function before and after the re-initialization. Table
4 lists the L2-errors of the gradient value of the level set function as well as the experimental
error orders which are calculated using the expression (72). This table indicates an acceptable
h-convergence of the solution.

ϕ

xy

Figure 21 Re-initialization of the level set function of an arc with the initial slope of 0.5. The
picture corresponds to p = 5 and NC = 10× 5.

Table 4 h-Convergence study on the L2-Error of |∇ϕ| for re-initializing the level set function
of an arc with the initial slop of 0.5.

p NC L2-Error of |∇ϕ| EEO

5

10× 5 3.10E − 06 · · ·
20× 10 3.08E − 08 6.65

40× 20 8.34E − 10 5.21

6

10× 5 5.90E − 07 · · ·
20× 10 2.53E − 09 7.87

40× 20 2.61E − 11 6.59

7

10× 5 5.61E − 08 · · ·
20× 10 3.58E − 10 7.29

40× 20 2.67E − 12 7.07
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6 CONCLUSIONS

• A higher-order Modal Discontinuous Galerkin Method was successfully applied for solv-
ing the level set advection and re-initialization equations.

• As a result of the higher/order approximation, an accurate solution to the level set advec-
tion equation obtained without a necessity to solve the re-initialization equation.

• Concerning the solution to the level set advection equation, a singularity in the gradient
of the level set function resulted in a large reduction of the the hp-convergence rate.

• Employing the Godunov’s scheme in approximating the Hamiltonian of the level set re-
initialization equation as well as adding a diffusion term, resulted in a stable solution to
the equation.

• As a result of the higher/order approximation, an accurate solution to the re-initialization
equation was found which does not move the interface spuriously.

• As a future work, filtering the solution of the re-initialization equation is expected to
improve the long-term stability.
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Abstract. The simulation of high-speed turbulent compressible flows using a numerical method
of Large Eddy Simulation (LES) combined with the Characteristic-Based Split scheme (CBS)
and anisotropic mesh adaptation is presented in this work. The CBS scheme is a unified ap-
proach for Computational Fluid Dynamics (CFD) with capability of covering a wide range of
flow speeds and types with good stability and accuracy compared with other numerical schemes
of the same order [1]. Although LES of incompressible flows combined with the CBS scheme
has already been successfully addressed, the compressible extension is not yet covered, been the
main contribution of this work. The CBS scheme is employed in a Finite Element Method (FEM)
context for space and time discretization using unstructured meshes with adaptation [2], allow-
ing the representation of complex geometries with accuracy. The anisotropic mesh adaptation is
performed with mesh refinement, mesh coarsening and edge swapping procedures. A compress-
ible dynamic Smagorinsky model is employed for the compressible LES model. The developed
code is used to investigate a complex turbulent transonic flow around a circular cylinder in a
two-dimensional approach. Several complex flow features such as lamda-shock-waves, viscous
interactions and Von Kármán vortex sheet effects are correctly captured by the mesh adapta-
tion strategy and the computed aerodynamic coefficients are close to the experimental reported
values.
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1 INTRODUCTION

The simulation of high-speed turbulent compressible flows at transonic and supersonic speed
ranges has several difficulties. For aerodynamic problems, the accurate capturing of the com-
plex three-dimensional shock waves and flow features developed is a challenging task which
is hard to accomplished without making use of a mesh adaptation methodology. The adequate
mesh to be used in the simulation depends on the desired resolution, the numerical algorithm
employed, the flow characteristics and the geometry, thus being hard to be a priori determined
even for an expert in CFD. Furthermore, the large mesh resolution required to correctly eval-
uate the smallest scales present in flows of high Reynold number, typically present in such
type of problems, is prohibitive. Such constraints are alleviated by making use of a turbulence
modelling strategy such as the Large Eddy Simulation (LES) combined with mesh adaptation.

Large Eddy Simulation (LES) directly calculates the large and energetic vortical structures in
turbulent flows, while modelling the smaller-scales eddies. Therefore, compared to Reynolds-
Averaged Navier-Stokes (RANS) models, the advantage of LES are significant, being RANS
effective only for steady simulations of fluid flows. The LES model is combined with the
Characteristic-Based split Scheme (CBS) [1] in this work to simulate turbulent compressible
flows. The CBS scheme can handle with flows with a wide range of velocities. The capabilities
of using the CBS scheme to solve compressible turbulent flows has not been investigated yet
and it is the main objective of this work.

Mesh adaptation is combined with the turbulent flow solver in order to achieve a high resolu-
tion solutions together with low computational cost. The main procedures for mesh adaptation
used in this work are mesh refinement, mesh coarsening and edge swapping. Mesh adaptation
is evaluated anisotropically by making use of a metric-based methodology using the concept of
Riemannian space to analyse the error as a tensorial quantity [2].

The developed algorithm is used to investigate a complex transonic turbulent flow around a
circular cylinder in a two-dimensional approach. Even for a two-dimensional investigation, the
obtained results are quite promising. The evaluated aerodynamic coefficients, Strouhal number
and the complex flow features are in good agreements with experimental results.

2 GOVERNING EQUATIONS

For an arbitrary function F (xi, t), the filtered variable F̄ (xi, t) in physical space is repre-
sented by the convolution product [3]:

F̄ (xi, t) =

∫
Ω

G (xi − ξi,∆)F (ξi, t) dξi (1)

where xi are the Cartesian coordinates (i = 1, 2), t is the time variable, G is the filter ker-
nel, Ω represents the flow domain and ∆ is a measure of the filter width and is related to the
computational mesh size. For compressible flows, the density weighted variable F̃ (xi, t) is
employed:

F̃ (xi, t) =
ρF
ρ

(2)

and the resulting filtered compressible Navier-Stokes equations are:

∂ρ

∂t
+

∂

∂xi
(ρũi) (3)
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∂ (ρũj)

∂t
+

∂

∂xi
(ρũiũj)−

∂τ̃ij
∂xi
−
∂τ sgsij

∂xi
+

∂p

∂xj
+
∂ (τ ij − τ̃ij)

∂xi
= 0 (4)

∂
(
ρẼ
)

∂t
+

∂

∂xi

(
ρẼũi

)
− ∂

∂xi

(
k̃
∂T̃

∂xi

)
+

∂

∂xi
(pũi)−

∂

∂xi
(τ̃ijũj)− Cp

∂qsgsi

∂xi
− (5)

∂

∂xk
([τ ik − τ̃ik] ũi)−

1

2

∂

∂xi
ρ ( ˜ukukui − ũkũkũj − τ sgskk ũi) +

∂

∂xi

(
k
∂T

∂xi
− k̃ ∂T̃

∂xi

)
= 0

where ρ is the mean density, ũi are the filtered Cartesian components of the velocity, p is the
mean pressure, τ̃ij and τ ij are the filtered and mean molecular viscous stress tensor, respectively,
Ẽ is the filtered total energy, T̃ is the filtered absolute temperature, k̃ and k are the filtered and
mean diffusion coefficient, respectively, Cp is the specific heat coefficient at constant pressure,
τ sgsij is the sub-grid scale stress tensor and qsgsi is the sub-grid turbulent heat flux. The filtered
viscous stress tensor is approximated by:

τ̃ij = µ̃

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
δij
∂ũk
∂xk

]
(6)

where µ̃ is the molecular viscosity based on the Favre-filtered static temperature T̃ and δij is the
Kronecker delta. The temperature dependence of the molecular velocity is evaluated through
the Sutherland’s relation [4]:

µ̃ =
1.45T̃ 3/2

T̃ + 110
× 10−6 (7)

where all variables are in the SI system and T̃ is given in Kelvin. The closure of the conservative
equations is done with the addition of the state equation of a perfect gas:

p = (γ − 1) ρẽ (8)

where γ = Cp/Cv with Cv is the specific heat coefficient at constant volume and ẽ is the filtered
internal energy.

The sub-grid scale stress tensor and the sub-grid turbulent heat flux are defined as:

τ sgsij = ρ (ũiuj − ũiũj) (9)

qsgsi = ρ
(
T̃ uj − T̃ ũj

)
(10)

The terms (τ ij − τ̃ij), ∂
∂xi

(
k ∂T
∂xi
− k̃ ∂T̃

∂xi

)
and 1

2
∂
∂xi
ρ ( ˜ukukui − ũkũkũj − τ sgskk ũi) are neglected

due to its small contribution to the filtered conservation equations, following the results of
[5, 6, 7, 8]. Finally, the total energy is approximated by [9, 10]:

ρẼ = ρCvT̃ +
1

2
ρũiũi +

1

2
τ sgsii (11)
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Based on the widely used sub-grid eddy viscosity model, the sub-grid stress tensor can be
written as:

τ sgsij = 2ρνsgs

(
S̃ij −

1

3
S̃kkδij

)
− 1

3
τ sgskk δij (12)

where the rate of strain tensor S̃ij is defined by:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(13)

and the trace of sub-grid stress τ sgskk tensor is modelled separately. The dynamic compressible
Smagorinsky model is used in this work to evaluate the sub-grid viscosity νsgs and thus τ sgsij ,
qsgsi and τ sgsii [11].

The numerical solution of the flow equations is performed with the Characteristic-Based Split
(CBS) scheme introduced by Zienkiewicz and Codina [12]. For the solution of the governing
equations, the CBS algorithm uses a fractional step with a split. The four steps can be briefly
described as [13]:

1. solve momentum equation without pressure terms,

2. calculate pressure solving a Poisson equation,

3. correct velocity components,

4. calculate additional scalar variables, such as temperature, from appropriate governing
equations.

The time increment is assumed to be ∆t = tn+1 − tn and the flux mass Un+1
i = ρui, evaluated

at time n+ 1, is split into two terms:

Un+1
i = Un

i + ∆U∗i + ∆U∗∗i (14)

A standard Galerkin finite element procedure is used for spatial discretization. Linear triangular
and elements are employed in the present work. The spatial discretization of the variables is
carried out as:

Ui = NuÛi, ∆Ui = Nu∆Ûi, ∆U∗i = Nu∆Û∗i , ∆U∗∗i = Nu∆Û∗∗i
ui = Nuûi, p = Npp̂, ρ = Nρρ̂ (15)

where a hat superscript represents a nodal quantity and Ni are the shape functions such that:

Ûi =
[
U1
i , U

2
i , · · · , Ua

i , · · · , Um
i

]T (16)

Nj =
[
N1
j , N

2
j , · · · , Na

j , · · · , Nm
j

]
(17)

with a being a node (or variable), which varies from 1 to m, i = 1, p and j = ui, p, ρ.
The semi-discrete forms of the CBS equations are then weighted by NT and integrated over

the domain. The final equations for the four steps of the CBS scheme for the explicit formulation
is summarized as:
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• Step 1, obtain ∆Ũ∗i :

M∆Û∗i = ∆t
[
(C− S)

(
ûjÛi

)
− (Kτ −Tτ ) Tij

]n
− ∆t2

2
ûk

[
(Ku −Tu)

(
ûjÛi

)
+ (Kp −Tp) p̂

]n
(18)

• Step 2, obtain ∆ρ̃:

M∆ρ̂ = ∆t
[
(D−Ru)

(
Ûi + θ1∆Û∗i

)
−∆tθ1Kp̂

]n
(19)

• Step 3, obtain Ũi, thus establishing the values at tn+1:

MÛi = M∆Û∗i + ∆t[(D−Ru) p̂]n (20)

• Step 4, solve energy equation to obtain the value ∆ρ̃Ẽ:

M∆ρ̂Ê = ∆t
[
(C− S) ûj

(
ρ̂Ê + p̂

)
− (Tτ −Kτ ) (Qi + Tijûj)

]n
− ∆t2

2

[
ûk (Ku −Tu) ûj

(
ρ̂Ê + p̂

)]n
(21)

where Tij = τij + τ sgsij is the total stress, Qi = k ∂T
∂xi

+ qsgsi is the total heat flux and the vector
and matrices are given by:

M =

∫
Ω

NTNdΩ Ru =

∫
Ω

NTNnidΩ S =

∫
Γ

NTNnjdΓ (22a)

C =

∫
Ω

∂NT

∂xj
NdΩ D =

∫
Ω

∂NT

∂xi
NdΩ K =

∫
Ω

∂NT

∂xi

∂N

∂xi
dΩ (22b)

Kτ =

∫
Ω

∂NT

∂xj
dΩ Ku =

∫
Ω

∂NT

∂xk

∂N

∂xj
dΩ Kp =

∫
Ω

∂NT

∂xk

∂N

∂xi
dΩ (22c)

Tτ =

∫
Γ

NTnjdΓ Tu =

∫
Γ

NT ∂N

∂xj
nkdΓ Tp =

∫
Γ

NT ∂N

∂xi
nkdΓ (22d)

with θ1 = 0.5 for a second-order accuracy (Crank-Nicolson scheme) in time for the velocity.
For transonic and supersonic speeds, an additional shock capturing dissipation is introduced

to capture and smooth local oscillations in the vicinity of shocks. A method based on the
Hessian of pressure is employed, modifying Φ̂n+1 =

{
ρ̂, ûi, Ê

}
evaluated in time n + 1 to

Φ̂n+1
s by [14]:

Φ̂n+1
s = Φ̂n+1 −∆tM−1

L Ceh
3 |u|+ c

p

∣∣∣∣∂2p

∂x2
i

∣∣∣∣n
e

(∫
Ω

∂NT

∂xi

∂N

∂xi
dΩ

)
Φ̂n (23)

where h is the element size [14], c is the local sound speed, Ce is an user-informed constant and
the subscript e represents an element [1].

The following local time stepping is employed [13]:

∆t = min

(
h

c+ |u|
,
h2

2ν

)
θc (24)

where θc is an user specified number between 0 and 1 used to not violate the Courant-Friedrichs-
Lewy condition.
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3 MESH ADAPTATION

Both the direction and the magnitude of the anisotropy are important and necessary infor-
mation required for the construction of an anisotropic mesh adaptation procedure. These in-
formation can be evaluated through the use of the so called metric-based methods, where a
Riemannian metric space is evaluated based on the interpolation error of the solution field. The
most important features of the metric-based method employed in this work for two-dimensional
problems is briefly described in this section. A more detailed overview of such methodology
can be found in references [15, 2].

3.1 Metric Estimates

The length `M (ab) of an edge ab can be continuously evaluated in a Riemannian metric
space with a parametrization given by γ (t) = a + tab with t ∈ [0, 1] as:

`M (ab) =

∫ 1

0

‖γ′ (t)‖Mdt =

∫ 1

0

√
abTM (a + t ab) ab dt (25)

whereM is a 2× 2 symmetric positive definite matrix called metric tensor, or just metric. The
size |TK |M of an element K evaluated in the Riemannian metric space is determined by:

|TK |M =

∫
K

√
detM (x)dx (26)

The anisotropic quality of an element K can be monitored through a quality function QM that
combines both sizing and orientation information [16]:

QM (K) =

∑
`2
M (AK)

|TK |M
(27)

where AK are the edges of an element K. In the previous equation, the numerator takes into
account the sizing of the mesh. Decreasing the length of the edges evaluated in the Riemannian
space also reduces QM. The denominator is a measure of the orientation of the simplex in the
Riemannian space, where a simplex oriented closer to the local field eigenvectors leads to a
reduction of QM. Thus, minimizing QM the quality of the element becomes maximized in an
anisotropic sense.

From a discrete point of view, the metric field need to be interpolated to evaluate approximate
length and volume in the Riemannian space. Considering a linear interpolation of the metric
tensor, the integration of Eq. 25 is evaluated by [17]:

`M (ab) ≈ 2

3

`2
0 + `0`1 + `2

1

`0 + `1

(28)

where `i (ab) =
√

abTM (xi)ab is the length of the edge in metricM (xi) with i = 1, 2 for
the edge end-points a and b, respectively. Similarly, the integral of Eq. 26 can be numerically
approximated by:

|TK |M ≈

√√√√det
1

3

3∑
i=1

Mi (x) |TK | (29)

whereMi (x) is the metric at each of the i vertices of the element K (assumed as a triangle)
with Euclidean oriented measure |TK |.
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The error ELp(ab) estimated for an edge ab is defined as the upper bound of the difference
between a quadratic approximation and the evaluated linear interpolation measured in the Lp

norm for a given continuous function φ, which can be expressed as:

ELp(ab) ≡ `M (ab) (30)

with the metricM (x) defined as the normalized Hessian of the function φ measured in the Lp

norm [18]:
M (x) =MLp (x) = (det |H|)−

1
2p+d |H| (31)

where H is a symmetric matrix representing the Hessian of φ. As H is a symmetric matrix, it
can be decomposed into the product of orthonormal matrices R of associated eigenvectors and
a diagonal matrix Λ of eigenvalues. To ensure that H is a positive-defined matrix and limited,
|H| = R

∣∣∣Λ̃∣∣∣RT is obtained as the Hessian matrix with normalized and limited eigenvalues λ̃i

of Λ̃ = diag
(
λ̃i

)
such that [15]:

λ̃i = min

(
max

(
λi,

1

h2
max

)
,

1

h2
min

)
(32)

with hmax and hmin as the maximum and minimum allowed edge size in the mesh and the
Hessian matrix is evaluated by a double projection scheme using a weak formulation [19].

3.2 Metric Intersection

When more than one metric is simultaneously specified at one point, the resulted met-
ric should cover the minimum error associated to each of these metrics. Therefore, a met-
ric intersection procedure is used in this work. A common basis P of two metrics MA and
MB is looked for, such that they are congruent to a diagonal matrix at its basis. The matrix
B =MA

−1MB is introduced, such that B is diagonalizable with real eigenvalues. The normal-
ized eigenvectors of B are ei with i = 1, 2 and compose the common diagonalizable basis P .
The principal components ofMA andMB projected in this basis can be obtained with [15]:

µi = eTiMAei and βi = eTiMBei (33)

As P is also invertible, the metric intersection can be evaluated through:

MA∩B =MA ∩MB =
(
P−1

)Tdiag (max (µi, βi))P−1 (34)

For a third metricMC to be intersected, the same procedure is performed, withMAB∩C em-
ployingMAB =MA∩B and so on for more metric intersections.

3.3 Mesh Refinement, Mesh Coarsening and Edge Swapping

The present mesh adaptation procedure uses the metric-based framework to evaluate the error
associated to each edge of the mesh. When the error is above a specified value, the edge is split
into two new edges. When the error is less than the desired, the edge is removed by an edge
collapse procedure. Edge and face swapping are also used to improve the mesh quality.

When an edge ab is refined, a new node c is inserted generating two new edges: ac and cb.
A Riemannian centred is used, such that the new inserted node c verifies the following relation:

`M (ac) = `M (cb) (35)
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0 1 2 3

Figure 1: Edge-based anisotropic triangular subdivision scheme.

The spatial variation of the metric must be taken into account to solve the non-linear integral
relation defined by Eq. 35. Moreover, using Eq. 25 and the parametrization ac = mab and
cb = (1−m) ab with m ∈ [0, 1], the Riemannian centred split defined in Eq. 35 can be
evaluated by finding m such that:∫ 1

0

√
acTM (a + t ac) ac dt =

∫ 1

0

√
cbTM (c + t cb) cb dt (36)

and considering a linear interpolation of the metric tensor along ab, the value of m is obtained
as:

m =
`2

0 − 2−
2
3 (`3

0 + `3
1)

2
3

`2
0 − `2

1

(37)

valid for all values of `0 and `1 such that `0 6= `1. If `0 = `1, there is no size gradation and the
Euclidean center is chosen for the split, with m = 1/2.

The refinement procedure must ensure that the topology of the mesh will not be violated,
generating only valid elements. In order to satisfy this condition, the partitioning of an ele-
ment is performed according to the number and position of the refined edges. All anisotropic
partitioning cases are covered. For a mesh composed by triangular elements, four types of sub-
division are possible, covering eight anisotropic cases (see Fig. 1). This type of edge subdivi-
sion is unique and can always be performed (existence and uniqueness conditions are satisfied),
ensuring that the topology will not be violated.

An edge is coarsened by an edge collapse procedure. Let ab be an edge to be coarsened,
with initial vertex a and final vertex b. The vertices a and b are joined along the direction of the
edge ab to a new point c between a and b, collapsing all elements that share at least one edge
with ab. To hold the anisotropic information along the procedure, the choice of the collapsed
point c = a + nab is performed by finding n ∈ [0, 1] that minimizes the sum of all quality
functions of the remaining elements affected by the collapse:

min
n∈[0,1]

∑
K∈B

QM (K) (38)

subjected to the following constraints:

|TK | ∀K ∈ B > 0 (39a)∑
K∈A

|TK | −
∑
K∈B

|TK | = 0 (39b)

where B is the remaining set of elements affected by the procedure after the collapse and A the
original set (see Fig. 2). A discrete approach is employed to solve Eq. 38 in this work. The
continuous parametrization n is replaced by nc ≥ 2 discrete positions nj ∈ [0, 1]:

nj =
(j − 1)

(nc − 1)
(40)

7229



Renato V. Linn and Armando M. Awruch

K3

K1

K2

K4

K5

K11

K10

a

K3

K1

K2

K4

K5

B

B

B

B

B

C

C

A

A

A

A

A

b
c

K6

A

K7

A

K8

A

K9

A

a b

K6

B

K7

B

K8

B

K9

B

Figure 2: Edge collapse procedure.

with j = 1, . . . , nc. For each nj position, the summation of Eq. 38 is evaluated using Eq.
27 and considering a linear interpolation of the metric tensor between a and b. Finally, the
position nj which has the minimum value for this objective function and that does not violate
the constraints of Eqs. 39 is chosen as the collapse point. This discrete approach is equivalent
to choose between collapse the edge to one of the edge endpoints a or b if nc = 2. For nc = 3,
the Euclidean midpoint is also considered as a possible position for the collapse and so on. In
this work, nc = 10 is adopted, allowing several possibilities for the choice of the position of
point c.

Edge swapping is performed in order to increase the mesh quality by alternating the edge
connectivities. An edge ab that does not lye in the boundary of the domain shares two neighbour
elements: K1 and K2. The internal edge of such elements can be swapped in order to obtain the
elements K ′1 and K ′2 (see Fig. 3). The following condition is verified:

max {QM (K ′1) , QM (K ′2)} < max {QM (K1) , QM (K2)} (41)

If such condition holds and no degenerated elements are obtained, then the swapping is per-
formed, increasing the anisotropic quality of the mesh.

K1

K2

K’1
K’2ab

ab

Figure 3: Edge swapping procedure.

3.4 Adaptation Algorithm

The overall algorithm implemented in this work performs the following sequence of local
mesh modifications:

1. Refine edges with error above a given error threshold value ηU ;

2. Edge swapping until convergence;

3. Coarse edges with error below a given error threshold value ηL;

4. Edge swapping until convergence.

which defines one adaptation iteration. An edge ab is refined if ELp(ab) ≥ ηUεLp and it
is coarsened if ELp(ab) ≤ ηLεLp , where εLp is the target adaptation error measured in the
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Lp norm. The upper and lower error threshold values ηU and ηL are assumed as 1.4 and 0.6,
respectively [17]. As the investigated flows are compressible and turbulent, the continuous
function u chosen for the adaptation is the intersection of all conservative flow field variables,
with φ = ρ ∩ ui ∩ E for the error estimation in Eq. 31 and the adaptation is performed at each
ta iterations of flow solver.

4 Test Case: Turbulent Transonic Flow Around a Circular Cylinder

The studied test case consists of a turbulent transonic flow around a circular cylinder. The
circular cylinder has a diameter of D = 1 with center located at coordinates x = 0, y = 0.
The domain Ω is circular with radius R = 25D. The free stream Mach number employed is
M∞ = 0.80 and the free stream Reynolds number is Re∞ = 500.000. The simulation is carried
from the initial time set to zero to the final time T = 50s. Mesh adaptation is performed at
each ten iterations of flow solver (ta = 10) in order to control a target interpolation error of
εLp = 0.05 measured in the L2 norm. The maximum and the minimum allowed edge sizes are
hmax = 1D and hmin = 0.003D, respectively.

Fig. 4 and Fig. 5 show the gradient magnitude of the mass density and the corresponding
mesh at two different instants. In these figures, the complexity of the developed flow around
the cylinder, involving complex viscous interactions with shock waves together with the high
transient nature of such effects is evident. The separation point of the boundary layer is associ-
ated with the formation of lambda-shock-waves of different sizes and intensities. There is also
the formation shock-waves linking and interacting with vortices rotating in opposite directions.
Finally, there is the formation of a Von Kármán vortex sheet after a zone of intense interaction
of viscous and shock-wave effects.

Fig. 6 and Fig. 7 show the unsteady lift Cl and drag Cd coefficients, respectively. The
average drag coefficient obtained in the present work is Cd = 1.61 while the reference [20]
experimental value is Cd = 1.50. The power spectra Pl of the lift coefficient as function of the
Strouhal number St is shown in Fig. 8, where a pronounced pic close to the value of St = 0.18
is present. The experimental value for this pic response reported by [20] is also the exact same
value. Finally, the power spectra Pd of the drag coefficient as function of the Strouhal number
St is shown in Fig. 9. In this case, there is not only one pronounced pic.
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(a) Gradient magnitude of density. Scale: black (zero) to white (three).

(b) Mesh

Figure 4: Flow field and mesh at time t = 20s.
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(a) Gradient magnitude of density. Scale: black (zero) to white (three).

(b) Mesh

Figure 5: Flow field and mesh at time t = 25s.
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Figure 6: Unsteady lift coefficient.

Figure 7: Unsteady drag coefficient.

Figure 8: Power spectra of lift coefficient.

Figure 9: Power spectra of drag coefficient.
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5 CONCLUSIONS

The coupling of the CBS algorithm with a dynamic Smagorinsky model for simulating tur-
bulent compressible flows and anisotropic mesh adaptation is presented in this work. The devel-
oped code is used to investigate a complex turbulent transonic flow around a circular cylinder in
a two-dimensional approach. The complex lamda-shock-waves, viscous interactions and Von
Kármán vortex sheet effects are correctly captured by the mesh adaptation strategy, and the
computed aerodynamic coefficients are in excellent agreement with the experimental reported
values, even for a two-dimensional model. Although these preliminaries results are promising,
an extension of the proposed methodology to a three-dimensional case is the next required step
for validation of the computations.
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Abstract. In the present paper, the numerical and experimental study of the flows in 

combustion chamber has been performed. The experiments were conducted in the hot-shot 

wind tunnel. 3D numerical simulations were conducted by means of ANSYS FLUENT 16.0 on 

the RANS-based approach. The comparison and joint analysis have been performed for the 

calculated and experimental data. The gas-dynamic analysis has been carried out for channel 

flows with multiple hydrogen jet injection from walls. In the calculation, the influence of jet 

injection angle on the mixing process and structure of the supersonic flow in the channel is 

carried out. Preliminary 2D numerical results with hydrogen jet injection has shown that 

zone of combustion extend from the area of injection and cover the whole cavity. Further 3D 

studies were carried out with multiple hydrogen jet injection in a channel with backward-

facing step. In this case the combustion layer extends over the bottom and top walls of the 

channel. 
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1 INTRODUCTION 

Scramjet (supersonic combustion ramjet) engine is one of the candidates for hypersonic 

flight propulsion system which will be used in wide range of flight Mach numbers from 4 to 

12. Scramjet should be well operated in dual and scram modes depending on the flight Mach 

number [1]. In particular, scramjets are a promising technology that can enable efficient and 

flexible transport systems by removing the need to carry oxidizers and other propulsion limi-

tations of conventional rocket engines. Supersonic combustion via the use of scramjet tech-

nology was successfully demonstrated for the first time worldwide by the HyShot II Program 

2002 [2], followed by successful flights of the Hyper-X vehicles in 2004 at Mach number 6.8 

and Mach number 9.6 [3]. Originally, many studies have been done for hydrogen-fueled con-

cepts of supersonic combustion chamber, primarily for space transportation systems. In this 

case, the upper speed bound lies in the Mach number 12-16 range [4-5 and flow velocity at 

the entrance of combustor can achieve Mach number of 4-5. A lot of key issues have to be 

addressed for developing the dual mode ramjet technology. One of them consists in designing 

a combustion chamber able to operate in a very large Mach number range with enough high 

effectiveness. 

The computer design tools are widely used in developing the optimum characteristics of 

the combustion chamber of different types [6], which must guarantee ignition and effective 

operation within the wide range of Mach numbers [7-8]. The main parameters to evaluate ef-

ficiency of the combustion chamber are the mixture degree, ignition condition, combustion 

efficiency and pressure losses. Results of experimental researches at different Mach numbers 

[9-10], however, have shown essential discrepancy between real characteristics of combustion 

chamber and anticipated values, in particular, in realization of self-ignition and achievement 

of high level of combustion efficiency. 

The simulation of supersonic mixing and combustion, with a focus on the supersonic com-

bustion ramjet (scramjet), poses many challenges. Even for non-reacting flows, the way to 

properly treat compressibility effects on turbulence at high Mach numbers is far from being 

resolved. Complex geometries posed additional difficulties. When combustion dynamics are 

added to the problem, uncertainty exists in the turbulence-chemistry interaction, shock wave-

chemistry interaction, as well as the general lack of adequate knowledge of the effects of su-

personic conditions on turbulence, reaction rates, and flame regimes. Review of these prob-

lems can be found in [11-12]. 

Backward facing step and cavity are widely used as effective flame holders at supersonic 

flow velocity in the channel. The results of numerical modelling and experimental investiga-

tions of high-enthalpy turbulent flows in the neighborhood of 90-degree BFS at the Mach 

numbers M∞ = 2−4 are presented by authors in [13-14] under conditions of cold (Т0=300 K) 

and high-enthalpy (Т0=2500 K) external flows at M = 2, 3, and 4. It was found that tempera-

ture conditions can substantially affect the separation zone length and the flow structure be-

hind the step. Different vortex structures of the separation zone behind the step were obtained, 

depending on the temperature factor. Nevertheless, it should be noted that these investigations 

were performed only for the external flow and for one step configuration.  

The influence of step configuration on the structure of supersonic reacting flows in the 

channel under adiabatic and cold wall conditions was investigated in [15]. It is shown that 

ignition of mixtures essentially depends on the channel geometry and temperature conditions 

at the walls. 

Results of modeling the interaction of a plane supersonic jet with a supersonic turbulent 

high-enthalpy flow in a channel are presented in [16]. Parametric studies show that an in-

crease in the angle of inclination and the mass flow rate of the jet leads to an increase in the 
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depth of jet penetration into the flow, but more intense separated flows and shock waves are 

observed in this case. 

The results of the numerical study on the cross-flow helium jet injection into a channel 

with BFS are presented in [17]. Significant 3D effects are revealed in the computations for the 

case of the round jet hole. It was shown that the main difference with the 2D case is the lower 

intensity of the interaction of the primary (air) and secondary flows due to the primary flow 

spreading around the jet. 

The three common approaches for modeling turbulent flows usually use: and Reynolds-

averaged Navier-Stokes equations (RANS) [18-19], direct numerical simulation (DNS) [20], 

large-eddy simulation (LES) [21-22]. It is well known that the RANS approach is the most 

computationally efficient and has a chance of completely modeling realistic aerospace sys-

tems. This is followed by LES, whereas DNS is still too costly for realistic engineering prob-

lems. However, the success of the RANS approach is dependent on type and complexity of 

flow in combustion chamber, and the procedure needs to be verified for every class of prob-

lem, making it non-universal [23]. Moreover, the approach is inherently steady and cannot 

deal with unsteady large-scale structures that determine the dynamics of many important flow 

problems. The main issue with LES, in comparison with RANS, is the computational cost. 

There are a number of studies on hydrogen-fueled of scramjet, in which upper speed bound 

on flight Mach number was established in Mach 6-10 range. Mach number at the combustor 

entrance for this flight range should be 1.5-2.5. In spite of large amount of such investigations, 

the investigation of hydrogen combustion at high flow velocity is finding ever-increasing in-

terest. Nevertheless, such researches were limited data for Mach numbers less than 3. The 

flow simulation in high-speed combustion chambers is one of important directions in these 

researches. The main goals of the present investigations were as follows:  

 to get a new data on the flows in combustion channel; 

 to investigate the influence of the injection angle, total temperature and Mach number 

on the self-ignition, flame propagation and combustion efficiency; 

 to verify the numerical algorithm and code, including chemical schemes, on the chan-

nel flow experimental data. 

2 COMBUSTOR MODEL AND EXPERIMENTAL SETUP 

The combustor channel consists of rectangular channel with sudden expansion in the form 

of a BFS. The scheme of the model, position of injectors, and the basic dimensions of the 

combustor channel are presented in Figure 1. Model has two parts: multi-injector section and 

expanding section. In the first of part, fuel injection was carried out by means of sonic jets.  

 

Figure 1: Model scheme of combustor and injector section. 
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The injecting holes have been developed as changeable elements and allowed to obtained 

different angles of fuel injection. Such a design enhances considerably the capabilities of the 

model. Variation of the fuel injection speed is possible by means of use different changeable 

fuel nozzles. Glass windows are placed along the whole inlet duct of the model to visualize 

the flow and to determine its structure (separation and attachment of the boundary layer, loca-

tion and form of the flame). The system of fuel supply is intended for different types of fuel: 

hydrogen, kerosene and propane. Two separated systems can be used to supply the fuel into 

the main injectors and into the recirculation zone.  

Test of combustor were performed at the hotshot wind tunnel IT-302M [24] with arc heat-

ing in the attached pipeline mode. Such mode of investigation allows an effective use of the 

advantages of the hotshot wind tunnel as a source of a high-enthalpy test gas (air). Photo of 

model and some element of the wind tunnel are shown in Fig. 2. 

 

Figure 2: Elements of wind tunnel and model installation. 

The choice of the initial values of air pressure in the discharge chamber and the voltage of 

capacitors allowed obtaining the required flow temperature. This approach ensures not only 

the necessary Mach number but also the required pressure and temperature at the combustor 

entrance. High parameters may be reached due to the absence of technological problems re-

lated to the temperature strength of the sharp edges of the model. In addition, an increase in 

the combustor dimensions allows one to extend significantly the capabilities of flow/flame 

diagnostics and to develop a modular principle of construction of the combustor for extending 

the range of parametric studies.  

Peculiarity of this wind tunnel is the flow parameters which are falling during the operation 

time (100-150 ms). Therefore large numbers of runs were carried out with the pressure mul-

tiplicator for maintenance of constant equivalence ratio (ER) value. Models were tested at the 

following conditions at the duct entrance: Mach numbers Men=2-4, total temperature Tt=2000-

3000K, static pressure Pen=0.08-0.5 MPa, and fuel-air ER varied from 0.25 to 1.4. 

During the tests, the parameters were measured as follows: the stagnation flow parameters 

in first and second prechambers; air and fuel flow rates; distributions of static pressure and 

heat flux in the model channel; Pitot pressure and temperature at model exit; base pressure 

distribution on backward facing step of injector device, forces acting on injector section. 

Large amount of measured stations allowed us to obtain detail distributions of static pressure 

and heat flux including transversal directions and base pressure. The video camera with fre-

quency of about 800 frames per second was used for registration of flame images. The com-

bustion efficiency was determined using an optical scheme of radiation registration in the 

ultraviolet range and one-dimensional calculation. 

3 TESTING OF KINETIC SCHEMES  

For numerical simulation of ignition of the hydrogen-air mixture it is necessary to use 

kinetic scheme that correctly predicts the ignition in supersonic external flow. Therefore, at 
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the first stage, several kinetic schemes were tested [25-27]. Calculations were provided in 

terms of experimental data [28] where hydrogen was injected into a supersonic flow through a 

tube of d1 = 9.5 mm diameter. The tube was installed into a supersonic nozzle with diameter 

of the exit section d = 65.3 mm (Fig 3). The problem was solved as 2D axisymmetric. 

Computations were performed under the conditions presented in Table 1. 

 

Figure 3: Calculation area for test problem. 

 Jet (H2) Free stream 

Mach number, М 2.00 1.90 

Static temperature, Tst, K 251 1495 

Velocity, u, m/s 2432 1510 

Static Pressure, Pst, МPа 0.1 0.1 

Mass Fraction: 

H2 

O2 

N2 

H2O 

 

1.000 

0 

0 

0 

 

0 

0.241 

0.478 

0.281 

Table 1: Flow parameters for test problem. 

Comparison of the computed and experimental data on H2O mass fraction in several cross-

sections is provided in Fig. 4. The best agreement between the calculated and experimental 

data was obtained using the kinetic scheme with 19 direct and 19 reverse reactions [27]. 

Therefore this kinetic scheme was used for further calculations. 

 

Figure 4: Comparison of experimental (symbols) and numerical (line) data on H2O mass fraction for test 

problem. 

4 HYDROGEN JET INJECTION IN CHANNEL WITH CAVITY  

Parametric computational studies of 2D supersonic air flow in a channel with a cavity were 

conducted. Geometry and flow parameters are conditioned by experiments provided in the 

hotshot wind tunnel IT-302M. Computational domain is a channel with a cavity located at the 
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bottom wall. The computational domain (Fig. 5) was bounded by the inlet cross section on the 

left, by the walls on the top and bottom, and by the outlet boundary on the right. At the inlet 

section, the turbulent flow parameters at Mach 2.8 were set accounting for boundary layer 

presence on the top and bottom walls. On the solid walls, the no-slip conditions and cold wall 

conditions Tw=300 K were assigned. 

Hydrogen jet was injected from a slot of 2mm width located 50 mm prior the cavity front 

face (Fig.5). The investigation of injection angle influence on a flow in a channel was carried 

out in 2D approach. Computational results were obtained on the RANS-based approach 

closed by the k-/SST model. The AUSM flux vector splitting scheme of second order was 

used for convective term approximation and an implicit temporal approximation is utilized for 

time integration. A structured grid with quadrilateral cells was used; the grid was refined to-

ward the solid surfaces. The refinement factor was chosen in such a way that the dimensionless 

distance to the wall in the first computational node was y1
+
~1, and the laminar sublayer con-

tained approximately ten computational nodes, which provided a fairly accurate resolution of 

the turbulent boundary layer in the near-wall region. Hydrogen was injected normally to the 

main flow. The detailed kinetic scheme [27] was used for modeling of combustion. 

 
Figure 5: Channel with cavity.  

The parameters of the examined flow were following: Mach number M∞ = 2.8, the total 

pressure P0 = 8.14×10
5
 Pa and stagnation temperature T0 = 1798 K. Hydrogen was injected at 

an angles  = 30°, 60° and 90° at sonic velocity with the following parameters: the total pres-

sure P0 = 9×10
5
 Pa and static temperature T = 300 K. The fields of main parameters allow 

estimating the influence of hydrogen jet injection angle on wave structure and combustion 

process in a channel. Hydrogen jet injection leads to reconstruction of the shock wave in a 

channel and forming an additional separation zones. The Mach number contours for the three 

injection angles of =30, 60 and 90 are presented in Fig. 6.  

The shock wave (1) that formed around the jet injection falls on the upper channel wall and 

then is reflected from it. Reflected shock wave (2) falls onto the mixing layer forming a sub-

sonic region (3) in a vicinity of the rear cavity wall (Fig.6, a). The repeatedly reflected shock 

(3) comes to the upper wall and induces a local separation zone (4). Inside a cavity, a flow 

remains subsonic.  

In case of 60° angle, the shock (1) is formed in front of the hydrogen jet. Furthermore, a 

local separation zone (3) is observed on the bottom wall before the hydrogen jet (Fig.6, b). 

Shock (1) falls on the upper wall and interacts with the shock (2) thereby a λ - configuration is 

formed. 

When hydrogen is injected at an angle of 90° the flow is decelerated to a subsonic speed, 

as evidenced by the absence of shocks in the channel after the cavity. The presence of local 

subsonic regions contributes to a better mixing.  
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Figure 6: Contours of Mach number for different angles of hydrogen injection 

a) 30
о
, b) 60

о
, c) 90

о
. 

Further, the jet penetration depth and mixing rate of the primary and secondary flows can 

be estimated from the hydrogen mass fraction fields (Fig. 7). The mixture is ignited 

immediately behind the zone of hydrogen injection. Mixing and combustion layer extends 

over the cavity and along the bottom wall of the channel. When hydrogen was injected at an 

angle 90° the combustion process captures the whole cavity. Analysis of the H2 and O2 

concentrations has shown that over the area of the combustion the mixture is lean that mean a 

lot of oxidant and lack of fuel. Inside a cavity the mixture is rich with a lack of oxidant.  

 

 

Figure 7: Mass fractions of H2O for different angles of hydrogen injection 

a) 30
о
, b) 60

о
, c) 90

о
. 

Modeling of multiple hydrogen jet injection in a channel with BFS was carried out in 3D 

approach. Channel geometry is matched with the experimental model (Fig.1). The calculation 

were conducted for the inlet parameters as follows: free stream Mach number M∞ = 4, static 

pressure P = 1.06×10
5
 Pa and static temperature T = 600 K. Hydrogen was injected normally 

to the main flow at: static pressure P = 25.8×10
5
 Pa and static temperature T = 300 K. For 

modeling of combustion, the detailed kinetic scheme [27] was used.  

The computed mass fraction of H2O in plane of symmetry is presented in Fig.8. It can be 

seen that the ignition of the hydrogen-air mixture takes place directly behind the step. Further, 

the flame propagates along the channel walls capturing the mixing layer. Near the exit 

boundary there is intense burning throughout the volume. 
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Figure 8: Mass fractions of H2O in 3D problem. 

5 CONCLUSIONS  

 2D and 3D computational analysis has been performed for the problem of hydrogen jet 

injection into the supersonic flow in a channel with abrupt expansion.  

 Several kinetic schemes were tested in terms of experimental data. 

 The jet injection angle growth results in reorganization of the shock wave structure in a 

channel. 

 In case of multiple injections the combustion layer extends over the bottom and top walls 

of the channel. 
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Abstract. This work presents a robust CFD approach for simulating the refrigerant flow 

evaporation within a plate heat exchanger of practical relevance with respect to the geometry 

and operating conditions. The purpose of this work is to assess the applicability of the numer-

ical fluid flow simulations in predicting the thermal behavior and the fluid flow performance 

(including the phase change) of a plate heat exchanger with a realistic geometry and under 

realistic operating conditions. To that purpose, the basic structure of the CFD solver neces-

sary for the numerical simulation of the occurring fluid flow phenomena is discussed here, 

together with the corresponding boundary conditions, fluid properties treatment, and related 

geometry issues. The results obtained for a specific plate heat exchanger are validated 

against experimental results found in available literature. 
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INTRODUCTION 

One of the key components in various thermal machines are plate heat exchangers, which 
have the purpose to transfer the heat from a hot to a cold fluid. Typically it is expected that 
these heat exchangers exhibit the highest possible heat transfer coefficient with lowest possi-
ble hydraulic losses. The present paper focuses on a numerical method for analyzing the 
thermal behavior of a plate heat exchanger with refrigerant flow evaporation: while flowing 
through the plate channels of a heat exchanger, the refrigerant is evaporating and simultane-
ously cooling down the liquid (in this case the water) on the opposite side of the plate. The 
aim of the present work is to assess the applicability of this numerical approach, based on the 
computational fluid dynamics (CFD), to analyze the performance of plate heat exchangers of 
realistic geometries and under realistic operating conditions. 

A great challenge in this work comes from the requirement for a realistic representation of 
the geometric features of the plate channels within a single layer of analyzed plate heat ex-
changer. On the one hand there is a huge variation in the characteristic length scales (high 
length to height ratio of the plate layer), and on the other there is an interlacing wavy geome-
try of the plate channels. Both of these aspects are setting high demands on the meshing, and 
as a result sufficiently high mesh quality cannot always be assured. 

The most critical part of the present work, however, is the modeling of analyzed two-phase 
phenomena. Given the complexity of the desired application, in this paper the focus is on the 
robustness of the physical description of the problem under consideration, and the corre-
sponding stability of the numerical simulation. Therefore, in the selected approach the two 
nonmiscible phases (refrigerant liquid and vapor phase) are treated as a single fluid with com-
bined transport properties. The properties of individual phases are obtained from the Cool-

Prop simulation platform for solving fluid equations of state and transport properties [1]. For 
thus defined pseudo-fluid, the governing equations for continuity, momentum and energy 
conservation are solved [2]. The phase-change process is described through the transfer func-
tion, which represents the volume fraction of a single phase. The assumption being introduced 
here is to express this function explicitly through the local temperature (comparing it with the 
saturation temperature), and implicitly include the related phase-change effects through the 
physical properties of the involved phases (e.g. the latent heat). The abovementioned ap-
proach significantly improves the numerical performance of the simulation method, in partic-
ular when the numerical mesh quality and the computational time requirements are concerned. 

The numerical results, obtained using OpenFOAM
® library suite [3], are validated against 

the available experimental results found in literature. The preliminary results using the adopt-
ed approach are showing that the basic flow pattern and the phase distribution within the plate 
heat exchanger channels can be identified. Comparing the results of the experiments and sim-
ulations, which are quantified through the integral values of momentum and heat transfer, the 
overall agreement is satisfactory. 

 

1 HEAT EXCHANGER GEOMETRY 

The creation of the plate heat exchanger geometry is very challenging task, and the mesh-
ing of this geometry is even more demanding. Nevertheless, this is the starting point for a 
numerical simulation, and it is a critical element when the quality of the simulation results is 
concerned. For a realistic representation of the geometric features of a single layer of the heat 
exchanger under investigation, SolidWorks™ package has been used to create a parametric 
model with characteristic width, length and chevron angle.  

7248



A 3D unsteady numerical simulation of the refrigerant flow evaporation in a plate heat exchanger 

 

 Shown in Figure 1 is the plate heat exchanger model of Huang et al. [4], which has been 
considered in the present analysis. Due to its highly complex geometry, only one layer of this 
heat exchanger has been included in the analysis: this layer consists of the channels through 
which the refrigerant is flowing, while the influence of the water on the secondary side has 
accounted for through the appropriate boundary condition. In this calculation the incoming 
and outgoing zones of the analyzed layer (yellow) were slightly modified with respect to the 
real geometry: there is no dedicated manifold distributor near the inlet or outlet of the heat 
exchanger, but rather the same geometry as throughout the whole plate (same channel size 
and chevron angle). Through the inlet (blue) and outlet (green) sections the operating condi-
tions have been imposed. The remaining part (red) represents the walls through which the 
heat transfer with the secondary fluid (water) is taking place. 

   

 

Figure 1: plate heat exchanger geometry detail (left), and the numerical mesh (right). 

 
Using the geometry created as explained above, the numerical mesh has been created using 

SnappyHexMesh tool from the OpenFoam suite. For the given complexity of the simulated 
geometry, the only feasible meshing process is to use this automatic meshing approach, alt-
hough its immanent feature is that they cannot assure the overall mesh quality (and the mesh 
quality will influence the stability and quality of the numerical simulation - especially in the 
case of the multi-phase flow simulations). One possibility of improving the mesh quality is to 
go for higher refinement levels (finer mesh), but that implies larger meshes (number of cells) 
and longer simulation times. 

 

2 NUMERICAL FLUID FLOW SOLVER 

For the present numerical analysis the open-source package OpenFoam has been used: it is 
based on the finite-volume method, and owing to its object-oriented structure it enables 
straightforward implementations of the necessary improvements (in this case, a realistic 
treatment of refrigerant properties, and the flow evaporation model). For the simulation of the 
refrigerant flow evaporation within a plate heat exchanger, the transient flow solver has been 
selected, based on the combined PISO-SIMPLE method. 

The problem under consideration involves two nonmiscible phases of a single constituent: 
refrigerant liquid and vapor phase. In the adopted approach, these two phases are treated as a 
pseudo-fluid (with combined fluid properties), for which the time scales of the transport be-
tween the phases is much smaller than the integral time scale of the flow. This assumption 
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invokes the thermodynamic equilibrium requirement, in which case it is shown that the two-
phase flow obeys the governing laws of a single-phase flow [5]. In other words, the flow is 
described with the equations for conservation of mass, momentum and enthalpy, as given be-
low: 
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The enthalpy approach is a conservative approach which is valid in a general phase-change 

case [6]. The enthalpy includes both the latent heat H and the sensible heat (measured by the 
temperature T): h = cpT + H, whereby the latent heat H is being treated explicitly during the 
phase-change process. The combined properties of pseudo-fluid (density ρ, viscosity µ, spe-
cific heat capacity cp, thermal conductivity λ) are defined as a weight mixture of the individu-
al fluid properties: φ = φvapor αvapor + φliquid αliquid (φ = ρ, cp, µ, λ). The weighting function is 
represented by the volume fraction of a single phase α, with αvapor = 1 – αliquid. 

The effects of turbulence are introduced through the eddy viscosity µt, here defined using 
the k-ε model [7] with the realizability constrain imposed through the time scale Tr: 
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2.1 Flow evaporation model 

Given the complexity of the phase-change flow physics, its modeling represents a critical 
element in the numerical simulation of the plate heat exchanger with flow evaporation: it 
needs to be an appropriate phase-change model which will sufficiently capture the main flow 
phenomena, and yet be sufficiently fast and flexible in order to be suitable for an industrial 
application analyzed in this work. Furthermore, for the flow type under consideration here, 
there is the stability criterion (expressed through the Courant number) which correlates al-
lowed spatial and temporal discretization characteristics (i.e. the time step and the mesh size). 
In the case of plate heat exchangers, however, the mesh quality is typically rather low. As a 
consequence, not only is the quality of the results reduced, but also the numerical simulation 
can get unstable or prohibitively long. 
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Aiming at the balance between the accuracy and applicability, a phenomenological ap-
proach for the phase-change model has been pursued, where the phase-change process is 
strictly controlled by the temperature. Namely, the phase kinetic is implemented by prescrib-
ing the phase fraction as the function of temperature: the pseudo-fluid is in its liquid phase if 
the local temperature is below the saturation temperature, and inversely it is in its vapor phase 
when the local temperature is above the saturation temperature. Corollary to this assumption 
is that the robustness of the model is significantly increased, while the main phase-change 
features are accounted for: the temperature is its dominant characteristic, and the saturation 
temperature is dynamically determined from the property table based on the local flow pres-
sure. As the model parameter, the linear temperature range in which the change between the 
phases is taking place, can be extracted from the Clausius-Clapeyron relation [5]. 

2.2 Fluid properties 

As the focus in this work is on the flows of refrigerants, in order to capture the totality of 
the fluid flow phenomena within a heat exchanger with flow evaporation, it is necessary to 
account for a realistic variation of the relevant fluid properties: density, viscosity, heat con-
ductivity and specific heat capacity. To that purpose, the volumetric fields for fluid properties 
have been implemented into the simulation solver, and they are being fed from the external 
property tables by interpolating respective values based on the local flow conditions (pressure 
and temperature). These property tables are generated using simulation tools for fluid equa-
tions of state and transport properties, and in the present case the open-source software Cool-

Prop has been used. 

2.3 Boundary conditions 

The inlet is defined by the fixed values (Dirichlet boundary condition type) for the veloci-
ty, temperature (enthalpy) and turbulent quantities, and the zero gradient (Neumann boundary 
condition type) for the pressure. The imposed velocity is obtained from the mass flux speci-
fied by the operating conditions, together with the related temperature, whereas the turbulent 
quantities at the inlet are obtained from the required turbulent intensity. The pressure at the 
outlet is defined by the fixed value specified by the operating conditions, and for the velocity, 
temperature and the turbulent quantities the zero gradient is specified. 

The heat transfer through the plate walls is defined by the Robin type boundary condition: 
there the temperature of the refrigerant in the near-wall region within the plate channel is de-
pendent on the heat transfer coefficient and the temperature of the secondary fluid at the op-
posite side of the plate wall. In this way the convective heat transfer from the secondary side 
(water) is accounted for, together with the 1D assumption for the conduction through the wall 
of the plate heat exchanger. 

 

3 RESULTS 

In order to assess the ability of the proposed simulation approach in predicting the thermal 
behavior and the fluid flow performance of a plate heat exchanger, the comparison between 
the numerical investigations and the experimental results has been performed. Selected for the 
comparison is the heat exchanger geometry of Huang et al. [4], with the chevron angle of 60o. 
For the quantification of the fluid flow and heat transfer characteristics, a series of numerical 
simulations has been performed for two refrigerants (R507a and R134a) at two operating 
conditions at approximately the same saturation temperature levels. 
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Summarized in the Table 1 are the boundary conditions applied for four different heat ex-
changer simulations. From the inlet mass flux, the imposed inlet velocity of the refrigerant has 
been recalculated for the high and low flow rates respectively. The imposed pressure at the 
outlet was selected such that for both refrigerants the saturation temperatures are approxi-
mately the same. On the thermal side of the secondary fluid, the inlet and outlet temperatures 
of the water are prescribed, and together with a specified mass flow rate the cooling rate is 
defined. This, in turn, gives the outlet temperature of the refrigerant, for the specified refriger-
ant inlet temperature. 

 

 
R507a      

high flow rate 
R507a       

low flow rate 
R134a      

high flow rate 
R134a       

low flow rate 

R
ef

ri
-

ge
ra

nt
 Vin [m/s] 0.03 0.02 0.03 0.02 

Pin [kPa] 756.3 749.1 324.3 315.6 

Pout [kPa] 742.4 742.8 306.7 307.2 

W
at

er
 Tin [

o
C] 16.3 16.3 15.2 14.5 

Tout [
o
C] 12 12.6 11.2 11.5 

Qcool [kW] 14.4 12.2 13.3 10.1 

Table 1: operating conditions imposed as the boundary conditions. 

The basic flow pattern can be seen in the Figure 2, which shows the velocity magnitude 
distribution of the refrigerant within the plate heat exchanger channels. The main conclusion 
from the obtained flow pattern is that good uniformity of the refrigerant flow has been 
achieved, which is an important ingredient for a good thermal behavior of the heat exchanger. 
The flow uniformity is the consequence of very complex surface structure, which distributes 
evenly the flow already in the entering section. However, such hydrodynamic behavior comes 
with the price, expressed in the overall pressure drop along the plate heat exchanger. The 
temperature distribution follows the main flow pattern: in the narrow parts of the plate chan-
nels (where two plates are interlacing) the velocity is increasing, carrying away the heat more 
effectively and hence locally reducing the refrigerant temperature. On the other hand, in larger 
channel pockets the refrigerant velocity is decreasing, and its temperature is increasing. 
 

 
Figure 2: snapshot of the velocity distribution within the plate heat exchanger. 

 
It is stipulated by the adopted phase-change model, that the phase distribution is dictated 

by the temperature distribution: the pockets of lower temperature evaporate the last, during 
the flow time. The overall characterization of the refrigerant flow evaporation, however, can 
be expressed through the domain integrated values of the phases. This has been shown in Fig-
ure 3, where the temporal evolution of the volume averaged liquid phase within the domain 
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(green line) indicates the characteristic time of analyzed plate heat exchanger needed for 
reaching its steady-state operation. The same conclusion can be drawn from the surface aver-
aged temperature at the heat exchanger’s outflow (red line). 

 

 
Figure 3: volume-averaged liquid phase, surface-averaged temperature. 

 
From the data given in the Table 2 one can see that the prediction of the thermal character-

istics is somewhat more difficult than the hydrodynamic characteristics. Namely, looking at 
the pressure drop, there is approximately 21% difference between the experimental and nu-
merical results (in the average), whereas the difference in the heat transfer coefficient is ap-
proximately 27 % (in the average). Nevertheless, even for thus obtained results a satisfactory 
agreement can be considered, because in all investigated cases there is a correct trend when 
changing the operating conditions: this systematic discrepancy can be reduced by certain fine-
tuning of the model, which is subject of the future work. 

 

 
R507a      

high flow rate 
R507a       

low flow rate 
R134a      

high flow rate 
R134a       

low flow rate 

E
xp

. dP [kPa] 10.3 8.8 12.5 9.4 

U [kW/m
2
K] 1.46 1.64 1.41 1.23 

S
im

. dP [kPa] 13.9 6.3 17.6 8.4 

U [kW/m
2
K] 1.8 1.9 2.1 1.8 

Table 2: experimental and simulation results for the pressure drop and the heat transfer coefficients, obtained for 
the analyzed refrigerants and operating conditions. 

 

4 CONCLUSIONS 

The aim of this paper was to assess the applicability of the computational fluid dynamics, 
for the analysis of thermal behavior of a plate heat exchanger with refrigerant flow evapora-
tion. Given the complexity of the occurring phase-change phenomena on the one hand, and on 
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the other very demanding geometry which is considered, the focus here is on the robustness of 
the physical modeling and the stability of the numerical simulation. 

Starting from the pseudo-fluid description of two-phase flows, the flow evaporation has 
been treated here in a single-phase flow manner. The transport properties of the pseudo-fluid 
have been defined as the weight mixture of the individual refrigerant properties (vapor and 
liquid), which are computed using CoolProp package. A standard transient OpenFoam solver 
has been extended to include the phase-change process, for which a robust physical descrip-
tion (based on a pre-defined function of the local temperature) has been deployed. 

In order to validate the presented numerical approach, the comparison with the literature 
data has been performed. To that purpose, the geometry of the plate heat exchanger has been 
realistically represented, and the numerical analysis has been performed for the specified op-
erating conditions. The simulation series has been performed for two different refrigerant and 
two operating conditions, and the results obtained from the numerical analysis compare rea-
sonably well with the experimentally obtained values. 
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Abstract. In the paper, the numerical study of the flows in channels of variable cross section 
has been performed under the conditions of experiments carried out in blow down wind tun-
nel. The main goals of the present investigations were as follows: to get a new data on the 
flows in inlet channel at M=2-8 under conditions which close to start-unstart of inlet; to in-
vestigate the influence of the channel geometry, Mach and Reynolds number on the flow 
structure and inlet characteristics; to study the influence boundary layers on the channel flow 
structure and the inlet performances. The internal part of the channel has complicated con-
figuration can be regulated over the length. The experimental investigations of the model 
have been carried out in the blow-down wind tunnel T-313 at Mach numbers from 2 to 6 and 
in the hot-shot wind tunnel IT-302M at Mach numbers from 5 to 8 in Reynolds number range 
from 8 to 56*1061/m. The comparison and joint analysis has been performed for the calculat-
ed and experimental data. The gas-dynamic patterns have been constructed for the compli-
cated flows with multiplex interactions of the shock waves with the boundary layers 
developing on the compression surfaces. The parametric computations performed within the 
wide range of flow and geometric parameters allowed to carry out the experiments and pro-
vide a basis for explanation of flow features and the choice of optimum configurations. 
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1 INTRODUCTION 

Hypersonic airbreathing propulsion offers great potential for reliable and economical ac-
cess to space as well as atmospheric flight. In particular, scramjets (supersonic combustion 
ramjets) are a promising technology that can enable efficient and flexible transport systems by 
removing the need to carry oxidizers and other propulsion limitations of conventional rocket 
engines. Supersonic combustion via the use of scramjet technology was successfully demon-
strated for the first time worldwide by the HyShot II Program 2002 [1], followed by success-
ful flights of the Hyper-X vehicles in 2004 at Mach number 6.8 and Mach number 9.6 [2]. 

One of basic elements of the scramjet is air inlet. Its influence on effectiveness of propul-
sion is dominant, especially at application of integral construction configurations. Feature of 
air inlet of the scramjet consists in fact that it should ensure operation of the engine in is un-
precedented a wide range of flight conditions at high efficiency of all elements of the engine 
for reception of the maximum thrust. From this point of view, high level of mass flow rate 
and minimum total pressure losses must be ensured in a wide range of a flight velocities and 
altitudes [3, 4]. A lot of key issues have to be addressed for developing the dual mode ramjet 
technology. One of them consists in designing an inlet able to operate in a very large Mach 
number range, with enough pressure recovery while providing the necessary air mass-flow to 
the combustion chamber. The use of a sophisticated variable geometry simplifies the aerody-
namic design of the inlet. But, in the same time, the mechanical feasibility of the inlet is more 
and more difficult task for implementation because of the very severe environment the inlet 
will encounter during the flight. At the contrary, a fixed geometry inlet will be much more 
feasible from the mechanical point of view but it will lead to the very difficult compromises at 
the choice of the design Mach number. At the too large contraction ratio, a very large spillage 
will reduce the installed thrust at low Mach number. If the contraction ratio will be too re-
stricted, the general performances will be dramatically reduced at high Mach number [5]. 

Several studies have been carried out on optimizing inlet performance using internal inlet 
components. Amongst other parameters, inlet performance also depends on upstream flow. 
Different research groups have investigated the effect of major component properties on inlet 
characteristics, e.g., the modification of the inlet internal geometry [6] and configurations of 
side walls [7]. Variations of entrance configuration and inlet position reveal different effects 
on performances [8] and studies at the position of the inlet diffuser were carried out to avoid 
flow separation [9, 10]. Other studies included unstart criteria and inlet buzzing [11, 12], 
which must be prevented [13] to ensure the functionality of the ramjet and prevent destruction 
of the structure of inflowing and the inlet unstart [14, 15]. One technique is to control the inlet 
normal shock by adjusting internal parts of the inlet [16, 17]. All examples deal with inlet de-
sign and a given unchangeable main engine design [18, 19]. On the basis of still open issues 
from these studies, the influence of the upstream flow on inlet performance was identified as 
one of the key issues. 

Reliable in-flight starting of the inlet is of critical importance for the successful operation 
of scramjet engines, particularly integral configurations with high-contraction inlets [20]. The 
present research is undertaken to examine the capabilities of various inlet starting methods 
based on two principles: boundary layer effects and variable geometries. If the overall Mach 
number range is limited (Mach 4-Mach 10), a completely fixed geometry can be defined for 
the scramjet inlet with relatively good possible performance in the whole flight envelope. At 
the contrary, an extension of the Mach number range needs to provide some variation of the 
geometry of the inlet channel in order to obtain acceptable performances. Indeed for higher 
Mach numbers, it will be necessary to use a high contraction ratio for the inlet in order to limit 
the supersonic Mach number at the entrance of the combustion chamber and to reduce diverg-
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ing combustion chamber, as Mach number will increase. At the contrary, in order to extend 
the flight range to lower Mach numbers, the inlet contraction ratio must be reduced (with or 
without reduction of the capture area) to avoid a too large cowl spillage and the corresponding 
additive drag section of the combustion chamber must be open. 

Therefore it is important to ensure the necessary mass flow rate and pressure recovery by 
means of adjustment of geometry and control of boundary layer bleed. Investigations of per-
formances of adjustment inlet with or without boundary layer bleed were presented in works 
[21, 22]. 

Nevertheless these researches were limited to a narrow range of speeds of flight (Mach 
numbers) and did not assume an adjustment of cross-section of inlet channel depending on 
flight conditions. The computer design tools are widely used in developing the optimum ge-
ometry of the engines and their elements (inlet, combustion chamber, and nozzle) [23]. At the 
same time numerical simulation widely employs for determination of aerodynamic scramjet 
characteristics (thrust and drag). The flow simulation of high-speed inlets is one of important 
directions in these researches [24-26]. 

In the paper, the numerical study of the flows in channels of variable cross section has 
been performed under the conditions of experiments in wind tunnels. The comparison and 
joint analysis has been performed for the calculated and experimental data. The gas-dynamic 
analysis has been carried out for the complicated flows with multiple interactions of the shock 
waves with the boundary layers developing on the inlet surfaces. 

The main goals of the present investigations were as follows:  
 to get a new data on the flows in channel at M=2-8; 
 to investigate the influence of the channel geometry, Mach and Reynolds number on 

the flow structure and inlet characteristics 
 to verify the algorithm and code on the channel flow experimental data; 
 to study the influence of the boundary layer  before channel entrance on the channel 

flow structure and the inlet characteristics. 

2 MODEL AND FACILITIES 

The experimental model presents a channel with flat walls and 3D central body [4, 7]. The 
quasi-two-dimension configuration of the central body (nose part) allows one to simulate a 
boundary layer which is developed on the aircraft nose part and guarantees preliminary flow 
deceleration in two shock waves. The internal part of the channel has a complicated configu-
ration with the adjusted area over the channel length. The variation of inlet geometry was per-
formed by means of motion of the cowl. Several model configurations with different cowl 
position at different relative throat area have been considered (Fig. 1) for the corresponding 
Mach numbers to provide the inlet “start” at different test conditions.  

 

Figure 1: Scheme of model and calculation domain 
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Change of the channel configuration was accompanied by change of value of internal 
compression, which decreased at reduction of Mach number to provide inlet start in all range 
of Mach numbers. Change of internal contraction (relative height of a throat) is presented in 
Table 1 together with total contraction of captured air stream.  

M 2 3 4 5 5.5 6 7 7.5 8 

H/hth 3.0 3.36 4.0 4.5 4.8 5.3 5.66 6.21 7.06 

hent/hth 0.96 1.14 1.44 1.68 1.82 2.06 2.23 2.51 2.91 

Table 1: Channel configurations 

The bottom and top walls of the model were equipped with static pressure taps to measure 
the distribution of static pressure along the longitudinal axis. Additionally, in three cross-
sections the installation of Pitot pressure probes has been provided to determine the local 
Mach numbers and total pressure recovery in the channel. The side walls of model and wind 
tunnels facility was equipped with transparent windows to provide Schlieren visualization of 
the internal flow structure. Glass windows are placed along the inlet throat of the model to 
visualize the flow to determine its structure (separation and attachment of the boundary layer, 
location and form of shock waves). During test, shadow, oil and sparkle visualizations were 
performed to analyze the flow structure at the entrance and in the duct of the inlet. 

The experimental investigations of the model have been carried out in the blow-down wind 
tunnel T-313 at Mach numbers from 2 to 6 and in the hot-shot wind tunnel IT-302 at Mach 
numbers from 5 to 8. The blow-down wind tunnel T313 has been equipped profiled nozzles 
for the Mach number range from 2 to 6 and has test duration up to 600 s. Working section of 
wind-tunnel has a rectangular cross-section and located in a pressure chamber. The hot-shot 
wind tunnel IT 302M has been equipped profiled nozzles  with exit diameter of 400 mm for 
the Mach number range from 5 to 8. Test duration can change from 100 to 200 ms depending 
on Mach number. Typical flow characteristics for both wind tunnels are presented in Table 2.  

 
 

Blow-down wind-tunnel T-313 
Hot-shot wind-tunnel IT-302M 

(time range 10 - 70 ms) 

M 2 3 4 5 6 6 7 8 

Pt, bar 2.1 4.2 10.5 8.0 8.8 5231 33056 340124 

Tt, K 288 280 2760 374 540 17801500 22001340 20001600 

Re*106/
m 

24.8 36.2 54.4 16.9 9.4 16.8  10.4 22.96.8 14.97.6 

Table 2: Condition of the experiments in T-313 and in IT-302. 

Peculiarity of IT-302M wind tunnel is decrease of flow parameter during operation time. 
That is why flow parameters for this tunnel are shown for typical duration of wind tunnel op-
eration (from 10th ms to 70th ms) when regime of wind tunnel remains quasi-stationary. 

3 MATHEMATICAL MODEL AND CALCULATION METHOD  

The calculations have been performed on the basis of the full transient Favre-averaged Na-
vier-Stokes equations and Wilcox two-equation turbulence model [27]. The original numeri-
cal algorithm [28] used earlier for the 2-D turbulent supersonic flow computations and 
showed a good potential to predict the properties of these flows. The same methodical ap-
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proach was extended to a new class of internal supersonic flows. The temporal approximation 
presents a four-step finite-difference scheme of splitting according spatial variables. At each 
fractional step the finite-difference scheme was realized by scalar sweeps. The TVD-scheme 
of Flux Vector Splitting by van Leer of the third order of accuracy has been used for the ap-
proximation of convective terms. The viscous terms have been approximated with the central 
finite-difference relations of second order of accuracy.  

The computation region was bounded by the bottom wall (central body) 5 from below and 
by upper wall 3 or free surface 2 from above. On the left and on the right the computational 
domain was bounded with input and output sections 1 and 4, respectively. In the input section 
1, the free flow conditions or the profiles of all gas-dynamic and turbulent parameters ob-
tained from the computation of the turbulent boundary layer on the plate have been assigned. 
The coincidence with experimental boundary layer integral parameters and skin friction coef-
ficient has been provided in computations if such data were obtained in the experiments. The 
no-slip conditions for velocity have been specified on boundaries 4 and 5. Adiabatic condition 
for temperature was used in the computation for M=26 corresponding blow-down wind 
tunnel and constant temperature (“cold wall”) was specified for M=68 computations in con-
ditions of hot-shot wind tunnel. On the top boundary 2, so-called “simple wave” conditions 
were assigned in order to provide all the disturbances to way out from the computation region. 
The “soft” boundary conditions have been set on boundary 5. Special study was performed for 
determination of the temperature factor influence on the flow structure.  

4 INLET FLOW SIMULATION  

The computations were performed for the inlet configurations shown in Figure 1 under the 
conditions of experiments described in Table 1.  

Fig. 2 presents the static pressure distributions along the central body and the cowl ob-
tained in computations for Mach 2 to 6 carried out under the conditions in blow down wind 
tunnel. Data was made dimensionless by the value of pressure in the entrance section of the 
calculation region. The data obtained indicate a big lengthwise pressure non-uniformity and 
high level of pressure, which increase together with Mach number. At Mach numbers  M4, 
a saw-toothed structure appears in the pressure distribution related to the alternation of shock 
waves and rarefaction waves inside the channel 

a b

 
Figure 2: Computed pressure along central body (a) and cowl (b) 

The computed distributions of relative total pressure P0/P0 are presented in Figure 3. 
Here pressure was averaged over the channel width along the computation grid lines. These 
data allow one to determine the total pressure losses in any cross section which is a good 
complement to the direct measurements in some assigned cross-sections. The joint analysis of 

7259



 Natalia N. Fedorova and Marat A. Goldfeld  

the calculated and experimental results has permitted one to conclude that investigated model 
configuration are satisfactory with respect to the total pressure recovery coefficient within the 
whole given range of Mach numbers.  

a 

  

Figure 3: Averaged total pressure under blow down (a) and hot-shot (b) wind tunnel conditions 

Comparison of results of calculation of static pressure distribution under test conditions in 
blow down wind tunnel is presented in Figure 4. This data shows good agreement of comput-
ed and experimental data on major part of the channel length of model. Appreciable quantita-
tive difference is observed in the end of computational domain where experimental values can 
exceed results of calculation. Probably, this is effect of influence of subsonic diffuser, in 
which the throttling device should be installed. This effect becomes more significant at the 
rise of Mach number. 

 

Figure 4: Central body pressure distribution at Mach number 6in blow down wind tunnel 

The increment of shock wave intensity with Mach number rise results in the formation of 
an extensive separation region on the channel walls behind channel entrance. This region co-
vers the channel section and causes the significant pressure rise. Determination of skin fric-
tion distribution on the walls allows detecting these regions and, correspondingly, area 
location of maximum pressure and heat flux. Results of calculation of skin friction distribu-
tion on the walls of a central body at Mach numbers 2-6 is presented in Figure 5. The pres-
ence of the boundary layer separation region arise at Mach number M  4 when the skin 
friction  coefficient become less than zero. One can see that separation zone increases at Mach 
number rise. Size of separation zone can reach 5 height of throat as it occurred at Mach num-
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ber M=6. These results were confirmed by means of Schlieren visualization of flow in the 
model throat. 

 

Figure 5: Computed skin friction along the central body for various Mach numbers 

Three geometrical configurations were investigated at Mach number M=8 (Table 1) for 
three different relative internal contraction hent/hth=3.11, 2.91 and 2.32 that corresponded ex-
perimental conditions of the runs 133, 151 and 117. Here hent and hth is height of entrance in 
the channel and throat height, correspondingly. The static pressure distributions along the cen-
tral body (a) and the cowl (b) are presented in Fig. 6. Comparison data obtained indicate qual-
itative agreement of the experimental and computational data. 

 

Figure 6, a: Static pressure distribution along central body at M=8 

 

Figure 6, b: Static pressure distribution along  cowl at M=8 
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The possible reason of disagreement between computed and experimental values may 
cause the fact that the cowl of the real model has the cavity and subsonic diffuser downstream 
behind the end of computation domain. Such geometrical configuration is source of formation 
of the massive flow separation. The separation zone moving upstream, leads to a significant 
static pressure rise inside the channel and, as a result, to increasing of the losses of total pres-
sure. For computations under condition of hot-shot wind tunnel there is also a problem to de-
fine properly the incoming flow parameters, including turbulence level, and wall temperature. 
Computations were performed for constant conditions for fixed time, whereas they were 
changing in real flows. 

The flow in inlet has very complex structure because of multiple shock waves and expan-
sion fans and their interactions with boundary layer on channel walls, which is difficult-to-
analyzed on the basis of only measurements and even visualization. Here mathematical mod-
eling gives the instrumentation that helps one to construct the flow field picture. According to 
Schlieren visualization data, the M=4 flow structure is consistent with the calculated density 
contours flows, as it shown in Figure 7. The density contours are presented in the whole cal-
culation region (a) and in the part of channel (c), which corresponds to the experimental flow 
visualization picture in model throat (b). Comparing Figure 7b to Figure 7c it is quite easy to 
identify the wave structures and corresponding flow regions on the experimental and calcula-
tion schemes. The gas-dynamic patterns of the flows constructed on the basis on a joint analy-
sis of the computation and the visualization and measurements gives more deep understanding 
of the processes in the duct and helps one to design the efficient devices 

 a 

 

 
 

b 

 

 c 

 

Figure 7: The computed density contours (a), (c) and experimental flow visualization (b) at M=4 

In computations, the “start -unstart” of the channel was modeled depend on Mach number 
and corresponding internal contraction. When compression grows for example, in conse-
quence of increase of angle of attack is growing, the separation zone on the central body and 
cowl becomes larger that covers the channel and brings about a significant pressure rise inside 
the channel. If cross section is deficient for realization of supersonic inflowing, separation 
zone is moving upstream along channel and its size is increasing. One can see the separation 
zone growth and movement of the separation zones and the shock waves system upstream in 
Figure 8.  This process is accompanied by subsequent pressure rise up to moment of break of 
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inflowing and appearance of normal shock wave before channel entrance. These results conform 
to experimental data of pressure measurement and flow visualization in blow down wind tunnel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure8: Modelling the inlet “unstart” process at M=6 

Thus, there is a transition from “start” to “unstart” state of the channel. Presented data 
show the presence of extensive subsonic areas, considerable decrease of flow velocity in a 
channel and increase of a boundary layer thickness. 

The Figure 9 shows change of skin friction coefficient at process realization “unstart” the 
channel. It can be seen that the area of negative values of a skin friction increases in process 
of growth of the sizes of separation area and shifts upstream to a channel entrance. The data 
obtained allows defining extent of a separation region, which can reach till ten heights of the 
throat that corresponds approximately to half of length of the channel. 

 

Figure 9: Skin friction coefficient distribution in the channel with separation zone. 
Lines 1-4 corresponds pictures in Figure 8 from the upper to lower 
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5 CONCLUSIONS  

Thus, the methods of physical experiment and computational modeling have been used in 
the work to study the properties of complex flows in the inlets with changeable geometrical 
configuration in a wide range of Mach number. The experimental findings present a basis for 
the mathematical model and calculation algorithm verification. At the same time, the paramet-
ric computations performed within the wide range of flow and geometric parameters help one 
to carry out the experiment and provide a basis for the choice of optimum configurations and 
explanation of flow features. 
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Abstract. In this paper Darcy’s law for dilute solutes, that is implemented explicitly to
a boundary condition in computational fluid dynamics-discrete element method (CFD-DEM)
solver, is presented for pressure driven membrane applications. The explicit treatment of the
boundary condition with Darcy’s law in segregated pressure based solver induces oscillations.
To avoid oscillations the boundary condition is under relaxed by limiting change of the solvent
flux between iteration cycles. With combination Darcy’s law and CFD-DEM cake formation on
a membrane and some of the hybrid processes can be modeled.
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1 INTRODUCTION

Pressure driven membrane process is widely used in civil engineering (e.g municipal wastew-
ater and the desalination of sea water or brackish) and industry. The pressure driven processes
suffer of fouling like other membrane processes. The fouling is a severe problem which in-
creases maintenance cost, decreases productivity and in the some cases forces to shut down
process. Cake formation, one type of the fouling, can be the problem at the membrane where
it directly increases flow resistant, or at pretreatment phase, where solids are removed. In the
former case, a cake effects indirectly to energy consumption and increases required pumping
power.

Water quality regulations and the concern of trace contaminants imposes requirements to a
water treatment technology and raises new ways to treat water e.g. hybrid ion exchange (IE) -
pressure driven membrane processes as Al Abdulgader et al. [1] pointed out. In many hybrid IE-
pressure driven membrane processes ion exchange and filtration is separated to different units
while Kabay et al. [2] suggested hybrid process where ion exchange resins were immersed in
feed and retentive. According Kabay et al. [2] in submerged system yield and separation effi-
ciency is at high level. The submerged systems could be alternative method to traditional fixed
bed columns.

Cake formation on a membrane and submerged hybrid processes impose additional require-
ments to modeling, particularly for computational fluid dynamics (CFD). Particle-particle colli-
sion and fluid-particle interaction forces have to be considered while flow regime changes from
dilute to dense [3]. In addition, at small particle (∼ µm) scales cohesion forces have important
role in settling and filtration [4]. Dong et al. [4] modeled successfully settling and filtration with
DEM code but they assumed direction of fluid flow and used periodic boundary conditions. To
gather information from systems, larger scale modelling e.g. fluidization or pneumatic convey
is required [5].

Modeling of pressure driven membranes with CFD are common divided in two approached
based on a boundary condition used for a membrane; dissolving and permeating boundary con-
ditions [6]. Both of those approaches assumes boundary layer on membrane at permeate stream
can be neglected which means constant pressure and concentration at the permeate stream. In
addition, a membrane is modeled as boundary condition. In dissolving method there is no
flux through a membrane and solute’s boundary condition type is either is Dirichlet or Neu-
mann. Use of the dissolving boundary condition can be justified by small modeling area where
Reynolds number does not change. In the permeating boundary condition the solvent flux is
defined by a equation similar to Darcy’s law which is depend on the transmembrane pressure
(TMP) and osmotic pressure [7]. Transmembrane pressure is pressure difference between feed
and permeate streams. The pressure difference is the potential and the driving force for separa-
tion in the pressure driven membrane separation. The driving pressure is decreased by osmotic
pressure. Osmotic pressure is pressure which is needed to prevent solvent flux across a semi-
permeate membrane from dilute solution to concentrate solution. Osmotic pressure rises from
osmosis phenomenon. Osmotic pressure is proportional to solute concentration differences and
solute type.

Drag, which is depended on the relative velocity difference and which is the one of the major
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forces in the particle-fluid flows, has large impact on the pressure loss in the cake or resin bead
layer. The drag force transfer momentum from the fluid to the particles and vise versa depend
on the relative velocity difference. However, the pressure loss decreases TMP which decreases
relative velocity difference and this interconnection effect is only possible to model with per-
meating boundary condition. Results of Dong et al. [4] support this assumption.

In this paper, Lagrangian-Euler approach, which is implemented to CFD-DEM program [8],
is used with the explicit Darcy alike equation [6] to model particle fluid flow with the permeating
membrane. The osmotic pressure is not included and only hydrodynamic model is taken account
at this point. In addition, the segregated pressure-velocity coupling and PISO-loop [9] is used.

2 Numerical Methods and Case Setup

Permeating flux through the membrane is sensitive to TMP, which is solution of the pressure-
velocity field, and at the same time the flux effects to velocity and pressure fields. This depen-
dence with updating boundary values at the end of PISO-loop raise problems to achieve con-
vergent solution.

To solve the convergence problem relaxation is added to the membrane boundary condition:
Jslv = αJo

slv + (1− α)Lp∆ptmn̂, if ‖Jslv − Jo
slv‖ ≤ β

Jslv = Jo
slv + β

∆ptm
‖∆ptm‖

n̂, if ‖Jslv − Jo
slv‖ > β

(1)

where Jslv is solvent flux, Lp is hydraulic permeable coefficient, ∆ptm is transmembrane
pressure and superscript 0 is the mark of previous iteration. n̂ is surface normal. The equation
1 is sensitive to three parameters: α, β and Lp. Hydraulic permeable coefficient Lp is the most
important factor since it defines membrane sensitivity of TMP. α has relaxing effect to equation
1 and effects directly convergence rate. β prevents diverging changes of flux between iteration
rounds.

Within this paper pseudo-2D test computational domain is used: the flow is modeled in 2D
and the particles are calculated with the 3D slice. The slice is used similar way in Ketterhagen
et. al [10] to reduce computational demand and to take into account the three dimensional
effects of particles. The computational domain is shown in figure 1. The flow with particles
is introduced from the left, between the backward- and forward-facing step lies the membrane,
where solvent permeates, and some of the particles are settled on the membrane. Rejection
with some particles flows out of the domain at the right. A list of dimensions of test domain
is shown in table 1. All test cases start with fully developed flow field without any particles.
Solid mass fraction is fixed to 0.25 at the inlet until 300k of particles are fed in the flow domain.
Constant and uniform velocity is used (0.5 m/s) at the inlet. Outlet pressure is set to be 109000
Pa. Constant viscosity is also assumed. Twenty pressure-velocity corrections per a time step
are used to achieve convergent solution as a compromise between computational demand and
accuracy.

In the test cases, boundary condition’s ability to respond changing flow circumstances and
the sensitivity of parameters α and β are tested. In the first case the variety of α values and
the fixed β value are used. Table 2 includes the variables values of case I. In the case II limiter
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H

h

L1 L2L2 L3

z

Figure 1: Outlay of computational domain

Property value Unit
Geometry

H 0.01 m
h 0.01 m

L1 0.1 m
L2 0.1 m
L3 0.05 m
z 0.001 m

Table 1: Dimensions of the test cases

parameter β is tested by increasing TMP by 50 kPa during one fluid time step (0.000025 s).
Three α values are chosen with six different β values as can be seen from table 3. In the third
case the sensitivity of relaxation factor α to the hydraulic permeable coefficient Lp, which is
multiplied by γ compared to the previous cases, is tested. Table 3 points out γ values.

3 Results and Discussion

Averaged modeled solvent flux through the membrane is compared to the averaged result of
equation 2. Basically the equation 2 is the same as the equation 1 without relaxation and the
results of equation 2 are calculated with the modeled pressure on the membrane. Comparison
is done by using absolute and relative errors. In the case I the averaged fluxes are calculated at
time 0.3 s which is about 0.05 seconds after particles hit membrane surface and induces pres-
sure fluctuations. The flow field and the particle distribution are illustrated in figure 2 and the
error results of the cases I are presented in table 4. α value 0.99 produces good results in the
case I since the relative and absolute errors are minimal. α value 0.98 or lower produces over
50% relative errors, in addition absolute error that indicates that the flow direction is inward at
the membrane. The case I results highlight sensitivity of the explicit boundary condition since
only α value 0.99 produce reasonable results. These results indicates that strong relaxation is
needed if pressure over membrane changes significantly, e.g filtration changes to backflush.

Jslv,ave = Lp∆ptm,m (2)

Case I α[-] β[-] Lp[m/(sPa)]
A 0.99 0.005 2.77e-9
B 0.98 0.005 2.77e-9
C 0.97 0.005 2.77e-9

Table 2: Parameters of relaxation factors in case I
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Case II Case III
1 2 3
α[-] α[-] α[-] β[-] Lp[m/(sPa)] α[-] β[-] γ[-]

A 0.99 0.9875 0.985 10−6 2.77e-9 0.99 0.005 0.8
B 0.99 0.9875 0.985 10−5 2.77e-9 0.99 0.005 0.9
C 0.99 0.9875 0.985 10−4 2.77e-9 0.99 0.005 1.0
D 0.99 0.9875 0.985 10−3 2.77e-9 0.99 0.005 1.1
E 0.99 0.9875 0.985 10−2 2.77e-9 0.99 0.005 1.2
F 0.99 0.9875 0.985 10−1 2.77e-9 0.99 0.005 1.3
G 0.99 0.9875 0.985 10−0 2.77e-9 0.99 0.005 1.4

Table 3: Parameters in the case II and III

Figure 2: Particle distribution and flow field at 0.3 s in the case I

The error results of case II suggest that large β values are neglecting the limiting part of
function in the equation 1 which leads to oscillations, on the other hand small β value slows
convergence. In addition, if large enough α value is chosen only small β value can be disad-
vantage. The relative and absolute error results of the case II are gathered at the next time step
after TMP changes and presented in table 5. In the case II the small values (10−6 − 10−5) of β
slows convergence and errors stay at around 80 %. In the caseII(1) α value 0.99 is not sensitive
to bigger (> 10−5) β values so relative error stays at around 1 %. In the case II(2) errors are first
reducing while β value increases, the minimum errors occurs when β is 10−3. After reaching
minimum relative error it is increasing again and 10 % relative error occurs when β reaches
value 1. If too small α value is chosen, as in the case II(3), the limiter prevents divergence but
solution oscillates inside limiters boundaries.

Case I
rel.[%] abs. [m/s]

A 0 0.0000
B 92 0.2795
C 179 -0.4006

Table 4: Relative and absolute errors in the case I
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Case II Case III
1 2 3

rel.[%] abs. [m/s] rel.[%] abs. [m/s] rel.[%] abs. [m/s] rel.[%] abs. [m/s]
A 84 0.1360 84 0.1362 84 0.1359 0 0.0000
B 81 0.1120 81 0.1120 81 0.1116 0 0.0000
C 1 0.0003 1 0.0003 677 -0.0236 0 0.0000
D 1 0.0001 0 0.0001 70 0.0636 0 0.0000
E 1 0.0001 1 0.0003 94 0.5560 0 0.0000
F 1 0.0001 1 0.0003 100 -6.5918 1 -0.0012
G 1 0.0001 10 -0.0025 98 72.6242 319 -0.1068

Table 5: Relative and absolute errors in the case II and III

The results, which can be found from table 5, of the case III clarify that there is dependency
between Lp and relaxation factor α. Decreasing γ value does not effect to errors but increas-
ing γ value increases both relative and absolute errors and induces oscillations. When γ value
exceed 1.3 the errors increase fast. This result suggest that there is minimum α value for every
Lp value which can still produce convergent solution. In the other words higher relaxation is
demanded if Lp increases.

The presented boundary condition is able to follow the pressure drop of packed particles as
can be seen from figure 3. In the figure 3 the case I(A)’s averaged modeled flux and results of
equation 2 are presented from 0 s to 2 s. Between fluxes there are good agreement over hole
sample time. In the beginning of the simulation flux is constant until particles start packing on
the membrane. Packing particles induces pressure loss resulting in flux decreases until particles
are fed in the domain and the hight of bed saturates.

-0.026

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

 0  0.5  1  1.5  2

Fl
u
x
 [

m
/s

]

Time [s]

Averaged modeled flux
The averaged solution of equation 2

Figure 3: Averaged modeled flux and averaged flux of equation 2 over time in the case I(A)

7271



Tomi I. Naukkarinen1, and Teemu Turunen-Saaresti

-0.028

-0.027

-0.026

-0.025

-0.024

-0.023

-0.022

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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Figure 4: Flux of equation 2 and modeled flux through the membrane at 0.3 s in the case I(A)

The averaged results of equation 2 and the averaged modeled fluxes are almost equal but
point-to-point values on the membrane differ. This is revealed in the figure 4 where non-
averaged fluxes of the Case I(A) are plotted at 0.3 s. In the figure 4 fluxes are mainly at good
agreement but at 0.015, 0.04 and 0.09m fluxes differ. The spots (0.015 and 0.09m) where mod-
eled flux lags behind are the same spots where packed bed end in the figure 2. The lag proposes
that more pressure-velocity corrections i.e inner iterations are needed and average agreement
does not correlate with local unity.

The Darcy alike boundary condition has effect to particle distribution on the membrane as
can be seen from figure 5. In the figure 5 the case I(A) is compared to constant flux case at 2 s.
The constant flux is same as in the beginning of the case I(A) (-0.0254 m/s). The case I(A) is
the upper picture in the figure 5 and the constant flux is lower picture in the figure 5. There are
more particles in the constant flux case but in the case I(A) particles are more even distributed
after the forward-facing step.

0.4

0.8

U

0

0.9

Figure 5: The flow field and particle distribution at 2 s in the constant flux set up (upper) and in the case I(A)
(lower).
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4 CONCLUSIONS

In this paper explicit Darcy alike equation with relaxation factor and limiter was implemented
to model permeate boundary condition. From the results can be seen the boundary condition is
able to follow changing flow conditions. However, relaxation is needed and demand of relax-
ation depend on hydraulic permeable coefficient Lp and pressure changes on a membrane. The
used limiter can prevent divergence but small limiter value does not assure convergence which
is why it can not be used alone.
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Abstract. Several multigrid iteration schemes for high order finite difference methods are stud-
ied by comparing the effect of different interpolation operators. The usual choice of prolonga-
tion and restriction operators based on linear interpolation in combination with the Galerkin
condition leads to coarse grid operators which are less accurate than their fine grid counter-
parts.

Moreover, these operators do not mimic the integration–by–parts property possessed by the
original fine grid summation–by–part schemes and hence are intuitively less stable. In this
paper, an alternative class of interpolation operators is considered to overcome these issues
and improve the stability of the overall multigrid iteration scheme. As a pleasant side effect we
find that also the efficiency of the iteration scheme is improved.
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1 INTRODUCTION

The multigrid method is a convergence acceleration technique based on a hierarchy of grids
[1, 2]. The solution of a discrete problem on a fine grid is computed by solving a system of
equations on the coarsest grid level. This technique is applied to problems in various branches
of applied mathematics and engineering, such as the Helmholtz equation [3], magnetohydrody-
namics [4] and computational fluid dynamics [5].

One of the main issues associated with this method is the construction of restriction and pro-
longation operators which transfer the information between grids. In this work we make use
of a general relation between prolongation and restriction operators which was originally pro-
posed in a different context [6]. These interpolation operators are consistent at the boundaries
and guarantee that the accuracy of the original scheme is retained at the interior nodes on each
grid level.

By using this result, we combine the multigrid method with an energy stable discretiza-
tion for high order finite difference methods, based on the Summation–by–Parts (SBP) and
Simultaneous–Approximation–Term (SAT) approach described in [7]. The improved stability
of the new multigrid method is shown through numerical simulations of a hyperbolic problem
in one dimension.

The rest of this paper is organized as follows: in Section 2 the main features of the two–
level multigrid algorithm are presented. Section 3 introduces the SBP operators and the SAT
penalty terms for high order finite difference discretizations. Section 4 deals with the construc-
tion of multigrid algorithms for SBP–SAT discretizations using the new class of interpolation
operators. In Section 5 the new algorithm is compared to a multigrid scheme with conventional
prolongation and restriction operators. Conclusions are drawn in Section 6.

2 THE MULTIGRID ALGORITHM

In this Section the multigrid approach is outlined by means of a two–level algorithm[1, 2, 8].
Let us consider the following steady–state problem

Lu = f, in Ω,
Hu = g, on ∂Ω,

(1)

where L is a differential operator, H is a boundary operator, f and g are given functions, and
Ω is a domain. We assume that the boundary conditions are assigned in a way such that (1) is
well–posed. The multigrid algorithm for solving (1) can be written in four steps:

1. Discretization;

2. Error smoothing;

3. Coarse–grid correction;

4. Fine–grid update.

2.1 Discretization

Construct a discretization for (1) on a grid Ω1 ⊂ Ω ∪ ∂Ω called fine grid. The resulting
problem has the form

L1u = f , (2)
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where L1 is a discretization of the operator L in (1) which also includes the boundary conditions
defined byH . The vector f is a grid function which approximates f on the nodes of Ω1, possibly
augmented with boundary data, and u is an approximate solution to (1). Typically Ω1 has many
nodes, and therefore it may be expensive to solve (2) directly.

The discrete operator L1 is assumed to be invertible, since its continuous counterpart L in
(1), with the boundary conditions defined by H , leads to a well–posed problem. Even though
we do not want to compute the inverse of L1, the solution to (2) will be indicated by L−1

1 f in
the rest of the paper.

2.2 Error smoothing

Define an error smoothing procedure. As an example, we may consider to march toward the
solution to (2) from an initial guess u(0) by solvingÄ

d
dt

+ L1

ä
w (t) = f , t > 0,
w (0) = u(0),

(3)

for a given finite time ∆t > 0 called smoothing step. The solution to (3) is

w (∆t) = e−L1∆tu(0) +
Ä
I − e−L1∆t

ä
L−1

1 f , (4)

where I indicates the identity matrix on Ω1. Note that this technique yields a smoothing effect
on the grid function u(0) if all the eigenvalues of L1 have positive real part. In particular,
w (∆t)→ u = L−1

1 f as ∆t→ +∞.
By similarity, we may define a general smoothing technique for (2) as

vk = Svk−1 + (I − S)L−1
1 f , k = 1, . . . , ν,

v0 = u(0),
(5)

where the exponential smoother Sexp = e−L1∆t yields a procedure based on time–marching as
in (4). After ν steps, the iterative method (5) provides the grid function

v = Sνu(0) + (I − Sν)L−1
1 f . (6)

This step of the algorithm is necessary since the high frequency modes on Ω1 may be unre-
solved on coarser grids (see Figure 1).

2.3 Coarse–grid correction

Consider Ω2 ( Ω1, called the coarse grid, and solve a correction problem on Ω2:

L2d = Ir (f − L1v) (7)

which is obtained from (2) and (4) by making use of

• a restriction operator Ir : Ω1 → Ω2,

• a coarse–grid operator L2 : Ω2 → Ω2.

The coarse–grid operator can be built by using the Galerkin Condition [2]

L2 = IrL1Ip, (8)

7276



Andrea A. Ruggiu, Per Weinerfelt, Tomas Lundquist and Jan Nordström

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: The function x sin (100x), x ∈ [0, 1], is represented on a fine (blue line) and on a coarse grid (red line).
The fine grid is given by 101 equidistant points, while the coarse grid has got 21 nodes. The restricted grid function
has a lower frequency than the original one.

where Ip : Ω2 → Ω1 is a prolongation operator.
A common choice for Ip in the one dimensional case is based on linear interpolation. As-

suming for example that Ω1 = {xj : xj = jh, j = 0, . . . , N} with h = 1/N , and that Ω2

consists of the odd nodes of Ω1, we may write

(Ipv)m =

 vj, m = 2j,
1
2

(vj + vj+1) , m = 2j + 1,
j = 0, . . . , N/2, (9)

while the restriction operator is usually given in terms of the prolongation operator

Ir =
1

2
ITp . (10)

2.4 Fine–grid update and multigrid iteration scheme

Update the fine grid solution v with an estimate of the correction d in (7), obtained through
prolongation with Ip

u(1) = v + Ipd. (11)

This relation, together with (6) and (7), provides an iterative method for solving (1):

u(n+1) = Mu(n) +N f , (12)

where
M = CSν , C = I − IpL−1

2 IrL1 and N = (I −M)L−1
1 . (13)

We will refer to M as the multigrid iteration matrix and to C as the coarse–grid correction
operator.

The role of M in the convergence of the iterative method (12) is central: by considering the
errors e(n) = u(n) − L−1f , we get

e(n+1) = Me(n), (14)

which leads to convergence if the spectral radius of M is less than 1.
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2.5 The coarse–grid correction operator

In Section 2.3 we claimed that the Galerkin condition (8) may be used to build a coarse–grid
operator L2. This choice leads to some interesting theoretical properties about the coarse–grid
correction operator C in (12), (13). To start with, we prove

Lemma 2.1. If the Galerkin condition (8) holds, then the coarse–grid correction operator C in
(12), (13) is idempotent, i.e. Ck = C for every k ∈ N.

Proof. By multiplying C by itself we get

C2 =
Ä
I − IpL−1

2 IrL1

ä Ä
I − IpL−1

2 IrL1

ä
= I − 2IpL

−1
2 IrL1 + IpL

−1
2 IrL1IpL

−1
2 IrL1 = C,

since the Galerkin condition L2 = IrL1Ip is fulfilled.

The idempotency ofC implies that its eigenvalues are given by zeros and ones [9]. Moreover,
it is possible to show

Corollary 2.2. If the Galerkin condition (8) holds, the image of the prolongation operator Ip is
contained in the nullspace of C.

Proof. Consider a vector y ∈ Im (Ip), i.e. y = Ipz. When the coarse–grid correction operator
acts on this vector, we find

Cy =
Ä
I − IpL−1

2 IrL1

ä
Ipz = Ipz− IpL−1

2 IrL1Ipz = 0,

since the Galerkin condition holds.

The main consequence of Corollary 2.2 is that C cancels all the grid functions which can be
represented through the prolongation operator Ip. This implies that C deals with smooth errors
while the smoother S damps the remaining high frequency modes.

3 THE SBP–SAT DISCRETIZATION

In this Section we introduce the Summation–by–Parts operators (SBP) and the Simultaneous–
Approximation–Term (SAT) technique. The first ones mimic integration by parts, whereas the
second one introduces penalty–like terms enforcing the boundary conditions weakly [7].

Definition 3.1. We say that D = P−1Q is a (p, q)–accurate first derivative SBP operator, if
Q + QT = B = diag (−1, 0, . . . , 0, 1), P is a symmetric positive definite matrix, and the
associated truncation errors are O (hp) in the interior and O (hq) at the boundaries.

SBP operators based on diagonal norms P are available for even orders p = 2q in the interior,
while the boundary closure is qth order accurate. Even though this is not the only possible
choice, we will only consider these (2q, q)–accurate operators with diagonal P . For further
details on the construction of SBP operators for the first derivative with q ≤ 4, see [10].

The SBP finite difference operators together with a strong treatment of the boundary con-
ditions only admits stability proofs for very simple problems. This was shown in [11], where
SAT technique was proposed to complement the SBP schemes. By discretizing a well–posed
Initial–Boundary–Value–Problem (IBVP) with both SBP operators and SAT penalty terms (the
SBP–SAT approach), it is possible to prove that the corresponding semi–discrete problem is
stable. As an example, we consider the advection equation in one dimension.
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3.1 The advection problem

Consider
ut + ux = 0, 0 < x < 1, t > 0,
u (x, 0) = f (x) , 0 < x < 1,
u (0, t) = g (t) , t > 0,

(15)

where both f and g are known data. The problem (15) is well–posed, since the analytical
solution is a traveling wave, and the boundary condition is imposed at the inflow.

Let us consider an (N + 1)–point uniform grid on [0, 1], given by xj = jh for j = 0, . . . , N ,
where h = 1/N . We introduce the grid function fj = f (xj) and to each grid point we also
associate the approximate solution uj . By applying the SBP–SAT discretization in space to
(15), we get

ut + P−1Qu = P−1σ (u0 − g) e0, t > 0,
u (0) = f ,

(16)

where u = (u0, . . . , uN), f = (f0, . . . , fN), σ ∈ R is a penalty parameter which can be tuned
for stability, and e0 = [1, 0, . . . , 0]T ∈ RN+1. By defining the matrix ‹Qσ = Q− σe0e

T
0 and the

vector F = −P−1σge0 we can rewrite (15) in a more compact form

ut + P−1‹Qσu = F, t > 0,
u (0) = f ,

(17)

where ‹Qσ + ‹QT
σ = diag (− (1 + 2σ) , 0, . . . , 0, 1).

We want to find σ such that the problem (17) is strongly stable, i.e. such that

‖u (·, t)‖2 ≤ K (t)

Ç
‖f‖2 + max

τ∈[0,t]
‖g (t)‖2

å
(18)

in a suitable norm, with K (t) bounded for any finite t and independent of the data (for further
details, see [7]). By multiplying the equation (17) by uTP and adding the transpose we find

d

dt
‖u‖2

P = −u2
N + (1 + 2σ)u2

0 − 2σgu0

where ‖u‖P =
√
uTPu. For g = 0 the method is stable for σ ≤ −1

2
. If g 6= 0 and assuming

that σ 6= −1
2
, we get

d

dt
‖u‖2

P = − σ2

1 + 2σ
g2 − u2

N +
[(1 + 2σ)u0 − σg]2

1 + 2σ
,

which lead to an estimate of the form (18). Therefore, the semi–discrete problem (16) is strongly
stable if σ < −1

2
.

4 THE SBP–SAT–MG SCHEME

In the previous Section we have shown that operators which mimic integration by parts leads
to stable semi–discrete problems. We conjecture that preserving this property on both fine and
coarse levels should lead to an improved multigrid method.

Let us consider the following steady model problem

ux = f, 0 < x < 1,
u (0) = g.

(19)
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By applying the SBP–SAT method (see Section 3.1) we get

P−1‹Qσu = F, (20)

where F = f − P−1σge0 and ‹Qσ is defined above. Since our problem is written on the same
form as (2), we can apply the multigrid scheme in Section 2 directly. The time–marching
smoothing procedure (3) yields the semi–discrete problem (17), whose solution is stable. Fol-
lowing the remaining steps of the algorithm, we define a coarse grid correction problem using
the Galerkin Condition (8). Unfortunately, the resulting coarse–grid operator does not satisfy
the SBP property if standard restriction and prolongation operators like (9) and (10) are used.

By looking closely at the multigrid algorithm, we realize that the restriction operator chosen
in (10) is consistent only in the interior. Hence, instead of using this relation, we use

Ir = P−1
2 ITp P (21)

proposed in [6], where P2 is a symmetric positive definite matrix of the same type as P on the
coarse grid. By satisfying (21) it is possible to build pairs of consistent and pth–order accurate
prolongation and restriction operators according to the following definition of SBP–preserving
interpolation operators given in [6].

Definition 4.1. Let the row–vectors xk1 and xk2 be the projections of the monomials xk onto
equidistant 1–D grids corresponding to a fine and coarse grid, respectively. We say that Ir and
Ip are 2qth–order accurate SBP–preserving interpolation operators if Irxk1 −xk2 and Ipxk2 −xk1
vanish for k = 0, . . . , 2q − 1 in the interior and for k = 0, . . . , q − 1 at the boundaries.

The SBP–preserving interpolation operators with minimal bandwidth for q = 1 are given by

Ip =



1
1
2

1
2

1
1
2

1
2

. . . . . .
1
1
2

1
2

1


, Ir =

1

2



1 1
1
2

1 1
2

1
2

1 1
2

. . . . . . . . .
1
2

1 1
2

1 1


. (22)

Note that in this case Ip coincides with the prolongation operator (9).
The SBP–preserving interpolators, together with the Galerkin Condition (8), lead to the fol-

lowing coarse grid operator

P−1
2
‹Q2,σ = Ir

Ä
P−1‹Qσ

ä
Ip = P−1

2 ITp P
Ä
P−1‹Qσ

ä
Ip = P−1

2

Ä
ITp
‹QσIp

ä
,

where obviously ‹Q2,σ = ITp
‹QσIp.

We claim

Proposition 4.2. The interpolation operators satisfying (21) lead to a coarse grid operator ‹Q2,σ

which satisfies the Summation–By–Parts property.

The proof will be given in the full paper. Hence, through the Galerkin Condition (8) it is
possible to build new SBP operators on the coarse grid. Moreover, these operators are consistent
with (19) and can retain the accuracy of the original scheme at the interior nodes. We can show
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Proposition 4.3. Consider the 2qth–order accurate SBP–preserving interpolation operators
Ip and Ir, with q ≥ 1. If D is a (2q, q)–first derivative SBP–operator in the fine grid, then
D2 = IrDIp is a first derivative SBP–operator in the coarse grid. Moreover, it is 2qth–order
accurate in the interior nodes, while the accuracy on the boundary nodes is at least q − 1.

The proof will be given in the full paper.

Remark 4.4. For q = 1 the coarse grid operator D2 has the same structure as D and is first–
order accurate at the boundaries.

The operators for higher orders will be provided in the full paper.

5 NUMERICAL EXPERIMENTS

In this Section we perform numerical computations to test the properties of the new multigrid
iteration scheme. Consider (19) as model problem with a manufactured solution given by

v (x) = e−x (cos (10πx) + cos (2πx)) , 0 < x < 1.

To discretize (19) we use the formulation (20) on an (N+1)–point uniform grid on [0, 1]. The
tests are carried out using a single–step smoother based on a modified Runge–Kutta scheme
which was proposed in [12] for first order systems:

S = I −∆tL1 + 0.6∆t2L2
1 − 0.36∆t3L3

1. (23)

In the following tests, we consider that the multigrid iteration has reached convergence if
‖un+1 − un‖ < ε, where ε = tolerance.

5.1 IMPROVED CONVERGENCE

Consider a (2, 1)–order accurate discretization on a grid with N = 500 and a smoothing step
∆t = 5 · 10−4. Figure 2 shows the spectral radius and the distribution of the eigenvalues of the
multigrid iteration matrix M in (13) by varying the interpolation operators. In particular, the
SBP–preserving interpolation operators of 2nd order are tested against the classical choices (9)
and (10). Note that even if in this case the prolongation operator is the same (see (22)), a minor
change in the restriction operator affects the distribution of the eigenvalues of M .

To test the convergence properties, we have used both the tolerance 10−10 and 10−3. The
results, shown in Table 1, suggest that the new class of operator is clearly superior.

SBP–preserving Conventional
Number of iterations (10−10) 2372 > 106

Number of iterations (10−3) 1470 1541

Table 1: The number of iterations to convergence for the multigrid scheme with tolerance 10−10 and 10−3.

Another test with tolerance ε = 10−10 and an increased smoothing step ∆t = 6.3 · 10−4

makes the spectral radius for the SBP–preserving choice decrease, while the classical linear
prolongation and restriction lead to instability. As a side effect, the number of iterations to
convergence for the new interpolation operators drops to 1873. In Figure 3 the distributions of
the eigenvalues are shown for this case. Note that the current smoothing step is close to the
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N = 500 - ∆ t = 0.0005
Non-preserving: ρ (M) = 0.98351

Preserving: ρ (M) = 0.98127
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Figure 2: Eigenvalues of the multigrid iteration matrix for different choices of interpolation operators. The spec-
tral radius of M with SBP–preserving interpolators is less than the one with the conventional prolongation and
restriction.

stability limit. This phenomenon can be evaluated by looking at the eigenvalues on the left side
of the picture: increasing the time–step ∆t, the magnitude of these eigenvalues becomes bigger.

These numerical experiments suggest that the SBP–preserving interpolation operators yield
multigrid iteration schemes with significantly improved convergence properties.

5.2 HIGHER ORDER METHODS

The following tests are carried out by raising the order of accuracy of the fine grid first–
derivative operator. The tolerance ε = 10−10 was used.

Minimum iterations ∆t ρ (M) ∆t∗

(4, 2), SBP–preserving 1435 5.8 · 10−4 0.96882 5.9 · 10−4

(4, 2), Conventional 6358 1.3 · 10−4 0.99404 3.4 · 10−4

(6, 3), SBP–preserving 1278 5.1 · 10−4 0.96955 6.8 · 10−4

(6, 3), Conventional 7030 9.8 · 10−5 0.99485 2.6 · 10−4

(8, 4), SBP–preserving 1856 6.8 · 10−4 0.98502 7.2 · 10−4

(8, 4), Conventional 10817 7.9 · 10−5 0.99667 2.3 · 10−4

Table 2: The minimum number of iterations and the corresponding smoothing step are presented for each order of
accuracy. For the SBP–preserving choice the minimum amount of iterations is almost the same for any order. The
spectral radius ρ (M) and the time–step limit ∆t∗ are also given for each scheme.
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N = 500 - ∆ t = 0.00063
Non-preserving: ρ (M) = 1.1134

Preserving: ρ (M) = 0.9761
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Figure 3: Increasing the smoothing step to ∆t = 6.3 · 10−4 leads to an unstable multigrid iteration scheme, if the
non–preserving choice is made.

In Table 2 the effects of the interpolation operators on the multigrid iteration scheme are
shown. For each order of accuracy, the SBP–preserving interpolators lead to faster convergence.
Moreover, the minimum amount of iterations does not change considerably for higher orders.
Conversely, when the order of accuracy of the fine–grid operator is increased and the classical
linear interpolation (9) and (10) is used, the number of iterations grows and the time–step limit
∆t∗ decreases.

6 CONCLUSIONS

A new multigrid scheme for SBP–SAT discretizations has been proposed. So called SBP–
preserving interpolation operators have been used to convey information between grids. When
the Galerkin condition is considered, these prolongation and restriction operators lead to coarse–
grid operators which satisfy the summation–by–part property.

Numerical experiments show that when compared to a multigrid scheme with the conven-
tional choice of prolongation and restriction based on linear interpolation, the new scheme al-
lows the use of larger smoothing steps and reaches convergence in fewer iterations. Hence, for
every order of accuracy the SBP–preserving interpolation operators lead to multigrid iteration
schemes which are more stable and have better convergence properties.
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Abstract. We present an improved and modified formulation of the dual time–stepping tech-
nique which makes use of two derivatives in pseudo–time. This new technique, based on the
critically damped harmonic oscillator, retains the convergence properties to the stationary so-
lution. Furthermore, when compared with the conventional time–marching, the dual time–
stepping with two derivatives reduces the stiffness of the problem and requires fewer iterations
for full convergence to steady–state.
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1 INTRODUCTION

The Dual Time–Stepping (DTS) technique has been first introduced in [1] for solving a large
system of nonlinear equations obtained after an implicit time–discretization of the compressible
Euler equations. In the original formulation, the DTS procedure consists in adding the derivative
of the solution with respect to the so–called dual time and marching in time to reach the steady–
state. Later, the same approach was successfully used in [2] for incompressible Euler and
Navier–Stokes equations and it became commonly used in computational fluid dynamics. Other
examples in which derivatives in fictitious time are introduced to solve systems of nonlinear
equations include various engineering fields such as magnetohydrodynamics [3], simulations of
launch environments [4] and electronics [5].

One drawback of the dual–time stepping technique is that the pseudo–time iterations must
be fully converged in order to obtain an error estimate for time accuracy [6]. Moreover, if the
dual time integration is carried out with an explicit scheme, the method may become unstable
for pseudo–time steps exceeding the physical ones [7]. These two limitations may lead to a
large number of dual–time iterations and hence to a computationally expensive method.

For these reasons, significant efforts have been made during the last decade to improve
the performances of DTS. One strategy to accelerate the computations is to introduce a pre-
conditioner multiplying the pseudo–time derivative [2, 8, 9]. Further improvements can be
achieved by developing hybrid discretizations for the physical–time derivative. In [6, 10] the
Alternating–Direction Implicit (ADI) scheme [11] is used in conjunction with the common
BDF2. Another example is provided in [12], where the hybrid scheme is built with the Lower–
Upper Symmetric–Gauss-Seidel (LU–SGS) method [13]. A further improvement of the dual
time–marching is proposed in [14], where a local time–stepping approach is used.

The goal of this paper is to explore if we can accelerate the convergence of DTS by adding a
second order pseudo–time derivative. The article is organized as follows: in Section 2, the DTS
technique is presented and its convergence properties are shown. Section 3 describes a new
class of dual time–marching procedures and introduces the second–derivative DTS. In Section
4, numerical simulations that corroborate the theoretical results are presented, while in Section
5 the main drawbacks of the scheme and alternative formulations are discussed. In Section 6
conclusions are drawn.

2 THE DUAL TIME–STEPPING TECHNIQUE

We start by illustrating how DTS is applied to a fully discretized hyperbolic problem.

2.1 The hyperbolic model problem

Consider the one–dimensional advection equation

ut + aux = 0, x ∈ Ω, t > 0, (1)

where a is a positive constant and Ω the spatial domain. Let ux ≈ Du be a general discretization
of the spatial derivative, where u is the vector approximating the solution on a spatial grid. By
applying Euler–backward scheme in time to (1) and indicating by ∆t the time–step, we get

un+1 − un

∆t
+ aDun+1 = 0. (2)

Here, un+1 and un represent the approximated solution at the different times tn+1 = (n +
1)∆t and tn = n∆t, respectively. The calculation of un+1 by directly inverting the matrix
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(I/∆t+ aD) in (2) may be excessively expensive. Instead, we apply the DTS technique by
renaming un+1 with w and adding the dual–time derivative wτ on the left hand–side of (2)
obtaining

wτ +
w − un

∆t
+ aDw = 0, τ > 0. (3)

If the solution w in (3) reaches steady–state, it will converge to un+1 in (2). The scheme (3) can
be rewritten in the following compact form

wτ + Fw = R, τ > 0, (4)

where F = I/∆t+ aD, R = un/∆t and I is the identity matrix.

2.2 Nonlinear problems

Under mild restrictions, nonlinear differential problems can be related to linear formulations.
As an example, consider a fully discretized problem using Euler–backward in time,

un+1 − un

∆t
+ L

Ä
un+1

ä
= 0. (5)

In (5), L (u) is a nonlinear operator, typically coming from a nonlinear space approximation.
Assuming small variations of the solution in time, a linearization of L can be performed:

L
Ä
un+1

ä
= L (un) +

∂L

∂u
∆u +O

Ä
‖∆u‖2

ä
, (6)

where ∂L/∂u is the Jacobian matrix of L and ∆u := un+1 − un. By substituting (6) into (5)
we obtain the linear problem Ç

I

∆t
+
∂L

∂u

å
∆u ' −L (un) ,

which can be solved using the dual–time stepping technique (4) by indicating with F = I/∆t+
∂L/∂u and R = −L (un). Hence, one can relate general problems to the linear setting, as long
as the Jacobian matrix ∂L/∂u is well–defined. The assumption of small variations in time can
be fulfilled by considering sufficiently small time steps ∆t.

2.3 Convergence

A general linear time–space discretization of a differential problem has the form

Fu = R, (7)

where F is a nonsingular matrix and R is given and independent of u. Moreover, we assume
that F is diagonalizable, i.e. F = XΛX−1 where X , Λ are the matrices of the eigenvectors and
eigenvalues of F , respectively.

By adding a dual–time derivative to the left hand–side of (7) we obtain (4), which converges
in dual time to the solution of (7) since the following proposition holds.

Proposition 2.1. Let all the eigenvalues of the diagonalizable F have a positive real part. Then
the dual–time dependent problem (4) converges to the solution of (7).
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Proof. Applying the eigendecomposition of F to (4) yields

vτ + Λv = X−1R, τ > 0, (8)

where v = X−1w. By multiplying (8) with eΛτ from the left and integrating we find

v (T ) = e−ΛTv (0) + Λ−1
Ä
I − e−Λτ

ä
X−1R,

which converges as T → +∞ if all the eigenvalues of F have positive real parts. Finally, the
steady–state solution w = F−1R is recovered by multiplying v with X .

Remark 2.2. Since F can be diagonalized, the eigenvalues contain all the information needed
for convergence. In particular, the eigenvalue with the minimum real part determines the con-
vergence rate in (4).

2.4 A note on preconditioning

To increase the convergence we may introduce a preconditioner Γ which multiplies the first–
derivative term in (4), yielding

Γ−1wτ + Fw = R. (9)

The optimal choice of Γ in (9) depends on the specific problem, and will not be discussed in
detail in this paper. We simply observe that the choice Γ = cF−1, with c > 0, leads to a problem
whose convergence does not depend on the eigenvalues of F , since (9) becomes

wτ + cw = cF−1R. (10)

Note that, according to Proposition 2.1, this formulation is always convergent. On the other
hand, even though the magnitude of c can be chosen in order to get a fast convergence of (4),
the formulation (10) requires the inverse of F , which we want to avoid.

2.5 Model Problem

The proof of Proposition 2.1 indicates that rather than considering the matrix–vector problem
(7) at once, one may instead study the scalar model problem

wτ + λw = r, τ > 0, (11)

defined by each row in (8) separately, with the corresponding steady–state solution

λu = r, λ ∈ C \ {0} . (12)

3 THE SECOND–DERIVATIVE DTS TECHNIQUE

To possibly get an even faster decay to steady–state, we add two pseudo–time derivatives to
the fully–discretized problem (7),

wττ + 2Cwτ + Fw = R, τ > 0, (13)

where C is an arbitrary matrix to be chosen in order to improve the convergence.

Remark 3.1. A matrix parameter in front of the second derivative term in (13) would play the
same role as Γ−1 in (9) for the classical DTS formulation, and hence we consider (13) to be the
most general DTS formulation involving two derivatives in dual time.
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We choose a diagonazable matrix C = XΘX−1 in (13) with the same eigenvectors as F .
This allows us to rewrite (13) as a system of independent ODEs of the form

wττ + 2θwτ + λw = r, τ > 0, (14)

where θ, λ are eigenvalues of C and F , respectively. Note that the steady–state solution of (14)
solves the model problem (12). Thus, the convergence properties of the classical and second–
derivative DTS can be compared by studying the scalar equations (11) and (14).

The second–order ordinary differential equation (14) can be written as a system of first–order
equations

zτ + Az = b, where z =

ñ
w
wτ

ô
, A =

ñ
0 −1
λ 2θ

ô
, b =

ñ
0
r

ô
. (15)

By using the matrix exponential notation the solution to the system (15)

z (τ) = e−Aτ
Ä
z (0)− A−1b

ä
+ A−1b (16)

converges to A−1b = [u, 0]T , i.e. w (τ)→ u, for any z (0) as τ → +∞, if the eigenvalues of A
have positive real parts.

Remark 3.2. The matrix exponential e−Aτ can be obtained by the Jordan form of A = V JV −1,
where V is invertible and J is a triangular matrix composed by Jordan blocks. In particular,
e−Aτ = V e−JτV −1 and the eigenvalues of A characterize the convergence of (15). Note that
for distinct eigenvalues, J and V are the matrices containing the eigenvalues and eigenvectors
of A, respectively.

3.1 Initial convergence analysis

A physical interpretation of (14) is given by the damped harmonic oscillator, if the coeffi-
cients θ and λ are real. It is well–known that this system converges to steady–state if both θ and
λ in (14) are positive. Furthermore, the system approaches steady–state as quickly as possible,
without oscillating, when it is critically damped, i.e. when θ =

√
λ. In this section we will

use these results as guidelines for the case with complex coefficients. Hence in the rest of the
section, unless stated otherwise, we consider θ ∈ R, λ ∈ R \ {0}.

From Proposition 2.1, the classical DTS in (11) converges to the steady–state solution as
T → +∞ if λ > 0. For the second–derivative DTS (14) we prove

Proposition 3.3. Let θ and λ be real coefficients. The solution to the problem (14) converges to
its steady–state solution as τ → +∞ if θ and λ are positive.

Proof. The solution (16) converges to the steady–state solution if all the eigenvalues of A have
positive real parts. The characteristic polynomial of the matrix A is µ2−2θµ+λ = 0 and leads
to the eigenvalues

µ1,2 = θ ±
√
θ2 − λ. (17)

If θ and λ are positive, then both real parts of µ1,2 in (17) are positive and the solution converges.

Next, our aim is to find conditions on θ to achieve a faster convergence than the classical
Dual Time–Stepping technique in (11), i.e. we need

Re (µ1,2) ≥ Re (λ) , (18)

where µ1 and µ2 are given by (17). Condition (18) gives rise to
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Proposition 3.4. The solution to the unsteady problem (14) converges to the steady–state faster
than the solution to (11) as τ → +∞ if

0 < λ ≤ 1 and λ ≤ θ ≤ 1 + λ

2
. (19)

Proof. By substituting (17) into (18) and observing that θ, λ ∈ R, we find

Re
Ä√

θ2 − λ
ä
≥ λ− θ, (20a)

Re
Ä√

θ2 − λ
ä
≤ θ − λ. (20b)

In order to prove the claim, we show that the values of θ outside the interval [λ, (1 + λ) /2] do
not satisfy (20). If θ < λ, then Re

Ä√
θ2 − λ

ä
> θ − λ and consequently (20b) does not hold.

Given that θ ≥ λ, the condition (20a) is always fulfilled. By squaring (20b), we get

λ [λ+ (1− 2θ)] ≥ 0,

which is satisfied for λ > 0 and θ ≤ (1 + λ) /2. The remaining constraint of the claim, i.e.
λ ≤ 1, is necessary in order to guarantee that λ ≤ (1 + λ) /2.

Proposition 3.4 provides a condition on the coefficient θ that leads to faster decay of (14)
with respect to (11) for any fixed λ ∈ R \ {0}. It is legitimate to ask if there exists an optimal
choice of the free parameter θ among all the values which leads to improved convergence.

Proposition 3.5. The choice θ =
√
λ provides the fastest decay for the second–derivative time–

stepping formulation (14).

Proof. The eigenvalue of the matrix A in (15) with the smallest real part determines the decay
to the steady–state solution. According to (17), this eigenvalue has a real part given by

Re (µ1) =

®
θ, if θ2 < λ,

θ −
√
θ2 − λ, if θ2 ≥ λ.

(21)

Since the real part of µ1 increases for θ less than
√
λ and decreases for θ greater than

√
λ, we

conclude that θ =
√
λ maximizes the real part of µ1.

From (17), the optimal value of θ implies that the eigenvalues ofA in (15) are µ1 = µ2 =
√
λ.

The new and optimal DTS formulation (14) can be rewritten as

wττ + 2
√
λwτ + λw = r. (22)

This formulation leads to convergence if λ > 0. Moreover, faster decay with respect to (11) is
achieved if 0 < λ ≤ 1, since in this case

√
λ ≥ λ.

Next, we consider directly the formulation (22) with λ ∈ C \ {0} and prove

Proposition 3.6. The solution to the problem (22) converges to its steady–state solution as
τ → +∞ if, and only if, λ is not a negative real number.

Proof. The problem (22) can be written as the system of first–order equations (15) with θ =
√
λ.

The eigenvalues of A are µ1 = µ2 =
√
λ and lead to convergence if Re (µ1,2) > 0. The number√

λ, interpreted as the principal square root of λ, has always a non–negative real part. If λ is a
negative real number, then Re

Ä√
λ
ä

= 0 which implies non–convergence.

In conclusion, the optimal choice in (13) is C = F
1
2 = XΛ

1
2X−1. In Λ

1
2 only the principal

square roots are considered, i.e. the square roots with non–negative real parts.
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3.2 The new DTS technique

Consider the new DTS technique applied to the original problem (7)

wττ + 2F
1
2wτ + Fw = R. (23)

We can now prove

Proposition 3.7. The decay to steady–state for the new DTS formulation (23) is determined by
the square roots of the eigenvalues of F .

Proof. The pseudo–time differential problem (23) can be written as a system of first–order
equations ñ

w
wτ

ô
τ

+

[
I 0

F
1
2 I

]−1 [
F

1
2 −I

0 F
1
2

] [
I 0

F
1
2 I

] ñ
w
wτ

ô
=

ñ
0
R

ô
. (24)

Clearly, the convergence of the system is determined by the eigenvalues of F
1
2 .

The main consequence of Proposition 3.7 is that the new DTS formulation (23) converges to
steady–state if the eigenvalues of F are non–zero and do not lie on the negative real axis. If the
eigenvalues of F have positive real parts, then both the DTS formulations (4) and (23) are time
convergent. In particular, the decay rates are determined by the eigenvalue with the smallest
real part of F and F

1
2 , respectively.

Remark 3.8. Note that the new DTS technique (23) can drive the solution to steady–state, when
the classical one (4) fails to do that.

Remark 3.9. The square root of a number close to the imaginary axis has an output which is
more distant from it. Similarly, if it is applied to a number with a large magnitude, the square
root returns a number less distant from the origin. These two effects are illustrated in Figure 1.
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Figure 1: Complex numbers with nonnegative real parts (left figure) and their square root. Note that the distribution
of points near the origin of the complex plane tends to rarefy.

As pointed out in Remark 3.9, if F has eigenvalues close to the imaginary axis, the second–
derivative DTS decays faster than the classical formulation. Another effect of the square root is
that it narrows the spectrum of F and enables the use of larger dual time–steps for an explicit
time–integrator without causing stability issues.
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4 NUMERICAL EXPERIMENTS

In this Section we perform numerical tests for both the classical (4) and the new DTS tech-
nique (23).

4.1 First–order ordinary differential equations

Consider the hyperbolic steady problem

ux = f, 0 < x < 1,
u (0) = g,

(25)

where f (x) = 10π cos (10πx) and g = 1. The solution to (25) is u (x) = sin (10πx) + 1.
To discretize (25), we use an (N+1)–point uniform grid over [0, 1], where xj = jh,

j = 0, . . . , N and h = 1/N . Let f be a grid function such that fj = f (xj) and u the approxi-
mate solution to (25). By applying a Summation–by–Parts (SBP) discretization to (25) for the
derivative and Simultaneous–Approximation–Terms (SAT) to impose the boundary condition
(see the Appendix for details and [15] for references), we get

P−1Qu = f − P−1e0 (u0 − g) , (26)

where e0 = [1, 0, . . . , 0]T ∈ R(N+1). Note that (26) has the form (7) with

F = P−1 (Q+ E0) , R = f + P−1e0g, E0 = diag (1, 0, . . . , 0) . (27)

The penalty term in (26) makes the classical DTS technique (4) stable in the P–norm ‖w‖P =√
wTPw (see Appendix B). Also, the new DTS (23) applied to (26) gives rise to a stable scheme

since Proposition 3.7 holds.

Remark 4.1. The classical pseudo–time marching technique (4) is convergent since all the
eigenvalues of F have positive real parts. The new DTS formulation also converges since F

1
2

has only eigenvalues with positive real part, see [16] for details.

We use a spatial increment h = 0.01 to represent the solution on [0, 1] and the fourth order
Runge–Kutta scheme as time–integrator. For both the schemes (4) and (23), we have used
w = [1, . . . , 1]T as the initial guess. Let wn be the solution to either (4) or (23) at the time
τn = n∆τ . We consider the solution to be converged if ‖wn − u‖P < 10−6, where u is the
solution to (26). The improved convergence can be seen directly by comparing the spectra of
F and F

1
2 . From Figure 2, it is clear that the second–derivatives DTS has better convergence

properties since the eigenvalue with minimum real part is further away from the imaginary axis.
The minimum number of iterations to convergence for the classical DTS is 178, corresponding
to ∆τ = 0.0177. Figure 3 shows that the new DTS (23) allows for the use of larger dual
time–steps, since this formulation is less stiff than the classical one. The minimum number of
iterations for the new DTS formulation (23) is 36, which is reached for ∆τ = 0.199. We can
conclude that the new DTS formulation is approximately five times more efficient than the old
one, for this problem.

4.2 A model of the time–dependent compressible Navier–Stokes equations

Next, we study both DTS approaches applied to the following system

ut + Aux = εBuxx + F (x, t) , 0 < x < 1, t > 0,
u (x, 0) = f (x) , 0 < x < 1,Ä

u1 +
√

2u2 − εu2,x

ä
(0, t) = g0 (t) , t > 0,Ä

u1 −
√

2u2 − εu2,x

ä
(1, t) = g1 (t) , t > 0,

(28)
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Figure 2: The spectrum of F and of its square root for the first order problem.

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018

∆τ

150

200

250

300

350

400

450

500

550

600

650

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Number of iterations for convergence: Classical DTS

0 0.05 0.1 0.15 0.2 0.25

∆τ

0

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Number of iterations for convergence: Second-derivative DTS

Figure 3: Number of iterations for the classical and new dual–time marching techniques. The new DTS is less stiff
than the former formulation and a larger dual time–step can be chosen.

where u (x, t) = [u1 (x, t) , u2 (x, t)]T , ε = 10−2. The matrices A and B are real and given by

A =

ñ
0 1
1 0

ô
, B =

ñ
0 0
0 1

ô
while F (x, t), f (x), g0 (t), g1 (t) are given data.

The specific boundary conditions
Ä
u1 +

√
2u2 − εu2,x

ä
(0, t) = g0 (t) andÄ

u1 −
√

2u2 − εu2,x

ä
(1, t) = g1 (t) applied to the linearized Navier–Stokes like system (28)

makes the problem strongly well–posed, i.e. a unique solution to (28) exists and its norm is
bounded by the boundary and initial data. Moreover, the corresponding semi–discrete problem
in space is strongly stable, if the SBP–SAT approach is used. These theoretical results are shown
in the Appendix.

Here we limit ourselves to the study of the fully–discrete problem

3vn+1 − 4vn + vn−1

2∆t
+D ⊗ Avn+1 = εD2 ⊗Bvn+1 + ‹Fn+1 + SAT, (29)

with v0 = f̃ . The formulation (29) is obtained from (28) by discretizing in space with SBP–
SAT and the 2nd order Backward Difference Formula (BDF2) in time. This two–step method
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requires v1 as initial data, which is recovered using the same space discretization and Euler
backward in time.

We consider a grid with xj = jh, j = 0, . . . , N where h = 1/N is the grid spacing, and the
grid functions f̃ , ‹Fn ∈ R2(N+1) which approximate f ,F (tn) in the continuous problem (28).
With each grid point we associate the approximate solution v ∈ R2(N+1), such that

vn2j
∼= u1 (xj, t

n) , vn2j+1
∼= u2 (xj, t

n) , j = 0, . . . , N.

In the fully–discrete problem (29), the symbol ⊗ denotes the Kronecker product defined by

A = {aij} ∈ Rm×n, B ∈ Rn×p, A⊗B =


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 ∈ Rm×p.

Moreover, D and D2 are SBP operators for the first and second derivatives and the vector
SAT collects the penalty terms for the boundary conditions. The SAT term in (29) can be
written as

SAT =−
Ä
P−1E0 ⊗ Σ

ä î
(IN+1 ⊗H0)vn+1 − ε (IN+1 ⊗G)Dvn+1 − g̃n+1

0

ó
+
Ä
P−1EN ⊗ Σ

ä î
(IN+1 ⊗HN)vn+1 − ε (IN+1 ⊗G)Dvn+1 − g̃n+1

N

ó
, (30)

where E0 = diag (1, 0, . . . , 0), EN = diag (0, . . . , 0, 1) and IM indicates the M ×M identity
matrix. Furthermore, we have used

Σ =

ñ
0 0
0 1

ô
, H0 =

[
1
√

2

1
√

2

]
, HN =

[
1 −

√
2

1 −
√

2

]
, G =

ñ
0 1
0 1

ô
(31)

and g̃n0 = [g0 (tn) , g0 (tn) , 0, . . . , 0]T , g̃nN = [0, . . . , 0, g1 (tn) , g1 (tn)]T are 2 (N + 1) vectors.
To solve the discrete problem (29) we can write the classical (4) and the new DTS formula-

tion (23) by defining

F =
3

2∆t
I2(N+1) +D ⊗ A− εD2 ⊗B

+
Ä
P−1E0 ⊗ Σ

ä
[(IN+1 ⊗H0)− ε (IN+1 ⊗G)D]

−
Ä
P−1EN ⊗ Σ

ä
[(IN+1 ⊗HN)− ε (IN+1 ⊗G)D] (32)

and

R =
2vn

∆t
− vn−1

2∆t
+
Ä
P−1E0 ⊗ Σ0

ä
g̃n+1

0 −
Ä
P−1EN ⊗ Σ

ä
g̃n+1
N + ‹Fn+1. (33)

To obtain the computational results we have used the following manufactured solutions

u1 (x, t) = cos (10πx− t) , u2 (x, t) = sin (10πx− t) ,

with a spatial increment h = 0.01 and a physical time–step ∆t = 0.1. By choosing the fourth–
order Runge–Kutta scheme as pseudo time–integrator, the optimal choice of dual time–step for
the classical DTS (4) is ∆τ = 0.002178, see Figure 4.

With the stopping criterion ‖wn − u‖P < 10−6 this formulation reaches steady–state in 421
iterations. The new DTS (23) is less stiff than the classical time–marching technique (4), see
Figure 5. Figure 6 shows the number of iterations needed for each dual–time step ∆τ . The
optimal choice for the two–derivatives DTS is ∆τ = 0.0722 and it leads to convergence in 60
inner iterations. This implies that the new DTS is approximately seven times more efficient than
the classical one.
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Figure 4: Number of iterations for convergence using the classical DTS.
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Figure 5: The spectrum of F and of its square root for the linearized Navier–Stokes equations.

5 MAIN DRAWBACKS AND OPEN QUESTIONS

The previous numerical tests show that the new DTS formulation (23) has better conver-
gence properties compared to the conventional time–marching technique (4). However, when
we rewrite (23) in first–order form as in (15) we obtain a system which has twice as the dimen-
sions of the one in (4). Moreover, the computation of the principal square root of F may be
excessively expensive to compute if the dimension of the system (7) is large. In Table 1, the
computational times of both DTS techniques (4) and (23) are shown for the numerical experi-
ment in Section 4.1. The last column provides the elapsed time for computing F

1
2 .

Suppose that the square root of F is given. Then from Table 1 we conclude that when the
number of nodes increases, the second–derivative DTS (23) provides better results with respect
to the classical technique (4). However, the computation of the square root becomes expensive.
Therefore, we are interested in suboptimal formulations of (13) which do not involve fractional
or negative powers of F .
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Figure 6: Number of iterations for convergence using the two–derivatives DTS.

Nodes (N ) Classical DTS (sec) Second–derivative DTS (sec) Square root (sec)
100 0.045337 0.107452 0.044975
1000 2.119714 1.820615 1.767909
2000 12.703043 8.927953 15.609013

Table 1: Execution times of the DTS schemes with optimal smoothing step for the hyperbolic steady problem (25).
The elapsed time for the second–derivative DTS is indicated without the computation of the square root of F . The
matrix F

1
2 is computed with the optimized routine sqrtm presented in [17].

5.1 Alternative formulations

Our goal is to provide provably convergent DTS schemes of the form (13), but avoid having
to compute F

1
2 . This system of second order differential equations can be written as a first–

derivative formulation

zτ + Az = b, where z =

ñ
w
wτ

ô
, A =

ñ
0 −I
F 2C

ô
, b =

ñ
0
R

ô
.

Let K = K (F ) be a polynomial in F . By choosing C = (K−1F +K) /2, we can rotate the
system as ñ

w
wτ

ô
τ

+

ñ
I 0

K−1F I

ô−1 ñ
K−1F −I

0 K

ô ñ
I 0

K−1F I

ô ñ
w
wτ

ô
=

ñ
0
R

ô
. (34)

Note that the optimal formulation with C = K = F
1
2 is represented in (34) and leads to (24).

There are two obvious alternatives for K. The first one is K = κI with κ > 0. This choice
gives rise to a convergent formulation with a decay determined by κ and λ/κ, where λ is any
eigenvalue of F . If κ is big, the damping of the system is dominated by the scaled eigenvalues
λ/κ. However, we would have the same behavior as that of a preconditioned classical DTS
(9), with Γ = κI . For small values of κ, every mode of the solution to (34) converges to
steady–state uniformly. The second choice is K = F , which leads to the same damping as the
classical DTS (4) if all the eigenvalues have real part less than one. Otherwise, the convergence

7296



Jan Nordström and Andrea A. Ruggiu

is dominated by the spurious eigenvalues 1. Therefore, these two choices do not lead to an
improved formulation with respect to the classical DTS (4).

All other alternatives for K that we have investigated lead to a matrix C which involves
inverse matrices or fractional powers of F . For this reason, we conclude that the choice C =
(K−1F +K) /2 in (13) leads to either inefficient or expensive DTS schemes. The existence of
alternative formulations not affected by these two effects is still matter of research.

6 CONCLUSIONS

A new two–derivative dual–time stepping technique has been proposed. The new DTS tech-
nique has been analyzed and optimized theoretically. The formulation involves a parameter in
front of the first derivative in dual time which can be chosen to obtain the highest possible decay
rate.

We have compared the performances of the new formulation with the ones of the classical
DTS. Our technique improves the decay rate with respect to the classical time–marching tech-
nique if the eigenvalues of the operator representing the system are near the imaginary axis. Fur-
thermore, if the spectrum is not contained within the unitary circle, the new second–derivatives
technique provides a system of equations which is less stiff than the DTS formulation.

Numerical computations for a first–order ordinary differential equation and a system mod-
elling the linearized Navier–Stokes corroborate the theoretical results. The simulations reveal
that the new formulation is more efficient than the standard one as the size of the problem in-
crease, provided that the required matrix F

1
2 is given. However, if the computation of F

1
2 is

required, the new DTS formulation is less efficient than the classical dual time–stepping tech-
nique.

APPENDIX

A SBP–SAT SPACE DISCRETIZATION

For the discretization in space of the differential problems we have used the Summation–By–
Parts (SBP) operators in conjunction with the Simultaneous–Approximation–Terms (SAT) for
the boundary treatment. The main feature of the first is to mimic the property of integration by
parts, whereas the second are penalty–like terms that enforces the boundary conditions weakly.

Definition A.1. D = P−1Q is a first–derivative SBP operator if P is a symmetric positive
definite matrix and Q+QT = H = diag (−1, 0, . . . , 0, 1).

These operators can be built also for the second derivative [18].

Definition A.2. D2 = P−1
Ä
−STM +H

ä
S is a second derivative SBP operator if M is posi-

tive semidefinite and S approximates the first derivative operator at the boundaries.

As an example, choosing S = P−1Q in Definition A.2 leads to the so called wide version of
D2, i.e. D2 = D2. Both first– and second–derivative SBP operators can be built for even orders
2p at the interior, while at the boundary closure their accuracy is p. For further details on the
costruction of the SBP operators for the first derivative with p ≤ 4, see [19].

The SBP finite difference operators with a strong treatment of the boundary conditions only
admits stability proofs for very simple problems. This result has been shown in [20], where
SAT were proposed to enhance the SBP schemes. Discretizing a well–posed Initial–Boundary–
Value–Problem (IBVP) in space with both SBP operators and the SAT penalty terms (SBP–SAT
approach), it is possible to prove that the corresponding semidiscrete problem is stable. Further
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theoretical details on the SBP–SAT discretization, well–posedness of an IBVP or the stability
of its discretization are given in [15].

B STABILITY OF THE FIRST NUMERICAL TEST

In this section we verify the stability of the classical DTS (4) applied to the discretized
problem (26).

For each fixed τ > 0 the dual–time marching technique can be rewritten as

wτ = f − P−1 (w0 − g) e0 − P−1Qw.

The P–norm of the solution w is ‖w‖P =
√
wTPw. Thus

d

dτ
‖w‖2

P = wT
τ Pw + wTPwτ = −wT

Ä
Q+QT

ä
w − 2 (w0 − g)w0

= −w2
N − (w0 − g)2 + g2 ≤ g2,

where w0 and wN are approximations for the solution at the boundaries. Since g is a given data,
the P–norm of the solution w is bounded in time. This implies strong stability of the classical
DTS applied to the discretization (26). Equivalently, we have proven that F in (27) has only
eigenvalues with non–negative real part, since the energy of the solution to (23) is bounded for
any τ > 0.

C WELL–POSEDNESS OF THE COMPRESSIBLE NAVIER–STOKES

Consider the model of the compressible Navier–Stokes equations (28). In Section 4.2 we
claimed that the characteristic boundary conditions make the problem strongly well–posed in
the Hadamard sense. To prove this statement we show that (28) admits a unique solution and
that the norm of this solution is bounded by the given data F (x, t), f (x), g0 (t) and g1 (t).

We start by deriving the characteristic boundary conditions in (28). By premultiplying with
uT and integrating over [0, 1] we find

d

dt
‖u (·, t)‖2 + 2ε

∫ 1

0
uTxBudx = uT (Au− 2εBux) (0, t)

− uT (Au− 2εBux) (1, t) +
∫ 1

0
uTFdx. (35)

Furthermore, the boundary terms in (35) can be written as

uT (Au− 2εBux) =
1

2
√

2

Ä
u1 +

√
2u2 − εu2,x

ä2
− 1

2
√

2

Ä
u1 −

√
2u2 − εu2,x

ä2
.

and therefore the boundary conditionsÄ
u1 +

√
2u2 − εu2,x

ä
(0, t) = g0 (t) , t > 0,Ä

u1 −
√

2u2 − εu2,x

ä
(1, t) = g1 (t) , t > 0

(36)

bound the boundary terms in (35). To prove the boundedness of the solution to (28) we use the
Cauchy–Schwarz and Young inequalities with a constant η > 0 for the integral with the forcing
term F in (35). Moreover, since the matrix B is positive semidefinite,

‖u (·, T )‖2 ≤ eηT
®
‖f‖2 +

∫ T

0
e−ηt

ñ
1

2
√

2

Ä
g0 (t)2 + g1 (t)2

ä
+

1

η
‖F (·, t)‖2

ô
dt

´
(37)

which proves that the solution to (28) is bounded. The estimate (37) together with the fact that
we use the minimum number of boundary conditions implies both existence and uniqueness,
and consequently well–posedness.
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D STABILITY OF THE COMPRESSIBLE NAVIER–STOKES

In this section we will prove that the discrete energy of the solution to

wt +D ⊗ Aw = εD2 ⊗Bw + ‹F (τ) + SAT, t > 0, (38)

is bounded. Without loss of generality we consider the homogeneous problem, i.e. ‹F = g̃0 =
g̃N = 0 and D2 = D2. Let P = P ⊗ I2 and ‖w‖P =

√
wTPw. Thus

d

dt
‖w‖2

P = 2wTPSAT−wT
ÄÄ
Q+QT

ä
⊗ A

ä
w

+ ε (Dw)T
Ä
QT ⊗B

ä
w + εwT (Q⊗B)Dw. (39)

Making use of the facts that Q+QT = EN − E0 and B is symmetric, we may write

wT (Q⊗B)Dw = wT
NB (Dw)N −wT

0 B (Dw)0 − (Dw)T (P ⊗B)Dw, (40)

(Dw)T
Ä
QT ⊗B

ä
w = wT

NB (Dw)N − εw
T
0 B (Dw)0 − (Dw)T (P ⊗B)Dw, (41)

where w0, wN , (Dw)0, (Dw)N ∈ R2 are numerical approximations of the solution and its
derivative to the continuous problem (28) at the boundaries, respectively. By combining (39),
(40), (41) and the expression of the vector SAT in (30), we obtain

d

dt
‖w‖2

P = −2ε (Dw)T (P ⊗B)Dw

+ wT
0 [(A− 2ΣH0)w0 − 2ε (B − ΣG) (Dw)0]

−wT
N [(A− 2ΣHN)wN − 2ε (B − ΣG) (Dw)N ] . (42)

The right hand–side of (42) can be seen as summation of three terms: the first one is non–
positive, since P ⊗ B is positive semidefinite. The last two contributions are boundary terms,
which can be expressed asñ

wi

ε (Dw)i

ôT ñ
A− 2ΣHi − (B − ΣG)
− (B − ΣG) 0

ô ñ
wi

ε (Dw)i

ô
= yTi Ciyi, i = {0, N} . (43)

Inserting the expression of H0, HN , G and Σ in (31) into (43) leads to

C0 =


0 1 0 0

−1 −2
√

2 0 0
0 0 0 0
0 0 0 0

 , CN =


0 1 0 0

−1 2
√

2 0 0
0 0 0 0
0 0 0 0

 .

Since C0 is negative semidefinite and CN positive semidefinite, the estimate (42) implies that
the energy of the solution decreseas and proves the stability of the problem (38).
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Abstract. A new direct solution method for the advection-diffusion equation is presented.

By employing a semi-implicit time discretisation, the equation is rewritten as a heat equation

with source terms. The solution is obtained by discretely approximating the integral convolu-

tion of the associated Green’s function with advective source terms. The heat equation has an

exponentially decaying Green’s function, allowing for a reduction of effort via low-rank matrix

approximation. Simple low-rank approximations of the Green’s function matrix are investigated

as a precursor to using the Fast Multipole Method in higher dimensions. Results show that fast,

stable and accurate computations can be achieved by this method. Low-rank approximation

saves computational time at the expense of some accuracy. The new method is a template for

developing fast, scalable preconditioners for advection-dominated problems including the un-

steady Navier-Stokes equations.
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1 Introduction

One can express the solution to a PDE as an integral convolution of the associated Green’s

function with forcing and boundary terms. Upon discretising, the solution is the product of a

discrete Green’s function matrix with a vector right hand side; in general the matrix is full-rank.

However, if the Green’s function has a decaying kernel then the matrix can be well-represented

by a low-rank approximation. This concept is sometimes used to precondition elliptic and

parabolic equations arising from in a variety of applications [1, 2]. However, it has not been

applied to problems featuring advection until now. The presence of advective terms in a PDE

operator introduces directionality and non-locality: the effect of conditions far upstream is felt

strongly at a particular location. Therefore, increasing separation does not imply decreasing

influence, and the degree to which the matrix rank can be reduced is limited.

This paper presents a new direct solver for the advection-diffusion equation based on discrete

Green’s functions and low-rank matrix approximation. The problem of non-locality is dealt

with by using a semi-implicit time discretisation to remove the advective term from the discrete

system matrix. Specifically, the advective part is treated explicitly in time and the diffusive part

implicitly in time, thereby transforming the equation into a steady heat equation with source

terms at each timestep. The associated Green’s function has the required decaying property,

allowing the use of low-rank approximations.

Discretisation of the integral convolution can be achieved by a number of methods. In this

paper, two simple midpoint-rule approximations are employed and their stability and accuracy

assessed. Computational cost is then reduced by using several straightforward low-rank ap-

proximations of the discrete Green’s function matrix. A series of numerical experiments in one

dimension (1D) verify the analysis and demonstrate proof of concept. The method described in

this paper is a template for more advanced strategies, in particular the use of the Fast Multipole

Method (FMM) to compute optimal low-rank approximations in 2D and 3D bounded domains.

FMM is a hierarchical algorithm for computing matrix-vector products involving N un-

knowns in O(N logN) or even O(N) arithmetic operations to a given error tolerance [3]. It is

commonly applied to N-body problems in astrophysics and molecular dynamics, and is begin-

ning to be applied to solving elliptic PDEs arising in many areas of computational physics as

well [4, 5, 6]. Recently, it has been applied as a preconditioner for elliptic PDEs in a technique

known as Inverse FMM (IFMM) [7, 8]. In all existing applications, the governing physics are

such that the mutual influence of one spatial location on another decays with separation distance.

FMM exploits this quality by hierarchically compressing interactions between well-separated

points into lower-dimensional spaces, reducing the number of interactions to be computed. The

analogy with the multigrid (MG) method is strong: both are hierarchical and act mainly on

low-frequency error components. It is envisioned that FMM could be competitive with MG for

preconditioning the system of equations arising from unsteady 3D Navier-Stokes problems.
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2 Method

2.1 Discretisation of advection-diffusion equation

We consider the advection-diffusion equation in one dimension (1D) on a finite domain x ∈

V : [0, L] with boundary S

∂u

∂t
+ a

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ V, (1a)

u(x, 0) = u0(x), x ∈ V, (1b)

u(x, t) = g(x, t), x ∈ S, (1c)

where u is a smooth scalar field, a is the (positive) advection coefficient and ν is the diffu-

sion coefficient. Dirichlet, Neumann and Robin boundary conditions can be specified for the

problem and the domain L may be periodic.

We subdivide the domain with N uniform intervals of size ∆x = L/N and choose timestep

∆t. Now we write (1) in semi-discrete form using matrix notation:

du

dt
+ Au−Du = b, (2)

where u is the solution vector, A and D are the discrete advection and diffusion operators and

b is the vector containing boundary terms. We now discretise in time using a semi-implicit

splitting scheme for the advective and diffusive terms:

du

dt
−Du

n+1 = b− Aun. (3)

For simplicity, let b = 0 and impose periodic boundary conditions. The spatial derivatives are

discretised by finite differences with an upwind scheme for advection:

un+1
i −

ν∆t

∆x2
(un+1

i+1 − 2un+1
i + un+1

i−1 ) = un
i −

a∆t

∆x
(un

i − un
i−1). (4)

The advective and diffusive CFL numbers are denoted cA = a∆t
∆x

and cD = ν∆t
∆x2 respectively.

This is the simplest, first-order semi-implicit method for time-dependent PDEs; higher-order

methods could also be used for greater accuracy [9].

2.2 Green’s function

The semi-implicit discrete equation (3) is in the form of an initial-boundary value problem

governed by the 1D heat equation:

(

∂

∂t
− ν

∂2

∂x2

)

u(x, t) = f(x, t), x ∈ V, (5a)

u(x, 0) = u0(x), x ∈ V, (5b)

u(x, t) = g(x, t), x ∈ S, (5c)

where in our case the source term f(x, t) = −a∂un

∂x
and un denotes the solution at the previous

timestep. The solution of (5) is expressed in terms of a Green’s function G(x− x′, t− t′) as the
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sum of three integrals accounting for source terms, boundary and initial conditions [10]:

u(x, t) =

∫ T

0

∫

V

G(x− x′, t− t′)f(x′, t′)dx′dt′

+

∫

V

G(x− x′, t− 0)u0(x
′)dx′

−

∫ T

0

∫

S

∂G

∂n
g(x′, t′)dS(x′)dt′, x ∈ R, t > t′. (6)

The Green’s function satisfies

(

∂

∂t
− ν

∂2

∂x2

)

G(x− x′, t− t′) = δ(x− x′, t− t′), (7)

where δ(x − x′, t − t′) is the Dirac delta function. The expression for Green’s function in one

dimension is [10]:

G(x− x′, t− t′) = (4πν(t− t′))−1/2e
−

(|x−x′|)2

4ν(t−t′) . (8)

Hereafter, only periodic (free-space) problems are considered so the third term is dropped.

Let us treat the n+1th timestep as an initial-boundary value problem from time t to t+∆t with

initial conditions u(x, t) = un(x). The solution u(t+∆t) = un+1(x) is given by

un+1(x) =

∫ t+∆t

t

∫

V

G(x− x′, t− t′)f(x′, t′)dx′dt′

+

∫

V

G(x− x′, t+∆t− t)un(x′)dx′. (9)

Taking a backwards-in-time approximation of the first integral, we obtain

un+1(x) ≈ ∆t

∫

V

G(x− x′, t+∆t− t)f(x′, t)dx′

+

∫

V

G(x− x′, t+∆t− t)un(x′)dx′

=

∫

V

(4πν∆t)−1/2e−
(|x−x′|)2

4ν∆t [un +∆tf(x′, t)]dx′. (10)

Note that the forcing term un + ∆tf(x′, t) is identical to the right-hand side of the semi-

implicit finite difference relation (4). The Green’s function can be expressed in terms of a

scaled wavenumber ǫ = (4ν∆t)−1/2 and radial distance r = |x− x′| as

G(r, ǫ) =
ǫ

√
π
e−ǫ2r2. (11)

2.3 Integral approximation

The continuous integral (10) is approximated as a sum of integrations over each interval using

the midpoint rule1. The mesh nodes are the points xi = {0,∆x, . . . , L−∆x, L}. Intervals can

1Caveat: the exponential function is not smooth at x = x′. In approximations that sample this point, the error

may be dominated by this value.
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be defined with the nodes either as their midpoints (node-centred scheme) or endpoints (face-

centred scheme). Figure 1 (a) illustrates the node-centred scheme. In the case of non-uniform

mesh spacing and in higher dimensions, it can be generalised as integration on a dual mesh.

Using the node-centred scheme the solution at a node xi is:

un+1
i = Mij(u

n
j +∆tfj) (12)

=

N
∑

j=1

ǫ∆x
√
π
e−(|j−i|ǫ∆x)2[(1− cA)u

n
j + cAu

n
j−1]. (13)

The [N × N ] matrix M with entries mij = ǫ∆x
√

π
e−(|j−i|ǫ∆x)2 is symmetric positive-definite,

diagonally dominant and circulant. Periodicity is imposed on j such that if j − i > N/2 then

j = j −N and similarly, if j − i < N/2 then j = j +N .

The face-centred scheme is illustrated in Figure 1 (b). Using this scheme, the solution at a

node xi is defined as:

un+1
i = MF

ij (u
n
j +∆tfj) (14)

=

N
∑

j=1

ǫ∆x
√
π
e−((|j−i|+1/2)ǫ∆x)2 [(1− cA)u

n
j + cAu

n
j−1]. (15)

The salient difference between these two methods is that the latter does not include the peak of

the Green’s function. Although not critical for our Green’s function, similar PDEs have Green’s

functions with singularities. In those cases, the face-centred scheme is preferable. Using either

scheme, the error ηi at a point xi is the sum of the errors in each interval:

ηi =

∣

∣

∣

∣

∣

∫

L

G(x, x′)dx′ −

N
∑

j=1

∆xG(xj , xi)

∣

∣

∣

∣

∣

≤

N
∑

j=1

∆x3

24

∥

∥

∥

∥

d2G

dx2

∥

∥

∥

∥

L∞(j)

. (16)

With the node-centred scheme the error is

ηi ≤

N
∑

j=1

∆x3

24

∥

∥

∥

∥

−
ǫ

2
√
π
e−(|j−i|ǫ∆x)2(2(|j − i|ǫ∆x)2 − 1)

∥

∥

∥

∥

L∞(j)

≤
Lǫ∆x2

48
√
π
. (17)

Therefore second-order convergence of the solution is expected. The face-centred scheme has

the error

ηi ≤

N
∑

j=1

∆x3

24

∥

∥

∥

∥

−
ǫ

2
√
π
e−(|j−i+1/2|ǫ∆x)2(2(|j − i+ 1/2|ǫ∆x)2 − 1)

∥

∥

∥

∥

L∞(j)

≤
Lǫ∆x2

48
√
π
e−ǫ∆x/2(1− (ǫ∆x)2)

=
Lǫ∆x2

48
√
π
(1− ǫ∆x/2 +O(∆x2))(1− (ǫ∆x)2)

=
Lǫ∆x2

48
√
π
, (18)

where e−ǫ∆x/2 has been expanded as a Taylor series about ∆x = 0. Keeping the leading-order

term only, the face-centred error (18) reduces to the same expression as for the node-centred

scheme (17). Higher-order approximations may also be employed for the integral. Note that

this is not the only source of error: the spatial and temporal discretisations also contribute.
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(a) Integration on dual mesh (node-centred)
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Figure 1: Approximations of Green’s function with N = 10 centred at 5th interval. Primary mesh nodes shown in

blue and midpoints in red.

2.4 Stability analysis

2.4.1 Node-Centred Scheme

Consider a uniform initial flow field u(x) = C: the solution is constant throughout time.

Therefore a necessary, but not sufficient, condition for stability of the integral equation (12)

(and also (14)) is that the row sum of matrix M (resp. MF ) must not be greater than one. For

the sake of accuracy the row sum must be as close to one from below as possible. Periodic

boundaries and uniform ∆x are assumed. Thanks to the circulant property of M , the sum is

identical for all rows l. The node-centred matrix row sum stability constraint is written:

ǫ∆x
√
π

N
∑

j=1

e−(|j−l|ǫ∆x)2 ≤ 1

ǫ∆x
√
π



1 + 2

(N−1)/2
∑

j=1

e−(jǫ∆x)2



 ≤ 1. (19)

Now ǫ∆x = c
−1/2
D is substituted into (19) to obtain a function f(cD):

f(cD) =
1
√
π
c
−1/2
D













1 + 2

(N−1)/2
∑

j=1

(e1/cD)−j2

︸ ︷︷ ︸

SN













− 1 ≤ 0. (20)

The sum SN is convergent for e1/cD > 1, i.e. cD > 0. However, no expression can be found

for the limit of the sum as N → ∞. Numerical calculations with large N provide the following

information:

1. as cD → 0, SN → 0,

2. as cD → ∞, SN → N ,
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3. at cD = 1, SN = 0.3863.

The stability function (20) is plotted (20) in Figure 2 on (a) semi-log and (b) log-log scales (real

part) for several values of N . The function lies below the cD axis above a certain value, i.e.

there is a minimum bound on cD for the inequality to be satisfied. The values of cD at which the

function crosses the axis (spikes on the log-log plot) increases with N . In the simplest case of

N = 1, the stability condition is cD ≥ 0.66. At N = 10, cD > 2.28; at N = 100, cD > 3.73,

and at N = 1000, cD > 3.73. The reason for the limited stability of the node-centred scheme is

the presence of the central term at j = i in (19). Accuracy also depends on cD: there is a range

of cD in which f(cD) ≈ 0 and f(cD) ≤ 0 with the zero-crossing defining the lower bound. The

extent of the range increases with N . At larger N , the row sum equals one to machine precision

across several orders of magnitude in cD.

log10(cD)
-1 0 1 2 3 4 5 6

f(
cD

,N
)
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-0.5

0

0.5
1
10
100
1000

(a) Linear axes
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(b) Re(f(cD, N)) Log axes

Figure 2: Stability condition on node-centred scheme as a function of cD for N = {1, 10, 100, 1000}.

2.4.2 Face-Centred Scheme

The matrix row sum using the face-centred scheme is:

ǫ∆x
√
π

N
∑

j=1

e−((|j−l|+1/2)ǫ∆x)2 ≤ 1

2
ǫ∆x
√
π

N/2
∑

j=1

e−((j−1/2)ǫ∆x)2 ≤ 1. (21)

Again, we substitute ǫ∆x = c
−1/2
D into (21) to obtain:

f(cD) =
2
√
π
c
−1/2
D

N/2
∑

j=1

(e1/cD)−(j−1/2)2 − 1 ≤ 0. (22)

The stability function is plotted in Figure 3. Now, the inequality is satisfied for all cD. Neverthe-

less, the accuracy is still contingent upon cD. As with the node-centred scheme, it is clear from

Figure 3 (a) that the face-centred scheme is accurate over a finite region that increases rapidly

with N . At N = 1000, machine-precision accuracy is achieved from cD = 3.75 to cD ≈ 10000.
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Figure 3: Stability condition on face-centred scheme as a function of cD for N = {1, 10, 100, 1000}.

2.5 von Neumann analysis

The above conditions are necessary but not sufficient for stability of the node- and face-

centred schemes. Von Neumann’s method is used to derive a second condition which, together

with the first condition, is sufficient for stability of the method. We analyse the node-centred

scheme first. The error term at time level n + 1 and location l is related to the error at the

previous time level by:

ea(t+∆t)eikmx =
ǫ∆x
√
π

[

[(1− cA)e
ateikmx + cAe

ateikm(x−∆x)]

+

(N−1)/2
∑

j=1

e−(jǫ∆x)2[(1− cA)e
ateikm(x−j∆x) + cAe

ateikm(x−(j−1)∆x)]

+

(N−1)/2
∑

j=1

e−(jǫ∆x)2[(1− cA)e
ateikm(x+j∆x) + cAe

ateikm(x+(j−1)∆x)]

]

,(23)

where the first term is the contribution from point j = l and the next two terms are the contribu-

tions from points to the left and right of l respectively. Upon dividing through by eateikmx and

substituting the relations e−(j+1)ikm∆x = e−jikm∆xe−ikm∆x and e(j−1)ikm∆x = ejikm∆xe−ikm∆x,

we obtain

ea∆t =
ǫ∆x
√
π

[

(1− cA + cAe
−ikm∆x)

(

1 +

(N−1)/2
∑

j=1

e−(jǫ∆x)2
(

e−jikm∆x + ejikm∆x)
)

)]

= (1− cA + cAe
−ikm∆x)

ǫ∆x
√
π

(

1 + 2

(N−1)/2
∑

j=1

e−(jǫ∆x)2 cos(jkm∆x)

)

︸ ︷︷ ︸

M

. (24)

For stability it is required that |ea∆t| ≤ 1. For the most restrictive condition on cA term M
must be maximised. Using max(| cos(jkm∆x)|) = 1, M is reduced to the matrix row sum (19).

Choosing cD such that the stability function in (20) equals zero to a sufficient level of precision,
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we have M ≈ 1. Thus (24) reduces to

∣

∣1− cA + cAe
−ikm∆x

∣

∣ ≤ 1. (25)

This represents a circle of radius cA and centre 1− cA. Finally, we have the stability condition:

2cA − 1 ≤ 1 ∴ cA ≤ 1. (26)

This condition is typical of the upwind finite difference discretisation of the advection term and

does not depend on the attributes of the Green’s function method. An identical condition can

also be derived for the face-centred scheme.

2.6 Low-rank approximation

In the two matrix methods defined above, entries far from the diagonal make a relatively

small contribution to the solution so low-rank approximations to M or MF can be justifiably

used to reduce computational effort. The primary method of interest here is the fast multipole

method (FMM), although this paper treats only the 1D case for which FMM is not applicable.

After a generic description of FMM, two simple methods of constructing a low-rank matrix are

presented. This work is a precursor step to using FMM for the 2D and 3D advection-diffusion

equations.

Fast multipole method: The computational degrees of freedom are treated as a cloud of

points (we do not specify the number of spatial dimensions d to keep the description generic).

A k-level tree mesh is constructed in which level one consists of one box containing all points

and the kth level consists of k2d boxes. Each box at level k contains a small number of points,

say p on average. A multipole expansion (polynomial series) of degree m is employed at the

box centroid to describe the equivalent source due to all point sources in the box.

The interactions between any two boxes on the same level are classified as strong or weak

based on their radii, on the separation between their centroids and on a threshold value θ. Strong

interactions are computed directly between points. Weak interactions are computed by ‘shift-

ing’ a multipole expansion from one box to the other. At levels 1 to k−1, a multipole expansion

in a box is computed from multipole expansions inside its children. In this manner, only local

interactions at level k are computed directly and all other interactions are computed approxi-

mately via multipole expansions and shifts. This saves considerable effort especially for very

large N .

In an abstract sense FMM is a method for hierarchical sparsification of a dense matrix. Strong

interactions are clustered around the diagonal. Away from the diagonal, zeros are introduced by

the multipole representation. The degree of sparsification depends on the user-defined parame-

ters p, m and θ. Accuracy and computational cost can be fine-tuned via these parameters.

Threshold value: A minimum value is specified, below which the matrix entry is set to zero.

The sparse matrix ML1 is constructed according to

mL1
ij =

{

mij , mij > 1.0/N,

0, otherwise
(27)

Likewise, the very sparse matrix ML2 is constructed with the threshold value of 1.0/
√
N .
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Specified bandwidth: Let P be the low-rank matrix bandwidth; in this case P = round(N/8).
Then the entries of sparse matrix ML3 are given by

mL3
ij =

{

mij , i− P ≤ j ≤ i+ P,

0, otherwise
(28)

with the same periodic indexing as the full-rank matrix.

2.7 Comparison to iterative method

To compute a reference solution, an iterative method is employed based on the same implicit-

explicit flux splitting:

Aun+1
i =

(

1− ν∆t
d2

dx2

)

un+1
i = (1− cA)u

n
i + cAu

n
i−1, (29)

where the matrix A is

A =















1 + 2cD −cD . . . −cD
−cD 1 + 2cD −cD

. . .
. . .

. . .

−cD 1 + 2cD −cD
−cD . . . −cD 1 + 2cD















. (30)

The Matlab linsolve function was used with opts.SYM=true,opts.POSDEF=true

and all other options set to false. It is not a very efficient method but serves to provide a

reference solution.

3 Numerical tests

The full-rank and sparse matrix-vector products and the iterative method were implemented

in Matlab to solve the 1D advection-diffusion equation with periodic boundary conditions. The

advective and diffusive constants were set to a = 1.0 and ν = 0.1 and simulations were run

for 100 timesteps. Discrete optimisation of the diffusive CFL number was performed for the

node- and face-centred schemes. The smallest values of cD that minimised the functions in

Figures 2 and 3 were found for each value of N . These in turn dictated the timesteps, which

were sufficiently small that the advective CFL condition (26) was also satisfied. Table 1 lists the

optimised timesteps ∆t for each N and each scheme. The values scale approximately with N−2

and the node-centred scheme has an optimal timestep slightly larger than that of the face-centred

scheme.

Figure 4 (a) shows the full-rank node-centred matrix M coloured by magnitude. For com-

parison, Figure 4 (b) shows the inverse of matrix A in (30). Figures (c,d,e) show the non-zeros

of sparse matrices ML1, ML2 and ML3. Table 2 shows the row sum and number of nonzeros in

each matrix.

Figure 5 plots the solutions starting from (a) sinusoidal and (b) Gaussian initial conditions

with N=100. Node-centred solutions are compared to the reference solution computed at nodes,

and the face-centred scheme to the reference solution computed at interval midpoints. The ML2

solution displays a large amplitude (dissipative) error, as expected from the fact that it has a row

sum well below one. All the other node-centred solutions overlie the reference solution. The

face-centred solution has a phase lag (dispersion error).
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Figure 4: Colour plot of (a) full-rank matrix, (b) inverse iterative matrix, (c,d,e) non-zeros of sparse matrices.
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N ∆t (node-centred) ∆t (face-centred)

100 3.85e− 3 3.75e− 3
200 9.64e− 4 9.37e− 4
400 2.41e− 4 2.34e− 4
800 6.02e− 5 5.86e− 5

1600 1.51e− 5 1.46e− 5
3200 3.76e− 6 3.66e− 6

Table 1: Optimal timesteps.

matrix row sum NNZ

A−1 1.00000 10000

M 1.00000 10000

MF 1.00000 10000

ML1 0.99791 1700

ML2 0.95359 1100

ML3 0.99999 4900

Table 2: Matrix row sums and no. of nonzeros, N=100.

3.1 Error Convergence

The L2 norm of the solution errors with respect to the reference solutions (at the nodes

or faces as appropriate) was calculated after one timestep, successively doubling N from 100

up to 3200. Figure 6 (a) shows the error convergence on a log-log plot, starting from the

sinusoidal initial condition. The full-rank node-centred matrix M results in a convergence rate

of approximately fifth order and approaches machine precision at large N . The ML3 error

converges at an identical rate and has the same magnitude: this low-rank approximation does

not reduce accuracy. The ML1 and ML2 errors converge at between first and second order. The

full-rank face-centred matrix MF error also converges at between first and second order. Figure

6 (b) shows the errors when starting from the Gaussian initial condition, with similar results to

the (a).

3.2 CPU time

The time taken to compute one timestep with N=100 to N=3200 was found. The times to

construct A, M , ML1 etc. were not included. Figure 7 shows the CPU times. Similar results

are obtained from both initial conditions. The reference solution is much slower than the direct

solutions and the time increases faster than N2. Direct solution times increase at about first

order. The low-rank matrices constructed using the minimum-value rule, ML1 and ML2, are by

far the fastest at large N . Matrix ML3 with prescribed rank is as slow as the full-rank matrices

at large N . Given that the error is as small as the full-rank scheme, this low-rank scheme

clearly does not alter the matrix noticeably. Specifying a smaller bandwidth would have a more

pronounced effect.

4 Conclusions

This paper presents a simple scheme for direct solution of the one-dimensional advection-

diffusion equation in a periodic setting. By using a semi-implicit time discretisation the ad-

vective term becomes a forcing function and the left-hand side becomes the heat equation.
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Figure 5: Computed solutions with (a) sinusoidal, (b) Gaussian initial conditions. —: reference (node), – –:

reference (face), blue: M , red: ML1, green: ML2, magenta: ML3, blue dashes: MF .

The associated Green’s function has a decaying kernel, making it highly suitable for low-rank

discrete approximation. Similar methods have been very successful in solving purely elliptic

equations, but this is the first known application to a hyperbolic equation.

Several different full- and low-rank discrete approximations of the kernel were analysed and

found to have differing stability limits and lead to differing error convergence rates. All ob-

tained approximately linear scaling of CPU time with N . The node-centred full-rank scheme

was not unconditionally stable but had the best accuracy and the error converged at fifth or-

der. Almost machine-precision accuracy (with respect to the reference iterative solution) was

attained by this scheme at N = 3200 in a single matrix-vector multiplication. The face-centred

scheme, although unconditionally stable, was less accurate and had a much lower convergence

rate. Specifically, the numerical wave speed was under-predicted although the amplitude was

well-predicted. Low-rank node-centred approximations in which a threshold matrix entry was

defined were shown to save considerable computational effort but were less accurate and had a

lower error convergence rate. The balance of accuracy and cost may be problem-dependent and

more work is needed to determine robust sparsification strategies.

The new method is a template for finding fast approximate solutions of advection-dominated

problems. FMM is proposed as the ideal low-rank approximation algorithm for this application

(although it is not suitable for 1D problems). FMM allows control over the balance of accuracy

and speed, and scales very well to large numbers of parallel processes. In terms of solving PDEs,

FMM is somewhat analogous to multigrid, in that low-frequency error components (i.e. distant

interactions) are rapidly diminished. Indeed, FMM could become a competitor to multigrid as a

solver/preconditioner for hyperbolic PDEs including the Navier-Stokes equations. Future work

will extend the low-rank direct solution method to 2D and 3D problems on bounded domains.
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Abstract.
In comparison to structured grids, a more refined discretisation of convective transport on

unstructured grids is required to account for their complex topologies. In particular, and with
reference to the given cell–face, the far upwind node is not readily available on unstructured
grids. Also, the solution accuracy can be affected by numerical diffusion caused by skewness
of the grid. In this paper, a novel method is introduced for the far upwind node reconstruction
in the framework of the cell–centred finite–volume discretisation. The main idea is to form an
upwind–biased stencil with a local axis that connects the central cell node and the geometric
cell–face centre. Note that central and downwind cells share the given cell–face. Instead of the
actual downwind node, its projection onto the local axis is used. In the previous methods, the
local axis has been defined along the line connecting the central and downwind nodes. These
methods can not mitigate the grid skewness error whereas by its definition the new method
bypasses the issue of grid skewness. The present method is applied to several test cases, cov-
ering transport of a scalar step-profile, laminar vortex shedding from a circular cylinder and
turbulent flows in two engine intake ports. Depending on the test–case, the high resolution
convective schemes such as MINMOD, the modified SMART and bounded central differencing
scheme are employed. The latter is selected for large eddy simulations of one of engine ports.
The preceding schemes are formulated for non–uniform grids, and they obey the well known
convective boundedness criteria. The used grid types also varied, including triangular, poly-
hedral and Cartesian cut–cell shapes. The convergence properties and accuracy of the new
method are scrutinised against the previous one. For all cases, the bounded numerical solution
is ensured, and the improved convergence rate of the new method is noted. The accuracy of
results predicted by both methods is established through comparisons with either analytical or
experimental and numerical results from literature.
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1 INTRODUCTION

Discretisation of fluid transport equations should ensure a convergent, accurate and physi-
cally bounded numerical solution. Closely related to the solution accuracy is the perplexing
problem of boundedness. The difficulty is that proper bounds exist for any numerical problem
but these bounds are not always easily perceived. The boundedness problem particularly affects
the discretisation of convective transport on either structured or unstructured grids.

Calculation of cell–face variable values using linear interpolation between adjacent cell val-
ues, which is known as central differencing scheme (CDS), illustrates well the boundedness
problem. If the numerical grid is not sufficiently refined this scheme can not suppress numeri-
cal oscillations accompanied by non–physical overshoots or undershoots, especially in regions
with steep gradients of transported variables. This behaviour is predicted by Godunov’s theo-
rem [1] which states that the second and higher order linear schemes can not be monotonicity
preserving. Only the first order accurate upwind differencing scheme (UDS) guarantees the
solution boundedness whereby the cell–face value is taken to be that which prevails at the up-
wind cell. In order to maintain the bounded solution of the second and higher order convection
schemes, these schemes should be designed as non-linear schemes, with provision of an appro-
priate amount of numerical diffusion.

The way in which the numerical diffusion is introduced, and its amount controlled, deter-
mines the accuracy, convergence properties and computational efficiency of the convective (nu-
merical) scheme. A popular approach is to control the numerical diffusion by boundedness
criteria. Two major criteria, total variation diminishing (TVD) [2, 3] and the convection bound-
edness criterion (CBC) [4], offer great flexibility in the construction and implementation of
high resolution bounded schemes. These two criteria were formulated in terms of flux limiters
and normalised variables, respectively. The review and comparison of TVD and CBC criteria,
together with analysis of most higher–order bounded schemes can be found in [5].

In the framework of the cell-centred, finite-volume discretisation, each cell–face value is
calculated with the help of a dimensionally split upwind–biased stencil, i.e. one–dimensional
bounded scheme is applied along appropriately defined cell-face direction. On the structured,
in general non–uniform and non–orthogonal grids, the upwind–biased stencil is defined along
the local coordinates (grid lines) as shown in Figure 2 (left) for the east cell–face. The stencil
involves the upwind U and downwind D cells (nodes) with respect to the cell C which is
itself upwind of the face j. The implementation of bounded schemes on multi–dimensional
structured grids is relatively straightforward. Though it is very important to formulate these
schemes in terms of non–uniform grid spacing where either normalised local coordinates [6, 7]
or equivalent downwind and upwind geometric factors [8, p.48] can be used.

Considering unstructured grids, the implementation of the TVD/CBC schemes is neither
straightforward nor unique task as the upwind node is not readily available. A sensible idea
is to reconstruct the upwind node and its value. This can be done implicitly by projecting
the central cell variable gradient onto the line connecting the central and downwind nodes as
devised by [9, 10, 11]. Instead of the central cell gradient, the projection of the cell-face gradient
in conjunction with the modified definition of the CBC normalised variable was employed in
[12]. Both approaches are equivalent as they deliver the same definition of the normalised
variables, and the actual position of the upwind node is not required. It was shown by [10, 11]
that reconstructed upwind values should be bounded by maximum and minimum values of
central node’s neighbours. The effectiveness of upwind node reconstruction using formulation
for the linear CBC/TVD schemes consistent with non-uniform grids was demonstrated in study
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[11]. Alternative methods rely on the explicit definition of the upwind node, and require a
geometric search to find an upwind cell closest to the defined upwind node. Then the upwind
node value is the value at the upwind cell corrected with the help of the upwind cell gradient.
In [13], the upwind node was defined in the same way as in the gradient projection method.
Other authors, [14, 15], positioned the upwind node along the line normal to the cell-face.
This line passes through the cell-face centre as well as through the nodes C ′ and D′ which are
projections of the C and D nodes onto the face normal, respectively. The recent multi–slope
MUSCL method [16] specifies the upwind node along the line connecting the central node and
cell-face centre. In essence, the upwind value is obtained by linear interpolation from the values
available at the closest cell centres.

The majority of previous upwind node reconstruction methods calculated the bounded cell-
face value at the cell–face interpolation point j′. This intersection point, defined by vector
connecting the central and downwind nodes, did not always coincide with the face geometric
centre j. Consequently, these methods, apart from [16], could not fully alleviate the grid skew-
ness interpolation error. In the methods employing the line normal to the cell–face [14, 15], the
interpolation point was the cell–face centre. However, the variable values and gradients at pro-
jected central and downwind nodes were taken to be those at the corresponding actual nodes.
The skewness corrected TVD flux limiter, proposed recently by [17], was devised to correct
the cell-face value implicitly. The limiter itself must be carefully bounded to satisfy the TVD
constraints.

In this paper, a novel method, illustrated in Figure 2 (right), is proposed to mitigate the
grid skewness error explicitly. For this, the upwind node U is reconstructed along the cell–
face direction defined by line connecting the central node C and the face centre j. Instead of
the actual downwind node D, its projection onto the cell–face direction, D′, is used. After an
overview of the finite volume discretisation, bounded convective schemes are introduced with
the help of normalised variable approach. Next, a new generalised implementation of convective
schemes on unstructured grids is described. Then the results from four test cases are used to
assess the performance of the proposed method.

2 OVERVIEW OF FINITE VOLUME DISCRETISATION

The discretisation of the governing equations is carried out by using the finite volume method
to discretise spatial dimensions and finite differencing to discretise time. The solution domain
is filled with an unstructured grid defined by edges of arbitrary polyhedra referred to as control
volumes or cells. All flow variables are stored at geometric centres of the cells. For a non–
moving control volume V , depicted in Figure 1, integration of fluid transport equations using
second–order single–point quadrature operators leads to control volume balances of unsteady,
convective, diffusive and source terms, [18, 19] :

d

dt
(ρV φ)P +

nf∑

j=1

(
Cj −Dj −

(
sAφkAk

)
j

)
=
(
sVφ
)
P
VP , (1)

with Cj = ṁjφj , Dj =
(

Γφ∇φ · ~A
)
j

In the preceding equation, φ is a flow variable and Γφ represents its diffusion coefficient; time
and density are denoted as t and ρ, respectively. For a cell–face j, convective and diffusion
fluxes are Cj and Dj , respectively. The source terms sVφ and sAφ are related to the cell volume
and cell face, respectively; nf is the number of cell-faces enclosing the cell. Mass fluxes ṁj are
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Figure 1: A polyhedral control volume (cell) P as enclosed by its cell–faces j. A cell-face j,
with the outward normal vector ~Aj , is defined by a list of vertices Vk.

defined as:
ṁj = ρj ~U

∗
j · ~Aj (2)

where the Rhie–Chow interpolation practice [20, 21] is used for the mass conserving face ve-
locity ~U∗j . The mass fluxes must satisfy the integral mass balance over each cell:

d

dt
(ρV )P +

nf∑

j=1

ṁj = 0 (3)

For time–dependent phenomena, the semi-discrete equation (1) can be written in a form
that resembles the first order ordinary differential equation. Time ’marching’ procedure is then
used to advance the solution in time over a number of time steps with the time-step size ∆t.
The unsteady term is integrated over each time interval by either first order Euler or second
order three time level (TTL) differencing scheme, see [21] . Both schemes are implicit and
unconditionally stable.

The evaluation of cell–face values and gradients at both cell-centres and cell–faces is the es-
sential ingredient of the discretisation procedure. Commonly used linear interpolation between
the values at adjacent cells P and Pj (which amounts to the central differencing scheme, CDS)
gives

φj = fjφP + (1− fj)φPj
(4)

fj = fj,P =
|~rPj
− ~rj|

|~rPj
− ~rj|+ |~rj − ~rP |

(5)

where fj is the cell–face interpolation factor. In addition to CDS, higher–order upwind schemes
such as linear upwind (LUDS) [22] and quadratic upwind (QUICK) [23] (generalised by [24]
as κ–schemes) are popular. As pure κ–schemes are not always appropriate for the convective
transport, a simple and efficient approach is to blend them with a certain amount of the first
order upwind (UDS) scheme as advocated by [21, 25]. In the case of CDS, the blending can be
arranged as:

φj = φUDSj + γφf
∗
j

ṁj

|ṁj|
(
φPj
− φP

)
(6)

φUDSj =

{
φPj

if ṁj < 0
φP if ṁj ≥ 0

, f ∗j =

{
fj if ṁj < 0

1− fj if ṁj ≥ 0
(7)
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where f ∗j is now the flow orientated interpolation factor. The blending factor γφ depends on the
grid resolution, and for sufficiently fine grids the values close to one can be used. The alter-
native to the blending approach is to adopt high resolution bounded schemes whose improved
discretisation on the unstructured grids is the subject of this work.

For the cell gradients, a linear least-square procedure [26] is used in this study. Considering
the cell–face gradient, the Gauss’ formula∇φ ≈

∮
φd ~A/V can be applied to the control volume

constructed around the face j. The derivation outlined in [19] leads to the following expression:

∇φj ≈ ∇φj +
~Aj

~Aj · ~dj

[(
φPj
− φP

)
−∇φj · ~dj

]
, ∇φj = fj∇φP + (1− fj)∇φPj

(8)

Further details regarding the discretisation of convective and diffusion fluxes can be found in
[19, 27] .

The outcome of the discretisation of considered transport equation for φ is a linearised al-
gebraic equation for each cell. The corresponding system of algebraic equations for each flow
variable is under–relaxed implicitly [28] . The system is then arranged in a sparse matrix form
[a]φ = bφ, and solved by Bi–CGSTAB linear equation solver [29, 30] using incomplete lower–
upper (ILU) pre-conditioners.

The non–linearity and coupling of the solved transport equations, including velocity–
pressure coupling, is handled by generalised SIMPLE–based pressure correction method [31].
This method is suitable for both time marching and steady-state iterative solutions. Normalised
residuals, defined as

Rφ =

∑
cells |aPφP − bφ|∑

cells |aPφP |
, Rmass =

∑
cells |mass imbalance|∑

cells |mass imbalance|ref
(9)

serve as the convergence criterion for the SIMPLE–based iterative solution procedure. The
reference mass imbalance in the preceding equation is the maximum imbalance in the first five
iterations [32] . The solution is considered converged when all normalised residuals drop below
a certain value, typically below 1.× 10−5.

3 BOUNDED CONVECTIVE SCHEMES – NORMALISED VARIABLE APPROACH

High–resolution convective schemes require an upwind–biased stencil as defined along local
coordinate ξ in Figure 2 (left) for the structured grid. In this figure, the far upwind U , central C
and downwindD nodes are defined with respect to the cell-face j having positive mass flow rate
ṁj . Obviously, labelling of the nodes depends on the mass flux direction. As shown in [11], the
mathematical enforcement of monotonicity along local axis ξ and interpolative boundedness
(face value bounded by values at adjacent cells) is an easy way to derive both CBC [4] and
TVD [3] boundedness criteria. These criteria, and bounded schemes based on them, can be
formulated in terms of normalised variable approach introduced by [4, 33].

3.1 Normalised variable approach

In this approach, the convected variable φ is normalised as

φ̃ =
φ− φU
φD − φU

(10)

giving φ̃U = 0 and φ̃D = 1. The associated normalised variable diagrams (NVD), showing
TVD (left) and CBC (right) regions, are presented in Figure 3. It follows that cell–face values
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Figure 2: Upwind–biased stencil for structured (left) and unstructured (right) grids.

φ̃j should lie within the shaded areas (monotonic range 0 < φ̃C < 1), and on the line φ̃j = φ̃C
outside the monotonic range. Further, the convective schemes with linear characteristics such
as κ–schemes (CDS, LUDS and QUICK) may violate boundedness criteria. Therefore bounded
schemes have to be non–linear or piecewise linear schemes.
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Figure 3: NVD approach. TVD (left) and CBC (right) regions and characteristics of well known
convective schemes.

It is instructive to generalise linear schemes such as CDS, LUDS and QUICK on the struc-
tured non–uniform grids, Figure 2 (left), with the help of flow orientated interpolation factors
as done in [8, p.48]:

φj = φUDSj + ϕj
ṁj

|ṁj|
(
φPj
− φP

)
= φC + ϕj (φD − φC) (11)

ϕj =

(
gD − αj

f ∗j
f ∗w

)
+ (gU + αj)

φC − φU
φD − φC

(12)

gD =
f ∗

2

j (1 + f ∗w)

f ∗j + f ∗w
, gU =

f ∗
2

w

(
1− f ∗j

)

f ∗j + f ∗w
, f ∗w =

{
fj,E if ṁj < 0

1− fj,W if ṁj ≥ 0
(13)

where the parameter αj defines a family of the higher–order schemes. For example, the QUICK
scheme is recovered for αj = 0. The quantity ϕj plays a similar role as the flux limiter [3]. In
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addition to geometric interpolation factors, the flux limiter is a function of the gradient ratio rj:

rj =
φC − φU
φD − φC

=
φ̃C

1− φ̃C
≈ (∂φ/∂ξ)w

(∂φ/∂ξ)j
(14)

It is evident from Equation (12) that all NVD schemes φ̃j = f(φ̃C) can be formulated in terms
of flux limiters:

φ̃j = φ̃C + ϕj

(
1− φ̃C

)
(15)

Note that Equation (11) for the cell-face value offers a straightforward implementation of NVD
schemes.

3.2 Choice of bounded schemes

Characteristics of bounded schemes used in this study are shown in Figure 3. In compar-
ison to the original SMART scheme [4], the AVL SMART [11] offers a good compromise
between accuracy and convergence properties. Both schemes coincide with the third–order ac-
curate QUICK scheme over a large part of the monotonic region. The TVD MINMOD scheme
(Roe’s limiter) is a combination of the second–order accurate LUDS and CDS schemes. It is
more diffusive than the AVL SMART/SMART scheme, and therefore has better convergence
properties.

With exception of implicit large eddy simulations (LES), the CDS scheme is an ideal choice
for LES on the adequately resolved numerical grids, [34]. Unfortunately, achieving the good
grid resolution is not always practical. To compensate for inadequate grid resolution, and main-
tain the numerical stability and boundedness, the bounded CDS (BCDS) scheme has been de-
vised. As shown in Figure 3 (left), this composite scheme has a central differencing behaviour
for 0.2 ≤ φ̃C ≤ 1.

The upwind node for bounded schemes on unstructured grids is usually placed at the same
distance from the central node as the downwind node. For this situation, the flow orientated
interpolation factor at the cell–face w in Equation (13) is the same as at cell-face j, f ∗w = f ∗j .
The corresponding flux limiters are then defined as:

MINMOD: ϕj = f ∗j max [0,min (rj, 1)] (16)

Bounded CDS: ϕj = f ∗j max [0,min (4rj, 1)] (17)

AVL SMART: ϕj = f ∗j max

{
0,min

[
(1 + β1) rj ,

1

2
(β1 + β2rj) , 1 + β2

]}
(18)

β1 = 1 + f ∗j , β2 = 1− f ∗j

4 GENERALISED IMPLEMENTATION OF BOUNDED SCHEMES

As outlined in the Introduction, original implementations of unstructured grid schemes em-
ployed an upwind–biased stencil whose axis was defined by a line connecting central C and
downwind D nodes, Figure 2 (left). The acronym UCD-method will be used to refer to this
type of upwind node reconstruction. In this case, the centred difference (φD − φU) can be
calculated from the gradient projection∇φC · 2~dCD, which gives the upwind node value φ∗U as:

φ∗U = φD −∇φC · 2~dCD (19)
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The preceding gradient projection implies a uniform stencil, that is virtual upwind node U is
at the same distance from C as C is from D. Also, gradient changes between upwind and
downwind nodes are neglected.

The grids shown in Figure 2 are not only non–orthogonal but also skewed as the distance
vector, connecting the central and downwind nodes, intersects the cell-face at an interpolation
point j′ which does not coincide with the face geometric centre j. As a consequence, the UCD–
method provides the cell–face value φj′ at the interpolation point j′. Grid skewness is a common
feature of unstructured grids. The associated error, analysed by [35], appears as a diffusion–like
error. It can be easily corrected in an explicit manner [35, 36] as follows:

φj = φj′ +∇φj · (~rj − ~rj′) (20)

The above correction, however, may produce an unbounded value at the cell-face centre.
A new method, illustrated in Figure 2 (right), adopts the line connecting the central cellC and

cell-face centre j as a local coordinate for the upwind–biased stencil. This method, referred to
as UCF–method, bypasses the grid skewness issue. However, a projection D′ of the downwind
node D onto the stencil axis as well as a variable value for this projected node are required. An
orthogonal projection of D appears to be a good choice as it minimises an interpolation error
for the projected node value φ∗D′:

φ∗D′ = φD +∇φD · (~rD′ − ~rD) (21)

Similar to the UCD–method, the upwind node U and projected node D′ are equidistant to node
C. The interpolation factor for the cell-face j is calculated from:

f ∗Cj =
Cj

CD′
=

Cj

Cj + jD′
=

~rCj · ~rCj
~rCj · ~rCj + |~rjD · ~rCj|

(22)

The position vector of the projected node is then:

~rD′ = ~rC +
~rCj
f ∗Cj

(23)

Clearly, the position of projected node can be controlled by interpolation factor value. One
can be tempted to define this value equal to 1/2, i.e to design the upwind stencil as uniform.
Numerical tests, however, revealed that biasing of interpolation factors towards 1/2 as in:

f ∗j =
1

2

(
f ∗Cj +

1

2

)
(24)

improves the convergence rate without the negative impact on the accuracy. Thus, the preceding
definition of the flow orientated cell-face interpolation factor is used for flux limiters in Equa-
tions (16), (17) and (18), whereas the projected node D′ is placed according to Equation (23)
using f ∗j instead of f ∗Cj .

Another novelty of the current method is a calculation of the upwind node value using gra-
dient projection at an imaginary cell–face w:

φC − φ∗U =
1

f ∗j
∇φw · ~rCj ⇒ φ∗U = φC −

1

f ∗j
∇φw · ~rCj (25)
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The required gradient at w is reconstructed from the assumed linear distribution of gradients
across the central cell (involving points w, C and j):

∇φw =
1

2f ∗j

[(
1 + 2f ∗j

)
∇φC −∇φj

]
(26)

where the variable gradient ∇φj at the cell-face j is given by Equation (8).
Both upwind node and projected downwind node values are bounded by values at neighbour-

ing cells that surround the upwind and downwind node, respectively. This is done by checking
φ∗U and φ∗D′ against the minimum and maximum values of φ over the cells that share faces of C
and D, respectively:

φU = max
[
φCngbmin ,min

(
φ∗U , φ

Cngb
max

)]
, φD′ = max

[
φDngbmin ,min

(
φ∗D′ , φDngbmax

)]
(27)

The convected variable φ is now normalised by replacing the downwind value φD in Equa-
tion (10) with the projected node value φD′ .

5 RESULTS AND DISCUSSION

The test cases used in this study include pure convection of scalar discontinuities, laminar
vortex shedding from a circular cylinder at Re = 105, turbulent flow through an engine port
and LES of the JSAE engine port. Unstructured grids made of triangular, polyhedral and Carte-
sian cut cells are employed. The convergence properties and accuracy of the new method are
scrutinised for all test cases.

5.1 Convection of step profile

A steady–state convective transport of a passive scalar, ∇ · ρ~Uφ = 0, is frequently used to
test and validate convective schemes. Here, a step profile is convected over a square domain by
the given velocity field ~U = (

√
2/2,
√

2/2). Figure 4 (left) shows the geometry and boundary
conditions for this case. A mildly skewed triangular grid, having 25 cells per side of a square,
is used, Figure 4 (right)).

x

y

Outlet boundaries

Inlet boundaries

(0, 0)

(1, 1)

φ = 1

φ = 0

~U
~U

Figure 4: Step profile. Geometry with boundary conditions (left) and scalar distribution as com-
puted by AVL SMART scheme (right).

The results were obtained by using double precision variables, and the convergence criterion
based on the normalised residuals was 1 · 10−14. As Figure 5 indicates, the new UCF upwind
node reconstruction method has a better convergence rate than the previous UCD method. In

7325



V. Pržulj

0 100 200 300 400 500 600

Iterations

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

N
o

rm
a
li

s
e
d

 r
e
s
id

u
a
ls

MINMOD, UCD,  α
φ
=0.9

MINMOD, UCF, α
φ
=0.9

AVL SMART, UCD, α
φ
=0.6

AVL SMART, UCF, α
φ
=0.7

BCDS, UCD, α
φ
=0.4

BCDS, UCF, α
φ
=0.4

Figure 5: Step profile. Effect of upwind–node reconstruction methods on the convergence rate.

general, more accurate schemes require smaller under–relaxation factors αφ and more steady–
state iterations to achieve the convergence. Though the bounded CDS has converged below the
specified convergence criterion, its convergence properties in this case are not great.

The comparison of all schemes in terms of their ability to resolve the step profile is shown
in Figure 6. Regardless of the upwind node reconstruction method, more accurate schemes
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Figure 6: Step profile. Effect of upwind–node reconstruction methods on the scalar profile res-
olution at x = 0.5.

deliver better resolutions. The bounded CDS capability to resolve the step profile is quite close
to AVL SMART, and significantly better than of MINMOD. Clearly, the proposed UCF method
performs better than the UCD method for all tested schemes.

5.2 Laminar vortex shedding from a circular cylinder

The incompressible, unsteady flow around a two-dimensional circular cylinder is computed
at Reynolds number Re = ρU0D/µ = 105, where D = 1 m is the cylinder diameter and
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U0 is the uniform inlet velocity. The flow is characterised by the presence of vortex shedding
whose predicted strength is very sensitive to the employed convective scheme, [8]. A part of
the solution domain, filled with triangles, is displayed in Figure 7. With the reference to the

Figure 7: Circular cylinder. Triangular grid and vortex shedding pattern as visualised by distri-
bution of U–velocity component at the given time.

cylinder centre, the inlet plane is placed at a distance 12D, the outlet plane at 30D and the top
and bottom symmetry planes at 12D. A triangular grid, with 17,504 cells is employed. There
are 160 cells along the cylinder wall, with approximate wall distances of 5.75× 10−3 m.

Computations are performed using the third–order accurate AVL SMART scheme. Both
first order Euler and second order TTL time schemes are used with a small time step size of
∆t = 0.5 s. This gives the non-dimensional time step size ∆t∗ = U0∆t/D = 8.2 · 10−4. The
convergence criterion is set to 1.× 10−6.

Figure 8 compares the time histories of the lift (CL) and drag (CD) coefficients (drag and lift
forces normalised by 0.5ρU2

0D) as calculated by UCD and UCF upwind node reconstruction
methods. Both methods deliver similar histories although the phase shift between two methods
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Figure 8: Vortex shedding from a circular cylinder at Re = 105. Time histories of the lift (left)
and drag (right) coefficients as obtained by two upwind node reconstruction methods.

is evident. The integer flow parameters such as Strouhal number St, the time–averaged drag
coefficient CD and amplitudes of the lift coefficient C̃L are compared in Table 1. For the same
time–differencing scheme, the new UCF–method predicts lower values for the mean drag and
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Table 1: Vortex shedding from a circular cylinder at Re = 105. Integral flow parameters as
predicted by two upwind node reconstruction methods.

Time scheme Euler Three time level
Flow parameter St CD ±C̃L St CD ±C̃L
UCD–method 0.1660 1.371 ±0.350 0.1636 1.374 ±0.355
UCF–method 0.1665 1.370 ±0.352 0.1638 1.369 ±0.355

slightly higher values for the Strouhal number. The differences between the TTL and Euler
scheme results are relatively small.

Note that predicted flow parameters are sensitive to the size of the solution domain. There-
fore it is important to make a comparison with the results corresponding to the same or similar
size of the solution domain. The correlations developed by [37], and based on the polynomial
fitting of spectral element method results, are useful in this context as they take into account
the solution domain extents. Thus the comparison of present results for a more accurate TTL
scheme with the numerical correlations from [37] and the experiment of [38] is given in Ta-
ble 2. It can be seen that new UCF–method results are in slightly better agreement with the

Table 2: Vortex shedding from a circular cylinder at Re = 105. Comparison of predicted inte-
gral parameters as obtained by TTL scheme with the results from literature. The values
in brackets are relative differences with reference to values from [37, 38].

Authors St CD ±C̃L
Present, UCD 0.1636 (-1.9 %) 1.374 (0.4 %) 0.355 (-0.8 %)
Present, UCF 0.1638 (-1.7 %) 1.369 (0.0 %) 0.355 (-0.8 %)
Experiment, [38] 0.1667 - -
Numerical, [37] - 1.369 0.358

results from literature than the UCD–method results.

5.3 Steady–state turbulent flow through an engine port

The turbulent flow trough a baseline intake port with the non–dimensional valve lift L/Di =
0.355 (Di is the valve inner seat diameter) is computed. The MINMOD convective scheme is
employed whereas turbulence is modelled using the time–scale bounded k − ε model [39] in
conjunction with enhanced wall functions [40].

The experimental port assembly is illustrated in Figure 9 (left). The air flow is supplied by
an inlet plenum where the stagnation boundary conditions are maintained. The flow leaves a
port cylinder via two outlet tubes where impulse torque meters are installed. The torque meters
are placed close to outlet tubes ends. Note that y-axis starts at the port symmetry plane, and co-
incides with the outlet tubes axes. From the outlet tubes, the flow is discharged into atmosphere
at the constant pressure. The flow experiments are conducted under adiabatic conditions (zero
heat fluxes at all walls).

In the present simulations, the solution domain corresponds to the experimental rig flow
geometry. However, the outlet tubes are truncated so that outflow pressure boundaries coincide
with the starting positions of torque meters in the experimental rig. In this way the flow through
the torque meter honeycomb is not modelled as porous media, i.e the presence of meters is
ignored. The working fluid is air, and it is considered as an ideal compressible gas for the
density predictions. The numerical grid, comprising 2, 638, 706 internal polyhedral cells is used.
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Figure 9: Intake port. Geometry (left) and velocity magnitude at the cross-section y = 20 mm
(right).

Details of this grid around the valve, accompanied with the velocity magnitude distribution, are
displayed in Figure 9 (right).

The convergence behaviour of the proposed UCF–method versus the UCD–method can be
examined through the history of normalised residuals shown in Figure 10. With the UCF–
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Figure 10: Intake port. Normalised residuals for w-velocity and turbulent kinetic energy corre-
sponding to the two upwind node reconstruction methods.

method, the normalised residuals dropped below 1× 10−5 whereas this was not the case for the
UCD–method. The calculated values of the inlet mass flow rate ṁin and the torque T (at the
y–plane defined by position of a torque meter) are compared with the measured ones in Table 3.
A good agreement between the predicted results with the measured ones is evident. Although
the calculated torque value using the UCD–method appears quite close to the measured one, it
should not be overlooked that the UCD–method has not fully converged.
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Table 3: Intake port. Comparison of the predicted mass flow rate and torque values with the
measured ones.

Quantity UCD–method UCF–method Measured
Mass flow rate ṁin, kg/s 0.09841 0.09875 0.10236
Relative difference, % -3.86 -3.53 –
Torque T × 103, Nm 27.752 27.008 28.239
Relative difference, % -1.72 -4.35 –

5.4 Large–eddy simulation of JSAE port

In this validation case, LES of JSAE engine port is performed using Smagorinsky–Lilly
sub-grid scale model and bounded CDS scheme.

The port model was designed by Japanese Society of Automotive Engineers (JSAE) for their
benchmark study, see [41]. Its geometry, shown in Figure 11 (left), has a simple 90◦ axisym-
metric design which provides the non–swirling flow around an engine valve at a lift of 7mm
At the port inlet, the mass flow rate of 0.0254 kg/s was prescribed, while the static pressure

Figure 11: JSAE port. Geometry (left), details of Cartesian cut–cell grid overlaid with time–
averaged velocity vectors (middle) and in–plane time–averaged velocity vector con-
tours (right) around the valve in the symmetry plane z = 0 (right).

of pout = 101176 Pa was specified at the outlet. The measured pressure drop, calculated as
the difference between the total pressure at the inlet ptot and static pressure at the outlet was
∆pexp = 3349 Pa.

The Cartesian cut–cell grid with 7.9 million cells and the maximum non–dimensional wall
distance of y∗max = 51 was considered suitable for the present LES. Unsteady runs were per-
formed using the second order TTL time scheme with the time step size of ∆t = 1. × 10−5 s.
Typically, three outer iterations per time step were required to reduce the normalised residual
below the specified convergence criterion of 1.×10−5. Simulations were conducted over 10, 000
time steps (0.1 s), and the last 5, 000 steps were used to obtain the time–averaged variables.

Figures 11 (middle, right) show velocity plots around the valve in the symmetry plane z = 0.
On the right side of the valve and around the valve seat, a large recirculation region is present.
The size of this region is influenced by the flow separation point on the port surface, above the
valve seat. Thus this region determines the flow structure in the valve gap, which in turn affects
the pressure drop across the port.

The sub–grid scale viscosity at the end of the simulation (as calculated by the UCF–method)
is displayed in Figure 12 (left). On the right, time histories of the pressure drop ∆p(t) =
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Figure 12: JSAE port. Sub–grid scale viscosity at the given time (left) and the effect of the
upwind node reconstruction method on the pressure drop history (right).

ptot − pout are plotted for both UCD and UCF upwind node reconstruction methods. The time
averaged pressure drop values obtained by UCD and UCF methods are ∆pCD = 3486Pa
and ∆pCF = 3527Pa, respectively. With reference to the measured pressure drop ∆pexp =
3349 Pa, these values over–predict the pressure drop for 4.1% and 5.3%, respectively.

6 Conclusions

The implementation of bounded convective schemes on three–dimensional unstructured
grids has been revisited. A central problem of the far upwind node reconstruction is gener-
alised by defining an upwind–biased stencil along the local coordinate connecting the cell cen-
tre upstream of the cell–face and the cell-face centre. With this approach, a diffusion–like error
introduced by grid skewness can be alleviated. The improved convergence properties and accu-
racy of the new method are demonstrated by computing four test cases. For each case, either
analytical or available experimental/numerical results are used to validate the present method.
In addition, the new method is scrutinised against the well established upwind node reconstruc-
tion method which by its definition can not mitigate the grid skewness error. Considering the
performance of higher order schemes, the MINMOD scheme is well suited for the steady–state
simulation whereas the modified SMART is recommended for unsteady simulations. In the case
of LES, it is beneficial to employ the bounded central differencing scheme.
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Abstract. Industrial design and optimization processes rely increasingly on powerful and well-
engineered CFD tools. Compressible solution methods, which perform very well at transonic
and supersonic flow speeds, display a dramatic degradation of convergence as well as of so-
lution quality as the incompressibility limit is approached (very low flow speeds). In many
technical applications, especially in turbomachinery, the flow conditions vary strongly within
the computational domain and with time. When the incompressibility limit is approached, a
large disparity arises between the smallest and largest eigenvalues of the systems character-
istic matrix. In order to overcome these problems low-Mach preconditioning methods have
been devised to rescale the eigenvalues of the characteristic matrix of the system of governing
equations and, hence, reduce the large inequality in the acoustic and convective flow speeds.
Frequently, low flow speeds are observed in low Reynolds environments. As noted by several
authors, often instability issues in these regions, such as cavities and boundary layers, arise
by preconditioning. Often, this problem is due to an overestimation of the maximum allowable
timestep size. In fact, in a low Reynolds regime, the influence of viscous effects on time marching
schemes predominates. An important role in the determination of viscous time steps plays the
von Neumann number (VNN), whereas the Courant Friedrichs Lewy criteria (CFL) influences
the inviscid time step behaviour.

The objective of this work is the presentation of the theoretical background and results of a
consistent Low-Mach preconditioning scheme based on a preconditioner proposed by Turkel,
which has been extended to a wide range of Reynolds numbers. Furthermore, the interaction
of low-Mach preconditioning, the von Neumann and Courant Friedrichs Lewy numbers on the
convergence history and quality of results will be discussed. Its implementation is illustrated
using DLR’s in-house CFD code TRACE. To prove the robustness and correctness of the al-
gorithm, we discuss a set of test cases like the lid-driven cavity at different Reynolds numbers
influenced by CFL and VNN.
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1 INTRODUCTION

Complex technical systems, such as turbomachinery configurations, involve large variations
of different flow topologies. Some regions contain very low flow speeds whilst others are de-
cidedly compressible. Exemplary, in the main flow passage of a turbomachinery configuration
relatively high flow speeds dominate. Locally small Mach numbers can be found in cavity and
seals regions. Numerical simulations of turbomachinery components are mostly performed by
density-based flow solvers. At low flow speeds, fully compressible solution methods converge
extremely slow, due to the large disparity between the convective and acoustic speeds. In addi-
tion, a dramatic degradation of the solution quality can by observed.

In order to overcome these problems, low-Mach preconditioning operators have been de-
veloped to reduce the difference between the largest and smallest eigenvalues of the system’s
characteristic matrix [1]. Pre-multiplication of the time derivative of the Euler or Navier-Stokes
system of equations by a suitable matrix rescales the various characteristic velocities. Pre-
conditioning does not only reduce the stiffness of the system but also significantly increase the
accuracy at low flow speeds. In the past, several preconditioning operators have been published,
e.g. [10, 1, 12, 13]. A comprehensive overview of the low Mach preconditioning operators, de-
veloped during the last decades, can be found in the work of Depcik [2]. As noted by several
authors low-Mach preconditioning can cause stability problems in viscous regimes [3, 6]. This
is due to overestimation of the maximum allowable timestep size. In fact, in a low Reynolds
regime the time steps are predominated by the viscous eigenvalues. This aspect of precondi-
tioned flows has been discussed previously by Choi and Merkle [13] as well as Colin et. al [6].
Based on stability investigations the significant influence of viscosity on low Mach precondi-
tioning has been proven. Based on a preconditioner proposed by Turkel [1], in this paper we
discuss the influence of an additional limitation term of the preconditioning parameter β2 on
the numerical stability in a viscous environment, cf. [3, 6].

Moreover, the validity and robustness of the method is demonstrated using a classical lid-
driven cavity configuration at different Reynolds, CFL and von Neumann numbers.

The improvements has been implemented in the CFD code TRACE, a fully implicit, parallel,
hybrid, multi-block, Reynolds-Averaged Navier-Stokes flow solver specialised in the simulation
of turbomachinery flows [5].

2 NUMERICAL METHOD

The non-dimensional time-dependent Navier-Stokes equations formulated in Cartesian co-
ordinates read [4]

∂Q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=

1

Rea

(
∂fν
∂x

+
∂gν
∂y

+
∂hν
∂z

)
, (1)

where Q is the solution vector of the conservative variables (ρ, ρu, ρv, ρw, ρE) and f , g, h
the inviscid fluxes given by, cf. [6]:

f =


ρu

ρu2 + p
ρuv
ρuw
ρuH

 , g =


ρv
ρvu

ρv2 + p
ρvw
ρvH

 , h =


ρw
ρwu
ρwv

ρw2 + p
ρwH

 , (2)
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where ρ, u, v, w and p are the density, velocities and pressure, respectively. The quantities
H and E are the specific total enthalpy and energy. The viscous fluxes are given by

fν =


0
τxx
τxy
τxz

(τU)x)

 , gν =


0
τyx
τyy
τyz

(τU)y)

 , hν =


0
τzx
τzy
τzz

(τU)z)

 . (3)

The components of the viscous stress tensor are referred to as τij where i, j = x, y, z . The
vector U contains the Cartesian velocity components. Source terms and heat flux contributions
are not in the focus of the current work and have therefore been ignored. The fluid is considered
as calorically perfect. Hence, the ratio of the specific heats is constant and set to 1.4. The
acoustic Reynolds number is defined by

Rea =
ρ∗a∗L∗

µ∗
, (4)

where ρ∗, a∗, L∗, µ∗ are the (dimensional) reference density, speed of sound, length and vis-
cosity. The system of equations (1) is spatially discretized using Roe’s upwind approximation
scheme [17]. The (preconditioned) inviscid fluxes at the cell faces are computed as

Fi+1/2 =
1

2
(FL + FR)− ∂Q

∂U
P−1U |PUDU |

∂U

∂Q
(QL −QR) , (5)

where QL and QR are the states at the left and right side of the cell face. The term P−1U |PUDU |,
where DU = κ · ∂F

∂U
, is known as the stabilisation term and leads after a matrix decomposition of

the flux Jacobians, to P−1U MU |Λ|M−1
U . The primitive variable system (ρ, u, v, w, p) is denoted

as U . Based on a metric proposed by Hirsch [4] the preconditioned left and right eigenvector
matrices are

M−1
U =



κ̂x 0 κ̂z −κ̂y −κ̂x 1
a2

κ̂y −κ̂z 0 κ̂x −κ̂y 1
a2

κ̂z κ̂y −κ̂x 0 −κ̂z 1
a2

0 κ̂x κ̂y κ̂z − λ̂1−λ̂4
β2a2ρ

0 −κ̂x −κ̂y −κ̂z λ̂1−λ̂5
β2a2ρ


(6)

MU =



κ̂x κ̂y κ̂z
ρβ2

λ̂4−λ̂5
ρβ2

λ̂4−λ̂5

0 −κ̂z κ̂y κ̂x
λ̂1−λ̂5
λ̂4−λ̂5

κ̂x
λ̂1−λ̂4
λ̂4−λ̂5

κ̂z 0 −κ̂x κ̂y
λ̂1−λ̂5
λ̂4−λ̂5

κ̂y
λ̂1−λ̂4
λ̂4−λ̂5

−κ̂y κ̂x 0 κ̂z
λ̂1−λ̂5
λ̂4−λ̂5

κ̂z
λ̂1−λ̂4
λ̂4−λ̂5

0 0 0 ρβ2a2

λ̂4−λ̂5
ρβ2a2

λ̂4−λ̂5
,


(7)

where κx, κy and κz are the metric components. The preconditioning operator PU and its
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inverse P−1U , proposed by Turkel [10] and formulated in primitive variables, reads

P−1U =


1 0 0 0 −β2−1

a2β2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 β−2

 PU =


1 0 0 0 β2−1

a2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 β2

 (8)

The diagonal matrix Λ contains the (preconditioned) normalised eigenvalues which are given
by

λ̂1,2,3 = uκ̂x + vκ̂y + wκ̂z (9)

λ̂4,5 =
1

2

(
1 + β2

)
λ̂1 ±

1

2

√
(1− β2)2 λ̂21 + 4β2a2 (10)

The components of the metric vector have been normalised by

κ̂i =
κi
‖κ‖

(11)

which results in

λ̂i =
λi
‖κ‖

(12)

The system of equations (1) is temporally discretised by a first order Euler backward discreti-
sation scheme. Within this work steady state cases have been considered only and a pseudo-time
step τ has been introduced to control the residual behaviour, cf. [8] The preconditioning oper-
ator modifies the pseudo-time τ and the residual R. Therefore, the update vector 4Q at time
step m reads

4Q = −Rm

(
P−1Q
4τ

+
∂R

∂Q

∣∣∣∣m
)−1

(13)

The pseudo-time step 4τi considered for a cell i is determined by applying the CFL condi-
tion

4τi = CFL
4hi

λ4,i + δ CFL
V NN

λν,i
(14)

where 4hi is a characteristic length of the cell volume, λ4,i is given by (10) and λv,i is
defined by [7, 14]

λν,i = max

(
4

3ρ
,
γ

ρ

)(
µL
PrL

+
µT
PrT

)
1

4hi
, (15)

where PrL and PrT are the laminar and turbulent Prandtl numbers. The laminar and turbu-
lent dynamic viscosity coefficients are denoted by µL and µT , respectively. For purely inviscid
consideration δ = 0.
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The preconditioning parameter β2 is related to the local Mach number M and is initially
defined as [6]

β2 = min
(
max

(
M2, β2

min

)
, 1
)
. (16)

In order to avoid singularities in the preconditioning matrices β2
min should be set to some

appropriate value. Moreover, the choice of β2
min strongly influences the stability of the pre-

conditioned system. As stated by several authors [1, 15], β2
min should not be extremely small

compared to the general flow velocity. Turkel [1] suggests to set β2
min to K1M

2
ref , where K1 is

a problem-dependent constant and Mref a reference Mach number, i.e. often the inflow Mach
number. In the current investigations β2

min = 10−5. In the vicinity of stagnation points the local
Mach number approaches zero. Darmofal and Siu [11] suggests to limit β2 additionally by the
local pressure gradient K2max

faces
(|4p|/ρa2), where 4p = pr − pl and pr and pl are the pressures

of the particular states and K2 is a problem-dependent constant. Hence, β2 reads

β2 = min

(
max

(
M2, β2

min, K2max
faces

(
|4p|
ρa2

))
, 1

)
. (17)

Venkateswaran [3] suggests to limit β2 at low Re numbers using the diffusion velocity de-
fined by

vvis =
ν

4x
, (18)

where ν is the kinematic viscosity related to the dynamic viscosity µ via ν = µ/ρ. Hence,

vvis =
µ

ρ4x
(19)

In order to determine a low Reynolds limit for β2 the viscous Mach number is introduced by

Mvis =
vvis
a
. (20)

Within the current work, the results above have been combined to obtain

β2 = min

(
max

(
M2, β2

min, K2 max
faces

(
|4p|
ρa2

)
,M2

vis

)
, 1

)
. (21)

The discretised algebraic system of equations has been solved using a symmetric Gauss-
Seidel algorithm (SGS) and a predictor-corrector Gauss-Seidel scheme (PC-SGS). All calcula-
tions have been performed in double precision.

3 RESULTS

The lid-driven cavity configuration has been chosen to prove the correctness and accuracy of
the algorithm. Often, this problem serves as a benchmark for the incompressible Navier-Stokes
equations [18, 16]. Despite its simple setup, it allows a wide range of numerical properties and
stability issues to be studied. Depending on the Reynolds number, the flows are characterised by
multiple counter rotating recirculation regions in the corners of the cavity. The computational
domain consists of a square where the upper wall moves at a constant horizontal velocity. All
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walls are considered adiabatic. The Reynolds number considered within this configuration is
defined by

Re1 =
ρ∗ u∗Wall L

∗

µ∗
. (22)

Numerical studies have been performed modifying the Reynolds number Re1 by varying the
reference length L∗. The latter scales the size of the configuration keeping u∗Wall constant and
therefore the velocity distribution within the domain over the whole range of Re1.

For Re1 = 1000 grid independency studies have been carried out for different mesh sizes
generated by successive refinement. Figures (5) and (6) show the v-velocity profiles along a
horizontal line and the u-velocity profiles along a vertical line passing through the centre of the
cavity. The results are in very good agreement with those obtained by Ghia et. al. [18]. Based
on the mesh resolution results the computational grid is set to 81 x 81 cells without refinement
at the walls.

The streamlines computed at Reynolds number Re1 = 1 and Re1 = 100 are shown in figures
(1) and (3). Low-mach preconditioning does not show to have a significant influence on the
results but provide a higher convergence rate at low CFL numbers, see figures (2) and (4).
Calculations have been performed with CFL = 1 and CFL = 25. Both, the preconditioned and
non-preconditioned solutions are in very good agreement with those published in the available
literature, e.g [13].

In contrast to the non-preconditioned calculations obtained at Re1 = 1 and Re1 = 100 the
quality of the results for Re1 = 1000 presented in figure (7a) are not in accordance to those
computed by low Mach preconditioning, see figure (7c). The solution quality has been con-
siderably improved using a low Mach preconditioning technique. The influence of Mvis on the
numerical stability of a preconditioned calculation have been studied with SGS and PC-SGS.
The solution quality diminishes drastically using a low Mach preconditioned SGS without ad-
ditional modifications for low Reynolds environments as predicted by equation (21), figures
(8) and (7b). The secondary recirculation patterns at the corners of the cavity are inadequately
formed. The improvement in numerical stability through Mvis on a low-Mach preconditioned
predictor-corrector scheme is less important, but clearly recognisable, see figure (9). This em-
phasis the necessity to limit β2 by Mvis at low Reynolds numbers.

Low Mach preconditioning alleviates the strong disparity between the smallest and largest
eigenvalues. Consequently, in low Reynolds regions it is inappropriate to use a purely inviscid
scheme as the smaller the largest convective eigenvalue becomes the more important the largest
viscous eigenvalue in a viscous regime becomes. Therefore, the convergence rate is no longer
primarily determined by the low Mach preconditioner and CFL number but rather by the von
Neumann number and largest viscous eigenvalue. Figures (10) and (11) present the convergence
history of a lid-driven cavity calculation at Re1 = 1000 at constant CFL and increasing VNN
number up-to 10. Clearly, the viscous eigenvalue strongly alters the convergence rate but, based
on the current configuration, has only a minor impact on the solution quality.

4 CONCLUSIONS

The numerical stability of a low-Mach preconditioned scheme is strongly influenced by a
low-Reynolds modification of the preconditioning parameter β. In this work a consistent formu-
lation of a preconditioning scheme applicable to a wide range of Reynolds and Mach numbers
has been presented in the context of a fully-implicit three-dimensional compressible Navier-
Stokes flow solver demonstrated. The validity has been proved using a classical lid-driven
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cavity configuration. The influence of viscous timestep size has been studied and its impact on
convergence rate shown. Moreover, for the configuration chosen in this work the viscous eigen-
values alter the computational result only slightly. In future work it is planned to investigate the
viscous timestep behaviour depending on the ratio (CFL/V NN) and low-Mach preconditioning
on different computational configurations.
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Navier-Stokes equations. von Kármán Institute for Fluid Dynamics, Lecture Series, 1999

[4] Ch. Hirsch, Numerical Computation of Internal and External Flows. John Wiley & Sons,
Ltd., 2007
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Figure 1: Streamlines in non-preconditioned (left) and preconditioned (right) calculations of a lid-driven cavity
configuration for Re1 = 1, CFL = 25 and VNN = 0.
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Figure 2: L1 Residual for Re1 = 1 obtained with CFL = 1, 25 and VNN = 0.
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Figure 3: Streamlines in non-preconditioned (left) and preconditioned (right) calculations of a lid-driven cavity
configuration for Re1 = 100, CFL = 25 and VNN = 0.
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Figure 4: L1 Residual for Re1 = 100 obtained with CFL = 1, 25 and VNN = 0.
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Figure 5: V-velocity profiles of a low-Mach preconditioned calculation along a horizontal line passing through the
centre of the cavity at Re1 = 1000, CFL = 25 and VNN = 0.

Figure 6: U-velocity profiles of a low-Mach preconditioned calculation along a vertical line passing through the
centre of the cavity at Re1 = 1000, CFL = 25 and VNN = 0.
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(a) (b) (c)

Figure 7: Streamlines in a non-preconditioned (7a), a preconditioned calculation without (7b) and with low
Reynolds modification (7c) of β2 using a symmetric Gauss-Seidel solution scheme (SGS) for Re1 = 1000,
CFL = 25 and VNN = 0.
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Figure 8: Influence of Mvis on the numerical stability of a symmetric Gauss-Seidel solution scheme (SGS) for
Re1 = 1000, CFL = 25 and VNN = 0.

7344



J. Fiedler and G. Ashcroft

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 10 20 30 40 50

R
e

s
id

u
a

l 
L

1

Iterations (x 1000)

non-preconditioned

preconditioned, diff. vel. on

preconditioned, diff vel. off

Figure 9: Influence of Mvis on the numerical stability of a low Mach preconditioned predictor-corrector Gauss-
Seidel method (PC-SGS) for Re1 = 1000, CFL = 25 and VNN = 0.
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Figure 10: L1 residual at increasing VNN of a low Mach preconditioned predictor-corrector Gauss-Seidel method
(PC-SGS) at CFL = 1 and Re1 = 1000.
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Abstract. A full multigrid method with an overset-grid method is developed to get a fast conver-

gence. The weight values for an overstet-grid interpolation of flow variables can be determined

on the fine grid level of multigrid, however, the weight value might be difficult to determine on

coarser grid level. Therefore, the receptor cell value on coarser grid level is set and kept by the

interpolation and correction of the multigrid method. Then, the flow variables on the coarse

grid is interpolated to the fine grid as initial flows of the full multigrid method. The present

method is applied to steady and unsteady simulations. The elapased time of steady simula-

tions with and without free surafce is reduced about 35% of the time without the full multigrid

method. The present method also succeeds to reduce the computational time remarkably on the

unsteady simulation.
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1 INTRODUCTION

An overset-grid method can treat complex geometries by assembling the computational grid

around each geometry and generating the overset information to combine the all grids. Addi-

tionally, the overset-grid method has a lot of flexibility in design processes, various appended

shapes can be computed without generating the all computational grid just by replacing the

computational grid around an appendage and generating the overset information.

The overset relation is generally composed on the certain division number of grid points,

and performance improvement method to reduce a computational time plays important role

with increasing the number of grid points.

The full multigrid method(FMG) is efficient to get fast convergence. A flow computation is

started from the coarsest grid on the multigrid level, then the flow variables are interpolated to

the finer grid as the initial flow. The interpolation cycle is continued until the finest grid level.

The weight values for the overset-grid interpolation of flow variables can be determined on

the finest grid of multigrid level, however, the weight value might be difficult to determine on

coarser grid level. Therefore, the flow variables of the coarse grid are interpolated to the finest

grid, then values are updated by using the overset interpolation on the finest grid. After the

interpolation, the flow variables on the finest grid level are transformed to the coarser grid level

and maintained the values. The computation on the coarse grid level is continued with using the

overset interpolated values. Then, the flow variables on the coarse grid are interpolated to finer

grid level as the initial flow of the full multigrid method.

The present method is applied to steady simulations w/ and w/o a free surface with several

appendages to a ship hull. Then, the method is applied to an unsteady simulation including a

body motion. Through the comparisons of results with and without FMG, the effectiveness of

the present method is examined.

2 COMPUTATIONAL METHOD

2.1 Base solver

An in-house structured CFD solver[1] is employed. The governing equation is 3D RANS

equation for incompressible flows. Artificial compressibility approach is used for the velocity-

pressure coupling. Spatial discretization is based on a finite-volume method. A cell centered

layout is adopted in which flow variables are defined at the centroid of each cell and a control

volume is a cell itself. Inviscid fluxes are evaluated by the third-order upwind scheme based on

the flux-difference splitting of Roe. The evaluation of viscous fluxes is second-order accurate.

For unsteady flow simulations, a dual time stepping approach is used in order to recover incom-

pressibility at each time step. It is consisted from the second order two-step backward scheme

for the physical time stepping and the first order Euler implicit scheme for the pseudo time. The

linear equation system is solved by the symmetric Gauss-Seidel (SGS) method.

For free surface treatment, an interface capturing method with a single phase level set ap-

proach is employed.

Body motions are taken into account by a moving grid technique. Grid velocities are con-

tained in the inviscid terms to satisfy the geometrical conservation law. The grid velocities are

derived from the volume where an each cell face sweeps. The boundary condition on a body is

given as the velocities of the body motion.
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2.2 Overset-grid method

The weight values for the overset-grid interpolation are determined by an in-house system[2].

The detail of the system can be found on [2], the summary is described.

1. The priority of the computational grid is set.

2. The cells of a lower priority grid and inside a body is identified (called as in-wall cell in

here).

3. Receptors cells which the flow variables have to be interpolated from donor cells are

defined. Two cells on a higher priority grid and facing to the outer boundary are set as

receptor cells to satisfy the third order discretization of NS solver. Additionally, two cells

neighborhood of in-wall cells, the cells of a lower priority grid and inside the domain of

a higher priority grid are also set as the receptor cell.

4. The weight values for the overset interpolation are determined by solving the inverse

problem based on Ferguson spline interpolation.

Flow variables of the receptor cell are updated when the boundary condition is set. The

forces and moments are integrated on the higher priority grid to eliminate the lapped region

on body surfaces. At first, the cell face of the lower priority grid is divided into small pieces.

Secondly, the small piece is projected to the cell face of the higher priority grid by using the

normal vector of the higher priority face. Then the 2D solid angle is computed and the small

piece is decided in or out of the higher priority face. Once the small piece is in the higher

priority face, the area ratio of the piece is set to zero. Finally, the area ratio is integrated on the

lower priority face, then we have the ratio to integrate the forces and moments on lower priority

face.

2.3 Full multigrid method

The multigrid method can obtain a fast convergence by reducing the residual which has the

large wave length on a coarse grid. The agglomerate type is applied to the present method. A

coarse grid is defined two cells in each (i, j, k) direction, thus one cell on the coarse grid is

constructed by eight cells on the fine grid.

The solution ql on the fine grid level(l) is transferred to the coarse grid level(l+1) as follows.

ql+1 = T l

l+1
ql (1)

where T l

l+1
is defined as

T l

l+1
ql = (ΣqlVl)/Vl+1 (2)

The equation to be solved on the coarse grid level is expressed as

∂ql+1Vl+1

∂τ
= −Rl+1(ql+1)− Pl+1 (3)

where Rl+1 is the residual on the coarse grid, and the forcing term Pl+1 is given as follows.

Pl+1 = Ql+1

l
Rl(ql)− Rl+1(ql+1) (4)
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where Ql+1

l
is transfer operator for the residual and is defined by the sum of eight cells on the

fine grid.

Ql+1

l
Rl(ql) = Σ(Rl) (5)

The solution on the coarse grid is expressed as q+

l+1
, then the correction to the fine grid level

is defined as

q+

l
= ql + I l

l+1
(q+

l+1
− ql+1) (6)

where I l
l+1

is an interpolation operator for a correction.

The computation starts from the coarsest grid on FMG, then the the solution is interpolated

to the finer grid as the initial flows, and FMG achieves the fast convergence. An overset relation

can be determined on the finest grid, however the relation may be difficult to construct on a

coarse grid level. An additional method is required to apply FMG for the overset-grid. While

one solving the equation on a coarse grid level, the solution interpolation and transfer of multi-

grid method are made in a specific computational step. The receptor cell value is updated on

the finest grid level, then transferred to coarser grid level. The present method can take account

the receptor value on coarser grid level. The influence of a specific computational step(SCS) is

also investigated in the present research.

The cell flag to be solved or unsolved on a coarse grid level is determined by using the cell

flag on a fine grid level. An unsolved cell flag is included in the cell on a coarse grid, the cell

is flagged as an unsolved cell(Fig.1). And furthermore, a cell flag on the coarser grid level is

determined in the same way. Once the receptor cell value on the finest grid is included in coarser

grid level, the correction to the finer grid from a coarse grid is treated as zero.

Figure 1: Flagging of cells with multigrid level

3 COMPUTED RESULTS

3.1 Steady double model flow

The FMG and overset-grid methods are applied to the flows around a main hull with several

appendages. Reynolds number is 3.0 × 106 and EASM[3] is applied to compute Reynolds

stresses. Table 1 shows the division number of computational grids in each direction. The grids

are arranged with the priority of the overset interpolation. As appendages, two bilge keels,

two aft hull fins, one duct which is situated just before a propeller, and a rudder are arranged

with refined rectangular grids which resolve the flows around the aft fins and the rudder. The

computational grid are consisted from 10 grids with about 3.0 millions cells.
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Table 1: Division number of computational grid

Grid IM×JM×KM

Bilge keel×2 33×65×57

Aft fin×2 49×65×41

Rect. fin1,2 53×33×65

Duct 61×61×37

Rudder 101×81×73

Rect. 101×81×73

Hull 113×121×77

Table 2: Number of solved cell

Grid Fine Medium Coarse

total solved total solved total solved

Bilge keel×2 229376 69632 28672 8704 3584 896

Aft fin×2 245760 116736 30720 14592 3840 1536

Rect. fin1 212992 65901 26624 7878 3328 1

Rect. fin2 212992 66044 26624 7889 3328 0

Duct 129600 124936 16200 15436 2025 1440

Rudder 576000 297152 72000 36996 9000 3894

Rect. 576000 269380 72000 31412 9000 242

Hull 1021440 908720 127680 111726 15960 11526

Three levels multigrid method is applied. Table 2 shows the total and solved cell number

with the multigrid level. The cell number to be solved becomes zero on the refined rectangular

grid at the coarse grid level, hence the full multigrid starts with the medium grid.

Fig.2 shows the time history of L2-norm of the pressure with changing the SCS from 5 to 40.

Fig.3, 4 show the comparisons of the total resistance coefficient and the elapsed time. The total

resistance coefficient is non-dimensionalized by 1

2
ρU2

0
L2

0
. The spikes of L2-norm are existed

when the interpolation and the correction of the multigrid are made with SCS intervals. The

difference of L2-norm between SCS=5 and 10 is small, while L2-norm becomes larger after

301 time steps where the computational grid changes to the fine grid with using SCS=20 and

40. The total resistance coefficient shows small difference with the SCS change until 300 time

steps, while larger fluctuation with SCS=20 and 40 appears after 301 time steps. From the above

results, SCS is determined as 10 from hereafter.
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Figure 2: Time history of L2 norm(∆p)
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From Fig.5 to Fig.7 show the comparisons of the results with and without FMG. The time

history of L2-norm of FMG has the spike on 301 time steps when the computational grid shifts

from the medium level to the fine level(Fig.5). FMG takes few times until 300 time steps

with the computation on the medium grid, then the slope of FMG becomes same as the result

without FMG(Fig.7). The steps from 500 to 800 where the total resistance coefficient almost

converges are magnified in Fig.6, and the elapsed time at 650 steps where the total resistance

coefficient converges within ±0.5% from the averaged value is compared. FMG takes 3271

seconds, while the multigrid(without FMG) takes 5118 seconds, thus FMG succeeds to reduce

the computational time about 37% in this case.
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Figure 5: Comparison of L2 norm(∆p)
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3.2 Steady free surface flow

The FMG method is applied to the free surface flow with the overset-grid. The computational

grid is consisted from 5.07 million cells with the hull grid, the rudder grid and two rectangular

grids. Reynolds number is 1.074 × 107, Froude number is 0.261 and k − ωSST [4] model is

applied. Table 3 shows the division number of computational grids in each direction.

Table 3: Division number of computational grid

Grid IM×JM×KM

Rudder 113×121×77

Rect. Rud. 49 × 49 × 45

Hull 113×121×77

Rect. 113×121×77

Table 4 shows the total and solved cell number with the multigrid level. The cell number to

be solved remains on the coarse grid level, hence FMG starts from the coarse grid level in this

case. The computation on the coarse grid level continues until 500 steps, then the computation
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Table 4: Number of solved cell

Grid Fine Medium Coarse

total solved total solved total solved

Rudder 135168 126710 16896 15836 2112 1584

Rect. Rud. 101376 70660 12672 8606 1584 116

Hull 3276800 3149958 409600 392792 51200 43944

Rect. 1554432 1329118 194304 164464 24288 18160

continues on the medium grid, finally the computation on the fine grid level starts from 1001

steps.

Fig.8 shows the comparison of L2-norm with and without FMG. The time history of L2-norm

of FMG has the spikes at 501 and 1001 time steps when the computational grid shifts from the

coarse and medium grid levels to finer grid level. The total resistance coefficient also shows

small diffraction when the grid level moves to finer grid level(Fig.9), then converges rapidly.

The elapsed time of FMG is relatively small until the grid level reaches the fine grid, then the

slope becomes same as the result without FMG(Fig.10). The steps from 1600 to 2300 where the

total resistance coefficient almost converges are magnified in Fig.9. The elapsed time at 2200

steps with FMG where the total resistance coefficient converges is compared with the elapsed

time without FMG at 1800 steps. FMG takes 34142 seconds, while the multigrid(without FMG)

takes 52624 seconds, thus FMG succeeds to reduce the computational time about 35%.
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Figure 10: Comparison of elapsed time

3.3 Unsteady simulation with body motion

The FMG method is applied to the unsteady flow computation with a prescribed rotational

motion. The computation of a marine propeller with a fixed revolution number is selected. All

grids rotate around the x-axis with the revolution number. Reynolds number is 4.649 × 105

and k − ωSST [4] model is applied. The non-dimensional revolution number is 2.0. Table 5

shows the division number of computational grids in each direction. The computational grid

is consisted from 2.09 million cells with the the five blade grids and the cylinder grid on the

background.

Table 5: Division number of computational grid

Grid IM×JM×KM

Blade 49×65×33

Cylinder 117×145×97

Table 6 shows the total and solved cell number with the multigrid level. The cell number to

be solved remains on the coarse grid level, hence FMG starts from the coarse grid level. The

computation on the coarse grid level continues until 500 steps, then the computation continues

on the medium grid level, finally the computation on the fine grid level starts from 1001 steps.

Fig.11 shows the comparison of L2-norm with and without FMG. The non-dimensionalized

physical time step with FMG is 3.0 × 10−4, while the time step without FMG is 5.0 × 10−5,

thus the time step with FMG takes larger on the present unsteady simulation. L2-norm with

FMG is slightly reduced with the computational steps, while the gradient of L2-norm without

FMG is comparatively small. The resistance coefficient with FMG converges rapidly, on the

other hand, the resistance coefficient without FMG remains the fluctuation(Fig.12). Fig.13

shows the comparison of the elapsed time with and without FMG. Due to the difference of

the physical time step, the direct comparison is difficult but the elapsed time with FMG is

remarkably reduced.

Fig.14 shows the pressure distribution on the body surfaces and the velocity distribution with

vectors just behind the blades. The back side of the blade surfaces becomes negative pressure

values due to the angle of attack which is caused by the inflow to the blades. The axial velocity

is accelerated by the blades, hence the variables are smoothly interpolated and computed in each

computational grid. Thus it can be said the present overset grid-method and FMG work well.
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Table 6: Number of solved cell

Grid Fine Medium Coarse

total solved total solved total solved

Blade1 98304 92160 12288 11520 1536 1152

Blade2 98304 92160 12288 11520 1536 1152

Blade3 98304 92160 12288 11520 1536 1152

Blade4 98304 92160 12288 11520 1536 1152

Blade5 98304 92160 12288 11520 1536 1152

Cylinder 1603584 1422870 200448 174881 25056 18866
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4 CONCLUSIONS

• The full multigrid method to the overset-grid method has been developed.

• Present method succeeds to reduce the computational time about 35% in the steady com-

putations with and without the free surface.

• Present method also can be applied to the unsteady simulation, and the elapsed time of

the computation is remarkably reduced.
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Figure 14: Pressure distribution on body surfaces and flow behind the blades
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Abstract. To create efficient new aerodynamic designs or predict the onset of flutter, the lin-
earised Navier-Stokes equations might be used. In some cases, many right-hand sides must be
solved keeping the same matrix. In this paper, techniques which enable to solve several right-
hand sides at the same time, such as Block GMRes, or reuse pieces of information computed
in the previous solves, such as Krylov space recycling, are investigated. They will be tested on
both simple and industrial test cases.
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1 INTRODUCTION

To create efficient new designs, aircraft manufacturers may resort to automatic optimisations
tools relying on linearised Navier-Stokes solver [3]. Flutter analysis is another application where
one can use time-domain linearisation of the Navier-Stokes equations [2]. In both cases, one may
have to solve the same linear system with different right-hand sides, be it one for each geometric
variable (direct method) or for each cost function (adjoint method) in the case of optimization, or
one for each structural eigenmode in the case of flutter analysis. Due to their size and sparsity,
these linear systems are solved using iterative methods such as GMRes [14].

Extensions of the GMRes method to multiple right-hand sides were consequently investigated.
They can be grouped in two main classes. The first one is based on reusing information from
the first solve to speed-up convergence of the subsequent systems. Using a projector, spectral
information from the first solve can spectrally deflate at lower cost a GMRes method [10]. It is
expected to attain near asymptotic convergence right from the beginning, removing transient
plateaus. Another method could be to project all the right hand-sides on the Krylov space
generated during the GMRes solve of the first vector to make these converge at least partially,
lowering the number of iterations necessary for their complete solving.

The second class of extension of GMRes to several right-hand sides is to solve them all at once,
using block Krylov spaces [5]. To improve the convergence when using small Krylov spaces
with restarts, spectral deflation was implemented [9]. Decreased computation time is expected to
come from both an accelerated convergence and a reduced parallel communication time due to
block communications.

These methods will be tested on 2D and 3D examples, ranging from one hundred thousand to
thirty million unknowns, on parallel architectures. Both convergence and timing results will be
presented.

2 AETHER

2.1 Compressible Navier-Stokes code

AETHER is a compressible Navier-Stokes code developed in-house by Dassault Aviation. It is
a finite elements solver on unstructured mesh, stabilized by the SUPG method [7]. To enable
better properties of the implicit matrices, the compressible Navier-Stokes equations are written
in entropic variables, so that they become symmetric. Several turbulence models are available
(Spalart-Allmaras, k-ε, k-ω, K-KL, etc).The non-linear code is fully implicit, using GMRes to
solve the Newton iterations. The code is made parallel using MPI as message passing library.

2.2 Linearised Navier-Stokes equations

For aeroelasticity problems, a simple way to understand the linearised Navier-Stokes equations
is to consider the non-linear ones in a reduced form:

E(V,x) = 0 (1)

Here, V is the physical state of the systems (i.e. the flow variables), and x corresponds
to coordinates of the aeroplane. If the surface of the aircraft is slightly modified by a small
displacement δx, for instance a twist, then the flow variables will change accordingly by an
increment δV:

E (V + δV,x+ δx) = 0 (2)
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A linear expansion of this equation, remembering that the base flow state verifies (1), yields

∂E

∂V
δV = −∂E

∂x
δx (3)

Thus, if a small known displacement δx is applied to the aircraft, solving this linear system
enables to know the variation of the flow variables δV. If a harmonic movement needs to be
applied to the structure, complex numbers are used. For details, see [2]. When doing aerodynamic
optimisation, either a direct approach (comparable to the derivation in real number made before)
or a adjoint one can be used, as explained in [3].

3 BLOCK GMRES

When solving for several right-hand sides, it might be assumed that searching iteratively the
solution in several directions at the same time could be advantageous. Herein lies the main idea
of the block GMRes method.

3.1 Standard block GMRes

Block GMRes is simply a generalisation of the standard iterative GMRes method [14] for
vector with several columns. We want to solve the following linear problem :

Ax = b with A ∈ RN×N , b ∈ RN×s, x ∈ RN×s (4)

Here, N is the dimension of the linear system, and s is the number of right-hand side we want
to solve simultaneously. Krylov spaces, which are necessary to GMRes, can be extended to a
block definition.

Bn(A,y) = block span
(
y,Ay, . . . ,An−1y

)
(5)

Block span means that the linear combinations of the individual columns of the block vector
are taken into account, i.e.

∀u ∈ Bn(A,y), ∃ (γk) ∈ Rs×s u =
n−1∑
k=0

Akyγk

Starting from an initial guess x0, a block Krylov method for solving the linear system (4)
finds an approximate solution xn such that

xn − x0 ∈ Bn(A, r0) (6)

with r0 = b−Ax0 being the initial residual.
The algorithm of the block GMRes is presented in [5]. Its implementation is summarised

in algorithm 1. Compared to standard GMRes, there is little conceptual difference. Only the
normalisations are transformed into QR-factorisations and the Hessenberg matrix is defined by
blocks.

The Hessenberg matrix Hn =
(
η̃i,j

)
∈ Rn+1×n is upper triangular with one extra lower

diagonal. To solve the least-square problem with only a simple triangular solve as in line 17 of
algorithm 1, the matrix Hn needs to be reduced to a purely upper triangular matrix. A complete
QR decomposition would be both too costly and impractical to update, as Hn is created column-
by-column. As introduced in [6], Householder transformations can be put to use efficiently for
this task. These transformations are applied to blocks of dimension 2s × s to reduce them to
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Algorithm 1 Non-restarted Block GMRes with m Krylov vectors
1: v0ρ0 = QR (r0) . QR factorisation of the initial residual
2: q← e1ρ0 . Least-square problem right-hand side
3: for n = 1,m do
4: ṽ← Avn−1

5: for k = 0,n− 1 do . Arnoldi orthonormalisation of the next vector
6: η̃k,n−1 ← 〈vk, ṽ〉
7: ṽ← ṽ − vkη̃k,n−1

8: end for
9: vnη̃n,n−1 = QR (ṽ)

10: Apply previous Householder transformations to
(
η̃k,n

)
, k = 0, . . . , n− 2

11: Create and apply Householder transformation Qn on
(
η̃n−1,n−1

η̃n,n−1

)
12: Apply Householder transformation Qn to q
13: Compute residual : norm of the last block of q
14: If residual lower than ε exit loop
15: end for
16: Apply Householder transformations backwards to q
17: kn ← H−1

n q . Triangular solve
18: xn ← x0 +Vn+1kn . New approximate solution
19: rn ← Vn+1kn . New residual

upper triangular form. When a column is added to Hn, all previous Householder transformations
need to be applied so as to get the modified ηi,n. This transformed column is added as the last
column of Hn which is upper triangular.

Restarting the block GMRes algorithm is simply a matter of restarting it with the new residual.

3.2 Spectral deflation of block GMRes

When solving a linear problem with the GMRes method, restarts are a necessity for memory
reasons and computational time, as each new Krylov vector must be orthogonalised against all
previous vectors. When restarted, Krylov methods have a known tendency to stall convergence.
To alleviate these convergence problems, Morgan introduced in [8] a deflation of the smallest
eigenvector of the matrix A, which are hard to find during the iterations. Some numerical tricks
are introduced by Röllin in [13]. This theory can be adapted to the block case.

The deflated restart is done in several steps as explained in algorithm 2. First of all, the
harmonic Ritz vectors are computed, solving a standard eigenvalue problem and not a generalized
one (see [13] for details). The k lowest ones are stored and orthogonalized. To force the new
iterations to explore directions yet unsearched, the residual of the previous iteration is added to
this basis. The new Krylov basis and Hessenberg matrix are also created. Finally, the residual in
the new Krylov basis has to be computed. The idea for this critical step came from [12] : q is
simply filled with the orthonomalising coefficients created during the orthogonalisation of the
residual against the harmonic Ritz vectors.

Deflation of the right-hand sides, which is a way to eliminate linear dependence between
the right-hand sides [5], was not used for several reasons. First of all, it is hard to correctly
implement it jointly with spectral deflation. At restarts with spectral deflation, the new starting
Krylov space and Hessenberg matrix must follow the Arnoldi relation. Moreover, the residual is a
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Algorithm 2 Deflated restart of the block GMRes algorithm with k harmonic Ritz vectors
1: Compute the k first harmonic Ritz vectors pi of Hn

2: Orthonormalise Pk = (pi)i=1,k

3: Append qn to Pk which becomes Pk+1

4: Orthonormalise the last column of Pk+1 against the first columns
5: Store the orthonormalisation coefficients in q
6: Vnew

k+1 ← Vn+1Pk+1

7: H
new

k ← PT
k+1HnPk

linear combination of the harmonic Ritz vectors [13]. Deflation of the right-hand sides can delete
and add (previously deleted) right-hand sides, and to enforce the aforementioned Arnoldi relation
is difficult. To circumvent this problem, one could use the GCRO-DR algorithm [11], which
will be introduced shortly below. The second reason is that a deflation of the right-hand sides
was implemented (but not along spectral deflation), and no linear (near-)dependency could be
found. As in aeroelasticity applications, the right-hand sides are quite similar, and the solutions
have some sort of commonality between them, deflation was hoped to be quite powerful, but
ultimately it was not found to be of any effect in our problems.

4 KRYLOV SPACE RECYCLING

Instead of solving all the right-hand sides at the same time, the information created during the
solving of one right-hand side can be reused to solve all the other ones. Several methods can be
devised, depending on which piece of information is to be recycled. When a single right-hand
side is solved using the GMRes method, a Krylov space is generated, which in itself might be
interesting to recycle. Moreover, if deflation is used, the smallest harmonic Ritz vectors are
also computed. They are hard to find, and their approximation might take several restarts to be
correct, so they might be of higher value than a single Krylov space.

4.1 Harmonic Ritz vector reuse

A first way to effectively reuse the harmonic Ritz vectors created during a previous solve with
a deflated GMRes method is GCRO-DR [11]. It consists in a GMRes loop nested within a GCR
(Gradient Conjuguate Residual). The necessary orthogonality constraint for GCR is enforced
through a carefully chosen projector, akin to deflation projectors. See [4] for an interesting
comparison between deflation projectors and deflation as treated in section 3.2. GCRO-DR was
put to use in [15] for linearised Navier-Stokes computational studies with some success. It was
chosen not to implement this algorithm due to its complexity and its likeness to deflated GMRes
(see [11]).

Instead, a simpler method was tried. As explained in [10], a projection onto the small
harmonic Ritz vectors at each restart of a standard GMRes (i.e. non deflated) could be sufficient to
attain near-asymptotic convergence right from the start, and also exhibit good deflation properties
at restart (no significant change of the convergence rate). For the projection and the GMRes
method to interweave properly, the projection has to be carefully crafted. The projection, dubbed
MinRes in [10], is explained in algorithm 3.

The MinRes projection should be used in the following way. A first right-hand side is solved
using deflated GMRes. At the last restart, the Krylov space and the Hessenberg matrix created
by the deflation and corresponding to the smallest harmonic Ritz vectors are saved. The other
right-hand sides are then solved : before each restart of a standard GMRes cycle, the residual and
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Algorithm 3 MinRes projection
Require: x0 approximate solution, r0 residual, Vk+1 and Hk verifying Arnoldi relation

1: c← VT
k+1r0

2: Solve min ‖c−Hkd‖ . Simple triangular solve after upper-triangularising Hk

3: New solution is xk ← x0 +Vkd
4: New residual is rk ← r0 −Vk+1Hkd

the approximate solution are updated with the MinRes projection, using the saved Krylov space
and Hessenberg matrix.

Another variant which was tested is to solve all the right-hand sides at the same time, one
of them being solved with a deflated GMRes, and all the other being projected on the same
Krylov space using the Minres projection. The idea is to leverage the similarities between the
right-hand sides, and solving one may lower to a large extent the other residuals. Unfortunately,
this technique proved unsuccessful in reducing with more than one order of magnitude the
residuals of the other right-hand sides.

5 TEST CASES

These two techniques for solving linear systems with multiple right-hand sides will be tested
on a two dimensional test-case, and a three-dimensional one, the latter being more representative
of industrial problems.

5.1 2D test case: RAE2822

The first test case is a classic 2D wing profile. An illustration of the mesh used is shown in
figure 1. This unstructured mesh has 35,000 nodes. A simulation on this test case has 140,000
unknowns.

This test case was used at a Mach number of 0.734 and an angle of attack of 3◦. The base flow
around which the linearised calculations are made does not exhibit any shocks or flow separation.
Four movements of the profile were used for the purpose of creating four right-hand sides. The
deformations corresponds in that order to a thickening, a pitching, a vertical displacement of the
profile and an aileron deflection.

5.1.1 Block GMRes

To test the efficiency of the block GMRes method, several combinations of the number of
right-hand sides and of Krylov space were tried. The figure 2 indicates the results.

The test runs are sorted according to the order of the block Krylov space, which is equivalently
the number of iterates with the matrix A . The parameter “p” indicates the number of right-hand
sides solved at the same time. The dotting pattern is identical when solving the same number of
right-hand sides. The smaller the dots, the lower the number of right-hand sides. The abscissa
was chosen to be the number of matrix block-vector product (instead of matrix vector product).
This enables to compare easily a block GMRes run with a standard one. For instance, if a solve
with four right-hand sides takes less iterations than a solve with a single right-hand side (and
that the four right-hand sides take roughly the same number of standard GMRes iterations to be
solved), then solve the four of them at the same time is advantageous in terms of matrix-vector
products.

The first comment to be made is that as a general rule, when a higher number of right-hand
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Figure 1: Mesh used for the 2D test case RAE2822

Figure 2: Convergence of the right-hand sides with block GMRes. In abscissa is the number of matrix block-vector
products. “kry” is the order of the block Krylov space
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Krylov 200 200 200 200 100 100 100 100

p 4 3 2 1 4 3 2 1

Time (s) 356 244 135 35 272 149 61 25
Time/p (s) 89 81 68 35 68 50 30 25

Iterations 1974 2546 3174 3315 3140 3021 3092 3931
Iterations/s 5.5 10.4 23.4 95.2 11.6 20.2 51.1 155.2
Iterations*p/s
= matvec/s

22.2 31.3 46.9 95.2 46.2 60.7 102.2 155.2

Krylov 50 50 50 50

p 4 3 2 1

Time (s) — 80 — 33
Time/p (s) — 27 — 33

Iterations — 3444 — 8185
Iterations/s — 43.0 — 245.3
Iterations*p/s
= matvec/s

— 128.9 — 245.3

Table 1: 2D test case: timing of block GMRes solve. Hyphen indicates a lack of convergence

sides are computed at the same time, the convergence is achieved in less iterations. This is
verified for the solves with a block Krylov space of 200. It would have also been the case for
the block Krylov space of 100, if it were not for the solve with four right-hand sides, whose
convergence exhibits a strange slowing around 2000 iterations. Also, when the order of the block
Krylov space is reduced, the robustness of the solve is decreased.For the Krylov space of order
50, with four and two right-hand sides, the convergence stalled for unexplained reasons.

Some timing details are provided in table 1. From these results, it can be inferred that block
GMRes is slower than standard GMRes. The small convergence acceleration is not sufficient to
overcome the the extra work of mainly orthonormalisation due to the larger number of vectors in
memory.

To make a fairer comparison between block GMRes and its single right-hand side counterpart,
table 2 shows a comparison this time grouped by equal memory footprint of the Krylov space.
Here the block GMRes method is faster than the standard GMRes. First of all, the block GMRes
needs less iterations to converge. Also, due to the blocking of the parallel communications and
of the scalar products in the orthonormalisations, the matrix vector product is faster in block
GMRes. Both of these effects combine to give a significant timing edge to the blocked Krylov
method. This comparison is not realistic of industrial applications because of the large number
of vectors used. Deflated GMRes has enabled Dassault Aviation to use quite small Krylov spaces
without loss of robustness. Its blocked version is not yet robust enough.

7365



A. Bissuel, G. Allaire, L. Daumas, F. Chalot and M. Mallet

800 vectors 400 vectors

Kry 200 400 800 100 200 400

p 4 2 1 4 2 1

Time (s) 356 208 129 272 135 177
Time/p (s) 89 104 129 68 68 177

Iterations 1974 2336 2819 3140 3174 3023
Iterations/s 5.5 11.2 21.8 11.6 23.4 17.1
Iterations*p/s
= matvec/s

22.2 22.5 21.8 46.2 46.9 17.1

Table 2: 2D test case: timing with equal memory footprint

5.1.2 Krylov space recycling

Krylov space recycling was tested. The first right-hand side was solved using a standard
deflated GMRes, so as to get the lowest harmonic Ritz vectors of the matrix. The convergence
curve is shown on figure 3.

In this test case, the Krylov space size was of 200 vectors. The number of harmonic Ritz
vectors which were kept was 60. The target residual was a normalized 10−5, meaning that the
residual had to be 5 orders of magnitude lower for the computation to be stopped. From the
second right-hand side onward, the system was solved using non-deflated GMRes with Minres
projection. For the first three orders of magnitude, it is competitive with deflated GMRes, but
then the convergence stalls (except for the second right-hand side for which it happens one order
of magnitude lower). For clarity, the graph was trimmed at 12 000 iterations.

5.2 3D test case

The 3D test case is a composed of a dummy half-fuselage with a generic swept wing. The
profile has a 10% thick symmetric airfoil section (NACA 64A010 profile). The wing has a 1m
span. It has been tested previously in CFD and in wind tunnel [2]. A view of the half-model is
shown on figure 4. The flow conditions are a Mach number of 0.88 and an angle of attack of 0◦.
The computational mesh totals more than 6 million nodes, which makes more than 30 million
unknowns to be solved. This test case is deemed to be representative of industrial applications.

The movements corresponding to the right-hand sides are test polynomials on the wing of the
coordinates x, y and z of increasing degree. Seven of them are shown on figure 5. They are a
blend of a pitching, heaving, bending, twisting movement of the wing. They seem quite similar.
It is thus expected that solving one may considerably help solving the others.

5.2.1 Block GMRes

The block GMRes solver was tested on the 3D case. Ten right-hand sides were solved at the
same time. Due to memory restrictions, we were forced to use a block Krylov space of order
50. The convergence curve is shown on figure 6. The convergence for the overall residual is
presented with a bold line, and the residual of the single vectors are plotted with thin lines. After
the 2000th iteration, the convergence is slowing down, and is completely stalled at the end of the
computation. The residual failed to be lowered by 5 orders of magnitude, which is by experience
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Figure 3: 2D test case: convergence of the Krylov space recycling method

Figure 4: General view of the 3D test case
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Figure 5: Seven movements corresponding to test polynomials on the wing

a requirement to get a good solution. By 4000 iterations, a standard GMRes computation would
have already converged to that precision. As the convergence curve is not conclusive, no timings
are shown.

5.2.2 Krylov space recycling

Recycling the harmonic Ritz vectors proved more interesting on the 3D case than on the 2D
one. Figure 7 shows the convergence of the GMRes solver coupled with the Minres projection.
The Krylov space was composed of 200 vectors, and 40 harmonic Ritz vectors were kept and
used for the Minres projection. It is interesting to see that all the right-hand sides have the same
asymptotic convergence rate. Nevertheless, this rate is smaller than the one achieved with the
deflated GMRes solve (first right-hand side). Finally, the asymptotic convergence was not reached
rapidly. The fact that no plateaus are found in the GMRes solve shows that this test case might
not be the one where this method could shine [10]. To conclude with, the convergence penalty is
far larger than the overhead time imposed by the deflation in standard GMRes.

6 CONCLUSION

In this paper, extensions of the GMRes algorithm to simultaneously solve several right-hand
sides were implemented and tested on simple and industrial test cases. Block GMRes, the
natural extension of GMRes to several right-hand sides, can accelerate matrix vector products
on parallel computing architectures. Its lack of robustness on small Krylov space does put it
at a disadvantage compared to standard GMRes. To compare favourably, it needs too large a
Krylov space to be fast enough for industrial use. Krylov space recycling, which is a simpler
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Figure 6: 3D test case: convergence of the block GMRes solver. Bold line is the total residual.

Figure 7: 3D test case: Krylov recycling. First right-hand side is solved with deflated GMRes
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way of solving several right-hand sides at the same time, was disappointing on the simpler test
case, where it stalled the convergence. On the industrial test case, though all right hand sides
converged, the asymptotic convergence rate was not good enough and not reached soon enough
for this method to be competitive.

This study reversely highlighted the performance of the deflated GMRes method for solving
large linear systems, as various extensions of this method proved to be not as fast. Thus, future
works will be devoted to accelerating the solves without changing the GMRes method. A study is
currently underway to look at two-level preconditionners, which have shown to be promising to
reduce the impact of domain decomposition on convergence in CFD computations[1].
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Abstract. During the past decade the 3D unstructured grids have become an important tool 
for radiative heat transfer simulations, extending their applications to even more complex en-
closures. Nevertheless, the corresponding solvers appear to be inferior in terms of efficiency, 
compared to those for structured meshes. One remedy to this shortcoming appears to be the 
agglomeration multigrid method, based on the solution of the numerical problem on succes-
sively coarser spatial and angular resolutions, derived from the initial finest ones through the 
fusion of their neighbouring control volumes and control angles respectively. Considering 
this state, the enhancement of an in-house academic solver with different spatial/angular ag-
glomeration multigrid schemes to accelerate the finite-volume method for the prediction of 
radiative heat transfer, is reported in this study. The incorporated multigrid methods are 
based on the relaxation of radiative transfer equation with the FAS approach, considering 
though different types of sequentially coarser spatial and angular resolutions, as well as dif-
ferent V-cycle types. More specifically, a nested, a uniform and an alternate scheme were de-
veloped, while they were examined in conjunction with the V(1,0), V(1,1), V(2,0) and V(2,1) 
V-cycles types. To further accelerate the numerical solution, a combined FMG-FAS strategy 
was included, according to which the whole procedure begins from the coarsest discretization 
(spatial and angular) and as the number of iterations is increased the FAS extends to the finer 
resolutions, up to the initial finest one. The proposed numerical schemes were validated 
against a benchmark test case, considering radiative heat transfer through a strongly scatter-
ing medium in a cubic enclosure with highly reflecting surfaces. The obtained results reveal 
the superiority of the nested scheme along with the V(2,0)-cycle type strategy, while they 
highlight the significant contribution of the angular extension of the multigrid technique. 
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1 INTRODUCTION 

During the last decade the three-dimensional unstructured grids have become an important 
tool for radiative heat transfer computations, extending their applications to more complex 
geometries, like combustion chambers. Although unstructured meshes offer the largest possi-
ble flexibility in the treatment of complicated enclosures, along with the minimum user inter-
action for their generation/adaptation, the corresponding solvers appear to be inferior in terms 
of efficiency, compared to those for structured grids [1]. One remedy to this shortcoming is 
the multigrid method, originally developed by Brandt [2] to increase the convergence rate of 
the numerical solution of elliptic problems, e.g. of incompressible fluid flow problems in CFD 
(Computational Fluid Dynamics). Since then it has been applied though to various types of 
computational simulations, e.g., compressible fluid flow [3-5], radiative heat transfer [6-8], 
etc. Its main concept depends on the construction of coarser resolutions, in order the low-
frequency errors at the finest discretization to become high-frequency ones at the coarser ones, 
and as such to be damped in a more efficient way [1, 3, 6]. Besides multigrid method’s signif-
icant contribution in test cases with unstructured grids, it was additionally revealed to be a 
valuable tool for simulations involving higher-order accurate spatial schemes [6, 7, 9-11] or 
higher-order governing equations [12]. Various types of the multigrid methodology have been 
developed during the past years, whose differences are identified mainly on the way the 
coarser discretizations are generated, as well as on the relation associating the successive grid 
resolutions [1, 6]. 

The agglomeration multigrid method, originally proposed by Lallemand [13], appears to be 
one of the most widely implemented schemes. It considers a sequence of coarser spatial reso-
lutions with polyhedral elements, derived through the fusion of neighboring control volumes 
of their finer levels in an arbitrary way (isotropic agglomeration) [6]. Nevertheless, the afore-
mentioned agglomeration strategy has been identified to lead to reduced performance in test 
cases involving hybrid grids with highly stretched elements on boundary surfaces [14]. A 
semi-coarsening or directional coarsening agglomeration method was proposed by Mavriplis 
[14] to mitigate this drawback. According to this technique the nodes of prismatic and hexa-
hedral elements are treated separately, i.e., their control cells are merged only if they are 
aligned with the normal to the boundary direction [1]; for the rest nodes the aforementioned 
isotropic strategy is applied. As a result, the grid anisotropy, caused by the utilization of pris-
matic or hexahedral elements, is moderated [15]. Another popular approach is the full-
coarsening directional agglomeration [1, 4, 16, 17], according to which the boundary control 
cells are fused initially, while a line-agglomeration step is then performed, for merging the 
prismatic or hexahedral control volumes along implicit lines, directly above the corresponding 
already agglomerated boundary ones. As a result, a deeper reduction of DoFs (Degrees of 
Freedom) is succeeded and consequently further acceleration is gained, without though the 
produced discretizations to differentiate significantly from the initial topology. Specifically 
for radiative heat transfer simulations, which consider the solution of RTE (Radiative Transfer 
Equation), for each control cell and each control angle, an angular extension of the aforemen-
tioned agglomeration strategy has been proposed by the authors, either coupled with the spa-
tial one or not [6, 7]. According to this methodology, angularly coarser resolutions are also 
generated (besides the spatially coarser ones), resulting in further improvement of the compu-
tational performance of the iterative methodology, via a nested spatial/angular agglomeration 
multigrid scheme [6, 7]. 

As far as the relation associating each two successive resolutions is concerned the FAS 
(Full Approximation Scheme) approach is revealed to be the most widely applied one [1, 3]. It 
considers the relaxation of the governing PDEs (Partial Differential Equations) only at the ini-
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tial finest level, while at the coarser ones an approximate version of the same PDEs is solved 
[3], accomplishing gradually a V- or W-cycle scheme. The computed variables and flux bal-
ances are restricted (in terms of smoothing) from the finer to the coarser mesh, while the cor-
responding calculated corrections are prolonged (in terms of interpolation) from the coarser to 
the finer one [1, 3, 4, 6]. In case of multigrid accelerated radiative heat transfer problems, 
considering additionally angularly coarser resolutions, the approximation of the angularly 
coarser PDEs is performed by employing the FAS scheme much in the same way to the spa-
tial ones [6, 7]. In order to gain additional acceleration, a combined FMG-FAS (Full Multi-
grid-Full Approximation Scheme) approach can be implemented [1, 4, 15]. According to this 
method the FAS V-cycle is incorporated in the FMG process; the whole procedure begins 
from the coarsest grid and, as the number of iterations is increased, the finer FAS levels are 
added up to the initial finest one [1, 4, 15]. 

In this work the development and comparison of different spatial/angular agglomeration 
multigrid schemes for the acceleration of FVM radiative heat transfer computations, is report-
ed. It is based upon a previous work of the authors [6, 7], incorporating though further en-
hancements, namely different sequences of spatial and angular coarser resolutions, different 
V-cycle types, a full-coarsening directional agglomeration strategy and a combined FMG-
FAS approach. More precisely, the nested, uniform, and alternate schemes are compared. Ac-
cording to the first nested one (reported in [6, 7]) the angular V-cycle is accomplished at each 
step of the spatial one. If the uniform scheme is selected each coarser resolution is constructed 
by simultaneously coarsening its finer one spatially and angularly, while in case of the alter-
nate technique each coarser level is obtained from the finer one by coarsening it either in spa-
tial or angular dimension. As far as the different V-cycle types are concerned the V(1,0), 
V(1,1), V(2,0) and V(2,1) are assessed; the first number in parentheses denotes the number of 
relaxations performed prior to restriction, while the second one denotes the corresponding 
number of relaxations after the prolongation [6]. For simulations involving hybrid grids, in 
order increased accuracy to be achieved in regions with prismatic elements [18], a full-
coarsening directional agglomeration strategy is additionally developed [1, 4, 5]. It succeeds 
greater reduction of DoFs and consequently greater acceleration, comparing to this obtained 
with isotropic agglomeration methodology. Finally, a combined FMG-FAS approach is de-
veloped and tested against the only-FAS technique [1, 4, 15]; it considers the division of the 
whole procedure in two stages, the preliminary and the main one [1, 4, 15]. It begins from the 
coarsest resolution (preliminary stage) while, as the number of iterations is increased, the finer 
FAS levels are added up to the initial finest one (main stage) [1, 4, 15]. The proposed numeri-
cal schemes are evaluated against a benchmark test case, considering radiative heat transfer 
through a strongly scattering medium in a cubic enclosure with highly reflecting surfaces [19]. 
According to the produced results the nested spatial/angular scheme along with the V(2,0)-
cycle type appears to be the preferred choice for such simulations. Furthermore, they highlight 
the significant contribution of the angular extension of the multigrid technique. 

2 RADIATIVE HEAT TRANSFER COMPUTATION 

The radiative intensity Ip of a node p at position r and time t along a path s through an ab-
sorbing, emitting and scattering gray medium is obtained by the time-dependent RTE as fol-
lows [10, 11, 20, 21] 
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where c is the propagation speed of radiation, while kα and σs are the absorption and scattering 
coefficient respectively [10, 11]. The LHS terms express the radiative intensity change rate 
per ray direction and time, while the RHS expresses its attenuation by absorption and scatter-
ing processes (first term), and its augmentation by blackbody energy (second term) and scat-
tering phenomenon (third term) [6, 10]. Despite the presence of the temporal term, the 
aforementioned expression can be employed for both steady-state and transient problems [6, 
10, 11, 20]. 

The finite-volume method is applied for the discretization of the computational field and 
consequently for the solution of the RTE [6, 12]; therefore, the computational domain has to 
be discretized both spatially and angularly. A node-centered median dual control volume 
method is employed for the spatial discretization, according to which the construction of the 
control cell of a node is achieved by connecting the lines defined by the edge midpoints, the 
barycenters of faces and the barycenters of elements sharing this node [3, 18]. Angular dis-
cretization is succeeded by dividing the directional domain, represented by a sphere in three 
dimensions, into a discrete number of solid control angles with lines of constant longitude and 
latitude [18, 21]; an equal division strategy is followed in this work, hence, the 4π steradians 
derive ΝθxΝφ control angles [6, 10, 18]. Thus, equation (1) is integrated over the control vol-
ume of each node p and each solid control angle ΔΩmn deriving the following formulation [10] 

 ( )
mn

pmn mn mn mn mn mn
p i ci i s p R p

i

V
I I D A k I S V

c t α σ
ΔΩ

 Δ + Δ = − + + ΔΩ Δ   (2) 

where Vp is the volume of the examined control cell. The source term SR
mn, which includes 

the contribution of the blackbody energy and the scattering phenomenon from other solid con-
trol angles, is expressed as [10] 

 ( )
4

,
4

mn m ns
R b pS k I I m n mn dα

π

σ ω
π

′ ′ ′ ′= + Φ  (3) 

where Φ denotes the Scattering Phase Function. If isotropic scattering is assumed, a constant 
value is assigned to it [18, 22]; alternatively, medium’s anisotropic attitude has to be modelled, 
e.g. using Legendre polynomials (as in this study) [18, 22]. Finally, Dci

mn is the directional 
weight, defined by the examined control angle ΔΩmn and the unit normal vector of the exam-
ined control volume surface, while Ii

mn is the corresponding radiative intensity [10, 11]. For 
its definition the step scheme is adopted in this work, according to which the radiative intensi-
ty at a downstream face is set equal to that of the upstream node; this is expressed for two 
neighboring nodes p and q as [6, 10] 

 , ,
mn mn mn mn mn mn
i ci p ci out q ci inI D I D I D= +  (4) 

where Dci,out
mn denotes the directional weight going outwards the examined control volume 

(of node p), while Dci,in
mn the corresponding weight coming into the same cell [6]. Consider-

ing this scheme, an edge-based data structure is used to reduce the computational load [3]. 
Furthermore, in order to alleviate the overhang problem, derived by the combination of un-
structured grids with the angular division of the computational domain, the pixelation method 
is applied transforming appropriately the aforementioned weights [10, 11]. In that way the 
effect of overlapped directional weights is considerably reduced and the accuracy of the final 
solution is increased. 

For the same accuracy reasons, a higher-order accurate spatial scheme is implemented re-
ducing the effect of false scattering, derived by the spatial discretization of the computational 
field. Particularly, a second-order scheme is used in this work, based on the well-established 
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in CFD MUSCL (Monotone Upstream Scheme for Conservation Laws) methodology [23]. 
Therefore, the values of radiative intensity at the RHS of equation (4) are reconstructed prior 
to the implementation of the step scheme; the required gradients are obtained with the Green-
Gauss linear representation method [10]. Moreover, in order to control the aforementioned 
reconstructed values, especially at boundary areas entailing high intensity gradients, the 
scheme is coupled with the Van Albada-Van Leer [23] or the Min-mod [24] slope limiters [10, 
11]. 

Finally, the appropriate contributions of the boundary conditions are added to the fluxes of 
the corresponding nodes; they are computed in an implicit way applying the step scheme be-
tween the examined node and a ghost node outside the computational field [10, 11]. Opaque 
and diffusive boundary surfaces, as well as mirroring ones are assumed in this study [10, 11]. 

Since the required flux balance has been obtained for each node and each solid control an-
gle, equation (2) is transformed as [10, 11] 

 
mn

pmn mn
p p

V
I R

c t

ΔΩ
Δ =

Δ
 (5) 

where Rp
mn is the fluxes sum, while Δt is the pseudo-time step defined via a local time-

stepping technique [3, 10, 11]. For the iterative relaxation of equation (5) an explicit second-
order temporal accurate scheme, using a four-stage Runge-Kutta method (RK(4)) [25], is em-
ployed. Besides the local time-steeping technique and the edge-based data structures, further 
acceleration of the solution process is obtained with parallel processing, based on the domain 
decomposition approach and the MPI (Message Passing Interface) library functions [18, 26, 
27]. 

3 THE SPATIAL/ANGULAR AGGLOMERATION MULTIGRID SCHEME 

3.1 Spatial/angular agglomeration strategy 

The first issue to be defined for the multigrid accelerated solution of RTE is the agglom-
eration strategy, i.e., the methodology which has to be applied for the generation of the se-
quence of the coarser resolutions. Similar procedures are followed for the construction of both 
the coarser spatial and angular discretizations. They are performed on a topology-preserving 
framework at each partition, in which the initial grid is divided for parallel processing [1, 6]; 
they are confined though by predefined limitations, ensuring consistency of the restriction and 
prolongation processes [1, 6]. 

Concerning the spatial agglomeration strategy, a similar to the advancing front technique is 
implemented, as the whole procedure begins from the solid wall boundary nodes, while it ex-
tends gradually to the internal ones [1, 6]; the starting point is justified by the fact that the 
proposed spatial algorithm was initially developed for CFD simulations [1, 4]. If no such 
boundary nodes are present to the examined sub-grid, the process begins from the core nodes 
at the overlapping regions (among the examined partition and its adjacent ones) [10, 11, 18]. 
As mentioned above, predefined rules limit though this procedure, e.g., a boundary node can 
be merged only with another boundary node of the same surface type, an internal node can be 
fused only with its neighboring also internal nodes, etc. [1, 6]. Taking into account those limi-
tations the isotropic agglomeration procedure begins with the construction of the so-called 
seed list, including the solid wall boundary nodes. A loop is performed over them, examining 
their eligibility for fusion with their adjacent non-agglomerated yet ones; if no constraint is 
identified they are merged with their neighboring ones creating supernodes, while if a limita-
tion exists they are simply transferred to the next multigrid level as singleton supernodes [1, 
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6]. A new list is then constructed including the nodes touched by the agglomeration front, 
which are actually the adjacent ones to the already examined and agglomerated nodes, while 
at next the previous step of examination and fusion is repeated. The procedure is assumed ac-
complished when all the core nodes have been examined. The ghost nodes are not included to 
the main agglomeration process, but they are fused according to the merging path of their cor-
responding core nodes at the adjacent partitions; as a result, virtual ghost supernodes are pro-
duced [1, 6]. The procedure continues with the construction of the corresponding superedges, 
connecting the derived supernodes and representing the interfaces of their control cells. In 
case an even coarser grid is required, the whole process is repeated. Further details for the ap-
plied isotropic spatial agglomeration procedure can be found in [1] and [6]. 

As mentioned in Introduction, the isotropic agglomeration strategy appears to be less effec-
tive in test cases involving hybrid grids, with highly stretched elements (prisms or hexahedra) 
at boundary surfaces [1, 4, 5, 14-17]; the latter are employed in order increased accuracy to be 
obtained at those areas [18]. Thus, a full-coarsening directional agglomeration procedure was 
also incorporated to the proposed algorithm, which is based on the methodology of Nishikawa 
and Diskin [5]. Further modifications have been included though; the agglomeration process 
isn’t limited across the sub-domains’ internal boundaries, allowing virtual ghost supernodes 
to be generated, while an additional limitation prohibits the fusion process of the control cells 
at prismatic layers in order the topology of the initial grid to be preserved more accurately [1]. 
Similarly to isotropic agglomeration, the directional one begins with the construction of the 
initial seed list, containing though the boundary nodes of only the prismatic elements [1, 5]. 
Since they are examined and merged in supernodes, a new list is created, filled with the nodes 
of the next prismatic layer; the latter are fused according to the agglomeration path of their 
corresponding boundary nodes, constructing the so-called implicit lines [1, 5]. The previous 
steps are repeated until all the prismatic nodes have been examined for fusion; the isotropic 
method is applied then for the rest nodes (tetrahedral and pyramidical) [1].  

 
Figure 1: Isotropic and full-coarsening directional agglomeration of a 2D quadrilateral grid. 

7377



Georgios N. Lygidakis and Ioannis K. Nikolos 

Figure 1 illustrates a schematic example of the previously described directional procedure 
(right), compared with this of the corresponding isotropic one (left). It is obvious that direc-
tional agglomeration preserves more accurately the topology of the initial grid; on the other 
hand, the isotropic approach derived a mesh with a topology modified compared to the initial 
one, due to the arbitrary polyhedral control cells it entailed. Further details for the aforemen-
tioned full-coarsening directional agglomeration procedure can be found in [1]. 

As far as the angular agglomeration is concerned, a similar to the spatial strategy is fol-
lowed [6]. For the construction of each coarser resolution, every two successive control angles 
in both azimuthal and polar directions are fused, deriving new solid control superangles. Con-
sidering the equal separation strategy, followed for the division of the initial directional do-
main, each coarser level includes the one quarter of the number of solid control angles of its 
finer one [6]. The procedure is limited though by only one predefined constraint (unlike the 
spatial process), defining that only the control angles belonging to the same quadrant of the 
directional sphere can be fused together [6]. In that way consistency during the restriction and 
prolongation processes is ensured [6]. A more detailed description of the angular agglomera-
tion strategy can be found in [6]. 

3.2 The spatial/angular agglomeration multigrid FAS approach 

As mentioned in Introduction, this study aims to compare different combined spa-
tial/angular agglomeration multigrid schemes for the acceleration of FVM radiative heat 
transfer computations. Particularly, three such schemes have been developed, namely a uni-
form, an alternate and a nested scheme. Their differences focus on the sequence of the spatial 
and angular levels, employed during the V-cycle of the FAS method. The procedures of the 
generation of the successively coarser resolutions (spatial and angular) as well as of the solu-
tion strategy (implementation of the second-order spatial accurate scheme and fix-up method, 
evaluation of directional weights and pixelation coefficients, etc.) are performed in the same 
way for all the developed schemes [6]. 

As far as the uniform spatial/angular agglomeration multigrid scheme is concerned, each 
coarser resolution is constructed by simultaneously coarsening its finer one spatially and an-
gularly. According to the FAS approach, the solution procedure begins with the relaxation of 
equation (5) with the Runge-Kutta method at the initial finest resolution, while at next the 
values of the nodal fluxes and radiative intensity are restricted to the next coarser level as fol-
lows [6]: 
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Actually, a simple summation operator is applied for flux balances, considering both the in-
cluded control cells and solid control angles. The corresponding operator for the values of ra-
diative intensity defines a spatial-angular averaging process instead. Since the restriction 
process is accomplished, a similar to equation (5) relation is relaxed for this level (H,MN); its 
RHS is substituted though by the following value 

 ( ) ( ), , ,
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MN MN MN MN MN MN
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7378



Georgios N. Lygidakis and Ioannis K. Nikolos 

where the first term denotes the fluxes of the agglomerated supernode P computed at this lev-
el (H,MN) similarly to the initial finest one using the previously constructed superedges [1, 6]. 
The forcing function AH

MN includes the restricted fluxes to the supernode P and the fluxes of 
the same node, computed with the restricted values of radiative intensity from the finer resolu-
tion. It is quite obvious that for the first internal iteration of the Runge-Kutta scheme, the RHS 
term equals the restricted from the finer level flux balance, confirming in that way the approx-
imation character of the FAS approach [1, 3, 6]. The aforementioned procedure of relaxation 
and restriction are repeated up to the coarsest generated resolution, while at next the obtained 
corrections are prolonged to the next finer level applying a simple point-injection scheme as 
[1, 3, 6] 

 ( ) ( ) ( ) ( ) ( ) ( ),

,,

l l l lh mnmn mn mn mn MN mn MN MN
p p p p I P p P P restrictedH MN

I I I I I I I I I
+

= + Δ = + Δ = + −  (8) 

The prolongation procedure is repeated similarly up to initial finest level, at which point the 
FAS V-cycle gets accomplished [1]. Figure 2 depicts a schematic representation of the afore-
mentioned uniform method with a V(1,0)-cycle type and two spatial-angular coarser levels. 

 
Figure 2: Uniform spatial/angular agglomeration multigrid cycle. 

It should be highlighted that an equal number of coarser spatial and angular discretizations 
has to be used for the implementation of this approach. However, in most test cases, more 
spatial resolutions than angular ones can be generated [7]; to alleviate this shortcoming the 
coarsest generated angular discretization can be employed for the next coarser spatial levels 
too. 

The alternate spatial/angular agglomeration multigrid scheme defines instead an alternation 
of spatial and angular coarsening at the sequence of FAS levels; as mentioned in Introduction, 
each coarser level is obtained from the finer one by coarsening it either in spatial or angular 
dimension. The whole procedure begins again with the solution of equation (5) at the initial 
finest level (spatially and angularly), while at next the nodal fluxes and radiative intensities 
are restricted to the next spatially coarser grid; no angular coarsening has been performed to 
this level. Since the solution is obtained at this discretization, the derived fluxes and radiative 
intensities are restricted to the next coarser level, provided with angular coarsening only. The 
aforementioned steps are repeated alternatively up to the coarsest resolution (spatially and an-
gularly), while at next the corrections are prolonged accordingly, i.e., alternatively, up to the 
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initial spatially and angularly finest level. The operators, used for the aforementioned pro-
cesses, are the same applied for the only-spatial or the only-angular agglomeration multigrid 
schemes [6]. Similarly to the uniform approach an equal number of coarser spatial and angu-
lar discretizations has to be used for the implementation of this scheme. Figure 3 includes a 
schematic representation of the previously described alternate method with a V(1,0)-cycle 
type and two spatial/angular coarser levels. 

 
Figure 3: Alternate spatial/angular agglomeration multigrid cycle. 

Besides the aforementioned schemes, a nested spatial/angular agglomeration multigrid 
scheme is assessed in this study, originally proposed in [6]. According to this approach, a 
complete angular FAS V-cycle is executed in each level of the spatial FAS V-cycle; the spa-
tial and angular, restriction and prolongation, operators are applied similarly to the only-
spatial and only-angular multigrid schemes [6]. Figure 4 illustrates its schematic representa-
tion, considering a V(1,0)-cycle type and  two spatial/angular coarser levels. More details for 
the implementation of the nested spatial/angular agglomeration multigrid method can be 
found in [6]. 

 
Figure 4: Nested spatial/angular agglomeration multigrid cycle. 
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3.3 FAS V-cycle types 

Different V-cycle types are assessed in this study as well, namely the V(1,0), V(1,1), V(2,0) 
and V(2,1). The first number in parentheses denotes the number of relaxations performed pri-
or to restriction, while the second denotes the corresponding number after the prolongation [1, 
3]. Depending mainly on the implemented iterative procedure, as well as on the encountered 
problem’s nature, various V-cycle types have been reported in the open literature as the most 
appropriate for them [1, 3, 5, 14-17]. For example, if an explicit iterative scheme is applied 
for an inviscid compressible fluid flow simulation a V(1,0)-cycle is usually preferred, while in 
case of a turbulent flow problem along with an implicit method, a V(2,1) appears to be the 
commonly preferred choice [1, 3]. As such, the four aforementioned V-cycle types have been 
incorporated in the proposed solver to study their effect on the code’s computational efficien-
cy. 

3.4 The combined FMG-FAS agglomeration multigrid approach  

A combined FMG-FAS agglomeration multigrid approach was also developed to further 
accelerate the solution procedure of the radiative heat transfer problems [1, 3, 4, 15]. Inde-
pendently of the employed FAS scheme (only-spatial, only-angular, uniform, alternate or 
nested), it considers the division of the whole procedure in two stages, the preliminary and the 
main one [1, 4, 15]. As such, the solution process begins from the coarsest resolution and as 
the number of iterations/cycles is increased the FAS is extended to the next finer level, using 
the derived solution by the coarsest discretization as an initial guess [1]. In that way a cheaper 
initial condition is obtained, compared to the usually used uniform one [3]; for the interpola-
tion of the solution the same single point-injection scheme, used for the prolongation process, 
is applied. The FAS solution process is continued, including only the two coarsest resolutions, 
while as the number of iterations/cycles is increased again, the previous steps are repeated 
adding successively more FAS levels up to the initial finest discretization, at which point the 
preliminary stage ends and the main one begins [1]. For simplicity reasons, in combined spa-
tial/angular agglomeration multigrid schemes, the spatial and angular resolutions are extended 
simultaneously to their finer ones during the preliminary stage (similarly to the procedure fol-
lowed for the uniform approach). Finally, the number of multigrid cycles/iterations performed 
during the preliminary stage may differ depending on the implemented multigrid scheme (on-
ly-spatial, only-angular, uniform, alternate or nested).  

4 VALIDATION RESULTS 

For the evaluation of the efficiency improvement, contributed by the different combina-
tions of the proposed multigrid schemes (i.e., by employing the uniform, alternate, or nested 
scheme, different V-cycle types, and the combined FMG-FAS method), a benchmark test case 
was encountered, considering radiative heat transfer in a cubic enclosure with edge length 
equal to unity [7, 10, 19]. A schematic representation of the cubic geometry is depicted in 
Figure 5. The included cold medium is assumed purely scattering (σs=1m-1, kα=0m-1, Tm=0K). 
The wall surfaces are considered similarly cold (Tw=0K), except for the bottom face at which 
a constant heating energy is implemented (E=1W/m2), while for the bases normal to the y-
direction mirroring boundary conditions are imposed [7, 10, 19]. The computational domain 
is represented by a hybrid grid, composed of 22,500 nodes, 65,480 tetrahedra and 19,460 
prisms; for angular discretization the directional domain is divided in 16 azimuthal and 8 po-
lar angles. Parallel processing was performed on a workstation with an AMD FX(tm)-8350 
eight-core processor at 4.00 GHz, while the initial mesh was divided in two sub-domains. In 
order to alleviate the overhang problem the pixelation method was implemented, while false 
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scattering effect was reduced with the incorporated second-order spatial accurate scheme, 
coupled with the Min-mod limiter [10, 11]. 

 
Figure 5: Geometry of the cubic enclosure. 

Prior of validating the efficiency improvement, the accuracy of the proposed solver was 
assessed. The medium is assumed to exhibit anisotropic scattering behavior, which is mod-
elled with the F2 scattering phase function, based on the Legendre polynomials [18, 19]. Two 
simulations were encountered for the evaluation of solver’s accuracy, in which different val-
ues of wall emissivity εw were assumed, namely 1.0 and 0.1. In Figure 6 the extracted distri-
butions of dimensionless incident radiative heat flux along the A-A line are illustrated, 
compared to the corresponding ones reported by Kim and Lee [19]. It is obvious that a very 
good agreement has been achieved. The second test case (with wall emissivity equal to 0.1) 
required much more computation time, compared to the first one, due to the increased radia-
tion exchange between the discretized solid control angles [7]. Therefore, it was selected in 
order the efficiency evaluation simulations to be conducted with. 

 
Figure 6: Distribution of the dimensionless incident radiative heat flux along the line A-A for two different val-

ues of wall emissivity (εw=1.0 and εw=0.1). 

For the validation of the computational performance’s improvement the radiative intensity 
residual has to be computed at each multigrid cycle k [7] 
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where Np denotes the number of nodes, while Nθ and Nφ the number of polar and azimuthal 
control angles, respectively, all of them regarding the initial finest resolution (spatially and 
angularly). Besides the contribution of the combined spatial/angular agglomeration multigrid 
schemes, developed in this study, this of the only-spatial and only-angular approaches was 
validated too. The notation SxAy, originally proposed in [7], is used in this work as well, 
where x denotes the number of spatial multigrid levels, while y the number of angular ones. 

 
Figure 7: Initial and coarser via isotropic (top) and directional (bottom) fusion surface control-volume grids. 

At the first stage of the evaluation, the incorporated full-coarsening directional agglomera-
tion strategy was assessed. Thus, three successively coarser grids were generated, implement-
ing both the isotropic and the directional agglomeration methodology. Figure 7 illustrates the 
initial and the first-level coarser surface control-volume grids, extracted with both approaches 
(isotropic-top, directional-bottom). It is obvious that the second agglomeration type preserved 
more accurately the topology of the initial grid, while it lead to a more extended reduction of 
DoFs. Contrary to that, the isotropic agglomeration produced arbitrary polyhedral control 
volumes even in the prismatic region, differentiating significantly the topology of the extract-
ed grid from the initial one. The effect of this differentiation is demonstrated in Figure 8, in-
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cluding the radiative intensity convergence history per number of iterations and wall-clock 
time for two only-spatial S4A1 V(1,0)-cycle simulations, implementing isotropic and direc-
tional agglomeration respectively. No significant difference can be identified at the itera-
tions/cycle curve, but the situation is changing at the time curve; particularly, isotropic 
strategy produced a temporal speed-up coefficient equal to ~2.35 for the final residual 1.0E-
10, while directional one equal to ~2.51. Despite a reduction of three or four orders of magni-
tude is usually more than enough for such test cases, speed-up coefficients have been comput-
ed for a final residual value equal to 1.0E-10, in order the contribution of the proposed 
multigrid method to be more clearly demonstrated. 

 
Figure 8: Radiative intensity convergence history per number of iterations and wall-clock time for the only-
spatial agglomeration multigrid scheme, implementing isotropic and directional agglomeration approach. 

The evaluation of the incorporated multigrid schemes was continued with the only-spatial 
and only-angular ones implementing though different V-cycle types, namely, V(1,0), V(1,1), 
V(2,0) and V(2,1). For the implementation of the only-angular as well as of the combined 
spatial/angular schemes, angular coarsening was performed analogously; the initial finest 16-8 
discretization was reduced successively to 8-4 and 4-2. Figures 9 and 10 contain the radiative 
intensity convergence history per number of iterations and wall-clock time of the aforemen-
tioned simulations.  

 
Figure 9: Radiative intensity convergence history per number of iterations and wall-clock time for the only-

spatial agglomeration multigrid scheme employing different V-cycle types. 
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Figure 10: Radiative intensity convergence history per number of iterations and wall-clock time for the only-

angular agglomeration multigrid scheme employing different V-cycle types. 

The V(2,0)-cycle type seems to be the most efficient one, succeeding a time-acceleration rate 
equal to ~3.00 and ~2.67 with the only-spatial and the only-angular multigrid schemes respec-
tively. The V(1,0) is revealed as the next most efficient type, achieving temporal speed-up 
coefficients equal to ~2.51 and ~2.49 with the spatial and angular approach respectively. De-
spite the fact that the only-spatial scheme appears to be more effective than the only-angular 
one in this test case, the speed-up coefficients (extracted with the V(1,0)-cycle type) of the 
only-angular scheme highlight the significance of the proposed angular extension to the mul-
tigrid technique. 

The assessment is continued with simulations implementing the uniform, alternate and 
nested spatial/angular methodologies, along with the aforementioned V-cycle types. For the 
fourth FAS level of the uniform and alternate methods (besides the third one), the coarsest 
angular resolution (4-2) was used as well. Figures 11 to 13 illustrate the radiative intensity 
convergence history per number of iterations and wall-clock time of the aforementioned simu-
lations. The nested scheme along with the V(2,0)-cycle type appears to derive the most effi-
cient simulation, succeeding a temporal acceleration coefficient equal to ~4.21. The V(2,0)-
cycle alternate multigrid approach is revealed as the next most efficient type, with a corre-
sponding coefficient equal to ~3.45. As expected, the aforementioned combined spa-
tial/angular multigrid schemes achieved better temporal rates than the only-spatial or only-
angular approaches. Unlike them, the uniform scheme doesn’t seem to have a significant ef-
fect in the computational performance of the proposed algorithm; actually, it produced worse 
speed-up coefficients, even compared with the only-spatial or only-angular multigrid methods. 
This is attributed to the extreme coarsening, entailed by the simultaneous spatial and angular 
reduction of the corresponding DoFs. Once more the V(2,0)-cycle scheme provided better ac-
celeration coefficients, comparing to the rest V-cycle types, independently of the implemented 
FAS scheme (uniform, alternate or nested). Furthermore, the simulation involving the nested 
scheme with the V(1,0)-cycle type failed to converge; this failure originates possibly from the 
insufficient relaxation of RTE prior prolonging the radiative intensity corrections from the 
angular to the spatial V-cycle. As far as the rest two V-cycle types are concerned, it seems 
that the relaxation after the prolongation process does not contribute to the computational per-
formance improvement; on the other hand, it appears to add just extra computation time. The 
previous state is confirmed from the fact that V(1,1)-cycle type is revealed even slower from 
the V(2,1).  
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Figure 11: Radiative intensity convergence history per number of iterations and wall-clock time for the uniform 

spatial/angular agglomeration multigrid scheme employing different V-cycle types. 

 
Figure 12: Radiative intensity convergence history per number of iterations and wall-clock time for the alternate 

spatial/angular agglomeration multigrid scheme employing different V-cycle types. 

 
Figure 13: Radiative intensity convergence history per number of iterations and wall-clock time for the nested 

spatial/angular agglomeration multigrid scheme employing different V-cycle types. 
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The contribution of the combined FMG-FAS approach was then evaluated for all the in-
corporated multigrid schemes (only-spatial, only-angular, uniform, alternate and nested). Fig-
ures 14 includes the radiative intensity convergence history per number of iterations and wall-
clock time of the aforementioned simulations. Different numbers of iterations/cycles were 
tested for each of the implemented multigrid schemes during the preliminary stage; the most 
efficient results for each approach are presented in the aforementioned figure. The nested spa-
tial/angular and only-angular methods appear to be the most efficient ones, achieving a tem-
poral speed-up coefficient equal to ~4.81. The next more effective scheme is revealed to be 
the alternate one, while the only-spatial one provided the worst results; considering the latter 
observation, the significant contribution of the angular extension of the multigrid technique is 
once more demonstrated.  

 
Figure 14: Radiative intensity convergence history per number of iterations and wall-clock time for different 

combined FMG-FAS agglomeration multigrid schemes. 

5 CONCLUSIONS  

In this work the development and comparison of different spatial/angular agglomeration 
multigrid schemes for the acceleration of FVM radiative heat transfer computations, was re-
ported. It was based upon a previous study of the authors [6, 7], incorporating though further 
enhancements, namely different sequences of spatial and angular coarser resolutions, different 
V-cycle types, a full-coarsening directional agglomeration strategy and a combined FMG-
FAS approach. Based on the results presented in the previous Section, the following conclu-
sions can be extracted: a) Full-coarsening directional agglomeration should be the preferred 
choice in test cases using hybrid unstructured grids. Unlike the isotropic method, the direc-
tional one leads to a deeper reduction of DoFs, while simultaneously it preserves more accu-
rately the topology of the initial grid; as a result a greater efficiency improvement is achieved. 
b) The V(2,0)-cycle type appears to be superior, compared to the rest tested ones (V(1,0), 
V(1,1) and V(2,1)), independently of the implemented FAS scheme (only-spatial, only-
angular, uniform, alternate or nested). Furthermore, the relaxation after the prolongation pro-
cess, defined by the latter two types (V(1,1) and V(2,1)), seems not to contribute at all to the 
computational acceleration. c) The nested spatial/angular agglomeration multigrid approach is 
revealed to be much more efficient than the rest ones, while the next most effective appears to 
be the alternate scheme. d) Considering that the aforementioned schemes derived higher ac-
celeration compared to the only-spatial one, as well as the impressive improvement entailed 
by the only-angular approach, the significant contribution of the angular extension of the mul-
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tigrid technique is confirmed. e) Independently of the implemented multigrid scheme (only-
spatial, only-angular, uniform, alternate or nested), additional acceleration can be achieved 
with the implementation of the combined FMG-FAS approach. 
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Abstract. Predicting loads due to atmospheric turbulence is crucial in the aircraft design and
certification process. Efficient methods are important regarding the large number of simula-
tions needed to cover the parameter space of e.g. Mach number, flight altitude and gust shape.
Since commercial aircraft operate at transonic flight speeds, applied methods should consider
aerodynamic nonlinearities such as shocks and boundary layer separation. Based on a recently
presented method using frequency domain computational fluid dynamics for gust interaction, an
extension towards industry-relevant three-dimensional cases is proposed. Results are shown for
a large civil aircraft solving the Reynolds-averaged Navier-Stokes equations. Complex-valued
surface pressures from time-linearised simulations are compared to nonlinear unsteady time-
marching investigations. Responses to 1-cos gusts are obtained to discuss time histories of load
factors and worst case surface pressure distributions.
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1 INTRODUCTION

Various dynamic response simulations need to be performed in order to achieve aircraft
certification. Fast and reliable prediction tools are required to analyse several different gust
parameters and flight conditions. Furthermore, aerodynamic nonlinearities, e.g. recompression
shocks and shock induced boundary layer separation, should be considered to accurately predict
loads. Current industrial practice is based on potential flow equations, mostly the doublet lattice
method (DLM) [1], which predicts unsteady aerodynamic loads uncoupled from the steady
flowfield. Gust loads are included using a frequency domain sampling and projecting surface
forces on structural modes. While this offers fast predictions throughout the flight envelope,
aerodynamic nonlinearities are neglected. At transonic flow conditions in particular, DLM is
not predicting loads conservatively and thus DLM correction methods or more accurate tools
need to be applied.

Recently computational fluid dynamics (CFD) has become more interesting for loads pre-
diction, offering accurate results also at aforementioned nonlinear conditions. While unsteady
time-marching gust simulations are technically possible also for large configurations [2], they
are currently not feasible in an industrial environment due to overwhelming computational cost.
However, linear frequency domain based methods, also known as time-linearised methods, have
shown large runtime improvements while maintaining the accuracy of the underlying nonlinear
CFD model [3]. More commonly used for forced-motion simulations, an extension towards
gust excitation has been presented recently for the Reynolds-averaged Navier-Stokes (RANS)
equations [4]. Results are shown for an aerofoil at subsonic and transonic flight conditions.
Aerodynamic responses to 1-cos gusts are obtained by superposing several frequency domain
results at discrete frequencies deploying a real-valued weighting function.

First applications for time-linearised methods were demonstrated in the field of turboma-
chinery [5, 6, 7]. Assuming harmonic blade motion of small amplitude, the Euler equations
are linearised around a nonlinear steady-state solution. Solving then for the first harmonic is
offering huge time savings compared to a time-marching approach [8, 9]. Considering external
flows, initial results for an aerofoil are presented in [10]. Forced motion responses are shown
for an aerofoil, wing and an aircraft in [11], while a delta wing under small harmonic oscil-
lations of elastic modes as well as control surfaces is discussed in [12]. Compared to solving
the unsteady nonlinear Euler equations in a time-marching approach, a significant speed-up is
reported throughout, independent of the techniques applied to solve the resulting linear systems
of equations.

Considering the RANS equations, initial work has again been published for turbomachinery
applications [13]. Stall flutter including large separation regions inside a blade cascade is inves-
tigated with good agreement to experimental data. For external flows, analysing forced-motion
responses, time-saving factors between one and two orders of magnitude have been demon-
strated for aerofoils and wings [14, 15]. Regarding a full civil aircraft at cruise conditions
speed-up of nearly two orders of magnitude has been reported [16].

In this paper an application of the linear frequency domain method for gust solving the
RANS equations is demonstrated for a full aircraft configuration including fuselage, wing, tail
and nacelles. Unsteady results are presented for a transonic Mach number after a steady elastic
trimming process. Aerodynamic responses to sinusoidal gusts are compared to their time do-
main counterparts while discussing accuracy and efficiency of both methods. Finally, responses
to several 1-cos gusts, based on international certification requirements, are evaluated in a very
efficient way by exploiting the consolidated frequency domain technique.
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2 METHODS

The nonlinear governing equation in semi-discrete form is written as

ẇ = R(w, vg) (1)

where w is the state-space vector of unknowns, R denotes the nonlinear residual corresponding
to the unknowns and vg describes external disturbances due to gusts.

The difference between an equilibrium solution w0 and the instantaneous state-space vector
w is introduced as

∆w = w− w0 (2)

and accordingly for external disturbances. A first order Taylor expansion is used to express the
residual in Eq. (1) around the equilibrium point assuming small pertubations

∆ẇ = R(w0, vg0) +
∂R
∂w

∆w +
∂R
∂vg

∆vg (3)

where A = ∂R
∂w denotes the Jacobian matrix. The first term on the right-hand side of the latter

equation is by definition zero and equivalent to the nonlinear steady flow solution that accounts
for aerodynamic nonlinearities.

Subsequently, the system is transferred into frequency domain assuming the disturbance
vector ∆w and external excitation vector ∆vg change harmonically in time. After rearranging,
Eq. (3) becomes

(A− iωI) ŵ = −Ξ(ω)
∂R
∂vg

v̂g (4)

with ŵ and v̂g as complex-valued Fourier coefficients.
The response to an arbitrary time domain signal is obtained by superposing frequency do-

main responses with the complex-valued weights denoted Ξ(ω) 1. In Fig. 1 the time and fre-
quency domain representations for three different excitation types are shown. While the sinu-
soidal excitation only needs one single frequency domain solve, the two other signals affect
an infinite range of frequencies. Comparing the 1-cos and pulse excitation it can be seen that
the pulse omits zero amplitudes, making it possible to excite all frequencies of interest with a
single unsteady time-marching simulation. Obtained frequency domain results are then used to
reconstruct the time history of the loads by applying an incomplete inverse Fourier transform.
Furthermore, it is also possible to get the time history of the complete flowfield.

The right-hand side in Eq. (4) can be modified by applying the chain rule. Neglecting the
weighting factor Ξ(ω) it becomes

∂R
∂vg

v̂g =
∂R
∂ẋ

∂ẋ
∂vg

v̂g (5)

where ẋ denotes artificial mesh velocities applied to model the gust during the CFD calculation
using the field velocity approach [17]. Since the relation between gust disturbance vg and
artificial mesh velocity ẋ is simply

ẋ = −vg (6)

1Compared to previously presented work in [4] this paper applies complex-valued weighting functions. While
resulting in a slightly different analytical gust expression, this offers a further improvement in terms of computa-
tional efficiency since samples at discrete frequencies can be re-used to reconstruct an arbitrary time signal.
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(a) Time domain (b) Frequency domain

Figure 1: Excitation representation in time and frequency domain

Eq. (5) becomes
∂R
∂vg

v̂g = −∂R
∂ẋ

v̂g (7)

The derivative in Eq. (7) is computed using a finite difference evaluation, applied around the
equilibrium point, with a known gust shape vector v̂g. Thus Eq. (7) becomes

∂R
∂vg

v̂g =
R(+εvg)− R(−εvg)

2ε
(8)

with ε denoting the finite difference step size. Two additional residual solves are necessary to
construct the right-hand side before solving the linear system, while forming and storing the
matrix ∂R

∂ẋ explicitly can be avoided.
Furthermore, an analytical description for the gust vector is introduced as

v̂g(x, ω) = vgze
iϕ(x,ω) (9)

where vgz and ϕ(x, ω) are the constant gust amplitude in z-direction and the phase shift at every
mesh point, respectively. The phase shift can either be obtained from a Fourier analysis of the
time domain signal or more elegantly using the analytical expression

ϕ(x, ω) = (x + x0)ω (10)

where x0 represents the distance between gust and aircraft. The relation between the angular
frequency ω and gust length of interest Lg is simply

ω =
2πU∞
Lg

(11)

with U∞ as freestream velocity. Similar expressions can be derived for horizontal gusts by
considering the corresponding amplitude and modifying the phase shift accordingly.

Results are produced using the DLR-TAU code [18] solving the RANS equations in con-
junction with the Spalart-Allmaras turbulence model [19]. Fluxes are discretised applying the
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Jameson-Schmidt-Turkel scalar artificial dissipation scheme [20]. Steady-state solutions are ob-
tained utilising the backward Euler method with LU-SGS iteration [21]. For steady-state as well
as unsteady simulations a 2v multigrid scheme is employed. Nonlinear time-marching solutions
are computed using dual time-stepping of second order accuracy considering 128 steps per pe-
riod. In addition, a Cauchy convergence criterion with an abort value of 10−8 for the relative
error on drag coefficient is used to speed-up nonlinear time domain simulations. Gusts are intro-
duced by adding an artificial mesh velocity during each time step which is prescribed according
to the investigated gust shape [17]. Convergence for all linearised systems is achieved with a
preconditioned generalised conjugate residual solver with deflated restarting [22]. For precon-
ditioning a block incomplete lower upper factorisation of the approximate Jacobian matrix A
with zero level of fill-in is applied [23]. The number of Krylov vectors necessary to solve each
linear system is chosen based on engineering judgement and the guidelines published in [22],
resulting in 100 vectors of which 20 are part of the deflated restarting process.

3 RESULTS

Results considering a large civil aircraft encountering either sinusoidal or 1-cos gusts are pre-
sented. First, convergence behaviour of the linear system is analysed and the influence of the
finite difference step size ε is assessed. Then, several frequency domain gust responses at dif-
ferent frequencies are compared to corresponding nonlinear time domain simulations to outline
the capability of the method for complex three-dimensional geometries. Therefore, complex
surface pressure distributions are evaluated as well as representative sections on the wing and
elevator. Finally, different 1-cos gust signals, chosen according to international certification
requirements, are discussed. Besides time histories for the load factor nz, also instantaneous
surface pressure distributions corresponding to maximum load factor are reconstructed.

The investigated test case is a civil aircraft with a wingspan of approximately 60 m including
elevator and fin. The computational mesh comprises nearly 8 million points of which 130,000
are on the surface. During the steady-state simulation at transonic flight conditions an elastic
trimming is performed so that the lift balances the weight and zero pitching moment occurs.
Elastic effects are captured using the first 94 structural modes while rigid-body modes are ne-
glected. The trimming process is based on Broyden’s method and adjusts angle of attack and
elevator deflection iteratively until the desired coefficients are reached. Within each iterative
trimming step, surface loads are calculated and the elastic deformation is updated accordingly.
Subsequently, the density residual is driven to converge seven order of magnitude. The result-
ing surface shape in comparison to the undeformed aircraft is shown in Fig. 2(a). The most
amplified structural modes are first wing bending and first wing twist, causing a decrease in
sectional lift towards the wing tip. The corresponding surface pressure distribution is displayed
in Fig. 2(b) with a strong shock visible along the wing span at roughly 70% chord length. On
the elevator a suction area around the leading edge, but no shock formation, is present.

3.1 Investigation of Numerical Accuracy and Computational Cost

The convergence behaviour of the frequency domain solve is investigated first. A gust length
of Lg = 100 m and an amplitude of 0.01% of the freestream velocity is chosen to ensure a
dynamically linear response. While the linearity criterion can be relaxed as shown in Sec. 3.2,
it is selected here to demonstrate the exact reproduction between time and frequency domain
results. The convergence of the density residual, shown in Fig. 3(a), together with the magnitude
of the lift coefficient normalised by its final value, confirms that even for this complex geometry
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(a) Deformed and undeformed surface (b) Steady surface pressure distribution

Figure 2: Deformed surface and steady-state surface pressure coefficient for civil aircraft

(a) Density residual and |CL| over iterations (b) Influence of finite difference step size ε

Figure 3: Numerical investigation of frequency domain gust approach

it is possible to converge to machine precision. The lift coefficient remains unchanged once the
residual has converged four orders of magnitude. If only integrated loads are of interest, this
offers time savings of additional 50% compared to aiming for full convergence. Subsequently,
the abort criteria of six orders of magnitude based on the density residual is used, resulting in
converged solutions for integrated loads as well as surface pressures.

The influence of the finite difference step size ε for forming the right-hand side in Eq. (8) is
analysed next, investigating the same test case. The magnitudes of lift and pitching moment,
presented in Fig. 3(b), are both normalised so that they converge towards one for small ε. Be-
low ε = 10−3 both coefficients are independent of the step size, while larger step sizes cause
magnitudes to increase with a higher impact on the moment. A step size of 10−4 is then used
throughout, ensuring results are independent of the step size.

The proposed method is validated at several frequencies by comparing frequency response
functions of lift coefficient between time domain (TD) and linear frequency domain (LFD).
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(a) Magnitude of lift frequency response function (b) Phase of lift frequency response function

Figure 4: Complex-valued frequency response functions of lift for time and frequency domain

Instead of producing time domain solutions separately for each frequency of interest, a pulse
signal is used to excite all frequencies at once with one unsteady simulation. Then, a Fourier
transform of the unsteady lift coefficient is performed and resulting complex-valued Fourier
coefficients are weighted by the Fourier transform of the input signal. The amplitude of the
excitation during the unsteady simulation is set to 0.01% of the freestream velocity, ensuring a
linear dynamic response. Good agreement between time and frequency domain is observed for
the magnitude normalised using the quasi steady result and phase of lift coefficient as can be
seen in Figs. 4(a) and 4(b).

For a further validation complex-valued surface pressure distributions are compared between
both methods for a gust length of Lg = 100 corresponding to a reduced frequency of about
0.073. While the frequency domain results are readily available after the linear system is solved,
time domain solutions are generated in a similar fashion like the transfer function of lift coeffi-
cient. During the time-marching simulation the instantaneous surface pressure distributions are
stored and then used in a Fourier transform. Results for the starboard wing are visualised in
Figs. 5(a) and 5(b) for magnitude and phase with solid and dashed lines denoting time and fre-
quency domain solutions, respectively. Good agreement between both methods at all locations,
even at severe flow topologies, is obtained. The highest amplified region is around the shock at
70% chord length on the upper surface again with no differences between the simulations. Also
around the wing-pylon junction, causing complex flow topologies due to vortices, excellent
agreement is observed. Some minor discrepancies arise between the wing-fuselage junction in
magnitude as well as phase. In Figs. 5(c) and 5(d) results are compared for the elevator and fin
with similar good agreement. Highest magnitudes are located around the leading edge caused
by the suction area since no shock formation is present. The phase is nearly constant on the
elevator but shows large gradients near the trailing edge and during the transition from elevator
leading edge to fuselage.

Values are extracted from the wing and elevator surface to compare time and frequency
domain results in more detail, the locations of which are indicated by black lines in Fig. 5.
Pressure magnitudes are scaled by the maximum value of the corresponding section while the
x-axis is normalised by the local chord length. The first location is at 75% semi wingspan and
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(a) Magnitude on starboard wing (b) Phase on starboard wing

(c) Magnitude on tail (d) Phase on tail

Figure 5: Complex-valued surface pressure with solid and dashed lines as time and frequency domain solution,
respectively. Black lines show location of extracted sections

contains complex-valued pressures around the strong shock on the upper surface. Results for
magnitude and phase are shown in Figs. 6(a) and 6(b) with good agreement. A small offset
at the shock location is observed for phase with values being slightly overpredicted by the
frequency domain method. For the second section at 32% semi wingspan magnitude and phase
are compared in Figs. 6(c) and 6(d), respectively. Even in such complex flow situation due to the
junction of wing, pylon and nacelle both methods are in excellent agreement. As in the previous
section, similar behaviour can be seen for phase with small differences on the wing around the
shock location. The third slice at 75% semi elevator span is displayed in Figs. 6(e) and 6(f).
In contrast to surface pressures on the main wing, no shock formation is present, resulting in
maximum values around the suction area instead. As before, a nearly perfect agreement for
magnitude between both methods is found, while minor differences for phase occur around the
trailing edge since the time-marching simulation is predicting a slightly steeper gradient.
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(a) Magnitude at 75% semi wingspan (b) Phase at 75% semi wingspan

(c) Magnitude at 32% semi wingspan (d) Phase at 32% semi wingspan

(e) Magnitude at 75% semi elevatorspan (f) Phase at 75% semi elevatorspan

Figure 6: Complex-valued pressure distributions at wing and elevator sections
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(a) Load factor time history (b) Absolute surface pressure difference

Figure 7: Time responses to several 1-cos gusts and absolute pressure differences for Lg = 116 m

In terms of computational cost, obtaining a single frequency domain response is about two
orders of magnitude faster than the corresponding time domain solution. However, the memory
required to solve the linear system increases compared to a time-marching approach. While
an unsteady RANS simulation needs to be performed for each set of parameters separately,
complex-valued frequency domain results can be used in a weighted incomplete inverse Fourier
transform to reconstruct time responses of integrated values as well as the whole flowfield in a
rapid manner. For gust excitation it is advisable to precompute around 15 discrete frequencies
to investigate an arbitrary time domain signal e.g. 1-cos gusts. The resulting computational cost
is still one order of magnitude below a single unsteady investigation while offering results for
all dynamic gust responses at the defined flight condition.

3.2 Application According to Certification Requirements

After the investigation of numerical accuracy and computational efficiency presented above,
the frequency domain gust approach is used to predict dynamic responses to 1-cos gusts in an ef-
ficient way. The linear system is solved at 15 reduced frequencies between 0 and 0.6. Responses
to 1-cos gusts are obtained by applying a complex-valued weighting function as discussed in
Sec. 2. The chosen gust lengths are Lg = 18 m, 116 m and 214 m with amplitudes as defined
by the European Aviation Safety Agency in CS 25.341 [24]. Load factors are reconstructed and
visualised in Fig. 7(a) for all three gust lengths. For the shortest gust length of Lg = 18 m ex-
cellent agreement between both methods is observed. With increasing gust length also the gust
amplitude is growing, causing dynamically nonlinear responses near the maximum load factor.
Since the frequency domain approach assumes a dynamically linear response, reconstructed
load factors are slightly overpredicted for gust lengths of Lg = 116 m and 214 m. The absolute
surface pressure difference for Lg = 116 m at maximum load factor is displayed in Fig. 7(b).
The highest error occurs around the shock foot since nonlinear shock motion and a nonlinear
amplitude decrease arises during the time-marching simulation. Minor differences around the
leading edge at the stagnation line are also caused from the same amplitude mechanism.
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4 CONCLUSIONS

This paper outlines a method for efficiently computing the aerodynamic response to gust
encounter for industry-relevant test cases. The Reynolds-averaged Navier-Stokes equations are
linearised to obtain responses to sinusoidal gust excitation, a method previously presented for
aerofoils. Arbitrary time domain signals such as 1-cos gusts can be simulated using a complex-
valued weighting in combination with superposition of responses at discrete frequencies. Com-
putational cost is reduced by more than two orders of magnitude compared to equivalent un-
steady nonlinear time-marching simulations.

The method is applied to a large civil aircraft including flow through engines, elevator and fin
at transonic cruise conditions. The steady-state 1g flight shape is generated through an iterative
elastic trimming procedure. Responses at various frequencies are compared to a pulse excita-
tion, validating the method at all frequencies of industrial interest. Complex surface pressure
distributions are discussed with good agreement on the wing and tail globally as well as in spe-
cific wing and elevator sections. Finally, characteristic 1-cos gusts are reconstructed and results
are matched to time-marching simulations. Although results are produced for a very complex
geometry including pylon and nacelles, an excellent agreement between the time and frequency
domain methods is obtained. This includes the global lift coefficient as well as surface pressure
distributions, thus demonstrating the maturity of the method.

Work to extend the method to generate a reduced-order model for the three-dimensional test
case is currently in progress. Also, it is desirable to incorporate nonlinear aerodynamic effects to
increase the accuracy of predicted loads further at transonic conditions. In addition, introducing
structural and rigid-body motions in the response simulation is desirable to account for elastic
surface deformation and changes in the flight path during the aircraft gust interaction.
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Abstract. This paper presents the implementation of a non-reflecting boundary condition for
steady and unsteady turbomachinery flow computations. Here, the truncation of the computa-
tional domain can lead to spurious numerical reflections due to artificial open boundary sur-
faces. To face this issue, Giles introduces a popular set of non-reflecting boundary conditions
for turbomachinery applications. Whereas the steady formulation is exact within the lineari-
sation approach, Giles suggests an approximate boundary condition for unsteady simulations.
Resulting from this approximation, the unsteady boundary conditions are not perfectly non-
reflecting. Thus, steady and time averaged unsteady flow solutions do not necessarily coincide,
even if the flow field contains no unsteadiness.

We suggest a single boundary condition formulation suitable for steady and unsteady sim-
ulations. This approach applies a modal decomposition and, thus, undesired incoming modes
can easily be ruled out. Steady modes can be handled as in the steady case. Apart from the
assumptions made by starting from the linearised, two-dimensional Euler equations, this ap-
proach does not require any further approximation, and, therefore, the time-averaged unsteady
and the steady solutions coincide in the limit of steady flows.

We apply and assess the presented boundary condition in steady and unsteady computations
of two turbomachinery test cases.
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1 INTRODUCTION

Computational fluid dynamics (CFD) based upon the Reynolds-averaged Navier-Stokes equa-
tions (RANS) has become a vital tool for both design of and research on turbomachinery ap-
plications in the aerospace, energy and automotive industries. Steady computations remain the
backbone of industrial design processes especially due to their extensive utilization in shape
optimization methods. Unsteady turbomachinery flow simulations, on the other hand, attain
increasing importance for understanding blade row interactions which is needed to achieve
higher aerodynamic loads and closer blade row spacings to meet the desire for more efficient
and lighter engines. Moreover, these design trends require additional activities in fluid dynamics
related disciplines like aeroelasticity and aeroacoustics, which again heavily rely on unsteady
CFD [1, 2].

The quality of flow simulations depends, beside the choice of an appropriate closure model
for the RANS equations and the properties of the numerical scheme, directly on the boundary
conditions imposed. Straightforward far-field or simple 1D characteristic boundary conditions
can lead to spurious, numerical reflections deteriorating the flow solution inside. Thus, many
aerodynamic problems, such as the flow around an airfoil or wing, are commonly simulated in
very large computational domains to minimise the impact of the far-field boundary conditions
on the region of interest.

In turbomachinery flows, however, this is usually not possible. Firstly, instead of the whole
machine, only single components or certain sets of stages or blade rows are considered which
leads to artificial, open boundaries rather close to the blades. Additionally in steady turboma-
chinery CFD, adjacent blade rows in their respective relative frames of reference are coupled
via so-called mixing planes [3]. These mixing planes pose boundary conditions to the adja-
cent domains which strengthens the need for non-reflecting boundary conditions (NRBC) in
turbomachinery applications.

Numerical reflections, that emerge when applying less advanced boundary conditions, can
disturb the flow field in the neighbourhood of a blade leading to an incorrect surface pressure
distribution and hence aerodynamic work or losses. We will give an example for this later in the
application section. In particular, reflecting boundary conditions can deteriorate the prediction
of aeroelastic or aeroacoustic phenomena as shown by Kersken et al. [4] and Ashcroft and
Schulz [5].

The mathematical theory of non-reflecting boundary conditions is presented in a review pa-
per by Hidgon [6]. Based upon this theory, Giles introduces a set of NRBC for 2D turboma-
chinery flows [7, 8]. Giles’ approach assumes wavelike perturbations around an average flow
state. Thus, the linearised Euler equations are considered neglecting viscous effects. Trans-
forming these perturbations into the spectral, i.e. time and wavenumber, domain and exploiting
an eigenvector analysis, one obtains a set of modal perturbations and their respective direction
of propagation. This decomposition enables the definition of a flow state at the boundaries
that does not induce undesired incoming perturbations. The straightforward implementation
of these NRBC requires the frequencies and wave numbers of all perturbations at the bound-
ary to be known. Due to the Fourier transform applied here, these boundary conditions are
non-local in time and space. Therefore, Giles suggests an approximate boundary condition for
unsteady computations derived from theoretical work of Engquist and Majda [9]. This boundary
condition is derived from a Taylor series expansion about the ideal one-dimensional boundary
condition and, thus, is local in time and space apart from the fact that it requires averaged quan-
tities. A more detailed description of the implementation of these boundary conditions is given
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in [10]. Saxer and Giles present an extension of the non-local, steady NRBC to 3D flows [11].
However, resulting from the approximation, Giles states the unsteady boundary conditions

may produce significant unphysical reflections for outgoing modes with large circumferential
wavenumbers [8]. Accordingly, steady solutions obtained utilizing the exact steady NRBC and
time averaged unsteady flow solutions may differ even for naturally steady flows. Hagstrom
proposes a higher order approach for the approximation of unsteady NRBC [12]. This method
is local in time but employs a Fourier transform in space. Henninger et al. [13] apply it to
acoustic and aeroelastic turbomachinery test cases and demonstrate improved non-reflecting
properties compared to Giles’ boundary condition.

To overcome the inconsistency of steady and unsteady NRBC and ensure their comparability
in steady and time-accurate turbomachinery flow simulations, the authors propose a boundary
condition formulation suitable for both. This approach applies a modal decomposition in time
and circumferential direction. Thus, the zeroth harmonic in time can be handled by a steady
boundary condition. Disturbances of higher harmonics are treated independently. Accordingly,
undesired incoming modes can easily be ruled out. Apart from the assumptions made by starting
from the linearised, two-dimensional Euler equations, this approach does not require any further
approximation, and, therefore, the time-averaged unsteady and the steady solution coincide in
the limit of steady flows.

In this paper, we firstly outline the theory behind NRBC and the approximation made by
Giles. Subsequently, we present the implementation of an exact method and apply it to steady
and unsteady turbomachinery computations. In order to validate our implementation of this
boundary condition in DLR’s 3D RANS solver for internal and turbomachinery flows, TRACE,
we give a comparison to characteristic and 2D non-reflecting steady boundary conditions and
approximate unsteady 2D NRBC. Thereby, the favourable behaviour of the exact method is
demonstrated.

2 NON-REFLECTING BOUNDARY CONDITIONS

Before presenting our implementation of an exact boundary condition, we want to give a
brief overview of one way to construct non-reflecting boundary conditions in the context of tur-
bomachinery CFD as they are implemented in TRACE. A more elaborate description including
the mathematical derivation and well-posedness analysis is given in Giles’ technical report [7]
and implementation details can be found in his UNSFLO report [10].

2.1 General approach

For many turbomachinery flows we can assume that variations in pitchwise direction pre-
dominate variations in spanwise direction [11]. Thus, we can adapt Giles’ originally two-
dimensional formulation for three-dimensional flows as a reasonable approximation. Here, the
original technique is applied in blade-to-blade planes, i.e. the coupling of planes of constant
relative channel height is neglected.

Let q = (%, u, v, w, p) be the vector of primitive variables with density %, pressure p and ve-
locity components u,v and w aligned such that u is normal to the boundary but in flow direction
whilst v and w point along the boundary in pitchwise and spanwise direction, respectively. For
the construction of non-reflecting boundary conditions we further consider sufficiently small
perturbations around a mean flow state. So we can linearised the three-dimensional Euler equa-
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tions in primitive form neglecting changes in spanwise direction:

∂q

∂t
+ A

∂q

∂x
+B

∂q

∂y
= 0 (1)

with

A =


u % 0 0 0
0 u 0 0 1/%
0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u

 and B =


v 0 % 0 0
0 v 0 0 0
0 0 v 0 1/%
0 0 0 v 0
0 0 γp 0 v

 (2)

Overlined variables denote mean flow conditions and γ represents the ideal gas heat capacity
ratio. In the following, we only consider wave-like perturbations of the form

q = Re
(
q̂ ei(kx+my−ωt)) (3)

where x is again normal to the boundary in flow direction and y is aligned with the boundary in
pitchwise direction. Note that the latter is the circumferential direction in rotational turboma-
chinery flows. Then k and m denote wave numbers along x and y, respectively, with angular
frequency ω. Though this approach seems rather restrictive, we can in fact assemble any flow
state by superposition of these fundamental perturbations within the linearised theory. Substi-
tuting (3) into equation (1), we obtain:

(−ωI + kA+mB) q̂ = 0 (4)

With nontrivial solution q̂, this yields the dispersion relation

det (−ωI + kA+mB) = 0 (5)
or rearranged

det
(
−ωA−1 + kI +mA−1B

)
= 0. (6)

Assuming we know ω and m, equation (6) can be interpreted as a characteristic polynomial to
the eigenvalue problem (

−ωA−1 +mA−1B
)
r = −kr (7)

with eigenvalues −k and right eigenvectors r. The 3D linearised Euler equations yield a char-
acteristic polynomial of degree five. Accordingly, there are five eigenvalues−ki regarding their
possible multiplicity. Analogously, we introduce a set of left eigenvectors li satisfying

li
(
−ωA−1 +mA−1B

)
= −kili. (8)

Note that the left eigenvectors are row vectors whereas the right eigenvectors are column vec-
tors.

In order to derive non-reflecting boundary conditions from these mathematical considera-
tions, it is helpful to clarify the physical interpretation of the left and right eigenvectors. As
mentioned earlier, we can decompose any solution q into a sum of single Fourier modes q̂, each
with distinct values of ω and m. Each of these modes is again a set of five fundamental waves
with same ω and m but (possibly) different k. Since the wave numbers normal to the boundary,
ki, are the negative eigenvalues of (−ωA−1 +mA−1B), they allow us to distinguish whether
the corresponding waves propagate into or out of the computational domain.
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Daniel Schlüß, Christian Frey, Graham Ashcroft

The change in primitive variables induced by such a wave is expressed by the respective right
eigenvector ri. In other words, the right eigenvectors form a set of linearly independent basis
vectors and every perturbation from a mean state can be decomposed into a linear combination
of right eigenvectors with weights αi :

q = Re

([
5∑
i=1

αirie
ikix

]
ei(my−ωt)

)
(9)

For different eigenvalues ki 6= kj , each left eigenvector li is orthogonal to rj , i.e. lirj = 0.
For eigenvalues of multiplicity larger than one, the corresponding eigenvectors can be con-
structed such that lirj = 0 for i 6= j. Because of this perpendicularity relation, the left eigen-
vectors help us to determine the share of their corresponding right eigenvector in any arbitrary
perturbation, i.e. αi = liq̂. So the pivotal idea for the construction of non-reflecting boundary
conditions is to decompose the flow state at a boundary and rule out the incoming waves. This
can be done by requiring for any combination of ω and m

liq̂ = 0 (10)

for each li belonging to an incoming wave .
Applying the above to the three-dimensional linearised Euler equations, we obtain the fol-

lowing wave numbers:

k1,2,3 =
ω −mv

u
(11)

k4 =
(ω −mv) (aΨ− u)

a2 − u2 (12)

k5 = −(ω −mv) (aΨ + u)

a2 − u2 (13)

with speed of sound a and

Ψ =

{√
∆ if ∆ > 0,

−i sign (ω −mv)
√
−∆ if ∆ < 0

(14)

and

∆ = 1− (a2 − u2)m2

(ω −mv)2
. (15)

The wave numbers k1,2,3 are real and the group velocity normal to the boundary ∂ω
∂k

= u is
positive. Thus, the respective perturbations r1,2,3 propagate convectively in flow direction. They
are incoming waves at an inflow boundary and outgoing ones at an outflow. The calculation
of k4 and k5 requires the distinction of two cases. If ∆ > 0 then Ψ is real. For flows that
are subsonic normal to the boundary it can be shown that one wave is incoming and one is
outgoing. Taking the positive branch of the root yields the wave corresponding to k4 also
propagates in flow direction whereas the other one travels in the opposite direction. If ∆ <
0, Ψ becomes complex. We choose the sign of Ψ such that Im(k4) is real and, according to
equation (3), the corresponding wave propagates downstream, which is consistent with the case
∆ > 0. The wave associated with k5 then again travels upstream. In the particular case of
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∆ = 0, acoustic resonance occurs, which involves additional challenges for the construction of
boundary conditions [4, 14]. But this case is not considered in the present work.

For flows that are supersonic normal to the boundary, there is no upstream running wave.
Yet, there are only very few axially supersonic turbomachinery applications and, secondly, su-
personic inflow and outflow boundary conditions are rather straightforward and can be found in
many textbooks on CFD (e.g. [15]). Hence, this paper does not consider boundary conditions
for normally supersonic flows.

To write down the eigenvectors and formulate boundary conditions based upon them, it is
convenient to define

λ =
m

ω
. (16)

The matrix of right eigenvectors R = (r1 r2 r3 r4 r5) is defined by:

R (λ) =


−% 0 0 %(1−(1−vλ)MaxΨ)

2(1−Max)
%(1+(1−vλ)MaxΨ)

2(1+Max)

0 a uλ 0 a(1−vλ)(Ψ−Max)
2(1−Max)

−a(1−vλ)(Ψ+Max)
2(1+Max)

0 a (1− vλ) 0
a2(1−Ma2x)λ

2(1−Max)

a2(1−Ma2x)λ
2(1+Max)

0 0 a 0 0

0 0 0 % a2(1−(1−vλ)MaxΨ)
2(1−Max)

% a2(1+(1−vλ)MaxΨ)
2(1+Max)

 (17)

with Max denoting the boundary normal Mach number. From this, the significance of each
right eigenvalue becomes apparent. As r1 only affects the density, it constitutes an entropy
perturbation. The second and third eigenvectors represent vorticity disturbances in the blade-
to-blade plane and in spanwise direction, respectively. Since ω−mv

u
is a triple eigenvalue of the

dispersion relation (6), the determination of r1, r2 and r3 is not unique. However, choosing
them this way yields a physically vivid set of eigenvectors and their required orthogonality
is evident at once. The two remaining eigenvectors correspond to upstream and downstream
running acoustic perturbations, i.e. isentropic, irrotational pressure waves.

The left eigenvector matrix can be derived likewise. Another possibility to obtain the left
eigenvector matrix is to invert the right eigenvector matrix:

L =


l1
l2
l3
l4
l5

 = R−1 =


−1
%

0 0 0 1
% a2

0 −uλ
a

1−vλ
a

0 −λ
% a

0 0 0 1
a

0

0 1−vλ
a

uλ
a

0 (1−vλ)Ψ

% a2

0 −1−vλ
a

−uλ
a

0 (1−vλ)Ψ

% a2

 (18)

Due to the fact that there is one outgoing wave at an inflow and four outgoing waves at an
outflow, we need to extrapolate outgoing perturbations from the interior. To do so, we define
characteristic variables c = (c1 c2 c3 c4 c5)T such that these characteristics coincide with the
weights αi in equation (9) for plane waves running perpendicularly to the boundary. Note this
is the case if m = 0 or equivalently λ = 0. Hence, the forward and backward transformations
are given by

c = L1d q (19)
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with

L1d = L(0) =


−1
%

0 0 0 1
% a2

0 0 1
a

0 0
0 0 0 1

a
0

0 1
a

0 0 1
% a2

0 − 1
a

0 0 1
% a2

 (20)

and
q = R1d c (21)

with

R1d = R(0) =


−% 0 0 %

2
%
2

0 0 0 a
2
−a

2

0 a 0 0 0
0 0 a 0 0

0 0 0 % a2

2
% a2

2

 . (22)

2.2 Steady boundary conditions

The boundary condition generally consists of two steps, i.e. mean flow conditions and cir-
cumferential perturbations are treated separately. As changes in the mean flow represent plane
waves at the boundary, we can directly express them by changes in the 1D characteristics. In the
following, we write down inflow and outflow boundary conditions by means of characteristics
in a compact form, so equations for in- and outflow boundaries are only given separately where
necessary. For this purpose, we separate the left and right eigenvector matrices and their cor-
responding characteristics depending on the direction of propagation of their associated waves.
In normally subsonic flows, the first four waves propagate downstream and the fifth one runs
upstream. Accordingly, we write for an inflowLin

Lout

 =


l1
l2
l3
l4
l5

 (23)

 cin

cout

 =


c1

c2

c3

c4

c5

 (24)

(
Rin Rout

)
=

(
r1 r2 r3 r4 r5

)
(25)
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and for an outflow Lout
Lin

 =


l1
l2
l3
l4
l5

 (26)

cout
cin

 =


c1

c2

c3

c4

c5

 (27)

(
Rout Rin

)
=

(
r1 r2 r3 r4 r5

)
. (28)

To meet the boundary values specified by the user, we define a residual vector for both inflow
and outflow boundaries

Rbd =




p(s− sbd)

% a (v − u tan(αcirc,bd))

% a (w − u tan(αrad,bd))

%(ht − ht,bd)

 for inflow boundaries

(
p− pbd

)
for outflow boundaries

(29)

Here, the subscript bd denotes user specified boundary values. Since for turbomachinery flows,
the user commonly specifies stagnation pressure and stagnation temperature at an inflow bound-
ary, the associated specific entropy s and specific stagnation enthalpy ht need to be calculated
from the former. The angles αcirc and αrad represent the angles between the velocity vector and
the boundary normal in pitchwise and spanwise direction. Mixing planes can be covered by
defining analogously

Rbd = Lin1d δqmp (30)

with δqmp being the difference between the flow states at each side of the mixing plane in the
same frame of reference.

To meet the boundary values specified by the user or mixing plane, the required change of
characteristics is obtained via a Newton-Raphson step:

Rbd +
∂R

∂q

∂q

∂cin
δcin = 0 (31)

Note that ∂q
∂cin

is the backward transformation of the incoming characteristics, Rin
1d. The deriva-

tion of the residual Jacobian ∂R
∂q

can be found in [10]. For the adaption of Giles’ original
boundary condition to a cell-centred solver, where the boundary condition is applied between
two pseudo-time updates, we also need to modify the update of the mean charactersistics at the
faces due the pseudo-time change of the outgoing characteristics in the interior [16]. We define
another residual

Ri = Lout1d (qf − qi) (32)
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where subscripts i and f denote inner cell values and face values, respectively. Note that the
inner values have already been updated by the pseudo-time solver whereas face values are still
about to be updated by the boundary condition. Finally, the update of mean characteristics reads

δc = −L1d

[
Rin

1d

(
∂R

∂q
Rin

1d

)−1

Rbd +Rout
1d Ri

]
(33)

To apply the actual non-reflecting boundary condition, we perform a Fourier decomposition
of the disturbances about the mean flow along the boundary in the pitchwise direction. The
spatial transformation for any quantity φ reads

φ̂i =
1

P

∫ P

0

φ̃ e−imi y dy. (34)

with wave numbers mi = 2πi+θ
P
6= 0, pitch P , inter-blade phase angle θ and local deviation

from the average state φ̃ = φ − φ. Note that θ vanishes in steady computations. Accordingly,
the backward transformation is given by

φ̃ = Re

(
∞∑

i=−∞

φ̂i e
imi y

)
. (35)

In order to attain non-reflecting properties at the boundary, equation (10) must be satisfied for
every mode with mi 6= 0 and ω = 0. We can scale the second to fifth left eigenvectors by ω and
then set ω to zero. Consequently, the left eigenvector matrix for steady boundary conditions
reduces to

Ls =


−1
%

0 0 0 1
% a2

0 − u
a2
− v
a2

0 −1
% a2

0 0 0 1
a

0

0 − v
a2

u
a2

0 β
% a3

0 v
a2

− u
a2

0 β
% a3

 (36)

with

β =

{
i sign(m)

√
a2 − (u2 + v2) for u2 + v2 < a,

−sign(v)
√

(u2 + v2)− a for u2 + v2 > a.
(37)

We can express the actual boundary condition, equation (10), in terms of characteristics which
is helpful to write the overall boundary update as a sum of mean characteristic changes and
local changes. Note that the outgoing characteristics have to be extrapolated from the interior.

Lins q̂ = Lins
(
Rin

1d L
in
1d q̂f +Rout

1d L
out
1d q̂i

)
= Lins

(
Rin

1d ĉ
in
f +Rout

1d ĉ
out
i

)
= 0 (38)

The above equation yields ideal values for the incoming characteristics as a function of the
outgoing ones. To meet the ideal values, the required changes in the characteristic at an inflow
boundary is given by 

δĉ1

δĉ2

δĉ3

δĉ4

δĉ5

=


−ĉf,1

−β+v
a+u

ĉi,5 − ĉi,2
−ĉf,3(

β+v
a+u

)2
ĉi,5 − ĉf,4

ĉi,5 − ĉf,5

 . (39)
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Accordingly, the outflow boundary condition reads
δĉ1

δĉ2

δĉ3

δĉ4

δĉ5

 =


ĉi,1 − ĉf,1
ĉi,2 − ĉf,2
ĉi,3 − ĉf,3
ĉi,4 − ĉf,4

2u
β−v ĉi,2 −

β+v
β−v ĉi,4 − ĉf,5

 . (40)

Subsequently, these characteristic changes can be transformed from the wavenumber domain
back into the physical domain according to equation (35) yielding a local change of the charac-
teristics δc̃.

For supersonic (u2+v2 > a2), but normally subsonic (u < a) flows, β andLs are independent
of m according to equations (36) and (37). Hence, no Fourier transformation is required and
equations (39) and (40) can be applied directly at each face substituting any ĉ by c̃. Note that
the steady, supersonic boundary conditions become local boundary conditions in this case apart
from their dependence on averaged quantities.

Prescribing no incoming perturbations means that entropy and enthalpy are uniform along
the inflow boundary only within the linearised theory, but second-order perturbations may still
occur. Thus, we replace the condition for δc̃1 and δc̃4 in the physical domain and instead enforce
uniform entropy and enthalpy by locally driving the following residual(

R̃1

R̃2

)
=

(
p s̃

%h̃t

)
(41)

to zero. This can be done by means of a Newton-Raphson step(
R̃1

R̃2

)
+

(
γR
γ−1

p 0 0
γ
γ−1

p % a v %
2

(a2 + a u)

)δc̃1

δc̃2

δc̃4

 = 0 (42)

where R denotes the specific gas constant. The resulting condition for the update of c̃1 and c̃4

reads (
δc̃1

δc̃4

)
=

(
−γ−1

γR
s̃

−2
a(a+u)

(
h̃t + s̃

γR
a2 + a v δc̃2

)) . (43)

We further have to determine the integral change of characteristics due to circumferential
perturbations because the mean flow boundary conditions already ensure that averaged flow
quantities match the boundary values specified by the user or the mixing plane. Accordingly,
we have to subtract the integral change afterwards in order to guarantee the mean change of
characteristics is not affected by the treatment of perturbations. For this purpose we introduce

δc̃ =
1

P

∫ P

0

δc̃ dy. (44)

Finally, the overall update of a boundary face can be written as

δq =
[
σRin

1d

(
δcin + δc̃in − δc̃in

)
+Rout

1d

(
δcout + δc̃out − δc̃out

)]
. (45)

The relaxation factor σ, which needs to be chosen suitably in the range of 0 to 1, is necessary to
retain the well-posedness of the mathematical problem [7]. For the application in a cell-centred
solver, the updated face values have to be extrapolated appropriately to the ghost cells.
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2.3 Approximate unsteady boundary conditions

To overcome the disadvantage of the straightforward, exact unsteady NRBC being spatially
and temporally non-local, Giles proposes an approximate, local unsteady boundary condition
[7]. This approach has been introduced by Engquist and Majda for general wave equations [9],
but Giles applied it to two-dimensional linearised Euler equations in general and turbomachin-
ery flows in particular.

As in steady boundary conditions, the averaged flow field and perturbations are handled
separately. The mean flow boundary condition is identical to the steady mean flow boundary
condition except that averaged quantities in the residual (29) are additionally averaged in time
rather than only circumferentially. Unsteady turbomachinery flows are (within the framework of
RANS) considered to be periodic and, therefore, temporal averaging means averaging a quantity
over one period in this context.

The actual approximate boundary condition, however, handles perturbations from the mean
state. The condition for a (hypothetically) perfectly non-reflecting boundary treatment has been
discussed in section 2.1. But the universal application of equations (10) and (18) requires the
decomposition of the boundary flow field into the Fourier domain. To avoid this costly trans-
formation, the central concept is to express the exact unsteady boundary condition by use of
a Taylor series expansion about the one-dimensional characteristic boundary condition. Recall
from equation (16) that λ → 0 and from equations (15) and (14) that Ψ → 1 in the one-
dimensional case due to vanishing circumferential wave numbers m. Then, the second order
approximation of the left eigenvector matrix L reads

La = L|λ=0 + λ
∂L

∂λ

∣∣∣∣
λ=0

= L1d +
m

ω

∂L

∂λ

∣∣∣∣
λ=0

. (46)

Now the boundary condition Lina q̃ = 0 can be rearranged starting with multiplying by ω. Com-
paring equations (1) and (4), we can infer that we can replace ω by i ∂

∂t
and m by −i ∂

∂y
yielding

Lin1d
∂q̃

∂t
− ∂Lin

∂λ

∣∣∣∣
λ=0

∂q̃

∂y
= 0. (47)

Giles’ shows his original formulation may become ill-posed at inflows [7]. To face this ill-
posedness, he proposes a modification by giving up the perfect orthogonality of l4 and r5 and
thereby the condition for perfect non-reflecting behaviour. A multiple of (λ l2,1d) is added to
la,4 such that la,4 r5 is minimized under the constraint of the inflow boundary condition being
well-posed. Expressing q̃ in terms of characteristics, we can again extrapolate the outgoing
characteristic c̃5 from the interior and obtain the following inflow boundary condition

∂

∂t

c̃1

c̃2

c̃4

+

v 0 0
0 v 1

2
(a+ u)

0 1
2

(a− u) v

 ∂

∂y

c̃1

c̃2

c̃4

+

 0
1
2

(a− u)
0

 ∂c̃5

∂y
= 0. (48)

The outflow boundary condition is already well-posed in its original formulation and, thus,
remains unchanged. It reads

∂c̃5

∂t
+ v

∂c̃5

∂t
+
(
0 1

2
(a+ u) 0

) ∂
∂y

c̃1

c̃2

c̃4

 = 0. (49)
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As the characteristic c3, representing vorticity perturbations in spanwise direction, is decoupled
in this quasi-three-dimensional approach, this characteristic is treated as a convective perturba-
tion and, hence, extrapolated appropriately.

The appropriate numerical method to solve these differential equations at the boundaries
depends on the solution methods for the flow equations in the interior. The solution algorithm
applied in TRACE is presented in [5]. The primitive variables at the boundary and in the ghost
cells are reconstructed from the change of characteristics in the same manner as in the steady
boundary conditions.

Due to the chosen approach, to express the left eigenvector matrix by a Taylor series expan-
sion of order two in λ, this boundary is only perfectly non-reflecting for planar waves impinging
normally upon the boundary. In general, the boundary conditions become more reflecting with
increasing λ. Accordingly, flows with large circumferential wave numbers and flows that are
dominated by low frequency perturbations can induce spurious reflections at the boundary. The
non-reflecting properties of the inflow boundary condition are further diminished by the mod-
ification to gain well-posedness. Details on reflections coefficients can be found in [7] and
applications to two-dimensional pressure-waves in uniform mean flow assessing the reflection
properties are presented in [17].

A first order approximation of these boundary conditions is also implemented in TRACE. In
the application section of this paper, both boundary conditions are applied and compared to the
exact approach. Note that the first order approximation can also be regarded as a characteristic,
one-dimensional boundary condition.

2.4 Exact NRBC

It can be difficult to distinguish between the impact of approximate, unsteady boundary con-
ditions and actual unsteady effects when comparing unsteady and steady flow simulations. The
authors rank direct comparability of steady and unsteady computations as highly desirable in
order to asses unsteady flow phenomena in turbomachinery design and research. Therefore,
we do not consider Fourier transforms in time and space to be necessarily circumvented due
to their computational effort. The fundamental concept of the exact boundary conditions is
applying condition (10) to any incoming mode of the spatially and temporally decomposed
boundary flow field. For this purpose, we first determine the temporal Fourier decomposition
at the boundary according to the approach He proposed in the context of his phase lag method
[18]. For the implementation in TRACE, the reader is referred to [19]. The choice of considered
harmonics is analogous to the phase lag set of harmonics. From here on, we distinguish tem-
porally Fourier transformed quantities, denoted by subscript ω, and circumferentially Fourier
transformed quantities, denoted by subscript m. For simplicity, this has been omitted up to
this point. The temporal Fourier coefficients q̂ω are again expressed in terms of characteristic
variables ĉω = L1dq̂ω. For each frequency in the Fourier domain, the flow can also be Fourier
transformed along the boundary according to equation (34) and the respective outgoing charac-
teristics are again extrapolated from the interior characteristics ĉout(ω,m),i . The exact non-reflecting
boundary condition for every mode, i.e. for every combination of ω and m, reads

Linq̂(ω,m),f = Lin
(
Rin

1d ĉ
in
(ω,m),target +Rout

1d ĉ
out
(ω,m),i

)
= 0. (50)

L no longer needs to be approximated because ω andm are known in this context. The condition
for updating the incoming modal characteristics is

δĉin(ω,m) =
[
−
(
LinRin

1d

)−1
LinRout

1d ĉ(ω,m),i

]
− ĉin(ω,m),f . (51)
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The outgoing characteristic is modified according to

δĉout(ω,m) = ĉout(ω,m),i − ĉout(ω,m),f (52)

The mean flow q̂0,0 is treated in the same manner as in the steady or approximate unsteady
boundary condition according to equation (33).

Transforming δĉ(ω,m) back into the physical domain, we obtain face-wise, harmonic charac-
teristics δĉω(y). The change of primitive variables at each face is relaxed again:

δq̂ω = σR1dδĉω (53)

Subsequently, the boundary states can be extrapolated to the ghost cells in the frequency do-
main. Finally, the current ghost cell state is reconstructed by means of an approximate, inverse
Fourier transform, again exploiting the phase lag functionality in TRACE [19].

Due to its universal approach, this boundary condition is suitable and consistent for both
steady and unsteady simulations. Beyond, this approach is perfectly consistent with the non-
reflecting boundary condition for frequency domain methods, presented by Frey [20, 21], which
is rather favourable to compare unsteady time-domain computations and frequency domain
computations. Chassaing and Gerolymos [17] demonstrate the advantageous reflection prop-
erties towards Giles’ approximate boundary conditions for certain acoustic waves in uniform
mean flow. Yet, they observe considerably slower convergence. This is considered by the au-
thors of this paper to be due to the issue of temporal Fourier coefficients evolving rather slowly
over possibly many periods, which is a known handicap of the phase lag approach.

3 APPLICATION

To validate our implementation of the exact boundary conditions and asses their non-reflecting
properties, we show their application to two turbomachinery test cases. The behaviour of the
exact NRBC is compared to steady NRBC, first and second order approximate NRBC and sim-
ple, one-dimensional, steady Riemann boundary conditions. For the description of Riemann
boundary conditions, the reader is referred to [15].

When discussing boundary conditions for turbomachinery flows, the appropriate definition
of a mean state is not trivial. This issue has been excluded from the theory section to stick to the
actual subject of non-reflecting boundary conditions. In the following applications, however,
all mean flow states are obtained by flux averaging [10] along the pitch and additionally in time
for unsteady flows.

All computations are performed on structured grids using DLR’s finite-volume 3D RANS
solver TRACE [22, 23] applying Roe’s upwind scheme [24] extended to second order accu-
racy through van Leer’s MUSCL extrapolation [25] and an appropriate limiter function for
convective fluxes. Viscous fluxes are computed based on gradients obtained by a central finite
difference scheme in combination with Wilcox’s linear eddy viscosity turbulence model [26].
For steady simulations a first order implicit pseudo-time marching technique is employed. The
same pseudo-time method is used for subiterations of single time steps in unsteady computa-
tions.

3.1 VKI LS89

The first test case is a two-dimensional, linear turbine cascade designed and investigated at
the von Karman Institute for Fluid Dynamics. The airfoil is typical of high pressure turbine
nozzle guide vanes. A detailed description can be found in [27].
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(a) exact NRBC
steady computation

(b) steady NRBC
steady computation

(c) 1D Riemann
steady computation

(d) exact NRBC
unsteady computation

(e) 2nd order approx. BC
unsteady computation

(f) exact NRBC
steady computation
long domain

(g) steady NRBC
steady computation
long domain

Figure 1: Pseudo-Schlieren images obtained by plotting density gradient magnitude (black corresponds to large
gradients)

All calculations are carried out for a supercritical operating point with 415 K stagnation
temperature and 147500 Pa stagnation pressure at the inlet and 78000 Pa static pressure at the
outlet. The inflow is purely axial. Steady computations are conducted applying one-dimensional
Riemann boundary conditions, steady NRBC and exact NRBC.

Unsteady computations apply the second order approximate boundary conditions and the
exact NRBC. The base frequency is set to 6100 Hz. The underlying assumption is that a down-
stream rotor blade with the same pitch faces purely axial flow in its relative frame of reference
at this blade passing frequency. Therefore, this frequency is estimated to have a realistic or-
der of magnitude for turbomachinery flows. One period is resolved by 64 time steps using a
second order Euler backward scheme. For every physical time step, 25 pseudo-time iterations
are performed. Though we perform unsteady computations, both solutions converge to a steady
state.

Inlet and outlet planes are located at 50 % axial chord length away from the leading and
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training edge. The computational grid comprises 21016 cells. Furthermore, we conduct steady
computations with axial spacing between boundaries and the blade of 300 % axial chord length
applying steady and exact NRBC to produce reference results. The extended grid comprises
36668 cells.

In figure 1, the magnitude of the density gradients is plotted for all computations in order to
mimic the Schlieren flow visualization technique. The flow around the airfoil is supercritical,
characterised by a shock close to suction side trailing edge impinging upon the exit boundary
of the short computational domain. The flow field predicted employing the steady (Fig. 1b)
and exact NRBC (Fig. 1a) in steady computations as well as the exact NRBC in an unsteady
computation (Fig. 1d) agree qualitatively with the reference results obtained from steady com-
putations in the long domain applying both steady (Fig. 1g) and exact NRBC (Fig. 1f). The
shock position, in particular, is well captured.

x [m]

p 
[P

a]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

60000

90000

120000

150000

steady NRBC / steady 
exact NRBC / steady
exact NRBC / unsteady
2nd order approx BC / unsteady
Riemann BC / steady
steady NRBC (long) / steady
exact NRBC (long) / steady

Figure 2: Blade pressure distribution

However, the solution obtained by Riemann boundary conditions (Fig. 1c) shifts the shock
slightly upstream and diminishes its intensity. In the flow field resulting from the unsteady com-
putation employing the second order approximate boundary condition (Fig. 1e), a distinct shock
is not visible. This behaviour becomes more apparent in figure 2. Blade pressure distributions
of all simulations are compared. The figure shows that the approximate boundary condition
“smears out” the shock leading to a different suction side pressure distribution and, thus, aero-
dynamical load. Similarly, the Riemann boundary condition leads to a comparable error in the
pressure distribution. The shift and weakening of the shock is evident here as well. Accord-
ingly, an accurate prediction of integral forces, flow turning, performance and losses cannot
be expected for this type of flow from the approximate boundary condition and the Riemann
boundary condition.
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The pressure distributions of all other computations coincide almost perfectly. Yet, in the
very vicinity of the shock, all short domain computations deviate slightly from the reference
results of the long domain. But among themselves, the exact and steady NRBC short domain
results agree very well.

3.2 Transonic compressor rig

The second test case is a single-stage, transonic compressor rig of the Darmstadt University
of Technology [28]. Steady and unsteady computations are performed for the aerodynamic de-
sign point. At a rotational speed of 20000 revolutions per minute the compressor achieves a
stagnation pressure ratio of about 1.5 for a massflow of 16.3 kg/s. In order to conduct unsteady
computations efficiently, the stator is scaled to 32 blades per row, which enables simulations
having two stator blades and one rotor blade (16 blades per row) with equal pitch. The compu-
tational grid contains 254728 cells.

Figure 3: Computational model of the Darmstadt transonic compressor rig

Steady computations employ the mixing plane approach for blade row coupling [3], which
is conservative due to its formulation based upon flux averaged quantities. Several computa-
tions are conducted applying one-dimensional Riemann boundary conditions, steady and exact
NRBC. Unsteady computations utilize a conservative, non-matching interface [29] and a third
order implicit Runge-Kutta time discretization scheme with 64 time steps per segment passing
period. At each time step, 25 pseudo-time iterations are performed. First and second order
approximate boundary conditions are applied as well as steady and exact NRBC.

Figure 4 shows the impact of boundary conditions on integral flow quantities in the compres-
sor. The one-dimensional Riemann boundary conditions lead to an increase in the massflow of
approximately 0.16 % compared to all other computations and 0.03 percentage points increase
in isentropic efficiency towards steady computations employing steady and exact NRBC. This
deviation is not huge, but significant in the context of turbomachinery performance analysis.
All other solutions agree well regarding massflow and stagnation pressure ratio.

In particular, the steady and the exact NRBC predict abutting operation points and efficien-
cies. The shift in efficiency from steady to unsteady calculations can be explained from the
inherently different mechanisms of loss production in steady and unsteady computations. Since
any non-uniformity is mixed out in the mixing plane, this approach is known to overestimate
losses in turbomachinery flows [30].

Considering the unsteady calculations, the influence of the chosen boundary condition on the
operating point and performance is rather small. This might lead to the conclusion that steady
boundary conditions can properly be applied in unsteady computations.
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(a) Stagnation pressure ratio over massflow (b) Isentropic efficiency over massflow

Figure 4: Operating points for steady and unsteady computations employing different boundary conditions
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Figure 5: Unsteady blade pressure distribution along the 80 % relative mass flow streamsurface (complex Fourier
coefficient of first harmonic)

However, even in the case of similar integral values, like massflow or efficiency, the flow field
may still differ noticeably. The unsteady blade pressure distribution of the stator is depicted in
figure 5. The plot shows the complex amplitude of pressure associated with the first harmonic
(i.e. the segment passing frequency) along a stream surface that is defined such that 80 % of the
overall massflow run through the passage below this stream surface. Due to artificial reflections
arising when steady boundary conditions are applied in unsteady flows, the steady NRBC lead
to a significantly different unsteady pressure distribution. The Exact NRBC and approximate
NRBC yield comparable, but not perfectly matching unsteady pressure distributions.

Chassaing and Gerolymos demonstrate the good non-reflecting properties of the exact NRBC
applied to unsteady flows with uniform underlying mean flow [17] whereas the derivation of
the steady NRBC depends on the assumption of a steady flow field. Thus, it can be assumed
that the exact NRBC provide a better prediction of the unsteady pressure field than the steady
boundary conditions do. Since unsteady pressure fluctuations play a key role for aeroelastic
and aeroacoustic phenomena, the inaccurate prediction of the unsteady pressure field can be
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detrimental especially for these disciplines. Thus, the steady NRBC is not suitable for unsteady
flows.

4 CONCLUSIONS

We have implemented an exact formulation of non-reflecting boundary conditions in TRACE,
which is neither limited to steady flows nor suffers from the loss in accuracy raising from the
approximation of the left eigenvectors. Thus, the presented exact NRBC represents a single
method for both steady and unsteady turbomachinery flow simulations. Moreover, this method
is consistent with the natural formulation of NRBC in frequency domain methods. However,
the limitations arising from the linearisation of the quasi two-dimensional Euler equations still
hold.

We have demonstrated the strong non-reflecting properties of the exact NRBC in two test
cases. The steady flow in a two-dimensional supercritical, highly loaded turbine cascade is cap-
tured well. We observe good agreement with the non-reflecting steady NRBC as well as with
reference solutions obtained on a larger domain. Moreover, the solution coincide when switch-
ing to unsteady simulations. This behaviour is advantageous compared to the combination of
steady and approximate, unsteady boundary conditions since the flow field predicted employing
the approximate unsteady NRBC varies significantly from the steady solution obtained employ-
ing steady NRBC. Note that no unsteadiness is observed in the unsteady solutions. So the
change cannot be explained by unsteady effects.

The application to a transonic compressor stage showed that the exact method is capable
to predict the operating point and performance in good agreement with the steady boundary
condition. In contrast, less advanced one-dimensional Riemann boundary conditions diminish
the solution quality in both test cases and are, therefore, considered inferior in turbomachinery
flows.

We further demonstrated, that steady NRBC applied in unsteady computations do not neces-
sarily predict significantly different integral quantities such as performance data or the operating
point. However, in time resolving simulations, the steady NRBC lead to reflected waves that
propagate through the domain and, possibly, pollute the simulation of unsteady flow phenom-
ena.

In summary, the exact NRBC perform very satisfactory in both test cases. However, the
lagged convergence properties due to the challenging determination of temporal Fourier co-
efficients may limit the range of practical applicability. Thus, investigations on this issue are
needed to further improve convergence speed and robustness.
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[16] S. Robens, C. Frey, P. Jeschke, E. Kügeler, A. Bosco, and T. Breuer, “Adaption of Giles
non-local non-reflecting boundary conditions for a cell-centered solver for turbomachinery
applications,” in Proceedings of ASME Turbo Expo 2013, 2013.

7421
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Abstract. The simulation of gust responses is a crucial task in the design and certifi-
cation process of a new aircraft. Moreover, if high accuracy is desired, the computational
cost can be overwhelming. Linear frequency-domain methods have previously shown sig-
nificant reduction in computational cost for motion-induced aerodynamics as well as for
gust excitations. Time-domain signals are reconstructed by a superposition of responses
at several discrete frequencies. Rather than using the frequency-domain method directly,
a reduced order model is constructed projecting the time-depending linearised Reynolds-
averaged Navier-Stokes equations on a basis obtained by proper orthogonal decomposition.
The resulting small-sized ordinary differential equations for the modal coefficients are inte-
grated in time. Results are presented for a two-dimensional NACA 0012 aerofoil covering
sub- and transonic conditions including a case with shock-induced separation. Responses
due to 1-cos as well as to sharp-edged gusts are compared between the reduced order model
and its non-linear full order counterpart showing time histories of the lift coefficient and
worst case surface pressure coefficients.
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1 Introduction

Gust load analysis is a key task during design and certification of new aircraft. Simu-
lations have to be performed for a huge number of parameter combinations varying e.g.
Mach number, altitude, load factor and gust length. The industrial process currently re-
lies on linear potential methods, such as doublet lattice, which are commonly corrected by
quasi-steady data either obtained from wind-tunnel experiments or computational fluid
dynamics (CFD) simulations. Since corrections are commonly introduced only at zero
frequency, deviations occur at higher frequencies important for shorter gust lengths and
unsteady transonic effects – such as resonance behaviour and inverse shock motion – and
cannot be captured accurately [1]. Additionally, this approach requires a mapping be-
tween the surface representations of the different methods which can become complicated
for industrial cases.

In the past few years CFD aerodynamics alone have been used to investigate gust
encounter. Examples from simple aerofoils to civil aircraft are available [2, 3, 4]. How-
ever, solving the non-linear Reynolds-averaged Navier-Stokes (RANS) equations in the
time domain is too time-consuming to cover the complete flight envelope. Reduced order
modelling is one alternative to overcome high computational cost. Several approaches are
possible to achieve a reduced order model (ROM) for gust interactions including auto-
regressive methods [3] and eigenvalue realisation [5]. Another model reduction technique
is based on proper orthogonal decomposition (POD) [6], which was, with respect to fluid
dynamics, first introduced to model coherent structures in turbulent flow fields [7]. Snap-
shots are computed with the full order method covering the parameter space of interest
and a small eigenvalue problem is solved subsequently to obtain a reduced linear basis.
The idea of POD using frequency domain sample data was first introduced for the inves-
tigation of a simple twelve-degrees-of-freedom mass-spring-damper system combined with
an incompressible three-dimensional vortex lattice method [8].

Linearised frequency domain (LFD) methods have also proven to retain the RANS
accuracy at significantly reduced computational cost for forced motion simulations [9].
The RANS equations are linearised around a steady state and then solved in the frequency-
domain. Moreover, this method was combined with the POD technique for a pitch-
plunge aerofoil [10]. An extension to three-dimensional cases, generating snapshots for
all structural modes of interest, has also been presented [11]. Recently, this approach
was extended towards gust responses and a ROM is presented [12]. The LFD method is
first used to generate snapshots of sinusoidal gusts while varying the reduced frequency.
Afterwards, a reduced basis is computed using the POD approach and the linearised
RANS equations are projected onto the subspace resulting in a small linear system per
gust frequency.

In this paper, the approach is modified to solve the projected equations in the time
domain to simulate non-periodic excitation, such as 1-cos and sharp-edged gusts more
efficiently. Moreover, a time-domain ROM offers the additional advantage to couple
the system with a controller for gust load allevation. Viscous results are shown for the
NACA0012 aerofoil including non-linearities such as transonic shock waves and boundary
layer separation. Responses are compared between the reduced order model and its non-
linear full order counterpart showing time histories of the lift coefficient and worst case
surface pressure coefficients.
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2 Methods

The RANS equations in semi-discrete form read:

dW
dt (t) = R(W(t),vg(t)) (1)

with W denoting the vector of fluid unknowns, vg the external excitation due to a gust
encounter and R the non-linear residual function. Separating the variables into a steady
and a time-dependent part:

W(t) = W + W̃(t)

and expanding eq. (1) around this steady state in a Taylor series yields:

dW̃
dt (t) = R(W, 0) + ∂R

∂W
W̃(t) + ∂R

∂vg

ṽg(t) + H.O.T.

Since W is the steady state, R(W, 0) is very small and can be omitted. The linear
equation for the perturbations is obtained by neglecting all non-linear terms:

dW̃
dt (t) = ∂R

∂W
W̃(t) + ∂R

∂vg

ṽg(t) (2)

Assuming a harmonic excitation at frequency ω, eq. (2) can be transferred into the fre-
quency domain, yielding the governing equations for the LFD method:[

∂R
∂W

− jωI
]

Ŵ = − ∂R
∂vg

v̂g (3)

Thus a huge, but sparse system of linear equations is obtained relating the Fourier coef-
ficient of the gust excitation v̂g to the Fourier coefficient of the fluid unknowns Ŵ. The
right-hand side vector is computed applying the chain rule:

∂R
∂vg

v̂g = ∂R
∂ẋ

∂ ẋ
∂vg

v̂g

where ẋ is the vector of mesh velocities since the gust is simulated applying the field veloc-
ity method [13]. The equation can be further simplified by the simple relation ẋ = −v̂g.
As for the LFD method for forced motion, the fluid Jacobian matrix ∂R

∂W is computed
analytically, while the influence of the grid velocities in term ∂R

∂ẋ is computed using cen-
tral finite differences. The complex-valued vector v̂g can be calculated by the analytical
expression

v̂g(x, ω) = vgze
jω(x−x0)

with vgz denoting the gust amplitude, x the grid coordinate and x0 a reference point. The
frequency of excitation is defined by

ω = U∞
2π
Lg

with Lg as the gust length and U∞ as the freestream velocity.
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2.1 Proper Orthogonal Decomposition

Snapshots are generated at discrete frequencies with sinusoidal excitation solving the
linearised frequency-domain system given in eq. (3). Solutions Ŵk are stored as columns
in the snapshot matrix S. The POD basis Φ is obtained as a linear combination of
snapshots

Φ = Sνk (4)

where the vector νk is scaled so that vectors in Φ are unit length. The eigenvalue problem

SHSνk = λkνk, (5)

with SHS a symmetric, positive definite matrix, is solved to ensure the best possible
approximation in eq. (4). The relative information content a certain mode λk contributes
to the system, also often referred to as energy, is given by

rk = λk

∑
i

λi

−1

(6)

and can be used to decrease the number of modes further by only considering those with
a high relative information content.

In order to use the POD basis also for a time-domain ROM the POD basis can either
be enhanced by its complex-conjugate or alternatively the complex-conjugate snapshots
are included before calculating the POD basis. The time-dependent expression for the
perturbations in eq. (2) can be reduced to an ordinary differential equation with the
number of degrees of freedom corresponding to the POD subspace:

dq̃
dt (t) = ΦH ∂R

∂W
Φq̃(t) + ΦH ∂R

∂ẋ
ṽg(t). (7)

with q̃ denoting the POD or modal coefficients used to reconstruct the flow solution as

W̃ = Φ q̃.

A backward Euler scheme combined with Newton’s method is used to integrate eq. (7) in
time. The small-sized differential equation is stiff and an explicit time integration scheme
was thus unstable for suitable time step sizes.

The same basis can be used to project the LFD system in eq. (3) onto the POD
subspace as shown in [12]. However, there are two advantages of the time-domain ROM
over the frequency-domain method. First, maximum loads cannot be computed within the
frequency-domain and an additional inverse Fourier transformation has to be performed
to reconstruct the flow field. Secondly, the magnitudes at high frequencies for a 1-cos
gust excitation are negligibly small as seen in Figure 1(b). Therefore, the responses of a
limited number of sinusoidal gust can be computed with a frequency-domain ROM and
superposed according to their participation on a 1-cos gust. High freqencies cannot be
neglected if a sharp-edged gust is considered on the other hand. A frequency-domain
ROM must compute the response for all Fourier coefficients reducing significantly the
efficiency of the method compared to its time-domain couterpart.
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(a) time-domain (b) frequency-domain

Figure 1: Time- and frequency-domain signals of 1-cos (Lg = 10 m) and sharp-edged gust

2.2 Computational Fluid Dynamics Solver

The generation of snapshots to obtain the POD basis as well as the computation of
the full-order reference solution is done with an in-house, semi-meshless Navier-Stokes
flow solver [14, 15] coupled with the Spalart-Allmaras turbulence model [16]. Convective
fluxes are discretised using upwind schemes, specifically the Osher solver for the mean
flow equations [17]. A weighted least squares procedure calculates the gradients of the
flow variables, required for viscous fluxes as well as source terms in the turbulence model.
The steady-state solution is obtained applying a fully implicit backward Euler method
with local time-stepping, while additionally a second order dual-time stepping is utilised
in unsteady time-domain simulations. Linear equations arising from the implicit time
integration and from the full-order LFD system are solved throughout using a restarted
generalised conjugate residual method preconditioned with an incomplete lower-upper
factorisation [18].

3 Results

Results are presented for the NACA 0012 aerofoil using a computational domain dis-
cretised with about 30× 103 points. The point distribution has a structured layer near
the wall to ensure a sufficient boundary layer resolution, seen in Figure 2, while the
farfield distance is set to 50 chord lengths. Comparisons are shown for three different flow
conditions to demonstrate the capability of the ROM for a variety of problems including
sub- (S1) and transonic (T1) cases and an additional case exhibiting a shock-induced flow
separation (T2). Comparisons of the full order model with a frequency-domain ROM are
presented for S1 and T1 in [12]. The Reynolds number based on the chord length is 10
million, while the remaining flow parameters are summarised in Table 1.

The steady pressure coefficients on the surface are shown in Figure 3(a). A recompres-
sion shock can be observed for the transonic test cases T1 and T2. The shock position of
T2 with a higher angle of attack is more upstream than in case T1. Since the shock posi-
tion in attached flow moves downstream with increasing angle of attack, this reverse shock
motion indicates flow separation. In Figure 3(b) the corresponding non-dimensional x-
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Table 1: Main flow parameters of three considered test cases

Case Mach number Angle of attack [deg.]
S1 0.3 0.0
T1 0.8 0.0
T2 0.8 3.0

(a) computational domain (b) computational domain, zoomed-in

Figure 2: Computational domain of NACA 0012

velocity component is visualised. Besides the large supersonic zone, a region with negative
velocities, as expected, can be observed behind the shock.

The ROM is generated using 40 snapshots of sinusoidal gust excitations computed at
reduced frequencies in the interval (0, 2π]. The frequencies are distributed following the
formula given in [12]:

ωk = ω0 + e−k∆ω (8)

with suggested parameters ω0 = 0.0 and ∆ω = 0.25π. The responses to these sinusoidal
gusts are computed with the LFD solver. The relative information content of the POD
modes, i.e. the influence of each mode, and the dominant mode for case T2 are shown in
Figure 4.

A drop of two orders of magnitude within the first 5 modes can be observed in Fig-
ure 4(a) for all test cases. A linear decrease until about the 50th mode can then be found
for both attached-flow cases with a larger gradient in transonic flow. It is interesting
to note, that the slope for the detached-flow case T2 shows a bump between the 10th
and 15th mode and a linear decrease thereafter. This reflects a richer physical content
close to the buffet onset. Since the ordinate is presented in logarithmic scale the linear
decrease indicates the exponential decay of the relative information content. A criteria of∑

k rk = 0.9999 is used for the POD reduction throughout resulting in 29 basis vectors
for case S1, 16 for T1 and 18 for T2.

For the detached-flow test case T2, the pressure’s magnitude of the first POD mode,
i.e. the mode with highest information content of rk = 0.955, is displayed in Figure 4(b).
In addition to the shock region, which is also present for the transonic attached-flow
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(a) surface pressure coefficients (b) x-velocity component for T2

Figure 3: Steady surface pressure coefficients for all cases and non-dimensional x-velocity for case T2

(a) relative information content (b) isobars of first POD mode for T2

Figure 4: Information content of POD modes and isobars of first POD mode for test case T2

case [12], high magnitudes can be observed around the free shear layer. If the shock is
moving, the detached-flow topology changes as well explaining the similar magnitudes in
both regions.

3.1 Responses due to 1-cos gusts

Comparisons of the lift response due to different 1-cos gusts are presented in Figure 5.
The gust lengths are Lg = 10 m and Lg = 20 m with a reference point 10 m upstream of
the aerofoil. The full order reference solutions (FOM) are computed using the non-linear
time-domain solver with a non-dimensional time step of 0.02. For both cases with attached
flow the non-dimensional gust amplitude wg,z = vg,z/U∞ = 10−2 is chosen throughout.
Overall, good agreement can be found between the time-domain ROM and the full-order
reference. For the subsonic case in Figure 5(a) the maximum is slightly overpredicted by
the ROM because of amplitude non-linearities. The influence of the gust amplitude on

7429



R. Thormann, P. Bekemeyer and S. Timme

(a) test case S1 (b) test case T1

(c) test case T2 (d) test case T2 at Lg = 10 m

Figure 5: Change in lift coefficient due to different 1-cos gusts

the lift coefficient is presented in [12] showing a decrease in amplitude of the non-linear
solution compared to a time-linearised solver. The agreement between both methods is
better for the attached-flow transonic case T1. The maximum response in lift coefficient
and the decay afterwards agree well.

The lift response changes significantly for case T2 with shock-induced separated flow as
seen in Figure 5(c) and 5(d), exhibiting a distinct minimum following the global maximum.
This indicates a large influence of an additional frequency, which is known from resonance
peaks in frequency response functions close to buffet onset [19, 20]. Detached-flow cases
are more sensitive concerning the excitation amplitude and its effect is thus analysed in
Figure 5(d). While the global maximum in lift response is almost independent of the
gust amplitude, the subsequent oscillations show a clear influence which diminishes for
non-dimensional amplitudes wg,z ≤ 10−4. At very small amplitudes with wg,z ≤ 10−6, the
solution of the RANS solver becomes inaccurate because of limited machine precision.
In Figure 5(c) the results of the linear ROM are compared to non-linear responses with
a gust amplitude of wg,z = 10−5. The reduced formulation is capable to reproduce the
complex progression of the lift coefficient qualitatively, while underestimating its extrema.
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(a) test case T1 (b) test case T2

Figure 6: Surface pressure coefficients at maximum lift response for Lg = 10 m

In Figure 6, the instantaneous pressure coefficients are presented at the time step
of the maximum lift response for both transonic test cases. For the attached-flow case
T1 an amplitude was chosen yielding visual differences to the steady-state solution in
Figure 3(a). Although amplitude effects can be observed at the shock location, the ROM
prediction agrees well with the corresponding full order solution. The values around the
shock on both surfaces are overpredicted by the linear ROM, caused by the superposition
of the steady-state solution and the POD modes with rather high amplitudes. A smaller
gust amplitude is simulated for the detached-flow case T2 and a plot of instantaneous
pressure coefficients would simply show the steady state. Thus, the normalised difference
to the steady surface pressure coefficient

c̃p = cp(t)− c̄p

wg,z

is displayed in Figure 6(b) instead. Good agreement between both methods is obtained
in the region of separated flow, while the ROM predicts a slightly larger shock peak and
smaller pressure differences around the leading edge.

3.2 Responses due to sharp-edged gust

After simulating responses due to 1-cos gusts, the capabilities of the time-domain
ROM are demonstrated for a gust shape not easily represented by a Fourier series with
a finite number of coefficients. Contrary to a 1-cos gust, a sharp-edged gust excites also
high frequencies, as shown in Figure 1(b). The Fourier series cannot be truncated which
contradicts the application of a ROM in frequency-domain.

Responses to a smoothed sharp-edged gust with a non-dimensional gust amplitude of
10−3 are computed for the three test cases. The step in gust velocity was smoothed with a
linear increase over 1.5 chord length, shown as dotted black line in Figure 7(a), to improve
convergence of the full order model. Results for the same gust shape are then calculated
by the ROM using the same POD basis as for the 1-cos responses. For both attached-
flow cases, the response in lift coefficients shows qualitatively the same progression as
the Küssner function [21]. Excellent agreement can be found between results computed
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(a) attached-flow cases S1 and T1 (b) detached-flow case T2

Figure 7: Change in lift coefficient due to smoothed sharp-edged gust with wg,z = 10−3

by the ROM and the full order model. The response of the subsonic case obtained by
the non-linear flow solver shows minor oscillations which are filtered by the ROM. The
corresponding lift coefficient for the detached-flow case T2, shown in Figure 7(b), differs
significantly exhibiting a maximum and damped oscillations thereafter. This distinct
behaviour can be explained by looking at frequency responses due to pitch motion as
presented in [19, 20] for constant Mach number and increasing angle of attack.

At attached-flow conditions the lift response is similar to predictions by linear potential
theory such as Theodorson [22] starting with a large value at zero frequency and decreasing
monotonically thereafter. However, close to shock buffet onset the quasi-steady derivative
is decreasing significantly, which is the reason for the reduced lift gain after the sharp-
edged gust passed the aerofoil. Moreover, the frequency response function exhibits a local
maximum at the buffet frequency where an eigenvalue of the fluid Jacobian matrix is
weakly damped causing the oscillations in Figure 7(b). The ROM predicts a maximum
at the same time step, but at a smaller value and the lift coefficient oscillates at much
smaller amplitude.

4 Conclusion

The paper describes a time-domain reduced order model based on proper orthogonal
decomposition for gust response analysis. The reduced order model is trained by responses
due to sinusoidal gusts computed with a linear frequency-domain solver. The linearised
Reynolds-averaged Navier-Stokes equations are projected onto the subspace yielding a
small-sized ordinary differential equation for the modal coefficients, subsequently used to
reconstruct the physical solution from the projection basis. Different disturbances such
as 1-cos or sharp-edged gusts can then be predicted at low cost.

Results are presented for the NACA 0012 aerofoil at three different flow conditions
covering sub- and transonic flow without boundary layer separation and a shock-induced,
separated flow. Lift responses of 1-cos gusts with two different wave lengths show an
excellent agreement between the reduced order model and the non-linear, time-domain
full order reference solution for the attached-flow cases. Only a minor difference can be
observed in the subsonic case with the linear reduced order model overpredicting the max-
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imal lift response due to amplitude non-linearities in the full order model. A comparable
good agreement is obtained for the instantaneous surface pressures showing only small
differences around the shock location for the transonic case. The lift responses due to a
sharp edged gust give a progression similar to the Küssner function for both attached-
flow cases demonstrating a good agreement between the considered methods. The lift
response for the test case with shock-induced separation however changes significantly
showing additional oscillations for both gust shapes due to the proximity to an inherent
flow instability. The reduced order model can predict these features qualitatively, while
underestimating amplitudes.

Future work will extend the presented methods to include additional Taylor coefficients
to account for amplitude non-linearities. Moreover, the reduced order model will also be
coupled with a controller for gust load alleviation.
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Abstract. In this paper we discuss the phenomenon of acoustic resonance in the context of non-
reflecting boundary conditions and its impact on the analysis of turbomachinery blade flutter.
Acoustic resonance is observed on the one hand when flutter curves, i.e., the aerodynamic
damping as a function of the interblade phase angle, displays singularities at certain angles.
On the other hand, the implementation of appropriate inlet and outlet boundary conditions
naturally leads to the normal mode analysis of the Euler equations on eiher cylindrical (2D)
or annular ducts (3D). To formulate boundary conditions one typically carries out the normal
mode analysis and thus decomposes the space of normal modes as a direct sum of incoming and
outgoing modes. This decomposition, however, breaks down when the generalised eigenvalue
problem no longer produces a complete set of eigenvectors and one obtains non-trivial Jordan
blocks. Both phenomena are shown to be due to acoustic modes with vanishing normal group
velocity.

The main goal of this paper is to outline how the numerical boundary conditions can be reg-
ularised near acoustic resonance. The impact of this regularisation on the prediction of flutter
stability is then demonstrated. Moreover, we interpret the regularisation as an interpolation be-
tween the exact non-reflecting and the approximative characteristic, one-dimensional boundary
conditions.
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INTRODUCTON

The design of modern turbomachinery increasingly relies on unsteady flow simulations, es-
pecially to avoid engine failure due to blade flutter. Typically, the flutter analysis is based on
the prediction of the unsteady flow response for a forced motion of the blades at various oper-
ating conditions [1]. Usually, this forced motion is defined by the structural displacement, qs,
corresponding to a structural eigenmode ψ,

qs(t, x) = Re [qs
mod(t)ψ(x)] ,

where the modal displacement is the harmonic oscillation

qs
mod(t) = eiωt,

with the angular frequency ω being the eigenfrequency
√
k/m. From the unsteady pressure on

the blade surface one can determine the aerodynamic damping,

δ = −ReWcyc

ω2m
, Wcyc =

∫ 2π/ω

0

∫
Γ

(q̇s
mod(t)ψ(x))H (p(t, x)~n(t, x))dS(x)dt, (1)

and thus estimate if the coupled system is stable at rest. Whereas the real part ofWcyc represents
the net work per period done on the structure by the unsteady flow, the imaginary part of Wcyc

gives rise to the aerodynamic stiffness coefficient

κ =
ImWcyc

ω2m
,

from which a frequency shift of the coupled fluid structure system can be determined. One

Figure 1: Idealised flow domain for the anaylsis of blade flutter

usually considers an idealised flow domain as in Fig. 1, i.e., the interactions with neighbouring
blade rows are neglected.

Under the assumption that the blade row consists of N structurally uncoupled blades, each
eigenmode ψ that one obtains from the structural analysis of one blade, gives rise to the full
annulus modes

(ψ, eiσψ, e2iσψ, . . . , e(N−1)iσψ),
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where the n-th component represents the mode shape of the n-th blade, and σ ∈ [−π, π) is such
that Nσ = 2π. σ is called the interblade phase angle. The integer

Nd =
2π

σ

is called the nodal diameter. A full annulus mode has an interblade phase angle of σ if the
modal displacement of the blade n lags that of blade n + 1 by a time shift of σ/ω. In this case
the unsteady flow response q(t, x) will exhibit the same space time symmetry, i.e.,

q(t, x, r, ϑ+ 2π/N) = q(t+ σ/ω, x, r, ϑ),

Together with (1) one deduces that blade vibrations of different interblade phase angles are
uncoupled. Therefore, one usually computes the aerodynamic damping for each interblade
phase angle. The result is plotted in the so-called damping curve, although, strictly speaking, it
consists of a discrete set of N values.

Interblade Phase Angle
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Figure 2: Aerodynamic damping and stiffness over interblade phase angle for a compressor
blade.

Figure 2 shows the aerodynamic damping and stiffness curves for the academic compressor
test case Standard Configuration 10, cf. [2]. The unsteady flow response is computed using the
time-linearised approach [3, 4]. One observes that the damping appears to be “smooth” except
for a few interblade phase angles.

It is easy to see that the flutter curve corresponds to the discrete Fourier transform of the
influence coefficients, i.e., the modal forces on one blade which are due to the vibration of
another one [5]. In many cases, the influence coefficents decay rapidly as the distance between
two blades of the blade row increases and one obtains smooth flutter curves. For instance, if
the influence coefficients of all but direct neighbours can be neglected the flutter curve can be
approximated rather accurately by a function δ̃(σ) = c0 + c1 cos(σ− σ1), cf. [6]. However, this
may not always be the case, as the spikes and the sudden drops in the curves in Fig. 2 show.
When these singularities are observed near a minimum damping close to zero, the CFD based
prediction of flutter stability becomes questionable, as the infinite slope of the flutter curve
indicates a considerable uncertainty in the damping.
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The occurence of these singularities is due to the phenomenon of acoustic resonance [6]. One
speaks of acoustic resonance if a flow unsteadiness, in this case caused by a vibrating blade, is
resonant with an acoustic wave whose energy does not propagate out of the configuration. As
is well-known, the energy transport of a wave is closely related to its group velocity. For such
a standing wave to be excited it is also necessary that the unsteadiness has the same circum-
ferential wave number (or nodal diameter) as the acoustic mode. Consequently, one observes
acoustic resonance only at certain interblade phase angles. In turbomachinery, acoustic reso-
nance can occur at specific operating conditions. Often the source of the instability unknown.
Alongside blade vibration possible sources of excitation include pressure disturbances due to
the periodic blade passings, rotating instabilities and vortex shedding. For acoustic resonances
observed during turbomachinery experiments, the reader is refered to [7, 8] and the literature
cited therein.

The goal of this work is to study the issue of acoustic resonance in the context of non-
reflecting boundary conditions. When acoustic resonance occurs, there no longer exists a com-
plete set of duct eigenmodes so that the standard formulations of inlet and outlet boundary
conditions (see e.g. [9, 10]) are no longer possible.

The paper is organised as follows. First we revisit the theory of non-reflecting boundary
conditions for the linearised Euler equations. Then we show how to regularise the boundary
conditions by shifting the frequency slightly to the complex lower half plane. This technique has
been used by Moinier and Giles [11] to simplify the determination of the propagation direction
of normal modes computed numerically. We demonstrate the impact of the regularisation on the
prediction of flutter stability by means of a compressor blade. It is shown that the regularisation
has the effect of a mollifier for the flutter curves. Most of the mathematical arguments carry over
to symmetrisable hyperbolic problems. Therefore, we will use general arguments whenever
possible.

We interpret the regularisation as an interpolation between the exact non-reflecting and the
characteristic boundary conditions. Since two-dimensional non-reflecting boundary conditions
are typically used for three-dimensional turbomachinery configurations, we discuss the question
to what extent the results obtained with two-dimensional boundary conditions are representative
in real applications.

1 NON-REFLECTING BOUNDARY CONDITIONS

We consider the Euler equations in Rn in conservative variables q = (ρ, ρU, ρet)

∂q

∂t
+ divF (q) = 0 (1.1)

with the inviscid flux

F (q) =

 ρU
ρU ⊗ U + p Id

ρUht

.
It is well-known that the Euler equations form a symmetrisable hyperbolic system of conserva-
tion laws [12]. In particular, the Hessian of the entropy density, viewed as a function

(ρ, ρU, ρet)→ −ρs,

is a symmetriser, i.e.,

T (q) =

(
∂2(−ρs)
∂qi∂qj

∣∣∣
q

)
i,j
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is symmetric positive definite and T (q)∂F
k

∂q
|q is symmetric for all q and k. Assume that the

computational domain is the half space (−∞, 0)×Rn−1 and that the solution is periodic in the
n−1 tangential variables. Consider the linearised equations at some mean flow conditions, e.g.,
the area average of the conservative variables. Transformation of the linearised equations into
the frequency and wave number domain thus yields a linear system for q̂ω,ξ,(

ω +
∑
k

ξk
∂F k

∂q

)
q̂ω,ξ = 0. (1.2)

The matrix on the left-hand side is symmetric with respect to the inner product defined by T and,
up to a factor i, equals the principal symbol [13]. Its determinant is a homogeneous polynomial
of degree n + 2 in (ω, ξ) ∈ Rn+1, whose zeros form the so-called characteristic variety C ,
cf. [14]. Suppose that at a certain point (ω, ξ) ∈ C the characteristic variety is smooth and that
the lines ξ = const are, near (ω, ξ), transversal to C . Then, the angular frequency ω such that
Eqn. (1.2) has a non-trivial solution, can be written locally as a function of ξ, and the group
velocity is then defined by

vg(ω, ξ) = −∂ω
∂ξ

. (1.3)

The Euler equations for an ideal gas can be rewritten in primitive variables, qprim = (ρ, U, p),

∂qprim

∂t
+
∑
j

Aj
∂qprim

∂xj
= 0

where

Aj = U j Id +

0 ρeTj 0
0 0 ρ−1ej
0 γpeTj 0

 ,

and e1, . . . , en is the standard basis of Rn. The characteristic variety of the linearised Euler
equations is thus given by those (ω, ξ) satisfying

(ω + ξ · U)n((ω + ξ · U)2 − a2‖ξ‖2) = 0. (1.4)

In primitive variables, the convective modes

r1 =

ρ0
0

 , r2 =

 0
ae1

0

 , . . . rn =

 0
aen−1

0

 , (1.5)

together with the acoustic eigenvectors

rn+1 =

 ρ

a ξ
‖ξ‖
γp

 , rn+2 =

 ρ

−a ξ
‖ξ‖

γp

 , (1.6)

thus form a basis of eigenvectors for a given ξ ∈ Rn. The convective modes correspond to the
hyperplane ω + ξ · U = 0, and their group velocity is the flow velocity. The acoustic angular
frequencies and wave numbers lie on the oblique cone (ω+ ξ ·U)2− a2‖ξ‖2 = 0. Observe that
the acoustic angular frequencies are

ωn+1 = −ξ · U − a‖ξ‖, ωn+2 = −ξ · U + a‖ξ‖.
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We note that the acoustic eigenvalues are simple except for ξ = 0.
For the non-reflecting boundary conditions, we consider Eqn. (1.2) as a generalised eigen-

value problem for ξ1. We will denote the tangential parts of vectors by primed variables, so, for
instance,

x = (x1, x′), ξ = (ξ1, ξ
′), A = (A1, A′).

For simplicity we will assume that the flow is normally subsonic,M1 < 1, and that the boundary
x1 = 0 is an outlet of the domain {x1 < 0}, i.e., M1 > 0. The case of an inlet can be treated
analogously. In primitive variables, the generalised eigenvalue problem for ξ1 thus reads(

ξ1A
1 − (−ω − ξ′ · A′)

)
r = 0, (1.7)

with r being a generalised right-eigenvector. Assume that a complete basis of eigenvectors

r1(ω, ξ′), . . . , rn+2(ω, ξ′),

exists for (ω, ξ′), and that the corresponding eigenvalues ξ1 are, at least locally, smooth functions
of ω. Then the boundary conditions can be formulated in terms of the temporal and spatial
Fourier coefficients of the flow along the boundary x1 = 0 as follows. Decompose the Fourier
coefficients q̂ω,ξ′ into normal modes, i.e.,

q̂ω,ξ′ =
n+2∑
j

q̂jω,ξ′,modrj(ω, ξ
′).

The non-reflecting boundary conditions are satisfied if q̂jω,ξ′,mod = 0 for all j such that rj cor-
responds to an incoming mode. In case the generalised eigenvalue ξ1 is a non-zero real and ω
is locally a smooth function of ξ1, the sign of the normal group velocity − ∂ω

∂ξ1
can be taken as a

criterion to classify the modes into incoming and outgoing ones [14].
Note that the generalised eigenvalue problem is indefinite, since the flux Jacobian ∂F 1

∂q
is

indefinite, if the flow is normally subsonic. Therefore, one cannot expect that a basis of eigen-
vectors exists for all (ω, ξ′). In fact, the cone

(ω + ξ · U)2 − a2‖ξ‖2 = 0 (1.8)

may or may not intersect the line defined by some fixed ω and ξ′. In case the corresponding
quadratic equation for ξ1 has negative discriminant, it will have two complex conjugate solu-
tions. These so-called cut-off modes are viewed as incoming if they decrease exponentially at
−∞, i.e., if Im ξ1 < 0. Accordingly, a cut-off mode is called outgoing if Im ξ1 > 0.

The corresponding (real or complex) eigenvectors are used to define the spectral projections
onto the incoming along the outgoing eigenmodes, Pinc. The physical boundary condition can
thus be written

Pincq̂ω,ξ′ = 0.

where

Pinc = Pinc(q, ω, ξ
′) = R(q, ω, ξ′)−1

(
0 0
0 Id

)
R(q, ω, ξ′)

where the dimensions of the subblocks of the block matrix are given by the number of right and
left runnning modes, respectively. The first columns of the right-eigenvector matrix R(q, ω, ξ′)
are the left-running eigenvectors of the generalised eigenvalue problem (1.7), the last columns
are given by the left-running eigenvectors.
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Special care has to be taken in order to define the acoustic eigenvectors. Here, we write the
acoustic normal wave numbers as functions of q, ω, and ξ′,

ξ1,a,± =


± i‖ξ′‖√

1−M2
1

, if ω̃ + ξ′ ·M ′ = 0,

(M1 ∓
√

∆)
(
ω̃+ξ′·M ′
1−M2

1

)
, if ω̃ + ξ′ ·M ′ 6= 0, ∆ ≥ 0,

(M1 ± i sign(ω̃ + ξ′ ·M ′)
√
−∆)

(
ω̃+ξ′·M ′
1−M2

1

)
, if ω̃ + ξ′ ·M ′ 6= 0, ∆ < 0,

(1.9)
where ω̃ = ω/a, ~M = (M1,M

′) = U/a and ∆ is the discriminant of the corresponding
quadratic equation for ξ1, i.e.,

∆ = 1− 1−M2
1

(ω̃ + ξ′M ′)2
‖ξ′‖2.

The definition of ξ1,a,± ensures that sign Im ξ1,a,± = ±1, if ∆ < 0. Moreover, it is straightfor-
ward to check that

∂ξ1,a,±

∂ω
= ∓ 1

(1−M2
1 )
√

∆

for cut-on modes, i.e., ∆ > 0. Therefore, the x1-group velocity

v1
g(ω, ξ1,a,±, ξ

′) = − ∂ω
∂ξ1

∣∣∣
(ξ1,a,±,ξ′)

= −
(
∂ξ1,a,±

∂ω

∣∣∣
(ω,ξ′)

)−1

is positive for ξ1,a,+ and negative for ξ1,a,−. The acoustic eigenvectors can be defined by

ra,±(q, ω, ξ′) =

 ρ

− aξ±
ω+ξ±· ~M
γp

 (1.10)

where ξ± = (ξ1,a,±, ξ
′).

The Characteristic Variety

Let us express the characteristic variety in terms of the (directional) Mach numbers and the
normalised frequency,

~M = (M1, . . . ,Mn), Mi = Ui/a, M = ‖ ~M‖, ω̃ = ω/a.

As we have seen above the characteristic variety for the n-dimensional linearised Euler equa-
tions consists of:

• The plane ω̃ = −
∑

iMiξi, corresponding to the convective modes.

• The cone (
ω̃ + ~M · ξ

)2

= ‖ξ‖2. (1.11)

corresponding to acoustic modes.
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(a) M = 0.7, α = 55◦. (b) M = 1.5, Mx = 0.5.

Figure 3: Characteristic varieties for subsonic and supersonic cases.

To analyse the cone (1.11), consider an orthonormal basis (ẽ1, . . . , ẽn) such that

~M = Mẽ1.

Then, with respect to this basis, Eqn. (1.11) takes the form

(1−M2)ξ̃2
1 − 2Mω̃ξ̃1 +

∑
i6=1

ξ̃2
i − ω̃2 = 0,

and therefore,

(1−M2)2

(
ξ̃1 −

ω̃M

1−M2

)2

+ (1−M2)‖ξ̃′‖2 = ω̃2.

This shows that for M < 1 the acoustic part of the characteristic variety is an oblique cone as
depicted in Fig. 3a. Both the inclination and the apex angle increase with the Mach number.
When the flow is supersonic, M > 1, it consists of segments of a double cone, see Fig. 3b. In
the subsonic case, for a given ω, there is a bounded set of values for ξ′ such that the line defined
by (ω, ξ′) intersects the characteristic variety. In two-dimensions, for instance, the acoustic
modes are cut-on if

ξ2 ∈
[

ω̃
1−M2

(
M2 −

√
1−M2

1

)
, ω̃

1−M2

(
M2 +

√
1−M2

1

)]
. (1.12)

In the supersonic case there will be a non-empty intersection outside a bounded set. In two
dimensions the cut-on condition reads

ξ2 ∈
(
−∞, ω̃

1−M2

(
M2 −

√
1−M2

1

)]
∪
[

ω̃
1−M2

(
M2 +

√
1−M2

1

)
,+∞

)
.
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Turbomachinery Boundary Conditions

In the case of a (rotational) turbomachinery configuration, one usually applies the above
theory for n = 2 to cylinders around the engine axis. More precisely, the coordinate change

y = rϑ, z = r

transforms the Euler flow in an annular duct with constant “hub” and “casing” radii to the three-
dimensional flow in

{(x, y, z) ∈ R3 | r1 < z < r2}

as long as the r-components of the flow velocity can be neglected. Moreover, in the case of
N blades and a certain interblade phase angle σ, the resulting flow at radius r will have the
symmetry

q(t, x, y + 2πr/N, z) = q(t+ σ/ω, x, y, z).

The y-components of the wave numbers for which (1.8) must be considered, thus satisfy

eiξ2(y+2πr/N) = eiσeiξ2y.

Writing m for the circumferential wave number, we thus have

q̂ω(x, r, ϑ) =
∑

m=Nd modN

q̂ω,m(x, r)eimϑ.

The cut-on condition for a subsonic flow at radius r is

m ∈
[

rω̃
1−M2

(
Mϑ −

√
1−M2

x

)
, rω̃

1−M2

(
Mϑ +

√
1−M2

x

)]
.

In the cell-centred, finite volume, time-linearised CFD solver discussed here, the boundary
conditions are applied at bands of faces whose centre has constant radius. The modal amplitudes
qjω,ξ′,mod are computed using the inner cell values along the bands and extrapolated to the bands
using the axial wave number ξ for outgoing modes. The modal amplitudes for incoming modes
are set to zero. The inverse Fourier transform yields flow states for each face which are then
used to define flow states in the ghost cells by extrapolation.

2 ACOUSTIC RESONANCE AND REGULARISATION

The modal decomposition in the previous section is restricted to the case of non-zero group
velocity v1

g for all cut-on modes, i.e., we have assumed that the discrimimant ∆ is non-zero. If

(1−M2
1 )‖ξ′‖2 = (ω̃ + ξ′ ·M ′)2,

then the quadratic equation (1.8) has a real root of algebraic multiplicity 2. However, unless
ξ = 0, the angular frequency ω is a simple root at the same point. Therefore the eigenspace,
i.e., the solution space of (1.2) is one-dimensional.

We regularise the boundary conditions by adding a zeroth order dissipation term to the left-
hand side of the model equations. Rather than the linearisation of Eqn. (1.1) we consider

∂(δq)

∂t
+ div

[
∂F

∂q

∣∣∣
q
δq

]
+ εδq = 0, (2.1)
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where ε > 0 is a small regularisation parameter. The corresponding equation in dual variables
thus reads (

ω − iε+
∑
k

ξkA
k

)
q̂ω,ξ = 0. (2.2)

If ω is replaced with ω − iε, the formulas of Section 1 essentially remain valid. The crucial
difference, however, is that there are no longer cut-on modes. More presicely, given real ω and
ξ′, Eqn. (2.2) will have only trivial solutions for real ξ1 since, otherwise, ω − iε would be a
non-real eigenvalue of a symmetric operator. Since all eigenvalues ξ1 have non-zero imaginary
part, all eigenspaces correspond to either incoming or outgoing modes.

If ξ is non-zero and ξ1,a,±(q, ω, ξ′) corresponds to a cut-on acoustic mode of the original
system, then ω is locally a smooth holomorphic function of ξ. Moreover, if locally ∂ω

∂ξ1
is non-

zero, then the generalised eigenvalue ξ1 is, locally, a holomorphic function of ω. Using the
Cauchy-Riemann equations, we infer

sign Im ξ1,a,±(q, ω − iε, ξ′) = − sign
∂Im ξ1,a,±

∂Imω

∣∣∣
(q,ω,ξ′)

= − sign
∂Re ξ1,a,±

∂Reω

∣∣∣
(q,ω,ξ′)

= − sign
∂ω

∂ξ1,a,±

∣∣∣
(ξ1,a,±(q,ω,ξ′),ξ′)

= sign v1
g.

(2.3)

Therefore, defining the acoustic normal wavenumbers by the analytic continuation of the formu-
las given in Eqn. (1.9), we preserve the propagation direction in the sense that, e.g, right-running
cut-on modes become right-running cut-off modes. Denoting by

√
z the principal branch of the

complex square root, it is now easy to verify that the analytic continuation of (1.9) is

ξ1,a,± = (M1 ∓
√

∆)

(
ω̃ − iε̃+ ξ′ ·M ′

1−M2
1

)
,

where

ε̃ =
ε

a
, ∆ = 1− (1−M2

1 )‖ξ′‖2

(ω̃ − iε̃+ ξ′ ·M ′)2
.

The definition of the right-eigenvectors carries over to the modified model problem. In particu-
lar, the acoustic eigenvectors are replaced with ra,±(q, ω−iε, ξ′), cf. Eqn. (1.10). We emphasize,
that for ε > 0, the above terms are holomorphic for all ω, ξ′, including the acoustic resonance
points.

3 ANALYSIS OF TURBOMACHINERY FLUTTER

To illustrate the modification of the boundary condition we will use the so-called tenth stan-
dard configuration (SC10) [2]. This configuration is a two-dimensional compressor test case
consisting of a cambered NACA 0006 cascade at subsonic and transonic flow conditions. The
eigenmode for which flutter stability is analysed corresponds to a rigid body rotation about the
blade center. Flow conditions and reduced eigenfrequencies are summarised in Table 1. Ob-
serve that the reduced frequencies k are computed using the full chord c and the flow speed at
the inlet Uinlet, i.e.,

ωred =
ωc

‖Uinlet‖
.
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Testcase SC10 subsonic SC10 transonic
Inflow Mach number 0.7 0.8
Inflow angle 55◦ 58◦

Outflow Mach number 0.446 0.443
Outflow angle 40.1◦ 41.1◦

Reduced frequency 1 0.5
Upstream acoustic resonances −26.9◦ −14.5◦

117.1◦ 100.8◦

Downstream acoustic resonances −31.8◦ −17.8◦

59.8◦ 33.7◦

Table 1: Flow conditions, frequencies and acoustic resonances.

The steady isentropic Mach number distributions on the blade are shown in Fig. 4. Both the
subsonic and the transonic background mean flow conditions, used for the linearised flutter
simulations below, agree well with reference results obtained with a different flow solver, [16].
The flutter predictions using different values for the regularisation parameter ε are shown in

Figs. 5 and 6. The value of ε is non-dimensionalised using the sound speed at the inlet and the
chord length and thus equals, up to the inlet Mach number, the negative imaginary part of the
modified reduced frequency. The results for ε = 10−3 have been validated against reference
results in previous publications by the authors [4, 17] and show good agreement with results
obtained with a different solver [15, 16].

However, as ε is increased, the damping curve becomes “smoother”. This can be seen, for
both the subsonic as the transonic configuration, near the interblade phase angles with minimal
damping, which are close to the downstream acoustic resonance points 59.8◦ and 33.7◦. The
zooms also show that the choice of ε above 10−1 can have a significant impact on the prediction
of the flutter stability and is therefore discouraged.
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Figure 4: Comparison of steady solution with references given in [15]

7445



C. Frey and H.-P. Kersken

Interblade Phase Angle

re
f

180 120 60 0 60 120 180
0.2

0

0.2

0.4

0.6

0.8

1

1.2

=10
3

=10
2

=10
1

Unstable

Stable

(a) Normalised aerodynamic damping over in-
terblade phase angle.

Interblade Phase Angle

re
f

52 54 56 58 60 62 64 66
0.08

0.1

0.12

0.14

0.16

0.18

=0

=10
3

=10
2

=10
1

(b) Minimal damping region

Figure 5: Damping results for the subsonic case.
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Figure 6: Damping results for the transonic case.

4 INTERPRETATION OF THE REGULARISATION

Let us study the behaviour of the regularised spectral projection Pinc as ε tends to infinity.
Denoting by χΛ the characteristic function of a complex set Λ, we can write the regularised
projection onto the incoming modes as

Pinc = χ{Im ξ1<0}
(
−(A1)−1 (ω − iε+ ξ′A′)

)
Observe that

‖ − (A1)−1 (ω − iε+ ξ′A′) ‖ ≤ ε‖A−1‖+ const .

Therefore, for an appropriate R > 0 and sufficiently large ε, the contour γε, depicted in Fig. 7,
encircles all eigenvalues ξ1 with negative imaginary part anticlockwise. Using holomorphic
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Re ξ1

Im ξ1

Rε

γε

Figure 7: Closed contour encircling the acoustic normal wave numbers of the regularised system
anticlockwise.

.

functional calculus, we have

Pinc =
1

2πi

∫
γε

(
ξ1 + (A1)−1(ω − iε+ ξ′A′)

)−1
dξ1

=
1

2πi

∫
γ1

(
z + (A1)−1(−i + ε−1(ω + ξ′A′))

)−1
dz,

(4.1)

where we have made the substitution ξ1 = εz. Since

−(A1)−1(−i + ε−1(ω + ξ′A′))

has no real eigenvalues and converges uniformly to i(A1)−1 along γ1 for ε→∞, it follows that
Pinc converges to the spectral projection

χ{Im z<0}(i(A
1)−1) = χ{Re z<0}(A

1).

Therefore, in the limit ε→ +∞, the regularised boundary conditions converge to characteristic
boundary conditions. This is confirmed by numerical experiments, see Fig. 8. As the parameter
ε is increased, the results for the aerodynamic damping approach the curve which is obtained by
using one-dimensional, characteristics based boundary conditions. Note that for this numerical
experiment, the modified normal wave number has been replaced by 0 in the extrapolation of
the outgoing mode amplitudes to the ghost cells.

5 DISCUSSION

So far, we have studied only a two-dimensional test case and two-dimensional boundary
conditions which raises the question of the relevance for real three-dimensional turbomachin-
ery configurations. Therefore, consider a computational domain representative of an annular
duct in a real engine. Although two-dimensional (or even characteristic one-dimensional) non-
reflecting boundary conditions are still predominantly used for turbomachinery simulations,
three-dimensional non-reflecting boundary conditions have been developed by several authors
[18, 19]. For a general mean flow distribution, the eigenmodes can no longer been computed
explicitly. Rather, one performs a numerical spectral decomposition using e.g. appropriate LA-
PACK routines [20, 11]. In three dimensions, the equivalent of Eqn. (1.2), can be written in the
form

(i(ω + ξAx +mC) +B
∂

∂r
+D)q̂ω,ξ,m(r) = 0, (5.1)
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Figure 8: Normalised aerodynamic damping over interblade phase angle for subsonic case and
large values for ε.

with suitable boundary conditions at the hub and tip radii, rmin, rmax, [20]. In case the mean
flow is purely axial, the pressure harmonics satisfy(

− ∂2

∂r2
− 1

r

∂

∂r
+ ξ2

x +
m2

r2
− (ω̃ + ξxMx)

2

)
p̂ω,ξ,m(r) = 0, (5.2)

together with Neumann boundary conditions at rmin and rmax. Eqn. (5.2) may thus be written
in the form (

L(m) + ξ2
x − (ω̃ + ξxMx)

2
)
p̂ω,ξ,m(r) = 0

where L(m) is an elliptic self-adjoint eigenvalue problem (with respect to the Riemannian met-
ric g(r) = r2) depending on m. From its discrete eigenvalues (λn(m))n≥0, we can thus deter-
mine the relation between the axial wavenumber and ω̃ for all radial and circumferential mode
orders, (n,m):

λn(m) + ξ2
x + (ω̃ + ξx ·Mx)

2 = 0. (5.3)

Viewingm as a continuous parameter, we can thus plot the generalisation of the two-dimensional
characteristic varieties for each radial mode order n. Figure 9 shows the surface defined by (5.3)
for the radial mode orders n = 0, 1, 2. Here, Mx = 0.5 and rmin = 1, rmax = 2. The resulting
surfaces resemble the upper sheets of an oblique two-surface hyperboloid except for n = 0 in
which case the surface is a slightly deformed oblique cone. In many cases the three-dimensional
characteristic variety for n = 0 is very close to the two-dimensional one. For the above param-
eters the two-dimensional characteristic variety at r = 1

2
(rmin + rmax) is nearly identical to the

three-dimensional one for n = 0, see Fig. 10.
If acoustic resonance occurs for certain values of (ω, ξx,m, n), then ξx is a double zero of

Eqn. (5.3), whereas ω is a simple one. Hence, similar arguments as in the two-dimensional
case show that the geometric multiplicity of the generalised eigenvalue problem for ξx is 1.
This shows that the modal decomposition has to be regularised in the three-dimensional case as
well. In their implementations of three-dimensional non-reflecting boundary conditions [19],
the authors perform a numerical eigenvalue analyis of (5.1) where ω is replaced with ω − iε
and ε is typically set to 10−3aref/lref . Here aref , lref denote reference sound speed and length,
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Figure 9: Three-dimensional characteristic variety for radial mode orders 0 (grey), 1 (blue), and
2 (orange).

Figure 10: Three-dimensional Characteristic variety for radial mode orders 0 (grey) compared
to the two-dimensional one at r = 1

2
(rmin + rmax) (green).

respectively. The regularisation allows to circumvent the numerical computation of the group
velocity, as pointed out in [11]. One can use the sign of Im ξx to determine the propagation
direction of the modes.

Acoustic resonance occurs when one of the characteristic varieties has vanishing slope in
the ξx-direction. For a given frequency, this can happen at several radial orders, although in
practice, for only a few low values of n there exist cut-on modes, i.e., the plane ω = const
intersects only a few of the hyperboloids in Fig. 9. Therefore, one can expect that the use
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of two-dimensional boundary conditions for a three-dimensional configuration might suppress
acoustic resonance for some non-zero radial mode orders but will show qualitatively similar
results as far as the acoustic resonance for n = 0 is concerned.

This is illustrated by the flutter analysis of a turbine blade carried out in [19]. The test case
represents a low pressure turbine blade of a modern aeroengine. As can be seen in Figure 11,
the use of three-dimensional instead of two-dimensional non-reflecting boundary conditions has
a significant impact on the unsteady pressure distribution on the blade. However, the aerody-
namic damping is very insensitive to the choice of boundary conditions, in particular near the
resonance point located between −30◦ and −20◦.
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Figure 11: Flutter analysis of a turbine blade with 1D, 2D, and 3D non-reflecting boundary
conditions. From [19].

CONCLUSIONS

In this paper, a regularisation of the non-reflecting boundary conditions for unsteady turbo-
machinery flows has been investigated. The regularisation is necessary in order to ensure that
the spectral projections onto outgoing along incoming modes remain bounded. The idea is to
apply the usual theory of non-reflecting boundary conditions to the Euler equations modified by
a small dissipation term which is controlled by some parameter ε. As the additional dissipation
increases the resulting flutter curves become smoother. A choice of ε = 10−3 with respect to the
reference frequency has been shown to be a reasonable choice for the turbomachinery test cases
presented in this paper. As ε grows, the boundary conditions approach the one-dimensional
characteristics based boundary conditions.

The issue of acoustic resonance occurs for both two-dimensional and three-dimensional non-
reflection boundary conditions. It is suspected that using two-dimensional boundary conditions
for a three-dimensional turbomachinery configuration might smooth out singularities in the
damping curve which are related to acoustic resonance modes of non-zero radial order.
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NOMENCLATURE
a speed of sound
Ai flux Jacobian in the xi-direction
A1, A′ normal and tangential flux Jacobians
et total (specific) energy
f frequency
ht total (specific) enthalpy
k modal stiffness
m modal mass, circumferential wave number
~M = U/a Mach vector
M1,M ′ normal Mach number and tangential Mach vector
N number of blades
Nd nodal diameter
~n unit normal vector (pointing out of the flow domain)
p pressure
q flow state
qs modal displacement
s specific entropy
(x, r, ϑ) cylindrical coordinates
x1, x′ = (x2, . . . , xn) normal and tangential coordinates
U flow velocity
Wcyc aerodynamic work per cycle
δ logarithmic decrement of aerodynamic damping
γ specific heat ratio
κ aerodynamic stiffness coefficient

structural eigenmode (mode shape)
ρ density
σ interblade phase angle
χΛ characteristic function of a set Λ ⊂ C
ω angular frequency (= 2πf )
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Abstract. Grid requirements for LES of wall-bounded flows are considered. The setting is a
zero pressure gradient turbulent boundary layer on a flat plate, but the results are intended to
be of use generally for the simulation of flows with an important influence of turbulent bound-
ary layers. The basis for the grid estimates are expressions for the thickness and the viscous
length scale of a turbulent boundary layer. The literature is reviewed, and a new power law
is proposed, the coefficients of which have been determined using recent high-Re experimental
data. An estimation for the number of grid points required for NWM-LES is derived, which
is more general than previously published such estimates. A complete simulation methodol-
ogy, including a numerical tripping device for transition to turbulence in the boundary layer, is
demonstrated for NWM-LES of a flat plate turbulent boundary layer. The predictive accuracy
is assessed by comparison with DNS data.
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1 INTRODUCTION

The number of application areas in which large-eddy simulation (LES) of turbulent flows
is employed is currently growing rapidly, a development which is facilitated by the level of
computational resources available today. The main alternative to LES for turbulent flows is
Reynolds Averaged Navier-Stokes (RANS) modelling, which generally requires less computa-
tional resources since only the mean flow and turbulent quantities are computed. For free shear
flows, there are compelling arguments for the use of LES. The main reason is that the energy
cascade makes it possible to resolve a large part of the turbulent kinetic energy with a grid which
is relatively coarse as compared to the viscous (Kolmogorov) length scale. Thus turbulent mo-
mentum transport, largely determined by the resolved scales, can be expected to be modelled
more accurately by LES than RANS. Furthermore, since the large scale flow structures are di-
rectly simulated, LES provides significantly more information about the flow, as compared to
RANS.

The present paper considers wall-bounded flows which put very different requirements on
the simulation, as compared to free shear flows. The main reason for this is that the structure
of turbulent boundary layers (TBLs) is quite different, as compared to turbulence away from
walls. For instance, the peak in the Reynolds stress component 〈u′u′〉 occurs at y+ ≈ 12 in a
zero pressure gradient (ZPG) TBL, e.g. [13]. Here u′ are the fluctuations of the streamwise
velocity, 〈·〉 denotes averaging, and y+ = y/δν , where δν is the viscous length scale. This
fact has two implications, which are closely related, for the application of LES: i) energetic
flow structures are present in the TBL on a length scale which is not very much larger than the
viscous length scale, ii) with increasing Reynolds (Re-)number, the length scale of these flow
structures decreases. Both of these items are in contrast to the free shear case, and make the
application of LES to wall-bounded turbulence more difficult.

Three different broad approaches to LES of wall-bounded turbulence have generally been
considered. i) Hybrid RANS-LES methods, where the TBL is modelled using RANS and the
flow away from wall is modelled using LES. This means that the turbulence in the TBL is
handled by the turbulence model, and that there are no resolved fluctuations in the TBL in the
simulation. ii) Near-wall modelled (NWM-)LES in which the computational grid is constructed
to resolve fluctuations the size of fractions of the TBL-thickness δ. The grid is, however, not
adapted to the viscous length scale δν , and the fluctuations in the innermost part of the TBL are
handled by a near-wall model. This approach is in focus of the present paper. iii) Near-wall
resolved (NWR-)LES in which the computational grid is constructed and adapted to resolve
fluctuations the size of the viscous length scale.

For these three approaches it is clear that, from i) to iii), more of the flow is directly resolved
and less is handled by turbulence modelling. Associated with this is the rising computational
cost caused by the increasing requirements on grid resolution. It is thus of utmost importance to
precisely formulate the grid requirements and to have a good understanding of how they depend
on the parameters of the flow problem, in particular the Re-number. It is the aim of the present
paper to make a contribution to this, in particular for the case of NWM-LES.

Chapman derived grid requirements for RANS, NWM-LES and NWR-LES in a pioneering
paper, [1]. However, as was pointed out by Choi and Moin [2] (see also section 3 of the present
paper) the NWM-LES estimate is too optimistic, in that it leads to an underestimation of the
required grid resolution. The reason for this is that in the derivation Chapman employed the
mean (over the wall surface) thickness of the TBL. A more correct approach, as suggested
by Spalart et al. [20], is to use the local TBL-thickness, and to obtain the grid estimate using
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integration, as was done in [2], and also in section 3 of the present paper. A note on terminology:
often these requirements are described as estimates on the number of grid points, or grid point
estimates. The basis for the argument is however, both here and in [1, 2] is the grid length scale.
Thus the derivations are equally applicable to grid points, grid elements (in the finite element
framework), and grid cells (in the finite volume framework).

The paper is structured as follows. The basis for the grid estimates are expressions for the
thickness δ and the viscous length scale δν of the TBL. In section 2, the literature is reviewed,
and new coefficient values are proposed for a power law form of the increase of the length scales
with the downstream coordinate. The basis for the new coefficient values is a data fit to recent
high-Re experimental data. Then, in section 3, a grid estimate is derived for NWM-LES, using
the same approach as Choi and Moin [2]. The derivation is however more general in that it holds
for any power law for δ, and the improved coefficients are then inserted in the final expressions.
Furthermore, the form of the estimate is new, and it highlights the clustering of the grid in the
initial length of the flat plate, for Rex < 106, approximately. In section 4, a complete simulation
methodology is demonstrated for NWM-LES of a flat plate ZPG-TBL, with a length-based Re-
number of 2.42 · 106, and a computational grid of 12 · 106 finite volume cells. This includes a
numerical tripping device to induce resolved fluctuations in the boundary layer. The predictive
accuracy of the simulation is assessed by comparison with data from DNS (direct numerical
simulation). Throughout the paper, the setting is that of a ZPG-TBL on a flat plate. The grid
estimates and the simulation methodology are however intended for application to a wide range
of flow problems where TBLs have a significant role. This includes a large number of important
applications in the marine, aeronautical and automotive engineering as well as other areas of
research.

2 CORRELATIONS FOR TBL INTEGRAL QUANTITIES

For the purpose of grid estimation for NWM- and NWR-LES, it is required to express the
boundary layer thickness δ and the viscous length scale δν = δ/Reτ = ν/uτ in terms of the
streamwise distance x measured from the leading edge of the plate or, equivalently, in terms of
Rex = U0x/ν, in whichU0 denotes the free-stream velocity. These quantities are interconnected
through the definition of the friction coefficient,

cf = 2
(
uτ
U0

)2

= 2
(Reτ

Rex

)2 (x
δ

)2

. (1)

A vast number of correlations to formulate the dependency of cf on various Re-numbers have
been proposed for the ZPG-TBL. They can be divided into several types according to their
functional forms: i) power laws including the 1/5th and 1/7th ones [21] with the general form
cf = cRem, ii) logarithmic laws cf = c1(c2 log Re + c3)

m such as the suggestions of Schultz-
Grunow [14], Schlichting [13], Frenholz-Finley [5], and White [21], and finally iii) other types
such as the Prandtl-Kármán relation that can be found in [21, 13]. The coefficients and powers
in each of these correlations were estimated using the experiential data available at the time,
completely or partially combined with analytical methods. However, as more recent experi-
mental data including those by Österlund [11] and Nagib et al. [9] came out, it was shown by
Nagib et al. [10] that a major part of the existing correlations must be tuned up to achieve a
good agreement with high Re-number experiments.

Among all the available correlations, we look for those having less deviation from available
benchmark data, specifically at higher Re-numbers, while possessing a simple mathematical
formulation making it possible to analytically evaluate integrals arising in the grid estimation
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process, in section 3. The family of power law correlations is a suitable candidate satisfying
the above demands. Dependency between each two quantities among δ/x, cf , and different
Re-numbers can be established given two starting correlations along with combination of (1)
and the integral form of the streamwise momentum equation for ZPG-TBL which reads

cf = 2
dθ

dx
= 2

dReθ
dRex

. (2)

In Table 1, a summary of power law type correlations is presented. The oldest one is the 1/5th
law proposed by Prandtl in 1927 (as quoted in [21]), adjusted by low-Re experiments. The
1/7th law is the outcome of combining White’s [21] correlation, cf = 0.020Re−1/6δ , derived
from Coles’ law of the wake [3] along with an assumption for θ/δ to be constant and equal to
7/72, which corresponds to the 1/7th velocity profile. In these relations, δ was supposed to
be the theoretical thickness of the boundary layer. On the other hand, by combining the latter
assumption with cf = 0.02358Re−1/7x calibrated by Nagib et al. [10], the modified version of
the 1/7th law is derived.

In order to avoid making any presumption on the shape of velocity profile, it was chosen to
tune up cf = c1Re−m1

δ and δ/x = c2Re−m2
x based on Österlund’s experimental observations

[11] employing a least-squares technique and then derive other correlations using (1) and (2)
without any further ad-hoc assumption. The boundary layer thickness was taken to be δ99 (δ
at the point where TBL mean streamwise velocity becomes 0.99U0), which is a meaningful
measurable quantity in an experiment or simulation. However, it was observed that employing
the theoretical δ approximately obtained by plugging experimental values of cf in Coles’ law
[3], for instance, would lead to very similar results for the derived correlations between cf−Rex
and cf − Reθ.

Quantity Suggestion 1/5th law, [21] 1/7th law, [21] Modified 1/7th law
cf 0.0283Re−0.1540x • 0.058Re−1/5x 0.027Re−1/7x • 0.02358Re−1/7x , [10]
δ/x • 0.1222Re−0.1372x • 0.37Re−1/5x • 0.16Re−1/7x • 0.16Re−1/7x

cf • 0.01947Re−0.1785δ 0.0452Re−1/4δ • 0.02Re−1/6δ 0.0174Re−1/6δ

Reδ 0.1222Re0.8628x 0.37Re4/5x 0.16Re6/7x 0.16Re6/7x

Reτ 0.0145Re0.7858x 0.063Re7/10x 0.0186Re11/14x 0.01737Re11/14x

Reθ 0.0167Re0.8460x + cθ 0.0363Re4/5x 0.01575Re6/7x 0.01376Re6/7x

Table 1: Summary of the power law correlations for ZPG flat plate turbulent boundary layer. Symbol • represents
the starting relations in each set. In the first column, cθ = 373.83.

The variation of cf with Rex and Reθ estimated by different correlations is compared to the
experimental measurements as well as direct numerical simulation (DNS) data from different
sources over 5 · 105 ≤ Rex ≤ 1010 in Figure 1. It immediately follows from the the proposed
correlations that

cf = 0.0134 (Reθ − cθ)−2/11 ,
which with a constant-value cθ exhibits a good performance in the whole range of Re-numbers
compared to DNS data [12, 16, 17] and experiments [11, 9].

It is noteworthy that at low Re-numbers only cf = 0.024Re−1/4θ given by Smits et al. [18]
agrees with DNS of Schlatter and Örlü [12], besides the correlation suggested here. However, it,
along with the 1/5th law, diverges from the benchmark values and other curves as Re increases.
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Figure 1: The friction coefficient, cf , versus (a) Rex and (b) Reθ. White’s correlation cf ≈ 0.455 [ln(0.06Rex)]
−2,

[21], is modified by replacing 0.455 with 0.4177 as suggested by Nagib et al. [10]. Österlund’s logarithmic fit:
cf = 2

[
1
κ lnReθ + C

]−2
with κ = 0.384 and C = 4.08 [11].

Figure 2: Reθ versus Rex predicted by correlations and given by experimtns.

Relatively better performance of the suggested cf − Reθ curve at low Re-numbers is mainly
due to the additive constant appearing when taking the integral of (2). By using the lowest Re-
number data among Österlund’s measurements [11], cθ is predicted to be 373.83. This constant
can also be seen as a single-point correction for x, taking into account the initial distance from
the plate leading edge through which the boundary layer could have been laminar and then
transited to turbulent. More detailed correction methods for the θ− x dependency can be found
in [10, 8].

According to Figure 2, the deviation between various predictions increases with Reθ which,
along with lack of experimental evidence, makes it impossible to draw a conclusion on the best
performance. However, as suggested by Nagib et al [10], for numerical estimation no preference
can be given to any correlation at high Re-numbers, although it is observed that the modified
1/7th and the suggested correlations are respectively the closest curves to Reθ = 0.016Re0.85x

fitted in 106 ≤ Rex ≤ 109 by Monkewitz et al [8] to their detailed asymptotic expansion for
θ(x), taking into account corrections for the virtual origin.

On the other hand, at high Re-numbers (say Rex > 109), the correlation Reθ = 0.01277Re0.8659x

proposed by Nagib et al. [10] behaves very closely to the 1/7th power law. But it must be em-
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phasized again that a concrete comment regarding accuracy of different correlations at very high
Re-numbers cannot be made.

3 A GRID ESTIMATE FOR NWM-LES

A grid estimate is derived in this section for NWM-LES of turbulent boundary layers. The
setting is a flat-plate ZPG-TBL, but the estimate is intended to be useful for NWM-LES of flows
with TBLs at curved walls as well. The derivation is applicable to any general unstructured grid
generation approach which allows for a change of grid resolution throughout the computational
domain. Isotropic grid elements/cells are considered, i.e. there is no systematic directional
stretching of grid cells.

As was also the case in [1, 2], the starting point is an expression for the growth of the
thickness of the TBL, along the flat plate, of the following power law form.

δ(x) ≈ αxReβx = α
(
U0

ν

)β
x1+β (3)

In the previous section, different suggestions for the coefficients α and β were given and their
agreement with experimental and DNS data was discussed. Note that another notation (ci) was
used there. The use of α and β here avoids subscripts. The derivation below is carried out
without fixing the coefficient values and can hence be used with all such suggestions of the
power law type.

A Cartesian coordinate system is used such that the free-stream velocity is directed in the
positive x-direction, and the plate is located at, 0 < x < l, y = 0, 0 < z < b. Thus the length
of the plate is l, and its width is b. The volume is divided into three different regions based
on the characteristics of the flow. The first region, denoted V1, is the fully developed TBL,
x0 < x < l, where equation (3) is an accurate description of the boundary layer thickness. Here
x0 is a suitably chosen location which has an important effect on the resulting grid estimate,
as discussed below. The second region, denoted V2, is the initial part of the boundary layer,
0 < x < x0. Typically, this includes laminar flow and then transition to turbulence in the
boundary layer. Here, the situation is considered when the focus is on the TBL (and not on
transition). Thus, it is only required to “initialize” the resolved fluctuations in the NWM-LES.
How this can be done with a numerical tripping device is briefly illustrated in the next section.
Finally, the third region is what remains of the domain in which the flow is to be simulated.
This region is discarded from the grid estimate, as it is well-known that the grid resolution
requirements are driven by the TBL, [1]. In the context of unstructured grid generation, a very
significant coarsening of the grid can then be used outside of the boundary layer.

In order to obtain the grid estimate, the local cell density is introduced, ρN(x) = ∆N/∆V .
Here, ∆N is the number of cells in the volume ∆V . The total number of cells in a volume V is
then obtained by integration,

N =
∫
V
ρN dV. (4)

For an unstructured grid with isotropic cells, and the cell size adapted to the local boundary
layer thickness, the cell density is given by ρN = n0/δ

3(x). Here n0 is the target value for the
number of cells in a cube with a side length equal to δ. In the literature, 103 < n0 < 104, is
considered to be a suitable range for NWM-LES, [1, 20, 4]. For definiteness, n0 = 2 500, as
suggested in the paper by Chapman, [1], is used below.
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The required number of cells in region V1 (the TBL) can now be estimated by,

N1 =
∫ b

0

∫ δ(x)

0

∫ l

x0

n0

δ(x)3
dxdydz = bn0

∫ l

x0

dx
δ(x)2

=
bn0

α2

(
ν

U0

)2β

I1, (5)

where the integral I1 is given by,

I1 =
∫ l

x0

dx
x2+2β

=
1

1 + 2β

(
1

x1+2β
0

− 1

l1+2β

)
<

1

1 + 2β

1

x1+2β
0

=: Ī1.

Here the last relation is used to define Ī1. The following somewhat surprising property is em-
phasized. In the limit l→∞, the integral I1 is finite (and has the value Ī1), whereas it diverges
as x0 → 0. Inserting the integral into equation (5) the grid estimate and its upper limit (denoted
N̄1), are obtained in the following forms.

N1 =
n0

(1 + 2β)α2

b

x0

(
1

Re2βx0
− x0

l

1

Re2βl

)
<

n0

(1 + 2β)α2

b

x0
Re−2βx0

=: N̄1 (6)

It is clear from this estimate that there is a significant clustering of cells for x ∼ x0, whereas
the grid cell coarsening for increasing x is rapid.

Next, the number of cells in the initial part of the boundary layer, region V2, is estimated by
assuming a constant cell density, ρN = n0/δ

3(x0), in a layer of constant thickness δ(x0), which
leads to,

N2 =
bx0n0

δ2(x0)
=
n0

α2

b

x0
Re−2βx0

. (7)

It is observed that the number of cells in this region is comparable to the number of cells in the
TBL, i.e. N2/N̄1 = 1 + 2β.

It is clear from the estimates (6) and (7) that x0 is a crucial parameter. It was introduced
above as a location after which the expression (3) is an accurate representation of the boundary
layer thickness. This is however not an exactly defined location. For definiteness, Rex0 = 5 ·105

is chosen, which is an approximate location of transition, and it is also a suitable choice for the
type of “tripped” LES which is illustrated in the next section. Thus, Rex0 is considered fixed
and, b/x0 = Reb/Rex0 , is inserted into the estimate for N̄1, see equation (6), to obtain,

N̄1 =
n0

(1 + 2β)α2
Re−1−2βx0

Reb.

From this expression, it is seen that it is the Re-number based on the plate width which deter-
mines the increase in grid cells with increasing Re-number. This fact was not clearly pointed
out in previous investigations, [1, 20, 2]. Another interesting fact is that N̄1 grows linearly with
Reb, and that the coefficient β only affects the proportionality constant.

The growth in the number of grid cells with increasing Re-number is illustrated in Figure 3.
Because of the role of x0 in the estimates, graphs are shown for two different aspect ratios
(b/l) of the plate, 4 and 1/4, respectively. Also included is the estimate from the paper by
Chapman [1],

NChap = 40
b

l
n0Re0.4l , (8)

and the estimate derived by Choi and Moin, [2],

NCM = 54.7
b

l
n0Re2/7l

( Rel
Rex0

)5/7

− 1

 . (9)
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Figure 3: Grid estimates for a flat plate as a function of Re-number based on the plate area, ReA = U0

√
bl/ν. To

the left the aspect ratio is b/l = 4, and to the right the aspect ratio is b/l = 0.25. The black lines (full, dashed,
and dotted, respectively) show the estimates proposed in the present paper, where N1 is given by equation (6), and
N2 is given by equation (7), and the parameters have the values α = 0.1222, and β = −0.1372, see Table 1. The
estimate by Chapman [1], blue line, is given by equation (8), and the estimate by Choi and Moin [2], green line, is
given by equation (9).

As clearly illustrated in Figure 3, the estimate by Chapman is by far the most optimistic, in the
sense that for high Re-numbers it leads to significantly lower estimates of the required number
of grid cells. The main reason for this is that Chapman, [1], does not use integration, i.e.
equation (4), to obtain the estimate. Instead an average boundary layer thickness over the whole
plate is used. That it is more appropriate to use integration was pointed out in [20, 2], and the
authors of the present paper agree with that assessment. Another remark is that the estimate by
Choi and Moin [2], equation (9), only takes into account the part of the TBL downstream of x0,
whereas the estimate N1 +N2, also addresses the initial part of the boundary layer.

4 NWM-LES OF A FLAT PLATE TURBULENT BOUNDARY LAYER

This section contains a brief description of the computational set-up and results for one large-
eddy simulation of a flat plate turbulent boundary layer. The first purpose is to illustrate what
predictive accuracy can be expected with the mesh resolution levels discussed in the previous
section. The second purpose is to demonstrate the practicality of the overall approach, including
components such as the numerical tripping device used to induce resolved fluctuations in the
boundary layer.

Quantity Notation Value Unit
Length l 2.000 m
Width b 0.200 m
Height h 0.133 m
Kin.visc. ν 1.65·10−5 m2/s
Velocity U0 20.4 m/s

Table 2: Parameters of the flat plate simulation. The plate has the aspect ratio 1/10, and the Reynolds numbers,
Reb=2.42·105, and Rel=2.42·106.

The simulation case parameters are summarized in Table 4, and they lead to a length-based
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Re-number of Rel = 2.42 · 106. In fact, this corresponds to the TBL approaching the contoured
ramp investigated by wind tunnel measurements in [19], and by LES in [7], which however
is irrelevant for the present investigation. At the inflow boundary, a constant velocity U0 is
prescribed in the x-direction. A “strip” of grid cells is used for the numerical tripping device.
In these cells the flow is perturbed by introducing a volume force in the momentum equation.
The variation of the volume force is random in space and time. The TBL develops along the
floor of the wind tunnel. On the lateral boundaries, periodic boundary conditions are used, and
on the top boundary patch no-slip is used. The subgrid model employed is the One Equation
Eddy Viscosity Model (OEEVM), [15, 7]. A wall model is used which modifies the viscosity
in the cell-layer adjacent to the wall, as described in [6].

Figure 4: Illustration of the simulated TBL flow. An iso-surface of the second invariant of the velocity gradient
is used to illustrate the turbulent structures in the boundary layer. The iso-surface is colored by the instantaneous
normalized axial velocity, vx/U0. The black lines show the edges of the simulation domain.

A simple grid was used, which consists of hexahedral cells equal in size and shape throughout
the domain. The number of cells was, 760×160×100=12 160 000. This means that the grid
adaption which is the basis of the grid estimates in the previous section, was not taken advantage
of. However, the average grid resolution in the TBL in the simulation is similar to what is
indicated in the grid estimates. Adopting the parameter values α = 0.1222 and β = −0.1372,
given in Table 1, N1 and N2 are estimated to be

N1 = 2.87 · 106,

N2 = 3.03 · 106,

while employing Chapman’s [1] and Choi-Moin’s [2] approaches results in

NChap = 3.61 · 106,

NCM = 1.96 · 106.

Therefore, the simulation results give a rough indication of the level of accuracy which can
be expected with the relevant grid resolution relative to the TBL thickness.
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Figure 5: Left: Graphs for the friction coefficient cf , and the shape factor H , as functions of Reθ. Right: Profiles
of the normalized mean velocity, 〈vx〉/U0, plotted versus y+, at Reθ = 1000 and 3000, respectively. Comparison
of NWM-LES with DNS data, [12].

The flow is shown in Figure 4, by an iso-surface of an invariant of the instantaneous velocity
gradient, to illustrate vortical structures in the TBL. In Figure 5, results from the NWM-LES
are compared with DNS-data, [12]. The comparison includes the friction coefficient, the shape
factor H = δ∗/θ (i.e. the quotient of the displacement thickness and the momentum thickness),
as well as mean velocity profiles at two stations along the flat plate. The curves for the friction
coefficient and the shape factor clearly indicate the adaption length of the NWM-LES boundary
layer. Overall, considering the significantly lower computational cost of the NWM-LES, as
compared to DNS, the agreement of the results is quite good. A detailed elucidation of the
discrepancies between the NWM-LES and DNS results is outside the scope of the present paper.

5 CONCLUDING REMARKS

A grid estimate has been derived for NWM-LES, as summarized in the expressions (6) and
(7), for the number of grid cells in the initial length and the fully developed TBL, respectively.
The derivation follows the approach of Choi and Moin [2], but it is more general as it holds for
any power law for δ. Another novel feature is that an additional grid estimate is proposed for
the initial length of the boundary layer, affected by transition. Furthermore, the grid estimate is
formulated in a new way to highlight the clustering of the grid in the region starting from the
leading edge of the plate up to Rex ∼ 106.

New power law coefficients are also proposed, based on a data fit to recent high-Re exper-
imental data. The coefficients are given in Table 1 together with a review of other proposed
values from the literature.

In section 4, a complete simulation methodology is demonstrated for NWM-LES of a flat
plate ZPG-TBL. The grid resolution level used in the simulation is comparable to that under-
lying the grid estimates. Note, however, that the type of grid coarsening and unstructured grid
generation approach discussed in section 3 is not applied in the example simulation of section 4.
The purpose of the simulation is to assess the predictive accuracy, with the relevant grid reso-
lution relative to the boundary layer thickness. This is accomplished by comparing the friction
coefficient, the shape factor and the mean velocity profile with DNS data.
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Abstract. An implementation of a Harmonic Balance method to simulate time-periodic, non-
linear flows in turbomachinery on hybrid grids comprising both structured and unstructured
blocks is described. It has been developed with the aim to apply it to aeroelastic analysis prob-
lems which require support for deforming meshes. The necessary modifications of an existing
implementation of a Harmonic Balance method on structured grids are presented. Especially
block boundaries require a separate treatment. For the same spatial discretization order the
solver for unstructured grids requires a moderate overhead in computational resources in terms
of computation time compared to the structured solver when applied on grids with similar spa-
tial resolution. The extended HB solver is applied to a standard turbomachinery aeroelastic test
case for inviscid flows including both subsonic and transonic configurations. The computational
results obtained are compared with results from a Harmonic Balance solver for structured grids
and references from literature.
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1 INTRODUCTION

Harmonic Balance (HB) methods have been introduced into turbomachinery CFD to effi-
ciently simulate periodic time-dependent flow phenomena by taking into account frequencies
relevant for the phenomenon under investigation only. These phenomena have traditionally
been simulated based on linearized governing equations starting from two-dimensional Euler
equations to finally three-dimensional compressible Navier-Stokes equations. The linearization
decouples the governing equations for the flow perturbations from those governing the mean
flow and allows highly efficient solvers to be constructed for the perturbations. Whilst highly
efficient this approach does not take into account nonlinear phenomena. Therefore such tools
are not expected to give accurate results when applied to problems in which nonlinear effects
are suspected to play an important role. HB methods, see for example [1, 2, 3, 4], overcome
these restrictions and allow frequency-domain methods to be applied to nonlinear, time-periodic
problems thereby taking into account the nonlinear coupling of perturbations and the mean flow.

The extension of the Harmonic Balance solver to unstructured and finally hybrid grids, com-
prising both structured and unstructured blocks, is driven by the requirement to include geo-
metrically complex components of turbomachines like cooling channels or cavities, which are
often modelled by unstructured grids. These geometrical details are a source of disturbances
which may excite blade vibrations and therefore have to be taken into account when investi-
gating aeroelastic phenomena. The newly developed solver for unstructured grids is based on
previous work on aeroelastic analysis on unstructured grids with a time-linearized solver [5]
and the development of a Harmonic Balance method on deforming grids [6] in the framework
of DLR’s block structured compressible URANS solver TRACE [7].

This paper is organized as follows: first an overview of the base flow solver, the HB method
and the spatial discretization schemes is given. Then the modifications to the implementation
are explained which are necessary when extending the existing HB implementation to unstruc-
tured grids. Finally results are compared to reference results when the solver for unstructured
grids is applied to a duct and the Standard Configuration 10 aeroelastic test case.

We will restrict ourselves in this paper to inviscid flows as the initial validation step for the
HB solver on hybrid grids.

2 NUMERICAL METHOD

2.1 Underlying flow solver

TRACE [7] is a parallel Navier-Stokes flow solver for structured and unstructured grids
that has been developed at DLR’s Institute of Propulsion Technology to model and investigate
turbomachinery flows. The code solves the finite-volume discretization of the compressible
Reynolds-averaged Navier-Stokes (RANS) equations in the relative frame of reference using
a multi-block approach. For details of the discretization on structured grid refer to [8] and
for a detailed description of the unstructured discretization see [9]. For the present work it is
sufficient to note that following the discretization of the spatial operators in the Navier-Stokes
equations the following system of ordinary differential equations (ODEs) is obtained

dq

dt
+ R (q(t)) = 0 (1)

where q is the vector of conservative variables, R is the discretized RANS residual vector and
t denotes the physical time.
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2.2 Harmonic balance method

The Harmonic Balance method described in this work is part of the CFD code TRACE.
For completeness we will summarize the HB algorithm as it is implemented in TRACE. For a
detailed description see [10]. Time-periodic solutions of Eqn. (1) can often be described by a
limited number of solution harmonics, i.e.,

q(x, t) = Re

[
K∑
k=0

q̂k(x)eikωt

]
(2)

where q̂k are the complex valued solution harmonics and ω = 2πf is the fundamental angular
frequency. In such cases it is computationally attractive to formulate the unsteady problem,
Eqn. (1), in the frequency domain, i.e. to consider

ikωq̂k + R̂(q)k = 0 (3)

for only a finite number of harmonics, k = 0, . . . , K. For configurations in which non-linearity
can be assumed to be negligible the coupling between the harmonics of q, imposed by the
nonlinear nature of R, can be neglected and one obtains K + 1 independent equations for the
solution harmonics and the time-mean solution field. Here the equations for the harmonics are
linear and only for the time-mean solution has a nonlinear equation to be solved. However, if
one wishes to retain nonlinear effects an alternative approach is required in the modelling or
computation of R̂(q)k. We compute R̂(q)k as F (R(F−1q̂))|k and therefore solve

ikωq̂k + F (R(F−1q̂))|k = 0, (4)

where F denotes the Discrete Fourier Transform (DFT) and F−1 its inverse. Eqn. (4) is solved
in the frequency domain to obtain the complex valued harmonics of the conservative variables
q̂k. To compute the harmonics of the RANS residual vector R the solution field vector is first
reconstructed atN sampling points within the period of oscillation from the Fourier coefficients
of the conservative variables q̂k using the inverse DFT. With the reconstructed solution vectors
the RANS residual vectors R are then computed at the N sampling points to enable the DFT
of R to be computed, i.e., the R̂(q)k. Note, since the RANS residual R is evaluated in the
time-domain the standard flux and discretization schemes from the underlying nonlinear solver
can be used.

As a hybrid time- and frequency-domain method the approach has the advantage, over meth-
ods formulated purely in the time- or frequency-domain, of being able to employ not only the
possibly highly nonlinear time-domain flux functions (and their stabilizing numerical limiters)
but also highly accurate nonreflecting boundary conditions formulated in the frequency do-
main [11]. Particularly in the context of aeroelasticity or aeroacoustics boundary conditions
are of the utmost importance. The implementation in TRACE of these boundary conditions is
described in [12].

For aeroelastic analysis the approach described above has to be modified to deal with time-
dependent meshes as described in [6]. The governing equations are solved by an implicit
pseudo-time approach. Discretizing the pseudo-time operator using the first-order Euler back-
ward method and then linearizing the harmonic balance residual RHB in pseudo-time the fol-
lowing system of equations is obtained[(

1

∆τ
+ ikω

)
+
∂R

∂q

∣∣∣∣
q̂
(m)
0

]
∆q̂(m) = −RHB

k

(
q̂(m)

)
, (5)
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where V̄ is the unperturbed cell volume and

RHB
k

(
q̂(m)

)
= ikω (̂V q)|k + F (VR(F−1q̂))|k, ∆q̂(m) = q̂(m+1) − q̂(m). (6)

Here m is the pseudo-time iteration counter and V the time-dependent cell volume. The cou-
pling terms have been neglected in the left-hand side and therefore it depends directly only on
the time-mean solution q̂

(m)
0 . As such the residual Jacobian ∂R

∂q
is identical to that employed

in the steady flow solver. The linear system of equations, Eqn. (5), is solved using either the
incomplete lower upper (ILU) or successive overrelaxation (SSOR) methods.

2.3 Spatial discretization

So far no reference to a specific discretization method has been made because the algorithm
described above can be applied unaltered to structured and unstructured meshes. To understand
the differences between an HB implementation for structured and unstructured grids we have to
look into the spatial discretization in more detail. For both types of grids the discretized residual
vector Ri at cell i computed by a finite volume method is given by

Ri =
1

Vi

∑
s∈Bi

Fs(q)− Si(q). (7)

Here Vi is the volume of the cell, Bi the set of its faces, Fs the numerical flux across face s and
Si any source term. Apart from the source term, which depends on the state of the cell itself
only, the residual is the sum of convective and viscous fluxes, Fs,conv and Fs,visc, respectively:

Fs(q) = Fs,conv(qL,qR) + Fs,visc((∇q)s) (8)

where Fs,conv is computed by the Roe upwind scheme [13] extended to second order accuracy
using van Leers MUSCL technique [14] while Fs,visc is discretized by a second order central
scheme. The so-called left and right states, (qL and qR) at face s which is common to cells i
and i′ are computed with second order accurate extrapolation schemes, i.e., on structured grids,

qL = qi +
1

2
(∆̃q)L, qR = qi′ −

1

2
(∆̃q)R, (9)

whereas, on unstructured grids,

qL = qi + (∇̃q)L · (xs − xi), qR = qi′ + (∇̃q)R · (xs − xi′) (10)

is used. By (∆̃q)L/R and (∇̃q)L/R we denote the limited slopes and gradients at cell centers,
respectively, see [15] and [9] for details. On unstructured grids the gradients are computed using
the Green-Gauss approach.

3 IMPLEMENTATION FOR UNSTRUCTURED AND HYBRID GRIDS

The HB solver for structured grids has been implemented by reusing computational routines
for the nonlinear residual R and its Jacobian ∂R

∂q
including the computation of the numerical

fluxes according to the previous section. As examination of Eqn. (5) and Eqn. (6) shows this
implementation strategy carries over to the implementation of the HB solver for unstructured
grids by using the respective routines from the nonlinear solver for unstructured grids.

Where different and additional implementations have to be considered is at block boundaries
in a multi-block configuration. Fig. 1 depicts the situation for a two dimensional grid with the
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Figure 1: Stencil for the second order Navier-Stokes residual on structured and unstructured meshes [5].

focus on a single stencil where the red line marks the block boundaries. Neighbouring cells may
reside on different blocks, however, their values are needed to maintain second order spatial
accuracy across block boundaries, i.e., for the extrapolation given in Eqn. (9) and Eqn. (10).
For completely structured grid this is solved by exchanging a two cell wide ghost cell layer
surrounding each block which is filled with the respective values from neighbouring blocks.
In Fig. 1 these are the cells to the right of the red line for the structured stencil. The second
order extrapolation can be performed locally at block boundaries then. This procedure at block
boundaries for structured grids does not carry over to unstructured grids because in TRACE we
keep only one layer of ghost cells on unstructured grids which is constructed from cells having
a common face with the local cell. The gradient in these cells however can not be computed
locally now because information on the neighbourhood of the ghost cell, the black triangles to
the left of the red line in the right picture in Fig. 1, is incomplete. Therefore in the nonlinear
solver a two step process is used. First the states at the ghost cells are exchanged which allows
the gradients at the cells adjacent to the boundary to be computed locally. Then the gradients
are exchanged which in turn allows to interpolate gradients to boundary cell faces to compute
the left and right states at the face required for second order spatial accuracy.

In the HB context we have to compute the nonlinear residual for every sampling point tp
used to compute the harmonics of the residual R̂(q)k = F (R(F−1q̂))|k from the recon-
structed states q(tp) = F−1q̂ and its gradients ∇q(tp) at the cell itself and its neighbours. If
we follow the procedure for the nonlinear solver here this procedure has to be repeated for every
sampling point, i.e., two communications steps are initiated each blocking the computation. It
would be preferable to cluster or even avoid these communication steps. Taking the gradients
at ghost cells not into account would reduce the spatial discretization order from second to first
order. However, observe that the inverse DFT and the computation of the gradients are linear
operations which commute, ∇q = ∇(F−1q̂) = F−1(∇q̂). Therefore instead of computing
the gradients of the states at ghost cells necessary to compute R at cells next to the boundary
by the two step procedure they can be reconstructed from the gradients of the harmonics. This
is achieved by first exchanging the harmonics q̂k and computing their gradients locally at cells
which are ghost cells at neighbouring blocks. These gradients are then exchanged. Now all data
are available to compute the nonlinear residual at every sampling point without further commu-
nication steps. For every sampling point first the states are reconstructed at the ghost cells and
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perturbation pressure real part [Pa]: 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

Figure 2: Grid and block topology of the 2D duct
superimposed with the contours of the real part of
the pressure perturbation.
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Figure 3: Normalized pressure amplitude along the
center of the duct.

in the interior from their harmonics. Then the gradients at the ghost cells are reconstructed from
their harmonics and finally the gradients at interior cells are computed from the reconstructed
states. Now the limiter is applied and the states at the cell faces according to Eqn. (10) are
computed. These steps can be performed on locally available data.

For hybrid grids comprising both structured and unstructured blocks non-matching inter-
faces may be generated, i.e., faces on one side of a block boundary between two blocks overlap
with more than one face on the other side. In grids for turbomachinery simulation this happens
especially where components with complex geometries like cooling channels or cavities are
connected to the main flow geometry. Here a spatially first order coupling algorithm is imple-
mented. The algorithm basically reconstructs the solution at the sampling points, interpolates
the reconstructed states to the ghost cells at the neighbouring block and performs a DFT using
all relevant frequencies at this block to update the harmonics. The algorithm is explained in
detailed in [16].

4 VALIDATION

4.1 Spatial discretization order at block boundaries

To demonstrate the effectiveness of the mechanism described in section 3 a simple 2D duct
configuration has been constructed comprising two blocks and 2500 cells. An acoustic wave
is prescribed at the entry of the duct with an amplitude of 0.5Pa, a frequency of 400Hz and a
circumferential wave number 0 in an axial mean flow with Mach number 0.6. The grid, together
with the real part of the pressure perturbation, is shown in Fig. 2. The unstructured grid is con-
structed from the same cells as the structured grid. In Fig. 3 the pressure perturbation amplitude
is plotted along the center of the duct. Without the new implementation of the gradient com-
putation at block boundaries a jump at the block boundary can be seen due to the degradation
of the spatial discretization order. With the gradients at the ghost cells included the solution
using the HB solver for unstructured grids follows the solution computed with the HB solver
for structured grids.
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X

Y

Z

Figure 3: Computational domain, block topology and grid (every second mesh point only) for Standard Configu-
ration 10.

4.2 Aeroelastic test case

To validate the HB solver for unstructured meshes for flutter problems the extended solver is
applied to the well documented aeroelastic test case Standard Configuration 10 (STCF10) [17].
The test case is simulated by solving the nonlinear Euler equations. The two-dimensional com-
putational domain comprises a total of 5600 cells distributed over 6 blocks, see Fig. 3. The entry
and exit boundaries of the computational domain are located approximately one chord length
upstream and downstream of the compressor blade, respectively. In [6] an excellent agreement
of simulation result obtained with the HB solver in TRACE for block-structured grids with data
from literature is reported. We will compare the results obtained with the solver for unstructured
grids with these results and with results given in [18]. Fig. 4 shows the computed time-mean
flow fields in terms of the isentropic Mach number Mis along the surface of the blade. At
both operating points the numerical results agree very well with the corresponding data for the
solver on structured grids. The aeroelastic stability of the two-dimensional compressor cascade
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Figure 4: Isentropic Mach number distributions for the subsonic (left) and transonic cases (right) computed with
the structured and the unstructured solvers.
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Figure 5: Normalized aerodynamic damping at subsonic (left) and transonic (right) flow conditions with ω∗ = 1
and ω∗ = 0.5, respectively.

is investigated for a torsional mode with an amplitude of 0.01◦ and axis of rotation located at
midchord for a reduced frequency ω∗ of 1.0 for the subsonic and 0.5 for the transonic case. ω∗

is defined by ω∗ = cω/|U |Inlet. Where c is the chord length and |U |Inlet the velocity magnitude
at the inlet. The simulation has been performed with a single higher harmonic, the prescribed
frequency of the torsional mode. The computed values of aerodynamic damping, normalized
against the value at an inter blade phase angle of 180◦, are shown in Fig. 5 and compared against
results obtained with the HB solver for structured grids and a reference from literature [18]. As
can be seen in Fig. 5 the HB solutions show very good agreement with the structured solver
results and the literature results for the subsonic case. The discrepancies observed for the tran-
sonic case can be attributed to the sensitivity of the position of the acoustic resonance at an
inter blade phase angel of about -100◦. Its position is very sensitive to the velocities at the exit
boundary which in turn are sensitive to the position of the shock which depends to some extent
on the specific solver parameters and the spatial resolution of the grid.

Structured and unstructured grids have the same size. Therefore we use this case to asses
the overhead incurred by using the unstructured formulation instead of the structured. Fig. 6
shows the L1 residual norm of the first harmonic for an inter blade phase angel of 60◦. Having
almost the same algorithmic convergence rate as seen in the right plot of the figure, from the
left plot one deduces that the computation time to achieve the same residual norm about 15%
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Figure 6: L1 norm of the residual for the first harmonic.
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Figure 7: Mesh near the leading edge, with the in-
terface indicated in blue, and the harmonic pressure
amplitude on the hybrid grid (left) and on the refined
structured grid (right).
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Figure 8: Damping curve normalized to value at
180◦ computed on the refined unstructured grid and
the and the hybrid grid.

larger. This is acceptable with configurations in mind where a configuration due to its complex
geometry can be simulated efficiently with an unstructured grid only.

To demonstrate the ability of the solver to handle hybrid grids the O-block surrounding the
blade is refined by increasing the number of grids points by a factor of two such that at the
block boundary the 1-1 connectivity is replaced by a non-matching connectivity. The O-block
although having a structured topology is converted to an unstructured block, see the two plots
at the top of Fig. 7. Reference results have been generated on a structured grid which is refined
by a factor of two globally. As shown in Fig. 7 the pressure perturbation amplitude for an
inter blade phase angle of 60◦ displays only small differences when computed on a grid with
or without the non-matching interface. This holds for all other inter blade phase angles. The
damping curve computed on the hybrid grid shows very good agreement with the results on the
refined structured grid.

5 SUMMARY AND OUTLOOK

In this paper we described the steps to build a Harmonic Balance solver on hybrids grids
for inviscid flows. It makes heavy use of functionality already available in the base solver. At
block boundaries, both with 1-1 and non-matching connectivity, additional effort is necessary
to maintain second order spatial accuracy at boundaries with 1-1 connectivities or handle the
non-matching case. The new solver has been applied to the reference test case Standard Config-
uration 10. Very good agreement of the simulation results has been obtained with results from
the HB solver for structured grids and reference results from the literature for the subsonic oper-
ation point. The differences observed for the transonic operation point can be explained by the
sensitivity of the position of the acoustic resonance on the mean flow conditions. A simulation
on a hybrid grid demonstrated the ability of solver to handle non-matching block boundaries.

The simulation results show that a HB method has been developed which includes the nec-
essary ingredients for the aeroelastic analysis on hybrid grids. To apply the method to turbo-
machinery configurations with relevance to industry the solver will be extended to solve the
URANS equations including a turbulence model by the HB method. For increased accuracy
work is ongoing to maintain second order spatial discretization order at non-matching inter-
faces.
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Abstract. This work deals with the effects of an Active Gurney Flap device on the aerodynamic 

performance of oscillating rotor blade sections in different incidence ranges (pre-stall and dy-

namic stall conditions). Numerical and experimental simulations are carried out for different 

flow conditions, airfoil oscillation characteristics and Gurney flap activation laws, in order to 

assess the potential benefits of such a device on controlling blade loads and to get a deeper 

insight on the involved flow phenomena. This document is focused on the numerical simulation 

methodology and associated results obtained for some relevant cases selected from the wind-

tunnel experiments test matrix.  
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1 INTRODUCTION 

 

Huge efforts have been dedicated to improve the performance of aircraft systems, including 

propulsion systems, propellers as well as aerodynamics systems. The main objectives are better 

efficiency, reduced fuel consumption and corresponding environmental gains. For helicopters, 

blade morphing technologies have become of interest to reduce noise and vibrations.  

The study of the dynamic stall phenomenon on the rotor blade represents one of the major 

research topics in helicopter aerodynamics. The first analysis of the dynamic stall effects on 

helicopter rotor blades appeared in an experimental study in 1960 (see [1]). Empirical tech-

niques were developed ([1][2]) that attempted to represent the primary effects of dynamic stall 

on airfoil lift and pitching-moment characteristics. Parametric experiments were run to expand 

the database used for improving these empirical methods ([3][4] [5]). The experiments were 

primarily directed toward obtaining aerodynamic force and moment coefficients as functions 

of frequency and angle, and the empirical corrections, which developed from these tests, were 

the prime source for improving helicopter aerodynamic prediction methods. The first investi-

gation which attempted to isolate the fluid dynamic phenomena causing dynamic stall led to a 

correlation between experimental pressure distributions and the movement of a strong vortex 

along the surface of the airfoil ([6][7]). The presence of this vortex that forms on the upper 

surface of the airfoil can produce lift significantly greater than that obtained in steady flow 

([8][9]) and dramatic changes in the lift and moment characteristics of the airfoil ([10]). The 

main consequence of these phenomena is a hysteresis loop developed in both lift and pitching 

moments with much larger magnitudes developed than in steady flow. At the end of the cycle, 

when the vortex leaves the airfoil, there is an abrupt drop in lift and moment.  

This fact gives strong limitations for the operational envelope of helicopters during maneu-

vers, high-speed flight, and operations at high density-altitude. For all these reasons, several 

research activities are ongoing to control/delay the rotor blade dynamic stall. Improvements 

rely upon the optimization of the blade airfoil shape, or, as alternative, adopting active/passive 

systems.  Due to the strong demand for faster helicopters/blade, in recent years, the dynamic 

stall phenomenon has become one of the more investigated topics in aerodynamic and aeroe-

lasticity fields. Several research activities both in experimental and numerical fields are cur-

rently focused on the design and development of advanced rotor blades equipped with active 

and passive devices to mitigate the detrimental effects on the helicopter performance produced 

by the dynamic stall on the retreating side of the rotor ([11]). 

Between a range of potential technologies that could be incorporated within active segments 

of a helicopter main rotor blade, the ‘Active Gurney Flap’ (AGF) seems to be the most inter-

esting solution. The AGF is a small appendix perpendicular to the surface of the airfoil (typi-

cally on the lower surface) with the ability to alter its height from zero (fully retracted) to a 

maximum value (fully protruded). The AGF concept is attracting more and more interest be-

cause of its relatively low power demand and stronger resistance to blade centrifugal stresses 

when compared to other similar active devices. To assess the potential benefits deriving from 

the use of AGF on smart rotors in forward flight, as well as to mature the knowledge in the field 

of the complex unsteady phenomena involved, the development of adequate numerical and ex-

perimental tools is required, providing methodologies able to estimate the AGF influence on 

aerodynamic blade loads. 

In the last 20 years, several wind tunnel facilities have been upgradated/modified to allow 

simulating the unsteady flow conditions around pitch oscillating airfoils. The most recent ex-

perimental research activities have been performed in the DNW-TWG transonic wind tunnel 

facility located at DLR-Göttingen, Germany (see [12][13]) or in the Icing Research Tunnel 
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(IRT) at the NASA Glenn Research Center ([14]). One of the major limit of the existing WT 

facilities is that they are able to cover only a limited “Mach‐Reynolds‐Pitching Reduced fre-

quency” operative envelope with respect to the typical flight conditions of helicopters. With 

this work, we propose to reproduce, in CIRA Icing Wind Tunnel Test facility, Deep Dynamic 

Stall conditions acting on a full-scale retreating rotor blade section referred to a medium size 

helicopter (NH90 like) and analyze the effect of AGF devices on the performances of the airfoil. 

Moreover the experimental results will be compared with numerical data of computational fluid 

dynamic simulations. 

This paper contains a description of the experimental apparatus able to simulate Deep Dy-

namic Stall situations and numerical results. It is structured as follow. Section 2 deals with a 

description of the Experimental Set-Up, including some details about the pitch oscillating airfoil 

and the characteristics of CIRA Icing Wind Tunnel. Section 3 is devoted to the Numerical Re-

sults founded in different flight conditions. Finally, Section 4 contains the Conclusions. 

 

 

2 EXPERIMENTAL SET-UP 

2.1 The Pitch Oscillating Airfoil  

The pitch-oscillating system is composed by a wall-to-wall full span model (1.1m) having a 

NACA 0018 airfoil section and a chord of 0.28m. It is activated by one power system (electric 

motor) with a reduction gear system able to generate the required pitch-oscillation motion 

around the model quarter-chord axis. The model is integrated in the wind tunnel test section by 

means of two interface disks, for each side of the test section, one connected to the pitch-oscil-

lating motor and the other to a mechanical support. A general view of the pitch-oscillating sys-

tem is reported in Figure 1. 

From a technical point of view, according with the given requirements, the pitch-oscillating 

system has been designed to generate a pitch-oscillating motion of the 2D model with the fol-

lowing laws: 

𝛼 = 𝛼𝑀 − 𝛼0sin(𝜔𝑡) 
 

where 𝛼𝑀, 𝛼0 and 𝜔  are, respectively, the mean angle, the oscillating angle and the angular 

velocity. 

 

 

 
Figure 1: Pitch-oscillating system 
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The system is integrated in the Secondary Test Section (STS) of the CIRA Icing Wind Tun-

nel (IWT). Officially inaugurated in September 2002, the IWT is one of the most advanced 

ground facilities for aerodynamic tests in icing conditions. The IWT is a closed loop-circuit, 

refrigerated, pressurized aerodynamic and icing wind tunnel equipped with four interchangea-

ble test sections able to reproduce the atmospheric conditions up to a height of 7000 m and 

static temperature of -40°C. The test section can have both closed or slotted walls with 7% open 

area. Airflow refrigeration is obtained via a twin row heat exchanger; the minimum achievable 

static temperature in the STS is –40°C. In addition, an evacuation/pressurization air system 

allows static pressure being regulated between 39,000 Pa, corresponding to an altitude of about 

7,000 m, and 145,000 Pa, for high Reynolds number aerodynamic tests. 

The Pitching oscillating test rig is interfaced to the STS-Secondary Test Section frame 

(height 2.35m, width 1.15m, length 5.0m) allowing tests up to M=0.7. Figure 2 shows a general 

view of the IWT facility and of the STS. The details of the IWT facility and its operative enve-

lope are provided in [15]. 

 

    
Figura 2: General View of the IWT (up/left and down) and view of the STS (right) 

     

2D pitch oscillating tests will be performed on a NACA0018 airfoil having a chord length 

of 0.28m having a wing span length of 1.15m to be installed in wind tunnel in the “wall to wall” 

configuration. The 2D WT model has been designed to meet an adequate structural integrity 

under aerodynamic and inertial loads as well as model modularity to allow the setting of the 

different configurations. An overview of the 2D model is reported in Figure 3. The airfoil has 

been designed to guarantee sufficient access to the instrumentation installed inside the model, 

by minimizing the number of removable components and mitigating the risk of steps, gaps 

and/or imperfections on external skin, which can affect the natural flow development. At this 

regard, removable panels have been manufactured on the lower part of the surface, by leaving 

the upper surface of the model clean. The model has been designed to allow different configu-

rations:  

 

o Clean configuration (absence of GF); 

o No. 2 model configurations having a fixed GF with 1.4 % and 2.8 % of protrusion length 

respectively, with GF located on the lower surface at 95% of the model chord. 
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Figure 3: 2D Wind Tunnel Model Configurations 

 

3 NUMERICAL SIMULATIONS 

This section is devoted to the numerical study of the aerodynamic behavior of a NACA 0018 

airfoil without and with a fixed Gurney Flap. First of all a description of the geometrical data 

and operating conditions is presented; then steady and unsteady results are detailed. 

3.1 Geometrical data and selected operating conditions 

The analyzed blade section is represented by a NACA 0018 airfoil (see [16] for coordinates 

set). For the present calculations, a blade section chord of 0.28 meters is considered and the 

airfoil angle of incidence is time-modulated according to the following harmonic oscillation 

law 

𝜶 = 𝜶𝑴 − 𝜶𝟎𝐬𝐢𝐧(𝟐𝛑𝐟𝒕) 

where f is the frequency of pitch oscillations.  

Computations include both steady and unsteady simulations according to Table 1, which rep-

resents the wind tunnel test matrix selected for cross-comparison of numerical predictions 

against experimental results.  

 
 

Blade 

Motion 

Mach 

Number 

Reynolds 

Number 
𝜶𝑴 𝜶𝟎 f AGF 

Fixed  

Airfoil 
0.3 1 × 106 [−2° → 20°] 0 N/A 

OFF 

FIXED 

(1.4-2.8%) 

Rotating  

Airfoil 
0.3 1 × 106 8° 6° 3 Hz 

OFF 

FIXED 

(1.4-2.8%) 

Table 1: Summary of numerical simulations 
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The Gurney Flap device is positioned on the lower side of the airfoil, at 95% of the chord, and 

it reaches a maximum protrusion length equal to 1.4% and 2.8% of the chord (i.e. 4 or 8 mm). 

Unsteady simulations are also performed for the oscillating airfoil with Gurney Flap device 

fully extended during the whole pitch cycle (fixed protrusion length). 

3.2 Domain discretization and boundary conditions 

The fluid domain has a typical C-shape with outer boundaries located 30 chord length away 

from the body surface. The minimum spacing in the normal direction to the airfoil surface is 

set to an adequate value to solve the boundary layer down to the airfoil surface (unitary dimen-

sionless wall distance with growth ratio around 1). Figure 4 shows a sketch of the leading edge 

grid on the airfoil. 

 
Figure 4: Mesh close–up view 

All flow simulations listed in Table 1 use the same computational mesh and boundary condi-

tions: cases with extended Gurney Flap (fixed length) are computed applying a solid wall 

boundary condition to both faces lying on the GF surface. 

3.3 Flow solver and CFD approach 

The Reynolds–Averaged Navier-Stokes equations are solved with a finite volume method 

(FV), so they are expressed as a system of conservation laws that relate rate of mass change, 

momentum, and energy in a control volume of area A to the spatial fluxes of these quantities 

through the volume. The flow field is computed using the commercial CFD code ANSYS Flu-

ent R15.0. The presented computations solve URANS equations using a k-ω SST turbulence 

closure (see [18]) for all cases. According to the wind-tunnel model set-up, CFD simulations 

were run as fully turbulent, i.e. with no transition model and no regions with artificially modi-

fied turbulence production. 

The novel element of this work is the application of the dynamic meshing methodology to 

obtain accurate time-dependent results because the computational mesh varies in time consist-

ently with the changing positions of the different moving bodies. This dynamic approach allows 

the numerical solution to more closely follow the unsteady flow evolution and, thus, to better 

represent the time history of the forces acting on the bodies surfaces (see [19]). In order to avoid 

the deterioration of the mesh quality and/or the degeneration of existing FV cells, due to the 

geometry modification, two different methods are used, which are referred to as “smoothing” 

and “remeshing”. The former technique consists in moving the interior nodes of the mesh with-

out changing their number and their connectivity. The latter technique allows for the local up-

date of the mesh by either adding or deleting cells, where the boundary displacement would be 
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otherwise too large with respect to the local mesh size. After some preliminary tests demon-

strating the feasibility of such an approach, the remeshing and the spring–based smoothing 

techniques are simultaneously used in the present work. 

3.4 Results 

A preliminary characterization of the airfoil aerodynamic performances at fixed incidence 

angles (fixed airfoil conditions) is performed to compare our numerical predictions with both 

available data from other experimental and numerical set-up and, so, to provide reference data 

for unsteady computations. Figure 5 depicts the trend of the lift coefficient against the angle of 

attack: our data (black curve) are compared with [20], [21] and [22]. The agreement between 

our results and the experimental data is good, especially in the linear part of the curve. 

      

Figura 5: Lift and Polar Curves 

 

Figures 7 and 8 refer to the cases in which the Gurney Flap assumes fixed positions. Watch-

ing the 𝐶𝑙(𝛼) curve (Figure 6), it is noticeable, respectively, an increasing of 6% and 8% of the 

𝐶𝑙 for the model with the 1.4% and 2.8% fixed Gurney flap in comparison with the clean con-

figuration. Moreover, the stall angle diminishes from 15 deg to 12 deg. The 𝐶𝑙(𝛼) slope doesn’t 

show significant changes in comparison with the clean airfoil.  

Comparing the 𝐶𝑑(𝛼) curves (see Figure 7), a section drag increment is observed along the 

curve being more important in the range of high angles of attack. There is also a 10% increment 
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of the 𝐶𝑑0 in comparison with the clean airfoil. All of these conclusions have a good agreement 

with other papers focused on the same topic (see [23], [24]). 

 

Figure 6: Lift curves 

 

Figure 7: Polar curves 

 

Figure 8 shows the trend of the pressure coefficient at 𝐶𝑙 = 0.78. The main difference is the 

presence of a plateau of pressure in the rear part of the airfoil after the GF. Moreover the pres-

ence of small humps in the pressure coefficient for all configurations denotes the existence of 

laminar bubbles on the upper side of the airfoil. This fact is also confirmed by data presented 

in literature ([16]). 
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Figura 8: Pressure Coefficient (𝐶𝑙 = 0.78) 

 

Figure 9 shows the comparison between the oscillating case and the corresponding steady 

case, for the configuration with 1.4% fixed Gurney Flap. As we expect, the maximum lift co-

efficient in the oscillating case is greater than that of the fixed case. In this case the Light Dy-

namic Stall is exploring in which the maximum angle of oscillation is not so far from the steady 

one.  

 

 

Figure 9: Lift Curves 
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4 CONCLUSIONS 

 

This work addresses the characterization of the aerodynamics of the Gurney Flap from the 

experimental and numerical point of view. The first part describes the experimental apparatus 

to study Dynamic Stall conditions acting on a full-scale retreating rotor blade section referred 

to a medium size helicopter. In the second part, numerical results are performed in both static 

and dynamic configurations: all of them have demonstrated the capability of GF devices in 

increasing the maximum lift coefficient and, so, alleviating some negative aspects of the dy-

namic stall. Dynamic simulations are focused on the Light Dynamic Stall problem, in which 

the maximum angle of oscillation is not so far from the steady one. 

4.1 Future works 

A future extension of this work will contain the results of the experimental tests into two 

different conditions: clean and with fixed GF configurations. These results will be compared 

with the numerical simulations of this paper. In addition to the Light Dynamic Stall, next cal-

culations will be focused on the characterization of the Deep Dynamic Stall in which the max-

imum angle achieved during the oscillation is much higher with respect to the Light Stall. 

Simulations will be, also, performed on an oscillating airfoil having an active Gurney Flap. 

Future developments regarding the experimental apparatus will be the integration of an ac-

tive Gurney Flap device in the pitching oscillating test rig.  
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Abstract. In order to achieve accurate transient predictions of turbulent flow fields on 

industrial scale problems, it is necessary to use a turbulence model since Direct Numerical 

Simulation (DNS) would be prohibitively expensive. Unsteady Reynolds-Averaged Navier 

Stokes (URANS) is the most commonly used to fully model the turbulence as an additional eddy 

viscosity using the Boussinesq approximation. Large Eddy Simulation (LES) is another 

modelling approach, which can be more accurate than URANS as only the smallest scales of 

turbulence are modelled. However, LES mesh requirements are very demanding, and too 

constraining for simple use in industrial contexts. Therefore, a variety of hybrid models have 

been developed, attempting to use the provided mesh to its maximum potential by resolving as 

many turbulent scales as possible and only model those eddies for which the mesh is 

insufficiently fine. Detached Eddy Simulation (DES), is one example of hybrid model, where 

URANS is used in the attached boundary layer regions whilst LES is used in the largely 

separated flow regions where the larger scales are dominant. More recently, the Partially-

Averaged Navier Stokes (PANS) method introduced by Girimaji et. Al [3] provides an 

interesting framework allowing the modification of existing URANS models to resolve the 

larger scales of turbulence whilst modelling the smaller ones.  

A validation of the PANS zeta-f model using iconCFD® is presented on a variety of cases 

ranging from cylinder flows to fully detailed vehicle aerodynamics courtesy of ŠKODA AUTO. 

Comparison to experimental wind-tunnel testing of the Yeti, Fabia and Superb models are 

presented. Various modifications to the modelled-to-resolved scale ratio are proposed and 

tested. Successful performance of this model is demonstrated within the industrial context of 

vehicle aerodynamics, and superiority of this model is shown in the prediction of separation 

regions, off-body flow structures, and aerodynamic forces. 
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1. Introduction 

   

Although URANS is generally an attractive turbulence modelling approach for industrial 

applications owing to its reasonable computational cost, on the other hand its lack of accuracy 

in the prediction of unsteady bluff body separation flows – which is the main focus of the 

present paper - raises the need for alternative solution methods. The problematic limitation of 

URANS resides in its inherent inability to simulate a broad spectrum of turbulent scales since 

all eddies are modelled. The resulting drawback is a simplified representation of the turbulence 

physics suffering from a shortfall in large scale characteristics that are influential in the 

evolution of the turbulent coherent structures. The Large Eddy Simulation (LES) approach is 

a suitable candidate to overcome this deficiency in accuracy as it directly resolves for the large 

turbulent scales, dominant in largely separated flows, and also simulates their interaction with 

the smaller sub-grid scales. This method allows to capture most of the flow details – if not all 

of them like in Direct Navier Stokes (DNS) - and to represent the overall flow complexity with 

a satisfactory physical fidelity. However in the near-wall regions, the largest turbulence scales 

are still very small making the LES approach computationally too expensive. Therefore from 

an engineering perspective, the LES technique may not be an adequate choice if the turbulent 

structures of interest are essentially in the outer wall regions, which is typically the case for 

ground vehicles aerodynamics. Yet, the motivation to apply LES far away from the walls, and 

to combine it with an affordable but accurate-enough modelling approach valid in the wall 

vicinity, has led to the development of various and successful hybrid LES/RANS methods as 

described in [1]. One of the main addressed challenges for these hybrid approaches is the 

capacity to enable LES in the mesh regions which are fine enough for the local scales to be 

resolved and bridge it, in a seamless way, with RANS which is invoked in the other regions 

that do not satisfy the former criterion. In the same spirit of hybrid LES/RANS, a new emerging 

modelling approach, classified as “second generation URANS”, is intended to resolve the 

energy-containing scales at reduced computational cost. It is called “Partially-Averaged Navier 

Stokes” (PANS) and was first introduced by Girimaji [2] as a variant of the standard 𝑘 − 𝜀 

closure model. The key feature of this approach is based on the introduction of two new 

parameters, denoted by 𝑓𝑘 and 𝑓𝜀, which control the relative amount (with respect to the total 

quantity) of the unresolved turbulent kinetic energy and dissipation rate respectively. Along 

with appropriate modifications of the closure coefficients, these modelled-to-total scale ratios 

allow to set the physical resolution of the turbulent fluctuations to any level ranging from pure 

URANS (𝑓𝑘,𝜀 = 1) to pure DNS (𝑓𝑘,𝜀 = 0).  The mesh resolution to be employed will directly 

depend on the 𝑓𝑘,𝜀 value if the latter is prescribed as a constant parameter. To remove that 

dependency, Girimaji [3] suggested a spatially-varying formulation of 𝑓𝑘,𝜀 , based upon the 

local grid dimensions, so that the PANS model can self-adjust its performance to its maximum 

resolution potential on any grid. In this paper, the PANS 𝜁 − 𝑓 model [4] will be retained for 

further investigations, within the iconCFD® framework, as it should theoretically show a better 

predictive capability for the near-wall flows in comparison to the original PANS  𝑘 − 𝜀 
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formulation. The implementation guidelines of the PANS model, and the different viable 

options for the  𝑓𝑘,𝜀 computation, are provided and discussed. The model is then evaluated for 

a set of different bluff body transient flows ranging from the academic square cylinder case to 

an external aerodynamics simulation on a ŠKODA car model. Finally, the validity of the new 

eddy-resolving method is assessed through qualitative analysis of turbulent structures and 

comparison of the numerical results with available experimental data. 

 

2. PANS 𝜻 − 𝒇 model description. 

 

2.1. PANS governing equations 

 

The general PANS formulation is derived from the incompressible Navier-Stokes equations by 

applying an arbitrary filter, denoted by < ⋯ >, to the instantaneous velocity 𝑽 and pressure 𝑝 

fields. The resulting filtered equations [2] read: 

 

𝜕𝑡𝑈𝑖 + 𝑈𝑗𝜕𝑗𝑈𝑖 +  𝜕𝑗𝜏𝑖𝑗 =
1

𝜌
𝜕𝑖𝑝𝑓 + 𝜈𝜕𝑗𝑗

2 𝑈𝑖 

𝜕𝑖𝑖
2𝑝𝑓 = 𝜕𝑗𝑈𝑖𝜕𝑖𝑈𝑗 + 𝜕𝑗𝑗

2 𝜏𝑖𝑗 

 

Where 𝑈𝑖 =< 𝑉𝑖 > and 𝑝𝑓 =< 𝑝 > are the filtered velocity and pressure fields respectively. 

The sub-filter scale stress 𝜏𝑖𝑗, assimilated to the Reynolds stress [5], can be calculated using 

the Boussinesq approximation:  

𝜏𝑖𝑗 = −𝜈𝑢𝑆𝑖𝑗 

𝑆𝑖𝑗 =
1

2
(𝜕𝑗𝑈𝑖 + 𝜕𝑖𝑈𝑗) 

 

The unknown variable 𝜈𝑢, which represents the eddy viscosity of the unresolved scales is then 

determined by any turbulence closure model. For models of the 𝑘 − 𝜖  family, it is generally 

expressed as a function of unresolved turbulent kinetic energy 𝑘𝑢 and dissipation rate 𝜖𝑢: 

 

𝜈𝑢 = 𝑓(𝑘𝑢, 𝜖𝑢) 

 

The relation between the unresolved (sub-filtered) and averaged (filtered) turbulence is 

established in the following way: 

 

𝑓𝑘 =
𝑘𝑢

𝑘𝑡𝑜𝑡
=

𝑘𝑢

𝑘𝑢 + 0.5(𝑼 − �̅�)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 

𝑓𝜖 =
𝜖𝑢

𝜖𝑡𝑜𝑡
≈ 1 
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The parameters 𝑓𝑘 and 𝑓𝜖 represent the unresolved-to-total ratios of the turbulent kinetic energy 

and dissipation rate respectively. Inserting these into any existing URANS closure model 

allows its adaptation to the PANS framework and controls the level of physical resolution of 

the turbulence fluctuations (𝑼 − �̅�), with �̅� referring to the mean statistical velocity field. A 

unit value of 𝑓𝑘 means that the filtered fluctuations are zero. In other terms, the filtered velocity 

is equal to its time-averaged value and the PANS model completely switches to the standard 

URANS formulation. If 𝑓𝑘 = 0, then 𝑘𝑢 = 𝜈𝑢 = 𝜏𝑖𝑗 = 0 and the PANS equations collapse to 

the DNS ones as the filtered and instantaneous velocities are the same. For intermediate 𝑓𝑘 

values, the filtered velocity can be called “partially averaged” as the contribution of both 

resolved and unresolved turbulent fluctuations is non-zero. Finally, the parameter 𝑓𝜖 can be set 

to 1 [3] – at least for high Reynolds number flows - since the very small dissipation scales, 

which are isolated from the larger energy-containing ones, are not intended to be resolved.  

 

2.2. PANS 𝜁 − 𝑓 closure model 

 

Here the 𝜁 − 𝑓 model, suggested by Basara [4], is used to close the PANS equations. This 

model is derived from the URANS 𝜁 − 𝑓 model, introduced by Hanjalic [6], and which is 

known to deal better than its parent, the standard 𝑘 − 𝜖 model, with anisotropic and curvature 

effects encountered in some wall-bounded turbulent flows. The equations of PANS  𝜁 − 𝑓 

read: 

𝜈𝑢 = 𝐶𝜇𝜁𝜇

𝑘𝑢
2

𝜖𝑢
  

𝜕𝑡𝑘𝑢 + 𝑈𝑗𝜕𝑗𝑘𝑢 = 𝑃𝑢 − 𝜖𝑢 +  𝜕𝑗 [(𝜈 +
𝜈𝑢

𝜎𝑘𝑢
 )] 𝜕𝑗𝑘𝑢 

𝜕𝑡𝜖𝑢 + 𝑈𝑗𝜕𝑗𝜖 = 𝐶𝜖1𝑃𝑢

𝜖𝑢

𝑘𝑢
− 𝐶𝜖2

∗
𝜖𝑢

2

𝑘𝑢
+ 𝜕𝑗 [(𝜈 +

𝜈𝑢

𝜎𝜖𝑢
) 𝜕𝑗𝜖𝑢]  

𝜕𝑡𝜁𝑢 + 𝑈𝑗𝜕𝑗𝜁𝑢 = 𝑓𝑢 −
𝜁𝑢

𝑘𝑢
𝜖𝑢(1 − 𝑓𝑘) +  𝜕𝑗 [(𝜈 +

𝜈𝑢

𝜎𝜁𝑢
) 𝜕𝑗𝜁𝑢] 

𝐿𝑢
2 ∇2fu − fu =

1

𝑇𝑢
(𝐶𝑓1 + 𝐶𝑓2

𝑃𝑢

𝜖𝑢
 ) (𝜁𝑢 −

2

3
)  

 

The different terms from the previous equations are:  𝑘𝑢 - unresolved turbulent kinetic energy; 

𝜖𝑢 - dissipation rate of 𝑘𝑢; 𝑃𝑢 = −𝜏𝑖𝑘 𝜕𝑘𝑈𝑖 - production rate of 𝑘𝑢; 𝜁𝑢 - unresolved wall normal 

velocity scale;  𝑓𝑢  - elliptic relaxation function; 𝐿𝑢 = 𝐶𝐿 max [
𝑘𝑢

1.5

𝜖
, 𝐶 𝜂 (

𝜈3

𝜖
)

0.25

]  - turbulent 

length scale; 𝑇𝑢 = max [
𝑘𝑢

𝜖
, 𝐶 𝜏 (

𝜈

𝜖
)

0.5

] - turbulent time scale. The closure coefficients are given 

in Table 1. 
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𝑪𝝁 𝑪𝝐𝟏 𝑪𝝐𝟐
∗  𝑪𝝐𝟐 𝑪𝒇𝟏 𝑪𝒇𝟐 

0.22 
1.4 (1 +

0.045

√𝜁𝑢

) 
𝐶𝜖1 + 𝑓𝑘(𝐶𝜖2 − 𝐶𝜖1) 1.9 0.4 0.65 

𝝈𝒌𝒖 𝝈𝝐𝒖 𝝈𝜻𝒖 𝝈𝒌 𝝈𝝐 𝝈𝜻 

𝜎𝑘

𝑓𝑘
2

𝑓𝜖
 

 

𝜎𝜖

𝑓𝑘
2

𝑓𝜖
 𝜎𝜁

𝑓𝑘
2

𝑓𝜖
 

1.0 1.3 1.2 

𝑪𝑳 𝑪𝜼 𝑪𝝉    

0.36 85 6.0    

Table 1 Closure coefficients of PANS 𝜻 − 𝒇 
 

If 𝑓𝑘 = 1, then any PANS model should, in theory, be identical to its parent URANS version. 

Here a few differences can be noted between PANS 𝜁 − 𝑓  and URANS 𝜁 − 𝑓: (a) in the 𝜖 

transport equation, the isotropic turbulence length scale 
𝑘

𝜖
  is used instead of  𝑇 ; (b) the 

realizability constraints for 𝑇 and 𝐿 are removed; (c) the definition of 𝐶𝜖1  differs from the 

original URANS one 𝐶𝜖1 = 1.4 (1 +
0.012

𝜁𝑢
). 

 

Finally, the zero transport model [2] is used by Basara to calculate the unresolved turbulent 

Prandtl numbers ( 𝜎𝑘𝑢, 𝜎𝜖𝑢, 𝜎𝜁𝑢 ). The maximum transport assumption [2] will be also 

considered in this paper. According to that model, the following assumptions can be 

made: 𝜎𝑘𝑢 = 𝜎𝑘;  𝜎𝜖𝑢 = 𝜎𝜖;  𝜎𝜁𝑢 = 𝜎𝜁. 

  

2.3. Near-wall treatment 

 

The 𝜁 − 𝑓 model is a low Reynolds model which requires, by its nature, a fine wall-normal 

mesh discretization in order to resolve the whole boundary layer. Thus the required 𝑦+value 

for such a model is less than 1 to accurately predict the near-wall flow. Because these mesh-

related constraints are not easy to satisfy in an industrial context, a hybrid wall treatment which 

combines the integration to the wall (ITW) with generalised wall functions (GWF), is 

incorporated into the PANS turbulence model. This method allows to cover all 𝑦+ values, even 

those falling into the critical buffer region (5 < 𝑦+ < 30). In this study, the compound wall 

treatment (CWT) approach, proposed by Popovac et al. [7], is adopted to define the wall 

boundary conditions of the turbulent variables. The general form of CWT, for any flow 

variable 𝜙, is given by: 

𝜙𝑃 = 𝜙𝜈𝑒−Γ + 𝜙𝑡𝑒−
1
Γ  

 

The index “𝑃” denotes the centre of the wall-adjacent cell. The indices “𝜈” and “𝑡” respectively 

stand for the viscous and turbulent contributions of  𝜙 . Finally, Γ  represents the Kader’s 

blending coefficient. The previous decomposition is applied to the fields 𝑃𝑢, 𝜖𝑢, 𝑓𝑢 and 𝜈𝑢  as 
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reported in Table 2. The different terms involved in the near-wall treatment are: 𝜈𝑙 - the laminar 

viscosity;  𝑦  - the wall distance;  𝑦𝑃
∗ =

𝐶𝜇𝑤
0.25𝑘𝑃

0.5𝑦𝑃

𝜈𝑙
 ; 𝐶𝜇𝑤 = 0.07  - the non-dimensional wall 

distance;   𝑢∗ = 𝐶𝜇𝑤
0.25𝑘0.5  - the turbulent velocity scale;  𝜅 = 0.41  - the Von Karman 

constant; 𝑢𝜏 = √(𝜈𝑙 +  𝜈𝑢,𝑃)
𝑈𝑃

𝑦𝑃
 - the friction velocity; 𝐸 = 8.3 - the log-law constant. 

 

𝝓 𝝓𝝂 𝝓𝒕 𝚪 

𝜖𝑢 2𝜈𝑙𝑘𝑢

𝑦𝑃
2  

𝑢𝑃
∗ 3

𝜅𝑦𝑃
 0.001

𝑦𝑃
∗ 4

1 + 𝑦𝑃
∗ 

𝑃𝑢 
𝐶𝜇𝜁𝑢,𝑃  

𝑘𝑢,𝑃
2

𝜖𝑢,𝑃
(

𝑈𝑃

𝑦𝑃
)

2

 
𝑢∗2𝑢𝜏

𝜅𝑦𝑃
 0.01

𝑦𝑃
∗

1 + 5𝑦𝑃
∗ 

𝜈𝑢 𝜈𝑙 𝜅𝑢𝑝
∗ 𝑦𝑃

ln(𝐸𝑦𝑃
∗)

 

𝑓𝑢 
−

2𝜈𝑙𝜁𝑃

𝑦𝑃
2  

0 0 

Table 2 CWT formulation for PANS 𝜻 − 𝒇 

 

2.4. Model implementation 

 

The PANS 𝜁 − 𝑓  model along with the enhanced CWT method has been implemented in 

iconCFD® which is a finite volume CFD code. In this section, the different possible ways of 

modelling the PANS key parameter 𝑓𝑘 are presented and discussed. 

 

The easiest option would be to treat 𝑓𝑘 as a user-defined constant coefficient. However this 

method is impractical for two main reasons. First, in a case where the turbulent flow structures 

locations are unknown in advance, the engineer will not know where to refine the mesh. 

Secondly, in some areas of the flow it may be easy to refine the mesh enough to satisfy the 

prescribed 𝑓𝑘value while in other regions such as boundary layers the required refinement 

would become prohibitive. Alleviating these constraints, Girmaji [3] suggested another 

approach by which the  𝑓𝑘 variable self-adjusts its value based on the local grid dimensions. 

This new method, which is more suitable for an industrial process, allows the PANS model to 

be used at its maximum resolution potential on an arbitrary mesh. The spatially dynamic 

formulation of 𝑓𝑘 is given by: 

 

𝑓𝑘,𝑚𝑖𝑛(𝑥) =
1

√𝐶𝜇
(

Δ

Λ
)

2

3
         

 

The subscript “𝑚𝑖𝑛” indicates that there is not any strict restriction to apply a larger value than 

the right-hand term of the above equality. The local grid length scale is denoted by Δ.  The 

variable Λ =
𝑘𝑡𝑜𝑡

1.5

𝜖𝑢
 represents the Taylor scale of turbulence.  
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The only difficulty at this stage is to determine an accurate way to calculate 𝑘𝑡𝑜𝑡 during the 

PANS simulation. In order to achieve this, it is necessary to know the time-averaged velocity 

field in advance, or in other terms to estimate that missing field by means of a pre-computed 

flow solution. Four different methods to estimate 𝑘𝑡𝑜𝑡 are suggested hereafter. For all of them, 

it is assumed that a converged RANS 𝜁 − 𝑓 solution has been obtained beforehand and used 

for the initialisation of the transient simulation. 

 

Method 1 (GB1) - At each time step 𝑛, the value of 𝑘𝑡𝑜𝑡 is updated from the solution at the 

previous iteration 𝑛 − 1, following the definition of 𝑓𝑘:  

 

𝑘𝑡𝑜𝑡
𝑛 =

𝑘𝑢
𝑛−1

𝑓𝑘
𝑛−1 

The initial value of 𝑓𝑘 is 1. 

 

Method 2 (GB2) – The formula of 𝑘𝑡𝑜𝑡 is simplified by removing the resolved contribution so 

that at each time step 𝑛: 

𝑘𝑡𝑜𝑡
𝑛 = 𝑘𝑢

𝑛−1 

 

This simplification is acceptable as it just overestimates the value of 𝑓𝑘
𝑛 but the counter-part of 

this assumption is that some turbulent scales that could have been physically resolved by the 

grid - with a more correct estimation of 𝑓𝑘
𝑛 - will end up being modelled.  

 

Method 3 (GB3) – At each time step 𝑛, 𝑘𝑡𝑜𝑡 is estimated from the filtered velocity fluctuations: 

 

𝑘𝑡𝑜𝑡
𝑛 = 𝑘𝑢

𝑛−1 + 0.5(𝑼𝒏 − �̅�𝑛)2 

 

The time-averaged velocity �̅� is first initialised with the steady RANS velocity field and then 

updated in the course of the simulation as �̅�𝑛, the running average of 𝑼.  

 

Method 4 (GB4) – At each time step 𝑛, 𝑘𝑡𝑜𝑡  is estimated using the real definition of the 

resolved turbulent kinetic energy: 

 

𝑘𝑡𝑜𝑡
𝑛 = 𝑘𝑢

𝑛−1 + 0.5(𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅𝑛−1) 

 

The time-averaged resolved fluctuations 𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅ are initialised to 0 and then updated in the course 

of the simulation as 𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅𝑛, the running average of  𝑢𝑖𝑢𝑖. 
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After 𝑓𝑘 is computed, a few precautions need to be taken with respect to that variable. First, the 

near-wall cell field should be explicitly set to 1 in case it does not converge to that value. This 

insures, in the DES spirit, that the turbulent scales in the extreme wall vicinity will be all 

modelled by URANS. Secondly, the maximum allowed value for 𝑓𝑘 must not exceed 1 and its 

minimum value can be set to any user-defined value (as low as possible) in order to help 

stabilize the transient solution.  

 

3. PANS Validation 

 

3.1. General Workflow 

 

The numerical simulations are performed with the CFD suite iconCFD®. The computational 

grids are created with the included automatic unstructured, hex-dominant mesh generator 

iconHexMesh. The flow is simulated using a two-step process in order to obtain a proper initial 

estimate of fk for the PANS calculation. First, a steady flow solution is computed using the 

RANS  ζ − f  model. For this preliminary computation, all the convection terms are 

approximated by a first-order upwind scheme to ensure solution stability. Once the steady 

solution is obtained, it is then used for the initialisation of the PANS simulation. For this second 

calculation phase, a second-order upwind convection scheme is applied to the momentum 

equation only. The maximum transport model is enabled for the calculation of the turbulent 

diffusion coefficients. The time step is automatically adjusted by the solver during the transient 

simulation so that the maximum value of the CFL number does not exceed 1.0. 

 

3.2. Academic Cases 

 

In this section, a primary verification study will be carried out to check the PANS performance 

in transient bluff-body flows that are commonly used as base benchmarks for LES simulations. 

In the following sections, the modelled flow is assumed to be incompressible and dependent 

on the Reynolds number only. The fluid density and kinematic viscosity are arbitrarily set to 

1 𝑘𝑔. 𝑚−3 and 1.5𝑒−05 𝑚2. 𝑠−1 respectively. The reference velocity is then deduced from the 

characteristic length scale of the problem.  

 

3.2.1. Flow past a square cylinder 

 

The different 𝑓𝑘 implementations should be initially evaluated in a simple turbulent flow with 

negligible wall interactions like the one past a square cylinder. The coherent vortical shedding 

developing in this configuration has been accurately analysed in many research works such as 

the experimental study conducted by Lyn et al. [8], [9] or the LES simulations performed by 

Rodi et al. [10]. Reproducing these well-known turbulence characteristics with the PANS 

model would be a first critical success factor.  
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Case Description 

 

The Reynolds number for the concerned flow, based on the square cylinder side 𝐷, is 21400. 

This gives a reference bulk velocity of 0.3 𝑚. 𝑠−1, if 𝐷 is set to 1𝑚. The geometric dimensions 

of the computational domain, are shown in Figure 1. Among the available reference data, those 

which are retained for comparative analysis are the Strouhal number (𝑆𝑡𝑟), the mean drag 

coefficient (𝐶𝐷) and the mean stream-wise velocity profile on the centre plane of the cylinder. 

Further details with respect to the experimental protocol and data can be found on the 

ERCOFTAC website [12]. 

 

 
Figure 1 Computational domain and geometry of the square cylinder 

 

Computational Details 

 

Mesh – The computational grid used for the numerical simulations contains 830000 cells. The 

mesh refinement is applied in the wake regions, as illustrated in Figure 2. The near-wall flow 

region of the cylinder is meshed with 5 layers and the 𝑦+ surface-averaged value is around 3. 

 

 
Figure 2 Coarse mesh view on the centre plane of the square cylinder 
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Boundary Conditions – The square cylinder surface is modelled as a non-slip wall while the 

upper and lower boundaries are applied a zero-friction condition.  The side walls of the flow 

domain are treated as symmetry planes. 

 

Solver - The transient simulation is carried out over 8 flow cycles - 1 flow cycle corresponds 

to the travelling time of the fluid from the inlet to the outlet of the computational domain. The 

flow fields are time-averaged over the last two flow cycles. 

 

Results 

 

Constant 𝑓𝑘 - The second invariant of the velocity gradient, denoted by 𝑄, is commonly used 

to identify the coherent structures of a transient turbulent flow. In fact, iso-surfaces of 𝑄 > 0 

represent regions of high vorticity where the rotation rate is higher than the strain rate. The 

effect of the modelled-to-total scale ratio on these iso-surfaces is shown in Figure 3. Setting 𝑓𝑘 

to a reasonable constant value of 0.4 over the whole computational domain results in the 

appearance of new vortical structures that do not exist in the URANS simulation (𝑓𝑘 = 1).  The 

difference in the resolution of turbulence scales between PANS and URANS clearly affects the 

mean axial velocity profile as illustrated in Figure 4. Superiority of PANS over URANS is 

quantitatively demonstrated in that plot.  

 

Grid-based 𝑓𝑘- The different calculation methods of the 𝑓𝑘 parameter are compared in Figure 5 

and Figure 6. An overestimation of 𝑓𝑘 can be observed for GB1 and GB2. As a result, most of 

the turbulence characteristics obtained with these methods are modelled. On the other hand, 

GB3 and GB4 show more resolved scales in the wake region and the corresponding velocity 

profiles are closer to the experiment. The mean drag coefficient and the Strouhal number for 

the different cases are all reported in Table 3. 

 

Convection scheme – The usage of a blended central differences-upwind convection scheme 

for the momentum equation sometimes helps stabilize a non-converging transient solution. 

Nevertheless for a PANS simulation, the contribution of the first-order scheme can have an 

inhibiting effect on the resolution of critical turbulence scales. Figure 7 and Figure 8 show that 

despite low 𝑓𝑘 values in the wake and apparent multi-scale vortices, the actual PANS solution 

is very similar to the URANS one.  

 

Unresolved turbulent Prandtl numbers – The zero and maximum transport models are 

compared in Figure 9 and Figure 10. The difference in the spatial distribution of 𝑓𝑘  can be 

observed between the two cases. The zero transport model seems to be more diffusive as it 

produces lower 𝑓𝑘  values in the detached flow regions. This is probably due to a higher 

diffusion coefficient, resulting from a division by 𝑓𝑘 (ranging from 0 to 1), in the equation of 

the unresolved turbulent kinetic energy. Despite this difference, the overall flow structures and 

the mean axial velocity profile are similar for both transport models.  
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Figure 3 Coarse mesh. Instantaneous iso-surfaces of the Q criterion (𝑸 = 𝟎. 𝟎𝟏 𝒔−𝟏) 

 

 

 
Figure 4 Coarse mesh. Mean axial velocity profile - Experiment (red symbol), URANS (green), 

𝒇𝒌 = 𝟎. 𝟒 (blue) 
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Figure 5 Coarse mesh. Representation of 𝒇𝒌 in the symmetry plane of the cylinder (left), 

instantaneous iso-surfaces of 𝑸 = 𝟎. 𝟎𝟏 𝒔−𝟏 (right) for GB1, GB2, GB3 and GB4 (from top to 

bottom) 
 

 

 

Figure 6 Coarse mesh. Mean axial velocity profile - Experiment (red symbol), URANS (green), 

GB1 (dark blue), GB2 (pink), GB3 (light blue), GB4 (orange) 
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Figure 7 Coarse Mesh. PANS GB4 –Blended central differences (0.4) – upwind scheme (top), 

Second-order upwind scheme (bottom) 
 

 

 

Figure 8 Coarse Mesh. Mean axial velocity profile - Experiment (red symbol), URANS (green), 

GB4 second-order upwind (pink), GB4 Blended central differences (0.4) – upwind scheme (blue) 
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Figure 9 Coarse Mesh. PANS GB3 – Zero Transport Model (top), Maximum Transport Model 

(bottom) 

Figure 10 Coarse Mesh. Mean axial velocity profile - Experiment (red square), URANS (green), 

GB3 Zero Transport Model (pink), GB3 Maximum Transport Model (blue) 

𝐶𝐷 𝐶𝐷 − error (%) 𝑆𝑡𝑟 𝑆𝑡𝑟 − error (%) 

Exp. 2.1 - 0.132 - 

URANS 2.01 -4.5 0.144 8.8 

Constant 𝑓𝑘 2.09 -0.5 0.123 -6.5 

GB1 2.08 -1.1 0.141 7 

GB2 2.08 -1.2 0.154 16.7 

GB3 2.09 -0.4 0.127 -3.3 

GB4 2.09 -0.5 0.124 -6 

Table 3 Coarse mesh. Mean drag and Strouhal number for the different cases 
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3.2.2. Flow past a surface-mounted cube 

 

It is important to assess the accuracy of the PANS model in simple turbulent wall-bounded 

flows before using it in the context of ground vehicles aerodynamics. The surface-mounted 

cube is a good test case for that as it involves unsteady separated flow regions and wake 

reattachment on the wall. A detailed description of the vortex structures as well as 

measurements of the flow statistics can be found in the experimental study of Martinuzzi and 

Tropea [11]. 

 

Case Description 

 

The Reynolds number of the flow, based on the cube height 𝐻, is 80000. This gives a reference 

bulk velocity of  48 𝑚. 𝑠−1 , if 𝐻  is set to  0.025 𝑚 . The geometric dimensions of the 

computational domain, proportional to 𝐻, are represented in Figure 11. The velocity profile at 

the channel inlet is interpolated from the experimental data to simulate a fully developed 

turbulent upstream flow. The vortex structures and the velocity profiles in the symmetry plane 

of the cube will be compared to the experiment. 

 

 
Figure 11 Computational domain and geometry of the surface-mounted cube 

 

Computational Details 

 

Mesh – In order to capture most of the flow details, the wake region of the cube is refined twice 

with respect to the coarsest mesh regions, as shown in Figure 12. The number of layers is set 

to 5 on all the non-slip walls and the 𝑦+ surface-averaged value is equal to 10. The total cell 

count of the computational grid is 1800000. 

 

 
Figure 12 Mesh view in the symmetry plane of the surface-mounted cube  
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Boundary Conditions – The cube surface as well as the channel upper and lower boundaries 

are modelled as non-slip walls. The side boundaries of the flow domain are set to symmetry 

planes. 

 

Solver – The total number of iterations for the transient simulation corresponds to 10 flow 

cycles - 1 flow cycle is defined as the travelling time of the fluid from the inlet to the outlet of 

the channel. The flow fields are time-averaged over the last two flow cycles. 

 

Results 

 

Flow topology – Iso-surfaces of the second invariant of the velocity gradient Q are compared 

between URANS and PANS-GB4 in Figure 14. In addition to the upstream trumpet vortex on 

the floor, which is present in both simulations, the PANS solution features richer multi-scale 

turbulent structures in the wake region of the cube.  

 

Velocity field – Figure 15 shows the time-averaged streamlines in the symmetry plane of the 

flow. The experimental value of the downstream primary recirculation length is estimated at 

1.612𝐻 [11]. In the PANS case, that length is better predicted as it is equal to 1.6𝐻 against 2𝐻 

for URANS. Figure 17 shows the mean axial velocity profiles in the wall normal direction at 

five different locations of the flow represented in Figure 16. Overall, the PANS and URANS 

solutions are very similar except at 𝑥/𝐻 = 4  for which the PANS profile is closer the 

experiment. 

 

 
Figure 13 𝒇𝒌 field in the symmetry planes of the cube – 𝒚 = 𝟎. 𝟓𝑯 (left), 𝒛 = 𝟎𝑯 (right) 

 

 

 
Figure 14 Surface-mounted cube. Iso-surfaces of the Q criterion 
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Figure 15 Streamlines on the symmetry plane of the cube – PANS GB4 (top), URANS (bottom) 

Figure 16 Locations of experimental probes in the symmetry plane of the surface-mounted cube 

7505



 
Figure 17 Mean axial velocity in the symmetry plane of the surface-mounted cube – Experiment 

(red symbols), PANS GB4 (blue), URANS (green) 

 

 

3.3. Automotive External Aerodynamics 

 

In this section, the PANS model is validated on a full-scale industrial case. The car model is of 

type hatchback. It is generally difficult to correctly predict the flow over this type of car by 

CFD methods. The flow in the wake of the car is very complicated and inherently unsteady. 

With the growing pressure on aerodynamic optimizations of road cars, the ability to quickly 

and accurately predict the aerodynamics is very important.  

 

Case Description 

 

The 1:1 detailed mock-up model is considered in the current validation study. The car model 

is displayed in Figure 18, the bulk dimensions of the car are approximately (3.8m × 1.7m × 

1.6m). The computational domain is a rectangular numerical wind tunnel with dimensions 

(60m × 50m × 30m) displayed in Figure 18. At the inflow plane the flow velocity U∞ = 38.89 

m/s was specified. At the top plane, side planes and outlet plane the zero value of the relative 

pressure and zero gradient boundary conditions for all turbulent variables were applied. The 
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floor plane is divided into parts where no-slip and symmetry boundary conditions were applied. 

The distance between car centre and start of the no-slip condition was chosen so to reach the 

thickness of the boundary layer corresponding to wind tunnel measurement. The computational 

domain is sufficiently large to reduce influence of the computational wind tunnel boundaries 

on the flow around the vehicle.  

 

The computational mesh created with iconHexMesh consists of 68 million cells. The resulting 

mesh is polyhedral (hex-dominant) with multiple regions of refinement around the car and its 

wake as can be seen in Figure 19. To properly refine mesh near the car surface two consecutive 

distance-based refinements are done as displayed in Figure 19. The whole car surface is covered 

by 4 prismatic layers resulting in the dimensionless wall distance 𝑦+~30. The surface mesh is 

refined in areas of high curvature.  

 

The numerical schemes and the solution procedure were described in Section 3.1. The GB2 

method for the calculation of 𝑓𝑘 was chosen for the industrial case. The time step was set to 

∆𝑡 = 0.0001𝑠 in order to achieve a maximum CFL (∼ 𝑈Δ𝑡/Δ𝑥) under 5.  

 

The same mesh, numerical schemes and solution procedure was used to predict the flow with 

URANS 𝜁 − 𝑓 model ( 𝑓𝑘 = 1). In both PANS and URANS cases 1.5s of flow was calculated. 

 

 

 
Figure 18 Car geometry and top view of the computational domain 
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Figure 19 Mesh refinement around the car 

 

 

Results 

 

To evaluate the performance of the PANS model in the industrial external flow we must first 

check if the mesh resolution is sufficient to trigger the seamless transition between URANS 

and DNS. This depends on the parameter𝑓𝑘 , if 𝑓𝑘 < 1 then the PANS results depart from 

URANS results. It can be seen from Figure 20 that the spatial resolution is fine enough to differ 

substantially from the URANS limit. The discontinuities in the 𝑓𝑘 field are results of mesh 

refinement. It can be observed that the mesh resolution is not sufficient in some areas of the 

wake, especially in the far wake and in the areas with Helmholtz-Kelvin instability. To show 

capability of PANS modelling to predict strongly separated flow in the external car 

aerodynamic, we compare PANS results to URANS 𝜁 − 𝑓 model results. The overall solution 

time and HPC resources are the same between URANS and PANS.  

 

 
Figure 20 Unresolved-to-total ratio of the turbulent kinetic energy 𝒇𝒌 instantaneous value 

 

The vortex structure within the wake region and around the car is visualized by Q-criterion 

(𝑄 = 1000𝑠−2) representing basically the second invariant of the velocity gradient tensor, see 

Figure 21. The predicted vortex structure is richer with the PANS model in the wake area and 

also in wakes of the wheels and mirrors. The structure of A-pillar vortex is also finer than with 

URANS. Figure 22 displays the complicated structure of the wake behind the car.  
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Figure 21 Flow field structures predicted by PANS (left) and URANS (right), visualized by the 

Q-criterion (𝑸 = 𝟏𝟎𝟎𝟎𝒔−𝟐) and coloured by velocity magnitude 

 

 

 
Figure 22 Instantaneous streamline pattern behind the car coloured by magnitude of 

instantaneous velocity 

 

The CFD results are compared to experimental results. The flow around the car was 

experimentally examined in the VW wind tunnel. To have more information about the flow 

field the pressure strips measurement method was used, see Figure 25. Detailed view on the 

pressure strip is displayed in  

Figure 23. This tool uses multiple connected pressure probes, details about the tool are 

described in [13]. The measured car was equipped with 24 pressure strips and each strip 

contains 24 pressure sensors; the distance between the probes is 1cm. The post-processing tool 

also described in [13] was used to compare pressure coefficient 𝐶𝑝  on different parts of the 

car between wind tunnel experiment and CFD, see Figure 25, Figure 26, Figure 28 and Figure 

29. We compare value of 𝐶𝑝 and also pressure gradients on some parts of the car. The analysis 

of the pressure stripes shows very similar behaviour of the models in the front of the car; see 

Figure 25 and Figure 28. Also the comparison to experimental value of 𝐶𝑝is very good.  

 

Differences between the models can be found on the back of the car, see Figure 27 and Figure 

26. The PANS results are closer to experimental values of 𝐶𝑝on the rear bumper than the 

URANS results, see Figure 26. Larger discrepancies between the experimental values and the 

CFD result can be found on the fifth door; see Figure 27. This difference is reduced in PANS 

results. This discrepancy is possibly a result of a difference between real wind tunnel geometry 

and the numerical domain where some important effects (horizontal buoyancy, effect of nozzle 

and collector shape) are omitted. This issue will be addressed in the future by using more 

realistic wind tunnel geometry and also by using wind tunnel correction on the experimental 

results. 
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Figure 23 Pressure strips 

 

Both methods resulted in similar averaged values of a drag coefficients 𝑪𝒅 , both methods 

overpredicted the values measured in the wind tunnel, the delta between experiment and CFD 

was by 10% smaller with PANS than with URANS. Very similar improvement was observed 

also for the lift coefficient 𝑪𝒍. 
 

 

Figure 24 Pressure strip 

 

 
Figure 25 Pressure strip on engine cover 
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Figure 26 Pressure strip on rear bumper 

Figure 27 Pressure strip on fifth door 
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Figure 28 Pressure strip in the front of the car 

 

 

 
Figure 29 Pressure strip on rear right wheel 

 

 

4. Summary 

 

A PANS 𝜁 − 𝑓  turbulence modelling framework was implemented in the iconCFD® 

simulation toolkit. Four different methods for the calculation of 𝑓𝑘  were analysed on three 

cases: the square cylinder, the surface-mounted cube and a SKODA vehicle model. In all cases, 
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the PANS implementation has showed both in the richness of the turbulent content as well as 

in the improved accuracy of the results. Further investigation needs to be done in the stability 

issues of the GB4 method which provides the best accuracy. For external aerodynamics 

simulations, the authors currently recommend the use of the GB2 method which provides a 

good compromise between accuracy and stability. 
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Abstract. During the development of the ComFLOW simulation method many challenges
have to be tackled concerning the flow modelling and the numerical solution algorithm. Exam-
ples hereof are wave propagation, absorbing boundary conditions, fluid–solid body interaction,
turbulence modeling and numerical efficiency. Some of these challenges will be discussed in
the paper, in particular the design of absorbing boundary conditions and the numerical cou-
pling for fluid–solid body interaction. As a demonstration of the progress made, a number of
simulation results for engineering applications from the offshore industry will be presented: a
wave-making oscillating buoy, a free-fall life boat dropping into wavy water, and wave impact
against a semi-submersible offshore platform. For those applications, MARIN has carried out
several validation experiments.
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1 INTRODUCTION

Over the centuries, understanding the motion and behavior of waves in nature has been a very
popular subject among researchers from various fields of science. Even today, when we have
highly capable numerical methods and computational power at our disposal, numerical model-
ing of water wave propagation remains a formidable challenge. During the development of the
ComFLOW simulation method [1–5] many of the numerical challenges have been tackled:

- Waves should be allowed to freely enter or leave the domain, requiring absorbing or non-
reflecting boundary conditions which are able to deal with the dispersive character of waves
on deep water [6]. Such conditions will be discussed below in more detail.

- Accurate wave propagation requires much attention to the description (reconstruction and
advection) of the free surface. Info on this aspect is to be found in the PhD thesis of Duz [7]
and the forthcoming paper [8].

- The turbulence model not only has to deal with coarse grids, but should also recognize
wall-bounded turbulence from free-surface turbulence. This is tackled with a new class of
adaptive, minimum-dissipation turbulence LES models [9–11].

- The numerical coupling of the flow dynamics with the dynamics of a floating object has
to deal with situations where the added mass is larger than the mass of the object. Hereto
a more simultaneous type of numerical coupling is being developed. This paper contains
more details about this issue.

- The efficiency of the simulations is enhanced by means of local grid refinement and paral-
lelisation [12, 13].

The phenomena of interest are local but embedded in a vast spatial domain, like the in-
teraction between free-surface waves and man-made structures. For efficient computational
modeling, this spatial domain around the region of interest is truncated via artificial boundaries,
leading to the fundamental question: What is the boundary condition to be imposed on these
artificial boundaries in such a way that the solution in the compact domain coincides with the
solution in the original domain? We thus enter the realm of absorbing boundary conditions
(ABC), also known as non-reflecting, open, transparent or radiating boundary conditions. Fol-
lowing the pioneering research by Engquist and Majda [14], a wide variety of ABCs has been
developed. These conditions not only have to be considered from a theoretical modeling point
of view (well-posedness, modeling accuracy), but also from a numerical point of view (stability,
numerical accuracy, efficiency). An impression of the work done thus far can be obained from
several review papers [15–18]. For the work on ABCs done in the ComFLOW project we refer
to the PhD theses of Wellens [19] and Düz [7]. Below we will present our latest contributions
to this issue which focus on the treatment of dispersive waves, i.e. waves whose propagation
speed is not known beforehand but has to be deduced from the (local) solution.

Another dimension to the above problem is added when the structures under study are mov-
ing, either free-floating or attached to a mooring system, where the interaction between the
incoming waves and the dynamics of the structure comes into play. Physically, we can distin-
guish one-way or two-way interaction. In the former case the structure ‘simply’ reacts to the
oncoming flow field. But in the latter case the interaction is such that the motion of the structure
influences the flow field around the structure. The latter case also poses most challenges to the
numerical coupling between flow and structure. Such a numerical coupling approach can be
aggregated (monolithic) or segregated (partitioned). In the former case all discrete flow equa-
tions are combined into one single set of equations which is then solved simultaneously. In the
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latter case two separate discrete systems (modules) can be recognized equipped with recipes to
exchange information between the two separate modules. On the one hand this enhances the
flexibility of the approach, but on the other hand it requires a (hierarchical) iterative exchange
of information between the modules with its consequences for numerical stability and conver-
gence. Below we describe our efforts to find a compromise between the robust monolithic
approach and the more flexible but vulnerable partitioned approach. We will see that the ratio
between the mass of the structure and its added fluid mass plays an essential role.

The organization of the paper is as follows. After an introduction of the flow equations, the
new class of absorbing boundary conditions is presented. Thereafter we discuss the numerical
coupling strategy between fluid and solid structure. The paper finishes with some practical
applications: an oscillating buoy in a small domainn, a falling lifeboat and a semi-submersible
in waves. Some of these applications are validated by experiments carried out at MARIN.

Figure 1: Drop test with free-fall lifeboat (from: www.verhoef.eu)

2 MATHEMATICAL FLOW MODEL

Incompressible, turbulent fluid flow can be modelled by means of the Navier–Stokes equa-
tions.

Mu = 0,
∂u

∂t
+ C(u)u + Gp− Vu = f . (1)

Here M is the divergence operator 1 which describes conservation of mass. Conservation of
momentum is based on the convection operator C(u)v ≡ ∇(u ⊗ v), the pressure gradient
operator G = ∇, the viscous diffusion operator V(u) ≡ ∇ · ν∇u and a forcing term f . The
kinematic viscosity is denoted by ν.

Turbulence is modelled by means of large-eddy simulation (LES) using a low-dissipation
QR-model as formulated by Verstappen [9] and extended in the PhD thesis of Rozema [10,11].
For its use in maritime applications, see [20, 21].

The Navier–Stokes equations (1) are discretized on an Arakawa C-grid. The second-order
finite-volume discretization of the continuity equation at the ‘new’ time level ·n+1 is given by

M0un+1
h = −MΓun+1

h , (2)

1Calligraphic symbols denote analytic operators, whereas their discrete counterparts are denoted by upper-case
italic symbols.
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whereM0 acts on the interior of the domain andMΓ acts on the boundaries of the domain. In the
discretized momentum equation, convection C(uh) and diffusion D are discretized explicitly in
time. The pressure gradient is discretized at the new time level. In this exposition, for simplicity
reasons the first-order forward Euler time integration will be used. In the actual calculations, a
second-order Adams–Bashforth method is being applied.

Letting the diagonal matrix Ω denote the matrix containing the volumes of the control vol-
umes, gives the discretized momentum equation as

Ω
un+1 − un

δt
= −C(un)un + V un −Gpn+1 + f . (3)

The discrete convection operator is skew-symmetric, such that convection does not contribute to
energy production or dissipation; see Verstappen and Veldman [22]. In particular, its discretiza-
tion preserves the energy of the flow and does not produce artificial viscosity. To make the
discretization fully energy-preserving, the discrete gradient operator and the divergence opera-
tor are each other’s negative transpose, i.e. G = −M0T , thus mimicking the analytic symmetry
∇ = −(∇·)T . In this way, also the work done by the pressure vanishes discretely.

The solution of the discrete Navier–Stokes equations is split into two steps. Firstly, an aux-
iliary variable ũ is defined through

Ω
ũ− un

δt
= −C(un)un +Dun + f . (4)

With this abbreviation, the discrete momentum equation (3) can be reformulated as

un+1 = ũ− δtΩ−1Gpn+1. (5)

Secondly, by imposing discrete mass conservation (2) at the new time level, substitution of (5)
results in a discrete Poisson equation for the pressure:

δtM0Ω−1Gpn+1 = M0ũ +MΓun+1. (6)

The liquid region and the free liquid surface are described by an improved VOF-method; see
Hirt and Nichols [23] and Kleefsman et al. [1].

3 ABSORBING BOUNDARY CONDITIONS

Following the expose presentend in [7], a suitable ABC can be developed starting from the
radiation condition studied by Sommerfeld [24]:

∂

∂t
φ+ c

∂

∂x
φ = 0. (7)

This condition, formulated in the velocity potential φ, suppresses left-running waves at a right-
hand-side boundary. Therefore, it has been proposed as a non-reflecting boundary condition by
Engquist and Majda [14]. It was later extended to higher-order versions using powers of the
left-hand side operator; see e.g. the review by Givoli [18].

3.1 Three dimensions

In the three-dimensional case, Higdon [25, 26] showed it possible to allow the wave under
an angle of incidence α with the outflow boundary. In the higher-order conditions even more
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angles can be chosen: αp, p = 1, . . . , P , where P denotes the order:

P∏
p=1

(
cosαp

∂

∂t
+ c

∂

∂x

)
φ = 0. (8)

To show the benefit of using (8) as opposed to (7), the amount of spurious reflection is inves-
tigated as a function of the angle of incidence θ. Hereto, at the artificial boundary the solution
can be expressed as the sum of the outgoing and reflected waves

φ(x, y, t) = ei(kxx+kyy−ωt) +Rei(−kxx+kyy−ωt), (9)

where the first term represents the wave with amplitude equal to unity impinging on the bound-
ary, and the second term represents the spuriously reflected wave with amplitude R. The latter
amplitude can be evaluated by substituting (9) into the general Higdon boundary condition (8):

|RH | =
P∏

p=1

∣∣∣∣cosαp − cos θ

cosαp + cos θ

∣∣∣∣ . (10)

Here, θ is the ‘real’ angle of incidence measured in the clockwise or counter-clockwise direction
from the positive x-direction (|θ| < π/2). Higdon’s boundary condition (8) is non-reflecting as
soon as θ equals one of the ±αp’s, whereas (7) is non-reflecting for θ = 0 only. A comparison
of the theoretical reflection coefficients for the various ABC variants is shown in Fig. 2.

Figure 2: Reflection coefficient of four absorbing boundary conditions versus the angle of incidence θ. E&M-1 and
E&M-2 stand for the 1st- and 2nd-order Engquist-Majda ABC. The 1st- and 2nd-order Higdon ABC are denoted
H-1 (with α1 = 30◦) and H-2 (with α1 = 0◦, α2 = 45◦), respectively [7].

For use in a Navier–Stokes context, the potential has to be related to the velocity (via the
gradient of the potential) and pressure (via the dynamic free-surface condition). Doing so,
it becomes a boundary condition featuring velocity and pressure. It can be embedded in the
pressure Poisson equation as a boundary condition in a similar way as the substitution of (5) in
(2); see also [7].

3.2 Dispersive ABC

Because of dispersion each individual wave component has its own phase speed c. Therefore,
a boundary condition like (8) cannot annihilate all these wave components. We expect some
amount of reflection for such a boundary condition, but it will hopefully be restricted within
certain limits.
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Figure 3: Padé approximation of the dispersion relation. For the coefficients in (11), a0 = 1.04, a1 = 0.106 and
b1 = 0.289 are used [7].

Firstly, we introduce a rational Padé expression which approximates the dispersion relation
as

exact: c2 = gh
tanh (kh)

kh
; approximation: ca =

√
gh

a0 + a1(kh)2

1 + b1(kh)2
. (11)

A proper choice of coefficients a0 , a1 and b1 leads to a close approximation for the targeted
range of kh values. In Fig. 3 the difference between the two curves gives an indication for the
amount of reflection caused by the rational approximation. Note that the higher wave numbers
will be damped by the physics of the problem, hence some reflection will disappear quickly.

A further improvement is introduced into the design of the boundary condition, by exploit-
ing the exponential behavior of the wave potential in the z-direction. The wave number k is
computed locally from the potential itself, via

k2φ =
∂2

∂z2
φ. (12)

This relation can be substituted into (11) and combined with (8) for P = 1, to reach the final
form of the 1st-order absorbing boundary condition ABC-1:

cosα

(
1 + b1h

2 ∂
2

∂z2

)
∂φ

∂t
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
∂φ

∂x
= 0. (13)

A stability analysis of this boundary condition can be found in the PhD thesis of Wellens [19].

3.3 Dispersive directional ABC

A further modification of the dispersive ABC accounts for both dispersive and directional
effects of the waves. As the 2nd-order Higdon ABC has superior performance over the 1st-order
one in terms of directional effects, we will incorporate the improvements that we made in the
previous section by adding dispersive effects. As this ABC consists of the product of two oper-
ators, and considering the relations (11) and (12), we realize that only one of the operators can
include the approximation for the dispersion relation. Otherwise, the product of two approx-
imations would yield a fourth-order derivative in the z-direction which will cause difficulties
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when discretized at the boundaries. Therefore, we substitute the relations (11) and (12) in only
one of the two operators. The resulting expression for the 2nd-order ABC-2 becomes(

cosα1
∂

∂t
+ c

∂

∂x

)[
cosα2

(
1 + b1h

2 ∂
2

∂z2

)
∂φ

∂t
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
∂φ

∂x

]
= 0. (14)

An in-depth analysis of the implementation and effectiveness of these boundary conditions in
practical situations can be found in the PhD thesis of Duz [7, 27].

3.4 Example

As an illustration of the new type of absorbing boundary conditions we show some simu-
lations of an oscillating sphere, with prescribed motion, producing a concentric circular wave
pattern. A sphere (radius 4m) is initially located 4m above a free water surface and moves ver-
tically along the z-direction with a sinusoidal motion zs(t) = 2 + 2 cos(2.4t). After the impact
of the sphere on the water surface, a series of circular concentric waves is produced radiating
outward from the center. Both ABC-1 and ABC-2 are used at the outflow boundaries and their
performance in absorbing these waves is compared.

A reference solution is obtained by repeating the simulation in a large domain: see Fig. 4
for the setup of the two domains. The small domain ΩS has LxΩS

= LyΩS
= 50m, its depth

is LzΩS
= 10m. The larger domain ΩL has the same depth but different length and width,

LxΩL
= LyΩL

= 400m. The size of ΩL is chosen in such a way that radiating circular waves
do not reach the outflow boundaries of ΩL during the simulation.

solid oscillating sphere

p#2

p#6
p#5

−25

0

y (m)

−200 25−25 200

y (m)

Ω L Ω
S

−25 0 25

p#1 p#3

p#4
25

200

−200

−25

25

Figure 4: Setup for the test with the oscillating solid sphere showing the domain sizes (left) and the positions of
the wave probes (right). The solution in ΩL is considered as the reference solution for the solution in ΩS .

Simulations are performed for 30s at two uniform grid resolutions of 0.25m and 0.50m.
Several probes are placed in the domain to compare the free surface elevation records; see Fig. 4.
Due to the prescribed motion of the sphere the generated circular wave is regular, and both the
ABC-1 and ABC-2 are tuned to absorb this regular wave. But because the wave is circular,
it reaches the outflow boundaries at different angles at different positions. To account for this
directional effect, the angle coefficients in both boundary conditions are set to 45◦ (combined
with 0◦ for the second order condition).

Figure 5 shows the free surface elevation history from the first three probes on both grid
resolutions. The results in the other three probes are comparable [7]. As the circular concentric
wave travels out from the center, the amplitude of the wave decreases because the energy of
the wave is spread over a larger area. The probes show a significant difference between the
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Figure 5: Free surface elevations as a function of time at various locations. From top to bottom results are shown
at p#1, p#2 and p#3 [7].

performance of the ABC-1 and ABC-2, and clearly demonstrate the superiority of the ABC-2
over ABC-1.

Fig. 6 shows snapshots of the simulations at t ≈ 25s when ABC-1 and ABC-2 are used
on the fine grid. With ABC-1 different amounts of reflection at different locations result in
a graphically-interesting but highly disturbed free surface. In contrast, with ABC-2 the free
surface is considerably less disturbed.

(a) ABC-1 (b) ABC-2

Figure 6: Snapshots of the simulations of an oscillating sphere at t ≈ 25s (fine grid with resolution of 0.25m). The
colors correspond with the vertical velocity at the free surface.
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4 FLUID–SOLID BODY COUPLING

A further step is to allow the moving object to interact with the fluid dynamics, e.g. it
is floating on the water surface. This physical two-way coupling has to be mirrorred in the
numerical coupling algorithm between the flow solver and the solid-body solver. The coupling
takes place along the common interface Γ between the fluid and the solid body; quantities
involved are the dynamics (position and acceleration) of the solid body, and the dynamics of the
fluid (in particular its pressure forces); see Fig. 7.

Figure 7: Schematic partitioning between fluid and solid body, with information exchange along their common
interface Γ.

1. The coupling conditions at the interface between fluid and solid body basically express
‘continuity’ of the physics on both sides of the common interface Γ. The kinematic condi-
tion expresses that the boundary of the liquid region (partially) coincides with the surface
of the solid body. In particular, material particles on both sides have the same veloc-
ity and acceleration (when the no-slip condition does not hold, only the normal com-
ponent is continuous). Hence, it makes sense to talk about the velocity at the interface
uΓ. Additionally, the dynamic coupling condition is based on Newton’s 3rd law “action
= −reaction”, which expresses equilibrium of forces. In particular, we denote the fluid
pressure by pΓ. In the sequel, we will formulate the coupled problem in terms of the two
interface variables: uΓ and pΓ.

2. The solid-body dynamics is governed by an equation describing the accelaration u̇ of the
solid body when reacting to the forces and moments f excerted by the fluid. The latter
are found by integration of the liquid pressure over the common interface Γ. In abstract
terms we denote this relation by

solid body dynamics: u̇Γ = DpΓ. (15)

The dynamics operator D involves the integration of the fluid pressure over the interface
to obtain the force and moments acting on the body. Through the dynamics equations of
the solid body these lead to an acceleration of the body. Thus the eigenvalues of D are
inversely related to the body mass and its moments of inertia. Note that we do not show
eventual external forces, as they play no essential role in the coupling algorithm.

3. The fluid dynamics governs the reaction of the fluid to the motion of the solid body. The
latter creates a boundary condition along the interface Γ which has to be added to the
Navier–Stokes equations (1). As a result, the pressure along the interface and acting on
the solid body can be computed. In abstract notation we write

fluid dynamics: pΓ = −Mau̇Γ, (16)
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where Ma is, by definition, the so-called added mass operator. Again, terms in u have
been omitted because of their minor role in the analysis of the coupling process.

The above formulation (15)+(16) in principle shows two equations for the two unknowns
along the interface: pressure and acceleration. Their coupling can be done in an aggregated
/ monolithic or segregated / partitioned way. An aggregated (or strong) coupling recombines
both equations (or modules) into one single global system which is solved simultaneously. In
contrast, a segregated (or weak) coupling keeps the two equations apart and solves them in an
iterative way. The former approach may not always be possible, e.g. due to their ‘black-box’
character, or due to the large complexity of the modules; the latter approach may diverge.

4.1 Weak coupling

In practice often a segregated approach is followed. The usual way is to let the fluid deter-
mine a pressure field pold

Γ which moves the solid body:

u̇new
Γ = Dpold

Γ . (17)

This motion of the solid body is then transferred to the fluid to react with a new pressure field:

pnew
Γ = −Mau̇

new
Γ . (18)

In this way, we effectively have created an iterative process

pnew
Γ = −MaDp

old
Γ . (19)

The iterations in such a weak coupling method will converge if and only if the spectral radius of
the iteration matrix ρ(MaD) < 1. Recalling that D inversely scales with the mass and inertia of
the solid body, this condition becomes a requirement for the ratio between added mass and body
mass. Roughly speaking, the solid body should be heavy enough. If it is not, underrelaxation
can help achieving convergence, but this will require (many) additional (sub)iterations.

In practice, such iterations can be implemented as follows in the solution process for the
Navier–Stokes equation (3) during the time step from n → n + 1. An additional subiteration
process (with iteration count k) is included:

solid-body dynamics: (u̇n+1
Γ )k = D(pn+1

Γ )k; (20)
Navier–Stokes: (pn+1

Γ )k+1 = Ma(u̇
n+1
Γ )k. (21)

If necessary, these subiterations can be made convergent by applying (severe) underrelaxation
without disturbing the time accuracy of the time integration method, but often at a considerable
computational price.

Below we will demonstrate with an example of a falling life boat how many subiterations can
be required. Because of this inefficiency, we would like to apply an aggregated approach (which
does not require subiterations), or at least to be as close as possible to such an approach. Such an
approach is the quasi-simultaneous method, originally developed for interacting aerodynamic
boundary layers along airplane wings [28]; a historic overview is provided in [29, 30].
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4.2 Quasi-simultaneous coupling

For iterative efficiency reasons, we would like to follow the monolithic, simultaneous ap-
proach as much as possible. With the full dynamics operator D being too complex, we look for
a good approximation D̃ which is simple enough to be used as a boundary condition inside the
Navier–Stokes solver (1). Such an approximation has been termed an interaction law [28–30]

u̇Γ = D̃pΓ. (22)

The interaction law (22) is then incorporated in the time integration process in defect formula-
tion:

interaction law: u̇n+1
Γ − D̃pn+1

Γ = (D − D̃)pnΓ (23)

Navier–Stokes: pn+1
Γ −Mau̇

n+1
Γ = 0. (24)

Another interpretation in terms of time integration is that the part D̃ of the dynamics equation
(15) is treated implicitly and the remaining part D − D̃ explicitly.

Figure 8: Weak versus quasi-simultaneous coupling.

The interaction law is a boundary condition for the Navier–Stokes equations along the inter-
face Γ. More precisely, it will be implemented as a boundary condition for the pressure Poisson
equation (6). The latter is derived by first rewriting the boundary condition (23) for u as

un+1
Γ − δt D̃pn+1

Γ = un
Γ + δt (D − D̃)pnΓ.

Then the discrete momentum equation is written in the form (2), wherein the above relation is
substituted through the term MΓu. Finally a relation is obtained featuring pΓ as a boundary
condition for the Poisson equation; see also [31].

The above quasi-simultaneous integration can be analysed by eliminating u̇ from (23)+(24),
which leads to

(I +MaD̃)pn+1
Γ = −Ma(D − D̃)pnΓ. (25)

For D̃ ≡ 0, we recover the iteration process (19) which breaks down when Ma is ‘too large’.
But with the term MaD̃ on the left-hand side, it will be clear that this process will converge
when D̃ is sufficiently close to D, in spite of a possibly ‘large’ Ma.

4.3 Example

To show the performance of the quasi-simultaneous approach, we now present an example of
a the simulation of a life boat falling into a large breaking wave. A snapshot of the simulations
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Figure 9: A snapshot of the life boat falling into a large wave. Also the locally-refined grid regions are shown.

is shown in Fig. 9. The dynamics of the life boat is modelled by means of a 6-DOF mechanical
model.

The fluid flow is modelled with the Navier-Stokes equations and solved on a grid consisting
of about 0.7 million active (i.e. within the fluid) grid points, with local grid refinement [12]
around the life boat (Fig. 9). For physical accuracy this grid is rather coarse, but the focus in
these simulations is on the numerical behaviour of the coupling process. Thus both the weak
coupling procedure (19) as well as the quasi-simultaneous procedure (24) have been applied. In
the latter case, the interaction law is based on the under-water part of the lifeboat (as the Poisson
equation is only solved under water).

Figure 10: Left: The number of SOR iterations per time step for the underrelaxed weak coupling method (blue)
and the anticipating quasi-simultaneous method (green)). Right: The estimated added mass for the falling lifeboat
as a function of time. The moment of impact is clearly visible.

The most important result concerns the amount of work that is needed per time step to
achieve the coupling between solid-body dynamics and fluid flow. The weak method often
requires dozens of subiterations, in each of which a Poisson equation has to be solved. This
number is dependent on the amount of fluid that is moved aside by the moving body, repre-
sented by the added-mass operator Ma. Fortunately, the later subiterations have a good initial
guess so they are not as expensive as the earlier ones. Thus the amount of work is better rep-
resented by the total number of SOR-iterations [32] that is needed for all Poisson solves within
one time step. This amount of work is shown in Fig. 10(left). The relation with the added mass
becomes visible when plotting the time history of the estimated added mass in Fig. 10(right).
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Comparison with Fig. 10(left) shows clearly that the number of iterations grows rapidly when
the ‘added-mass ratio’ ρ(DMa) growths beyond 1. In contrast, the quasi-simultaneous method
requires 1 or 2 subiterations (with additional Poisson solver), resulting in much less work per
time step (Fig. 10).

5 WAVE IMPACT

As a third we present simulations and experiments for run-up against a semi-submersible
offshore platform. The setup of the experiment, carried out at MARIN on a scale of 1 : 50, is
sketched in Fig. 11. A simplified semi-submersible is located in the center of the flow domain.
On full scale it measures 114.5 m ×17.5 m ×28.0 m with a draft of 16.0 m. The waves are
generated by a flap-type wave generator. The basin width is 4 m, i.e. 200 m on full scale, with
solid side walls. The incoming wave has a full scale wave height of 14.7 m and a wave period of
11.0 s. The wave elevation and pressure are measured at several positions, indicated in Fig. 11.

Figure 11: Wave run-up against a semi-submersible: snapshot of experiment (left) and position of sensors (right).

To reduce computational costs, the boundaries of the flow domain are brought closer to the
structure than in the experiment, with an inflow boundary located at 240 m from the center of the
semi-submersible. To account for this decreased distance between the wave maker and the semi-
submersible in the simulations, the incoming waves have been analyzed by wave calibration
tests (without semi-submersible in the flow) [33]. The incoming computational wave thus is
modeled as a 5th-order Stokes wave. Note that the shape of the experimental wave differs from
a theoretical Stokes wave: the wave crests can be made to correspond nicely, but a difference
in the troughs is left (see Fig. 13). This has to be taken into account when comparing the
simulations with the model tests.

Figure 12: The grid with local refinements around the free surface and around the semi-submersible. Each box
contains a refined grid level (no grid lines are shown).
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The ComFLOW simulations used a one-phase flow model (as shown above) with a modern
minimum-dissipation turbulence LES model [20]. Central spatial discretization with Adams-
Bashforth time stepping is used throughout. The numerical simulations are shown for two
different, stretched grids: 180 × 40 × 60 = 430k and 360 × 80 × 120 = 3.5M grid cells.
The grid sizes near the semi-submersible are about 80 cm and 40 cm, respectively, in all three
directions. An absorbing boundary condition, as discussed above, is applied at the outflow
boundary and the simulations are carried out for several wave periods (5-10 periods, depending
upon the size of the computational grid). Also results for a locally-refined grid [12, 13] are
shown, with cells of around 10 m away from the structure and four refinement levels, down to
50 cm near the object, making a total of 0.5M cells (Fig. 12).

Figure 13: The wave height development in front of the semi-submersible (WH01) and at the first column (WH09)
for several grids compared with experimental data.

In the presentation of results we focus on the region in front of the first column, i.e. wave-
height probes WH01 and WH09, and pressure probes P11 and P15; see Fig. 11. Firstly, in
Fig. 13 the wave run-up against the column is shown for the first two wave periods in the sim-
ulation. The results from the locally-refined simulation are pretty similar to those of the finest
grid, although the amount of grid points is about 7× less.

Figure 14: The pressure at the first column for several grids compared with experimental data. Left: P11 near the
foot of the column; right: P15 near the top.

The pressure development near bottom (P11) and top (P15) of the first column of the semi-
submersible is shown in Fig. 14. Near the top of the first column, at transducer P15, the peak
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pressure values in the simulations are relatively low, which can be attributed to the limited
number of grid cells along the column. The locally-refined grid, with its higher resolution
near the semi-submersible, seems to catch the pressure peaks somewhat better. More detailed
simulations can be found in the PhD thesis of Wemmenhove [5, 34] and the forthcoming PhD
thesis of Van der Plas [12, 13].

6 CONCLUSIONS

Some recent developments in the ComFLOW simulation method have been presented. It is
designed to simulate and study extreme waves and their impact on falling, floating and moored
structures. Firstly, an absorbing boundary condition has been presented that adapts itself to the
(local) wave number and phase speed of dispersive waves. Waves generated by an oscillating
buoy show that the computational boundaries can be put close to the wave-generating object.
Secondly, a life boat falling into an extreme wave reveals that the interaction between solid-body
dynamics and fluid dynamics poses serious numerical challenges for their numerical coupling.
It is demonstrated that a quasi-simultaneous coupling strategy can efficiently handle these chal-
lenges. Thirdly, simulations of large turbulent waves against a fixed semi-submersible, validated
through experiments, demonstrate the efficiency of local grid refinement.
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Abstract. The paper deals with application of the linear eddy viscosity model, the nonlin-
ear explicit algebraic Reynolds stress model and the hybrid RANS/LES model for computation
of flow in an axial turbine stage with radial gaps under the stator and above the rotor blade.
Results show that the nonlinear explicit algebraic Reynolds stress model allows to describe de-
formation of the secondary vortices and their breakdown into smaller structures while the linear
eddy viscosity model doesn’t have this capability. Only hybrid RANS/LES model describes de-
cay of the secondary vortices which interact with the rotor blade. This capability is necessary
for good prediction of distribution of the turbine stage efficiency behind the rotor blade.
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1 INTRODUCTION

The axial steam turbine of low power (around hundreds kilowatts to units megawatts) are
typically designed in configuration with the drum-type rotor. It means that the rotor blades are
carried directly by the rotor of large diameter as it is depicted in figure 1. In case of low power
turbines, in order to reduce a production costs a blades with free ends that are not equipped with
the shroud are still in use. For more reduction of the production cost the prismatic blades are
sometimes used as it is in the present work. In this configuration it is necessary to maintain the
radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades.

1

2

3

1 − drum−type rotor

3 − rotor blades

2 − stator blades

Figure 1: Scheme of the low power axial steam turbine with the drum-type rotor.

Flow through the radial gap generates an intensive secondary vortices which interacts with
following blade wheel. This interaction leads to strong swirl of flow field in the peripheral parts
of the blade span and it has major impact on the efficiency of the turbine stage. In [1] there
was shown that drop in the efficiency due to interaction of the rotor blades with the secondary
flows is up to ten percent. Prediction of the interaction of blade with the secondary flows
strongly depends on used turbulence model. In industrial applications, such as this, it is usual to
solve system of RANS (Reynolds Averaged NavierStokes) equations, which is closed by two-
equation turbulence model (such as k−ω). In [2] there was studied mechanism of the interaction
between the rotor blades and the secondary vortices generated behind the radial gap under the
stator blade using the k−ω model of Kok (2000) [3]. This model is based on linear relation for
the Reynolds stress tensor. Although this model has provided interesting results, comparison
with the experimental data revealed some differences in span-wise distribution of the efficiency
behind the rotor blade. Therefore in [4] there was compared prediction of the secondary vortices
development using the linear turbulence model of Kok (2000) [3] and the nonlinear EARSM
(Explicit Algebraic Reynolds Stress Model) model of Rumsey & Gatski (2001) [5]. It was found
that the nonlinear EARSM model predicts deformation and unsteady behaviour of the secondary
vortices, while the linear model doesn’t have this capability. However, for better prediction of
the interaction between the rotor blade and the secondary vortices generated behind the radial
gap under the stator blade it is necessary to model not only deformation of large vortices but
also their decay. Therefore in this work a hybrid RANS/LES model is used for modeling of the
rotor blade/secondary vortices interaction beside the LEVM (Linear Eddie Viscosity Model)
model of Kok (2000) and the nonlinear EARSM model of Rumsey and Gatski (2001).
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2 GEOMETRIC SETUP

Figure 2 shows the computational domain with marked inlet and outlet boundaries and slid-
ing mesh interface between stator and rotor parts of the computational domain. It is seen that
the computational domain contains only one stator and one rotor blade. Such a reduction of the
actual number of blades is achieved by method of scaling. The scale factor of the stator blade
is given by 2Ns/(Ns +Nr), where Ns is real number of the stator blades and Nr is real number
of the rotor blades. The scale factor of the rotor blade is defined analogously. In our case the
scale factor is 0.909 for the stator blade and 1.09 for the rotor blade. Note that scaling has no
effect on static aerodynamics loading of the blades, because the pitch to chord ratio of blades is
preserved. Scaling of the blade profile causes little change of the chord based Reynolds number,
but it is minor problem in case of values of scale factors near 1. The method of scaling has,
however, major impact on prediction of dynamic aerodynamic loading of the blades. Therefore
this method is unusable in cases where such that prediction is a main scope. In our case we want
to compare prediction of the rotor blade interaction with secondary vortices generated behind
the radial gap under the hub-end of the stator blade using turbulence models with different clo-
sure formulas. So the scaling method is applicable here. After scaling, the chord of the stator
blade is 29.0 mm and the chord of the rotor blade is 28.1 mm. The hub diameter is 330 mm and
diameter of the outer casing is 430 mm. Between the hub-end of the stator blade and the hub-
wal there is the radial gap of 1.4 mm. Also between the tip-end of the rotor blade and the outer
casing there is the radial gap of 1.4 mm. The axial distance between the stator trailing edge and
the rotor leading edge is 8 mm. The inlet boundary is placed 22 mm in front the stator leading
edge and the outlet boundary is placed 22 mm behind the rotor trailing edge. The sliding mesh
interface between stator and rotor parts of the computational domain is placed in the middle of
the axial gap between the stator and the rotor blades.

Figure 2: Scheme of the computational domain (left); computational mesh (right).

3 FLOW CONDITIONS

Presented results were calculated for the total/static expansion ratio 1.4, the velocity ratio
u/cis = 0.6 (u is the circumferential velocity at middle diameter and cis is the isentropic velocity
at the hub diameter behind the rotor trailing edge). It corresponds with the inlet total pressure
120 kPa, the outlet pressure 85.7 kPa, speed of revolutions 7430 RPM, the total inlet temperature

7534



Straka P.

of 303 K. The isentropic outlet Mach number isMis = 0.7, while the outlet isentropic Reynolds
number based on blade chord is Reis ≈ 3× 105.

4 NUMERICAL APARATUS

Flow through the axial turbine stage is modeled as unsteady, 3D, compressible, viscous, fully
turbulent flow of the perfect gas. Simulation is performed using the in-house numerical code
based on solution of system of the RANS equation and two-equation k − ω turbulence model.
Used numerical code [6, 7] is focused on turbomachinery application. The interface between
stator and rotor part of the computational domain is performed via the “sliding mesh” method,
where communication between stationary stator domain and rotating rotor domain is based on
interpolation.

System of the governing equations reads:

∂ρ
∂t + ∂

∂xj
(ρuj) = 0 , (1)

∂
∂t (ρui) + ∂

∂xj
(ρujui + pδij)−

∂τij
∂xj

= 0 , (2)

∂e
∂t + ∂

∂xj

(
ρuj(e+ p)− ukτkj + qj − dtj

)
= 0 , (3)

∂
∂t (ρk) + ∂

∂xj

(
ρujk − dtj

)
= Pk −Dk , (4)

∂
∂t (ρω)+ ∂

∂xj

(
ρujω − otj

)
= Pω−βρω2+CD, (5)

where

p = (κ− 1)
[
e− ρ

2 (u2
1 + u2

2 + u2
3)− ρk

]
, qj = −

(
µ
Pr + µt

Prt

)
κr
κ− 1

∂T
∂xj

, (6)

τij = τ lamij + τ tij , τ
lam
ij = 2µ

(
Sij − 1

3
∂uk
∂xk

δij

)
, (7)

dtj = (µ+ σkµ
evm
t ) ∂k∂xj

, otj = (µ+ σωµ
evm
t ) ∂ω∂xj

, (8)

Pk = min (2µtS
2, 2µtΩ

2, 20Dk) , Pω = γωk Pk , CD = σd
ρ
ω max

(
∂k
∂xj

∂ω
∂xj

, 0
)
, (9)

µ = 1.72× 10−5
(

T
273.15

)0.754
, (10)

µevmt = ρkω , (11)

S =
√

2SijSij , Ω =
√

2ΩijΩij , Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Ωij = 1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (12)

The turbulent viscosity µt, the Reynolds stress tensor τ tij and the destruction term Dk will be
described later in caption 5.

System of equations (1) to (5) we can formally rewrite in vector form as follows:

∂W

∂t
+
∂Fj

∂xj
= Q , (13)

where W is vector of the conservative variables, F is vector of the inviscid and viscous fluxes
and Q is vector of the source terms. System (13) is discretized using the cell-centered finite-
volume method on multi-block structured mesh of hexahedral cells. Temporal discretization is
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performed using the second-orded backward Euler formula in implicit form, which is realized
through a dual iterative process:(

3

2
I + ∆t

∂Rn, ν
i

∂Wn, ν
i

)
∆W

n, ν+1/2
i + ∆t

6∑
j=1

∂Rn, ν
i

∂Wn, ν
j

∆W
n, ν+1/2
j =

= −3Wn, ν
i − 4Wn

i + Wn−1
i

2
−∆tRn, ν

i , (14)

where Wn, 0 := Wn, ∆Wn, ν+1/2 = ∆Wn, ν+1 −∆Wn, ν and Wn+1 := Wn, ν∗ , where Wn, ν∗

is a steady solution in the dual iterative process. In scheme (14) there n means the time level,
∆t is the time step, ν is index of the dual iteration, i is index of current cell in the computational
mesh, j is index of the neighbouring cells and R is the numerical approximation of the inviscid
and the viscous fluxes:

Ri =
1

Vi

6∑
j=1

[Φinv(WL
j , WR

j , nj)− Φvis(WC
j , (∇W)Ddual

j
, nj)] sj . (15)

The inviscid numerical fluxes Φinv are calculated using the exact solution of the 1D Rieman
problem in normal direction to the cell edges. The viscous numerical fluxes Φvis are calculated
using the central scheme and the gradient of the state vector∇W is calculated using the Green-
Gauss theorem on a dual cells. Higher order of accuracy in space is obtained using linear
reconstruction with the Van Leer’s slope limiter.

The computational domain was discretized by structured multiblock mesh of 4.5 millions
hexahedral cells which is displayed in figure 2.

5 CLOSURE FORMULA

As it was mentioned above, this work is focused on comparison of prediction of the blade/sec-
ondary flow interaction calculated using LEVM model of Kok (2000) [3], EARSM model of
Rumsey and Gatski (2001) [5] and the hybrid RANS/LES method. The hybrid RANS/LES
method according to Davidson and Peng (2003) [8] and Kok et al. (2004) [9] is used in this
work. This approach uses one transport equation for the kinetic energy which plays role of the
turbulent kinetic energy in RANS mode and the subgrid scale kinetic energy in LES mode. This
kind of the hybrid RANS/LES methods is also called XLES (from eXtra Large Eddy Simula-
tion).

5.1 LEVM model

This model is based on the Boussinesq approximation. The Reynolds stress tensor τ tij is
modeled as a linear function of the strain rate tensor Sij:

τ tij = 2µt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρkδij , (16)

where the turbulent viscosity µt = µevmt is given by eq. (11). The destruction term Dk in eq. (4)
and (9) is given as

Dk = β∗ρkω . (17)

The model constants: β∗ = 0.09, β = 0.075, γ = 0.5532, σk = 0.5, σω = 0.5 and σd = 0.5
corresponds with the TNT k − ω turbulence model proposed by Kok (2000) [3].
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5.2 EARSM model

In this model according to Rumsey and Gatski (2001) [5] the Reynolds stress tensor τ tij is
modeled as a quadratic function of the strain rate tensor Sij:

τ tij = 2µt

(
Sij − 1

3
∂uk
∂xk

δij

)
− 2

3ρkδij + 2µt
[
a2a4 (SikΩkj − ΩikSkj)

− 2a3a4

(
SikSkj − 1

3
SklSlkδij

)]
.

(18)

It is clear that eq. (18) extends relation (16) about anisotropy part (term in square brackets). The
turbulent viscosity µt is now given as

µt = Cµρkτ , (19)

where the turbulent time scale τ is defined as

τ = max

(
1

β∗ω
, Cτ

√
µ

β∗ρkω

)
, (20)

where Cτ = 6.0 is a model constant. The nominal level of the variable coefficient Cµ in a zero-
pressure-gradient log-layer is approximately 0.09. In general case value of Cµ is obtained by
solving following cubic equation:

(−Cµ)3 + q1 (−Cµ)2 + q2 (−Cµ) + q3 = 0 , (21)

where

q1 = − γ∗1
IISτ

2γ∗0
, q2 = 1

(2IISτ
2γ∗0)

2

(
γ∗1

2 − 2IISτ
2γ∗0a1 − 2

3
IISτ

2a32 − 2IIΩτ
2a2

2

)
, (22)

q3 =
γ∗1a1

(2IISτ
2γ∗0)

2 , IIS = SklSlk , IIΩ = ΩklΩlk . (23)

The correct root to choose from this equation is the root with the lowest real part. See [5] for
more details. Other parameters are gived by:

a1 = 1
2

(
4
3
− C2

)
, a2 = 1

2
(2− C4) , a3 = 1

2
(2− C3) , a4 = τ/ (γ∗1 + 2γ∗0CµS

2τ 2) , (24)

γ∗0 = C1
1/2 , γ

∗
1 = 1

2
C0

1 +
(
Cε2−Cε1

Cε1−1

)
, (25)

where Cε1 = 1.44, Cε2 = 1.83, C0
1 = 3.4, C1

1 = 1.8, C2 = 0.36, C3 = 1.25 and C4 = 0.4.
The destruction term Dk in eq. (4) and (9) is given by eq. (17).
The model constants are now: β∗ = 0.09, β = 0.0747, γ = 0.53, σk = 1, σω = 0.5339 and

σd = 0.5.

5.3 XLES model

The hybrid RANS/LES method according to Davidson and Peng (2003) [8] and Kok et al.
(2004) [9] switches between the system of RANS equations closed by two-equation turbulence
model of Kok (2000) [3] and LES when computational mesh is fine enough to simulation of
large turbulent eddies. The sub-grid scale model of LES is based on transport equation for the
sub-grid scale turbulent energy given by eq. (4), where the destruction term Dk is given as

Dk = max

(
β∗ρkω, ρ

√
k3

CDES∆

)
, (26)
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lower

upper vortex

vortex

Figure 3: Scheme of flow behind the radial gap under the stator blade (left); distribution of the dimensionless
entropy index s = p/ρκ on the rotor blade surface (right).

where the local grid size ∆ is defined by ∆ = max(∆ξ, ∆η, ∆ζ) where ∆ξ, ∆η and ∆ζ are the
distances between the cell faces in local ξ, η and ζ grid line directions. ConstantCDES = 0.6086
is chosen according to Kubacki et al. (2013) [10]. Note that in XLES approach k is either the
turbulent energy in RANS mode or the sub-grid scale energy in LES mode.

The modeled stress tensor (Reynolds stress tensor in RANS mode, sub-grid scale stress ten-
sor in LES mode) is given by eq. (16) where

µt = min
(
ρk/ω, ρβ∗

√
kCDES∆LES

)
(27)

is either the turbulent viscosity in RANS mode or the sub-grid scale viscosity in LES mode.
In eq. (27) there is ∆LES = (∆ξ∆η∆ζ)

1/3. It is evident that the solution is independent on
equation (5) in LES mode although equation (5) is solved.

6 ADAPTATION OF NUMERICAL METHOD FOR XLES MODELLING

As it was mentioned above, the discretization scheme is based on the finite volume method
in cell-centered form, where the inviscid numerical fluxes Φinv are calculated using the exact
solution of the 1D Rieman problem in normal direction to the cell edges. Although numerical
methods based on exact or approximate solution of the Riemann problem have good features
for RANS modelling, they are too dissipative for using in LES approach. Therefore a central
differencing is used in this work for suppression of the native numerical dissipation.

Let Φinv(WL
i+1/2, WR

i+1/2, ni+1/2) is the inviscid numerical flux through cell face between
i-th and (i+1)-th cells which is based on solution of the Riemann problem where WL

i+1/2 and
WR

i+1/2 denotes state vectors extrapolated to the cell face from the left and right in means
of linear reconstruction with the slope limiter. Let WC

i+1/2 is the state vector at the cell face
computed as an average value of the state vectors in centers of i-th and (i+1)-th cells. The
central differencing is obtained by replacing of WL

i+1/2 and WR
i+1/2 by WCL

i+1/2 and WCR
i+1/2

where WCL
i+1/2 = ψWC

i+1/2 + (1 − ψ)WL
i+1/2 and WCR

i+1/2 = ψWC
i+1/2 + (1 − ψ)WR

i+1/2.
Parameter ψ is given as

ψ =

{
0 for Lt < LDES (RANS mode) ,
[0.5− 0.5 cos(2π(1− LDES/Lt))]2 for Lt ≥ LDES (LES mode) ,

(28)
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Figure 4: LEVM – instantaneous isosurfaces of (|Ω|2 − |S|2) colored by local turbulence intensity.

where Lt =
√
k/β∗ω is the turbulent length scale and LDES = CDES∆DES is the sub-grid

length scale.

7 COMPUTATIONAL RESULTS

In figures 4 to 6 there are shown an instantaneous isosurfaces of (|Ω|2−|S|2) colored by local
turbulence intensity for LEVM, EARSM anf XLES models. The local turbulence intensity is
related to the modeled part of the turbulent or sub-grid scale kinetic energy. In figures 4 to
6 there we can recognize two strong sources of secondary vortices. These are the radial gaps
under the hub-end of the stator blade and above the tip-end of the rotor blade. We focus now
on the radial gap under the stator blade. The effect of flow through the radial gap under the
stator blade is such that stream flowing from the radial gap generates (in interaction with main
stream in blade channel) massive vortex above the stream and beside the vertical surface of
the suction side as illustrates a scheme in left part of figure 3. This upper vortex is in given
regimes and geometrical configurations intensive enough to deform the stream flowing from
the radial gap which leads to separation of the stream from the wall and to generation of the
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Figure 5: EARSM – instantaneous isosurfaces of (|Ω|2 − |S|2) colored by local turbulence intensity.

other vortex under the stream. Both vortices then interact with the rotor blade so that they
deforms in upward direction and they are carried on the suction side almost up to half of the
span. This causes increase of the dissipation rate on the lower half of span on the suction side,
as illustrates distribution of the dimensionless entropy index s = p/ρκ (computed from the
normalized pressure and density) on the rotor blade surface that is shown in right part of figure
3. The LEVM model predicts the interaction of the rotor blade with the secondary vortices so
that the secondary vortices remains more or less compact and undeformed. We can identify
them in figure 4 behind the rotor blades at the middle of span. The EARSM model predicts
deformation of the secondary vortices which interact with the rotor blades and their breakdown
into smaller structures as is shown in figure5. In case of the XLES model we can observe a decay
of the secondary vortices during the interaction with the rotor blade as is shown in figure 6. We
can also see that in case of the XLES model the local turbulence intensity, that relates to the
modeled kinetic energy, is smaller compared to the LEVM and the EARSM models. This is
because a larger part of the kinetic energy is directly resolved as a nonstationary fluctuations.
We can also recognize in figures 4 to 6 vortex structures behind the rotor blade at upper twenty
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Figure 6: XLES – instantaneous isosurfaces of (|Ω|2 − |S|2) colored by local turbulence intensity.

percent of span, that arise behind the radial gap above the rotor blade.
In figure 7 there is shown an instantaneous and time averaged (in rotating frame) distribution

of the total-total efficiency ηTT in an angular section 11 mm behind the trailing edge of the rotor
blade. The total-total efficiency is defined as ηTT = (TT0 − TT )/(TT0 − TT is) where TT0 is the
inlet total temperature, TT is local total temperature and TT is is the total isentropic temperature.
On time averaged distribution there is a local maximum of the efficiency approximately at one
quarter of the span in case of the LEVM and the EARSM models. This locale maximum is
supressed in case of the XLES model due to decay of the secondary vortices into smaller and
smaller structures which fill almost uniformly lower half of the span. This behaviour much
better corresponds with the experimental data (from [1, 2]) than results of the LEVM and the
EARSM models as shown in figure 8, where is shown a span-wise distribution of the circumfer-
ential averaged total-total efficiency. From figure 8 it is evident that all used models overpredict
the efficiency about four percent between sixty and eighty percent of the span. It is an area
which is not affected by secondary vortices. The overprediction of the efficiency may be due to
insufficient resolving of the wakes.
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Figure 7: Distribution of the total-total efficiency in angular section 11 mm behind the trailing edge of the rotor
blades. LEVM (left column); EARSM (middle column); XLES (right column); instantaneous distribution (top
row); time averaged distribution – in rotating frame (bottom row).
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Figure 8: Span-wise distribution of the circumferentially averaged total-total efficiency in section 11 mm behind
the trailing edge of the rotor blade – comparison with the experimental data.

7542



Straka P.

8 CONCLUSIONS

Three kinds of turbulence models were applied for computation of flow in axial turbine stage
with prismatic blades which are not equipped with the shroud. The LEVM model which is
based on linear relation for the Reynolds stress tensor, the nonlinear EARSM model which
uses a quadratic relation for the Reynolds stress tensor and the XLES model which combines
RANS approach near the wall and LES approach for simulation of large vortices. Results
shown that the LEVM model does not predict deformation and breakdown of the secondary
vortices generated behind the radial gap under the stator blade which interact with the rotor
blade. Deformation of this vortices and their breakdown into smaller structures predicts the
nonlinear EARSM model. Better agreement with the experimental data is achieved using the
XLES model which describes decay of the secondary vortices.
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Abstract. Large-scale unsteady graphical processor unit (GPU) based calculations are used

to study the flow in realistic transonic fan geometries and shown to produce useful insights

into the complex unsteady flow physics in systems of practical engineering relevance. Inlet

flow distortion produces complex flow patterns which can significantly reduce stall margin.

In order to design efficient, well targeted fan stabilizing technologies, it is essential to gain

understanding into which specific features of distorted flow patterns are important in causing

instability.

In this paper, the use of large-scale, high-fidelity 3D unsteady Reynolds-Averaged Navier

Stokes (URANS) calculations with sliding planes is shown to allow the isolation of a wide range

of inlet distortion features and a high throughput of calculations is achieved. This facilitates

a comprehensive investigation into stall margin loss and the observation of complex instability

processes, which is in turn used to support the development of specialized design solutions. The

costs of simulations and turnaround times are given. The potential for mixed fidelity simula-

tions, in particular mixing one-dimensional low order models and large eddy type simulations

to generate inlet conditions, is discussed.
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Figure 1: Aerospace airframe and propulsion technology under development.

1 INTRODUCTION

The world aircraft fleet is predicted to double by 2030.[1] At the same time, mankind faces
the immense challenge of reducing CO2 and other emissions, along with other pressing tasks
such as reducing noise.[1] The Advisory Council for Aeronautics Research in Europe (ACARE)
has set targets to reduce CO2 and noise emissions 50% by 2020.[1] These challenges have
proved to be a game changer in encouraging the development of promising alternative tech-
nologies and new concepts in aircraft design. Examples, among others, are the open rotor gas
turbine engine and the boundary layer ingestion (BLI) Silent Aircraft, shown in figure 1. The
emergence of such novel architecture raises a considerable deficit in aerodynamic understand-
ing and extensive design spaces to explore. While experimental rigs lack flexibility and scope
before such a challenge, high fidelity computational fluid dynamics (CFD) has the agility to
aggressively explore and narrow down the vast design spaces.

CFD is a rapidly developing tool used to support aerodynamic component design in the
aerospace industry. It is, however, not an exact science and its successful use requires prudent
consideration of numerous sources of error, listed by Denton [2] as numerical errors due to
finite difference approximations, modelling errors for example turbulence modelling, unknown
boundary conditions, unknown geometry such as tip clearances or leading edge shapes, and
assumptions of steady flow. Improvements in the capability of high performance computing
and advances in CFD codes have made practical the deployment of unsteady 3D CFD on an
industrial scale.

3D unsteady CFD comprises, in order of increasing fidelity, unsteady Reynolds-Averaged
Navier-Stokes (URANS) calculation, detached eddy simulation (DES), large eddy simulation
(LES) and Direct Numerical Simulation (DNS). While computational expense confines the last
three in the list to academic study and very small scale industrial use, URANS has now become
practical for large-scale studies in industrial aerodynamic design processes.

An important topic in jet engine design for futuristic aircraft architecture is inlet distortion
due to curved intake ducts, which has the potential to reduce fan stall margin and negatively
affect fan stability. There is a press need to gain in-depth understanding of distorted intake flow
in order to design efficient, well targeted fan stabilizing technology.
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Figure 2: Azimuthal cut showing a typical curved duct LES flow.

1.1 Inlet Distortion

Research into the effects of an inlet total pressure circumferential square wave on stall margin
was carried out with and without VIGVs by Shaw et al. [3]. They found that the distortion
significantly reduced stall margin and that some of the reduction could be recovered by using
VIGVs to reduce the circumferential variation in inlet absolute swirl. Other literature applicable
to fan inlet distortion also looked at square waves. Mistry et al. [4] carried out experiments on
a contra-rotating rotor rig and analysed effects on aerodynamics and performance. Gunn et al.

[5] conducted experiments on a low speed fan stage and studied the effect on loss mechanisms.
Gunn et al. [6] later studied the effect of BLI inlet profile on fan stage aerodynamics and loss
using CFD and experiments. More recently, Perovic et al. [7] investigated stall inception in the
same BLI environment, gaining insight in to the growth and decay of stall cells. So far, research
has focussed on more or less idealized distortions while leaving out much of the detail in real
flows.

What is now well known is that fan flow and intake flow are strongly coupled. Future design
of curved intakes and fans will become increasingly integrated to ensure good performance
in non-uniform unsteady intake flow. A large eddy simulation (LES) of flow in an S shaped
curved duct based on that used by Garnier reveals a highly complex, unsteady distortion pattern
emerging downstream of the curves.[8] The distortion is characterised by a static pressure and
velocity distortion, 3D secondary flow vortices, total pressure losses in the boundary layer and
main flow —both due to separation— and unsteady vortex shedding. These are visible in the
azimuthal snapshot of total pressure (P0) in figure 2.1

A key question with respect to fan rotor stabilization is which particular distortion features
are most damaging and what are the stalling mechanisms that they promote? To answer, it may
be helpful to deconstruct inlet distortion and test each feature separately. A popular method
for analyzing complex flows is proper orthogonal decomposition (POD) which deconstructs the
cross-sectional unsteady velocity field into modes and quantify their relative energies.[8] Where
one or a few modes dominate, this can be a powerful method of identifying dominant axially
aligned vortical flow structures. However, the POD relative energy plot in figure 2 shows a
broad spectrum with the most energetic 10 modes accounting for only half of the total energy.
Therefore as an alternative, visual inspection of the flow suggests the following decomposition:

1Results kindly provided by R. Watson.
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1. inlet vortices of various sizes and orientations,

2. the static pressure and associated velocity distortion due to curved streamlines,

3. a total pressure deficit due to separation in the curved intake in addition to the above static
pressure and velocity distortion,

4. a time-averaged distortion profile from the Garnier duct LES, which includes more re-
alistic total pressure 2D spatial and temporal profile due to separation in addition to the
curved streamline static pressure and velocity distortion,

5. the unsteady Garnier duct LES profile which adds a complex unsteady dimension to the
time-averaged version.

Further research on complex distorted flows and methods of analysis is underway.
Building on item 5, a way to couple the URANS fan flow to the LES duct flow is to input the

duct outflow directly into the fan inlet. Results for this will be shown in section 3.4. However,
a far better way would be to replicate the particular fan rotor in the duct LES downstream
conditions by means of an inexpensive body force model such as that proposed by Cao et al.

[9]. This would allow the fan to impose its own influential static pressure field on the duct flow
which would generate more realistic inlet conditions for the fan URANS calculation.

A full account of the analyses of each part is beyond the scope of this paper. Therefore,
calculations for items 2, 3 and 4 will be discussed in section 3.

1.2 The Use of URANS in Aerodynamic Design and Fan Stall

An extensive validation of the URANS solver with consistent settings and the Spalart-Allmaras
turbulence model was carried out under the same project umbrella on a Rolls-Royce single stage
fan rig by Shaw et al. [3]. The validation fan geometry was similar in pressure ratio and aspect
ratio to the geometry used in this paper. The CFD was found to show good agreement with
experimental results in radial and circumferential total temperature and total pressure profiles,
and changes in stall margin. This is regarded to provide sufficient validation for the further
project work in this paper.

In an internally reported work, further studies were carried out using two different CFD
solvers each with the Spalart-Allmaras and mixing length turbulence model. Clean stall was
predicted to within 9% of the test nozzle area in 95% of about 40 different fan geometries.
Most importantly, however, the results for change in stall margin under the influence of inlet
distortion were within 3% of the experimental results.[3]

The key point is that, while predicting single values on a large scale is still out of reach,
URANS is sufficiently powerful method to investigate behaviour patterns of the level of com-
plexity of stall. This will be shown to be useful in supporting design choices and providing
significant understanding of the design space prior to experimental investigation.

2 METHODOLOGY

2.1 Fan Geometry

A series of CFD experiments have been carried out on the rotor of an advanced two-stage
transonic fan geometry, which was inverse designed by the methodology and code described in
Page et al. [10]. The geometry, shown in figure 3, was designed to specified radial profiles for
stage pressure ratio and exit flow angle, and a specified mass flow at a nominal 100% speed.
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Figure 3: The two-stage fan geometry designed by a dual point inverse design algorithm and the 3D URANS rotor
geometry with distortion generator.

Using the dual point algorithm developed by the authors, the fan was designed to simultaneously

achieve these performance targets at 100% speed and desired rotor shock positioning, blade
loading distribution and, therefore, peak efficiency at 90% speed. The design to mass flow
and radial stage pressure ratio and exit flow angle profiles for this geometry were chosen to be
representative of typical Rolls-Royce fans. The design is described in greater detail in [10].

For the CFD calculations in this paper, the first rotor blade was converted to a multipassage
geometry. Figure 3 also visualizes the full annulus rotor geometry.

2.2 Inlet Distortion Generator

The method used to generate distortion items 2 and 3 is a curved intake duct attached up-
stream of the full annulus rotor as shown in figure 3. The duct is area ruled with the cross-section
transitioning from elliptical to circular and features a bullet formed by a second order Bezier
surface of revolution. The walls can be defined as either inviscid slip walls or viscous no-slip.
Part way along the duct an impermeable fence can be positioned in the flow if so desired.

The purpose of the inviscid slip walls was to facilitate the generation of the static pressure
and velocity distortion associated with curved streamlines without the addition of total pressure
distortion, especially a thicker boundary layer on the inside of the curve. With the no-slip walls
a circumferentially non-uniform boundary layer was permitted.

2.3 Stall Point Calculation

The CFD calculations in this paper were carried out unsteady using Turbostream, a URANS
CFD solver.[11] The code uses the finite volume method to solve for the flow on structured O-H
multiblock meshes with hexahedral cells. The temporal discretization used in unsteady mode
is based on the second-order Adams-Bashforth scheme. For this paper, all the calculations
were carried out unsteady with a CFL number of 0.3 and using the Spalart-Allmaras turbulence
model. Wall functions were used at solid boundaries. Sliding planes were used to interface
rotating rotor mesh blocks with static mesh blocks for static blade rows or intake ducts.

In order to calculate the stall point, a choked nozzle was used to control the exit flow function
and thus the position on the characteristic. Starting from a nozzle area away from the stall point,
unsteady CFD was calculated over six revolutions, representing about three through-flows, with
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Figure 4: METHOD USED TO PLOT A CHARACTERISTIC CURVE AND CALCULATE THE STALL POINT.

flow results being saved once every blade passing during the final rev. The nozzle area was then
reduced by 4% and the six rev procedure repeated. The stall point was calculated by successive
4% nozzle area reductions in this manner, followed by a targeted 1% nozzle area reduction high
resolution pass. The procedure is illustrated in figure 4

The pressure ratio versus corrected inlet mass flow for each blade passing provided a cloud
of points for each nozzle area showing the point on the characteristic curve along with the level
of unsteadiness.

2.4 High Performance Computing Architecture

Turbostream is an updated version of TBLOCK, recoded and optimized for Graphics Pro-
cessing Units (GPUs), delivering a speedup of typically up to 20 times.[11] The hardware used
to carry out the calculations was a cluster comprising 48 Nvidia K10 GPUs. Each K10 is made
up of two GK104 GPUs, each of which has 1536 cores. The investigation required the calcula-
tion of six nozzle areas on a one-third annulus geometry and 24 nozzle areas on a full annulus
geometry. In total there were the equivalent of 156 full annulus revolutions.

3 THE EFFECT OF INLET DISTORTION FEATURES ON ROTOR STALL MARGIN

3.1 Clean Inlet Stalling Behaviour

The first CFD experiment calculated the stall point of the ‘clean inlet’ case. As the clean
inlet was axisymmetric, the unsteady calculation was run on one-third of the annulus. The stall
inception was observed to be due to tip leakage flow disturbing the flow at the leading edge of
the blade[12] near the tip, leading to separation and the formation of a rotating stall vortex[13]
which develops into a rotating stall cell. Figure 5 uses the Q-criterion vortical structure vi-
sualization to show separation close to the tip and the rotating stall vortex which is formed
moments afterwards. Figure 6 shows the velocity field superimposed on axial velocity con-
tours, highlighting the strong negative axial component of velocity (blue) interfering with the
inlet flow in the tip region near the leading edges.
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Figure 5: Vortical structure visualization using Q-criterion at stall inception.

Figure 6: Tip region velocity field and axial velocity contours.

3.2 Curved Streamline Static Pressure and Velocity Distortion

The second CFD experiment compares the stall point of the inviscid slip-wall distortion
generator case with the clean inlet case. The azimuthal plot in figure 7 shows the distortion
generated by the curved duct. The variation between the higher static pressure and lower axial
velocity on the outside of the bend and the lower static pressure and higher axial velocity on
the inside of the bend is clearly visible. It is also noted that there is the absence of an inlet
boundary layer or separation and the total pressure profile remains largely uniform. The curved
duct isolates the static pressure-velocity distortion feature. The axial velocity seen by the rotor
is shown again in the axial cut in figure 7. The upward trajectory of the incoming flow leads to
a swirl distribution with regions of co-swirl and contra-swirl entering the rotor. This is evident
in the tangential velocity plot in figure 7 which shows a negative swirl velocity, co-rotating with
the rotor, on the left and a positive swirl velocity, contra-rotating against the rotor, on the right.
The absence of a boundary layer is again conspicuous.

Figure 7 shows a remarkably well behaved flow at 95% span via relative Mach at the last
stable point on the characteristic. This case required six revolutions to be calculated at each of
six nozzle areas. The wall clock time per revolution averaged 3 hours 11 minutes on 24 K10
GPUs, giving 19 hours 6 minutes per nozzle area and 114 hours 36 minutes (less than 5 days on
half of the cluster) to calculate the stall point. This case showed no significant change in stall
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Figure 7: Overview of the inlet and fan flow with curved streamline distortion.

margin from the clean inlet, ruling out the importance of distortion due to curved streamlines
alone at this magnitude.

3.3 Curved Streamline Static Pressure and Velocity Distortion with Boundary Layer

The third CFD study assessed the effect of adding a circumferentially varying boundary layer
to the curved streamline distortion pattern. No-slip walls were added to the curved distortion
generator to modify the inlet profile to include the thin boundary layer which is visible on the
inside of the curve in figure 8. The circumferential profile of the new distortion and the swirl is
shown in figure 8 to be very similar to the previous case but with the boundary layer visible. A
key feature of the inlet profile is that is now contains total pressure loss near the tip, which is
most pronounced downstream of the inside of the curve.

The radial plot of relative Mach at the final stable nozzle area shows how much more sepa-
rated the flow is compared with the previous case. The turnaround time for this case was only
fractionally longer than for the previous case. The stalling point for this distortion was at a
nozzle area 3% larger than with clean, giving a key result in identifying low momentum tip flow
as a important distortion feature.
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Figure 8: Overview of the inlet and fan flow with curved streamline distortion and boundary layer.

3.4 Garnier outlet flow as fan inlet condition

The final increment in the increasing complexity of inlet conditions shown in this paper is
where the Garnier LES outflow is input directly into the rotor inlet. Six revolutions of unsteady
Garnier duct flow data were input to straight duct section upstream of the fan rotor. Figure 9
shows snapshots of the inlet and fan flow, clearly demonstrating its chaotic nature.

The turnaround wall clock time for calculations increased to an average of 5 hours 35 minutes
per revolution on 24 K10 GPUs, giving 33 hours 30 minutes per nozzle area or 134 hours to
find the stall point with four nozzle areas. The increase in time per revolution was due to the
highly unsteady flow field requiring a greater average number of inner time-steps to converge.
In this case each point in the characteristic displayed increased unsteadiness but there was no
significant reduction in stall margin compared with the curved duct with boundary layer. The
Garnier duct flow is essentially a combination of distortion features including low momentum
tip region flow. The lack of a further drop in stall margin in the presence of this inlet flow
provided an early suggestion that the low momentum flow in the tip region encountered in the
previous case was could still by far the most important flow feature.
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Figure 9: Overview of the inlet and fan flow with a straight inlet the Garnier results as inlet conditions.

4 Conclusions and Discussion

This paper discusses developments in the use of CFD in gas turbine engine design and
demonstrates the practicality and value of large-scale 3D URANS in the design process via
a non-exhaustive outline of an investigation into fan stall with inlet distortion. Results from
LES of the Garnier duct were used to support the design of idealized distorted inlet conditions
and to provide a complex unsteady inlet profile. This highlighted low momentum tip region
flow as a key distortion pattern.

Resulting from this work, a recirculation passage geometry similar to that described by
Guinet et al. [14, 15] has been designed and simulated. Design features of the passage are
currently under URANS investigation by the authors and are providing early evidence of a sig-
nificant increase in stall margin. Figure 10 shows a the plan view of the recirculation passages
on a 3D multipassage geometry. The passage was preliminarily designed using 1D diffuser the-
ory [16] to diffuse the flow and reduce losses in the passage, before reaccelerating to maintain
attachment around a low radius curve and achieve high velocity flow injection. The diffuser sec-
tions are marked in the side view of the passage in figure 11. The diffuser sections 3D URANS
in a one-third annulus geometry was then used to calculate stall points for variations in passage
width, injection yaw angle and circumferential positional distribution.

One improvement in the current design process should be the calculation of more realistic
inlet conditions for the fan. A duct flow LES using a body force representation of the fan
rotor, as mentioned in section 1.1, would create far more realistic outlet conditions than a static
pressure condition by coupling duct and rotor flows. Figure 12 compares schematic diagrams
of the current and future setups.

A second improvement would be to increase the fidelity of the CFD local to stalling mech-
anisms, and in the case with the recirculation passage, local to the region affected by flow
injection and where geometry optimization is to be carried out. For the rotor case in this paper,
a zonal LES calculation, where LES is used in the fluid domain at high span and URANS ev-
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Figure 10: Plan view of the recirculation passage in the casing of a one-third annulus rotor geometry.

Figure 11: Side view of the recirculation passage showing the diffuser sections.

erywhere else, would capture the complex tip leakage stall inception mechanism at even higher
fidelity. This would lead to a more detailed understanding of the stall mechanisms for different
distortions. High span zonal LES would also give a higher fidelity calculation of the turbulent
mixing of the injected jet from a recirculation passage. This would move practical unsteady
CFD closer to the predictive capability of full LES and may facilitate detailed design optimiza-
tion of the passage itself.
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Figure 12: Schematic diagrams of the current and future setups of duct LES.
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Abstract. The paper presents results of 3D numerical simulations of shock wave spreading in 
cityscape area modeled by prismatic bodies placed on a flat plate and inside a closed room. 
ANSYS Autodyne software is used for the computations. Four different test cases are investi-
gated numerically. The simulation results have been compared to experimental data. The 
ability of two numerical schemes is studied to correctly predict the pressure history in several 
gauges placed on walls of obstacles.  
. 
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1 INTRODUCTION 
Nowadays, a lot of industrial accidents accompanied by explosions are happening through-

out the world. Also, increase in the number of terrorist acts committed by means of explo-
sions is observed. For improving safety of buildings and structures it is necessary to raise their 
resistance to explosive effects, as well as to be able to predict degree of potential damage 
upon explosive loads of various intensities [1 - 3]. One of the principal goals in designing the 
structure resistant to explosive effects is to determine the dynamic response of structures to 
the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil 
engineering structures are to be determined. 

The simulation of explosion is highly complicated, involving an explosion causing the 
shock wave propagation in air and then interaction with a structure. In recent years, many ef-
forts have been devoted to the development of reliable methods and algorithms for a more re-
alistic analysis of structures subjected to blast loading. Blast predictions are most commonly 
conducted in one of two ways: simplified analytical and engineering methods [4 - 6] or so-
phisticated CFD models [7 -8].  

The engineering-level techniques permit one to estimate an explosive shock impact only 
for isolated buildings. The complexity of the building, the presence of nearby structures and 
the surrounding environment can’t be taken into account. To overcome these limitations, 
various CFD instrumentations are used for blast impact on the civil engineering objects in-
cluding in-house and commercial software. Advanced computer aid engineering (CAE) soft-
ware techniques combined with the latest methods of discrete three-dimensional city 
modeling permits one to simulate and analyze the effects of explosions in urban areas with a 
precision which previously was not possible [9, 10]. 

In the previous papers by the authors [11, 12], the adaptation of LS-DYNA and 
AUTODYN software was performed for the 3D problem of the blast wave impact on the sin-
gle prism installed on the flat plate. Comparison of the simulation results to the experimental 
data [13] has shown that LS-DYNA and AUTODYN allow one to perform numerical model-
ling of explosive impact on the environment with an acceptable accuracy. The simplified en-
gineering formulas gave a good coincidence with the experimental data only for the gauges 
situated on the windward surface of the model.  

In the paper, ANSYS AUTODYN software was tested on the problems of blast wave 
propagation in the open and closed spaces. The simulation results are compared to the ex-
perimental and numerical data [13 - 17]. The ability of two numerical schemes [18-20] is 
studied to predict the pressure history in gauges placed on walls of obstacles.  

2 PROBLEM SETUP 
Four different test cases are investigated numerically: three of them are for an open space 

with prismatic bodies placed on a flat plate, and the fourth is for the closed space with/without 
opening. In all the computations performed, the computational domains were the volume of 
air with the initial parameters corresponding to normal atmospheric conditions, namely, den-
sity ρ = 1.225 kg/m3, temperature T = 298.15 K, static pressure P = 101325 Pa, the heat ca-
pacity Cp = 1004 J/kg·K. The geometries, problem setup and computational grids for the test 
cases are described below.  

2.1 Test Case #1  
The example has been taken from [13]. The prismatic body with 0.163x0.061  m cross-

section and of 0.163 m height is placed on the flat plate. The charge of 23.7 g Demex explo-
sive that corresponds to 27.26 g TNT is situated above the ground on height of 0.1 m and 1.5 
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m distance from the body. The geometry is shown in Figure 1. Two pressure gauges T1 and 
T2 are installed on the windward and leeward faces of the prism. Because of problem symme-
try, only half of the physical domain was modeled to reduce the computation costs.  

 

 

 

 

a c

b 

Figure 1: Plane view (a), central y cross-section (b) and 3D computational domain (c) for the test case #2 

2.2 Test Case #2  
This case has no any experimental data. The example was proposed and studied numeri-

cally in [14]. The geometry of Case #2 is shown in Figure 2. Two prisms of different heights 
are installed on the plate substrate. At initial moment, the charge of 189 g TNT explosive is 
detonated at the point placed on the ground by 0.2 m distance from the front face of the small-
er prism. The virtual gauges are put on the windward and leeward faces of the prisms. This 
case has also been computed for a half of the domain taking into account symmetry of the 
problem.  

 

 

Figure 2: Prism geometry (a), and computational domain for the test Case #2 

b
a 
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2.3 Test Case #3   
The test Case #3 experimentally studied in [15, 16]. Seven building shown in Figure 3 as  

A - F placed on the plate ground surface were imitating a cityscape. The heights prisms were 
as follows: HA = HG = 0.45 m; HB = HC = HE = 0.4 m; HD= HF = 0.3 m. The TNT charge of 
16.0 g capacity is detonated at the point located by 0.04 m above the ground between build-
ings C and F. The distance between adjacent objects is less than or comparable to a linear 
scale of the prisms. In contrast to the test problems #1 and #2, for this configuration simula-
tion cannot be carried out in a symmetrical approach and requires full 3D consideration. The 
static pressure behavior was recorded in several gauges placed at the prism walls and com-
pared to the experimental data [15].  

 

a b

Fig. 3. Plane (a) and isometric (b) views of test Case #3 geometry 

2.4 Test Case #4   
In the test Case #4, (Figure 4), the internal explosions of TNT charge are studied for the 

closed cubical region of 3  3  3 m without and with ventilation opening. The numerical 
simulation was carried out under the conditions of the experiments performed at the National 
Building Research Institute, Technion, Haifa, Israel [17]. The contact pressure was recorded 
during the computations at gauges shown in the Figure 4.  

 

  

Figure 4: Geometries for test Case #4 without (a) and with ventilation (b) 
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3  MATHEMATICAL MODEL AND METHODS OF COMPUTATIONS 
The air region was generated around the prismatic bodies in Cases #1 - 3 including the 

explosive charge. For the Case #4, the computational domain was confined by the room walls. 
At the initial time t = 0 the charge detonates, and detonation and shock wave spreads in open 
or closed space. Blast wave formation and propagation was computed with AUTODYN 
ANSYS 15.0 software on the basis of a hydrodynamic multi-material approach. The air and 
TNT properties used in the computations were retrieved from the standard AUTODYN li-
brary. The 3D Euler equations were used for computations complemented with the ideal gas 
equation of state for air and the JWL equation of state [21] for TNT: 
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The values of the empirical constants A, B, R1, R2, � are shown in Table1, e is the spe-
cific internal energy and � = �/�0 is the relative specific density. 
  

Constant А, kPa B, kPa R1 R2  E, kJ/m3  kg/m3 
Value 3,7377·108 3,7471·106 4,15 0,9 0,35 6,0·106 1630  

Table 1: Values of empirical constants in (1). 

At the external boundaries chosen far enough from region of interest, so called “soft” 
boundary conditions were set. All walls were supposed to be non-deformable, and “symme-
try” conditions were used at the walls that guaranteed the absence of the flow through these 
boundaries. The second-order Godunov [18, 19] and FCT [20] finite-difference schemes were 
applied for space approximation. For the temporal approximation, the explicit scheme of the 
second order was used in compliance with the stability conditions. As the initial process of 
detonation in the open space is well described in the assumption of axial symmetry, to the 
moment when the primary shock wave reaches the plate or some prism surface, it is carried 
out in a 2D approximation. Then, the data obtained in the 2D calculations are interpolated at a 
3D computational domain and simulations were continuing taking into account the shock 
wave interaction with the substrate and prism surfaces.  

4 RESULTS OF COMPUTATIONS  

4.1 Test Case #1  
The grid convergence study was first performed using the second order sequel to Godu-

nov’s type finite difference scheme. Four various grids with hexagonal cells of equal size 
were used. Table 2 shows the details of the grids.  

 
Grid 

# 
Cell size in  

x-direction, cm 
Cell size in  

y-direction, cm 
Cell size in  

z-direction, cm 
Nx Ny Nz 

Total cell 
number 

1 1  1  1 260 60 60 9.36E+05 
2 0.5  1  1  520 60 60 1.872E+06
3 0.25  1  1  1040 60 60 3.744E+06
4 0.5  0.5  0.5  520 120 120 7.488E+06

Table 2: Computational grids for test case #1. 
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The computed pressure history in the T1 gouge placed on the windward prism face pre-
sented in Figure 5 shows that all grids give similar results. All further computations were per-
formed on the grid #4.  

 

Figure 5: Grid convergence study for test case #1  

Figure 6 shows the computed static pressure field in a symmetry plane in various time 
moments. Pressure histories written in gauges T1 and T2 are shown in Figure 7. As can be 
seen from Figure 6, a that corresponding t = 0.018 ms, shock (1) is reflected regularly from 
the surface. In Figure 6, b one can see the irregular mode of shock reflection from the sub-
strate. The wave front consisted of the original shock (1) and the Mach stem (2) propagates 
toward the prism. At the same time, reflected shocks (3) and (4) are moving toward the epi-
center. After their interaction, a new secondary shock (5) is formed. In Figure 6, f pressure 
contours are shown at the moment when the primary shock front reaches the front wall of the 
prism. After reflection, the shock (6) appears, and negative phase starts with pressure level 
lower that 1 atm. Figures 6, g, h show the diffraction of shock wave (2) along the prism walls 
and spreading of reflected shock (6) toward the epicenter. Further, shocks (6) and (5) interact 
that lead to formation of secondary wave of lower intensity.   

In Figure 7, besides the experimental data, three computation data are presented. The two 
of lines are obtained on the basis of 3D Euler equation computations using Godunov-type 
scheme of the second approximation order [18, 19] and FCT scheme [20]. The data obtained 
with empirical CONWEP function [4]. It can be seen that engineering-based approach permits 
one to predict the pressure maximum and shock arrival time to the frontal face of the prism 
which is in direct view of the explosion epicenter. But the CONWEP function is not able to 
describe the shielding effect as well as the secondary front formation. So an implementation 
of this approach is only possible to determine impact of the explosion on a single building.  

As Figure 7 shows, there are several pressure peaks at frontal and rare faces of the prism. 
The first maximum Pmax ≈ 213 kPa in Figure 7, a, is due to the impact of the shock (2) on the 
frontal face of the prism. The secondary shocks (5) and (6) cause the local maxima of 115 kPa 
on the plot of pressure history taken in T1 gauge. It should be noted that Godunov-type 
scheme underpredicts the pressure peaks and gives some delay in shock arrival moments on 
the windward and leeward faces. The first pressure peak on the leeward face is caused by ac-
tion of primary shock wrapped the prism surface, while the second peak is due to the action of 
the same wave reflected from the ground surface. The second maximum is underpredicted by 
both schemes. Nevertheless, the plot shows that FCT scheme works better comparing the Go-
dunov-type scheme and gives adequate prediction of the main pressure peaks and shock arri-
val times.  
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a)  b) 

 c) d) 

 

e) f) 

g) h) 

Figure 6: Instantaneous pressure fields at various time moments: 0.018 (a), 0.13 (b); 0.36 (c);  
0.62 (d); 2.32 (e); 2.45 (f); 2.72 (g); 2.95 (h) ms. 
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Figure 7: Computed (lines) and experimental (symbols) pressure history in T1 (a) and T2 (b) gauges  
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4.2 Test Case #2  
The computation domain was of 1.4 × 2.8 × 1.4 m size and consisted of 3.8 million cells 

with the cell size of 5 mm. Visualization of pressure contours available during the post-
processing stage allows a better understanding of the complex process of blast pressure inter-
action with a group of buildings. Figure 8 shows the computed static pressure at the ground 
level (z = 0) for different time moments after detonation. The pressure histories in the gauges 
placed on the front walls of the buildings are shown in Figure 9.  

From the figures, it could be seen that the shock (1) is spherically propagating till it reach-
es the front surface of the first building at time t=0.076 ms. Pressure history written in gauges 
on front face of the first building shows that maximal pressure of 8.5e+3 kPa is observed in 
gauge #1. The shock (1) interacts with shock (2) formed as a result of reflection. The common 
wave front propagates along the wall and wraps the whole building 1. During the diffraction, 
in a vicinity of the front face of the first building pressure falls below the atmospheric level. 
High pressure levels shown in figures by red circles are observed in triple points of shock in-
teractions and reflections from the walls and symmetry line. This pressure rise causes the sec-
ond peaks observed in gauges 1-5 at t  0.8 ms. After shock coming to the frontal face of the 
second building, all the gauges placed on the surface show significant pressure increase.  

 

 

 

 

c ba

g fd

h g i

Figure 8: Instantaneous pressure elds for te  case 2 at various time mo ents: 0.07 ms (  0.1 ms (b);  
0.2 ms (c);  0.3 ms (d); 5 ms (e); 0.8 ms (f);  1.04 ms (g);  1 s (h), 1.8 ms (i).  
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Nevertheless, it should be noted that amplitudes of the peaks here is lower by the order of 
magnitude comparing those on the frontal face of the first building due to the shield effect. 
Because of a narrow space between the first and the second buildings, some additional shocks 
of lower intensity arise due to multiple reflections from the canyon walls. The traces of these 
secondary shocks can be seen in the pressure history plots shown in Figure 9, b.  

 

  

a
b

Figure 9: Computed (lines) pressure history in gauges places on the front face of Building 1 (a)  

4.3 Test Case #3  
of this test case were performed in the computational domain with about 

6 m
 the vicinity of the building complex. In Figure 

10

shocks 1 and 2 comes through the 
ch

 pressure history plot in T21 gauge (Figure 11,b) is a result of shock (8) 
pa

arefaction 
wa

and front face of Building 2 (b).  

The computations 
illion hexa-cells each of 1×1×1 cm size.  

Let’s consider the shock-wave structure in
 the instantaneous static pressure contours in a horizontal plane-section z = 0.105 m. Spher-

ical shock (1), formed as a result of detonation propagating in an open space till it reaches the 
corner of the building F (Figure 10, a). After reflection, the shock wave intensity is about 
6 MPa. In some time moment the shock (1) falls on the wall of the building C and corner of 
the building E and reflects by irregular manner forming the triple points denoted by 3, 4 and 5 
in Figure 10, b . The shock (2) arises after reflection of the shock (1) from the building C and 
propagates toward the epicenter. The interaction of shocks (6) and (2) results in formation of 
the shock (7). At the same time, as Figures 10, c, d show, the shock (2) goes around a sharp 
corner of the building C and interacts with the shock (1).  

In Figures 10, e- one can see how the joint front of 
annel between building B and D. The action of this front leads to a fast pressure rise in the 

gauge T1 that can be observed in Figure 11,a.  The second pressure peak is formed due to ac-
tion of secondary shocks (11) formed in the epicenter in result of numerous interactions of 
reflected shocks.   

The first peak is
ssing between buildings E and G. Afterwards, a negative phase is observed. Corresponding 

rarefaction wave formed in result of shock diffractions can be seen in Figure 10,h.  
Further wave structure analysis is complicated by a large number of shocks and r
ves formed in result of numerous interferences, reflections and diffraction of the waves.   
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a) b) 

c) d) 

e) f) 

g) h) 

Figure 10: Instantaneous pressure fields for test case #3 at various time moments: 0.1 (a), 0.2 (b); 0.3 (c); 0.4 (d);  
0.7 (e); 0.9 (f); 1.3 (g); 1.7 (h) ms. 

 
The comparison of computed results and experimental data is shown in Figure 11. The 

symbols stand for experimental data [15] and the lines show the pressure history computed 
with two different schemes. The picture shows that both schemes predict the pressure loads on 
the building walls including positive and negative phases. The FCT scheme, as in previous 
case, is better in predicting the peak amplitudes and secondary waves.  
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Figure 11: Computed (lines) and experimental (symbols) pressure history in T1 (a) and T21 (b) gauges. 

a b

4.4 Test Case #4  
First, 3D modeling of the explosion was carried out of for the 16 kg TNT charge located in 

the center of the room of 300×300×300 cm size in fully confined space. During the calcula-
tion, the static pressure history was recorded at control points located on one of the walls 
which were assumed to be non-deformable. Computational grid for the task contained 
343,000 cells. The characteristic size of the computational cell was 4 cm. 

Figure 12 presents the pressure contours on the wall (x=0) showing the shock wave propa-
gation and reflection. Figure 13,  a presents computed  pressure histories at various gauges on 
the wall x = 0. It can be seen that because of a big charge mass, very high pressure levels were 
obtained in this case.  

The blast wave expands from the epicenter and first comes to the gauge #6 situated in the 
wall center. As the shock spreads along the wall, the pressure rises in gauges #4 and 5 while 
decreases in gauge #6. In time moment t = 1.5 ms shock front reaches wall edges and reflects 
from perpendicular walls that lead to significant increase of the pressure peak. The highest 
pressure level of about 20 MPa is observed at gauge #1 situated at a very corner of the room. 
After reflection from the wall, the shock front moves toward the room center, and after sym-
metrical reflection, the whole process is repeated, but the second pressure spikes are lower 
and average pressure in the room increases. 

As the next stage, computations were performed under the conditions of [17] for the TNT 
charge, located inside the room of 290×290×270 cm with the vent opening of 120 cm diame-
ter in the ceiling. All the internal corners of the room had a 20 cm chamfer. In the center of 
the room TNT explosive was located. The mass of the explosive chards was varying (Table 4). 
It the experiment, the static pressure was measured in nine sensors installed on one of room 
walls. Computational grid for the task contained 2 million cells with the size of 2 cm. 

 
Charge dimensions, mm Charge mass, 

kg L1 L2 L3 
0.5 104 67 52 
1 134 104 52 

1.5 156 134 52 

Table 4: Charge parameter for Test case #4. 
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a b 

  
c d 

  
e f 

Figure 12: Instantaneous pressure fields for test case #4 (without ventilation) 
 at various time moments: 0.9 (a), 1.5 (b); 1.7 (c); 1.97 (d); 2.3 (e); 4.8 (f) ms. 

The computed pressure history for the charge mass of 0.5 kg is shown in Figure 13, b, and 
pressure plots at various time moments are presented in Figure 14. Because of significantly 
smaller charge mass, the amplitude of pressure spikes is much lower than in the previous 
computations. The highest pressure is observed in the gauge #7 located close to the wall cen-
ter. Static pressure contours at the wall z = 0 for test Case #4 with vent, mTNT =0.5 kg at vari-
ous time moments are presented in Figure 14. At the beginning, the whole shock wave 
structure is similar to that observer for a confined room. But due to the presence of vent open-
ing, big part of the shock wave energy goes out of the room, an after the second reflection, 
pressure equalized, but the third pressure spike is observed in the gauge #7. The computed 
data were compared to experimental data [17] and a satisfactory agreement was obtained. 
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Figure 13: Computed pressure history at various gauges for test Case #4, mTNT=16 kg without vent (a)  
and mTNT =0.5 kg with vent (b). 

  
a b 

  
c d 

Figure 14: Instantaneous pressure fields for test case #4 (with ventilation) at various time moments:  
1.4 (a), 1.9 (b); 2.0 (c); 2.2 (d) ms. 

5 CONCLUSIONS  

 Four different test cases of explosive charge detonation and blast wave propagation in 
open and fully or partly confided space were investigated numerically using ANSYS 
Autodyn software; 
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 The list of test cases includes: (1) single prismatic body installed on the flat substrate; (2) 
two prismatic body of different size installed on a flat plate; (3) generic cityscape of sev-
eral prismatic bodies installed on a flat plate; (4) fully or partly confined room. 

 On a basis of simulation results, a complex wave structure was analyzed, and all the pe-
culiarities of flows and pressure history records on building / room walls were described 
and explained. 

 Juxtaposition of simulation results with experimental data available were performed 
showing a satisfactory agreement.  

 The comparison of two numerical scheme abilities has shown the better FCT properties  
to predict fine flow details  

 The use of ANSYS AUTODYN tool can provide an effective approach to determining 
blast loads in an urban environment.  

 The results indicate the necessity to take all the surrounding buildings into account when 
computing the blast loads on buildings in an urban environment. 
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Abstract. The goal of the work is to enhance the execution scalability of the code called 
AtomicClusters for evaluations of in-medium properties of nuclear clusters to extreme scales. 
In order to fully exploit the computing power of massively parallel supercomputing systems, 
the code was supplemented with parallel output and dynamic scheduling system based on 
task-stealing technique. The scheduling system was implemented for state-of-the-art distribut-
ed-memory high-performance computers (HPC) using the advanced features of Message 
Passing Interface (MPI) as an independent adjustable module. The parallel output was inte-
grated into the code using MPI IO. A number of strong scaling tests was performed for the 
resulting parallel software. An almost linear scalability was reached on up to 4000 cores. The 
code scales up to at least 38400 processes, but with lower speedup. The obtained results are 
discussed in the fifth section of the paper. 
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1 INTRODUCTION 

The dynamical evolution of core-collapse supernovae, the static properties of neutron stars, 
and the conditions for nucleosynthesis could be determined by Nuclear Equation of States 
(EoS) of stellar matter [1], the chemical composition of stellar matter. At densities below nu-
clear saturation density the nuclear matter is a mixture of nucleons, nuclei and electrons that 
could be considered as huge atoms also known as nuclei clusters. Their abundances depend 
strongly on the thermodynamic conditions such as density, temperature, and electron fraction. 
Since nuclei, which are composite objects, are immersed in a dense medium, their properties 
change significantly with the parameters mentioned due to the nuclear and electro-magnetic 
interaction with the surrounding particles and the action of the Pauli Exclusion Principle [1]. 
The latter is the main cause for the dissolution of nuclei with increasing density (Mott effect) 
[1]. Hitherto, several thousand clusters have to be considered for various values of the ther-
modynamic parameters as well as atomic mass and charge number to identify stable ones.  

The whole range of parameters for the evaluation of in-medium properties of all possible 
nuclear clusters is almost 500 million variations. Thus, the massive parallel calculations are 
crucial to complete full analyses. To reach good load balance of such computations at extreme 
scales, a middleware between cluster scheduling system and the simulation software, based on 
scalable scheduling algorithm has to be developed. Since the scalability of the commonly 
used single-queue master-managed technique is limited due to the Amdahl’s law [2] (the work 
distribution can be done only sequentially as there is only one master), and the calculation 
time for each set of parameters of computation for nuclear clusters cannot be accurately pre-
dicted (see chapter 3.1), the usage of static scheduling algorithms proved to be inefficient and 
a principally different scheduling approach known as task stealing was used. 

The task stealing suspects each process having own task stack, accessible concurrently by 
all the processes in system. Shared-memory systems meet the requirements of such an ap-
proach, but do not give enough computational resources for the simulations (the Blacklight 
machine of the Pittsburgh Supercomputing Center (PSC), the world’s largest shared-memory 
computing system [3], features 512 eight-core Intel Xeon 7500 processors). Distributed-
memory systems offer enough performance, but do not support direct access to the operative 
memory of another process. Therefore, a hybrid concept of the shared-memory-like synchro-
nization based on MPI-3 passive-target remote memory access [4] was implemented.  

The scalability tests of the designed parallel system were performed on the computational 
resource ForHLR Phase I (SCC/KIT, Karlsruhe) on up to 4000 cores and on the Cray XC40 
Hazel Hen system (HLRS Stuttgart, #8 in Top500) on up to 38400 cores, using renowned 
MPI libraries. 

The paper is organized as follows. Section 2 shortly describes physical models used in the 
code. Section 3 presents overview of applicable scheduling techniques. Section 4 gives more 
technical details of the implementation of the chosen approach. Section 5 is devoted to the 
quality assessment of the re-designed software. Conclusions and future work prospects are 
given in the section 6. 

2 CODE “ATOMICCLUSTERS” FOR THE EVALUATION OF IN-MEDIUM 
PROPERTIES OF NUCLEAR CLUSTERS 

A parallel AtomicClusters [5] code for the evaluation of in-medium properties of nuclear 
clusters was developed in a joint R&D project of the Steinbuch Centre for Computing of KIT 
with the Nuclear Theory group of GSI and is used to model the behavior of composite parti-
cles at zero and different non zero temperatures. The code allows searching for stable isotopes 
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and defining EoS consisting of such isotopes at extremely dense matter. This kind of EoS is 
an essential ingredient in astrophysical model simulations. 

The main objective of the AtomicClusters code is to calculate the change of properties of 
nuclei, mainly energy and radii, embedded in a medium of nucleons and electrons, required to 
have charge neutrality of the total system as in stellar matter, for given temperature and (bar-
yon) density. This is achieved by comparing the results of two calculations: one of homoge-
neous nuclear matter and one where the formation of a cluster is calculated inside a spherical 
Wigner-Seitz cell (inhomogeneous matter). For this we use a relativistic energy density func-
tional (EDF) that is based on a phenomenological relativistic mean-field (RMF) model [6] for 
nuclei with density-dependent nucleon-meson couplings. The exchange of mesons models the 
interaction between the nucleons. From the EDF the relevant field equations, i.e. coupled dif-
ferential equations, for the particles are derived. They have to be solved self-consistently. This 
is done using the relativistic Thomas-Fermi approximation. The results for energy shifts etc. 
are needed for the complete chart of nuclei, including unstable exotic nuclei, for different 
densities and temperatures. They will be used then in a second step as input for a model for 
the equation of state [1] of stellar matter (generalized relativistic density functional) that in-
corporates the full table of nuclei.  

So far, only simple approximations for the energy shifts are used, but they should be re-
placed in the future by more realistic results based on the underlying EDF.  

The parallelization technique used in the initial version of the AtomicClusters code was 
based on static domain decomposition, and proved to be inefficient (see section 5). 

3 SCHEDULING SYSTEM  

The necessity of optimal and effective use of limited and expensive computational time on 
any HPC system is crucial. Efficient resource utilization can seldom be reached without long 
term re-engineering of the scientific simulation codes. The code rebuilt may result in changes 
of the scientific concepts and architecture, practically leading to fundamentally new software 
and possibly different scientific results. In order to advance the AtomicClusters code for state-
of-the-art HPC systems and avoid affecting the underlying physical models, the external 
scheduling system was developed. As distinguished from code parallelization techniques, the 
scheduling system operates code-defined computational units instead of mathematical opera-
tions, thereby not influencing the simulation results.  

For the AtomicClusters code the scheduler-managed unit (hereinafter task), is one set of 
possible isotope parameters, namely density, temperature, atomic number and electron frac-
tion. Since the calculation time for each task is unknown, the simple statement of the schedul-
ing problem in case of heterogeneous computational system can be represented as follows: the 
project consists of N independent tasks of variable size; the tasks must be distributed among 
M: M<<N equal resources so that the latest are used in a most efficient way: the makespan of 
the project is minimized and the resources utilization is maximized; the distribution method 
must scale up to M>>10000. Standard static algorithms as those solving the bin packing prob-
lem [7] cannot be used to schedule tasks of undefined size. To solve the problem, the follow-
ing scheduling approaches were implemented and evaluated. 

3.1 Static scheduling techniques  

The first approach is a static distribution of equal N/M number of tasks among processes, 
or static domain decomposition. The advantages of the approach are the simplicity and the 
lack of bottlenecks. Since the input range of parameters is represented in an incremental form, 
it is small enough to fit into the memory of a single process irrespective of the problem size, 
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and the distribution of parameters among processes is done in parallel, namely the range of 
parameters to be processed is calculated on each process according to its rank. The disad-
vantages of the approach are the non-optimized completion time and the high load imbalance 
on the computational systems with static resource management. This technique gives better 
result on systems with dynamic resource management, where the finished processes can be 
freed immediately without waiting for the whole computation to complete [8]. Herewith, ful-
filling the resource occupation condition we are still not satisfying the makespan minimiza-
tion criteria. 

The second approach is a statistics-based grouping technique. The sizes of new tasks are 
estimated using the 3D spline-polynomial interpolation of the collected statistical data. The 
groups of tasks with similar computational intensity (cumulative size) are formed and sched-
uled as single units of equal size. Figure 1 demonstrates the estimated task size for the range 
of atomic numbers from 50 to 300 and temperatures from 25 to 140 MeV. 

 

Figure 1: Estimation of task sizes for given temperature and atomic number. 

On particular range of parameters, where the size function is smooth, the approach shows 
feasible results. However, the scalability of the approach is limited due to statistics I/O bottle-
neck, and the prediction is not possible on the whole range of parameters. This technique re-
mains useful for the simulations where the task size dependency on the input parameters can 
be approximated with monotonous function, such as the software to search for periodic gravi-
tational wave signals [9], where we successfully applied the grouping approach. In case of 
nuclear clusters study, where the computation of each set of parameters must be done only 
once, this approach must be advanced. 

3.2 Dynamic task-stealing scheduling technique  

Taking into account specifics of the AtomicClusters code such as non-predictable task sizes 
and independency of the tasks, the approach based on a task-stealing technique was chosen 
for the scheduling system.  

The idea of the task-stealing technique is derived from work-stealing. In [10] work-stealing 
was opposed to work-sharing – the technique where a single scheduler is responsible for the 
work distribution. Both work-stealing and work-sharing do not meet the requirements we 
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have set. The work-sharing technique is master-managed and does not scale due to Amdahl’s 
law. The work-stealing supposes that the tasks can be subdivided, that contradicts the idea of 
operating code-defined computational units. 

The following scheduling algorithm was chosen to be implemented. The tasks are initially 
distributed among processes as in the first approach, but as soon as the process completes the 
tasks from own queue, it starts “stealing” tasks from other queues. The task-stealing algorithm 
is initially parallel since each process is following the same steps. Provided the communica-
tion time is negligible compared to computation time, the load imbalance is not higher than 
the size of the biggest task, since each process is occupied while there are tasks still left in the 
system. Contrary to the simple distribution, this approach conduces to the completion time 
minimization. 

To balance the load, two techniques were applied: the random polling [11, 12], where the 
stealing requests are send to a randomly chosen target, and the ordered polling with match 
memorization, which means repetitive stealing from the same target until it is not empty. The 
first is quite efficient despite its simplicity and match unpredictability, but requires supple-
mental termination detection mechanism. The second is finite, since no new tasks are arising 
during the computational process, and the cycle can be subdivided into nested loops, first 
searching within the immediately accessible area (e.g. shared memory region), thus profiting 
from the HPC architecture. However, ordered polling can cause work maldistribution, and 
therefore higher communicational load, since the number of non-empty targets will decrease 
faster.  

4 IMPLEMENTATION OF THE TASK-STEALING ALGORITHM  

In the era of HPC one of the biggest problem limiting parallel applications scalability is the 
synchronization problem. The first goal of the scheduler implementation was to minimize in-
terprocessor communications, therethrough reaching higher scalability. The task stealing algo-
rithm is naturally suitable for the shared-memory systems, since it suspects each process 
having its own task stack, accessible concurrently by all the processes in system. To apply the 
task-stealing technique for distributed memory systems and optimize the interconnection be-
tween processes, shared-memory-like synchronization based on MPI passive-target remote 
memory access (RMA) [4] was implemented. 

The RMA is a new MPI feature, requiring an external progress engine to remain truly pas-
sive-target [13], and not fully supported by all MPI libraries. Normally the MPI progress en-
gine on each process activates only when the process itself is doing an active MPI 
communication. Therefore, once initiated the passive-target access epoch stalls and can be 
processed only when the target calls an MPI routine. The external progress engine is respon-
sible for the background progression, irrespective of the processes behavior, and allows 
avoiding deadlocks during passive-target access. 

For the scheduling system to remain efficient irrespective of the HPC environment, the ad-
ditional optionally activated synchronization mechanism was integrated. The mechanism pe-
riodically simulates MPI activity during the computational process, therethrough poking the 
MPI progress engine and activating stalled calls from other processes. Considering that no 
additional communication is done within the synchronization call, the increase of the single 
task computation time is negligible. The disadvantage of such a mechanism is a conflict of 
load balancing and synchronization. On the one hand, passive-target access epochs happening 
between the synchronization calls still stall, causing load imbalance, but on the other hand the 
meaningful decrease of synchronization periods may badly affect the computation time of 
each task. Therefore, the usage of the MPI libraries supporting asynchronous progress is pref-
erable.  
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5 EVALUATION OF THE DYNAMIC SCHEDULING SYSTEM 

The quality assessment of the re-designed parallel software was performed in a number of 
scalability tests. Figure 2 demonstrates the results of strong scaling of the code on the 
ForHLR Phase I system. The ordered polling with match memorization was chosen as a bal-
ancing technique. The tests were run with all three MPI libraries installed on the system: 
MVAPICH [13], Intel MPI and Open MPI. The default settings of the libraries were used. 
The speedup was measured relating to the sequential runtime with the same library and tuning 
parameters.  

Among the libraries available on the system only MVAPICH fully supports the asynchro-
nous progress. However, minimizing interconnection time to a negligible value by use of the 
external progress engine caused the decrease of performance. The cumulative runtime of all 
tasks on all processes increased. The Intel MPI library shows better results for the simulations 
with additional synchronization, which can be explained with optimal library configuration 
for the system.  

The magenta line is given for comparison and refers to the scalability results of the original 
(based on static domain decomposition) parallel version of the AtomicClusters code without 
integrated scheduling system. 

 

Figure 2: Scalability tests on ForHLR system with different MPI libraries. 

The diversity of the results proves that to reach higher efficiency of the parallel application 
at any system, the initial tuning of the system software in order to optimize its settings for the 
used hardware and application must be done. 

Figure 3 demonstrates the results of strong scaling of the code on the Cray XC40 Hazel 
Hen system with the default settings of the Cray environment.  

Both load balancing mechanisms were tested on higher scales: the ordered stealing with 
repetitive target choice on match and the random polling. Additional synchronization was 
used to provide non-stalling passive target access. 
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Figure 3: Scalability tests on Cray XC40 Hazel Hen system with different load balancing mechanisms.   

As was predicted, the random target choice showed better results on scale-up. We explain 
it with the tasks maldistribution, caused by faster decrease of the number of non-empty targets, 
which is the consequence of repetitive target choice on match. This imbalance leads to higher 
number of access epochs to non-empty targets left and increases the number of concurrent 
access epochs. For random polling, the possibility of simultaneous epoch to the same target is 
quite low.   

 

Figure 4: Relative work/idle/communication time distribution.   

The overall result on Hazel Hen appeared to be worse than on ForHLR. Detailed evalua-
tion of the results allowed discovering a bottleneck in the parallel output system, which can be 
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one of the reasons of speedup decrease. Here the optimization of the parallel output for 
AtomicClusters code is necessary and is under development. Another reason can be a not op-
timal (too small) size of the problem being solved. The performance of a single computational 
unit (core) of Hazel Hen system is almost two times greater than one of ForHLR according to 
the official documentation [14, 15], and is approximately three times greater according to the 
measurement of the single-process runtime of the same task on each machine. Thus the prob-
lem size must be enlarged to profit from Gustafson’s law principles [16].  

Higher performance also causes decrease of the computational time of a single task, which 
means that communication intensity increases. Figure 4 illustrates this increase, demonstrat-
ing the average distribution of processor time among work on own (received by initial distri-
bution) tasks, work on stolen tasks, communication and staying idle, for different runtime 
parameters (number of processors and stealing order). 

To minimize communications, the tasks grouping will be used so that groups rather than 
single tasks could be managed by scheduler as one unit. The optimal size of such a group as 
well as the preferable size of the whole simulated problem is a subject of further investigation. 

6 CONCLUSIONS  

The existing AtomicClusters code was supplemented with a dynamic scheduling system 
based on task stealing technique. The scheduling system was implemented using the advanced 
methods of MPI for the distributed memory system. The tests performed on the ForHLR sys-
tem up to 4000 cores showed good scalability of the designed software. Results, obtained for 
higher amount of cores on the Hazel Hen system, allowed us appointing the following pro-
spects of further system optimization: 

• the revision of the parallel output system and its re-integration from code into scheduler; 

• the estimation of the optimal size of the units operated by the scheduling system depend-
ing on the system performance; 

• the investigation of the tuning parameters of the environments used and an evaluation of 
the optimal configuration. 

Summarizing, one can claim that task stealing based scheduling concept appeared to be a 
good alternative to code parallelization and re-designing parallel software. Being used with 
optimal parameters it can provide almost linear speedup. 
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Abstract. The metal stress-strain state simulation needs high precision computations. The use 

of any simplifying assumptions, such as the plane section hypothesis, the deformable material 

relative compressibility, uniform temperature distribution over the cross and longitudinal 

sections of the strip, etc. reduces the computation accuracy of strain and stress at the nodes. 

Standard programs often use such assumptions. It is acceptable for solving the routine 

problems. For the manufacture of critical elements such assumptions can lead to undesirable 

serious consequences. Modeling of the metal forming processes by using the finite element 

method gives a more accurate solution of the problem. However, the solutions require to 

solve a linear equations system of high dimensionality. The coefficient matrix is sparse, 

namely it consists of mainly zero elements, randomly scattered. This leads to considerable 

computation time for solution methods. In general, the number of arithmetic operations is 

proportional to the cube of the system's order. In this paper, we propose to increase the 

computational efficiency analysis through the use of the high-sparse matrix properties. In this 

case computer time will be proportional to the system order to the 1.2 power. The proposed 

solution SLAE comprises sparse matrix methods, which include techniques for optimal 

ordering of matrix rows and columns by using the criterion of the rows in order to increase 

the first non-zero elements number. This paper shows the application of the computation 

method for the process of the Belleville spring upset. Belleville springs can be classified as 

critical elements. One of its possible applications is the rail joint. Unlike conventional parts 

the elastic elements are characterized by the presence of large deformation under loads. The 

main factor that determines the service properties of the elastic element is the amount of 

strain energy that it can be accumulated. Accumulation and dispersing of the Belleville 

springs strain energy is directly depends to the relation of the meridian cross-section size and 

the spring working area. The establishment of this dependence is necessary for its rational 

design.   
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1. INTRODUCTION 

The metal stress-strain state computation is widely used in the metal forming processes 

simulation, as well as for the investigation of finished product fatigue strain. The study of 

stresses and strains arising during the various process stages, will improve the manufacturing 

process of metal products. Simulation identifies areas with critical stress. Then through the 

modernization of stamping tools and products specifications arising stresses will be reduced 

in these areas. This in turn will lead to increase the lifetime of the stamping equipment and 

manufactured metal products. To obtain the required results, numerical methods should be 

used. 

Consideration of the historical development of numerical methods for the metal stress-

strain state computation, shows the gradual improvement of these methods. The purpose of 

this is to improve the any task computations accuracy in any conditions. To achieve this, first 

of all it is necessary to provide a solution to the problem without the plane section hypothesis, 

the deformable material relative compressibility, uniform temperature distribution over the 

cross and longitudinal sections of the strip, etc. In plastic metal working modeling by using 

the finite element method the majority of simplifying assumptions is no need to use. In most 

FEM codes usage of the computer methods the stress-strain state is based on the variational 

computation, created by O.C. Zienkiewiczand R.C. Taylor[1], R. Hill [2]-[4], D.H. Norrieand 

G. deVries [5], D.Banabic [6], F. Barlat [7]-[12], J.L. Bassani [13], et al. However, the use of 

FEM codes for irregular shaped parts requires considerable computer resources. One possible 

solution to this problem is the 2D model prediscovery and then on the problem areas more 

accurate 3D simulation [14]. 

While there is great diversity in the formulations of the FEM, in general the method can be 

characterized by the following properties: 

1. The task physical area is divided into sub-areas, or finite elements. 

2. The dependent variable is approximated by the specialized functions on each finite 

element and, consequently, in the entire region. The parameters of these approximations in the 

subsequent are unknown the problem parameters. 

3. Substitution approximations to defining equation gives the equations set system with 

unknown parameters. Solving these equations, we can determine the values of these 

parameters and, consequently, obtain an approximate the problem solution. 

As a result of solving the SLAE for the elastic stress-strain state computation is obtained 

stress and strain in each finite element. However, the solutions require to solve a linear 

equations system of high dimensionality. The coefficient matrix is sparse, namely it consists 

of mainly zero elements, randomly scattered. This leads to considerable computation time for 

solution methods. In general, the number of arithmetic operations is proportional to the cube 

of the system's order. In this paper, we propose to increase the computational efficiency 

analysis through the use of the high-sparse matrix properties. This computer time will be 

proportional to the system order to the 1.2 power. The proposed solution SLAE comprises 

sparse matrix methods, which include techniques for optimal ordering of matrix rows and 

columns by using the criterion of the rows in order to increase the first non-zero elements 

number.  

This paper shows the application of the numerical method for the process of the Belleville 

spring upset. One of its possible applications in the rail joint. Belleville springs are also 

commonly used in engineering for damping dynamic and shock loads encountered in 

operation of machines (anti-vibration damper and other buffers). So the Belleville springs can 

be classified as critical elements. However, according to numerous studies and practical 

testing of a significant portion of the Belleville springs during exploitation under repeated 
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loading does not stand above the claimant the amount of cycles (2∙10
6
). Damage occurs due to 

development of fatigue cracks in the edge hole due to wear of their contact surfaces. Defects 

in the Belleville spring edges surface, appearing in the typical stamping and accelerates the 

fatigue cracks nucleation. In standard Belleville springs during operation there are significant 

the stresses value, and this their service life is reduced. Contact spring surface wears out 

quickly due to its small area. To increase the spring service life necessary to reduce the 

stresses during exploitation strain, to increase the contact surface area and eliminate the 

occurrence of surface defects during stamping. Reducing stress possible by optimizing the 

design parameters of the spring based on the stress-strain state analysis results of its 

compression during use [15]. 

2. APPLICATION OF THE NUMERICAL METHODS TO ANALYSIS THE 

STRESS-STRAIN STATE 

2.1. Application of the finite element method to compute the stress-strain state problems 

Consider the application of finite element method for solving the computer problem the 

Belleville spring elastic stress-strain state. The computer problem the spring elastic stress-

strain state resolved on the basis of the minimum potential energy principle [5], [16]. The 

potential energy functional for solid mechanics bidimensional problems looks as follows: 
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] – the mass force per unit volume matrix, 
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] – surface stress at point matrix, V – solid volume, AT –solid surface. 

Values εх, εу and σх, σу are strains and stresses axial x and y, respectively. In constructing a 

mathematical model of the elastic stress-strain state in a spring-loaded by the linearity of the 

elastic problem and small strain velocities do not take into account the temperature changes 

effects and the mass forces emergence [16]. These factors can be taken into account 

additionally if necessary. 

Consequently: 

   
     

                                                                              (2) 

where F –mass force potential,    – solid temperature increment. 

Due to the fact that the Belleville spring is in equilibrium, and consider strain state, the true 

system of solid material points displacement u by the loads action T, as well as taking into 

account the condition (2), the potential energy functional (1) transform as follows: 
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where V – solid volume,   [
  
  
] – surface stress vector, АТ – outer contact surface. 
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Since the Belleville spring has a rotation solid shape (Figure 1), then the decision we 

consider axisymmetrical stress-strain state. 

 

Figure 1: Parameters Belleville spring and the cylindrical system position. 

After the conversion, taking into account characteristics of the Belleville spring 

parameters, the potential energy functional (3) for the spring will be: 
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spring height, k – friction coefficient, R1 и R2 – the Belleville spring radius and spring holes, 

respectively (Figure 1).  

Then displacement to each of the finite element is approximated by linear functions. Then 

using the differentiation matrix rules, we compute the partial derivatives of the elemental 

energies along the nodal displacements vectors. The Belleville spring cross section break in 

the 48 triangular elements. Then, after securing the condition of potential energy functional 

minimum (4) and implement the united elemental matrix equations (association for nodes) in 

the matrix equation system with the defined movement. A result we get linear equations 

system for the nodal displacements values: 
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where 
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Coefficient matrix of the linear equations system resulting contains a large number of zero 

elements (a sparse matrix). Therefore, the use of accurate computation methods (for example, 

the Gauss method) provides more computing error and has low computing speed. Since they 

depend on the positioning of columns and rows with null elements. This leads to high 

computations processing power. To improve the efficiency computations used special 

methods to transform a sparse coefficient matrix, include a method of arranging the rows and 

columns, reduce the sparse matrix filling, namely a modified Gauss method that provides a 

numerical method stability [17]. As a result of its solutions obtained nodal displacements, and 

then determine the stress and strain in each element [18]. 

2.2 Application of the sparse matrix method to compute the SLAE 

Using iterative methods for solving linear systems with sparse matrices is not very 

effective, as to ensure their convergence necessary to satisfy the convergence conditions, in 

addition, if the problem solving linear systems is incorrect, then the iterative methods do not 

give a clear answer. Exact methods devoid of these shortcomings, however, their use gives 

greater computational errors and a higher dimension takes more memory [19]. The errors are 

caused by the transition from the mathematical model to the numerical method. They are 

connected with the fact that every numerical method reproduces the original mathematical 

model approximately. To improve the efficiency computations, there are special methods to 

transform a sparse coefficient matrix, including the optimal ways to organize the sparse 

matrix rows and columns. 

The Gauss method - the successive unknowns elimination method from a equations system 

[20]. With the unknown kx exclusion, the equations system: 

 Ax b , (5) 
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where all coefficients aij when i > k and j > k computed by the formula: 

        
      

   
      (6) 

In general, the arithmetic operations numbers to Gaussian solve (5) be proportional to the 

system order to the 3 power. This leads to considerable cost of computer time. It is possible to 

improve significantly the computational efficiency of the analysis, if application the property 

of the high matrix sparseness A to model (5). Sparse matrix processing efficiency is high 

because it does not require, firstly, conversion of the formula (6), if at least one of the 

elements aik or akj is zero, secondly, the memory cost to store zero elements. Although sparse 

matrix algorithms are more complex, but as a result the computer time cost will be closer to 

linear. When using the sparse matrix methods need to take into account the dependence of the 

computational efficiency of the coefficient matrix submission A, more precisely, on the order 

in which recorded its rows and columns. Sparse matrix methods should include ways to the 

optimal streamline of rows and columns matrix. It is possible to use several ordering 

optimality criteria. The simplest of these is the criterion of the rows in order to increase the 

number of primary non-zero, more complex criteria take into account not only the primary 

non-zero, but also the emerging secondary non-zero.  

To implement the method of sparse matrices it was developed software in the Delphi 

language. Input data the program are placed in a separate file containing non-zero values of 

the matrix coefficients in a packed form. The principle of reading the input data is as follows: 

at the beginning indicates the matrix order, each subsequent line is in the form kind of a1, a2, 

a3 ..., where the first and the third number - a columns number, where the data is non-zero 

elements, and the second, the fourth number - data is non-zero elements. This type of the data 

presentation allows the large dimensions matrices can be stored and processed in the 

computer's memory. In this case gain in storage costs is significant. Using this software 

allows you to get a solution to a linear equations system with sparse coefficients matrices, to 

estimate the error and make a conclusion about the decision correctness [21]. 

2.3 Application of the method to analysis the stress-strain state in the spring-loaded 

On the basis of the discussed above computer method the mathematical elastic stress-strain 

state model of the Belleville spring loaded was worked out. For the numerical implementation 

of the model it was developed software designed to compute strains and stresses in the spring-

loaded. The program was developed in programming environment C# [18]. Figure 2 shows 

the stresses in the Belleville spring-loaded with design parameters: S = 1 mm, R1 = 17.5 mm, 

R2 = 4.98 mm, α = 5.47
◦
, H = 1.2 mm, when a load is applied F = 110 N. 

Problem is solved by using a CAE system «ANSYS» to check the model verification 

(Figure 3). 

On the basis of the stress-strain state analysis the computation method of disc springs 

optimal design parameters and form was worked out. 
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Figure 2: Stresses σr in the Belleville spring-loaded. 

 

Figure 3: Stresses distribution field in a Belleville spring-loaded. 

3. CONCLUSIONS  

 A mathematical model of elastic springs compression during operation is developed. 

 Sparse matrix method is used to improve computation performance. 

 For the numerical implementation of the model it was developed software designed to 

compute strains and stresses in the spring-loaded. 

 The stress-strain state of the spring-loaded is analyzed. 

 On the basis of the stress-strain state analysis the computation method of optimal springs 

design parameters and form is worked out. 
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Abstract. When the fluid analysis is carried out in the case that there is a moving object in 

the flow field, the mesh regeneration method is applied due to the Adaptive mesh refinement 

method. In addition, the Shear-Slip mesh update method is employed in case of rotating body 

problems. On the other hand, a method using the flow domain overlapped with the moving 

object is also proposed. In the finite difference method, a foreground grid is represented by 

moving object, and a main-grid is used for flow field calculation. The Overset-grid is applied 

to the fluid analysis to reflect the foreground grid to main-grid by the least-squares method. 

Furthermore, the Immersed boundary method based on the finite volume method is also em-

ployed. In the finite element analysis, the fictitious domain method is often adopted for the 

moving body problems. In this method, the computational domain is divided into foreground 

domain and back-ground domain. In addition, the formulation is carried out based on the La-

grange multiplier method, and is applied to consider the velocity condition in the foreground 

domain. The finite element fluid analysis is carried out to reflect the physical quantity of the 

foreground domain to back-ground domain. Physical quantities at any points of the fore-

ground domain can be obtained from the physical quantities at each node by interpolation 

method. In this study, the flow field analysis using the fictitious domain finite element method 

is carried out.  
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1 INTRODUCTION 

When fluid analysis is carried out, the finite element method (FEM) is often employed, and 

is widely used as one of the most common analysis techniques. However, if the object moves 

in the flow field, it is necessary to re-generate the element mesh for the calculation each time, 

there is a problem that the computational cost increases. On the other hand, the fictitious do-

main method [1, 2] is employed as an analysis technique using two element areas within the 

object and the flow field in the background. Therefore, it is not necessary to re-generate the 

background mesh even if the object moves. This approach formulated based on the method of 

Lagrange multiplier [3, 4], representing the background and foreground meshes. Analysis of 

the flow field to perform a physical quantity of the foreground mesh is reflected to the back-

ground mesh by using the interpolation method. This study is to verify the numerical analysis 

of incompressible viscous fluid with a fictitious domain method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example of finite element mesh in the fictitious domain method. 

2 DISCRETIZATION OF THE GOVERNING EQUATIONS 

2.1 Governing equation  

The Navier-Stokes and the continuity equations are used to represent flow behavior and are 

written as Equations (1) and (2): 
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where Vi, P, Re, and fi denote the flow velocity, pressure, Reynolds number, and body force 

per unit volume, respectively. 

2.2 Discretization of the governing equation  

As a method to solve the equation, the splitting method is applied. In this approach, it is 

possible to solve the equation by separating the pressure and velocity.  

First, to get the solution of the pressure field, we derive the pressure Poisson equation. Per-

forming discretization in the time direction using the Euler method to Equation (1), to give 

Equation (3). 
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Since the flow velocity is interpolated using triangular primary element, the term of the third 

order differentiation and differential term of constant value are vanished. The equation which 

was rewritten to Poisson equation of pressure is shown in Equation (4). 
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When it is assumed that the weighting function P* relates to a pressure P, the weighted resid-

ual equation is as shown in Equation (5). 
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Next, if the Crank-Nicolson method is applied to the momentum equation, Equation (6) is 

obtained.  
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Multiplying the weighting function ui
* on the flow velocity for both sides of Equation (6), 

integrating over the domain Ωe, and introducing the term of the Lagrange multiplier λi [3, 4],  

Equation (7) is consequently obtained. 
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In addition, by introducing an interpolation function by the triangular and the bubble func-

tion elements, Equations (8) and (9) are finally obtained. 
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The matrices and vectors in the finite element equation for the pressure Poisson equation 

and the momentum equation are shown in Equations (10) and (11), respectively. 
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3 DETECTION OF THE FOREGROUND NODES NODE 

We consider the conditions under which the nodes of the foreground is present in the ele-

ments of the background area. From the definition of the cross product, the node determines 

whether inside or outside. It is known that determinants D1, D2 and D3 expressed by Equation 

(12) must be positive value, if there is node as shown in Figure 2, a = (xa, ya), of foreground in 

an element consists of three nodes, (x1, y1), (x2, y2), and (x3, y3). 
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Figure 2: Example of overlapped domain. 

4 NUMERICAL EXPERIMENTS  

4.1 Comparison of the conventional FEM and the fictitious domain FEM  

In the flow field around the cylinder, we compered the analysis using the conventional 

FEM and the analysis using the fictitious domain FEM. Computational model is shown in 

Figure 3. In addition, the computational condition for conventional FEM and fictitious do-

main FEM is shown in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Computational model. 

 

 Conventional FEM Fictitious domain FEM  

Density  1.00 kg/m3  1.00 kg/m3  

Kinematic viscosity  0.01 m2/s 0.01 m2/s  

Time increment Δt 0.001  0.001 

Nodes in background domain 1636  1907 

Elements in background domain 3116 3716 

Nodes in background domain - 331 

Elements in foreground domain - 600 

 

Table 1: Computational conditions. 
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The analysis results are shown in Figures 4-6. Figures 4 and 5 are shown the pressure dis-

tribution and the flow velocity vector at T = 10 [s] in the conventional FEM and the fictitious 

domain FEM. There are no elements inside the moving object in case of the conventional 

method. On the other hand, in case of the fictitious domain FEM, the physical quantity of the 

foreground domain is reflected in the background. Therefore, it is seem that the flow velocity 

vector obtained by the fictitious domain FEM is distributed around the cylinder as same as 

that obtained by the conventional method. Figure 6 shows the comparison of the time history 

of the drag force between the conventional FEM and the fictitious domain FEM. From this 

result, it is found that the result by the fictitious domain FEM is good agreement with that by 

the conventional FEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Pressure and velocity distributions in case of conventional FEM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Pressure and velocity distributions in case of fictitious domain FEM. 
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Figure 6: Comparison of time history of drag force between conventional FEM and the fictitious domain FEM. 

4.2 Comparison of the fluid force for the case of changing the shape of the foreground 

domain 

It is necessary to move the nodes freely in the computational domain, when the appropri-

ate shape is obtained such that the drag force minimizes. In this study, the shape expressed by 

the nodes of the foreground mesh is changed by the solution of the Laplace equation shown in 

Equation (13) under the boundary condition Equation (14), the comparison of the drag force is 

carried out in each shape case. 
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Figure 7 shows the comparison of the foreground meshes in case of the cylinder and the el-

lipse. Figure 8 is the comparison of time history of drag force between cylinder and ellipses. 

The drag force decreases gradually with decreasing ellipticity (minor axis radius / major axis 

radius). It is found that when the drag force in case of cylinder and ellipses at T = 10 [s], the 

drag force of ellipse 1 and ellipse 2 decreases 18% and 30%, respectively, in comparison with 

that in case of circular cylinder. 
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Figure 7: Foreground meshes in each examination case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Comparison of time history of drag force between cylinder and ellipses. 

5 CONCLUSIONS  

The flow analysis around the body based on the fictitious domain FEM is shown in this 

study. Navier–Stokes equations and equation of continuity are employed for the governing 

equation. The FEM using the mixed interpolation by the triangular and the bubble function 

elements is  used to discretize the governing equation for space direction, and the Crank-

Nicolson method are used to discretize the governing equation for time direction. The conclu-

sions are shown as follows. 

 

 Similar calculation results were obtained in the conventional FEM and the fictitious do-

main FEM from the result of drag force distributions. It means that the present method is 

suitable in this study. 

 It was found that even if the shape of foreground mesh was changed, the fluid force can 

be accurately obtained by using the fictitious domain FEM.  
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Abstract. This paper investigates the performance of different turbulence models for simulating
the aeroacoustic field generated by turbulent flow. The acoustic field is calculated by solving the
linearized Euler equations (LEE), while the acoustic source is obtained by solving the incom-
pressible Navier-Stokes equations. Three different turbulence models are adopted for the flow
simulation: the large eddy simulation (LES), the delayed detached-eddy simulation (DDES)
and unsteady Reynolds Averaged Navier-Stokes equations (URANS). The acoustic sources are
calculated on a flow grid and then transferred and interpolated onto an acoustic grid, enabling
the acoustic computation of the far field with a reasonable computational cost. We present the
acoustic sources calculated using different turbulence models. Furthermore, we compare the
sound pressure level (SPL) spectra of different turbulence models with the experimental data.
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1 INTRODUCTION

In recent decades, the simulation of aerodynamic noise has become increasingly significant
for engineering applications. The prediction of aeroacoustic fields can be realized using the
direct noise computation (DNC) [1], which solves the compressible Navier-Stokes equations
directly for flow and acoustics. However, due to the significant difference at both length and
time scales of flow and acoustic fields, the DNC method is considered inefficient especially for
low Mach number flows. A hybrid scheme is commonly adopted, in which the simulations of
flow and acoustics are separated and coupled through the acoustic sources.
Regarding the simulation of acoustics, several integral formulations, such as Lighthill’s analogy
[8, 9] and Curle’s analogy [2] have been successfully applied. An alternative is the linearized
Euler equations (LEE) method, which is obtained by using the Expansion about Incompressible
Flow (EIF) technique [12, 13].
In order to acquire the acoustic sources, the incompressible Navier-Stokes equations are uti-
lized. For turbulent flows, direct numerical simulation (DNS) in most cases cannot be applied
due to its unaffordable computational cost. A turbulence model is usually adopted to char-
acterize the unresolved turbulence scales, leading to a significant reduction in computational
cost. Large eddy simulation (LES) resolves the large eddies and implicitly accounts for the
small eddies by using a sub-grid scale model. Nevertheless, the computational cost of LES for
engineering problems is mostly beyond the current computational power. Reynolds Averaged
Navier-Stokes (RANS) equations only resolve the time averaged flow, leading to a drastic re-
duction of computational cost. However, the lack of accuracy makes it inappropriate for aeroa-
coustic problems. By adding an additional unsteady term to the RANS equations, one obtains
the unsteady RANS (URANS) model. The idea of hybrid methods is to combine the advantages
of LES model and RANS models. Detached-eddy simulation (DES) is one of the most popular
hybrid turbulence models. The DES model switches between LES and RANS modes according
to the numerical resolution [15, 16].
In the present work, the results of three turbulence models are compared with the experimental
data to determine their suitability in the prediction of aerodynamic noise.

2 GOVERNING EQUATIONS

2.1 Linearized Euler equations for aeroacoustic simulation

The acoustic field is described through three quantities: the acoustic pressure pac, the acoustic
density fluctuation ρac and the particle velocity uaci . These are the perturbation of pressure,
density and velocity caused by sound waves, respectively. Since the humans’ sensation of sound
is proportional to the logarithm of the acoustic pressure, the acoustic pressure is rarely used in
practice. The sound pressure level (SPL) Lp with unit decibel (dB) is commonly adopted, which
is defined by

Lp = 10 · lg
(
paceff

)2
p2ref

= 20 · lg
paceff

pref
, (1)

where pref is a reference acoustic pressure and paceff is the effective acoustic pressure given by

paceff =

√
1

T

∫ T

t=0

(pac(t))2 dt. (2)

In order to derive the governing equations for the acoustic quantities, a decomposition tech-
nique called Expansion about Incompressible Flow method (EIF) is utilized. This technique is
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proposed by Hardin, Pope [6] and improved by Shen and Sørensen [12, 13]. It assumes that the
compressible flow field at low Mach number can be decomposed into an incompressible flow
field and an acoustic field

ui = uinci + uaci , (3)

pi = pinci + paci , (4)

ρi = ρinci + ρaci , (5)

where ui, pi and ρi are the velocity, pressure and density of compressible flow and superscripts
inc and ac represent the components of incompressible flow and acoustic field respectively.
Based on the EIF decomposition, one can obtain the linearized Euler equations (LEE) as follows

∂ρac

∂t
+ ρinc

∂uaci
∂xi

+ uinci
∂ρac

∂xi
= 0, (6)

ρinc
∂uaci
∂t

+ ρincuincj
∂uaci
∂xj

+
∂pac

∂xi
= 0, (7)

∂pac

∂t
+ c2ρinc

∂uaci
∂xi

+ c2uinci
∂ρac

∂xi
= −∂p

inc

∂t
. (8)

For more details regarding the derivation of the above equations, the reader is referred to [7].

2.2 Turbulent flow

For turbulent flows, the governing equations read

∂uinci
∂xi

= 0, (9)

∂uinci
∂t

+ uincj
∂uinci
∂xj

=
∂

∂xj

(
ν
∂uinci
∂xj

− τij

)
− 1

ρinc
∂pinc

∂xi
. (10)

For URANS models, uinci is the mean velocity, while for LES models uinci is the filtered veloc-
ity. This similarity of the equations of URANS and LES facilitates the development of hybrid
RANS/LES models [4].

k − ω SST model For URANS models, τij in (10) is the Reynold’s stress, which is usually
calculated using the Boussinesq approximation

τij = νt

(
∂uinci
∂xj

+
∂uincj
∂xi

)
− 2

3
kδij, (11)

where νt is the turbulent viscosity that has to be modeled. The k − ω SST model is a URANS
model applying the k − ω model in the near wall region and the k − ε model in the free stream
region. Therefore, it combines the advantages of both basic URANS models [10]. The k − ω
SST model is formulated as

∂k

∂t
+ uincj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
, (12)

∂ω

∂t
+ uincj

∂ω

∂xj
=
γ

νt
Pk − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2 (1− F1)

σω2
ω

∂k

∂xj

∂ω

∂xj
, (13)
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where k is the turbulent kinetic energy, ω is a specific dissipation, Pk is the production term
given as

Pk = τij
∂uinci
∂xj

. (14)

The turbulent viscosity is calculated using

νt =
a1k

max(a1ω,ΩF2)
, (15)

where Ω is the vorticity magnitude

Ω =
√

2ΩijΩij, Ωij =
1

2

(
∂uinci
∂xj

−
∂uincj
∂xi

)
. (16)

ζ − f based DDES model The ζ − f model was described in [5] and the equations are given
as

∂k

∂t
+ uincj

∂k

∂xj
= Pk +

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
− ε, (17)

∂ε

∂t
+ uincj

∂ε

∂xj
=
Cε1Pk − Cε2ε

τ
+

∂

∂xj

[(
ν +

νt
σk

)
∂ε

∂xj

]
, (18)

∂ζ

∂t
+ uincj

∂ζ

∂xj
= f − ζ

k
Pk +

∂

∂xj

[(
ν +

νt
σk

)
∂ζ

∂xj

]
, (19)

L2∇f − f =
1

τ

(
C1 + C ′2

Pk
ε

)(
ζ − 2

3

)
, (20)

where ε is the dissipation, f is the elliptic relaxation term, L is the length scale and τ is the time
scale of turbulence. A detailed description of the equations and the value of the coefficients can
be found in [5].
The delayed detached-eddy simulation (DDES) model modifies URANS models to achieve an
LES content, enabling the DDES model to switch between URANS and LES according to the
numerical resolution [16]. For the ζ − f model, the ε in the k equation is modified to

ε =
k3/2

lturb
, (21)

where lturb is the length scale of DDES

lturb = lRANS − fd max(0, d− CDES∆φ). (22)

The turbulent viscosity is then calculated using

νt = Cµζkτ. (23)
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Large eddy simulation For LES, τij in (10) is called the sub-grid scale stress, which is com-
monly modeled using the Smagorinsky model [14]

τSmag
ij − 1

3
τkkδij = −2νtSij, νt = (Cs∆)2|S|, (24)

where |S| is the magnitude of the strain rate tensor, which is represented by

Sij =
1

2

(
∂uinci
∂xj

+
∂uincj
∂xi

)
. (25)

3 NUMERICAL REALIZATION

This research is conducted within an in-house code FASTEST, which adopts a fully conser-
vative finite-volume method to solve the incompressible NSE on a block-structured grid. The
work flow of the aeroacoustic simulation is shown in Fig.1.

CFD solver

uinc, vinc, pinc

sources Acoustic solver

uac, vac, pac

MPI

Figure 1: Numerical realization of flow solver and acoustic solver.

First, we use the different turbulence models to calculate the acoustic sources on a flow grid,
which has a fine resolution. Second, we transmit and interpolate the acoustic sources onto
an acoustic grid, which has a relatively coarse resolution. For the coupling of the two grids,
trilinear interpolation is used owing to the simplicity of implementation. Finally, we compute
the acoustic quantities by solving the LEE.
The linearized Euler equations are solved using a high-resolution scheme, which combines the
first order Godunov method and the second order Lax-Wendroff method [7]. Since the flow and
the acoustic variables have different time scales, the flow and the acoustic field are not computed
using the same time step. Instead, each time step of the flow is further divided into several time
steps for the acoustic computation.

4 TEST CASE

The main objective of this paper is to study the aeroacoustic performance of different tur-
bulence models. For this purpose, the aeroacoustic experimental data of Etkin et al. [3] are
used to compare different turbulence models. This test case investigates the flow past a cylinder
and the acoustic quantities generated by the turbulent flow. The inlet flow velocity is 68.6 m/s,
implying a Mach number of Ma=0.2 such that the incompressibility assumption is reasonable.
The diameter of the cylinder is D=0.0125m. The Reynolds number is approximately 60000,
indicating that the flow is fully turbulent.
As can be seen in Fig.2, the domain has a length of 22D in x-direction and 10D in y-direction.
In order to capture the three dimensional turbulent features, the z-direction is modeled with a
length of 4D.
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Inlet
u = 68.6 m/s

v = 0 Outlet

Symmetry

Symmetry

No-Slip

7D 15D

5D

5D

Figure 2: Sketch and boundary conditions of flow domain.

The problem domain is discretized using a block-structured grid. Figure 3a shows the spatial
discretization of the flow domain. The flow is resolved up to the boundary layer, resulting in
the dimensionless wall distance y+ < 1. Figure 3b illustrates the discretization of the acoustic
domain. Considering that the experimental data are collected at a distance of 48D from the
cylinder’s center, the acoustic domain has a length of 100D in each direction.
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(a) Flow grid
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(b) Acoustic grid

Figure 3: Discretization of flow domain and acoustic domain

The number of CVs for the flow and acoustic domains are listed in Table 1. In the LES
model, 80% of the turbulence energy should be resolved. Hence, it needs a relatively fine grid
to achieve adequate simulation results. A flow grid with about 2.5 million cells is adopted in
this work. For the URANS model, a relatively coarse grid is utilized. The grid for the DDES
model is created according to the grid resolution requirements from [17]. Regarding the time
discretization, the second order fully implicit scheme is adopted, which has no stability problem
when the CFL number is greater than 1 [11]. In order to fairly compare the SPL spectrum of
different models, the sampling frequency is kept the same, which is realized by setting the time
step for the flow to 3× 10−6s for all cases.
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Table 1: Turbulence models and number of CVs.

Simulation Turbulence model No. of CVs of flow domain No. of CVs of acoustic domain

No.1 LES 2500368 158496

No.2 ζ − f based DDES 1233648 158496

No.3 k − ω SST 184480 158496

5 RESULTS AND DISCUSSION

(a) Acoustic source of LES model in [Pa/s]

(b) Acoustic source of URANS model in [Pa/s]

(c) Acoustic source of DDES model in [Pa/s]

Figure 4: Acoustic sources obtained by different turbulence models

7605



X. Huang, M. Schäfer

In order to acquire a fully developed von Kármán vortex street and a stable propagation pro-
cess of acoustics, 30000 time steps are observed. For the calculation of this time period, the
LES model requires approximately 4 days, the DDES model needs 2.5 days, while the URANS
model needs only 10 hours.
Figure 4 shows the acoustic sources predicted by three different turbulence models. According
to the simulation of LES, as shown in Fig.4a, the acoustic sources appear predominantly in
the wake region and the shear layer. The URANS model is not suitable to predict the acoustic
source in the shear layer, as indicated in Fig.4b. In the wake region, only large periodic sources
can be predicted to some extent. Figure 4c illustrates that the DDES turbulence model can
predict the acoustic sources in the shear layer accurately. However, the acoustic sources in the
wake region can only be partially predicted. This may be caused by the “grey area” problem.
The DDES model switches between LES and RANS modes depending on the numerical reso-
lution. However, there often exist regions where it is neither LES nor RANS mode, resulting in
a large simulation error in such areas. This problem can emerge after the flow separation, where
the mode should be changed from RANS to LES. Due to the insufficient turbulence information
from the RANS mode from the upstream, the LES mode can not develop immediately after the
transition.
As in the experiment of Etkin et al. [3], the acoustic data at an observer point are collected,
which is placed at a distance of 48D from the cylinder’s center perpendicular to the flow direc-
tion. The 1/3 octave spectrum of the simulations and the experimental data are given in Fig.5.
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Figure 5: Comparison of SPL of different turbulence models with experimental data

The LES model offers the closest comparison with the experimental data. The underpredic-
tion in the high frequency region is caused by the filtering process in LES, which leads to a loss
of the high frequency fluctuation component in the flow. In addition, as shown in Table 2, the
fundamental frequency obtained by LES is 1061Hz, which has a relative error of only 6.1%.
As illustrated in Fig.5, the SPL of the k − ω SST model has an obvious deviation from the
experimental data. Nevertheless, this URANS model can provide the fundamental frequency
with a relative error of 22%.
For the ζ − f based DDES model, a similar SPL spectrum to the LES model is observed.
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However, it can only predict the fundamental frequency with a similar accuracy as the URANS
model, as indicated in Table 2.

Table 2: Fundamental frequency.

Frequency (Hz) Error

Experiment 1000 -

LES 1061 6.1%

URANS (k − ω SST) 1222 22%

ζ − f based DDES 1200 20%

6 CONCLUSION

Three different turbulence models have been investigated in the context of aeroacoustic sim-
ulation. The SPL spectrum of the LES model shows the best agreement with the experimental
data. The underprediction in the high frequency region is also reasonable. The URANS model
can only provide the fundamental frequency with a modest error. Its SPL spectrum deviates
obviously from the experimental data. In comparison to URANS, the DDES model has been
shown to be able to predict the SPL spectrum with a satisfactory accuracy. However, only a
minimal improvement in predicting the fundamental frequency is observed.
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Abstract. Thermoacoustic engines are device that converts heat energy into work in the form 

of acoustic energy. The energy conversion using thermoacoustic techniques has the ad-

vantages of constructional simplicity, absence of moving parts, reliable operation, long ser-

vice life and no environmental pollution. However, efficiency of thermoacoustic systems still 

needs to be improved (which is typically 40% of the Carnot coefficient of performance).  

To improve the efficiency of thermoacoustic engine, a thorough understanding of the flows in 

machines, onset temperature, acoustic velocity and streaming velocity is necessary. In this 

study, numerical simulation of a thermoacoustic heat engine is performed. The possibility of 

using Implicit Large Eddy Simulation (ILES) to simulate the flows in the thermoacoustic en-

gine has been examined by using COMSOL Multiphysics. Unlike the Large Eddy Simulation 

(LES), ILES is neither explicit filtering nor explicit subgrid model: small-scale fluctuations 

are damped by the numerical diffusion, which acts both as an implicit filter and an implicit 

built-in subgrid model for a given grid. As the grid is refined, the simulation converges to a 

DNS.   

The results show that the ILES has predicted flows in the thermoacoustic engine and especial-

ly time-averaged flow called acoustic streaming, which can lead to undesired heat convection 

and loss of efficiency. 
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1 INTRODUCTION 

 

The thermoacoustic machines are a new type machines based on the interaction between the 

thermodynamic and acoustic phenomena. In recent years, these machines occupy an important 

place in both the industrial development and in the comfort of habitat. This diversification of 

the mode of use of thermoacoustic machines is due to a number of benefits, recorded on these 

machines: no moving parts, high reliability and low environmental friendliness compared 

with traditional heat engine. [1-3]. However, efficiency of thermoacoustic systems still needs 

to be improved, especially for the standing wave thermoacoustic engine (which is typically 

40% of the Carnot coefficient of performance (Swift [3])) and their performance needs to be 

better understood. To improve the efficiency of thermoacoustic engine and refrigerators apart 

from improved resonator, stack and loudspeaker design, it is necessary to better understand 

the flow and thermal fields. Many strategies are proposed to improve the efficiency of ther-

moacoustic machines. 

In thermoacoustic devices, the energy is carried by an acoustic wave. This acoustic wave can 

induce a time-averaged flow, called acoustic streaming, which can lead to undesired heat con-

vection and loss of efficiency. Different classes of acoustic streaming can be distinguished 

based on the underlying physical mechanisms. Rayleigh streaming, as first analytically de-

scribed by Lord Rayleigh in 1884 [4], is the phenomenon of a net mean flow in a standing 

wave resonator driven by the viscous stresses close to the solid boundary [5]. In the traveling-

wave thermoacoustic engine usually has a loop configuration, which may cause an acoustic 

streaming named as Gedeon streaming [6].  

Acoustic streaming can have a large impact on the performance of thermoacoustic prime 

movers and refrigerators as the generated mean flow can lead to undesirable mean convective 

heat transport [7, 8]. There are many experimental and theoretical studies to better understand 

and to suppress acoustic streaming [8-14]. They investigated mechanisms of streaming gener-

ation, and they introduced elements to suppress the streaming like a jet pump and phase ad-

juster. 

Several numerical calculations recently addressed the modeling of the flow field inside a 

thermoacoustic couple [15-19]. Cao et al. [15] presented numerical simulations of the flow 

behavior in the thermoacoustic couple, and calculated the energy flux density in a parallel-

plate stack. 

To understand the evolution of the physical parameters (pressure, velocity, streaming, etc.) 

in thermoacoustic engine, a 2D model was used in view of the geometric configuration of the 

machine. This model is based on solving the Navier Stokes equations, the heat equation and 

the ideal gas equation. The Implicit Large Eddy Simulation (ILES) was used to simulate the 

flows in thermoacoustic machine [20-22]. This method uses the full Navier-Stokes equations 

instead of Reynolds Averaged Navier-Stokes (RANS) and does not use an explicit turbulence 

model. Unlike the Large Eddy Simulation (LES), ILES is neither explicit filtering nor explicit 

subgrid model: small-scale fluctuations are damped by the numerical diffusion, which acts 

both as an implicit filter and an implicit built-in subgrid model for a given grid. As the grid is 

refined, the simulation converges to a DNS.  ILES is an effective method for transitional flows, 

especially when coupled with heat transfer. It captures accurately the energy exchanges be-

tween various modes, namely convective, acoustic and thermal, in a wide range of velocity 

and turbulence intensity. 
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2 PHYSICAL AND NUMERICAL MODEL 

The thermoacoustic engine illustrated in Fig. 1 is made of a resonator, opened to the environ-

ment on its one side, a stack and two heat exchangers whose function is to create an appropri-

ate thermal gradient. A standing acoustic wave is generated in the device. Its velocity node is 

at the closed end of the tube and the velocity antinode – at the opened cross section of the en-

gine. The stack, of length 10mm, formed by a stack of rectangular plates of 0.5 mm wide and 

spaced 0.5mm between them. Our model problem is similar to the one considered in [17]. 

 

 

Figure 1:  The thermoacoustic engine and its basic components. 

To model the thermoacoustic generator, we used the mass conservation, momentum, energy 

equations and the equation of state. 

The evolution of pressure, velocity and density is governed by the Navier-Stokes equations 

applied to the gas circulating in the resonator and in the stack. 
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p is thermal expansion coefficient. 

To solve the system of partial differential equations described above, it is necessary to provide 

additional equation, linking the physical parameters of the fluid. 

We consider the following state of the ideal gas equation for the working gas (air): 
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TR

P

S

A       (7) 

Firstly, a steady simulation was performed with 10 Pa pressure as inlet condition at the closed 

end of the resonator and atmospheric pressure at the output of the resonator.  

In the present study, all walls are adiabatic, except horizontal surfaces in the stack. The 

boundary condition of the temperature along such horizontal stack surfaces is determined by 

the following expression: 

( ) 500 200 cos( )stack

st

x
T x

L
          (8) 

This steady simulation was used to introduce pressure disturbance and an initial flow for tran-

sient simulation. In this case, adiabatic wall replaced pressure inlet condition on the compli-

ance side. 

A mesh based triangular elements was used with a total cell number of about 160000 cells. 

The mesh was refined near wall in the boundary viscous layer of the stack. The resolution of 

this boundary layer is necessary since the formation of acoustic streaming is principally in-

duced by the interaction between the acoustic wave and the viscous boundary.  

3 RESULTS ANS DISCUSSION  

The model described above is used to study a thermoacoustic engine using the implicit large 

eddy simulation implemented in COMSOL Multiphysics software. As implicit modeling we 

denote the situation when the unmodified conservation law is discretized and the numerical 

truncation error acts as an SGS model. Since this SGS model is implicitly contained within 

the discretization scheme, an explicit computation of model terms becomes unnecessary. 

The process of the acoustic wave excitation is presented in Fig 2. The basic time step of 10-5 

second was adopted for the unsteady calculations. It can be noticed that in the initial stage of 

the pressure oscillation stems from an initial disturbance until the balance between the acous-

tic power dissipation and acoustic power generation is reached. The peak-to-peak value of 

thermoacoustic oscillation was 8 kPa. The FFT analysis of the pressure oscillation is shown in 

the Fig. 3. The main frequency component is equal to about 614 Hz and is in a good agree-

ment with results of [17]. Two additional harmonics, at 1222 Hz and 1830 Hz are visible. 

Fig. 4 shows the acoustic velocity distribution, u, versus time at fixed position of x= 20 mm, 

the velocity amplitude at this position is about 2.5 m/s. The acoustic velocity u along the 

length of the thermoacoustic engine for individual phase of half period T/2 of oscillation is 

presented in Fig. 5. The characteristics were determined along the line y= 4.23mm. We find 

that the acoustic velocity is maximum at x = 30mm and equal to 11m / s. This maximum val-

ue is due to the presence of the stack, which generates a constricting section. The velocity 

amplitude was determined at the open end of the device where the velocity antinode located. 

To study the distribution of pressure in the thermoacoustic engine Figs. 6 and 7 present the 

acoustic pressure p distribution in function of time at x= 20 mm and The acoustic pressure u 

along the length of the thermoacoustic engine for individual phase of half period Tp/2 of os-

cillation along the line y =4.23mm. In the close end of the device, the pressure amplitude is 

equal 4 kPa in this place the pressure antinode appears. It can also be noticed in the outlet sec-

tion of the thermoacoustic engine a pressure node is located. 
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Figure 2: The evolution of  the pressure oscillation at a x= 20mm. 

 

Figure 3: FFT analysis of the pressure oscillation. 
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Figure 4: Time evolution of the acoustic velocity at a point in the vicinity of the stack. 

0 20 40 60 80 100 120 140

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

 

 

u
(m

/s
)

x (mm)

 0

 1/8T

 2/4T

 3/8T

 4/8T

 

Figure 5: Distribution of instantaneous velocity depending on the length of thermoacoutic engine. 
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Figure 6: The evolution of  the pressure oscillation. 
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Figure 7: Distribution of instantaneous pressure depending on the length of thermoacoutic engine. 

 

Secondary flows are mean flows that reduces the energy efficiency of thermoacoustic ma-

chine by creating thermal bridges particularly between stack ends. Fig. 8 depicts the cycle av-

eraged flow field in the thermoacoustic engine. These steady flow structures (acoustic 

streaming) are computed from on the average mass transport velocities defined as;  
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        (10) 

Here u2 and v2 are components of the acoustic streaming velocity. The instantaneous density, 

u and v values are time averaged during the 60th cycle and the streaming velocities obtained at 

the time which the mass transport velocities reach quasi steady values and do not change with 

increasing number of periods. 

From Fig. 8 it can be seen that there are several secondary flow into the machine. These 

streaming appear in the resonator of thermoacoustic engine and near close end. Also small 

vortex are seen next to the stack and between the plates of the stack. These streaming reduce 

the useful gradient and therefore the engine efficiency. To make a quantitative study of 

streaming velocity, the profile of u2 was plotted for three different axial positions as illustrated 

in Fig. 9. From this figure, it can be seen the symmetry of the streaming velocity curves over 

the axis that passes through the engine center. the acoustic velocity varies between 0.3 m/s 

and -0.3 m/s. In both areas, next to the stack, we plotted the velocity profile along y (see Fig. 

10). After this analysis, the ability of the ILES approach to capture the small structures in the 

oscillating flow in the thermoacoustic engine is confirmed. 

 

 

 

 
 

Figure 8: Stream line for streaming velocity 

 

7616



M.  Mahdaoui, R. Bennacer and S. Kouidri 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0

2

4

6

8

10

12  x=100mm

 x=80mm

 x=50mm

 x=20mm

 

 

y
 (

m
m

)

u
2
 (m/s)

 
 

Figure 9: Streaming velocity profile u2 at three axial positions. 
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Figure 10: Streaming velocity profil at two positions near the stack. 

4 CONCLUSIONS  

This work presents the study of streaming velocity in a thermoacoustic engine using Implicit 

Large Eddy Simulation. The model used is based on solving the Navier Stokes equations, the 

heat equation and the ideal gas equation. First order velocity and second order velocity 

(streaming velocity) are obtained and analyzed. The results show that the ILES has predicted 

flows in the thermoacoustic engine and particularly acoustic streaming, which can lead to un-

desired heat convection and loss of efficiency. These streaming appear into thermoacoustic 

engine, especially between the plates of the stack. 
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Abstract. Plates with attached beams or ribs, rather than monolithic plates, are commonly
employed in civil and mechanical engineering for reasons of weight and static stiffness. Un-
fortunately, attaching stiffeners to a plain plate generally increases its radiation efficiency and
reduces its airborne sound insulation. This contribution aims at gaining insight into the sound
insulation of rib-stiffened plates in the mid-frequency range, where the modal behavior of the
plate is still important, but the neighboring sound fields can already be considered as diffuse.
A detailed finite element model of a PMMA plate with steel stiffeners attached is constructed
and coupled to a reverberant sound field model of the adjoining room(s) within the recently
developed hybrid finite element - statistical energy analysis framework. This framework is com-
putationally very efficient, it enables to compute the coupling loss factors between the sound
fields in a rigorous, straight forward way, and the uncertainties due to random wave scattering
- which is the physical origin of the diffuse field - can be quantified. The finite element model of
the plate is first calibrated by minimizing the difference between its lowest natural frequencies
and mode shapes and the corresponding measured values. The hybrid model is then employed
for predicting the sound reduction index across the building acoustics frequency range. These
predictions are validated against airborne sound insulation measurements. Within a wide fre-
quency range, pronounced dips are observed at specific natural frequencies of the plate, at
which the wavelength of the corresponding mode shape is close to the free acoustic wavelength.
Since there is an obvious connection with the coincidence phenomenon for infinite plates, the
observed phenomenon is termed the semi-discrete coincidence phenomenon. It is shown that in
the mid-frequency range, an important increase in airborne sound insulation can be achieved
by suppressing only a few particular resonances of the considered rib-stiffened plate.

7620



Edwin Reynders, Cédric Van hoorickx and Arne Dijckmans

1 INTRODUCTION

Rib-stiffened plates are commonly employed in civil and mechanical engineering as they
achieve a similar strength and stiffness as plain plates with a substantially lower weight. Un-
fortunately, attaching stiffeners to a plain plate generally increases its radiation efficiency and
reduces its airborne sound insulation [3].

Early investigations into these phenomena led to two approximate physical explanations
based on infinite plate theory. Firstly, when the wavelength of deformation is much larger than
the distance between the stiffeners, the main effect of the stiffeners is to introduce orthotropy
into the plate. The effect of the stiffeners is then that the frequency range in which coincidence
has a detrimental effect on radiation efficiency and transmission loss is broadly smeared out to-
wards lower frequencies when compared to the plane plate [6]. Secondly, when the wavelength
of deformation is much smaller than the distance between the stiffeners, the stiffeners have the
approximate acoustic effect of dividing the plate into smaller panels, the radiation efficiency
of which is much larger than the radiation efficiency of the large unstiffened plate [12]. These
investigations were followed by several more refined analyses; see, e.g., [1, 2, 5, 11, 13].

The present contribution aims at gaining additional insight into the sound transmission through
finite rib-stiffened plates by investigating the behavior of the room-wall-room system in the mid-
frequency range. This is the frequency range in which the sound fields in the rooms can already
be considered as diffuse (in contrast to the low-frequency range), while the modal behavior of
the wall is still important (in contrast to the high-frequency range). A detailed finite element
model of the rib-stiffened plate is constructed and coupled to a reverberant model of the ad-
joining rooms within the recently developed hybrid finite element - statistical energy (FE-SEA)
analysis framework [16, 10, 15]. This framework is substantially more flexible and general
than conventional statistical energy analysis as it allows, for example, (i) incorporating diffuse
and non-diffuse vibro-acoustic system components within a single model in a computationally
efficient way, (ii) assessing the uncertainty inherent in the assumption of diffuse sound fields
in the rooms, and (iii) computing coupling loss factors in a rigorous and straightforward way,
accounting automatically for both resonant and non-resonant transmission [9].

As a specific case, a polymethyl methacrylate (PMMA) plate with steel stiffeners attached
is considered. By analysis of the model predictions, it is found that the finite dimensions of
the plate result in a semi-discrete coincidence phenomenon, i.e., the wavelength of a mode
shape of the rib-stiffened plate is close to the free acoustic wavelength at the corresponding
natural frequency. This is seen to result in an oscillating narrow-band transmission loss over a
wide frequency range, which is in contrast to the discrete coincidence phenomenon for finite
homogenous isotropic plates [4, 7]. Only a few of the plate modes in this wide frequency range
exhibit semi-discrete coincidence, which suggests that the sound insulation in that frequency
range can be substantially increased by suppressing only a few structural modes.

The reminder of this article is structured as follows. In section 2, the dynamic structural
model of the stiffened plate is discussed in detail. In section 3, the finite element model is in-
corporated in a hybrid FE-SEA model of the transmission suite and the transmission loss of the
rib-stiffened plate is computed and validated against measurements. A physical interpretation
in terms of semi-discrete coincidence is given in section 4, while the potential of suppression a
few particular modes is investigated in section 5. Conclusions are drawn in section 6.
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2 FINITE ELEMENT MODEL OF THE STIFFENED PLATE

The example structure that is considered in this paper consists of a base plate made of
PMMA, to which 11 steel L30 stiffeners are attached. The base plate has a width of Lx =
1.25m, a height of Ly = 1.5m and a thickness of tp = 15mm. The steel L-shaped stiffeners
have an outer leg length of Ls = 30mm and a thickness of ts = 3mm. The center-to-center
spacing between the stiffeners is dx = 100mm, the distance between a vertical edge of the
plate and a vertical edge of the closest stiffener is ax = 110mm, and the distance between a
horizontal edge of the plate and the closest end section of a stiffener is ay = 52.5mm. The
stiffeners are both glued to the base plate over their entire length, and additionally screwed to
the base plate at four points.

A finite element (FE) model of this structure was made using the ANSYS software pack-
age. Both the base plate and the steel stiffeners were modeled with four-node linear thin shell
elements (of the SHELL181 type). The mesh is shown in Fig. 1. When connecting the plate
and the horizontal stiffener legs, the offset of the stiffeners with respect to the midplane of
the plate was taken into account. The out-of-plane displacements were restrained at the plate
edges. No other boundary restrictions were applied, and the three in-plane rigid body modes
were removed from the model. This set of boundary conditions agrees with the dynamic plate
boundary conditions that are applied in the sound transmission suite of the KU Leuven Labora-
tory of Acoustics. For the steel profiles, a Young’s modulus of Es = 210GPa, Poisson’s ratio
of νs = 0.3 and density of ρs = 7850 kg/m3 were taken. For the PMMA base plate, a Young’s
modulus of Ep = 4.564GPa, a Poisson’s ratio of νp = 0.35 and a density of ρp = 1170 kg/m3

were taken.

X

Y

Z

Figure 1: Finite element mesh. The volumetric representation is for visualization purposes only; both the plate and
the stiffeners are modelled with two-dimensional shell elements.

3 SOUND INSULATION PREDICTIONS AND EXPERIMENTAL VALIDATION

For the sound insulation predictions, a hybrid finite element - statistical energy analysis (FE-
SEA) approach [10, 15, 16] is adopted. This approach allows coupling diffuse field (or SEA
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f [Hz] η[−] f [Hz] η[−] f [Hz] η[−] f [Hz] η[−]
100 0.049 250 0.046 630 0.060 1600 0.044
125 0.049 315 0.056 800 0.055 2000 0.038
160 0.056 400 0.062 1000 0.059 2500 0.035
200 0.065 500 0.040 1250 0.054 3150 0.027

Table 1: Damping loss factor measured in 1/3 octave bands.

subsystem) models of modally dense components to deterministic models of modally sparse
components in a rigorous way. A diffuse field model is a probabilistic wave field model, and
therefore the predicted sound transmission loss is also a probabilistic quantity.

The model of the considered transmission suite is divided into three components: emitting
room, partition wall, and receiving room. The rooms each have a volume of about 87m3 and
a reverberation time of about 1.5 s. They are modeled to carry a diffuse wave field, as SEA
subsystems. The values c = 343m/s and ρa = 1.2 kg/m3 are adopted for the sound speed and
air density, respectively. For the partition wall, which consists of the baffled rib-stiffened plate,
the finite element model of section 2 is employed. Measured values are used for the damping
loss factor of the wall as reported in Table 3. Full details on sound transmission modeling with
the hybrid method can be found in [15]. For completeness, it is mentioned that the acoustic
direct field dynamic stiffness matrices of the rooms (SEA subsystems) were evaluated by means
of a wavelet approach [8], using a square interpolation grid covering the flat plate surface and a
distance between the grid points of 2.08 cm.

Fig. 2 displays the model predictions and compares these with narrow-band (1/48 octave)
sound reduction index measurements, which have been performed in the transmission suite of
the KU Leuven Laboratory of Acoustics. Not only the mean of the predicted sound transmission
loss values are plotted, but also the related ±2σ confidence intervals, which correspond to 95 %
confidence intervals when a Gaussian probability distribution can be assumed. One should
keep in mind that this uncertainty is due to the assumption of a harmonic diffuse field model
for the rooms. This assumption can be justified when the acoustic pressure field in the rooms
is sensitive to small wave scattering elements, and for the transmission rooms at KU Leuven
this is the case from about 140Hz onwards [15]. At lower frequencies, the uncertainty due to
the presence of small wave scattering elements will be overestimated with a diffuse field model.
Furthermore, individual room resonances, which are absent in the adopted hybrid model, will be
important at such frequencies. The present analysis however is concerned with mid-frequency
sound transmission.

The critical frequency of the infinite panel without stiffeners would be at 2051Hz. The
critical frequency of the ribbed plate in the weak bending direction (i.e., for bending around
an axis parallel to the ribs) can be estimated at 2735Hz by neglecting the stiffness of the steel
ribs but accounting for their mass. The critical frequency in the strong bending direction can be
estimated at 461Hz by taking both the stiffness and the mass of the ribs into account. Between
both frequencies, a broad coincidence zone exists for infinite plates. For the finite plate that is
studied here, a strong oscillation of transmission loss with frequency is observed in this zone.
Such oscillation is not predicted by, and cannot be explained from, infinite plate theory. It is
therefore investigated with a more refined model in the next sections.

A very good agreement between the measurements and the hybrid model predictions is ob-
served in the frequency range in which the model is valid (above 140Hz). The oscillation
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Figure 2: Measured sound reduction index of a rib-stiffened plate in 1/48-octave bands (blue) vs. the harmonic
mean values (red, left figure) and 95% confidence intervals (red, right figure) as predicted with the hybrid FE-SEA
method.

of the transmission loss is very well predicted, and the measurements fall almost completely
within the 95% confidence interval which represents the uncertainty caused by the diffuse field
assumption for the sound fields in the rooms.

4 SEMI-DISCRETE COINCIDENCE

The pronounced dips that are observed in both the measured and the predicted sound reduc-
tion index above 140Hz correspond with some of the eigenfrequencies of the finite-sized rib-
stiffened plate. They do not correspond with eigenfrequencies of the bare rooms, as these are
not included in the hybrid FE-SEA model. In order to get more insight into why certain eigen-
frequencies of the plate result in a pronounced reduction of the airborne sound insulation while
others do not, both the in-vacuo modes of the rib-stiffened plate (as determined from the fi-
nite element model) and the acoustic dispersion curve are plotted in the frequency-wavenumber
domain (Fig. 3). The structural wavenumber of mode j was computed as the amplitude of
[kxj, kyj], where kxj denotes the horizontal and kyj the vertical wavenumber. kxj and kyj are
determined through counting the number of approximate half sine wavelengths in the horizontal
and vertical directions, respectively, of mode j.

This counting process was automated as follows. First, the correlation between a computed
mode shape and all possible mode shapes that consist of between 0 and 15 half sine wavelengths
in both horizontal directions was determined by computing the MAC value [14]. The combi-
nation that yielded the highest MAC value was then retained for determining the wavenumber
corresponding to the mode shape. In Fig. 3, a different symbol is used for wavenumbers that are
computed based on a high MAC value and those based on a low MAC value.

Subsequently, the frequency-wavenumber relation (also called dispersion curve) for sound
waves was plotted in the same figure. It can be seen that this dispersion curve comes close
to a mode of the rib-stiffened plate at 212Hz, 345Hz, 502Hz, 693Hz, and 964Hz, which are
precisely the frequencies at which the sound transmission loss of the plate dips. The dips can
therefore be attributed to a semi-discrete coincidence phenomenon which involves only specific
plate modes, namely, those modes for which the mode shapes exhibit one half wavelength in
the horizontal direction. From around 1000Hz, many plate modes match closely the acoustic
wavelength at their resonance frequency, and pronounced dips in the sound reduction index are
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Figure 3: Modes of the rib-stiffened plate as predicted with the updated finite element model (crosses) in the
frequency-wavenumber domain, together with the frequency-wavenumber relation for sound waves in an un-
bounded domain (solid lines). x: MAC value between the mode shape and the closest half-sines mode shape
is higher than 0.7. +: MAC value is lower than 0.7.

no longer observed.

5 INFLUENCE OF MODE SUPPRESSION

In the light of this physical interpretation, it is instructive to investigate by how much the
sound insulation of the plate improves when these five modes are suppressed. Therefore, the
sound transmission loss of the plate is re-computed but without taking these five modes into
account. The sound insulation improvement that is computed in this way is an upper bound,
because in reality mode suppression measures - such as local stiffening, attachment of tuned
mass dampers, and active vibration control - are never perfect.
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Figure 4: Predicted sound transmission loss of the rib-stiffened plate with (red) and without (blue) mode suppres-
sion. Left: harmonic values, right: 1/3 octave band averages.

Fig. 4 compares the computed sound transmission loss with and without mode suppression.
Both harmonic values and one-third octave band averages are shown. Suppressing the modes
with natural frequencies of 212Hz, 345Hz has the largest influence: the dips in the transmission
loss are largely reduced, resulting in an increase of the transmission loss with about 5 dB around
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those frequencies. Suppressing the modes at 502Hz, 693Hz and 964Hz has a smaller effect.
This can be understood from Fig. 3: around these frequencies, the bending wavelengths of
several other modes also match the acoustic wavelength well, and as a result, suppressing only
one of these modes is not effective anymore.

6 CONCLUSIONS

In this paper, valuable insight into the airborne sound insulation of finite-sized rib-stiffened
plates was obtained by constructing a detailed finite element model of the structure and coupling
this to diffuse field models for the adjoining rooms within the computationally efficient hybrid
FE-SEA framework. For the specific rib-stiffened plate that was considered here, a pronounced
oscillation in the narrow-band sound transmission loss was observed over a broad frequency
range. The oscillation dips correspond to only a few natural frequencies of the plate, at which
the wavelength of the corresponding mode shape is close to the acoustic wavelength, resulting
in a semi-discrete coincidence phenomenon. This observation is important with respect to vi-
bration control because within this broad frequency range, an increase in the airborne sound
insulation can theoretically be achieved by suppressing only a few particular plate resonances.
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Abstract. Rigid unilateral contacts in multibody problems lead to non-smooth dynamics: this
requires the development of new types of time integrators that draw on the solution of a vari-
ational inequality at each time step. In most settings, this variational inequality is a comple-
mentarity problem. In the context of non-smooth multibody dynamics, projected fixed-point,
spectral and Nesterov methods have been successfully used to solve those complementarity
problems, especially for granular problems or real-time simulations [2] [3], but large scale
and ill-conditioned problems still advocate for solvers with better convergence. The promising
class of interior-point method has been applied only recently to multibody dynamics [4]. Their
implementation is more complicate, but this comes at the benefit of high precision and good
convergence, moreover they can be applied to problems with both deformable and rigid bod-
ies [5]. We present an algorithm based on a dual-primal interior point method. The solution is
advanced along the central path using the Mehotra predictor-corrector scheme, in a small num-
ber of sub steps that leverage on a parallel direct solver for computing the updates from highly
sparse saddle-point problems. Although the original method addresses unilateral constraints
only, it is possible to restate it in order to fit also equality constraints, as might happen when
introducing joints between colliding parts. The algorithm is implemented in C++ language in
our open-source simulator. Results show that the method regularly converges to small residuals
even in cases (for instance, odd mass ratios) that degraded the convergence of other methods.
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1 INTRODUCTION

Interior-Point algorithms are born to provide a solution for minimization problems, mainly
linear and quadratic, that can arise from many different scenarios. In this paper we would show
some improvements related to multibody simulations involving unilateral constraints (contacts)
without friction. In this case the solver is called to solve a Quadratic Programming problem
(QP from now on) that can be written as:

min q(x) =
1

2
xTGx + xTc (1a)

s.t. Ax ≥ b (1b)

where G ∈ Rn×n is a square, symmetric, positive definite matrix and A ∈ Rm×n is the
constraints matrix. Although we will show only the case when only inequality constraints hold,
it is possible to restate the equality constraints to fit this formulation.

As demonstrated in [1], there are some necessary and sufficient conditions for which a vector
x∗ is solution (i.e. feasible minimizer) of the QP problem. These conditions, known as Karush-
Kuhn-Tucker conditions, are here reported:

Gx− ATλ + c = 0 (2a)
Ax− vectb ≥ 0 (2b)

(Ax− b) ◦ λ = 0 (2c)
λ ≥ 0 (2d)

where the ◦ operator stands for the Hadamard (or component-wise) product. The condition 2c
can also be seen as an orthogonality condition y ⊥ λ where the operator⊥ is applied component-
wise.
Introducing slack variables in Ax−b ≥ 0 let us move the inequality constraints over a variable
(namely y).

Gx− ATλ + c = 0 (3a)
Ax− y − b = 0 (3b)

y ◦ λ = 0 (3c)
λ ≥ 0 (3d)
y ≥ 0 (3e)

If a set of variables (x,y,λ) respects the conditions of eq.2 (or, that is the same, eq.3) then x is
a minimizer for eq.1a that respects eq.1b i.e. is solution for the QP problem. This conditions in
fact are not only necessary but, if G is positive semidefinite as in this case, are also sufficient.

2 INTERIOR-POINT BASICS

Since the algorithm we are going to show is based on a path-following method we introduce
the perturbed KKT system:

F (x,y,λ;σ) =

Gx− ATλ + c

Ax− y − b

y ◦ λ− σµe


(y,λ)≥0

(4)
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where e = [1, . . . , 1] ∈ Rn and σ, the centering parameter and µ the duality measure that will
define in a moment.

It is easy to observe that the problem stated in 3 can be summarized as F (x,y,λ; 0) = 0
so we can make the easy assessment that we can operate on such multivariate function using a
Newton step (applied to a non-linear equation) in order to find the solution (x∗,y∗,λ∗) to bring
its value down to zero. This operation, also called affine scaling step, gives the foundation to
the Interior-Point algorithm.

As we will notice in section 2.1, pointing directly to the actual solution is not always the
smartest option available. In fact, although the first step could provide a big reduction of q(x),
it also brings the approximated solution very close to the boundaries of the feasible region so
that only very short steps can be taken in the following iteration. Because of this, the Newton
step is made towards a different point that lays on the central path.

2.1 Basic Newton step

2.1.1 Newton step direction

Since we want F (x,y,λ; 0) = 0 the most trivial idea is to make a fixed-point iteration like:

Fk+1 = Fk + JFk

∆x
∆y
∆λ

 = 0 ⇒ JFk

∆x
∆y
∆λ

 = −Fk (5)

where Fk = F (xk,yk,λk; 0). Expanding the Jacobian JFk
, that is valid also for the more

generic Fk = F (xk,yk,λk;σ):G 0 AT

A −I 0
0 Λ Y

∆x
∆y
∆λ

 = −

Gxk − ATλ + c
Axk − yk − b
yk ◦ λk − σµe

 (6)

since we assume that σ and µ are, in any case, constant parameters. If F were linear, the solution
of 6 would have been also the solution of the original KKT system. Unfortunately this is not
true with a QP problem, where xk+1

yk+1

λk+1

 =

xk

yk

λk

+

∆x
∆y
∆λ

 (7)

is only an approximation. Now that we have the directions of the step, the step length(s) must
be calculated too.

2.1.2 Newton step length

In order to determine the step length, we use the non-negativity constraints y ≥ 0 and λ ≥ 0
for which:

yk+1 = yk + αprim
p ∆yk ≥ 0

λk+1 = λk + αdual∆λk ≥ 0
(8)

that gives, with simple math:

αprim = min

(
1, η min

i : ∆y<0
− yi

∆yi

)
αdual = min

(
1, η min

i : ∆λ<0
− λi

∆λi

) (9)
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We notice another control parameter η. The standard version considers this value equal to 1,
but we will use also another update method that improve the robustness. The variation is trivial:
it simply takes the minimum step length between the two α parameters and adds that control
parameter η ∈ (0, 1) that approaches 1 as the iterations come closer to the solution. Also in this
case the control parameter is used to soften the constraint.

2.2 The central path

Any iterative solver creates a sequence in where each element is progressively closer to the
solution. However, the paths they follow are not unique and give different behaviours in term
of convergence speed and robustness. We will focus on the most used one, the central path, that
is characterized by softening the orthogonality condition while keeping the residuals rp and rd
equal to zero.

Moreover this path is strictly feasible so that it follows the definition of strict feasibility given
here:

F0 = {(x,y,λ) | rp = 0, rd = 0, (y,λ) > 0}
The equation of the KKT system that is not fully respected is the orthogonality constraint 3c

that becomes:
y ◦ λ = τe (10)

giving the central path definition:

C(τ) = {(x,y,λ) ∈ F0 |y ◦ λ = τe} (11)

Let imagine the Rm space in which y ◦ λ lays. The inequalities λ ≥ 0 and y ≥ 0 still hold
so we are restricting our analysis only over the non-negative orthant. The path that equation 11
draws is simply its bisector; because of this is called central. As we notice, given τ , the iteration
keeps the approximated solution as far as possible from the boundaries. However, this step is
not generally the best in terms of residual/error reduction and it will never bring the iteration to
the actual solution of the problem unless τ is zero. Actually, this is just want we want to do:
as soon as the algorithm advance, τ is progressively reduced to zero, so that the iteration points
toward the actual solution of the KKT system.

Another derived problem is how to choose τ . The concept is that it should tend to zero
as the approximated solution is closer to the actual one. Since the only part of the error that
is not reduced yet is the orthogonality condition, we could take this parameter to drive τ . An
useful criteria to understand how far the constraint hold for a given point is the complementarity
measure (that has the same meaning as the duality measure in LP). Given a set (x,y,λ) that
satisfies both λ ≥ 0 and y ≥ 0 we can compute:

µ =
yTλ

m
(12)

At the optimal solution the complementarity measure should equal to zero so it can be easily
adopted to choose τ

τ = σµ (13)

where σ is called centering parameter and it is normally chosen as:

σ =

(
µp

µc

)3

(14)

as we will describe later.
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2.3 Predictor-Corrector Scheme

As we have already defined the concept of central path in section 2.2 and the basic Newton
iteration in section 2.1 we can assemble the practical algorithm that has been implemented. A
more in-depth review of starting point strategies is showed in section 2.4.

2.3.1 Prediction

Basically the prediction phase is based on a bare Newton step on the original eq.3 in the form
previously showed in 6 without any perturbation, i.e. σ = 0. We will name the unknown vector
as [∆xp ∆yp ∆λp]

T , omitting the subscript k for the sake of clarity. The lengths of this step
are obtained from 9 with η = 0. Considering the new approximation given by eq.8, we obtain
the new value of the complementarity measure µp = yT

p λp/m. The centering parameter can
now be evaluated by mean of the equation 14, remembering that the previous value µ comes
directly from the previous iteration.

2.3.2 Correction

From the prediction step we observe that the updated value of the orthogonality condition is,
component-wise:

(yi + ∆yi)(λi + ∆λi) = yiλi + yi∆λi + λi∆yi + ∆λi∆yi

= ∆λi∆yi

(15)

instead of zero. The correction step takes into consideration this residual and aims to delete it,
putting it on the right-hand side of the KKT system that now becomes:G 0 AT

A −I 0
0 Λ Y

∆x
∆y
∆λ


c

= −

 Gx− ATλ + c
Ax− y − b

y ◦ λ + ∆yp ◦∆λp − σµe

 (16)

where y, λ and x comes from the previous iteration (so they are not the updated approximations
from the prediction step). It is also true that the entire matrix on the left is kept untouched as
well as the upper part of the right-hand side of the equation. So only the product ∆yp ◦ ∆λp

must be effectively evaluated.
As before these considerations are useful only to obtain the directions along which the step

will be made. The length is evaluated using eq.9 with η ∈ (0, 1) and taking as α = min(αprim, αdual).
We used this simple equation to give adaptivity:

η = exp(−0.1µ) + 0.9 (17)

The approximated solution is given by eq.8.
At this stage, we would like to update the upper part of the right-hand side of eq.6 — used

both for the prediction and correction step — without expensive operations. We will notice that,
calling:

rd = Gx− ATλ + c

rp = Ax− y − b
(18)

we have:
rdk+1 = (1− αdual) rdk + (αprim − αdual)G∆xk

rpk+1 = (1− αprim) rpk
(19)
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Different formulations of eq.6 and of the more general eq.16 exists. One of the most useful
is given by substituting ∆y = A∆x + rp in the last row of these systems, leading to:[

G AT

A Λ−1Y

] [
∆x
∆λ

]
c

= −
[

rd
rp + y − Λ−1(∆yp ◦∆λp − σµe)

]
(20)

This augmented system will be extensively used in our calculations.

2.4 Starting point

One drawback of IP methods is their sensitivity to starting points. In fact, depending on
where the algorithm starts, it could converge to the solution in few iterations or it could diverge
as well, depending on the initial given value. Because of this particular behaviour the choice of
a reliable starting point technique is one of the most critical. Different approaches are shown in
the next sections and have been implemented in order to test their performances (see section 4).

2.4.1 Nocedal’s starting point

In [1, §16.6] the priority is given to moving away from the boundary of the non-negative
orthant while trying to reduce primal-dual residuals and complementarity product. This is done
by a classic affine/prediction step (that will compute ∆y and ∆λ) that will drive the algorithm
towards the solution and indirectly will also take the distance from the boundaries.

x0 = [1 . . . 1]T

y0 = max(1, |y + ∆y|)
λ0 = max(1, |λ + ∆λ|)

(21)

However, also with trivial examples, this technique is not conclusive and some failures have
been experienced in our tests. Initial values of x0, y0 and λ0 cannot be chosen randomly. In
fact, changing their value of an order of magnitude could give divergence problems.

2.4.2 D’Apuzzo’s starting point

Another possibility is shown in [6]. This method is by far one of the less computational
expensive and it grants robustness in a wide range of scenarios. This technique is based on the
idea that the the neighbourhood in where the approximated solutions are kept is influenced by
the initial residuals/complementarity gap ratio. Because of this, the starting point has to show
not only small residuals and a small complementarity product, but they should be, at at the same
time, comparable. In our case the strategy leads to this conclusion:

x0 = [1 . . . 1]T

y0 = max(1, Ax− b)

λ0 = 1/y0

(22)

where the max() operator is applied component-wise.

3 MULTI-BODY FORMULATION

In this section we will introduce a multi-body formulation for the non-smooth dynamics
of a system subject to an arbitrary number of contacts between multiple parts. The notation
in section 3.1 is intentionally kept similar to the references while in section 3.2 we will adapt
symbols to the current IP notation.
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3.1 Motion equation and constraints

The non-smooth nature of mechanical systems subject to contacts stems from the fact that
contact constraints are unilateral, as the contact force cannot be negative. More in general, in
case of frictional contacts, the contact force must satisfy some set-valued law, that cannot be
translated in simple equality constraints: for instance for the Coloumb-Amontons friction, the
contact force Fc, expressed in the local contact reference must satisfy Fc ∈ Fc ⊂ R3 with Fc

being a second-order Lorentz cone.
In sake of clarity, in this work we will deal with the simpler friction-less contact case. There-

fore, the contact constraint can be expressed with the following Signorini complementarity
condition at the position level:

Fc,n ≥ 0 ⊥ Φc,n ≥ 0 (23)

In the previous constraint, Fc,n is the surface-normal component of the force, and Φc,n is the
normal displacement; the ⊥ complementarity symbol means:

a ≥ 0 ⊥ b ≥ 0 ⇔ ai ≥ 0, bi ≥ 0, aibi = 0 (24)

As we will see in the following, this introduces a major difficulty in the formulation, which
requires the solution of complementarity problems at discrete time steps, instead of solving triv-
ial linear problems as those required by classical smooth systems with bilateral constraints. In
fact, when bilateral constraints are added to a system of ordinary equations (ODE), it turns into
a Differential Algebraic Equation (DAE) problem. In our case, the addition of complementarity
constraints lead to a Differential Variational Inequality (DVI).

Assume we have multiple contacts and multiple parts. Each i − th part is a rigid body with
position {xi, ρi}, using three dimensional translation vectors xi ∈ R3 and four-dimensional unit
quaternions ρi ∈ H1 for rotation in SO(R, 3). Velocity is represented by {ẋi, ωi}, with ω ∈ R3

angular velocity in local reference of the body. Each body has a mass mi and a tensor of inertia
I ∈ R3x3.

We can arrange all the states in single vectors q = {x1,q1,x2,q2, ...,xn,qn, } and v =
{ẋ1, ω1, ẋ2, ω2, ..., ẋn, ωn, }. Using simple quaternion algebra, there is a linear map relation
between dq/dt and v as dq/dt = Γ(q,v). Similarly, all masses can be assembled in a single
matrix M , that is very sparse since it includes just m and I values along its diagonal.

Forces and torques can be applied to bodies, we collect them into a ft = fe + fg term, which
includes the fg gyroscopic term and generic external loads fe.

For each j-th contact, we have a contact distance Φj , where j ∈ GA given a set GA of active
unilateral contacts. We make the assumption that for each system state, the distance Φj can be
computed as a (smooth, differentiable) 1 function of state Φj = Φj(q, t), and we assume that
for every integration time step an algorithm can update the Gu set by adding potential contact
points that come within a distance threshold η. 2.

1This is not always the case when sharp and non-concave shapes come into contact, where some regularization
or heuristic workarounds might be needed especially interpenetrating Φj < 0, but the rest of the discussion still
holds.

2This process is handled by the collision engine, and can be very CPU-intensive when shapes are numerous
and complex. Also, defining a proper threshold η is not trivial, but it is not discussed here.
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We relate contact-orthogonal displacements to state changes via jacobians:

dΦj(q, t)/dt = [∂Φj/∂q]dq/dt (25)
= ∇qΦj

TΓ(q,v) (26)
= ∇Φj

Tv (27)

We remark that the ∇Φj
T jacobian is a single-row matrix with high sparsity: since the j-th

contact depends on two bodies only, the ∇Φj
T jacobian is a row full of zeroes, with only two

1x6 non-zero blocks.
The contact-orthogonal force Fc,j can be expressed by introducing a γ̂j scalar multiplier per

each contact, thus in absolute coordinates it holds:

Fc,j = ∇Φj γ̂j (28)

The full system that expresses the mechanical model subject to unilateral constraints is the
following DVI:

M
dv

dt
=

∑
j∈GA

∇Φj γ̂j + ft(t,q,v) (29)

Φj(q, t) ≥ 0 ⊥ γ̂j ≥ 0, j ∈ GA (30)
q̇ = Γ(q,v) (31)

The time integration of the model above can be performed using a stabilized discrete time-
stepping method, as presented in [2]. This requires the introduction of a time step h to advance
the state from q(l),v(l) to q(l+1),v(l+1). The DVI problem is discretized at the velocity-level, in
terms of measures to include impulsive effects if any, so we define γj = hγ̂j and we write the
following system where the unknowns are the changes in velocities and the contact impulses
γj:

M(v(l+1) − v(l)) =
∑
j∈GA

∇Φjγj + hft(t,q,v) (32)

1

h
Φj(q, t) +∇Φj

Tv ≥ 0 ⊥ γj ≥ 0, j ∈ GA (33)

(34)

followed by an update q(l+1) = λ(q(l),v(l+1), h).
We note that the system above can be expressed as a (mixed) Linear Complementarity Sys-

tem (M-LCP), using a compact matrix notation:[
M D
DT 0

] [
v(l+1)

γ

]
−
[
hft +Mv(l)

− 1
h
Φ(q, t)

]
=

[
0
C

]
(35)

C ≥ 0⊥γ ≥ 0 (36)

where D is a sparse matrix that contains all the jacobians ∇Φj aligned column-by-column,
as D = {∇Φ1,∇Φ2, ...,∇Φnc}. Also Φ = {Φ1,Φ2, ...,Φnc}T and γ = {γ1, γ2, ..., γnc}T .

This M-LCP is also the Karush-Kuhn-Tucker optimality condition of a quadratic program
with convex (linear, unilateral) constraints, a class of problems that have been solved success-
fully with Interior-Point algorithms.
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We note that, if the constraints were bilateral, as happens in revolute joints, mating con-
straints etc., the MLCP would turn into a simple linear problem of the type:[

M D
DT 0

] [
v(l+1)

γ

]
=

[
hft +Mv(l)

− 1
h
Φ(q, t)

]
(37)

as often met in the solution of ODEs and DAEs in smooth multibody dynamics. In such special
case, the discussed integration scheme would turn into a linearized implicit Euler integration
scheme. The difficulty, in our more general case, is the fact that the solution of a MLCP is by
far more complex than the solution of a linear system.

3.2 Fitting the MB system in Interior-Point algorithm

We would now provide another perspective from which the system 35 can be observed.
Its solution can be thought as the minimizer of the QP problem (as stated for example in 3)
considering:

x⇔ v(l+1)

c⇔ −
(
hft +Mv(l)

)
b⇔ −1

h
Φ(q, t)

y⇔ C

λ⇔ γ

G⇔M

A⇔ DT

Because of this strict similarity, the multibody problem formulated in 35 can be solved
through the IP algorithm described in the previous sections.

4 RESULTS

The algorithm presented in section 2 has been implemented in C++ language in order to be
tested in a multibody dynamic simulation software, Chrono::Engine. The hardware on which
these tests are performed consists in an Intel i7-4710HQ processor, 2x4GB DDR3-1600K RAM,
1TB 2.5” SATA-300 5400RPM. The software is compiled for x64 architecture with MSVC
compiler with full optimization. The Intel MKL Pardiso direct linear solver is used for the
solution of the linear system showed in 20. The Interior-Point algorithm exits whenever the
residual norms and the complementarity product are below a threshold that in the cases below
are set as:

‖rp‖
m

< 1× 10−8 (38a)

‖rd‖
n

< 1× 10−8 (38b)

µ < 1× 10−7 (38c)

4.1 Convergence and speed results

The first test involves unilateral contacts of spheres that drop inside a box. As we can see in
table 1 increasing the number of bodies leads to a higher number of degrees of freedom (bigger
mass/stiffness matrices) and higher number of contacts/constraints (bigger Jacobian matrices).
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However, the test demonstrate that the number of iterations needed to get the approximated
solution is almost invariant. Obviously the increased size negatively affects the time and com-
putational expense of the linear solver.

(a) Ball in the box test.
Iterations
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(b) Convergence result.

Figure 1: Balls falling in a box.

Matrix size Mean iterations
13800 18.9
4500 19.4
3200 18.6
1200 16.7

Table 1: Iterations needed at each timestep for different matrix sizes (Ball in the box example).

4.2 Warm start

In many different case-scenario it would be quite useful if the solver could take advantage
of warm start. In fact it could happen that the problem matrices are quite similar between
consecutive timesteps so it would be obvious to re-use the solution of the previous step as
starting point of the following. This choice often improves the convergence speed of many
iterative solvers and it would be desirable if also IP methods could manifest this behaviour.

In order to test if this feature is natively supported by the proposed algorithm we set up a
couple of trivial examples. The first one is a brick supported by four contact points. Although
this problem can be easily solved statically we tested it in a dynamic simulation. This means that
the collision detection algorithm will slightly change the constraint equations at each timestep
while keeping the mass matrix unchanged.
In the second case the brick is substituted with a ball so that the contacts are no more redundant
and the solution is unique.

Classic starting point algorithms usually reset the initial vectors to some default value (usu-
ally 1) that are further manipulated in order to reduce the ratio between residuals and comple-
mentarity product like in [6] or in other used to make a step away from the non-negative orthant
boundary like in [1, §16.6]. Adapting these methods to use a trivial warm start is quite straight-
forward although it cannot be considered a state-of-the-art solution. The tests performed aim
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to point out if, at least in a controlled environment, the IP algorithm could take advantage of a
solution recycle.

It has to be underlined that, in order to reuse the full solutions from previous timesteps, the
matrix must have kept the same dimension and moreover the constraint equations should not
have undergone big modifications. However, this is not always true especially when the problem
involves unilateral constraint so, in such cases, a partial warm start has been applied. In fact,
although the Jacobian matrix A has suffered not negligible changes, the mass/stiffness matrix
G is usually kept unchanged and because of this, the x vector keeps the same dimension and it
can be warm started. In this case y and λ have to be reinitialized.

Test (IP calls) None Partial WarmStart Warm Start
Balls in Box (50) 935 927 747

Single Brick (100) 499 370 81
Single Ball (100) 720 515 90

Table 2: IP iterations for solving unilateral contact problems.

4.3 Redundant constraints and softened contacts

Formally the IP method needs a full-rank constraint matrixA i.e. the Jacobian. Unfortunately
it is a common situation to have redundant constrained bodies for which the Jacobian is rank-
deficient and no unique solution exists. Under those circumstances the matrix that is composed
to make a Newton step is more prone to become singular as soon as the components of y/λ
tend to zero. We investigated this case and we present here some interesting results.

Before trying classical workarounds let us consider how the IP is approaching the contact
problem. As we can see in 20 the y/λ vector occupies the diagonal of the south-east corner of
the augmented matrix, so that the Lagrangian multipliers i.e. the forces that acts on the bodies
will affect the constraints equations. Trying to give a physical meaning to this phenomena we
can easily come to the conclusion that these elements acts as contact springs i.e. they give a
reaction that tends to push away the bodies that are going to collide. In some way we can say
that the hard constraints that were permitted by the DVI approach are now softened, introducing
a spring behaviour to the contacts. However, this is also an interesting feature considering the
numerical issue given by redundant constraints: the non-zero, although small, elements that are
inserted yield to a better conditioned matrix, adding the required linear independence to the
possibly rank-deficient A. This approach permitted to get a reliable solution also in such cases
where the Jacobian matrix was highy compromised. Equipping the IP algorithm with a direct
solver is, in such cases, the best choice since they are less affected by the ill-conditioning of the
matrix.

Moreover, it has been tested another useful feature in which a compliance matrix is added
in place of the diagonal Λ−1Y so that, when the algorithm converges, the matrix still has a
non-zero diagonal matrix in its south-east corner:[

G AT

A Λ−1Y + E

] [
∆x
∆λ

]
c

= −
[

rd
rp + y −Λ−1(∆yp ◦∆λp − σµe)

]
(39)

where E is a diagonal matrix with elements 1/k with k stiffness of the contact spring.
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The more robust workaround of removing redundant lines with SVD or QR revealing meth-
ods is, in our tests, not needed since the IP methods always converged with the required accuracy
to the solution.
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Abstract. Functionally graded piezoelectric plates (FGPPs) considered in the current study 

have been received much attention in recent years due to their various applications including 

sensors and actuators, aerospace, nuclear energy, chemical plant, electronics, biomaterials, 

piezoelectric motors, reduction of vibrations and noise, infertility treatment, ultrasonic 

micromotors, micropumps and microvalves, photovoltaics. 

The time-stepping dual reciprocity boundary element method modeling was proposed to study 

the 3D dynamic response of an anisotropic rotating initially stressed functionally graded pie-

zoelectric plate (FGPP). The FGPP is assumed to be graded through the thickness. The main 

aim of this paper is to evaluate the effects of initial stress and rotation on the displacement 

components in an anisotropic FGPP. Then we studied the effect of inhomogeneity on the dis-

placement components in presence of initial stress and rotation. In the end, the accuracy of the 

proposed method was examined and confirmed by comparing the obtained results with those 

known previously. 

7640

mailto:Mohamed_fahmy@ci.suez.edu.eg
http://mohamed_fahmy_ci.staff.scuegypt.edu.eg/


1. Introduction

     Functionally graded piezoelectric plates (FGPPs) considered in the current study have 

been received much attention in recent years due to their various applications including sen-

sors and actuators, aerospace, nuclear energy, chemical plant, electronics, biomaterials, piezo-

electric motors, reduction of vibrations and noise, infertility treatment, ultrasonic micromotors, 

micropumps and microvalves, photovoltaics. Since it is very difficult to find the analytical 

solution to the considered problem, therefore, an important number of engineering and math-

ematical papers devoted to the numerical solution have been studied to describe the global 

behavior of such problems. 

     Piezoelectric ceramics are being widely used in electromechanical devices such as sen-

sors, filters, ultrasonic generators and actuators because they offer excellent coupling proper-

ties between the mechanical and electrical fields of these devices, and the fracture of these 

piezoelectric materials has therefore been receiving a great deal of attention (Suo et al.  [1], 

Pan [2], Jin and Zhong, [3], Zhang et al. [4], Lin et al. [5], Fang et al. [6], Abd-Alla and Al-

Sheikh [7, 8], Kuna [9], Zaman et al. [10], Zhong et al. [11], Akbarzadeh et al. [12], Davì and 

Milazzo [13], Abd-Alla et al. [14], Abd-Alla and Askar [15], Alibeigloo and Liew [16] and 

Rafiee et al. [17]). It is well known that extension of the current fundamental fracture con-

cepts and criteria from pure elasticity to piezoelectricity is not straightforward because of the 

coupling between the mechanical and electric fields. 

     The advantages in the boundary element method (BEM) arises from the fact that the 

BEM can be regarded as boundary–based method that uses the boundary integral equation 

formulations where only the boundary of the domain of the partial differential equation (PDE) 

is required to be meshed. But in the domain-based methods such the finite element method 

(FEM), finite difference method (FDM) and element free method (EFM) that use ordinary 

differential equation (ODE) or PDE formulations, where the whole domain of the PDE re-

quires discretisation. Thus the dimension of the problem is effectively reduced by one, that is, 

surfaces for three–dimensional (3D) problems or curves for two-dimensional (2D) problems. 

And the equation governing the infinite domain is reduced to an equation over the finite 

boundary. Also, the BEM can be applied along with the other domain-based methods to verify 

the solutions to the problems that do not have available analytical solutions. Presence of do-

main integrals in the formulation of the BEM dramatically decreases the efficiency of this 
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technique. One of the most frequently used techniques for converting the domain integral into 

a boundary one is the so-called dual reciprocity boundary element method (DRBEM). This 

method was initially developed by Nardini and Brebbia [18] in the context of two-

dimensional (2D) elastodynamics and has been extended to deal with a variety of problems 

wherein the domain integral may account for linear-nonlinear static-dynamic effects. A more 

extensive historical review and applications of dual reciprocity boundary element method may 

be found in Brebbia et al. [19], Wrobel and Brebbia [20], Partridge and Brebbia, [21], Par-

tridge and Wrobel [22], Frijns et al. [23], Gaul [24] and Fahmy [25-34]. 

     In this paper the governing equations of an anisotropic FGPP under the influence of grav-

ity are solved by means of a time-stepping dual reciprocity boundary element method 

(DRBEM) to describe the displacement behavior of the homogeneous and functionally graded 

plates in an anisotropic FGPP under the influence of gravity. The accuracy of the proposed 

method was examined and confirmed by comparing the obtained results with those known 

previously.  

2  FORMULATION OF THE PROBLEM 

The governing equations for the stress wave propagation in anisotropic functionally graded 

piezoelectric plate may be written in the following form 

                                    

           

In which 

                                

                             

                            

where 

    
 

 
                         

Substituting (3)-(5) into (1) and (2) leads to 
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Where    is the electric field vector,   is the electric potential,   is the electric displacement, 

      is the elasticity tensor                    ,      is the piezoelectric tensor 

           ,     is the permittivity tensor          ,   is the density and  ℵ  
 

   

A superposed dot denotes differentiation with respect to the time and a comma followed by a 

subscript denotes partial differentiation with respect to the corresponding coordinates. 

The governing equations (7) and (8) can be written in the following form 

                                         ℵ                ℵ         

                      ℵ               ℵ         

3  NUMERICAL IMPLEMENTATION 

The governing equations (9) and (10) can now be written in operator form as follows 

             

            

Where 

         
 

  

 

  
    

                                  ℵ               ℵ         

        
 

  

 

  
    

                ℵ                ℵ         

It is convenient to use the contracted notation to introduce generalized piezoelectric vectors 

and tensors, which contain corresponding elastic and electric variables as follows: 

    
           
      

     

    
           

      
     

      

 
 
 

 
                           

                    

                    

               

     

Using the following Kronecker delta representation 
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The governing equations can be combined as follows: 

                    

where 

         
 

  

 

  

    
                                                  

                           
 

   ℵ       ,            ℵ    

Now, we choose the fundamental solution    
  as weighting function as follows 

      
                      

The weighted residual formula is integrated by parts twice to obtain the following piezoelec-

tric reciprocity relation 

          
        

    

 

        
       

    

 

       

where 

   
            

   

Making use of the sifting property, we obtain from equation (23) the piezoelectric representa-

tion formula 

           
       

    

 

       
               

 

     

The DRBEM is employed in equation (24) to transform the domain integrals into boundary 

integrals, hence we may deduce the following piezoelectric dual reciprocity representation 

formula 

           
       

    

 

   

      
          

    
 
    

    
  

 

   

 

   

  
 

    

Now the source term in equation (24) is approximated by a series of tensor functions    
 

 and 

unknown coefficients   
 

 as follows 
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Using the thin plate splines (TPS) as in Fahmy [27], we can write the particular solution 

of the displacement as follows 

                            
 

 

 
 
 

 
  

 

  
               

      

  
 
 

  
     

 

  
       

 

 
   

 

  
      

                                

where    is the Bessel function of the third kind of order zero and 

                    , which is known as Euler's constant,         is the Eu-

clidean distance between the field point   and the load point  . 

Hence, the traction particular solution    
 

 and the source function     
 

 can be obtained 

by evaluating 

                                                 
 
           

 
             

 
    

 
                                                    

According to Fahmy [35-38] and Fahmy et al. [39-42], the dual reciprocity boundary integral 

equation (25) can be written in the following system of equations  

                                             ζ              ζ                                                                   

where  ζ,   are BEM system matrices,   ,     contain the nodal values of the generalized dis-

placements and fluxes, and   ,    contain the particular solutions 

 

                                                          
     

 
   

      
      

  
  
  
                                                           

Now, the piezoelectric dual reciprocity representation formula can be written as  

 

                                                      
   

 

       
   

 

                                           

Where     means the Cauchy Principal Value.  

The coefficient vector       can be calculated by setting up a system of N equations from (26) 

using the point collocation procedure, which yield 

                                                                                                                                                  

where 
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Substitution of (34) into (29) yields the system  

                                                           ζ                                                                          

where the volume matrix   , piezoelectric mass matrix   and source vector       are as fol-

lows: 

                                      ζ         ,          ,                                                    

In order to solve system (36), the nodal vectors are subdivided into known and unknown parts 

denoted by the superscripts k and u. 

                                                                            
                                                             

The following matrix equation is obtained from Eq. (36). 

              
     

      
   

  

   
    

     

      
  
     

     
   

      

      
  
     
     

   
     

     
                  

The unknown fluxes       are obtained from the first row of matrix equation (24) and are ex-

pressed as follows. 

                                            

                                                                                                                     

Making use of Eq. (40), we can write the second row of matrix equation (39) as follows 

                                                                                                                                       

where 

                                      

                     

                     

                     

                     

                     

                             

We now split the system (41) into elastic and electric parts as follows: 
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The unknown electric potential    can be obtained from the second row of Eq. (42) as fol-

lows 

                                            
  

  
   

        
           

                                             

With the use of Eq. (43) into the first row of Eq. (42) we obtain 

                                                                                                                                        

where 

         
        

     
  

  
  
     

       
     

     
  

  
   

  

       
     

     
  

  
   
  

Now, writing equation (44) for the n+1th time step 

                                                                
         

       
                                                              

where 

                                            
       

        
         

        
                                             

The Newmark time integration algorithm was used to reduce the system of ordinary differen-

tial equations (45) to an algebraic system. The displacements      and velocities       used in 

this algorithm are approximated at time step n+1 as follows:  

                                                                                                                                

                                                      
 

 
                

                                          

The acceleration at time step n+1 may be expressed from Equation (48) as:    

                                          
 

    
          

 

   
     

 

  
                                           

Upon substitution of (49) into (45) we obtain the following algebraic system 

                                                                 ℝ    
  ℳ

   
                                                                         

where the stiffness matrix ℝ and effective load vector ℳ
   

 are given by 

                                                                 ℝ  
 

    
                                                                         

                                 ℳ
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Once we have solved (50) for the unknown displacements at time step n+1, we can compute 

the accelerations and velocities from equations (49) and (47) respectively. Finally, the electric 

potential       can be obtained from (43)  and the unknown generalized tractions       can 

be determined using equation (40).  

 

4. Numerical results and discussion 

With the view of illustrating the numerical results calculated by method presented in this pa-

per, the material chosen for the plate is the piezoelectric ceramic Lead Zirconate Titanate 

(PZT), and the physical data for which is given as follows: 

The elasticity tensor   , piezoelectric tensor    and relative permittivity ϵ
   

 

                               

 

  
 

          
          

          
          

          
          

          
          

          
          

          
          

          
          

          
          

          
           

  
 
                              

                                       
                        
                        
                        

                                          

                                                     ϵ
   

  
            
            
            

                                                          

The present work should be applicable to any anisotropic FGPP deformation problem. The 

application is for purpose of illustration; we do not intend to validate the results in a quantita-

tive way because we have no experimental data at hand; this may be justified because our ob-

jective is to introduce a viable numerical technique for studying a model rather than to study 

any physical behaviors of it. Such a technique was discussed in Fahmy [43] who solved the 

special case from this study in 2D in the absence of rotation and initial stress. To achieve bet-

ter efficiency than the technique described in Fahmy [43], we use thin plate splines into a 

code, which is proposed in the current study. We extend the study of Fahmy [43], to solve 3D 

in the presence of rotation and initial stress. Thus, it is perhaps not surprising that the numeri-

cal values obtained here are in excellent agreement with those obtained by Fahmy [43].  

The results of calculations are presented in Figs. 2–4. Comparison of the results is presented 

graphically for the following different cases: the solid line represents the solution in absence 

of initial stress       and rotation      , the dashed line represents the solution in the 
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presence of initial stress         and in the absence of rotation      , the dotted line rep-

resents the solution in the absence of initial s tress       and in the presence of rotation 

        and the dashed-dotted line represents the solution in presence of initial stress 

        and rotation        . It can be seen from these figures that the effect of initial 

stress and rotation is very pronounced. 

To evaluate the influence of the inhomogeneity on the displacements in an anisotropic FGPP, 

the inhomogeneity parameter is taken to be     for the homogeneous plate, we assume that 

    for functionally graded plate. The computed results are presented graphically in Figs. 

5-7, the figures show the difference between homogeneous and functionally graded plates. 

In the special case under consideration, the results are plotted in Figs. 8–10 to show the validi-

ty of the DRBEM. These results obtained with the DRBEM have been compared graphically 

with those obtained using the Meshless Local Petrov–Galerkin (MLPG) method of Stanak et 

al. [45] and also the results obtained using the Peano-Baker Series (PBS) method of Liu et al. 

[46] are shown graphically in the same figures to confirm the validity of the proposed method. 

It can be seen from these figures that the DRBEM results are in excellent agreement with the 

results obtained by MLPG and PBS methods, thus confirming the accuracy of the DRBEM. 
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Abstract. A quasi-analytical method for the solution of direct eddy current testing problems
for the case of cylindrical volumetric flaws is presented in the paper. The method is based on
a simple physical assumption that the electromagnetic field induced by a coil carrying alter-
nating current is exactly equal to zero at a sufficiently large radial distance from the coil. The
axis of the coil concides with the axis of a cylindrical flaw. The method of truncated eigenfunc-
tion expansions is used to compute the change in impedance of the coil. Complex eigenvalues
are computed numerically using the method which does not require initial approximation for
the eigenvalue. Computations are presented for different values of the parameters of the prob-
lem. Calculated change in impedance is compared with numerical results obtained by means of
Comsol Multiphysics software. Good agreement between quasi-analytical method and numeri-
cal solution is found.

1

7659



Valentina Koliskina, Andrei Kolyshkin, Rauno Gordon and Olev Märtens

1 INTRODUCTION

Eddy currents are widely used in nondestrutive testing of electrically conducting materials.
Identification of flaws in conducting media is one of the goals of nondestructive testing. This is
a complicated inverse problem which can be solved if a solution of a direct problem is available.
In cases where a conducting medium is unbounded in one or two spatial dimensions solutions
of a direct problem can be found by the method of integral transforms [1], [2]. In practice,
however, finite size of a conducting medium has to be taken into account especially in cases
where the size of an excitation coil is comparable to the size of the medium. Method of truncated
eigenfunction expansions (known as the TREE method in the literature) is suggested in [3],
[4] in order to construct solutions of direct problems for media of finite size. The method is
based on a simple physical assumption that the electromagnetic field induced by a coil carrying
alternating current is exactly equal to zero at a sufficiently large radial distance from the coil.
This assumption allows one to extend the class of problems which can be solved by a quasi-
analytical method i.e., by the method of truncated eigenfunction expansions. Examples of the
application of the TREE method to the solution of direct eddy current testing problems with
cylindrical symmetry can be found in [3], [5], [6], [7]. The case of an asymmetric infinite
cylindrical flaw is considered in [8]. In the present paper we present the solution of eddy current
testing problem for the case of a cylindrical flaw in a two-layer plate. Such a model can be used
to assess the effect of corrosion in metal coatings.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

Consider an air core coil located above an electrically conducting nonmagnetic two-layer
plate of finite size. A flaw in the form of a circular cylinder is located in the medium. It is
assumed that the axis of the flaw coincides with the axis of the coil. An example of the flaw at
the surface of a two-layer plate is shown in Fig. 1.

 

0R

1R

2R 

3R

4R

1d

2d
 

4d

2r

1r

1z

b  

2z
c  

Figure 1: A coil carrying alternating current above a conducting two-layer plate with a flaw.

It is assumed that the electromagnetic field is equal to zero at a sufficiently large distance b
from the axis of the coil. Using the cylindrical symmetry of the problem we assume that the
vector potential has only one non-zero component in the azimuthal direction. As usual in such
type of problems, we consider a single-turn coil of radius r0 located at the distance h above the
top surface of the plate. The solution for the case of a coil with finite dimensions can be found
by the superposition principle. The system of the Maxwell’s equations in each of the regions
R0–R4 shown in Fig. 1 has the form:

∂2A0

∂r2
+

1

r

∂A0

∂r
− A0

r2
+
∂2A0

∂z2
= −µ0Iδ(r − r0)δ(z − h), (1)

2
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∂2A1

∂r2
+

1

r

∂A1

∂r
− A1

r2
+
∂2A1

∂z2
− jωσµ0A1 = 0, (2)

∂2A2

∂r2
+

1

r

∂A2

∂r
− A2

r2
+
∂2A2

∂z2
− jωσ1µ0A2 = 0, (3)

∂2A3

∂r2
+

1

r

∂A3

∂r
− A3

r2
+
∂2A3

∂z2
− jωσ2µ0A3 = 0, (4)

∂2A4

∂r2
+

1

r

∂A4

∂r
− A4

r2
+
∂2A4

∂z2
= 0, (5)

where σ1 and σ2 are the electrical conductivities of regions R2 and R3, respectively, σ = σ1 if
c < r < b and σ = 0 if 0 ≤ r < c.

The boundary conditions at r = b are

Ai|r=b = 0, i = 0, 1, ..., 4. (6)

The boundary conditions at r = c have the form

Aair1 |r=c = Acon1 |r=c,
∂Aair1

∂r
|r=c =

∂Acon1

∂r
|r=c, (7)

where we use the notations Aair1 and Acon1 in regions 0 ≤ r < c and c < r < b, respectively.
The conditions at the surfaces z = 0, z = −d1, z = −d3 and z = −d5, where d3 = d1 + d2,

d5 = d3 + d4 are

A0|z=0 = Aair1 |z=0,
∂A0

∂z
|z=0 =

∂Aair1

∂z
|z=0 0 ≤ r < c, (8)

A0|z=0 = Acon1 |z=0,
∂A0

∂z
|z=0 =

∂Acon1

∂z
|z=0 c < r < b. (9)

Aair1 |z=−d1 = A2|z=−d1 ,
∂Aair1

∂z
|z=−d1 =

∂A2

∂z
|z=−d1 0 ≤ r < c. (10)

Acon1 |z=−d1 = A2|z=−d1 ,
∂Acon1

∂z
|z=−d1 =

∂A2

∂z
|z=−d1 c < r < b. (11)

A2|z=−d3 = A3|z=−d3 ,
∂A2

∂z
|z=−d3 =

∂A3

∂z
|z=−d3 , (12)

A3|z=−d5 = A4|z=−d5 ,
∂A3

∂z
|z=−d5 =

∂A4

∂z
|z=−d5 . (13)

In addition, the solution is bounded as z → ±∞:

A0|z→+∞ = 0, A4|z→−∞ = 0. (14)

3 PROBLEM SOLUTION

Problem (1)-(14) is solved by the method of separation of variables. It is convenient to
represent the solution in region R0 in the form

A00(r, z) =
∞∑
i=1

(D1i e
−λizJ1(λir), (15)

A01(r, z) =
∞∑
i=1

(D2i e
−λiz +D3i e

λiz)J1(λir), (16)

3
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where λi = αi/b and αi are the roots of the equation

J1(αi) = 0. (17)

HereA00 andA01 represent the solutions in subregionsR00 = {0 < z < h} andR01 = {z > h},
respectively. The vector potential is continuous at z = h:

A00|z=h = A01|z=h. (18)

Another condition at z = h can be obtained from equation (1). Integrating (1) with respect to z
from h− ε to h+ ε and considering the limit as ε→ +0 we obtain

∂A01

∂z
|z=h −

∂A00

∂z
|z=h = −µ0Iδ(r − r0). (19)

Using (15), (16), (18) and (19) we obtain

A00(r, z) =
∞∑
i=1

(D2i e
−λizJ1(λir) +

µ0Ir0
b2

∞∑
i=1

J1(λir0)J1(λir) e
λi(h−z)

λiJ2
0 (λib)

, (20)

A01(r, z) =
∞∑
i=1

(D2i e
−λizJ1(λir) +

µ0Ir0
b2

∞∑
i=1

J1(λir0)J1(λir) e
λi(z−h)

λiJ2
0 (λib)

. (21)

The solution in region R1 can be written in the form

Aair1 (r, z) =
∞∑
i=1

(D4iJ1(pir) e
piz +D5iJ1(pir) e

−piz, (22)

Acon1 (r, z) =
∞∑
i=1

[(D6iJ1(qir) +D7iY1(qir)) e
piz

+(D8iJ1(qir) +D9iY1(qir)) e
−piz], (23)

where pi =
√
q2i + jωσ1µ0. Using (22), (23) and the first condition in (7) we obtain

Aair1 (r, z) =
∞∑
i=1

J1(pir)T1(qic)[D̂6i e
piz + D̂8i e

−piz], (24)

Acon1 (r, z) =
∞∑
i=1

J1(pic)T1(qir)[D̂6i e
piz + D̂8i e

−piz], (25)

where
T1(qir) = J1(qir)Y1(qib)− J1(qib)Y1(qir)

and D̂6i, D̂8i are arbitrary constants. Using the second condition in (7) the following equation
is obtained

qiT
′
1(qir)J1(pic) = piJ

′
1(pic)T1(qic). (26)

Equation (26) is used to calculate complex eigenvalues pi and the corresponding values qi.
The solution in region R2 is

A2(r, z) =
∞∑
i=1

(D10i e
p1iz +D11i e

−p1iz)J1(λir), (27)

4
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where p1i =
√
λ2i + jωσ1µ0.

Similarly, the solution in region R3 can be written in the form

A3(r, z) =
∞∑
i=1

(D12i e
p2iz +D13i e

−p2iz)J1(λir), (28)

where p2i =
√
λ2i + jωσ2µ0.

Finally, the bounded solution in region R4 is

A4(r, z) =
∞∑
i=1

D14i e
λizJ1(λir). (29)

Unknown constants in (20)–(25), (27)–(29) can be found from the boundary conditions (8)–
(13). It can be shown that the corresponding system of equations can be reduced to system of
two linear algebraic equations with respect to the unknowns D̂6i and D̂8i. It is neccesary to
truncate the infinite series to a finite number of terms, m. Computational details for the solution
of similar problems can be found elsewhere (see, for example, [3] and [5]).

Assuming that the coefficients D̂6i and D̂8i are calculated (this can be done using any linear
solver) we obtain the induced vector potential of the single-turn coil in the form

Aind0 (r, z, r0, h) =
m∑
k=1

D2k e
−λkzJ1(λkr). (30)

Induced vector potential for the coil of finite dimensions can be computed as follows

Aindcoil(r, z) =
∫ r2

r1

∫ z2

z1
Aind0 (r, z, r0, h)drodh. (31)

The induced change in impedance of the coil is given by the formula (see [3]):

Zind =
2πjωN

I(r2 − r1)(z2 − z1)

∫ r2

r1

∫ z2

z1
rAindcoil(r, z)drdz, (32)

where N is the number of turns in the coil.
Using (30)–(32) we obtain

Zind =
2πjωN2µ0

(r2 − r1)2(z2 − z1)2)

n∑
i=1

e−λiz1 − e−λiz2
λ3i

∫ λir2

λir1
yJ1(y) dy

×
n∑
k=1

Yik
e−λkz1 − e−λkz2

λ3k

∫ λkr2

λkr1
ξJ1(ξ) dξ. (33)

The coefficients Yik in (33) are bulky and are not shown here for brevity.

4 NUMERICAL RESULTS

Calculations of the change in impedance of the coil are performed with Mathematica. Inte-
grals in (33) are evalauted in closed form using Bessel and Struve functions (see [9]). Complex
eigenvlaues (the roots of equation (26)) are computed using the method described in [10] and
[11]. Numerical results are presented for the following values of the parameters of the problem:
z1 = 0.3 mm, z2 = 2.6 mm, σ1 = 3 Ms/m, σ2 = 7 Ms/m, d1 = 0.4 mm, d2 = 0.5 mm,

5
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d3 = 0.8 mm, c = 2.2 mm. The real amd imaginary parts of the change in impedance for the
seven frequencies of the excitation current (from 1 kHz to 7 kHz with a step size of 1 kHz) are
shown in Figs. 2 and 3. The inner and outer radii of the coil in Fig. 2 are r1 = 1.5 mm and
r2 = 2.5 mm, respectively. The same problem is also solved numerically using Comsol Multi-
physics software. The details of the finite element modeling of similar problems with Comsol
Multiphysics can be found in [12].

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−0.025

−0.02

−0.015

−0.01

−0.005

0

Re Zind

Im
 Z

in
d

 

 
TREE method
Comsol Multiphysics

Figure 2: The change in impedance of the coil with r1 = 1.5 mm, r2 = 2.5 mm.

The change in impedance of the coil is also shown in Fig. 3 for the case r1 = 2.5 mm,
r2 = 4.5 mm (the other parameters are the same as in Fig. 2).
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−0.04
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0
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d
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Figure 3: The change in impedance of the coil with r1 = 2.5 mm, r2 = 4.5 mm.

As can be seen from the graphs good agreement is found between the results obtained by the
TREE method and finite element modeling with Comsol Multiphysics.

6
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5 CONCLUSION

The model described in the paper represents the continuation of the authors’ work related
to the solution of direct eddy current testing problems for the case of cylindrical flaws. Good
agreement is found between quasi-analytical solution and finite element modeling for all cases
considered. The results obtained in the paper can be generalized for the case of magnetic mate-
rials (assuming that the magnetic permeability of a medium is constant).
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Abstract. A numerical simulation of unsteady plumes for driven thermal high convection dom-
inated flows is presented in this work. The problem is of practical interest for example in the
cooling of electronic devices and heat transfer from pipes in heat exchange systems. This kind
of thermal flows may be modeled using the unsteady Boussinesq approximation in the Stream
function-vorticity formulation.
Results are obtained with a simple numerical method previously reported for isothermal/natural
and mixed convection flows. The numerical method is based on a fixed point iterative process
to solve the non-linear elliptic system that results after an appropriate discretization in time.
The iterative process leads us to the solution of uncoupled, well-conditioned and symmetric lin-
ear elliptic problems for which very efficient solvers are known to exist regardless of the space
discretization.
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1 INTRODUCTION

We present a numerical simulation of unsteady plumes for driven thermal high convection
dominated flows. The iterative process used in this work, leads us to the solution of uncoupled,
well-conditioned and symmetric linear elliptic problems.

The numerical method has been previously reported in [1] for mixed convection and in [2]
for natural convection in tilted cavities. This scheme has shown to be robust enough to handle
high Rayleigh numbers and different aspect ratios (ratio of the height to the width) of the cavity.

The evolution of the flows we are dealing with in this paper depends mainly on the variation
of the parameters. The buoyancy forcing of the flow can be characterized by the Rayleigh num-
berRa, which in the case of this work, is taken in the range106 ≤ Ra ≤ 2 ∗ 108. For this range
of the Rayleigh number, numerical results are not easy to obtain, since in this case we have a
highly convection-dominated thermally-driven problem as can be seen in [3] and [4].

Numerical simulation has been applied to this kind of flows and results with a 2D Direct
Numerical Simulation (DNS) have been reported in [5] and [6]. For the validation of our results
we are comparing them with those reported in the cited bibliography.

2 MATHEMATICAL MODEL

Let Ω ⊂ RN (N = 2, 3) be the region of a non-steady, viscous, incompressible flow, andΓ
its boundary. Under the hypothesis of the Boussinesq approximation, this kind of fluids may be
modeled by the following adimensional system:

ut −∇2
u + ∇p+ (u · ∇)u =

Ra

Pr
θe (a) (1)

∇ · u = 0 (b)

θt −
1

Pr
∇2θ + u · ∇θ = 0 (c)

in Ω, t > 0; whereu, p andθ are the velocity, pressure and temperature of the fluid, respectively,
e is the unitary vector in the gravitational direction. The parametersRa y Pr are the Rayleigh
and the Prandtl number respectively, which are given by:Ra =

βl3κgρ2

0

µ3cp

(Tl − T0), Pr = κ/µcp,
whereT0 andT1 are reference temperatures,T0 < T1, which may be the temperatures of the
side walls when the region is a rectangular cavity. The adimensional temperatureθ is given by
θ = T−T0

T1−T0

.

This system must be provided with appropiate initial and boundary conditions:u(x, 0) =
u0(x) andθ(x, 0) = θ0(x) in Ω; u = f andBθ = 0 in Γ, t ≥ 0, whereB is a boundary op-
erator for the temperature and may involve Dirichlet, Neumann and mixed boundary conditions.

Restricting ourselves to a bidimensional regionΩ, taking the curl in both sides of equation
(1a) and taking into account that:

u1 =
∂ψ

∂y
, u2 = −

∂ψ

∂x
, (2)

7667
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which follows from(1b), with ψ the stream function and(u1, u2) = u; the component in the
k = (0, 0, 1) direction, we get the following scalar system:

∇2ψ = −ω (a) (3)

ωt −∇2ω + u · ∇ω =
Ra

Pr

∂θ

∂x
(b)

θt − γ∇2θ + u · ∇θ = 0; , (c)

whereγ = 1/Pr andω is the vorticity, which, fromωk = ∇× u = −∇2ψk, gives(3a) and
ω = ∂u2

∂x
− ∂u1

∂y
also.

Then, system (3) becomes the Boussinesq approximation in stream function-vorticity vari-
ables. The incompressibility condition(1b), by (2), is automatically satisfied and the pressurep
has been eliminated.

A translation of the boundary conditions in terms of the velocity primitive variableu to the
ψ − ω variables has to be performed. Following [7],ψ is a constant function on solid and fixed
walls; at the moving wally = b, a constant function forψ is also obtained, thenψ = 0 is chosen
in Γ. By Taylor expansion of(3a) on the boundary, withhx andhy the space steps, one obtains

ω(0, y, t) = −
1

2h2
x

[8ψ(hx, y, t) − ψ(2hx, y, t)] +O(h2
x) (4)

ω(a, y, t) = −
1

2h2
x

[8ψ(a− hx, y, t) − ψ(a− 2hx, y, t)] +O(h2
x)

ω(x, 0, t) = −
1

2h2
y

[8ψ(x, hy, t) − ψ(x, 2hy, t)] +O(h2
y)

ω(x, b, t) = −
1

2h2
y

[8ψ(x, b− hy, t) − ψ(x, b− 2hy, t)] −
3

hy

+O(h2
y).

.

wherehx andhy denote the size of the spatial discretization in thex andy directions. It should
be observed that the boundary values forω are given by values inΩ andt > 0, still unknown,
of the stream functionψ. This problem will be solved using a fixed point iterative process.

3 NUMERICAL METHOD

The time derivatives with respect toω andθ in (3) are approximated using the following
second order approximation:

ft(x, (n+ 1)∆t) ≈
3fn+1 − 4fn + fn−1

2∆t
, (5)
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wheren ≥ 1, x ǫ Ω, ∆t > 0 is the time step, andf r ≈ f(x, r∆t); at each time level
t = (n + 1)∆t the following semidiscrete system inΩ is obtained , with the corresponding
boundary conditions onΓ:

∇2ψn+1 = −ωn+1, ψn+1|Γ = 0, (6)

αωn+1 −∇2ωn+1 + u
n+1 · ∇ωn+1 =

Ra

Pr

∂θn+1

∂x
+ fω, ωn+1|Γ = ωn+1

bc ,

αθn+1 − γ∇2θn+1 + u
n+1 · ∇θn+1 = fθ, Bθn+1|Γ = 0.

whereα = 3
2∆t

, fω = 4ωn
−ωn−1

2∆t
, and fθ = 4θn

−θn−1

2∆t
; ωbc denotes the boundary condition ofω ,

B denotes the boundary operator forθ mentioned above, andu1 andu2 the components ofu in
terms ofψ are given by (2).

Denoting (ψn+1, ωn+1, θn+1) by (ψ, ω, θ) the following non-linear elliptic system is ob-
tained:

∇2ψ = −ω, ψ|Γ = 0 (a), (7)

αω −∇2ω + u · ∇ω =
Ra

Pr

∂θ

∂x
+ fω, ω|Γ = ωbc (b),

αθ − γ∇2θ + u · ∇θ = fθ, Bθ|Γ = 0 (c).

To obtain(ω1, θ1, ψ1) in (6), a first order approximation for the time derivatives may be ap-
plied through a subsequence with asmaller time step; a stationary system is then also obtained.

Denoting by

Rω(ω, ψ) ≡ αω −∇2ω + u · ∇ω −
Ra

Pr

∂θ

∂x
− fω, (8)

Rθ(θ, ψ) ≡ αθ − γ∇2θ + u · ∇θ − fθ.

Then, system (7) is equivalent, inΩ, to:

∇2ψ = −ω, ψ|Γ = 0, (9)

Rω(θ, ψ) = 0, ω|Γ = ωbc

Rθ(ω, ψ) = 0, Bθ|Γ = 0
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To solve this system at each time level(n+ 1)∆t, the following fixed point iterative process
is applied inΩ:[8]

With {θ0, ω0} = {θn, ωn} given, solve ”until convergence” onθ andω

∇2ψm+1 = −ωm, ψm+1 = 0 on Γ,

θm+1 = θm − ρθ(αI − γ∇2)−1Rθ(θ
m, ψm+1),

Bθm+1 = 0 on Γ, ρθ > 0, (10)

ωm+1 = ωm − ρω(αI −∇2)−1Rω(ωm, ψm+1),

ωm+1 = ωm+1
bc on Γ, ρω > 0,

and then take(ωn+1, ψn+1, θn+1) = (ωm+1, ψm+1, θm+1).

With ”until convergence” we mean until two consecutive values ofθ andω, that is,θm+1 and
θm, andωm+1 andωm, differ by less than a certain tolerance, tol, given.

Then, at each iteration,three linear elliptic problems associated with the operators:∇2,
αI − γ∇2, andαI −∇2 have to be solved inΩ. For the discretization of such problems, either
finite elements or finite differences may be used, as long as rectangular domains, as in the case
of this work, are considered.

4 NUMERICAL RESULTS

Our numerical experiments take place in a rectangular cavityΩ = [0, 1] × [0, 1]. The walls
of the cavity are solid and fixed. For the temperature, the source in the bottom is taken as a
smooth Gaussian hill:∂T

∂n
= e−F (x−x0)2 , with x0 the center. The side walls are adiabatic, and on

the top wall, zero temperature is prescribed. No-slip boundary conditions for the velocity are
imposed on all the walls of the cavity. A translation of the boundary condition in terms of the
velocity primitive variableu to theψ− ω variables has been performed using (4). The cavity is
supposed to be filled with air.

In the following Figures we show the Stream Function (left) and the isotherms (right) for
different values of the Rayleigh number.

In Figure 1 we show results forRa = 106, at t = .05 with hx = hy = 1/256 and
∆t = .00001. In the graph of the streamline function two vortices in counter flow, but of
the same intensity, can be observed. The isotherms, in this case, are symmetric with respect to
the source of heat, occupying only part of the cavity.

Increasing the Rayleigh number to107, in Figure 2, we show results att = .05 with
hx = hy = 1/256 and ∆t = .00001. In this case, we can observe just one vortex in the
graph of the streamline function with its maximum located at the center of the cavity. Nev-
ertheless, the isotherms begin to show some asymmetry, bending towards the right wall, and
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presenting a fold at the left top part without filling still the cavity. This indicates that the flow
of heat is being transported by the movement of the fluid flow.

Increasing, additionally, the Rayleigh number toRa = 108, we show, in Figure 3 results at
t = 0.05 with hx = hy = 1/256 and∆t = 0.00001. We can observe here the restoration of
two vortices of counterflow, although one dominates the circulation and the other one is smaller.
The isotherms present well-defined asymmetric contours with a plume to the right near the heat
source and irregular contours in the top right of the cavity.

In Figure 4 we show results forRa = 2 ∗ 108 at t = 0.01 with hx = hy = 1/256 and
∆t = 0.00001. The Figure shows changes to double the Rayleigh number and simulation time
given. The numerical method shows to be robust enough to obtain these results. This changes
show a growth on the small vortex although the circulation is still being dominated by a domi-
nant vortex. The isotherms present more structure what can be interpreted as a greater influence
of its direct buoyancy.

In Figures 5 and 6 an increase in time is considered for the same Rayleigh number. Results
are shown att = 0.05 with hx = hy = 1/256 and∆t = 0.00001. No significant changes in
the flow pattern of the two vortices or in the asymmetric structure of the isotherms are observed.

Figure 1: Stream function and isotherms forRa = 10
6, t = 0.05, F = 200

Figure 2: Stream function and isotherms forRa = 10
7, t = 0.05, F = 200
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B. Bermúdez, A. Rangel-Huerta, W. Fermı́n Guerrero S., J. D. Alanı́s

50 100 150 200 250

50

100

150

200

250

Figure 3: Stream function and isotherms forRa = 10
8, t = 0.05, F = 200

Figure 4: Stream function and isotherms forRa = 2 ∗ 10
8, t = 0.01, F = 200

Figure 5: Stream function and isotherms forRa = 2 ∗ 10
8, t = 0.05, F = 200

Figure 6: Stream function and isotherms forRa = 2 ∗ 10
8, t = 0.075, F = 2007
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5 CONCLUSIONS

The numerical method implemented here lets us distinguish diffusive and convective heat
turbulent flow patterns generated in accordance with the increase of Rayleigh number within
the cavity. Indeed, to relatively small values of this number the heat diffusion determines the
flow profiles (Figure 1) up toRa = 107 with only a vortex flow (Figure 2). However, for higher
values of this number (Ra = 108) the isotherm profiles are shifted towards the walls asymmet-
rically with a dominant convective flow (Figures 3-5) as result of the heat source and the fluid
recirculation generated by the turbulent flows within the cavity.

The fixed point iterative process used here has shown to be robust enough to handle very high
values of the parameters appearing in the Boussinesq system, such as the Rayleigh number. We
are looking forward to improve the method with respect to the time needed for the simulation,
since till now, the time needed to solve the numerical systems of equations appearing after the
discretization process is very large, especially when working with high Rayleigh numbers and
having to arrive to a large value of t (time), since at each iteration in time, a very large system
of linear equations has to be solved.
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[1] Nicolás, A. and Bermúdez, B., 2D thermal/isothermal incompressible viscous flows,Int.
J. Numer. Meth. Fluids,48, pp. 349-366, 2005.
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Abstract. The focus of this study is the numerical simulation of the forced oscillation of a
circular cylinder with a Very Large Eddy Simulation model (VLES). Five different oscillating
frequencies are considered to cover the so-called jump, where abrupt changes in drag and lift
coefficients are observed. The results of the simulations are compared to available experimental
data and numerical results from other studies.
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1 INTRODUCTION

The prediction of complex unsteady flows with a Direct Numerical Simulation (DNS) is too
expensive in sense of computational costs, regardless of the advancements in computational
technology over the past decades. DNS can only be applied to flows with very simple geome-
tries and small Reynolds numbers, because a complete resolution of the turbulent structures is
necessary. In contrary, with a Reynolds-Average-Navier-Stokes (RANS) model it is possible
to simulate complex industrial problems, because all of the turbulent structures are modeled.
However this approach shows problems with massively separating flows. Another possibility to
simulate the turbulent flows is a Large Eddy Simulation (LES), where the big energy containing
turbulent scales are resolved, while the small ones are modeled. In this case the computational
costs increase very quickly with increasing Reynolds number. Because of these reasons in the
last decade so-called hybrid turbulence models became increasingly popular. The underlying
idea is to combine the advantages of different modeling approaches, more specifically, to de-
liver satisfactory results while demanding reduced computational costs. These new models also
make it possible to solve complex industrial problems.

The Detached Eddy Simulation (DES) model, which was first proposed by Spalart [10] is the
most popular hybrid turbulence model which has also been successfully used for many complex
turbulent flow tasks. In this approach a RANS mode is applied near solid boundaries, while in
separated flow regions and regions far from the wall the method switches to LES. The crucial
issue in the application of DES is the ”gray area”, in which an undefined modeling zone exists.
In this area the solution is neither pure RANS nor pure LES [7].

One of the new hybrid models, the so-called Very Large Eddy Simulation (VLES) model,
was provided by Speziale [11]. This hybrid turbulence approach switches seamlessly between
fully-modeled RANS and fully-resolved DNS modes depending on the numerical grid resolu-
tion. However, the original VLES model damps the Reynolds stress too much and requires a
fine mesh resolution. Therefore, Han et al. [7] provided a modified VLES approach. This new
hybrid model shows high efficiency and robustness in many applications already on relatively
coarse grids [2], [7], [8].

Moving grid systems play an essential role in many engineering fields, for instance, for
fluid-structure interaction. In such cases the problems become much more demanding in terms
of computational cost [1]. Therefore, a reduction of computing times is especially important.
Nowadays numerical investigations of such flows are rare, especially for hybrid turbulent mod-
els.

The focus of this study lies on the investigation of k − ε and ζ − f VLES models in the
context of moving grids. First, the VLES models are validated by computing the separating
flow over periodic hills at a Reynolds number of Re = 10, 600. Finally, the models are ap-
plied to investigate the flow over a forced oscillating circular cylinder at a Reynolds number
of Re = 10, 000. This simulation considers five different oscillating frequencies to cover the
so-called jump, where abrupt changes in drag and lift coefficient are observed. The results of
the simulation are compared to the available experimental data from [5] and numerical results
from other studies.

2 VERY LARGE EDDY SIMULATION MODEL

2.1 CONCEPT

In the last twenty years hybrid turbulence models become more and more popular. They
combine the advantages of different basic modeling techniques, such as RANS, LES or DNS.
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In this study the Very Large Eddy Simulation (VLES) approach from Chang [2] is investi-
gated. This hybrid turbulence model provides a transition from the fully-modeled RANS to
the fully-resolved DNS modes depending on the numerical grid resolution. For the switching
between these models in the VLES approach the Reynolds stress of a generalized RANS model
is rescaled through a so-called resolution control function Fr:

τ subij = Frτ
RANS
ij . (1)

Fr depends on the two length scales: the turbulent length scale Lc related to the spectral cut-off
and the integral length scale Li (∝ k3/2/ε):

Fr = min

[
1,

(
Lc
Li

) 3
4

]
. (2)

Fr takes on a value between one and zero. When Fr approaches zero, then (theoretically) all
of the scales are resolved and the VLES model behaves like a DNS. In the near-wall region
Fr → 1, as in the case of a coarser mesh and the model works as a RANS model, similar to
the DES concept. In [2] a detailed description of the VLES approach and the resolution control
function Fr can be found.

2.2 COMPATIBILITY WITH RANS MODELS

The VLES model is well compatible with different RANS turbulence models. In this study
a VLES approach based on two different RANS models is used: the k − ε VLES model based
on the Chien k − ε model [3] and the elliptic-relaxation eddy-viscosity ζ − f VLES model [9].
The ζ − f RANS model developed by Hanjalic et al. [9] uses a transport equation for the
velocity scale ratio ζ = v2/k and an equation for the so-called elliptic relaxation function f , in
addition to the equations for the turbulent kinetic energy k and its dissipations rate ε:

∂k

∂t
+ uj

∂k

∂xj
=Pk − ε+

∂

∂xj

[(
ν +

νt
σk

∂k

∂xj

)]
, (3)

∂ε

∂t
+ uj

∂ε

∂xj
=
Cε1P − Cε2ε

T
+

∂

∂xj

[(
ν +

νt
σε

∂ε

∂xj

)]
, (4)

∂ζ

∂t
+ uj

∂ζ

∂xj
=f − P

k
ζ +

∂

∂xj

[(
ν +

νt
σζ

∂ζ

∂xj

)]
, (5)

L2∆f − f =
1

T

(
C1 + C2

P

ε

(
ζ − 2

3

))
. (6)

The corresponding turbulent viscosity is defined as

νt = Cζ
µζkT, (7)

where T is the turbulent time scale and Cζ
µ is a model constant. The coefficients and a detailed

description of this model can be found in [8].
This eddy-viscosity-based model yields better results in comparison to other RANS models for
wall-bounded flows [8]. Since the predictive accuracy of VLES depends on the specific RANS
turbulence model [6], the application of the ζ − f model as a background RANS model for
VLES appears to be promising.
Compared to basic RANS models, in the VLES approach only the formulation of the turbulent
viscosity is modified. For example, for the ζ − f model the turbulent viscosity takes the form

νt = FrC
ζ
µζkT. (8)
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2.3 NEW FILTER WIDTH

The definition of the resolution control function Fr contains the turbulent cut-off Lc = Cx∆,
which depends on the filter width ∆. The filter width determines the value of the resolution
control function and therefore implies a kind of interface between RANS and DNS. Thus, the
choice of the expression for ∆ may play an important role, especially in the case of strongly
anisotropic grids.
In the original VLES model the standard LES filter-width ∆vol = (∆x∆y∆z)

1/3 is used. In
the present work the behavior on the VLES model is investigated with a modified filter width,
the so-called IDDES filter width, which was introduced by Travin [13] for the Detached Eddy
Simulation model:

∆IDDES = min(max[Cwdw, Cwhmax, hwn], hmax), (9)

where dw is the distance to the wall, hwn is a grid distance in the wall-normal direction, hmax is
a maximum local grid spacing and Cw = 0.15 is a constant.

3 FLOW OVER THE PERIODIC HILL

For validation of the VLES model on a static grid the flow over a two-dimensional periodic
hills at a Reynolds number of Reb = 10, 600 based on the bulk velocity is considered. In
this flow the separation is not clearly determined by the geometry, therefore, it is especially
challenging to predict the correct separation point.
The size of the computational domain is defined as Lx = 9h, Ly = 3.036h and Lz = 4.5h,
where h is the hill height. On the top and bottom edges of the domain the wall boundary
condition is applied, while a periodic boundary condition is used in the streamwise and spanwise
directions. The computational domain with the 80x100x30 mesh is shown in the figure 1. The
results are compared with reference LES data [12] obtained by a highly-resolved simulation
with 4.6 · 106 grid nodes.

Figure 1: The flow over the two dimensional periodic hills. Computational domain and mesh

The flow separates on the top of the hill and a recirculation zone generates in the downstream
of the hill side.The detailed separation and reattachment positions obtained with the different
models are shown in the table 1. The VLES approach predicts the position of the separation
well even on the coarse grid compared to the LES.

The velocity profiles for the VLES k−εmodel in comparison to the reference data are shown
in figure 2. It can be seen that the VLES simulation shows very good agreement with the LES
reference results.

7677



A. Kondratyuk, M. Schäfer and A. Ali

Model xs xr
LES [12] 0.22 4.72
VLES k − ε (∆vol) 0.18 4.48
VLES k − ε (∆IDDES) 0.20 4.65
VLES ζ − f (∆vol) 0.20 4.62

Table 1: Separation and reattachment points for different models

Figure 2: Velocity profiles for the LES and the VLES k − ε models

With the IDDES filter width the k − ε VLES approach yields better results than with the
standard ∆vol filter width (see table 1).

4 FLOW OVER THE OSCILLATING CYLINDER

Next the flow past an oscillating circular cylinder is investigated. The Reynolds number is
Re = 10, 000 based on the inflow velocity U and the cylinder diameter D.

The following equation describes the cylinders displacement in the cross flow direction:

y = Y0 sin (2πf0t) , (10)

where Y0 is the cylinder displacement amplitude and f0 is the oscillation frequency of the cylin-
der.
To cover the abrupt changes in drag and lift coefficients in this simulation five different os-
cillating frequencies f0D/U = 0.14; 0.17; 0.19; 0.21 and 0.25 are considered. The results are
compared to the experimental data from Gopalkrishnan [5]
The lift and drag coefficients CL and CD are presented in figure 3 as a function of the dimen-
sionless frequency for the k − ε VLES model. This model captures the sharp change in the lift
coefficient around the vortex shedding frequency. It under-predicts the value of CL for oscil-
lation frequencies fr > 0.17, while the value at the low frequency of fr = 0.14 shows good
agreement with the experiment data from Gopalkrishnan [5]. For comparison also the results
for the lift coefficient for the k − ε RANS model are given for two frequencies i.e. fr = 0.17
and fr = 0.21. As figure 3 (right) shows, this model yields results that are very similar to the
VLES model results for both frequencies.
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Figure 3: Lift and drag coefficients as a function of non-dimensional frequency for the k − ε
VLES model

To see the influence of the filter width on moving grid simulations, results for the k−εVLES
with the IDDES filter are given for the oscillation frequency fr = 0.17 in in figure 3. In this
case the results show a better agreement with experimental data, in comparison to the standard
k − ε VLES.
The agreement between the simulation results for the VLES model and the experimental data
for the drag coefficient is reasonably good (see figure 3, right). The standard VLES under-
predicts the drag coefficient at low frequencies, but for higher frequencies the prediction is
fairly accurate. While the prediction of the drag coefficient with the IDDES filter width in
VLES, shows a very good agreement with the experimental data for the investigated frequency
of fr = 0.17.

The results from the ζ − f VLES model have similar characteristics (figure 4) as for the
k−ε VLES model. The lift coefficient is under-predicted for higher frequencies, while the drag
coefficient is in very good agreement with the experimental data, without the application of the
modified filter width ∆IDDES .

5 CONCLUSION

In this study the ζ − f and k − ε VLES models were investigated for the moving grids.
Firstly, both models are validated with a static grid test-case. The flow over a periodic hill at
Re = 10, 600. It was shown that the results of the VLES model can be improved by the intro-
duction of the new IDDES filter width instead of the standard volume filter width. Subsequently
both models were applied on a moving grid test-case, where the flow past a harmonically os-
cillating circular cylinder has been investigated at a Reynolds number of Re = 10, 000. It was
shown that the ζ − f and k− ε VLES model can predict the abrupt changes in drag and lift co-
efficients. The values of the lift coefficient were under-predicted for both VLES models, while
the values for the drag coefficient were in very good agreement with the reference data. The
results on the moving grid, as on the static grid, can be improved by applying the IDDES filter
width in the expression for the resolution control function Fr.
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Figure 4: Lift and drag coefficients as a function of non-dimensional frequency for the ζ − f
VLES model

6 ACKNOWLEDGMENT

This work is supported by the Excellence Initiative of the German Federal and State Gov-
ernments within the Graduate School of Computational Engineering at Technische Universität
Darmstadt.

REFERENCES

[1] Bunge, U. Numerische Simulation turbulenter Strömungen im Kontext der Wechsel-
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[8] Han, X. and Krajnović, S. An efficient very large eddy simulation model for simulation
of turbulent flow. International Journal for Numerical Methods in Fluids, 71(11), pages
1341-1360, 2013
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Abstract. This paper presents two transmission interface treatments, Dirichlet-Robin and 
Neumann-Robin procedures, that may be employed for conjugate heat transfer problems. These 
conditions are analyzed on the basis of a 1D simplified model problem. In the first part of the paper, 
the Dirichlet-Robin procedure is presented. This interface treatment is the most widely employed in 
the literature. The same analysis is then performed  with a Neumann-Robin procedure. On the basis of 
the model problem, the general expression of the amplification factor, the stability bounds and the 
optimal coefficients are  provided. It is shown that the two interface treatments are opposite and 
complementary. Moreover, the so-called optimal coefficient provides the best results in terms of 
stability and convergence in the Dirichlet-Robin procedure. A criterion is expressed to choose the 
most appropriate transmission procedure and its importance is underlined by a test case. 
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1 INTRODUCTION 

Conjugate heat transfer (CHT) analysis refers to the ability to address the thermal interac-
tion between a body and a fluid flowing over or through it. The objective of CHT modeling is 
the accurate prediction of temperature and heat flux distribution in space and time in a body 
and on its boundaries. Conjugate heat transfer problems occur whenever the fluid convection 
and the solid material conduction are taken into account simultaneously. This mutual interac-
tion is becoming increasingly important because in many numerical simulations it is no longer 
acceptable to consider heat transport in the fluid only, with some ideal conditions at the fluid-
solid interface. 

 
Even if coupled procedures are the most correct and reasonable way to use when accurate 

heat transfer predictions are needed, in most cases, arbitrary relaxation parameters are used to 
stabilize the coupling procedure. This may have a significant negative impact on the numeri-
cal properties (low convergence rate, oscillations, and instabilities). Our goal in this paper is 
to present two interface conditions derived from a stability analysis and to present their main 
numerical characteristics.  

 
Recently, we have shown [1] using a 1D thermal model problem that in a coupled system, 

a numerical transition can be identified. This fundamental result has been derived from a 
normal mode stability analysis based on the theory of Godunov-Ryabenkii [2][3]. This transi-
tion can be regarded as an optimal choice in terms of stability and convergence. Ideally, a 
Robin condition on each side of the interface should be considered. But in this case, a general 
Robin-Robin interface condition leads to a too large family of schemes. Thus, in this paper we 
will confine ourselves to two commonly used conditions : 

- Dirichlet-Robin procedure : the temperature coming from the solid is applied on the fluid 
side and a "relaxed heat flux" is in turn used as a boundary condition for the solid. 

- Neumann-Robin procedure : the heat flux coming from the solid is applied on the fluid 
side and a Robin condition is in turn used as a boundary condition for the solid. 

These conditions have been chosen in order to deal with most situations likely to arise. 
They will be analysed on the basis of a 1D coupled aerothermal model problem. In the first 
part of the paper, Dirichlet-Robin interface treatments are presented. This transmission interface 
treatment is the most widely employed in the literature. The same analysis is then performed in 
the second part with a Neumann-Robin procedure. These two treatments will then be compared. 

2 MODEL EQUATIONS 

2.1 Model problem 

It has been often been stressed that the nature of instabilities derived from a 1D model can 
give insight into the potential instabilities in 2D/3D computations. As a result, the behavior of 
interface conditions in CHT is often studied using a normal mode analysis. This is because 
one may reasonably assume that the modes that may be unstable are those whose variation is 
in the direction normal to the coupled interface. A 1D model is composed of two partitions 
with a shared interface. Partitioned techniques [4][5] are very popular, because they allow the 
direct use of specifically designed solvers for different fields and may offer significant 
benefits in terms of efficiency over the monolithic techniques. In this study, the fluid-solid 
system will be decomposed into two partitions: the (+) subdomain (Ω+, index 0≥j  ; 0≥x ) 
and the (–) subdomain  (Ω–, index 0≤j  ; 0≤x ) as illustrated in Figure 1. 
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2.2 Interface conditions on the solid side  

Interface conditions are needed on either side of the shared interface (x = 0), where 
coupling conditions are applied. Our goal is to ensure a stable CHT process and to avoid 
destabilizing effects. It is well known that Robin conditions have many attractive features 
since such a condition introduces an interface stiffness forcing the boundary to behave in the 
same way as the boundary of the other domain resulting in much better stability properties. A 
Robin condition on the solid side is written simply as  

   [ ] [ ]fffsfs TQTQ αα +=+ ˆˆ  (1)  
 

The subscripts f and s denote the fluid and solid domain respectively and the (^) notation 
indicates the sought values. Q  is the interfacial heat flux (W.m-2) and T is the interface 
temperature. The general Robin condition (1) introduces the numerical coupling parameter 

fα  (W.m-2.K-1) the choice of which directly influences the stability of the coupling process.  

2.3 Interface conditions on the fluid side 

A similar expression could be used on the fluid side 

   [ ] [ ]sssfsf TQTQ αα +=+ ˆˆ  (2)  
 

Condition (2) introduces another coefficient sα computed in the solid side and 

implemented in the fluid side. The simultaneous consideration of two coefficients could be 
complicated and thus it has been decided in this paper to focus on two complementary 
treatments : 

A Dirichlet condition on the fluid side, obtained easily by setting ∞=sα  in (2) 

   sf TT =ˆ  (3)  
 

and a Neumann condition on the fluid side, obtained by setting 0=sα  in (2). We readily 

obtain  

   sf QQ =ˆ  (4)  
 

 
   External 
      BC 

            Fluid (+)
                                                           

Solid (-) 
                                                       

∆xf 

  - J                                      -2              -1 

   Interface 
       “0” 

1          2         3                     
j 

Ω+ Ω– 

sΛ
 

Fig.1 : Schematic of the fluid  & solid domains 

x
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2.4 Equations in the fluid and solid domains 

The CHT strategy used to obtain rapidly a fluid-structure steady solution relies on the  
significant discrepancy of the characteristic physical times of the two domains, namely a fast 
transient process in the fluid, a very slow one in the structure. In the fluid subsystem, the 
Navier-Stokes (NS) equations are solved generally to steady-state by a time marching scheme. 
As a consequence, a time marching scheme will be employed here in the fluid domain in the 
CHT model.  

 
 On the contrary, in the solid domain, if we are only interested in computing the steady-

state solution, then a second order ordinary differential equation can be solved directly and 
coupled to the unsteady fluid domain. Thus, only a Laplace equation is considered in the 
solid. 

2.5 Characteristic factors 

Three dimensionless numbers play a major role in CHT problems and appear in the stabil-
ity analysis performed in this paper. 
 

The first one is the mesh Fourier number defined as follows  

   2
ffff xtaD ∆∆=  (5)  

 
where fa is the fluid diffusivity (m2.s-1). fD  is the mesh Fourier number that characterizes 

transient heat diffusion in the fluid domain. 

The second one is a conventional Biot number defined by 

   sKhBi =  (6)  
 

where h (W.m-2.K-1) is the heat transfer coefficient and sK is the thermal conductance of the 

solid. Bi  determines whether or not the temperatures inside a solid body vary significantly in 
space, while the body heats or cools over time, from a thermal gradient applied to its surface. 

The third number, a local Biot number, naturally appears in the stability analysis per-
formed hereafter and takes the following form 

   sf KKBi =∆)(  (7)  
 

)(∆Bi is a "new" parameter that can be regarded as the ratio of the thermal conductance of the 
1st fluid cell over the thermal conductance of the whole solid domain. This number represents 
the balance at each coupling time between the solid resistance of the entire solid body (only a 
steady-state is considered in this domain) and the resistance of the transient fluid domain rep-
resented by the diffusion in the first near wall interface. 
 

It is also interesting to introduce a normalized Fourier number fD (see [6] for more details) 

defined by 

   
ff

f
f

DD

D
D

211 +++
=  (8)  

 

The domain of fD is 0≥fD  and the range is 10 <≤ fD . 
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2.6 Normal mode analysis 

We have performed a stability analysis by considering normal mode solutions in the form  

   






≤

>
=

−

0,

0,1

jz

jz
T

j
s

n

j
f

n

n
j

κ

κ
 (9)  

 

where z  and κ  are two complex functions. z  is the “temporal amplification factor” and κ  is 
the “spatial amplification factor”. The stability analysis is very similar to the standard Fourier 
stability method except that the Fourier analysis ignores boundary conditions and as these 
may affect stability, the theory of Godunov & Ryabenkii [2][3] is preferable. After elementary 
transformations not reported in this paper (see details in [1]), we find that the temporal ampli-
fication factor z  (i.e. each mode increases in amplitude by a ratio z ) takes the following 

forms in the two interface conditions considered in this paper : 
 
(1)  Dirichlet-Robin interface condition : ( ) ( )∞≥= ,0, fsf ααα  

 
The temporal amplification factor can be written as   

   [ ])(),(
1

),( ffff
fs

f Kz
K

zgz αακ
α

α −−
+

==  (10) 
 

 
(2)  Neumann-Robin interface condition : ( ) ( )0,0, >= fsf ααα  

 
The temporal amplification factor can be written as   

   






 −
+

+
== ∆)(),(.

1
),(

Bi

K
z

K
zgz ff

fff
fs

f

α
ακα

α
α  (11) 

 

2.7 A fundamental transition 

The complex functiong is a rather complicated nonlinear equation for z.  After the change 

of variable zz 1→ , this function becomes holomorphic on the open set 1<z . As a result, 

on the basis of the maximum modulus principle in complex analysis, the maximum value 
of g is achieved on the boundary, i.e., at some point on the unit circle 1=z .  

 
Actually, the maximum is obtained either at 1+=z  or 1−=z . But, under certain condi-

tions, there is a sudden transition from one point to another resulting in an amplification fac-
tor composed of two half-lines with a singular point at the intersection of these two lines. At 
this intersection the amplification factor turns back and attains its absolute minimum always 
located in the stable zone 1<z .  

 
The point where the maximum is transferred from 1−=z   to 1+=z  is a fundamental 

transition in the aerothermal coupling. 
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3 DIRICHLET-ROBIN INTERFACE CONDITIONS  

3.1 Stability bounds  

The stability condition 1),( <fzg α  applied to Eq.(10) leads, after some basic calculus ma-

nipulations, to a lower stability bound min
fα  

   >fα
2

)1(
2

min s
f

f
f

K
D

K
−−=α  (12) 

 

3.2 A dynamical Biot number 

Substituting the definition of )(∆Bi (Eq.(7)), min
fα becomes  

   min
fα = [ ]1)1(

2
)( −−∆

f
s DBi

K
 (13) 

 
As the coupling coefficient is always positive, two zones are clearly identified : 
 
• 1)1()( ≤−∆

fDBi  : the coupling process is stable 0≥∀ fα  

• 1)1()( ≥−∆
fDBi  : the coupling procedure exhibits a lower stability bound min

fα  

 
This demonstrates how stability depends mainly on the ratio of thermal resistances, but also 
on the dynamics of the transient fluid system. The higher the local Biot number, the more dif-
ficult it will be to stabilize the coupling. Of course, the transient effects of the fluid system 
also play a major role and can stabilize any process via the term )1( fD− , but at a significant 

cost.   

3.3 Optimal procedure 

It is very noteworthy that the modulus of the amplification factor does not have a mono-
tonic variation (in terms of fα ) but goes through an absolute minimum, denoted opt

fα . In 

other words, the existence of a transition value for fα  can be identified. At this transition 

value, the shape of the curve of the amplification factor switches and turns back as can be 
seen in Figure 1. In this Figure, the two curves have been plotted using the following charac-
teristics : 

• Local Biot number 2)( 1025.1=∆Bi  

• Mesh Fourier numbers : (1) ⇒= 40fD  8.0=fD       (2) ⇒= 000,40fD  992.0=fD  

Thus, the stabilizing effect of the term )1( fD− is noticeable. The most striking point is that 

at the remarkable coefficient opt
ff αα = , the modulus of the amplification attains its absolute 

minimum value, always less than one. 

Low values of fα )( opt
ff αα <  will result in a rapid convergence, but in this case how-

ever fD  must be sufficiently large to allow heat diffusion on the fluid side. Otherwise, a low 

Fourier number will soak up a lot of heat. It will be then necessary to enhance stability by in-
creasing the coupling parameter.  
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But, likewise, large values of fα  )( opt
ff αα >> will always lead to an extremely slow con-

vergence since this corresponds to a slow diffusion of heat through the fluid subsystem. But it 
should be pointed out that relatively large Fourier numbers ( )1≈fD indicate fast propagation 

and energy in this case will be unnecessarily frozen by fα .  

 
 

 
 
 
 
 
It should be noted that these situations might occur in the same coupled computation or 

even in the same fluid-structure interface. It is the reason why it is crucial to use local cou-
pling coefficients and it has been shown that opt

ff αα =  is the optimal choice in the case of the 

model equation adopted herein.  
 
 
 

Figure 1: Amplification factor for 40=fD  & 40=fD .000 
   Dirichlet-Robin procedure 
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3.4 Summary 

The general behavior of the Dirichlet-Robin coupling procedure for steady CHT, in terms 
of fα  is illustrated in Table 1. 

 

fα   0   min
fα  ---------------- opt

fα  -----------------
- 

∞  c o n d i t i o n  

g      
U N S T A B L E 

  1  
 
 

optg  

   1 
1)1()( ≥−∆

fDBi  

g  
0g   

 
 

optg  
     

 1 
1)1()( ≤−∆

fDBi  

 

  

  
 

 

Table 1: Numerical behavior of Dirichlet-Robin procedure vs fα ( )0; ≥∞= fs αα  

4 NEUMANN-ROBIN INTERFACE CONDITIONS  

4.1 Stability bounds  

The stability condition 1),( <fzg α  applied to Eq.(10) leads, after some basic calculus 

manipulations, to an upper stability bound max
fα  

   <fα
)1(

2max

ffs

fs
f DKK

KK

+−
=α  (14) 

 

Substituting the definition of )(∆Bi (Eq.(7)),  max
fα becomes  

   
max
fα =

)1(1

2
)(

f

f

DBi

K

+− ∆  (15) 
 

As the coupling coefficient is always positive, two stability regions are highlighted : 
 
• 1)1()( ≥+∆

fDBi  : the coupling process is stable 0≥∀ fα  

• 1)1()( ≤+∆
fDBi  : the coupling procedure exhibits an upper stability bound max

fα  

4.2 Optimal procedure 

This time, in the framework of the Neumann-Robin procedure, three zones can be identi-
fied. The first zone exhibits an upper stability limit as just mentioned. There is also in this 
zone an optimal coefficient for which the modulus of the amplification factor attains an abso-
lute minimum. 

The second zone is very narrow. It also presents an optimal coefficient, but in contrast to 
the previous case, there is no stability bound. 

The third zone is also unconditionally stable but no optimal coefficient can be defined. 
That is to say the minimum of the amplification factor is obtained for ∞=fα , i.e. for the 

Neumann-Dirichlet procedure (heat flux imposed on the fluid side & temperature imposed  on 
the solid side) with no relaxation. Another way of explaining it, is that the amplification factor 
is a monotonic function.   
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4.3 Summary 

The general behavior of the Neumann-Robin coupling procedure for steady CHT, in terms 
of fα is illustrated in Table 2. 

fα   0   opt
fα  --------------

-- 
max
fα  -----------------

- 
  ∞  c o n d i t i o n  

g  
  
1   

 

     
optg   

 

   1 
          

U N S T A B L E 
  

 
1)1()( ≤+∆

fDBi  

g  1 
 

 

optg  
 

)(∞g  2)1(1 )( ≤+≤ ∆
fDBi  

g  1  
 
     

)(∞g  2)1()( ≥+∆
fDBi  

 
 

 

5 COMPARISON OF THE TWO INTERFACE CONDITIONS 

5.1 Stabilizing effect of the Fourier number 

As just stated, the two interface conditions considered in this paper may be regarded as 
two complementary conditions, and it seems that we can go as far as to say that they are al-
most opposite. The first condition is unconditionally stable at small Biot number while the 
second one is unconditionally stable at large Biot numbers. But there is one major difference. 
In the case of the Dirichlet-Robin procedure, the term )1( fD−  may become as small as nec-

essary and as a result the unconditional stability condition 1)1()( ≤−∆
fDBi (2nd row of Table 1) 

can always be satisfied. In other words, the lower stability bound can always be removed by 
an appropriate choice of fD . Conversely, in the condition 1)1()( ≤+∆

fDBi  (1st row of Ta-

ble 2), the term )1( fD+  has no stabilizing effect. 

5.2 Overlapping zone 

It is not quite accurate to say that the two interface conditions are opposite. Actually they 
exhibit an overlapping zone where both may be considered as stable. On the basis of the sta-
bility limits presented in the preceding sections, it is seen that there is an overlapping zone 
where both procedures are unconditionally stable and defined by  

   
ff D

Bi
D −

≤≤
+

∆

1

1

1

1 )(  (16) 
 

This overlapping zone gets narrower as the normalized Fourier number fD  gets smaller. 

On the contrary, this zone is significantly extended for large Fourier numbers. 

5.3 Existence and non-existence of optimal procedures 

The two interface conditions presented in this paper exhibit 5 different zones (2 in Table 1 
& 3 in Table 2). In one of them (3rd row of Table 2), there is no optimal coefficient. This does 
however not mean that the coupling procedure will converge slowly but simply that the condi-

             Table 2: Numerical behavior of Neumann-Robin procedure vs fα ( )0;0 ≥= fs αα  
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tion ∞=fα  is a relevant choice. In other words the Neumann-Dirichlet transmission is rec-

ommended. In the first procedure, the optimal choice requires a certain amount of relaxation 
and this time a Dirichlet-Robin procedure is recommended in conjunction with the use of the 
optimal coefficient. 

 
Actually, there exist two types of optimal procedures. The first one is not subject to any 

condition and always exhibits an optimal coefficient. The second one presents a conditional 
optimal coefficient. Clearly, the transient effects of the fluid system play a major role in the 
stability analysis. 

5.4 Criterion for a relevant interface treatment 

We have just seen how to optimize a specific transmission condition procedure. But this 
study suggests that it can be interesting to select adequately the most relevant procedure and 
not necessarily to optimize a particular one, more or less arbitrarily chosen. Two options 
might be considered : 

(1) A "dynamic" option 

The dynamic option is supported by the fact that the optimal coefficient of the Dirichlet-
Robin condition is able to stabilize any procedure. 

• 1)1()( ≤−∆
fDBi  : Dirichlet-Robin procedure with opt

ff αα =  

• 1)1()( >−∆
fDBi  :  

 if ( )s
opt
f K>>α  : Neumann-Robin procedure with fα sufficiently great 

 else 
 Dirichlet-Robin procedure with opt

ff αα =  

 endif 

Note that in the overlapping zone, the procedure with the term )1( fD− has been retained. 

(2) A "static" option 

 The other option does not take into consideration the dynamics of the fluid system 
( )0=fD . The preceding conditions thus become : 

• 1)( ≤∆Bi  : Dirichlet-Robin procedure with opt
ff αα =  

• 1)( >∆Bi    : 
 if ( )sf KK >>  : Neumann-Robin procedure with fα  sufficiently great  

 else 
 Dirichlet-Robin procedure with opt

ff αα =  

 endif 

The first option takes advantage of the stabilizing effect of the mesh Fourier number in the 
transient fluid domain. The second option is more secure especially when the ratio )(∆Bi is 
very high, for instance in CFD computations in which a high wall resolution is adopted. In 
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this case, it is always possible to exploit to advantage the term )1( fD− such that 

1)1()( ≤−∆
fDBi  but this can have a substantial cost. 

5.5 Link between the local and the conventional Biot numbers 

This local Biot number introduced by Eq. (7) takes directly into account the thermal and 
dynamic response of the boundary layer and directly participates in the stability of the cou-
pled process. If a transient fluid flow is employed during the CHT computation it is this num-
ber that will drive and control the stability of the CHT problem. 

 
On the other hand, the conventional Biot defined by Eq.(6) is a measure of the resistance 

to heat flow within the solid relative to the resistance presented by the convection processes at 
the surface. This parameter is also a key parameter, but only at steady state since it determines 
the stability of the fluid-solid equilibrium. However, it is clear that this conventional Biot 
number, not easily defined during the transients, cannot be used to set up a numerical CHT 
procedure, as long as a transient fluid state is involved in this procedure. 

 
At steady state, the thermal fluid resistance is equal to 1/h and thus the various stability 

criteria and stability bounds presented in this paper may easily be extended to steady state by 
simply imposing 0=fD  and hK f = . 

5.6 Numerical example 

A complex CHT computation has been performed in a 3D test case representing an indus-
trial reheat furnace with heteroclite fluid-structure interface (details can be found in [7]). As a 
first step, the Dirichlet-Robin condition has been used and a systematic and comparative study 
of various coupling coefficients has been undertaken. This first study showed that the optimal 
coupling coefficient presented in this paper was by far, the best-performing procedure.  

 
But by looking more closely at the fluid-solid interfaces of the furnace, high local  Biot 

number can be found, for instance 

   2)( 1025.1==∆

s

f

K

K
Bi  (17) 

 
This ratio strongly suggests the use of a Neumann-Dirichlet procedure as mentioned in 

§ 5.4. Figure 2 presents the convergence history of these CHT tests. All the tests performed 
are not indicated in this figure. It is sufficient to mention that the so-called, optimal Dirichlet-
Robin procedure is always stable and oscillation-free and clearly the most efficient coupling 
method. 
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                   Figure 2 : Convergence history and comparison between Dirichlet and Neumann procedures 
 
 
But, as suggested by the criterion proposed in this study, it is instructive to see that a rele-

vant procedure, even with no relaxation parameter can be even more performing. This means 
that when the local Biot number )(∆Bi is high, stability can be obtained with the Dirichlet-
Robin condition but at the expense of computational efficiency (CPU time). In this case, a 
natural physics-based approach is to impose a Neumann condition. 

 

6 CONCLUSIONS  

On the basis of a simplified model problem, the general expression of the amplification 
factor, the stability bounds, the optimal coefficient and the general numerical behavior have been 
presented for two different and complementary interface treatments. It was shown that the 
numerical properties depend on the ratio of fluid and thermal resistances and that the mesh 
Fourier number plays a crucial role. Furthermore, a local Biot number has been introduced and it 
was shown that this number "drives" the overall coupling process. 

The two interface treatments have been compared and it has been highlighted that these inter-
face treatments are almost opposite and complementary. When the first method is uncondition-
ally stable, the second one exhibits an upper stability bound. When the second method is 
unconditionally stable, the first one exhibits a lower stability bound. These two interface schemes 
present an overlapping area where both of them are stable. It is also shown that the so-called op-
timal coefficient provides the best results in terms of stability and convergence in the Dirichlet-
Robin procedure. The numerical criteria establishing the nature and character of the most rele-
vant interface treatment have been identified and expressed. A comparison in a CHT test case 
has emphasized the importance of a physics-based numerical approach. 
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Abstract. The most important parameter of a direct spring operated pressure relief valve is its
capacity, which is the rated flow through the valve under conditions given by the correspond-
ing industrial standard. There are several phenomena due to which dynamic instabilities may
arise in the system, leading to dangerous oscillations and reduced flow rate. One of the causes
of these instabilities is the acoustic coupling of the valve with its upstream piping, the math-
ematical background of which has already been thoroughly investigated by the researchers at
our department. As a continuation of that work, this paper focuses on the engineering appli-
cations by proposing various valve disc geometries based on preliminary measurement results,
and evaluating their dynamic stability performance in a wide range of parameters. Steady-state
CFD computations were performed to determine the mass flow rate and force characteristics
of the various valve discs. Through these quantities, the behaviour of each geometry was im-
plemented into our one-dimensional coupled gas dynamical solver, which resolves the pipe
dynamics using the one-dimensional continuity-, momentum- and energy equations. The valve
itself is modelled as a one degree-of-freedom oscillator. Finally, the stability maps of each ge-
ometries were calculated using the gas dynamical model and it was shown that the shape of the
fluid force function does indeed have a significant effect on the stable operating range.
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1 INTRODUCTION

The main purpose of pressure relief valves is to guarantee that the pressure in the protected
system does not exceed a prescribed level, which is the set pressure of the valve. The other
important parameter is the so-called capacity, that is the rated flow through the valve under
stated conditions prescribed by the corresponding standard [1]. As this determines how quick
the relief process is, it is imperative from the point of safety that this mass flow rate is guaran-
teed. However, certain instabilities may arise, leading to harmful vibrations and a reduction in
the flow rate.

The literature distinguishes between static and dynamic instabilities. The former involves
the study of the governing equations of the valve — usually in a linearised form — around its
equilibrium positions [2], while the latter deals with more complicated, generally system-level
issues [3]. In this paper a dynamic instability caused by the acoustic coupling between the valve
and the straight upstream piping is investigated. Previous measurements and simulation results
have shown that the stability in this case depends on the driving mass flow rate and the length
of the upstream piping for a given valve geometry [4, 5]. The goal of this paper is to provide a
numerical method for stability analysis, and also to get an insight into the geometry-dependence
of this instability by qualitatively comparing the stability maps in the mass flow rate and pipe
length plane for three different valve disc geometries.

2 THEORETICAL BACKGROUND

The valve disc can be modelled as a one degree-of-freedom oscillator, for which the equation
of motion is

mẍv + kẋv + s(xv + xp) = Ftotal, (1)

where m is the reduced mass of the moving parts, xv is the valve lift, k is the damping coeffi-
cient, s is the spring stiffness, xp is the pre-compression of the spring and Ftotal is the total force
acting on the valve disc. The latter is the sum of the pressure, momentum and viscous forces —
its modelling poses a significant challenge, as the momentum and viscous components cannot
be accurately approximated by analytical means without a detailed knowledge of the flow-field.
To circumvent this, the so-called effective area was employed during our calculations [6, 7, 8],
that is

Ftotal = Aeff(xv)(pv − pb), (2)

where Aeff(xv) is the effective area function, pv is the pressure upstream of the valve and pb

is the back pressure. This assumes that the total force can be expressed by multiplying the
pressure drop on the valve by an equivalent area, which depends only on the valve lift. Note
that this approach neglects any unsteady effects, such as those from a non-zero valve velocity.
The effective area functions differ for all valve geometries, and as such these are unknown as
of now. However, since both the momentum and viscous forces equal zero if the valve is in a
closed position, the effective area at that point equals the cross-sectional area of the seat.

During dynamically unstable cases, it is possible that the valve hits the seat. The resultant
impact is treated as a mapping in the model with

ẋv
+ = −rẋv

−, (3)

where ẋv
− and ẋv

+ are the valve velocities before and after the impact and r is the coefficient
of restitution. For convenience, let the seat be located at xv = 0. Bouncing occurs if the valve
velocity is above a set threshold (ẋ−v ≥ ẋth), or the velocity is lower than the threshold and the
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sum of all forces pushes the valve away from the seat (ẋ−v < ẋth and ẍ−v > 0). Otherwise, the
valve sticks to the seat.

The one-dimensional continuity-, momentum-, and energy equations were written for the
straight pipe section upstream of the valve, which are

∂U
∂t

+
∂F
∂ξ

= Q, (4)

U =

 ρ
ρv
ρe

 , F =

 ρv
ρv2 + p
ρve+ pv

 , Q =

 0

− f(v)ρ
2Dpipe

v|v|
0

 ,

where t is the time, ξ is the spatial coordinate, ρ is the density, v is the velocity, e is the specific
energy, f is the Darcy friction factor and Dpipe is the diameter of the pipe. Preliminary tests
have shown that treating the friction factor as a constant led to the erroneous estimation of the
pressure drop due to the wide Reynolds number range in the pipe, and as such Blasius’ correla-
tion for turbulent flows was implemented — this means that the friction factor is a function of
the velocity.

At the ξ = 0 end an infinitely large reservoir boundary condition was set, which is realized
by prescribing the total pressure in the case of inflow to the pipe, and the static pressure other-
wise. The valve boundary condition is implemented at ξ = L. The basic principle is that the
mass flow rate leaving the pipe must also satisfy the discharge equation for the valve. If the
flow is chocked, the equation to be solved is

ρ(L, t)Apipev(L, t) = CDAref(xv)

√
γρ(L, t)p(L, t)

(
2

γ + 1

)γ+1
γ−1

, (5)

where CD is the discharge coefficient, Aref is the reference flow-through area and γ is the ratio
of specific heats. Similarly, for the non-chocked case we have

ρ(L, t)Apipev(L, t) = CDAref(xv)

√√√√2ρ(L, t)p(L, t)
γ

γ− 1

((
pb

p(L, t)

) 2
γ

−
(

pb

p(L, t)

)γ+1
γ

)
.

(6)
The discharge coefficient is unknown as of yet, while the cylindrical surface between the seat
and the valve disc is taken as the reference area is, that is

Aref(xv) = Dseatπxv, (7)

whereDseat is the diameter at the seat. In our case the seat was the chamfered pipe end, therefore
Dseat = Dpipe (see Figure 1(a)).

Equation (1) is solved using standard Runge-Kutta, while the Lax-Wendroff method is used
for the discretization of equation (4). The boundary conditions were implemented with the
isentropic method of characteristics.
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Figure 1: (a) The three geometries (0◦, 45◦ and 90◦ from top to bottom) with the mesh lines at
a valve lift of 0.15Dpipe. (b) The number of nodes and the boundary conditions. The filled
parts indicate the structured part of the mesh. (The figure is not proportional for illustration

purposes.)

3 CFD SETUP

As mentioned in the previous section, two necessary parameters are unknown due to the lack
of accurate analytical methods: the effective area function and the discharge coefficient. Their
values were determined by means of CFD.

Simulations were conducted for three different geometries, which were generated by varying
the collar angle (Figure 1(a)). Axisymmetric treatment of the flow field was possible due to
the simplicity of the geometry, effectively rendering the problem two-dimensional and as such
significantly reducing the needed computational time. This resulted in a wedge-shaped domain
with a central angle of 5◦, meaning that the extensive quantities — namely the mass flow rate
and the total force acting on the valve — had to be rescaled for the full-sized valve.

The meshes were automatically generated for all geometries and lifts, with the number of
nodes varying between 80 000 and 85 000. They consist of both structured and unstructured
regions according to Figure 1(b) (the modelled domain is similar for the 0◦ and 90◦ cases). The
meshes were created in ICEM. The inner diameter of the pipe was 40.2 mm, the upstream pip-
ing had a length of 10Dpipe and the valve lift was varied between 0.05Dpipe and 0.30Dpipe.

Total pressures between 2 and 6 bar were prescribed at the inlet boundary condition with a
static temperature of 293 K. The pressure was set to 1 bar at the opening boundary condition,
which corresponds to static or total pressure for outflow and inflow, respectively. The tempera-
ture was also 293 K. The medium was air with the ideal gas law and the k-ε turbulence model.
The simulations were done in CFX environment. The High Resolution scheme was employed
for the advection terms and the turbulence model, and the Second Order Backward Euler for
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Pipe diameter Dpipe 40.2 mm
Relative pipe length L

Dpipe
varied

Reduced mass m 1 kg
Spring stiffness s 21000 N/m
Discharge coefficient CD geometry-dependent
Gas constant R 287 J/(kgK)
Ratio of specific heats γ 1.4
Kinematic viscosity ν 1.511× 10−5m2/s
Set pressure pset 3 bar
Inlet total pressure ptot,r varied
Inlet static temperature Tr 293 K
Back pressure pb 1 bar
Environmental temperature T0 293 K
Initial relative valve lift x̄(0) 20
Initial valve velocity ẋ(0) 0 m

s

Spatial resolution nx 10

Table 1: Parameter values

the time stepping. A mesh dependency study was concluded at the lowest and largest valve lifts
with the highest inlet total pressure by doubling the mesh resolution on all edges, i.e. quadru-
pling the number of elements. The relative differences for both the fluid forces and the mass
flow rates were below one percent, therefore the results on the original mesh can be deemed as
numerically accurate.

The mass flow rates, the pressures at the seat and the total forces acting on the valve disc
were extracted from the simulation results. With them, both the discharge coefficients and the
effective area functions were determined for all three geometries using Equations (2) and (5).

4 RESULTS

The gas dynamical model consisting of Equations (1) and (4) was solved with the parameters
listed in Table 1. To create the stability maps, the inlet total pressure was varied between 3.1 and
3.4 bar with increments of 1250 Pa, and the upstream pipe length was varied between 20Dpipe

and 40Dpipe with increments of 0.5Dpipe. The effective area functions and the discharge coef-
ficients were set based on the fixed-lift CFD simulation results. The former are illustrated in
Figure 2, which also shows the functions for incompressible simulations on the same geome-
tries. The error bars represent the dependence on the pressure at the pipe end. The effective
area values are the lowest for the 0◦ geometry, which is expected since it has the lowest jet
deflection angle — however, the 90◦ results are only higher than the 45◦ ones for lower lifts.
It can also be seen that the pressure-dependence is much lower in the incompressible and that
compressibility has a strong effect both qualitatively and quantitatively. Note that the incom-
pressible effective areas served only illustrational purposes, all calculations were made with the
compressible results. The discharge coefficients were

CD,0◦ = 0.8545, CD,45◦ = 0.8515, CD,90◦ = 0.7787. (8)

These values indicate that the 90◦ geometry had a significant choking effect, reducing the mass
flow rate under similar conditions by around 10%.
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0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

x/Dpipe [-]

A
eff
/A

p
ip
e
[-
]

 

 
0° compr.
0° incompr.
45° compr.
45° incompr.
90° compr.
90° incompr.

Figure 2: The effective area results for both the compressible (continuous lines) and
incompressible (dashed lines) cases.

The results were said to be stable if the valve lift reached the equilibrium position in a
decaying manner, and unstable otherwise, i.e. when periodic non-decaying oscillations were
produced. First, the stability map was created in the inlet total pressure and upstream pipe
length plane, as these were the two varied parameters (Figure 3(a)). The boundary curves differ
in the three cases: for the 0◦ geometry, increasing the inlet total pressure extends the stable
operating range, while the system behaves the opposite way for the 45◦ disc. In the case of the
90 deg geometry, the boundary of stability is seemingly independent of the inlet total pressure.
This shows that the accurate calculation of the fluid forces introduces not just qualitative, but
also quantitative differences in regarding the boundary of stability.

The corresponding industrial standard [1] and the literature [9] usually discusses stability as
a function the driving mass flow rate and pipe length. This map can be seen in Figure 3(b).
Similar tendencies can be observed to those mentioned above regarding the shape of the curves,
however, the difference in the mass flow rates makes the comparison ambiguous — it is possible
that at higher flow rates the 0◦ curve becomes flatter (or even decreasing). The lower flow rates
can be traced back to the lower effective area values (see Figure 2) as lower fluid forces do not
produce as much valve lift.

5 CONCLUSIONS

This study employed a relatively simple, one-dimensional model for computing the valve re-
sponse for a given inlet total pressure. Steady-state CFD simulations were conducted for three
different valve disc geometries in order to obtain their force characteristics and discharge coef-
ficients. With these, their specifics were implemented into the reduced model and a parameter
study was conducted in the mass flow rate and the inlet total pressure plane. It was shown
that even slight changes in the disc geometry can have a significant effect on both the stable
operating range and the resulting mass flow rate.
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Figure 3: Boundaries of stability in the total pressure and pipe length (a) and mass flow rate
and pipe length (b) planes. In both cases instability was observed above the boundaries.
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Abstract. The paper presents study of coupled aerodynamic and thermodynamic interaction
between human body and environment under low temperature and wind conditions. The passive
heating or the prescribed heat flux model is used to model the metabolic heat release by human
body. The heat flux is selected from the condition that the surface temperatures take experimen-
tal values for certain environmental conditions. Heat transport inside of the clothes, radiation,
natural and forced convection are simulated using OpenFOAM toolkit. Results are obtained for
the schematic human body in form of a cylinder and real body. It was shown that only forced
convection and heat conduction play an essential role at wind conditions and low temperatures
whereas the radiation and natural convection can be neglected. To keep the human body tem-
perature on the acceptable level, the local heating elements can be embedded into the clothes
textile. The power of this heating was calculated using the models of aero-thermodynamic cou-
pled interaction including heat radiation. Under strong wind conditions the heat transfer from
the human body can sufficiently be increased due to change of the thermal conductivity caused
by cloth deformation under wind induced pressures. The results of the work are used for the
design of real protection clothes for the work under low temperatures and wind conditions in
oil gas industry.
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1 INTRODUCTION

Modeling the interaction in the system human- clothes - environment is a very complex
interdisciplinary research subject requiring different competencies in the fields of physiology,
thermodynamics, fluid mechanics and textile sciences. The simulation in the field of human
thermodynamics can be done using either physical human body models (thermal manikins),
which are manufactured in full size, or mathematical models. The manikins are equipped with
heat wires and temperature sensors to imitate heat transfer over the entire body . Among the
limitations of the experimental studies with manikins one can mention high costs in manufactur-
ing. Technically, it’s very difficult to divide a manikin in many partitions with different heating
power and study the temperature distribution over the entire body surface. Moreover, it is im-
possible to separate the effects of convection and radiation, since various sensors are required
for these phenomena. Even if all these difficulties can be overcome, the manikin remains a
model and relies on many assumptions.

With a rapid development of numerical methods the focus of the investigation of the inter-
action between human and the environment is increasingly being shifted in the direction of the
computer simulations. Development of the theoretical basis for modeling interactions in the
human-clothing-environment and the design of intelligent smart clothing requires the develop-
ment of the following three sub-models:
• mathematical model for the human thermodynamics with consideration of thermal conduc-
tion, heat transport by the blood, radiation, respiration, heat release by internal organs and active
response of the body.
• mathematical model for heat transport in clothes and in the under garment space with taking
into account humidity, permeability of clothing, anisotropy of heat propagation within the cloth,
non-uniformity of the air layers between the body and clothes as well as between different layers
of cloth. For the intelligent or smart clothes the internal heating inside the clothes should be
modeled.
• mathematical model for the transport of the heat from the human body to the environment
through the radiation, thermal conduction, natural and forced convections.

Short description of the mathematical model used in this paper is presented in the next sec-
tion.

2 MATHEMATICAL MODEL

The first models for internal human thermodynamics were proposed by Fanger [1] and Stol-
wijk [2]. One of the most successful and widely used models of human thermoregulation, which
also represents the state of the art in this field, has been developed by Fiala [3]. The group of
models proposed by Stolwijk [2] and Fiala [3] are based on the partial differential equations
describing the heat transport in cross sections of body which are coupled through the blood
transport along the body. Since such models are not quite reliable we use a simplified model
specifying the heat flux on the body surface q̇ (prescribed wall heat flux). In this case, the body
heat production is taken into account by a heat flux q̇ distributed over the body either homoge-
neously as q̇ = Qtotal/A, where Qtotal is the total heat released by the body and A is the surface
of the human body, or non homogeneously with use of empirical data on skin temperature.

The heat transport within the clothes occurs mainly due to the thermal diffusion, although
the effects of natural and forced convection caused by the movement of people (bellows effect)
are also available. Strictly speaking, the heat propagation in clothes is anisotropic because of
the specific textile structure. The application of simple temperature equations with an isotropic
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Figure 1: Distribution of the temperature in the normal direction to cylinder with clothes layer. Cases 1-1, 1-2, 2-1,
2-4.

scalar heat conduction coefficient is not correct. However, since the clothes is relatively thin,
one can neglect the anisotropy and determine an integral value for the coefficient of the conduc-
tion from the measurements. In the present paper, the clothes is considered to be a solid body
with the thermodynamic properties determined from experiments. The folding of the cloth, the
bellows effect and irregularity of the air insulation layer are not considered.

Forced convection is calculated using the incompressible flow model with the temperature
considered as a passive scalar determined from the temperature transport equation. The turbu-
lent flow was calculated using steady RANS (Reynolds Averaged Navier- Stokes Equations)
with the k − ε (sec. 3.1) and k − ω SST models (sec. 3.2).

The framework OpenFOAM [4] was utilized for the numerical solution of the total problem.
Four different models are available in OpenFOAM for calculating the radiation : fvDOM, P1,
opaque solid and view factor models.

3 RESULTS

Before performing calculations for the real human body we studied a more simple case
in which the body is schematically represented by a cylinder. This is done to avoid serious
problems arising due to irregularity of the real human body surface and complex grids. Using
a simplified body model we determined the heat transport phenomena which can be neglected
when considering the real body model.

3.1 Preliminary study using cylinder model with cloth

The study was performed for a cylinder with the height of 1500 mm and a diameter of 382
mm, which mimics the human body approximately. The surface of the cylinder is 1.9m2 which
corresponds to the human body surface. The cylinder case seems to be relevant since the heat
conduction takes place mainly in the normal direction similar to the body case. The study was
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performed at low and very low temperatures with consideration of the radiation, natural and
forced convections. To model the protecting influence of cloth, an outer layer with the thickness
of 30 mm was inserted as a cover of the cylinder. The coefficient of thermal conductivity of the
layer is equal to this of the real clothes (s. subsec. 3.2.2).

Table 1: Summary of cases

Case Air Wind Radiation Metabolic Internal Body clothes
temperature speed heat heating surface surface

release temperature temperature
0C m/s W W 0C 0C

1-1 -22 0 No 85 0 30.5 -8.3
1-2 -22 0 Yes 85 0 23.9 -15.3
2-1 -40 0 No 85 0 12.0 -27.0
2-2 -40 0 No 85 55 29.5 -21.0
3-1 -40 5 No 85 0 3.2 NA
3-2 -40 5 No 85 105 29.5 -31.0
3-3 -40 5 Yes 85 105 28.2 -31.8
3-4 -40 10 No 85 118.4 29.0 -33.2

The calculation cases are summarized in table 1. Two different ambient air temperatures
were examined: −220C and −400C. The boundary layer created by the natural convection can
be either laminar or turbulent depending on the ratio between the buoyancy and the viscous
forces, which is characterized by the Rayleigh number Ra = GrPr, where Gr and Pr are
the Grashof and Prandtl numbers respectively. Since for the cases under consideration the
Rayleigh number is 2.31× 109 the flow caused by natural convection is turbulent. The standard
k − ε is applied. The degree of turbulence at the inlet amounts to 10% what at the speed of
u = 0.5m/s corresponds to the r.m.s of u/ = 0.05m/s, while the turbulent kinetic energy is
k = 3/2u/2 = 0.00375m2/s2. The dissipation rate ε calculated using the integral length of
l = 5cm is ε = Cµk

3/2/l = 4.13 · 10−4m2/s3. The prescribed heat flux of 85 Watts distributed
uniformly over the cylinder surface simulates the metabolism heat release. This value allows
one to obtain the temperature of 300C on the body surface. Calculations were performed with
the code OpenFoam [4]. To couple the air environment with the solid bodies including the cloth
the turbulent TemperatureCoupledBaffleMixed routine is used. A special interface has been
introduced in order to thermally couple the air environment and solid body. The available in
OpenFoam routine turbulentTemperatureRadCoupledMixed condition was applied to model the
radiation.

3.1.1 Effect of natural convection

The natural convection is caused by the density differences that occur in proximity to the
body due to the heating of the air. Heat transfer from the body is caused in this case by the
two following mechanisms: molecular thermal conduction (thermal diffusivity) and the heat
transport by the air movement. Four calculation cases 1-1, 1-2, 2-1 an 2-2 were investigated
with account for the natural convection. The temperature distribution along the line, which is
perpendicular to the cylinder surface, is shown in Fig. 1. The abscissa 0.191m corresponds
to the body surface, while 0.221m represents the outer boundary of the clothes. Through the
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metabolic heat release of 85W the body temperature (Case 1-1) reaches the value of 30.50C
when the air temperature is −220C. This result is consistent with the experimental observations
performed by the first author (IC) in the climate chamber with real test person. The insulating
protective clothes allows to hold the body temperature at a comfortable level of 300C with-
out additional heating. The temperature of the upper boundary of the clothes is negative and
amounts to −8.310C (see case 1-1 in the table 1). If the ambient air temperature decreases
to −400C, the body temperature reduces to 120C, while the temperature of the outer clothes
boundary sinks to −270C (s. case 2-1). Although a simplified geometry is considered, the
results are more plausible and physically than our previous results for the realistic human body
[5]. The temperature at the upper limit of the clothes is negative. This was achieved by reducing
the numerical error caused by irregular body surface and grid problems. To attain a comfortable
temperature at T0 = −400C we use the smart clothes with the internal heating placed at the in-
terface surface between the body and the cloth. From calculations it was found that the heating
power of 55W is required to bring the body temperature at 29.500C ( s . Fig. 1 and case 2-2 in
Table 1). The temperature of the clothes boundary is −210C for this case.

3.1.2 Effect of radiation

In this paper the opaque solid model was used which takes the radiation within the clothes
into account. The emissivity was set equal to the value of 0.9. The results are presented in Fig.
1 and case 1-2 in table 1. As can be seen , the body temperature drops by radiation from 30.50C
to 23.90C. Therefore the comfort conditions documented in the case 1-1 are disturbed by the
radiation .

3.1.3 Effect of forced convection

Forced convection has a crucial effect on the heat interaction between human body and envi-
ronment especially at low temperatures. In this work, four cases listed in the table 1 as cases 3
are studied. The ambient temperature was in all cases −400C. The results show that the forced
convection caused by the wind of 5m/s results in the drop of the body temperature to 30C
without heating (s. case 3-1). In order to achieve the comfortable body temperature of around
300C, the internal heating of 105W is required (see case 3-2 in table 1). It is noteworthy that
the radiation at the wind conditions is completely meaningless (s. Fig. 2 and compare cases 3-2
and 3-3). When the wind has the speed of 10m/s the required internal heating should have the
power of 118.4W (see case 3-4). Concluding, when the heat exchange between the human body
and environment is calculated at low temperatures only forced convection and thermal diffusion
can be taken into account. Other effects like the radiation and natural convection are negligible.

3.2 Results for the human body model with cloth.

3.2.1 Human body model, computational domain and grid.

The finite volume method is implemented on an unstructured grid with approximately 4.3M
of cells in the computational domain 15m × 5.5m × 5.5m. Elongation of the computational
domain in the longitudinal direction is necessary to calculate the wake effect. The grid has
different resolutions in different areas. The finest unstructured grid is located in the block of
3m × 1.8m × 1.8m closest to the body. Away from the body the grid resolution is gradually
reduced having relatively high resolution in the block 7.5m × 3.6m × 3.6m. The real human
body geometry of height of 1.8m designed at the Hohenstein Institute on the basis of the detailed
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Figure 2: Distribution of the temperature in the normal direction to cylinder with clothes layer. Cases 2-2, 3-2, 3-3.

anthropological study of different categories of peoples is located in the symmetry plane at 5m
from the inlet of the computational domain. For reliable resolution of the temperature boundary
layers six thin prism layers are added on the inner and the outer surfaces of the cloth. A thin
prism layer of the thickness of 1mm adjacent to the inner air layer between the clothes and the
body is served as the heating layer with heat release source f .

3.2.2 Clothes construction

A clothes of thickness 30 mm comprises a savior, a flamestat cotton (upper sheet), an insu-
lation thinsulate, and a taffeta as a lining. This clothes is used in oil industry for work at very
low temperatures under oil contamination conditions. The air layer of the thickness of 10mm
is located between the clothes and the body. The clothes textile has the following properties:
the heat capacity is Cp = 1800J/kgK, the density is 8.57kg/m3, the thermal conductivity is
λ = 0.04W/mK.

3.2.3 Prescribed heat flux model of the human body

The heat flux q̇ is calculated from the condition that the resulting temperatures from simu-
lations are equal to these measured on the real human body clothed in the protection coverall.
Temperature measurements were performed at −22 deg of the ambient air at 18 points directly
on the skin of the human body. The body surface is subdivided into 34 elements. The heat
flux on each element was varied as long as the temperature on the skin from simulations is
approximately equal to the measured ones. Details of this procedure are presented in [5].
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3.2.4 Results for internal heating

The aim of the calculation is the determination of the heat release f which allows one to
maintain the temperature on the body skin in the comfortable range at the temperature of the
ambient air of −40◦ without wind. The comfortable body skin temperatures are taken from the
measurements performed at −22◦ with the real human clothed in the protection coverall. In
numerical simulations the area and the power were varied as long as the simulated temperature
at 18 points is close to the comfortable one. The heating elements were selected under the
following conditions:
• Heating elements can not be located close to the sensible inner organs because it can have
negative impact on health,
• Heating elements can not be located in zones of high sweating,
• The necessary area of the heating elements and heating power should be minimal,
• Both overheating and under heating of the body should be avoided.

Distribution of heating elements with necessary area and heat flux as well as the temperature
distributions on the body skin are given in Fig. 3. The total heat flux necessary to maintain the
comfortable temperatures is estimated as 60 Watt. This result obtained for the real human body
is very close to this for the cylinder. Therefore, we can expect the same result for the case with
wind speed. i.e. the power necessary to attain the comfortable temperature on the real body for
the wind speed of 5m/s is around 105W .

3.2.5 Clothes deformation due to wind induced pressure.

Wind causes big areas of the overpressure on the clothes surface which results in deforma-
tions and local change of the clothes thickness. In its turn, change of the local thickness leads
to an alteration of heat conduction properties of the cloth. This means that the heat exchange
between body and air is changed not only by intensification of convective heat transfer but also
due to change of thermodynamic properties of clothes caused by wind induced deformations.
The second effect has still not been discussed thoroughly in the literature. Under strong wind
conditions the heat transfer from the human body can sufficiently be increased due to change
of the thermal conductivity caused by cloth deformation under wind induced pressures. For
instance, at 10 m/s the heat increase could be of ten percent. For the details of this study the
reader is referred to the work [6].

4 CONCLUSIONS

The paper presents an application of numerical simulations for design of a special clothes for
work under extremely low temperatures. The heating elements inside of the clothes are applied
to maintain the comfortable temperatures on the body skin. The distribution of the temperature
on the body, in the cloth, in the air layer between the body and the clothes and in the ambient air
is calculated from the transport equations using the OpenFoam toolkit. Results are obtained for
the schematic human body in form of a cylinder and real body. It was shown that only forced
convection and heat conduction play an essential role at wind conditions and low temperatures
whereas the radiation and natural convection can be neglected. Sizes and the power of heat-
ing elements are selected from numerical simulations. At present present numerical results are
used to construct the protecting coverall of the new generation for employees of the gas and oil
industry.
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Figure 3: Power of the heating elements and the temperature distribution at the human body at −400C of the
surrounding air. CFD calculations with OpenFoam program.
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Abstract. Nowadays, the prediction of mechanical behaviour of reinforced composites is a 

paramount problem in computational materials science. The macroscale effective coefficients 

are obtained from the microscale information also known as the so-called corrector problem. 

A numerical strategy based on integral equation known as the periodic Lippmann-Schwinger 

equation is used in the present study. For that purpose, several Representative Volume Ele-

ments (RVE) are generated with a mixture of spherical and ellipsoidal inclusions, by the Ran-

dom Sequential Adsorption scheme or the time driven Molecular Dynamics. In this work, the 

influence of the inclusions morphology on the accuracy of some classical mean-field approx-

imation methods and a full-field computational method based on numerical homogenization 

techniques to predict the mechanical properties of these materials is studied. For low volume 

fractions of inclusions, the results of the mean-field approximations and those of the Fast 

Fourier Transform-based (FFTb) full-field computation are very close, whatever the inclu-

sions’ morphology. For RVEs consisting of ellipsoidal or a mixture of ellipsoidal and spheri-

cal inclusions, when the inclusions volume fraction becomes higher, one observes that 

Lielens’ model and the FFTb full-field computation give almost similar estimates. The accu-

racy of the computational methods depends on the shape of the inclusions and their volume 

fraction.
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1 INTRODUCTION 

During the last decades, the micromechanics of heterogeneous materials, which is an area 

of very fertile researches at the boundary between physics and mechanics of materials, 

evolved from the so-called mean-field approaches to full-field schemes such as Finite Ele-

ment Method (FEM) or more recently Fast Fourier Transforms (FFT) methods initiated by 

Moulinec and Suquet [1]. The aim of these approaches is to predict the effective behaviour of 

reinforced composite materials which is strongly influenced by the microstructure (e.g., con-

stituents’ properties, volume fractions, shapes, orientations, etc.). In such materials, inclusions 

can have several morphologies with different geometrical orientations. To exactly describe 

the effective behaviour of reinforced composite materials, a highly accurate description of the 

microstructures is required. 

The full-field approach used in this paper is the Fast Fourier Transform-based (FFTb) ho-

mogenization technique [2] where an iterative scheme is used for computing effective proper-

ties of each given RVE (Representative Volume Element). One of the main advantages of this 

approach is its low time and memory consumption in comparison for example with finite el-

ements methods. The application of the FFTb methods to the study of the overall behaviour of 

materials involves a preliminary step of 3D RVE generation. Another important feature of this 

method is that the generated RVE well approximates, at least in certain aspects, the real mi-

crostructure of the material. Mean-field homogenization methods rely on a simple statistical 

analysis of the microstructure. 

Several works were conducted to highlight the validity domains of these mean-field mi-

cromechanical models (by comparing them to full-field approaches) when predicting the elas-

tic properties of various RVEs with different microstructures. Most of these studies have been 

focused on spherical particles reinforced composites, aligned fibers reinforced composites, 

randomly oriented fiber reinforced composites or microstructures with aligned or randomly 

oriented clay platelets. 

In this work, the effective material properties obtained using the numerical FFTb homoge-

nization techniques were compared to three different analytical methods: the normalized self-

consistent scheme (NSC) [3,4], the Mori–Tanaka model (MT) [5] and Lielens’ model [6]. The 

aim of this paper is to exhibit the influence of the inclusions morphology on the accuracy of 

these homogenization techniques to predict the mechanical properties of reinforced compo-

sites consisting not only for spherical or ellipsoidal inclusions but also for a mixture of spher-

ical and ellipsoidal inclusions. 

2 RVE GENERATION AND FFT-BASED HOMOGENISATION 

In this paper, we focus on the influence of the inclusions morphology on reinforced com-

posite materials. In order to study the heterogeneous medium, one needs to have access to 

RVEs. Basically there are two main families of algorithm to design an RVE with complex 

microstructures. The First technique is based on the RSA method (Random Sequential Ad-

sorption) whereas the second technique is based on MD (Molecular Dynamics). In this paper 

our choice goes to the latter one. Actually this approach is richer, more fruitful to design 

RVEs. Moreover this approach is reliable and fast enough to build RVEs. Indeed, in this tech-

nique, one can play with different kind of parameters which allow one to design RVEs with 

various inclusions such as spheres, cylinders, ellipsoids or a mixture of different kind of these 

simple geometries. The MD-based method is also powerful for higher volume fractions (of 

order 50 − 60%): MD generates a configuration in about a second whereas the RSA can get 

stuck. The classical RSA and the time-driven version of MD applied to generate the mixture 

of inclusions of spherical and cylindrical shapes will not be presented is this paper. A detailed 
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description can be found in [7]. An example of a sample with a mixture of nonintersecting 

spherical and cylindrical inclusions is presented on the figure 1a. Because mean-field ap-

proaches usually describe inclusions shape by the means of ellipsoids, we introduced imper-

fections (see [2] for more details) on the cylinder inclusions without spoiling the efficiency of 

the generation algorithm, in order to obtain ellipsoidal inclusions instead of cylinder. The fig-

ure 1b shows the same RVE as in figure 1a where the extremities of cylinder inclusions are 

rounded in order to obtain ellipsoidal inclusions. 

      
(a)                                                                    (b) 

Figure 1: Examples of 3D view of generated RVEs: (a) spherical and cylindrical inclusions, (b) spherical and 

ellipsoidal inclusions. 

Once the RVE are generated, one seeks to find out the effective mechanical properties. For 

that purpose we have developed a homogenization technique based on the Lippmann-

Schwinger equation, since the RVE are periodic. Actually, a mechanical homogenization 

problem for periodic heterogeneous media, leads to solve a microlocal problem, also known 

as the corrector problem, in which the corrector term is the periodic unknown. The corrector 

term is then a solution of an elliptic partial differential equations (PDE). From a mathematical 

point of view, solving a PDE returns to determine the Green function associated with the PDE. 

Hence, the above problem is a Fredholm integral equation leading to the Lippmann-

Schwinger equation (see Moulinec and Suquet [1]) which can be solved using the FFT tech-

niques. In the sequel, this approach has been privileged and is called the FFT-based homoge-

nization (FFTb). 

3 MEAN-FIELD HOMOGENIZATION MODELS  

Because the inclusions frame of reference Ri attached to its main axes are not always iden-

tical to the RVE coordinate system RI, subscripts “Ri” and “RI” are added, for the sake of 

clarity, to each tensor to indicate the coordinate system in which it is expressed. One can note 

that the subscripts “Ri” and “RI” are not necessary when the inclusions are spherical or all 

aligned, because in this case Ri and RI are the same. For randomly oriented inclusions rein-

forced composites, the geometrical orientation of each inclusion is described by three Euler 

angles  21  ,, . The transition between the local coordinate system Ri of the inclusion and 

the RVE system RI is made by these three Euler angles in the Bunge convention [8] where the 

transformation matrix is given by the following equation (1). This matrix is applied, for a giv-

en rank four tensor K, as showed in equation (2). 
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The homogenized stiffness tensor C of a composite consisting of n different types of inclu-

sions (in terms of shape and geometrical orientation) in the RVE coordinate system RI is: 





n

i

iRIiRIimRImRIm
RVE

RIRI A:CfA:Cf A:CC
1

                         (3) 

where fi, Ci and Ai denote respectively the volume fraction, the stiffness tensor and the strain- 

localization tensor of inclusions exhibiting the same shape and the same geometrical orienta-

tion. fm, Cm and Am denote respectively the volume fraction, the stiffness tensor and the strain-

localization tensor of the matrix. A:B denotes the double scalar product using the Einstein 

summation convention. 
RVE

 stands for the volume average over the whole RVE (matrix + 

inclusions). From the average strain theorem, one can obtain: 

 



n

i

iRImRIiRIimRI A:CCfCC
1

                                         (4) 

This is the main relation used to calculate the homogenized stiffness tensor. The strain-

localization tensor Ai in this relation differs from one model to another. In the normalized self-

consistent [3,4], Mori-Tanaka [5] and Lielens’ [6] models, the strain-localization tensors are 

expressed respectively as follows: 
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E is the Morris’ tensor [9], which represents the interaction between an inclusion with a given 

morphology and the homogeneous equivalent medium. In the case of an ellipsoidal inclusion 

whose principal axes lengths are {2a1,2a2, 2a3}, it is written in the coordinate system of the 

inclusion Ri as follows: 

1

ijklRi

Esh

ijklRi

2π

0

ikjl

π

0

ijklRi CSdγθdθsin
π

E   
4

1
                                     (8) 

where   lj

1

ikikjl ξξKγ ξ ,   liijplRijp ξξCK ξ , 
1

1 =
a

cossin
ξ


, 

2

2 =
a

sinsin
ξ


, 

3

3 =
a

cos
ξ


. 

EshS  is the Eshelby tensor; a1, a2, a3 are used to describe the inclusion shape. In the Mori-
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Tanaka model (equation (6)), the Morris’ tensor Em is computed by using the matrix proper-

ties Cm as the infinite media, instead of C. In equation (7) related to Lielens’ model, f is an 

interpolating factor which depends on the inclusions volume fraction [6,10]. For a set of in-

clusions with the same shape (ellipsoid, sphere,…) having a volume fraction fshape, the inter-

polating factor is given by: 

 shapeshape fff  1
2

1
                                                   (9) 

In our study, for the RVEs exhibiting inclusions with two different shapes (ellipsoid and 

sphere), an interpolating factor is considered for each shape according to their volume fraction. 
lower

iA  and upper

iA  in equation (7) are given by: 

   1
 mRiiRimRi

lower

iRi CC:EIA                                        (10) 

   1
 iRimRiiRi

upper

iRi CC:EIA                                       (11) 

Note that in these relations, the Morris’ tensors Em and Ei are computed by using the matrix 

and the inclusion properties respectively as the infinite media. 

4 RESULTS AND DISCUSSION 

In this part, several RVEs exhibiting different morphologies have been studied. The accu-

racy of homogenization models was evaluated for composites made of an isotropic matrix re-

inforced with isotropic spherical and/or ellipsoidal particles. Effective properties predicted by 

mean-field homogenization analytical models have then been compared to those obtained 

numerically (by FFT-based homogenization technique) in order to rigorously validate the in-

vestigated models and to highlight the influence of the inclusion volume fraction on their ac-

curacy and their sensitivity to the inclusions morphology. The effective bulk, shear and 
Young’s moduli were computed for each RVE using the corresponding homogenized stiffness 

tensor C. For the sake of simplicity, only the effective shear eff  and bulk eff  moduli were 

presented in this paper. In the following, the Poisson ratio is assumed to be ν = 1/3 for all 

phases (inclusions and matrix).  

4.1 Influence of spherical inclusions on the accuracy of the models 

Many works were conducted to highlight the validity domains of these mean-field micro-

mechanical models (by comparing them to full-field approaches) when predicting the elastic 

properties of composites reinforced with spherical particles  [11,12]. Consequently, our study 

is not concerned with this kind of RVEs. However, some simulations were made in order to 

confirm if our results are in accordance with theirs. For inclusion volume fraction of about 

10%, predictions of eff  and eff  by the mean-field approaches are almost satisfactory. 

Around 30% of inclusions, mean-field models are accurate for low contrast and deviate from 

the FFTb solution for high contrasts. When the inclusions volume fraction reaches 50%, the 

same behaviour was observed. Figure 2 shows the normalized effective shear eff  and bulk 

eff  moduli evolutions as function of the Young’s modulus contrast Ei/Em (ratio between the 

Young’s modulus Ei of the inclusion and Em of the matrix) in this case. The predictions of 

Mori-Tanaka and normalized self-consistent models diverge very rapidly when the contrasts 
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increase, as observed in [11]. The Mori-Tanaka model underestimates the accurate solution 

(supposed to be FFTb results) while the normalized self-consistent model overestimates it. 

For low contrasts, (up to 50 for the bulk modulus and up to 20 for the shear modulus), 

Lielens’ model is close to the FFTb, with a relative deviation from the FFTb less than 10%. 

 

Figure 2: Normalized effective shear and bulk moduli as function of the Young’s modulus contrast for a RVE 

consisting of spherical inclusions with a volume fraction of 50%. 

4.2 Influence of ellipsoidal inclusions on the accuracy of the models 

The aim of this part is to highlight the accuracy of the mean-field approaches while pre-

dicting the mechanical behaviour of these kinds of composites made of randomly oriented iso-

tropic ellipsoidal inclusions distributed into an isotropic matrix. To do this, six RVEs 

containing respectively 4, 8, 12, 16, 20 and 30% (in volume) of ellipsoidal inclusions have 

been investigated. Each inclusion contains 10 ellipsoidal inclusions randomly distributed. 

This distribution differs from one RVE to another. For this study, the aspect ratio of the ellip-

soids is taken equal to 5 (a1/a2 = 5, a2 = a3) for all inclusions. 

Using the RVEs’ parameters given by the RSA and MD-based generation algorithms, we 

computed the homogenized properties of each RVE. The figure 3 shows the evolution of the 

normalized effective shear modulus as function of the Young’s modulus contrast for some of 

the RVEs investigated. The effective bulk modulus results are not showed for the sake of clar-

ity and especially because the relative deviations from the FFTb observed in this case are less 

than those obtained for the effective shear modulus. In the case of high volume fraction of el-

lipsoidal inclusions, the normalized self-consistent model cannot be reasonably used. Actually, 

in that case, the computation time increases drastically and the algorithm involves a high 

memory consumption due to the iterative resolution. For all these reasons, this model was not 

presented in this part. Figure 3 shows that Lielens’ model is close to FFTb. The mean-field 

analytical models are more sensitive for ellipsoidal inclusions’ volume fraction. Up to about 

20% of inclusions, all the models deliver accurate estimates of the homogenized properties 

regardless of contrasts. The relative deviations from the FFTb model observed in this case do 

not exceed 4% for Lielens’ model and 6% for Mori-Tanaka model. For a volume fraction of 

30%, the models deliver accurate estimates only for low contrasts ( 20mi E/E ). 
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Figure 3: Normalized effective shear modulus as function of the Young’s modulus contrast for RVEs consisting 

of ellipsoidal inclusions with a volume fraction of 4, 12, 20 and 30%, respectively. In each RVE, 10 ellipsoidal 

inclusions exhibiting different orientations were considered. The aspect ratio of the ellipsoids is a1/a2=5. 

4.3 Influence of a mixture of spherical an ellipsoidal inclusions on the accuracy of the 

models 

Now, we consider two RVEs containing a mixture of spherical and ellipsoidal inclusions. 

For the two RVEs, the volume fraction of the spherical and ellipsoidal inclusions is set at 5% 

and 6.7% respectively. For one RVE, the ellipsoids were oriented in only 2 directions differ-

ent from the main directions of the RVE. It is clear that the macroscopic behaviour will be 

strictly anisotropic in this case. The aspect ratio of the ellipsoids is fixed to 5. For the other 

RVE, 10 different geometrical orientations were considered for the ellipsoidal inclusions. The 

aspect ratio of the ellipsoids for this RVE is set at 10. Figure 4 shows the normalized effective 

shear and bulk moduli evolutions related to the contrast of these RVEs. The models are in 

good agreement for the shear and bulk moduli in each case. Figure 4 shows that Lielens and 

Mori-Tanaka models deliver, for the volume fractions investigated, the most accurate predic-

tions when the RVE contains a mixture of spherical and ellipsoidal inclusions, regardless of 

the macroscopic behaviour being isotropic or not. Although the normalized self-consistent 
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model deviates from the other models, the maximal relative deviation from the FFTb results 

observed for this later do not exceed 5%. One can also notice that the mean-field models are 

sensitive to the ellipsoids aspect ratio because the discrepancies observed are more important 

in the RVE where the ellipsoids exhibits the great aspect ratio. 

 

Figure 4: Normalized effective shear and bulk moduli as function of the Young’s modulus contrast for 2 RVEs 

consisting of a mixture of spherical (5%) and ellipsoidal (6.7%) inclusions. The ellipsoidal inclusions (a1/a2=5) 

of the first RVE exhibit 2 different geometrical orientations. In the second RVE, the ellipsoidal inclusions 

(a1/a2=10) exhibit 10 different geometrical orientations. 

5 CONCLUSIONS  

The study highlights the influence of the inclusions morphology on the accuracy and dis-

crepancy of some classical mean-field approximation methods and a full-field computational 

method based on numerical homogenization techniques to predict the mechanical properties 

of these materials. Several Representative Volume Elements containing spherical, ellipsoidal 

inclusions and a mixture of both were studied. For low volume fractions of inclusions, the re-

sults of the mean-field approximations and those obtained with the Fast Fourier Transform-

based (FFTb) full-field computation are very close regardless to the inclusions morphology. 
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RVEs consisting of ellipsoidal or a mixture of ellipsoidal and spherical inclusions, when the 

inclusions volume fraction becomes higher, one observes that Lielens’ model and the FFTb 

full-field computation give almost similar estimates. The sensitivity of the computational 

methods, consequently their accuracy depends on the shape of the inclusions and their volume 

fraction. The ellipsoids aspect ratio has also some influence on the accuracy of the models but 

this one is less than the influence of the volume fraction. For microstructures with a mixture 

of ellipsoidal and spherical inclusions, Lielens’ and Mori-Tanaka models could be a good al-

ternative to the FFTb model when the total inclusions vol-ume fraction is about 12%. In this 

case, the normalized self-consistent model could also be an alternative to the FFTb model 

with an error less than 5%.  
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Abstract. Pultrusion is a continuous and cost-effective process for a production of composite 

structural components with a constant cross-sectional area. This technological process could 

be made more effective applying instead of conventional heaters a high frequency electro-

magnetic energy source characterized by the fast, instantaneous, non-contact and volumetric 

heating. To provide better understanding of the microwave assisted pultrusion process, to 

support the pultrusion tooling design and process control, new simulation methodology con-

sisting of two sub-models has been developed. Each of them is constructed by using the gen-

eral-purpose FE software that results in considerable savings in development time and costs, 

and also makes available various modeling features of the FE package. In the first step the 

electromagnetic sub-model is used to evaluate the electric field distribution by solving the 

Maxwell’s equations with the COMSOL Multiphysics. It is necessary to note that in this sub-

model the transport phenomena is neglected since an influence of the pull speed of the pro-

cessing material on the electric field distribution is negligible. The objective of simulations is 

to find the microwave field as homogeneous as possible inside the cured composite profile in 

the ceramic inlet. In the second step an absorption energy field in the composite material de-

termined with the electromagnetic sub-model is used as a heating source in the pultrusion 

process modeled with the thermo-chemical sub-model. This simulation procedure is devel-

oped in ANSYS Mechanical environment and based on the mixed time integration scheme and 

nodal control volumes method to decouple the coupled energy and species equations. To 

demonstrate an application of the developed methodology for the design of technological pro-

cess, the microwave assisted pultrusion of the cylindrical rod made of glass fibers Unifilo 

4800 tex and polyester resin POLRES 305BV has been investigated. 
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1 INTRODUCTION 

Pultrusion is a continuous and cost-effective process for a production of composite struc-

tural components with a constant cross-sectional profile (Fig. 1). During pultrusion the fiber 

reinforcements are saturated with the resin in a resin tank and then continuously pulled 

through a heated die by a puller. Inside the die the resin gradually cures and solidifies to form 

a composite part with the same cross-section profile as in the die. At the final stage a traveling 

cut-off saw cuts the composite profile into desired lengths. 

This technological process could be made more effective applying instead of conventional 

heaters a high frequency electromagnetic energy source characterized by the fast, instantane-

ous, non-contact and volumetric heating. It is necessary to note that at present time micro-

wave heating [1] is successfully and widely used in different industrial curing processes [2, 3]. 

Due to the complexity of the multiphysical problem to be solved for a microwave assisted 

pultrusion process, initially these processes have been analyzed experimentally [4, 5]. A brief 

review of the potential for microwave heating in the pultrusion manufacturing processes of 

fiber reinforced composites is presented in paper [6]. Recently, due to the rapid development 

of the finite element software for a solution of multiphysical problems, a computational mod-

eling of the microwave assisted pultrusion processes has started. In paper [7] the finite ele-

ment model and corresponding analysis have been developed for the microwave assisted 

pultrusion process of a fiberglass-epoxy cylindrical profile with the diameter of 5 mm. Sever-

al die external radius and two different sets of material die properties have been investigated 

to obtain an effective manufacturing process. 

To provide better understanding of the microwave assisted pultrusion process, to support 

the pultrusion tooling design and process control, new simulation methodology consisting of 

two sub-models are developed. Each of them is constructed by using the general-purpose FE 

software that results in considerable savings in development time and costs, and also makes 

available various modeling features of the FE package. In the first step the electromagnetic 

sub-model is used to evaluate the electric field distribution by using the COMSOL Multiphys-

ics software. In the second step an absorption energy field obtained in the composite material 

is applied as a heating source in the thermo-chemical sub-model developed in ANSYS Me-

chanical environment to determine temperature and degree of cure fields in the pultruded 

composite. To demonstrate an application of the developed methodology for the design of 

technological process, the microwave assisted pultrusion of the cylindrical rod is investigated. 

Conditions of the advanced pultrusion process, and the temperature and degree of cure fields 

in the composite material, are determined for the design of modular pultrusion die consisting 

of microwave block with the ceramic inlet located at the entrance of the steel mould. To ob-

tain desired characteristics of the investigated pultrusion process, an influence of the capacity 

of the absorption energy field, thermal insulation, preheating of steel mould, heating of resin 

bath and reduction of the steel mold length on the parameters of pultrusion process are studied. 

 

Figure 1: Pultrusion process. 
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2 STATEMENT OF THE PROBLEM 

For a numerical simulation of the microwave assisted pultrusion process it is necessary to 

solve two coupled multiphysical problems - electromagnetic and thermo-chemical. The elec-

tromagnetic problem is solved with the purpose to determine the electric field distribution and 

as the result to obtain the absorbed energy field in the composite material which will be used 

later as a heating source in the subsequent thermo-chemical problem. Solving the last problem, 

the temperature and degree of cure fields in the pultruded composite could be estimated. 

Using the common approach of a harmonic oscillating electric field E


 

     iferEtrE 2, 


 (1) 

where r


 is the location vector, t  is a time and f  is the microwave frequency, Maxwell’s 

equations could be written as following 

       02
2

00


 rEfrE r  (2) 

where 0  is the vacuum permittivity and 0  is the magnetic constant. This complex valued 

equation is solved numerically for the amplitudes of the electric field  rE


 with respect to the 

relative permittivity r  which for loss dielectric materials like mixtures of glass fibers and 

polyester resin is a complex function of frequency f , temperature T  and degree of cure   

       ,,'',,',, TfiTfTfr   (3) 

It can be obtained by the cavity perturbation method [8] at fixed frequencies or Corbino probe 

measurements [9, 10] with variable frequency. After numerical solution of Equation (2), the 

absorbed microwave energy generated by dielectric losses could be obtained like in paper [11]: 

    
2

0 ''2 rEfrQ


  (4) 

Knowing the absorbed energy field Q  in the composite material, the following thermo-

chemical problem consisting of three governing equations should be solved in the second step: 
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 (5) 

where  T  is the temperature,   and  pc  are the density and specific heat of the tooling mate-

rial, xk , yk ,  zk  are the thermal conductivities in x , y , z  directions, bq  is the rate of energy 

exchange at the boundary, u  is the pull speed,    and pc  are the lumped density and specific 

heat for the composite material, xk , yk ,  zk  are the lumped thermal conductivities in x , y , 

z  directions, q  is the generative term related to the internal heat generation due to the exo-
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thermic resin reaction, trHtH )(  is the degree of cure and )(tH  is the amount of heat 

evolved during the curing up to time t . It is necessary to note that the first equation in the sys-

tem (5) presents the energy equation for the tool, second – the energy equation for the compo-

site moving in the pull direction and third – the species equation (transport equation) for the 

resin. 

Heat transfer in the composite occurs as a result of the conversion of electromagnetic ener-

gy into heat, according to specific loss mechanisms, conduction and the generation of heat 

resulting from the exothermic chemical reaction initiated by the microwave heating. The gen-

erative term related to the internal heat generation due to the exothermic resin reaction could 

be written as: 

 rtrrr RHVq   (6) 

where rV  is the resin volume fraction,  r  is the resin density, trH  is the total heat of reaction 

and rR  is the rate of resin reaction determined as: 

 )()(
)(1

),( 


 fTK
dt

tdH

Ht
TR

tr

r 



  (7) 

where )(f  depends on the resin properties and varies with the applied resin reaction model, 

and )(TK  is defined by the Arrhenius relationship: 

 









RT

E
KTK exp)( 0  (8) 

where 314.8R  J/mol·K is the universal gas constant. It is necessary to note that coefficients 

of the Arrhenius relationship: activation energy E  and frequency factor 0K  are the physical 

values and are determined by the Kissinger method or ASTM E 698 standard methodology 

from the DSC tests. Coefficients of the selected function )(f  could be obtained in a simple 

way by a fitting of the experimental heat flow curves applying the least squares method. 

The reinforcement is saturated with the resin before entering the heated die in pultrusion 

process. Therefore, it is reasonable to assume that the resin does not flow. In most cases the 

continuous model with lumped material properties are used for a simulation of the pultrusion 

processes. These properties are evaluated by the rule of mixture: 

 

frrrfr

rf

prrrpffr

p

rrfr

kVkV

kk
k

cVcV
c

VV



















)1(

)1(

)1(

 (9) 

where indexes f  and r  relates to the fibers and resin, respectively. 

The above system (5) of three governing equations could be solved by using the prescribed 

initial and boundary conditions. It is assumed that at time 0t , for a curing composite the 

temperature is 0TT   and the degree of cure is 0  , where index “ 0 ” denotes the initial 

values. The temperature of the composite at the die entrance and everywhere in the composite 
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at the first step of numerical algorithm is prescribed as the pre-heat resin temperature. The 

value of the degree of cure at the die entrance and everywhere in the composite at the first 

step of numerical algorithm is taken as zero or very small value depending on the resin curing 

kinetic model. In some pultrusion processes this value could be much higher in relation to the 

ambient room temperature which is used also as the boundary conditions for a die to describe 

the convection effect. It is important to note that the power flux at the entrance and exit of the 

composite in the die is specified as zero. The insulated boundary conditions could be applied 

also to reduce unnecessary heat losses and conserve energy in pultrusion processes. 

3 NUMERICAL SIMULATION PROCEDURES 

The developed algorithms simulate the phenomenon of microwave assisted pultrusion by 

solving the set of coupled electromagnetic, energy and species equations. 

3.1 Electromagnetic sub-model 

The targeted application of an industrial microwave pultrusion process comes along with 

two major requirements: the usage of a cost-effective microwave source with a power output 

in the range of some kW and the capability to generate a homogeneous microwave field dis-

tribution for the complete products cross section. As magnetrons provide sufficient power 

output at fixed frequencies very economically it is obvious to use a magnetron as microwave 

source working at one of the ISM-frequency-bands (Industrial Scientific and Medical use). 

The cross-section of the products is predetermined and the first step of the problem is to 

design the base model of a microwave set-up with an analytically known field distribution 

most suitable for the requested cross-section. In a second step, the model is improved numeri-

cally towards a homogeneous field distribution and high efficiency of the provided energy. 

This is performed adjusting the models dimensions and variation of some material properties 

until the target specifications are reached (Fig. 2). For the electromagnetic sub-model the 

FEM software package COMSOL Multiphysics is used with the optional radiofrequency (RF) 

module. 

Against standard design drawings, for the simulation of microwave phenomena it is neces-

sary to generate a design defining a closed (e.g. metallic) structure from electric point of view 

and allocate material properties in every region inside – especially the “air” typically left out 

as logical region in design drawings – is almost important for wave propagation. On the other 

hand, the thickness of solid metallic machinery parts is rarely important, because their surfac-

es usually are treated as perfect electric conductor. The microwave field is reflected at the sur-

face and does not penetrate into the metallic regions – so they can be left out in the drawing. 

According to the Nyquist-Shannon sampling theorem [12] for the discrete sampling of a 

wave function, the maximum element size maxx  of the mesh applied to the geometry has to 

fulfill /2<max x  with   - local wavelength. Local wavelength means that   might be short-

en by dielectric materials or influenced by conductive parts so that a good value for the max-

imum mesh element size is given by r0max /20< x  with 0  - the wavelength in free space 

and r  - the relative permittivity. 

For this mesh Equation (2) can be solved for the amplitude of the electric field  rE


 with 

respect to the local material properties from Equation (3) by iterative or direct solvers in the 

frequency domain with the fixed frequency f  of the magnetron. The wave excitation and 

thereby the power input is applied by a so called “port” boundary condition provided by the  
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Figure 2: Flowchart of the numerical procedure based on COMSOL Multiphysics. 

RF – module. Then the heating rate Q  can be calculated using Equation (4) and evaluated re-

garding homogeneity and efficiency. 

3.2 Thermo-chemical sub-model 

This simulation procedure is developed in ANSYS Mechanical environment and is based 

on the mixed time integration scheme and nodal control volumes method to solve simultane-

ously the coupled temperature state and degree of cure by using an iteration technique. A uni-

form finite element discretization is applied in the pull direction. The nodal control volumes 

are constructed based on the finite element mesh as presented in Figure 3. Centers of the con-

trol volumes coincide with the nodal points of the finite element. In the control volume the 

distribution of a field variable is assumed constant and its value is defined by the field varia-

ble calculated at the representative finite element node. 

 

Figure 3: Finite element and nodal control volume meshes. 
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At the beginning it is assumed that the degree of cure has the same value 0  in each nodal 

control volume of the composite. In most cases it equals zero. Then the transient thermal fi-

nite element analysis is performed to obtain an initial state of temperatures for each element. 

From the temperature field, the rate of cure for the nodal control volume j  at any time step i  

is calculated outside the finite element software: 

 )(exp 1
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For 0t , the degree of cure can be obtained continuously by using the following relation: 
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where t  is the time step determined as: 

 
u

l

p
t 

1
 (12) 

where l  is the length of nodal control volume in the pulling direction, u is the pulling speed 

and p  is the number of sub-steps. If the procedure of sub-stepping is not applied, 1p . The 

exothermic effects of cure reaction are evaluated as the equivalent nodal heat power for a 

nodal control volume or node j  by the following relation: 

 

Figure 4: Flowchart of the numerical procedure based on ANSYS Mechanical. 
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These values will be applied to calculate the temperature field for a new step of iteration. 

Thereby, a movement of the resin-saturated composite is simulated by shifting the tempera-

ture and degree of cure fields after each calculation step. It is necessary to note that at the en-

trance of the die, the degree of cure remains unchanged and equals to 0  at any step of 

iterations. In general, the algorithm can be summarized as a flowchart presented in Figure 4. 

4 MICROWAVE ASSISTED PULTRUSION OF CYLINDRICAL ROD 

To demonstrate an application of the developed methodology for the design of technologi-

cal process, the microwave assisted pultrusion of the cylindrical rod with the diameter of 16 

mm and made of glass fibers Unifilo 4800 tex and polyester resin POLRES 305BV has been 

investigated. 

4.1 Analysis with electromagnetic sub-model 

In the present case, the base model has to provide a symmetric cylindrical field distribution 

with an extended maximum of electrical field covering the products diameter. As starting 

point, an electric maximum of a standing wave pattern in a shorted rectangular waveguide 

section is used. To minimize reflection losses the waveguide has been tapered to the dimen-

sions of the pultrusion die. The centerpiece of the microwave system consists out of a ceramic 

part (ZrO2) with a 16 mm hole, which has been inserted as a section into the metal pultrusion 

die. The objective was that the microwave field inside the hole and therefore inside the rod 

running through that hole is as homogenous as possible. The Zirconium oxide has a very high 

real part of the permittivity ' , which shortens the wave length of the microwaves. Therefore 

a magnetron of frequency 915 MHz and a waveguide WR 975 have been chosen. 

Figure 5 shows the scheme of the electromagnetic sub-model for microwave pultrusion 

with the ceramic insert and coupling of the microwave to the ceramic part with a waveguide. 

The different color has indicated the different parts and the materials. Dark blue indicates 

steel (pultrusion die), light blue - air (waveguide), red - ceramic (insert) and green - product 

(rod). The dielectric properties r  of the glass fiber/polyester resin composition have been 

measured before with a cavity perturbation method versus temperature and mean values taken 

at a temperature of T=60 °C have been used for the calculation of the electric field distribution.  

Running through the optimization loop is shown in Figure 2 several times, the shape of the 

ceramic inlay has been adjusted to achieve a homogeneous field distribution inside the rod 

and a minimized power reflection. The materials and properties applied to the domains are 

specified in Table 1 and the boundaries - in Table 2. 

 

Figure 5: Scheme of the microwave model. 
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Property Symbol 

POLRES 305BV + 

Unifilo 4800 tex 

Zirconia 

ceramic Steel 40Cr 

Air 

(volume in 

waveguide) 

Dielectric 

constant  

ε' 5.7 29 Perfect 

electric 

conductor 

1 

Dielectric 

loss 

ε'' 0.32 0.2 0 

 

Table 1: Parameters of the electromagnetic sub-model. 

 

Boundary Material Property 

Port Air 
TE10 mode for rectangular waveguide 

power P = 1 W (scalable) 

Surrounding areas 

(die, waveguide) 
Steel 40Cr perfect electric conductor 

Rod 
POLRES 305BV + 

Unifilo 4800 tex 
open circular ports 

 

Table 2: Boundaries for the electromagnetic sub-model. 

Figure 6 shows the distribution of the resulting heating rate Q  in different 3D- and cross-

sectional views for the optimized geometry of the ceramic inlay. In Figures 3a and 3b it is ob-

viously, that only the rod inside - the ceramic insert is heated. The microwave coupling and 

the pultrusion die are not heated by the microwave. Outside of the ceramic insert the micro-

wave field is close to zero. Figure 3c shows the cross-section of the heating rate in the die and 

the waveguide. The heating rate is homogeneously concentrated in the rod. Additionally a 

small heating effect inside the ceramic material itself gets visible. 

In detail the power density in the cross-section of the rod is about 7000 W/m
3
 inside the ce-

ramic insert but outside the rod it is between 200 and 800 W/m
3
 (Fig. 7). The deviation of the 

power density is low, therefore the heating is homogenous. The power density is concentrated 

to the cross-section of the rod. Figure 7 shows the power density in the cross-section of the 

ceramic pultrusion die. The power is concentrated to about 1.6 cm along the rod with a varia-

tion of about 7%. 

   

(a)    (b)     (c) 

Figure 6: Distribution of the heating rate Q : a) top-view, b) side-view, c) cross-section. 
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4.2 Analysis with thermo-chemical sub-model 

The thermo-chemical analysis means determination of the temperature and degree of cure 

fields in the composite material travelling in the pultrusion die. In our case the absorption en-

ergy field in the composite material determined with COMSOL Multiphysics is used as a 

heating source in the pultrusion process modeled with ANSYS Mechanical. 

The advanced pultrusion die consists of microwave block with the ceramic inlet located at 

the entrance of the steel die (Fig. 8). The thermal properties of steel material used for an ad-

vanced die production is given in Table 3. Table 4 includes the thermal properties of ceramic 

material. 

Heating of the composite profile is realized by using an absorption energy field obtained 

by COMSOL Multiphysics. It is simulated only in the composite material within boundaries 

of the ceramic inlet. Distribution of the absorption energy in the cross-section of the profile is 

constant (Fig. 7) but in the longitudinal direction varies accordingly to the law demonstrated 

in Figure 9. Integrating the curve presented in Figure 9 and taking into account area of the 

profile cross-section, it is possible to obtain the total absorption energy which is equal to 

100.2 W. The simulated absorption energy field with the total value of 95.8 W is shown in 

Figure 10. It is necessary to note that temperature control is not applied in this case, and ener-

gy source is working continuously. Conditions of the pultrusion process are presented in Ta-

ble 5. 

 

Figure 7: Power density in the cross-section of the ceramic pultrusion die. 

 

Figure 8: Scheme of the advanced pultrusion die. 
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The materials used for a production of the cylindrical rod are glass fibers Unifilo 4800 tex 

and polyester resin POLRES 305BV. The resin volume content in the pultruded material is 

40% (resin mass fraction 22.6%). The thermal properties of the applied materials are given in 

Table 6. The rate of resin reaction is described by using the Kamal-Sourour curing kinetic 

model: 
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with the parameters presented in Table 7. 

 

Property Symbol (unit) Steel 40Cr 

Density ρ (kg/m
3
) 7820 

Specific heat C (J/(kg·K)) 460 

Thermal conductivity kx (W/(m·K)) 66.6 

 

Table 3: Thermal properties of die material. 

 

Property Symbol (unit) Circonia ceramic 

Density ρ (kg/m
3
) 6000 

Specific heat C (J/(kg·K)) 418 

Thermal conductivities kx (W/(m·K)) 2 

 

Table 4: Thermal properties of ceramic inlet. 

 

Name Value Unit 

Room and resin temperature in the bath 17 or 27 or 37 
0
C 

Pulling speed 0.18 or 0.12 or 0.06 m/min 

 

Table 5: Conditions of pultrusion process. 
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Figure 9: Distribution of the absorption energy in the longitudinal direction of the pultruded profile. 
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Figure 10: Simulation of the absorption energy in the pultruded profile. 

The finite element model for a simulation of the cylindrical rod pultrusion has been created 

in ANSYS Mechanical by using 3-D thermal solid finite elements Solid 70. Using symmetry 

of the simulated domain, only a quarter of advanced pultrusion die is modeled. A fragment of 

the finite element model is presented in Figure 11. The finite element mesh is regular in pull 

direction and has 221 elements along the profile. The total number of finite elements is 74258 

(3978 for the composite, 58512 for the die, 9728 for the steel part of microwave block and 

2040 for the ceramic part). The time step of the solution depends on the pull speed. It is equal 

to 1.67 s for the speed of 18 cm/min, 2.5 s for the speed of 12 cm/min and 5 s for the speed of 

6 cm/min. During this time the composite travels in the pull direction on the distance equals 

to the dimension of one finite element (5 mm). It is necessary to note that iterations (sub-steps) 

are not performed in the finite element analysis. Initial conditions are applied at time 0t  

when all nodal points of the composite have the room temperature and degree of cure equals 

to 
1010 . 

 

Property Symbol (unit) Unifilo 4800 tex POLRES 305BV 

Density ρ (kg/m
3
) 2500 1100 

Specific heat C (J/(kg·K)) 1235 1360 

Thermal conductivity kx (W/(m·K)) 11 
0.209 

Thermal conductivity ky (W/(m·K)) 1 

 

Table 6: Thermal properties of pultruded material. 

 

Parameter Symbol (unit) POLRES 305BV 

Heat reaction Htr, (J/kg) 323074 

Frequency factor K1 (s
-1

) 14289310986 

Frequency factor K2 (s
-1

) 285.870 

Activation energy E1 (J/mol) 85573 

Activation energy E2 (J/mol) 33141 

Order of the reaction n 2.342 

Order of the reaction m 0.519 

 

Table 7: Parameters of curing kinetic model. 
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Results of simulation, temperature and degree of cure obtained in the composite at the die 

exit in dependence on time, are presented in Figure 12 for room temperature 27°C and pull 

speed 12 cm/min. It is necessary to note that process is not steady-state after 55 min from the 

beginning of the numerical experiment in all tests for the degree of cure at the profile surface. 

Results of simulation, temperature and degree of cure at the profile centerline and surface, 

are given for the time 50 min from starting of the pultrusion process in Figure 13 for room 

temperature 27°C and pull speed 12 cm/min. It is seen that, as opposed to conventional pul-

trusion process, now the curing comes considerably faster in the profile centerline than on the 

surface. So high degree of cure in the profile centerline is reached at the beginning of steel die 

already for the pultrusion process with pull speed equals to 18 cm/min and room temperature 

equals to 37°C. Moreover, full curing in the profile centerline happens already in the ceramic 

inlet for the pultrusion processes with pull speed equals to 6 cm/min and all examined room 

temperatures while the degree of cure at the profile surface has not reached high values. 

 

Figure 11: Fragment of the finite element model. 
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Figure 12: Dependence of temperature and degree of cure in the composite at the die exit on time for room tem-

perature 27°C and pull speed 12 cm/min. 
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Figure 13: Temperature and degree of cure at the profile centerline and surface for room temperature 27°C and 

pull speed 12 cm/min. 

To obtain the high value of the degree of cure at the profile surface in the advanced pultru-

sion die and to increase the pull speed of the process, improving by this way effectiveness of 

the pultrusion process, an influence of the following parameters of pultrusion process has 

been investigated: 

• reduction in twice of steel die length, 

• application of thermal insulation at all external surfaces of advanced pultrusion die (both 

steel die and microwave block), 

• preheating of steel die, excluding microwave block, with the uniform temperature of 60°C 

before the beginning of pultrusion process, 

• heating of resin bath (composite) with the temperature of 50°C for the full duration of pul-

trusion process. 

An influence of the examined factors has been studied for the pultrusion process with the 

room temperature of 27°C and pulling speed of 12 cm/min. Simulation results are presented 

in Figures 14-17. 

Figure 14 shows that reduction of steel die length has no effect on the degree of cure at the 

profile surface. However, any reduction of all important parameters has not been observed too. 

This fact could be used in the design of advanced pultrusion die for a saving of expensive die 

material. Figure 15 demonstrates that an application of thermal insulation at all external sur-

faces of advanced pultrusion die has increased considerably by 36% the value of the degree of 

cure at the profile surface. Figure 16 shows that only by preheating of steel die with the tem-

perature of 60°C before the beginning of pultrusion process, it is possible to increase consid-

erably by 29% the value of the degree of cure at the profile surface. These effects could be 

effectively used in the design of advanced pultrusion die. Figure 17 demonstrates that heating 

of resin bath has increased considerably by 44% the value of the degree of cure at the profile 

surface that could be used also in the design of advanced pultrusion die. However, it is neces-

sary to note that an effectiveness of the pultrusion process could be not so high since the heat-

ing of resin bath is realized for the full duration of pultrusion process. 

Joint influence of two factors having large effect on the degree of cure at the profile sur-

face and on the process effectiveness, namely an application of thermal insulation and pre-

heating of steel die, has been investigated additionally. Figure 18 shows that by preheating of  
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Figure 14: Temperature and degree of cure at the profile centerline and surface taking into account the effect of 

reduction of steel die length. 
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Figure 15: Temperature and degree of cure at the profile centerline and surface taking into account the effect of 

thermal insulation. 

steel die with the temperature of 60°C before the beginning of pultrusion process and apply-

ing the thermal insulation, it is possible to increase considerably by 79% the value of the de-

gree of cure at the profile surface. It is necessary to note that joint influence of two examined 

factors (79%) is higher than their separate influence summarized together (65%). 

To obtain highest values of the degree of cure at the profile surface in the advanced pultru-

sion die, an influence of the capacity of the absorption energy field on the parameters of pul-

trusion process has been investigated. It is necessary to note that a distribution of the absorbed 

energy in the composite profile is not changed while its intensity has been increased propor-

tionally with the coefficients: 1.5, 2.0 and 2.5. Figure 19 shows that the high value of the de-

gree of cure at the profile surface could be reached already in the ceramic inlet of the mi-

crowave block. However, it is necessary to note that the material temperature in this case  
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Figure 16: Temperature and degree of cure at the profile centerline and surface taking into account the effect of 

preheating of steel die. 
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Figure 17: Temperature and degree of cure at the profile centerline and surface taking into account the effect of 

heating of resin bath. 

could be higher than allowable resin temperature. To avoid overheating of the resin, the pull-

ing speed should be increased in the same time that will contribute to the considerable in-

crease of an effectiveness of the microwave assisted pultrusion process. 

5 CONCLUSIONS 

To understand the microwave assisted pultrusion process, to support the pultrusion tooling 

design and process control, new simulation methodology based on COMSOL Multiphysics 

and ANSYS Mechanical has been developed. This approach has been constructed by using 

the general-purpose FE software that results in considerable savings in development time and 

costs, and also makes available various modeling features of the FE packages. 
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Figure 18: Temperature and degree of cure at the profile centerline and surface taking into account the effects of 

thermal insulation and preheating of steel die. 
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Figure 19: Temperature and degree of cure at the profile centerline and surface with the intensity coefficient of 

the absorption energy field equals to 2.5 (pull speed: 12 cm/min). 

Conditions of the microwave assisted pultrusion process, and the temperature and degree 

of cure fields in the composite material, have been determined for the design of advanced pul-

trusion die. Simulation results show that the developed technology gives the possibility to en-

sure a homogeneous curing of the composite profile and to obtain high values of the degree of 

cure in the cured composite. 

To improve an effectiveness of the microwave assisted pultrusion process, an influence of 

different process parameters has been additionally investigated. Based on the obtained results, 

the following recommendations could be done for technologists designing advanced pultru-

sion dies: 

• More effectively is to apply the thermal insulation at all external surfaces of advanced pul-

trusion die or to preheat the steel die before the beginning of pultrusion process if the high-

est value of the degree of cure at the profile surface is required. 
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• To obtain largest effect on the degree of cure at the profile surface and on the process ef-

fectiveness, the joint application of both factors, namely an application of thermal insula-

tion and preheating of steel die, should be realized. 

• The heating of resin bath could be used also to obtain the highest values of the degree of 

cure at the profile surface. However, an effectiveness of the pultrusion process in this case 

is not so high since the heating of resin bath should be organized for the full duration of 

pultrusion process. 

• The reduction of steel die length has no effect on the degree of cure at the profile surface. 

However, this effect could be used in the design of advanced pultrusion die for a saving of 

expensive die material. 
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Keywords: plasticity, sheet metal bending, shell theory 

Abstract. In industrial production processes focus is given to high precision, quality, re-
source efficiency and productivity. In order to achieve these goals, efficient numerical simula-
tion models are required. In the following, we consider an industrial sheet metal bending 
process, in which the sheet is fixed on one side and formed by a moving tool. On the one hand, 
there is a very large number of process parameters. On the other hand, the production sites 
are complex and have to be modelled in detail. Parameter studies are very extensive and take 
a large numerical effort. Therefore high efficient simulation tools are necessary to handle this 
challenge. In this paper two strategies for increasing the efficiency of modelling are investi-
gated. First, the main focus is set to an efficient Finite Element model for sheet bending. Two 
Finite Element formulations are compared based on 3D-continuum elements and continuum 
shell elements. Secondly, a proper normalized formulation (similarity solution) of the bending 
process is derived starting from a reduced-order model, which subsequently is successfully 
applied to the complex bending process. Utilizing the concept of similarity, the number of 
cases in parameter studies can be reduced significantly. 
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1 INTRODUCTION 

In industrial metal forming processes, high versatility is claimed with respect to material 
types, geometric dimensions and process parameters. In order to control and optimize the pro-
duction process, powerful simulation models are required. Usually, metal forming simulation 
models are very complex and highly non-linear. Thus, parameter studies are accompanied by 
a large computational effort such that an efficient simulation environment is required.  

In sheet bending processes we deal with thin structures, which can be efficiently modelled 
by plate elements. In section 2, appropriate formulations are investigated, based on the bend-
ing of a one-side clamped plate. Using the powerful code ABAQUS, the results for continuum 
shell elements and three dimensional solid elements are compared. The goal is to find suitable 
configurations (mesh, element type, etc.) and the range of applicability of the specific ele-
ments. 

A second important aspect is that the number of cases in parameter studies can be reduced 
significantly by using the concept of similarity, cf. [1] and [2] for the theory of similarity. 
Several combinations of parameters behave in a similar way. It is the challenge to find the ap-
propriate parameter combinations, i.e. a reduced set of non-dimensional parameters describing 
the physical process without loss of information. In [3] this has been demonstrated for the 
bending of a cantilever beam subject to inertial loads arising in a drop test. In section 3, the 
similarity concept is applied to the one-side clamped plate and it is demonstrated how the 
number of dimensional parameters can be reduced by appropriate non-dimensional ones. This 
is first investigated analytically in the framework of a geometrically linearized elasto-plastic 
theory. A similarity formulation is derived which is successfully applied to the real large-
deformation bending process afterwards. 
 
2 FINITE ELEMENT MODEL OF SHEET BENDING 

In the following a thin sheet of metal with length L, width B and thickness H is clamped on 
the left side and subject to a distributed force f per unit width at the right side as shown in Fig. 
1. The total bending force is F fB= . 

 

        
Figure 1: Bending of a plate 

The material behavior is assumed to be elasto-plastic with exponential stress-strain relation of 
Ludwik's type, e.g. [3] and [4]. For a uni-axial state of stress the constitutive relations can be 
expressed as 

for ,

for ,

Y

b
Y

E

a

σ = ε σ ≤ σ

σ = ε σ ≥ σ
 

(1) 
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where σ is the axial stress, ε the axial strain, E Young's modulus, a and b specify the expo-
nential stress-strain relation, and Yσ  is the yield stress, following from solving Eq. (1) as 

( )1/( 1)/ b
Y E E a

−σ = . 
(2) 

 
For this bending process, a Finite Element model has been implemented in ABAQUS, see 

[5] considering large strains. A quasi-static solution is computed with the implicit solver 
(ABAQUS standard). 

2.1 Finite Element Discretization and Element Types 

Figure 2 shows two discretizations of the plate. For numerical reasons, the clamping is here 
approximated by two elastic bodies which are fixed on the outer surfaces. The distributed 
force is applied by a moving elastic cylindrical body. Between the bodies contact is defined. 
Figure 2a shows a fine mesh with three-dimensional solid elements (C3D8R). On the other 
hand, the plate is discretized by continuum shell elements (SC8R) as defined in the ABAQUS 
documentation [5]. The continuum shell elements consider transverse shear stiffness as well 
as thickness contraction. They are capable for multi-layered shells. In the present context, two 
equal layers are used, where the continuum shell nodes work as super-elements, see Figure 2. 

 

 
 Figure 2: Finite Element models (a) 3D-continuum elements, (b) continuum shell elements 

 

2.2 Results 

Figure 3 shows a comparison of the deformed configuration of the two element types for a 
bending angle of about 90°. Near the clamping there are slight differences in the displacement 
field since the cross-sectional warping is restricted in the continuum shells. Note that even for 
large bending angles the cross-sections remain approximately plane, such that it is possible to 
obtain suitable results by plate theory. 
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Figure 3: Deformed shape 

Secondly, the contact force between cylinder and plate is compared, also denoted as bend-
ing force. The results are shown in Fig. 4, where a normalized resulting contact force is shown 
as a function of the bending angle. The results show a good correspondence for all bending 
angles. 
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Figure 4: Comparison of the contact force 

Finally the distribution of stress in the plate is compared for an angle of 90°. Figure 5 
shows the result of a normalized v.Mises stress along the normalized coordinate x/L (see Fig. 
1) on the top (a) and on the bottom (b) of the plate. The results for 3D-solids and continuum 
shells show a good coincidence especially for the maximum values. In this range the normal 

3D-solid
continuum shell
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strains are dominating, i.e. bending and longitudinal extension. In the surrounding of the 
clamping and near the contact with the cylinder, there are some differences resulting from a 
more general state of stress which is not represented in such detail by the continuum shell el-
ements. Nevertheless, the result of the contact force is reliable as shown in Figure 4.  
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Figure 5: v.Mises stress 

 
Finally the computation time is compared in Table 1 for the two element types. With the 

continuum shells, a speed-up factor of about 40 has been obtained.  
 

Element type Total CPU time (sec) 
3D-solid 140356 
Continuum shell 3672 

 

Table 1: Computation time 

2.3 Discussion 

In sections 2.1-2.2 the results of plate bending obtained with 3D-solid and continuum shell 
elements have been compared. Displacement and stress fields as well as the resulting bending 
force show a good coincidence even for large deformations. The advantage of continuum 
shells is a significant reduction of computation time. 

Since the bending process can be modelled with shell elements with satisfactory accuracy, 
it appears to be feasible to derive a non-dimensional (similarity) formulation of the complex 
bending process by using a strongly reduced modelling, as shown in the following section.    
   

 
3 NON-DIMENSIONAL FORMULATION OF SHEET BENDING 

Figure 6 shows the bending of a cantilever beam, i.e. a projection of the plate in Fig 1. The 
flexible transversal displacement is denoted as w. For the sake of deriving a proper similarity 
formulation, we perform model reduction and use the geometrically linearized (small strain 
and displacement) elasto-plastic theory of beams.    
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Figure 6: Bending of a beam/plate 

In the framework of a quasi-static modeling, the bending moment follows to 

( )M F L x= − − . (3) 

3.1 Plastic zones 

The bending moment as a resultant of the stress is written as 

( )M B z zdz= σ∫ . (4) 

In the elastic range, the distribution of the stress is linear over the cross-section. The yield 
moment corresponds to the state where the yield stress is reached at z=H/2, i.e. 

21
6Y YM BH= σ . In the quasi-static case, the yield load follows from Eq. (3) by substituting  

x=0,  

2

6
Y

Y
BH

F
L

σ= . 

(5) 

 
If the load is higher than the yield load, the domain is divided into elastic and plastic zones as 
shown in Figure 7.  

 
Figure 7: Elastic and plastic zones 

 
Assuming that the deformations remain small and that the Bernoulli-Euler hypothesis for 
beams does hold, the axial strain is expressed as 

zw′′ε = − . (6) 

A prime denotes differentiation with respect to x. Thus, the stress in the elastic and plastic 
zones can be expressed by 
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for  ,

for  .

Y Y
Y

b
Y

Y
Y

z
z z

z

z
a z z

E z

σ = σ ≤

 σσ = ≥ 
 

. 

(7) 

The boundary zY of the plastic zone follows from equating Eqs. (3) and (4), using Eq. (7):  

/2
0

2 ( )Y

Y

b
z H Y

Y z
Y Y

z z
B zdz a zdz F L x

z E z

  σ σ + = − − 
   
∫ ∫ . 

(8) 

Integration yields 

2 22
( )

3 2 22 (4b 8)

b bb
Y Y Y Y

b
Y

z zH F
a L x

Ez b B

++  σ σ+ − = − −    ++   
. 

(9) 

 
From Eq. (9) the length Yx of the plastic zone is obtained by substituting zY=H/2. An analyti-

cal solution is possible. The height Yz of the plastic zone is obtained as a function of x. Due to 

the nonlinearity of the equation, Yz has to be solved numerically.  

3.2 Curvature 

From Eqs. (1) and (6) follows that 

Y YEz w′′σ = − . (10) 

Inserting Eq. (10) into Eq. (9) yields an equation for the curvature in the elasto-plastic case: 

( )
3 22E

( )
3 2 22 (4b 8)

bb
bY Y

b

w z zH F
a w L x

b B

++ ′′ ′′− + − − = − − 
 ++ 

 

(11) 

Due to the nonlinearity with respect to w′′ , only a numerical solution is possible. For the elas-
tic range, Yx x> , Eq. (11) simplifies to the well-known form 

 
3

12
( )

F
w L x

BH E
′′ = − . 

(12) 

3.3 Normalization  

In order to obtain a generalized representation, a normalization of the above equations has 
been performed as follows: By introducing the non-dimensional quantities 

* * * *, , , , , ,
x z H a F

H a F
L L L E aLB E

σξ = ζ = = = = σ =  
(13) 

Eq. (8) can be rewritten as 
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1
** 2 ** * *2 ** * 1 * *1 3

2 (2 3( ) ) 3 ( ) ( 1)(2 )
2 2

b
b b

Y Ya b a a H a H F a b
+

− ζ + − + ζ = ξ − + 
 

  

(14) 

with 

( )
1

** * 1 .ba a −=   

(15) 

Substituting * / 2Y Hζ =  and solving Eq. (14) yields the normalized extension Yξ  of the plas-

tic zone. On the other hand side,  Yζ  is obtained as a function of ξ . The normalized curvature 

and deflection are defined by 

* *, ( )
w

w w Lw
L

′′ ′′= =   (16) 

and the following convention is used: 

2 *
*

2
( ) .

d w
w

d
′′ =

ξ
  (17) 

Substituting Eq. (13) into Eq. (11) yields the equation for the normalized curvature for the 
elasto-plastic range ( Yξ ≤ ξ ):  

( ) ( ) ( ) ( ) ( )* 3 * * 2 *2 * * *4( ) 2 3 ( ) 4 3 (2 ) 1
b b b

Y Y Yw b a w H H F a b
 ′′ ′′ζ + + − ζ ζ − = + − ξ 
 

  (18) 

  
Solving Eq. (18) numerically we obtain the curvature as a function of ξ . By numerical in-

tegration of Eq. (18) the deflection can be computed. Figure 8a shows the plastic tip dis-
placement wtip,plast(L) as a function of the load F related to the yield force FY. In this 
dimensional representation, a separate curve is obtained for each configuration of H and L. 
However, in the non-dimensional representation in Figure 8b, in which non-dimensional 
quantities according to Eq. (13) are used, only one curve is obtained for the three cases. 

 

 
Figure 8: Plastic tip displacement (a) dimensional and (b) non-dimensional representation 
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3.4 Discussion of the non-dimensional formulation 

In the dimensional representation with the coordinates x, the bending process is specified 
by eight physical quantities: 

, , , , , , , .w F E a b H L B   (19) 

On the other hand, in the dimensionless formulation derived in section 3.3 with the normal-
ized coordinate / Lxξ =  the number of essential parameters has been reduced to the follow-
ing five non-dimensional quantities 

, , , , .
w F a H

b
L aBL E L

  (20) 

The results show that for the simple model of an elasto-plastic beam bending process the same 
normalized quantities have been derived as have been obtained by Baker et al. [1] using the  
Buckingham Pi theorem. For the large-deformation elasto-plastic bending problem with dis-
tributed loading, see also [3]. 

Recall that all the results in this section are based on the geometrically linear Bernoulli-
Euler beam theory with exponential stress-strain relation. Thus the results are valid for small 
deformations. It has been shown in [3] that the non-dimensional parameters according to Eq. 
(20) are also suitable for a non-dimensional formulation in case of large strains. This gives 
evidence for using it by analogy also for the complex industrial sheet metal bending process. 

3.5 Industrial application 

The results of sections 3.1-3.4 have been applied to an industrial bending process. On a 
Salvagnini automatic panel bender, the bending forces for six bending processes (90° bending 
angle) have been measured for three sheet thicknesses (H1, H2, H3) with two values for length 
(L1, L2) respectively. By measuring the forces of the drives, the resulting bending force has 
been computed. In Figure 9 the measured force for the six cases is shown as a function of the 
bending angle. In this representation the force is related to the maximum admissible force on 
the machine. 
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Figure 9: Measurement of bending force, dimensional representation  
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The normalized bending force according to Eq. (20) is shown in Figure 10. The normalized 
representation demonstrates the reduction of complexity by utilizing similarity of several pa-
rameter combinations. The concept of similarity is a powerful tool for analyzing complex 
physical processes. 
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Figure 10: Measurement of bending force, normalized representation  

 
 
4 CONCLUSIONS 

For an industrial bending process two strategies for reducing the numerical effort of pa-
rameter studies have been investigated. First, an efficient and precise Finite Element formula-
tion based on continuum shell elements has been investigated. Secondly it has been shown 
how it is possible to find similar configurations by an appropriate non-dimensional formula-
tion. The method has been verified by measurements on an industrial bending machine. These 
two strategies are very powerful tools for optimizing the bending process. 
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Abstract. Material processing is a very important industrial sector. In order to guarantee 
high precision and quality of the products, reliable numerical simulation models are required. 
This contribution concerns the simulation of material cutting. As a benchmark example, a 
sheet metal is fixed by two clamping tools and the cutting process is controlled by a moving 
blade. The tools are modelled as linear elastic materials, and the sheet metal as elasto-plastic 
material with hardening. Main scope is the comparison of two simulation methods with re-
spect to industrial application: (i) Coupled Eulerian-Lagrangian Finite Element Method and 
(ii) Coupled Lagrangian Finite Element and Smoothed Particle Analysis. Numerical simula-
tion models for the two variants of the above benchmark example are implemented in the 
commercial code Abaqus. The numerical results of the two models are compared with respect 
to accuracy and numerical effort, and the advantages and disadvantages of the two methods 
are investigated. The implemented models for the cutting process and the materials can be 
applied to several other kinds of industrial material processing like stamping or punching. 
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1 INTRODUCTION 

Material processing is a very important industrial sector. In order to guarantee high preci-
sion and quality of the products, reliable numerical simulation models are required. This con-
tribution concerns the simulation of cutting processes as part of a mechatronic system.  

An example of a complex mechatronic system is an automatic panel bender in which com-
plete products of sheet metal are fabricated. During production it is necessary to cut the panels 
causing high loads on the machine. To optimize the cutting process itself as well as the life-
time of the machine refined and reliable simulation models are required. It is the scope of this 
work to develop a simulation model for the cutting of the panel which can be adapted by 
measurement results.  

Another example is the cutting of different kinds of material with a chain saw. On the one 
hand the dynamic behavior of the chain has influence on quality of the process, lifetime of the 
machine and noise emission. The load of the chain due to the cutting forces is a very im-
portant parameter in the system, but it is not possible to measure these forces directly, so that 
appropriate simulation models are required. 

It is the scope of this work to investigate and compare two simulation methods for cutting. 
As a simple benchmark example, a sheet metal is fixed between two clamping tools and the 
cutting process is controlled by a moving blade. Two simulation strategies are compared: 

First, the coupled Eulerian-Lagrangian Finite Element Method [1] is considered: The 
clamping and cutting tools are modelled by three-dimensional Lagrangian Finite Elements, 
and the sheet metal by three-dimensional Eulerian elements. The coupling of the elements is 
achieved by an appropriate contact formulation. 

Secondly, the sheet is modeled by Smoothed Particles [2], a mesh-free discretization with 
Lagrangian formulation. Again, the tools are modelled by three-dimensional Lagrangian Fi-
nite Elements, and the coupling of the two models is realized by contact interaction. 

Numerical simulation models for these two variants of the benchmark example are imple-
mented in the powerful commercial code Abaqus [3]. The numerical results of the two meth-
ods are compared, and the advantages and disadvantages of the respective methods are 
investigated.  

Finally, the results are compared to measurement on the automatic panel bender mentioned 
above. Because of differing dimensions of the sheet in the simulation model and on the real 
machine, only a qualitative comparison is possible which show a better correspondence of the 
measurements with the Smoothed Particle model than with the Coupled Euler-Lagrangian 
model. 
 
2 SIMULATION METHODS 

In this work two simulation methods are compared for modeling a cutting process. In both 
cases the clamping tools and the cutting blade are linear elastic bodies modeled by Lagrangian 
Finite Elements. During cutting large deformations arise in the sheet, and the material is di-
vided. There are several strategies to handle this. One possibility is to use Lagrangian Finite 
elements for the sheet and an appropriate damage model. In this paper, two other methods are 
applied to model the sheet without definition of a damage model. 

First, a coupled Eulerian-Lagrangian analysis (CEL) is studied, cf [1]. The sheet is mod-
eled by Eulerian elements. In contrast to Lagrangian elements, the material flows through the 
mesh, and the mesh is fixed in space. This strategy is capable for modelling very large defor-
mations. However, the shape of the deformed material cannot be resolved as good as with a 
Lagrangian formulation. The coupling of Lagrangian and Eulerian Elements has to be done by 
an appropriate contact formulation. 
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As a second strategy, the sheet is discretized by Smoothed Particles. Smothed Particles 
Hydrodynamics (SPH) is a meshfree Lagrangian method, [2]. With this method fluids as well 
as solids can be modelled. The material is divided into discrete particles which are interacting 
to each other within a defined area.  

As mentioned before, it is not necessary to define a damage model for CEL and SPH. It is 
the scope of this work to compare the influence of the formulations on the behavior during 
cutting, and to find out the applicability for industrial purposes. 
 
3 SIMULATION MODELS OF THE CUTTING PROCESS 

The set-up of the simulation model is shown in Figure 1. A sheet metal of 4 mm thickness 
and 6 mm width is fixed by an upper and a lower clamping tool. The cutting process is con-
trolled by a blade with 6° inclination. It moves downwards with a cutting speed of 0.5 m/s, 
which is a common average cutting velocity in blanking processes due to [4]. The cutting 
clearance is 0.1 mm. In both simulation models the clamping tools and the blade are discre-
tized by Lagrangian elements with an edge length of approximately 0.5 mm.  

Figure 1a) shows the SPH model. The sheet is discretized by Smoothed Particles. In the 
unloaded, initial state the particles are evenly spread at intervals of 0.25 mm in each spatial 
direction.  

The CEL model is presented in Figure 1b) and 1c). Subplot c) shows the clamping tools, 
the blade and the complete Eulerian mesh with an element size of 0.25 mm. The material of 
the sheet metal can move and deform only within the region that is covered by the Eulerian 
mesh [3]. Material that leaves the mesh is no longer taken into account within the simulation. 
In the initial state most of the Eulerian mesh is void. Only the red region shown in Figure 1b 
is occupied by material. During the cutting process a chip is generated and displaced by the 
blade. Because of the relatively large volume needed to preserve the chip from leaving the 
model space the number of Eulerian Finite elements is much higher than the number of 
Smoothed Particles. 
  

SPH CEL: Initially non-void  CEL: Complete Eulerian mesh 

 

 
 

 

elements 

 

 
Figure 1: Simulation models: a) SPH, b) CEL: non-void region, b) CEL: Complete mesh  
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Both models contain 3904 linear Lagrangian Elements of type C3D8R. In the first model 
the metal is modelled by 15360 Smoothed Particles whereas in the second model the Eulerian 
domain consists of 230400 elements of type EC3D8R.  

Starting with a convergence study with different mesh refinements, it turned out that a reli-
able distribution of contact forces between sheet metal and cutting blade are obtained with a 
ratio of 1:2 concerning the element size of the cutting tool and the sheet metal. 

It is assumed that the clamping and cutting tools are much harder that the work piece and 
perform only small deformations during the cutting process. Therefore the tools are modeled 
as linear elastic material, characterized by Young's modulus E=210000 N/mm² and Poisson's 
ratio ν = 0.3. The same model is used to model the sheet's material in the linear elastic range. 
After exceeding the yield stress, plastic strains occur. In the following we assume isotropic 
hardening according to v.Mises yield function. In the first step, a very simple flow curve as 
shown in Figure 2 is taken into account. The figure shows the Cauchy stress as a function of 
the plastic strain (Hencky strain).  
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Figure 2: Stress-strain relationship in the applied model of isotropic hardening 

 
For the chosen mesh refinement the simulation time for both models is approximatively 

equal. However, in case of a 20 % finer mesh of all components, the computation time of the 
CEL model becomes more than twice compared to the SPH model. 
 
4 EVALUATION OF THE SIMULATION RESULTS 

First the stresses in the chip as well as the shape of the chips will be regarded. Afterwards 
the stress distribution in the cutting tools will be examined. At last the cutting forces are dis-
cussed and qualitatively compared to experimental results. 

When comparing the distribution of the v.Mises stresses in the sheet metal during the cut-
ting process there is a high level of consistency between the two models. This is exemplified 
for the beginning of the cutting at the time 3.95 ms in Figure 3. 
 

 
 

SPH CEL 

Figure 3: Distribution of v.Mises stresses in the sheet metal at the beginning of the cutting process  
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Figure 4 shows the shape of the chip at time 9.79 ms. At that time the sheet metal has al-
ready been highly deformed, i.e. almost cut off. On the one hand there is a high resemblance 
concerning the shape as well as the size of the flakes in the two models. On the other hand 
there are qualitative differences in the region of the cutting surface. In the model that uses 
SPH there is contact between the sheet metal and the blade almost across the whole cutting 
surface. In contrast in the CEL model the cutting surface touches the blade only in a small re-
gion at the bottom. This effect is a result of the Eulerian formulation: The Eulerian elements 
interacting with the blade are partially void. 

It should be mentioned that in both models the contour plots of the metal sheets provide 
less significant results than the ones of the cutting tools which are modeled by Lagrangian Fi-
nite elements. Because of the discrete arrangement of the Smoothed Particles they do not pro-
vide exact information of the free boundaries of the material.  

Within the CEL method the free boundaries of the material-filled regions in the Eulerian 
mesh are estimated based on the material volume fractions [3], which is the ratio of void and 
filled material within an element. 

In the next step the distribution of the v.Mises stresses in the cutting tools is compared. 
Figure 4 shows a high level of consistency in the distribution of the stresses. However there 
are higher magnitudes in the v.Mises stresses in the model with CEL elements.  

 

 

SPH 

 

CEL 

       
 

 
 
 
 
 
 
 
 

 
 

   

Figure 4: Distribution of the v.Mises stresses in the cutting tools and shape of the chip 
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This is also reflected by the magnitude of the contact pressure on the blade shown in Fig-

ure 5 at time 3.08 ms. It is higher in the CEL model than in the SPH model. The distribution 
of the contact pressure especially on the upper clamping tool shows high similarity for both 
methods. 

  

 

 

SPH 
 

 

CEL 
 

 

Figure 5: Contact pressure on blade and upper tool 
 

Figure 6 shows the resulting forces that occur at the clamping of the blade in the cutting di-
rection. For both methods the beginning of the cut is characterized by a steep rise of the blade 
forces. The maximum force in the CEL solution is approximatively 25 % higher than the one 
of the SPH method. The material is cut off after a time of 12.4 ms. After that point of time 
higher friction forces at the cutting surface can be found in the case of SPH than in the case of 
CEL which is resembled in the blade forces. 
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Figure 6: Blade forces in  vertical direction 

 

4.1 Comparison with measurements 

Finally, the simulation results are compared to measurements performed on a Salvagnini 
automatic panel bender. A direct comparison of forces is not possible yet because of differing 
configurations in the simulation model and the experiment concerning dimensions of the 
sheet, tools and trajectories. It is the planned next step to adapt the simulation model to the 
configuration of the real machine. However, a qualitative comparison is already possible.  

Figure 7 shows the measurement result for the resulting vertical force related to the maxi-
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mum admissible force of the actuators. Three materials are investigated: two kinds of stainless 
steel with thickness 1.5 mm and almost the same nominal tensile strength Rm, as well as mild 
steel with thickness 2 mm. The length of the sheets has been 260 mm. Figure 7 shows an in-
crease of the force up to a maximum value. After reaching the first cut through the sheet on 
the first boundary, the force starts to decrease. Finally, the force drops rapidly when the cut is 
finished. It has turned out that for the two sheets of stainless steel with almost the same nomi-
nal tensile strength the measured force differs of about 15%. 
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Figure 7: Measurement of resulting force in vertical direction  
 
As mentioned above, only a qualitative comparison with the simulation results in Figure 6 

is possible, because of different configurations of simulation model and experimental setup: 
• Geometrical dimensions: Differing sheet length and thickness, differing tool ge-

ometries. Moreover the construction of the machine is far more complex than the 
simple simulation model. Elastic deformations have an influence on the measured 
forces, 

• Different constitutive behavior: In the simulation models very a simple material 
behavior has been assumed as shown in Figure 2. On the other hand on the ma-
chine real materials with exponential flow curves have been cut. Thus, the de-
crease of the force after reaching the maximum value is less in the experiment than 
in the simulation. 
 

The comparison shows the following qualitative coincidence of simulation and measurement: 
• An increase of the force up to a maximum value  
• A moderate decrease of the force after the first cut through the sheet. 
• A rapid decrease at the end of the cut: This behavior is shown only in the SPH solu-

tion. 
• The maximum forces in the two simulation models are differing of about 25%. In 

contrast on the machine differences of 15% for almost equal materials have been 
measured. Therefore the differences of the two simulation methods are in the same 
order of magnitude. 
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 Stainless 1.5 mm, Rm=636 N/mm2

Stainless 1.5 mm, Rm=630 N/mm2

Mild steel 2.0 mm, Rm=277 N/mm2

7755



Paula Reimer, Christian Zehetner, Franz Hammelmüller and Wolfgang Kunze 

5 CONCLUSIONS 

Two simulation methods have been compared for modelling cutting processes, i.e. CEL 
and SPH. Both methods are suitable to represent the main effects. Concerning the geometry of 
the cutting surface and the stress distribution in the cut material the methods show a good cor-
respondence. Due to the differences of the formulations, the resulting forces do differ of about 
25%. On the other hand, deviations in the same order of magnitude have been noticed in the 
experiment, comparing two kinds of stainless steel with almost the same tensile strength. The 
effect of rapid decrease of the resulting force at the end of the cut is only obtained in the SPH 
solution. The next planned steps are to adapt the simulation model to the experiment (geome-
try and constitutive relations) and to calibrate the parameters by measurements.  
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Abstract. The precipitation of the microalloying elements in high strength low alloyed (HSLA) 

steel controls the strength of the steel greatly through grain refinement and particle hardening 

mechanisms. The current work simulates the precipitation of vanadium a hot rolling process for the 

optimized strengthening effect in a microalloyed steel. Taking into account the effect of deformation, 

cause of the drastic increase in the dislocation density, namely higher nucleation site density, it can be 

clearly seen that the precipitation of all species at dislocations, dominate the precipitation kinetics. 

The diffuse interface effect on the interfacial energy as well as a volumetric misfit of AlN at 

dislocations is also taken into account. The latter is because of its significant difference in the lattice 

parameter from the matrix. The presence of AlN at dislocations does not override that of V(C,N) as 

found in other cases with low density of dislocation.  Slow cooling rate in the process ensures the 

consumption of the microalloying elements which in turn strengthen the product and minimise the 

production cost.  The experimental verifications for the precipitates are performed by scanning 

transmission electron microscopy (STEM) as well as X-ray absorption spectroscopy (XAS) from 

synchrotron radiation. 
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1 INTRODUCTION 

This work focuses on the application of physically-based simulation approaches for a 

thermomechanical process of high strength low alloyed (HSLA) steel. The approaches are based on 

the classical nucleation and thermodynamic extremal principal or SFFK model for the growth and 

coarsening of precipitates, with thermodynamic and diffusion databases calculated by CALPHAD 

method. 

 To study the optimisation of the hot rolling process of V-microalloyed steel according to the 

precipitation hardening by vanadium, the effect of deformation and cooling rate before the coiling 

process in hot strip mill were studied by thermokinetics approach of precipitationcontained in the 

software MatCalc. It enables the possibilities to simulate the precipitation kinetics as a result of 

different processing parameters, i.e, thermomechanical cycles as well as the microstructure parameters 

such as grain size and equilibrium dislocation density. All changes in the thermomechanical cycle are 

able to be compiled in separated steps in the software. 

Precipitates nucleate both at dislocations and grain boundaries. The increase in the dislocation 

density by deformation provokes much larger number of nuclei and the diffusion is immensely 

accelerated through pipe diffusion at the dislocation core. Long interpass times were allowed in the 

experiments to ensure high degree of recrystallisation of austenite after each rolling pass to allow 

repeated recrystallisation and consequently austenite grain refinement. The density of dislocations is 

updated along the simulated process.  

Large retained strain together with slow cooling rate is expected to facilitate the precipitation of 

fine V(C,N) in ferrite and lead to higher strength by the advantage of particle hardening, which is 

strictly called dispersion hardening [1-2]. They impede the movement of dislocations by the well-

known Orowan-Ashby looping mechanism.  

2 THE RELATIONSHIP OF PLASTIC DEFORMATION AND DISLOCATION 

DENSITY 

 

2.1 Balance of generation and annihilation of dislocations 

The increase in the dislocation density under deformation can be described by the so-called one 

parameter model [3] as  











bL

M

dt

d  
, 

where M is the Taylor factor, which is 3.06 for FCC crystals [4], 𝜀̇  is the strain rate and b is 

Buger’s vector. The travelling distance L is limited by the average spacing between dislocations as 

shown in 



A
L  , 

where A is a materials constant in a range of 50 to 100. 

The opposing dislocations with antiparallel Burger’s vectors annihilate the formed dislocation and 

can be calculated by 

(1) 

(2) 
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M
b

d
B

dt

d ann2 , 

where B is a constant related to the number of activated slip planes. The term 𝑑𝑎𝑛𝑛 represents the 

critical distance, controlled by shear modulus of the matrix, Poisson’s ratio, vacancy formation energy. 

Also, dislocation density is reduced by thermally activated dislocation climb [5], which is controlled 

by self-diffusion coefficient along dislocations or the so-called pipe-diffusion, Dd, [6] as represented in 

Eq.4. 

 22
3

2 eq

B

d
Tk

Gb
DC

dt

d



 , 

where kB is the Bolzmann constant, T is temperature in Kevin, 𝜌𝑒𝑞 is the equilibrium dislocation 

density and C is a constant, related to the solute trapping effect. 

3 SIMULATION SETUP 

The precipitation simulation was performed in MatCalc version 5.60. The chemical composition of 

the investigated steel is shown in Table 1. The content of titanium did not involve the simulation 

calculation but some amount of nitrogen was calculated according to mass balance of the formation of 

TiN, which usually forms during the solidification of steel melt and is generally not dissolved during 

the reheating.  The thermomechanical cycle simulating a hot strip rolling is represented in Figure 1. It 

can be seen that the varying parameters in this work are the degree of deformation in the last rolling 

pass, 𝜀4, and the final cooling rate before the coiling process, coilT . They are taken into account in the 

simulation. The high strain rate helps produce a large number of dislocations. The experimental work 

is described in details earlier [7]. 

Material 

Name 

C S

i 

M

n 

P S C

r 

Mo Al T

i 

V N 

V- HSLA 

 

0.

070 

0.

05 

0.

98 

0.0

055 

0.0

033 

0

.50 

0.0

10 

0.0

334 

0.

011 

0

.10 

0.0

240 Table 1: The chemical composition of the simulated steel, in mass%. 

 

Figure 1: The thermomechanical cycles adopted in the simulation to simulate the precipitation. 

 

 

(3) 

(4) 
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111 ,, tTT   200 °C/minute, 1250 °C, 15 minute 

 
5 °C/s, 1200 °C, 3 s 

 
0.2, 12 s-1, 10 s 

333 ,, tTT  60 °C/s, 1150 °C, 3 s   

333 ,, passt   0.4, 12 s-1, 10 s 

444 ,, tTT  60 °C/s, 900 °C, 3 s 

444 ,, passt   0.0/0.3/0.6, 12 s-1, 0 s 

ROTROTROT tTT ,,   60 °C/s, 680 °C, 6 s 

  
0.1/ 1/ 5/ 10/ 60 °C/s 

Table 2: The parameters in the thermomechanical cycle in Figure 1. 

Only sharp transformation temperature can be set up in the calculation. Hence, the simulated 

temperature of Run Out Table (ROT), 𝑇𝑅𝑂𝑇 , of 680 °C was chosen for the transformation from 

austenite into ferrite, as ferrite was only little to observed before reaching this isothermal period.  The 

precipitation of AlN and V(C,N) is both at grain boundaries and dislocations in both austenite and 

ferrite parent phases, while that of cementite is at dislocations only. The grain sizes of 100 µm and 10 

µm were selected for austenite and ferrite, respectively. The equilibrium dislocation density in 

austenite was assigned as 10
11

 m
-2

 while that in ferrite as 10
12

 m
-2

. The grain refinement in austenite 

due to recrystallisation during the hot rolling process was not considered. But the generation and 

annihilation of dislocation were considered by choosing one parameter model from Sherstnev and 

Kozesnik with the parameter A in Eq.2 of 50, B in Eq.3 of 2 and C in Eq.4 of 1×10
-4
. The volumetric 

misfit of only AlN at dislocations was considered, which is 0.27. As the critical temperature is 

recommended to take into account for the calculation of interfacial energy due to the diffuse interface, 

a critical temperature of 1727 °C was selected for V(C,N) as an estimation from those reported for VC 

and VN in both austenite and ferrite [8].   

4 MATERIALS CHARACTERISATION 

Samples under different process parameters were measured for the amount of vanadium in different 

states by means of synchrotron X-ray Absorption Spectroscopy (XAS), combined with Linear 

Combination Fitting (LCF) as published earlier in [9]. Also, selected sample were investigated for 

different morphology and size of precipitates by Scanning Transmission Electron Microscopy 

(STEM).  

5 SIMULATION RESULTS AND DISCUSSION 

The multipass rolling thermomechanical cycles result in high dislocation density as shown in 

Figure 2. The first two peaks of dislocation density gradually drop after long interpass time, which 

allows the recovery during the long interpass time. One can see that without the retained strain in the 

last deformation step the dislocation density is annihilated to 3.79×10
12 

m
-2

. With the logarithm strain 

of 0.3 and 0.6, the dislocation density reaches 3.62×10
14

 m
-2

 and 4.59×10
14

 m
-2

 respectively, 

222 ,, tTT

222 ,, passt 

coilT
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interpreting that the retained strain therefore increases the dislocation density with 2 order of 

magnitude. 

 

Figure 2: The change in dislocation density as a result of generation and annihilation after deformation. 

 

a) b) c) 

Figure 3: The mole fraction of different precipitates, both at dislocations and grain boundaries under a slow 

cooling rate of 0.1 °C/s with a retained strain of a) 0.0 b) 0.3 and c) 0.6. 

Figure 3 sums and compares different precipitate phase fractions under different degree of 

deformation at a slow cooling rate of 0.1 °C/s. The high density of dislocations, main nucleation site, 

results in up to 3 order of magnitude higher fraction of the precipitates at this site. Also, higher 

dislocations by retained strain in the last deformation step results in the consumption of V(C,N) at the 

grain boundaries. This is difference from what that found by Radis et al. [10], whose case shows that 

the predominant site of AlN is only grain boundaries and the precipitation of AlN at dislocations 

overrides that of V(C,N). The first short period showing constant fraction of V(C,N) and AlN at 

dislocations was the precipitation in austenite matrix, before transformed into ferrite. It can be clearly 

seen that the higher diffusivity in ferrite allows abrupt increase in the precipitation fraction. 
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a) 

 
b) 

 
c) 

Figure 4: The mole fraction of different precipitates, both at dislocations and grain boundaries under a 

moderate cooling rate of 5 °C/s with a retained strain of a) 0.0 b) 0.3 and c) 0.6. 

When the cooling rate is faster such as 5 °C/s as shown in Figure 4, the pronounced precipitation 

due to deformation is more obvious, up to 4 orders of magnitude for cementite. Due to shorter 

precipitation time at higher cooling rates, deformation obviously has a vital role in accelerating the 

precipitation. Comparing V(C,N) at dislocations between the two cooling rates, under a fixed retained 

strain of 0.3, its fraction shows double amount at slower cooling rate, i.e., 0.00219, compared with 

0.00128.  

To illustrate the consumption of the microalloying elements in from the matrix into the precipitates, 

their concentrations are plotted in Figure 5. It is quite clear that higher cooling rate does not complete 

the available amount of vanadium and aluminium. Therefore, significant amount of these elements is 

still dissolved in ferrite matrix at the end. This implies ineffective process control of microalloyed 

steel. 

 
a) 

 
b) 

Figure 5: Decrease in the microalloying elements dissolved in ferrite matrix in case of a retained strain of 0.3 

and a) a cooling rate of 0.1 °C/s and b) 5 °C /s. The plot starts from just before ferrite has formed at 680 °C in the 

simulation. 

However, small inaccuracy might exist in these simulations due to the fact that only sharp 

transformation temperature from austenite to ferrite is able to assign. However, the trend of the 

influence of deformation and cooling rate from the simulation are in good agreement with the results 

from XAS as published in [9]. 

6 CONCLUSIONS 
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The density of dislocation is immensely multiplied by deformation to several orders of magnitude. 

This results in the increase in the number of nuclei of V(C,N) and AlN that their precipitation at 

dislocations dominates the kinetics. Slower cooling rate allows enough time for the growth of 

precipitation and consumption of the available elements. This is beneficial for the coiling process as 

the cooling rate is very slow. This work is an example of how a physically based simulation of 

precipitation can help the optimisation of thermomechanical process parameters, which is advantage 

for the strength improvement of the products. 
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Abstract. The paper concerns the problem of static structural behavior of sandwich panels. 
The panels are made of thin steel sheets and a thick, but soft core. The effects of the impact of 
concentrated loads on the structural behavior of the panels are discussed. Several different 
cases of concentrated loads were considered: load acting in the plane of the panel, load per-
pendicular to the panel and the additional action of concentrated bending moment. The loads 
are transferred to the panel by a small steel slab. The slab is attached to the facing of the 
panel. Described load cases correspond to situations encountered in engineering practice. In 
order to analyze the issue, a 3-D numerical model was used. Between the facing and the de-
formable core an interface layer was introduced, wherein the criterion of damage initiation 
and damage propagation were defined. Different failure modes were taken into account. Due 
to the character of the problem, the geometrically nonlinear analysis and Riks’ method were 
applied. For each load case a failure load and extreme stresses leading to failure were de-
termined. The differences in the obtained results were explained and the appropriate failure 
mechanisms were discussed. Analyzed sandwich panel has fixed geometries, however, made 
observations are universal. The obtained results tend to look more carefully at the problem of 
the impact of concentrated forces. This problem is particularly important in the case of sand-
wich panels, which due to its construction are very susceptible to local influence. 
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1 INTRODUCTION 

The paper concerns sandwich panels made of thin steel sheets and a thick, but soft core. 
The most commonly used are polyurethane foam cores. The sandwich elements are very at-
tractive because of high load-bearing capacity at low self-weight and excellent thermal insula-
tion. Therefore, these elements are used in the space industry, aerospace, shipbuilding, and 
automotive industries. Currently, it is also difficult to imagine civil engineering without the 
sandwich panels that are used as a building envelope (walls, roofs), partition walls and sus-
pended ceilings. 

The structural behavior of sandwich structural elements with uniform support and load 
conditions has been repeatedly studied and described [1, 2]. The analysis of systems subjected 
to a concentrated load is much more difficult. The existence of deformable core leads to sensi-
tivity of sandwich panels with respect to localized effects [3]. One of these effects is wrin-
kling, which is a form of local instability of the sandwich facing. Wrinkling failures of 
sandwich columns under compression, beams in three- and four-point bending and cantilever 
beams under end loading were investigated in [4]. Analytical, numerical and experimental 
approaches to the problem of wrinkling in the case of nonlinear materials were presented in 
[5, 6]. Another form of damage is debonding. It occurs for example in the case of tensile 
forces between a core and a facing. The inter-layer failure modes are very often initiated by an 
impact [7, 8, 9]. An important failure mode is indentation. The failure is caused by the crush-
ing of the core under a localized force. The problem of indentation loads was investigated in 
[10]. Recently, in order to better describe this phenomenon, sophisticated core models are ap-
plied [11]. Another, experimental approach was presented in [12]. 

In practice, the most common are three cases of concentrated actions: the impact of devices 
on the roof panel, interactions at the points of attachment of a sandwich panel to the support-
ing structure and the impact of equipment (e.g. advertising banners) on the wall panel. In the 
latter case, the load in the plane of the sandwich plate usually dominates, although it is almost 
always in combination with loads perpendicular to the plate. It should be noted that in the case 
of concentrated loads, we have to deal with the simultaneous occurrence of global and local 
phenomena (debonding, indentation, wrinkling). The difficulty in analyzing systems subjected 
to point loads stems not only from the nature of the load, but also its location. Structural 
analysis, in the case of asymmetric load conditions, requires the use of at least 2-D models 
[13]. This is very important because the sandwich systems are characterized by a material ani-
sotropy deepened by different geometries of each layer. In this paper the described phenom-
ena are analyzed using a 3-D model [14]. This article is focused on the case of point loads 
applied to the wall panel. Most attention was paid to the identification of failure mechanisms. 

2 DESCRIPTION OF THE PROBLEM 

Consider a wall sandwich panel that can be installed vertically or horizontally. For the 
brevity of presentation, a one-span panel is analyzed. The supporting structure is located in-
side the building. One can say that the panel is simply supported on two opposite edges, al-
though a 3-D model will be considered, in which the depth of the panel has an impact on the 
description of the boundary conditions. Assume that the external loads are localized in the 
middle of the sandwich panel and are applied to the external facing of the panel (Fig. 1). The 
load conditions should simulate the impact of equipment (e.g. advertising banners) on the 
wall panel. Taking into account the expectations of the market, with full awareness it is as-
sumed that the load will be applied only to the external facing, and there will be no additional 
elements to ensure cooperation between the two facings of the panel. This corresponds to the 
situation when a piece of equipment is attached to the external facing by glue or screws only. 
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In fact, there are not strictly 'point' forces, but rather distributed on a small surface. Therefore, 
it was assumed that the defined forces will be transferred to the sandwich panel by a square 
steel slab with a side length a and a thickness t (a=0.08 m, t=0.008 m).  

 
Figure 1: The 3-D model for the analysis of sandwich panels subjected to concentrated loads. 

In general, on the upper surface of the steel slab, at its center, there may occur 3 forces and 
3 concentrated moments. The paper examined the 6 load cases: 
a) there is only Fx (the name of the model: eco_21), 
b) there is only Fy (eco_21h), 
c) the increasing of Fx accompanied by the constant compressive load Fz = –1 kN (eco_21n), 
d) the increasing of Fx accompanied by the increasing of My = 0.1Fx (eco_22), 
e) there is only the tensile force Fz (eco_24_ten), 
f) there is only the compressive force Fz (eco_25_com). 
The above load cases correspond to the direct attachment of the loading element to the sand-
wich panel arranged vertically (eco_21) and horizontally (eco_21h). The additional localized 
effect of wind pressure was considered in model eco_21n. Model eco_22 corresponds to the 
case of weight mounted on the arm 0.1 m. Cases of the load acting perpendicular to the sand-
wich panel (eco_24_ten, eco_25_com) were prepared for comparison with the other cases. 
Loads perpendicular to the sandwich panel simulate (to some extent) concentrated impacts on 
the ceiling. In all cases they were considered to be only static loads. 

The aim of the paper is to identify the phenomena occurring during the action of concen-
trated loads on the sandwich panel. The key issue is to determine the failure mechanisms and 
estimate the values of load capacity. The problem of distribution of applied load is equally 
interesting. 

3 THE NUMERICAL MODEL 

The 3-D numerical model was prepared in the ABAQUS system. The parameters of the 
system correspond to the values determined in laboratory tests. A sandwich panel with a 
length 5.00 m is located on two supports with a width of 0.10 m. The width of the panel is 
B = 1.0 m. The total depth of the panel is 98.43 mm. The thickness of each of the faces is 
tF1 = tF2 = 0.471 mm. The modulus of elasticity of the facing material is EF = 195 GPa and 
Poisson’s ratio equals νF = 0.3. The actual relationship between stress and strain was intro-
duced. The yield strength was 360 MPa, and the ultimate strength reached 436 MPa. Facings 
were modeled using a four node doubly curved, thin or thick shell, finite membrane strain 
elements S4. At this stage of the study, the core was considered as isotropic material with a 
modulus of elasticity and EC = 8.61 MPa and Poisson’s ratio νC = 0.02. As a result, shear 
modulus is GC = 4.22 MPa. The core was modeled using eight node brick elements C3D8.  
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To assess the cause of the failure of the sandwich panel, between the steel facing and the 
soft core, an interface layer of a thickness of 0.5 mm was introduced. The interface was mod-
eled using COH3D8, 8-node 3-D cohesive elements. The following uncoupled elasticity law 
for cohesive material was used: 
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where tn is normal traction (stress) and ts, tt are shear tractions. Corresponding nominal strains 
are defined as εn = δn/T0, εs = δs/T0, εt = δt/T0 using separation δ and constitutive thickness of 
cohesive element T0. The failure initiation was conditioned by a stress state. The quadratic 
nominal stress criteria of damage initiation and linear softening damage evolution were used. 
The damage initiation criterion has the form of a quadratic nominal stress function. The dam-
age is initiated when the function reaches a value of one: 
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where the typical notation of Macaulay brackets is used. The following parameters of the in-

terface were used: Knn = 8.61 MPa, Kss = Kss = 4.22 MPa, 0nt = 123 kPa, 0
t

0
s tt = = 112 kPa. 

The point loads were applied in the middle of the external surface of the transferring steel 
slab. The mesh size was equal to 0.02 m over almost the entire FEM model. In the vicinity of 
the force application, the mesh was condensed to 0.0067 m. Interaction between all parts was 
assumed as the TIE type, which makes equal displacements of nodes. It is certainly not a per-
fect type of connection, however, it is sufficient to evaluate the most important phenomena. 
The supports were modeled using analytical rigid elements. Boundary conditions at reference 
points ensure the freedom of rotation around the y-axis. One of the supports is free to shift 
along the x-axis. Because the problem was expected to exhibit significant local effects, a 
geometrically nonlinear static analysis and the Riks’ method were applied.  

4 DISCUSSION OF THE RESULTS 

For each static scheme was obtained the force causing local damage to the interface. In 
every case, the failure results from the tensile stress σzz in combination with shear stresses τxz i 
τyz. The respective values are given in Table 1. 
 

Model  Failure load 
Extreme normal 
stress σzz [kPa] 

Extreme shear 
stress τxz [kPa] 

Extreme shear 
stress τyz [kPa] 

eco_21 Fx = 2.22 kN +119.9 / –138.2 +20.66 / –24.93 +27.13 / –27.13 
eco_21h Fx = 2.21 kN +119.0 / –136.5 +20.71 / –20.71 +20.32 / –24.81  

eco_21n 
Fx = 4.28 kN with 
Fz = –1 kN 

+81.19 / –530.1 +42.32 / –106.2 +96.67 / –96.67 

eco_22 
Fx = 0.164 kN with 
My = 0.0164 kNm 

+119.9 / –135.6 +21.43 / –22.96 +26.85 / –26.85 

eco_24_ten Fz = 0.670 kN +115.3 / –0.934 +33.99 / –33.99 +34.46 / –34.46 
eco_25_com Fz = –1.95 kN +17.86 / –431.6 +106.0 / –106.0 +96.03 / –96.03 

 

Table 1: Failure load and extreme stresses in the interface layer. 
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Failure load is identical in the case of a load applied along the panel (eco_21) and cross-
wise the panel (eco_21h). This is despite the fact that in the latter case, the panel rotates about 
the axis x. The displacements are small because they do not exceed 1 mm. Applying an exci-
tation force to the steel slab causes that the force acts on an arm in relation to the plane of the 
supports. As a result, the steel slab indents the sandwich core on the one edge and detaches 
the facing from the core on the other edge. This leads to the destruction of the interface. Inter-
estingly, these phenomena occur only locally, i.e. in the immediate vicinity of the applied load 
(Fig. 2). 

Also note that the small additional load compressing the panel (eco_21n) increases the load 
capacity, since it counteracts the detachment of the facing from the core. In the model eco_22 
even a slight bending moment results in a drastic decrease of the maximum force Fx. This 
leads to the conclusion that the attachment of any elements to sandwich panels should be 
avoided, if the attachment is realized only to one facing. 

 
Figure 2: Distribution of the stress σzz in the interface layer of the model eco_21. Blue indicates compressive 

stress and red indicates tensile stress. 

In the case of tension load directed perpendicularly to the facing (eco_24_ten), the maxi-
mum force reached the expected level, although somewhat surprising is the low redistribution 
of the applied load. In the case of compressive load (eco_25_com) there first appears the ef-
fect of plasticity of the steel facing, and later shear of the interface. Interestingly, there was no 
wrinkling of the steel facing, although the numerical model is suitable for the analysis of such 
phenomena. 

5 CONCLUSIONS 

Conducted numerical analysis shows that the problem of concentrated loads is very impor-
tant. For each load case, local damage occurred between the facing and the core. Failure loads 
were low in value. A particularly unfavorable case is the load acting on an arm. Even a small 
bending moment causes locally high stresses with different signs. According to the authors of 
the paper, in the case of the bending moment, it is necessary to ensure close cooperation be-
tween the two facings of the sandwich panel. In the case of concentrated forces acting in the 
plane of one facing or perpendicular to the facing, the small load-bearing capacity of the panel 
should be considered. Local interface failure can lead to further damage propagation. 
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The discussed phenomenon, in particular the lack of significant redistribution of applied 
load, puts a new light on the classical approach to the problem of concentrated loads. Assess-
ment of the effects of concentrated loads cannot be limited to the global effects, but must also 
take into account phenomena occurring locally.  
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Abstract: This study investigates the bond performance of steel rebar embedded in 

reactive powder concrete(RPC). The assessment of the bond behavior at concrete 

ages of 7, 14 and 28 days using pull-out specimens was the subject of the 

investigation. Varying parameters in this research program were embedment length, 

rebar diameter, concrete age and size of the concrete cover. The concrete 

compressive and flexural strength were measured at the same test ages. The test 

results show that with the increase of rebar embedment length and rebar diameter, 

the ultimate bond stress decreases. This decrease was caused by the nonlinear 

distribution of the bond stress, voids on the contact surface and the Poisson’s ratio 

effect. When protection layer thickness and standard curing age of reactive powder 

concrete increases, the ultimate bond stress increase. The bond of reinforcement in 

RPC is characterized by very high maximum bond stresses, even at early ages. This 

paper presents the details of the investigation and discusses the results obtained.  

1. INTRODUCTION 

Reactive powder concrete (RPC) is one of the newest development in concrete 

building materials. By adding steel fibers to RPC and its homogenized microstructure, 

it has many demonstrated advantages such as outstanding mechanical properties, 

ductility, and durability [1, 2, 3, 4]. In particular, its unique tensile performance, along 

with its high strength and strain capacity make RPC is very useful in bending 

structural applications [5, 6]. 

One of the important aspects of the structural behavior of reinforced reactive 

powder concrete elements is the development of an appropriate bond capacity. The 

structural will premature failure for the insufficient bond resistance results. So it is 

very useful to accurate predict the relative slip between the rebar and concrete in the 

design and analysis work. 
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Experimental work had been performed in order to examine the bond of steel bars 

embedded in RPC [5, 6 ,7, 8, 9]. The main objective was to investigate the bond 

strength activated in pullout tests and to determine the relationship of bond-slip. 

Pullout tests were performed to examine the effect of varying parameters such as 

embedment length, bar diameter, concrete age and concrete cover.  

2. EXPERIMENTAL PROGRAM 

2.1. Material properties and mix proportion  

The mix proportion of RPC used in this study is summarized by the weight in 

Table 1. The water-to-binder ratio (W/B) used in the test was 0.16. The micro steel 

fibers having a length of 12 mm to 15mm, a diameter of 0.22mm and the tensile 

strength is greater than 2800MPa were incorporated by 2% of the total volume. 

Portland cement and silica fume were used as cementitious materials. Sand with a 

grain size of 0.16mm to 1.25mm was used as fine aggregate. In addition, the 

polycarboxylate superplasticizer was added to satisfy the workability, the flow was 

measured by 270 mm from the flow test in accordance with GB/T 14902-2012 [10].  

After casting, the test specimens were placed in the standard curing room and they 

were cured for 24h before demolding. After demolding, the test specimens were 

placed in the standard curing room again until reaching the testing concrete age. 

Table 1: Mixing ratio of RPC (kg/m
3
) 

Cement Silica fume Sand Steel fiber Superplasticizer Water 

920 170 1080 120 22 174 

2.2.  Mechanical tests 

The compressive strength and flexural strength of RPC is the basic mechanical 

parameters of the analysis and design of RPC structure. The flexure, compression 

specimens were cast and cured under the same conditions as the Pull-out specimens. 

Three prism specimens with a dimension of 100mm×100mm×300mm were fabricated 

and tested for evaluating the compressive behavior in accordance with GB/T 

50081-2002 [11]. Compressive strength was measured using universal testing 

machine (WAW) with a maximum load capacity of 2000kN. To obtain the strain 

along with the stress, three electronic strain gauges were also installed on the prism 

specimens. According to the Chinese standard GB/T 50081-2002 [11], a four-point 

bending test was performed to investigate the flexural behavior. The compressive and 

flexural strength were measured after 7, 14 and 28 days. The properties of the steel 

rebars are summarized in Table 2. 

Table 2: Measured strength of rebar 

Diameter(mm) 
Elastic modulus 

(GPa) 

Yield Strength 

(MPa) 

Ultimate strength 

(MPa) 

16 200 413 587 

20 200 430 613 
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2.3.  Pull-out test 

To evaluate the bond behaviors of steel rebar embedded in RPC, the pull-out test 

was carried out in accordance with GB/T 50081-2002[11], the direct pull-out test 

method was preferred because it is simple and leaves the free end accessible for the 

slip to be measured.  

 The nominal diameters of the steel rebar were 16mm and 20mm, the embedded 

length were 3, 4, 5 and 6 times the bar diameter, the concrete cover were 1, 1.6, 2.5cm 

and the concrete age were 7, 14 and 28 days to investigate the bond properties. The 

dimension of Pull-out specimens is 150mm×150mm×150mm. The detailed geometry 

and test setup are shown in Fig. 1(a). The single bar placed horizontally along the 

central axis. The unbonded region of the rebar was sheathed with PVC pipe. A 

pull-out load was applied using a WAW with a maximum load capacity of 1000 kN 

through the pulling force, with the rate of load increase was 0.1 kN/s during testing. 

The LVDTs were used to measure the bond slip between the rebar and the concrete at 

free end, as shown in Fig.1(b). 

  

(a)Dimensions of specimen            (b) Test setup 

Fig.1 Pull-out test 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

The effects of rebar embedment length, rebar diameter, concrete age and size of the 

concrete cover on the bond behavior is analyzed in this section. The bond-slip curves 

for the steel rebar embedded in the RPC were plotted using the experimental results 

obtained directly from the slip measurements at the free end, the bond properties are 

summarized in Table 3. The bond stress distribution between the rebar and RPC is not 

constant along the embedment length. For simplification, the average bond stress τis 

calculated using Eq. (1). 

a

F

dl



                                    (1) 

where F is the pull-out load, la is the embedment length of rebar, and d is the diameter 

of rebar. 

The notation adopted for the specimens in Table 3 is as follows: the first number 

indicates the bar diameter, the next number is the embedment length, the third number 

1
5
0

150

RPC

PVC

Loading End

la

Loading End

LVDT
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is the curing age, and the last number is size of the concrete cover. For example, 

16-48-28d-1cm refers to a 16 mm bar with an embedment length 48cm, the concrete 

cover 1cm, tested after 28 days.  

For all test specimens, the whole process of pull-out test is as follows: the bond 

stress-slip relationship is characterized by an initial increase in the pullout stress with 

slight slip, followed by softening after the bond strength. As the pull-out load 

increased, the slip increased and became measurable with crack formation, resulting 

in the shearing off and crushing of concrete at the bonded region[12]. However, high 

residual bond strength remains during the bar pullout phase because of friction. 

Table 3: Pull-out test results 

Specimens 
Embedment 

length(mm) 

Concrete 

age(days) 

Maximum 

average bond 

strength (MPa) 

Slip at maximum 

average bond 

strength (mm) 

16-48-7d 48 7 35.55 0.55 

16-48-14d 48 14 37.89 1.00 

16-48-28d 48 28 40.53 0.64 

16-64-7d 64 7 33.18 1.25 

16-64-14d 64 14 35.36 0.72 

16-64-28d 64 28 36.57 1.00 

16-80-7d 80 7 27.64 0.40 

16-80-14d 80 14 28.54 0.22 

16-80-28d 80 28 29.26 0.29 

16-96-7d 96 7 20.04 0.99 

16-96-14d 96 14 24.11 0.51 

16-96-28d 96 28 24.07 0.36 

20-80-7d 80 7 26.59 0.27 

20-80-14d 80 14 27.72 0.18 

20-80-28d 80 28 28.85 0.22 

16-48-28d-1cm 48 28 22.45 0.19 

16-48-28d-1.6cm 48 28 24.69 0.22 

16-48-28d-2.5cm 48 28 33.39 0.23 

16-64-28d-1cm 64 28 21.18 0.19 

16-64-28d-1.6cm 64 28 25.29 0.06 

16-64-28d-2.5cm 64 28 30.64 0.64 

3.1.  Effect of the embedment length 

Fig.2 shows the bond stress and slip relations of different embedment lengths (3d, 

4d, 5d and 6d) for steel rebars embedded in RPC. The main findings were as follows: 

The results show that with the increase of rebar embedment length, the ultimate 

bond stress decreases pseudo-linearly[13-14]. The specimens with longer embedment 

length developed lower bond strength. One reason of this decrease is caused by the 

nonlinear distribution of bond stresses along the steel bar embedded in concrete. The 

longer of the rebar embedment length, the shorter and narrower of the high stress 
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region, so specimens with longer embedment length had low average bond stress. The 

other reason of this decrease is caused by Poisson’s ratio effect where the substantial 

elongation of the bar throughout the embedment length leads to reduction in friction. 

The bond stress decreased rapid and largely(about 40%) when the local bond stress 

reach the ultimate bond stress. 
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Fig.2 Embedment length effect on the bond-slip relationship 

3. 2.  Effect of bar diameter 

The test results in Table.3 show that with the increase of the diameter of the bars, 

the ultimate average bond strength decreased slightly. For example, at the embedment 

length of 80cm, the bond strength of the specimens with a diameter of 16mm were 

27.64MPa(7d), 28.54MPa(14d), 29.26MPa(28d), which are about 1.4%-3.9% higher 

than those of the specimens with a diameter of 20 mm. This decrease is caused by the 

bleeding of the water in the concrete. The larger the diameter, the more bleed water is 

trapped beneath the bar, which creates larger voids in the interface [14, 15]. The voids 

reduce the bond strength on the contact surface between the bar and the concrete. The 

Poisson’s ratio effect also can allow a slight reduction in bar diameter as a result of 

longitudinal stress. It’s more easily to brittle failure in concrete surface when the bars 

were pulled out as the diameter of the bar increases.  

3. 3.  Effect of concrete age (confinement effect) 

With the growth of the concrete age, the compressive strength and flexural strength 

of RPC increase. Studying the effect of concrete age amounts to evaluating the effect 

of the confinement pressure caused by concrete shrinkage on the bond strength[16]. 

The results obtained from pullout tests performed after 7, 14and 28 days with smooth 

bars (d=16mm) are displayed in Figs. 3 and Table 3. The following remarks can be 

made: 

 The bond-slip relationship curves were the same shape for all the specimens. The  

bond-slip relationship become full with the increase of concrete age. 

 With the growth of the concrete age, the ultimate bond strength of specimens 

increase. That because with the growth of the concrete age, the radial confined 

pressure on the bond strength increased, too. 
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Fig.3 Effect of concrete age on the bond-slip relationship 

3. 4.  Effect of concrete cover 

Studies have been performed to evaluate the effect on the bond strength of the 

concrete cover. The results obtained from pullout tests performed after 28 days with 

the concrete cover (1cm, 1.6cm and 2.5cm) are displayed in Figs.4. The main findings 

were as follows:  

 The bond performance curves were the same shape for all the specimens. The  

bond-slip relationship become very full with the increase of concrete cover. 

 With the growth of the concrete cover, the ultimate bond strength of specimens 

increased. That is caused as the growth of concrete cover increases the contact 

surface confinement pressure between the bar and the concrete.  
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Fig.4 Effect of concrete cover on the bond-slip relationship 

3.5  Anchorage length 

The force applied in the rebar is resisted by the bond stress acting on the surface of 

the rebar based on the equilibrium condition. The equilibrium of the forces is 

expressed by Eq. (2). 

y s a
f A dl                                    (2) 
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4

y

a

f d
l


                                       (3) 

where fy is steel yield strength, As is the area of one rebar, d is the diameter of the 

steel rebar, la is the critical anchorage length, τ is bond strength. By this formula, the 

adequate anchorage length for bars with the diameters of 16mm is worked out to be 

5.5 times of the bar diameters.  

4  CONCLUSIONS  

 All test specimens failed by pull-out of the rebar with the shearing off and 

crushing of concrete between the lugs of the rebar. The bond of reinforcement in 

RPC is characterized by very high maximum bond stresses, even at early ages. 

High residual bond strength remains during the bar pullout phase because of 

friction. 

 The bond strength was slightly decreased with increasing embedment length due 

to the nonlinear distribution of the bond stress and the Poisson’s ratio effect. The 

specimens with longer embedment length developed lower bond strength.  

 The average maximum bond strength decreased when the diameter of the bars 

increased. This decrease is caused by the voids in the interface and the voids 

reduce bond strength on the contact surface between the bar and the concrete. 

 With the growth of the concrete age and the concrete cover, the ultimate bond 

strength of specimens increase. The reason of this increase is caused by the radial 

confined pressure on the bond strength increased, too. 

 The adequate anchorage length for bars with the diameters of 16mm is worked out 

to be 5.5 times of the bar diameters.  
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Abstract. Experimental data has shown that the addition of manufactured fibres to a soil can
significantly increase its strength. The mechanism of strength increase is due to the frictional
interaction between the soil particles and each fibre. This has a global effect of increasing the
shear strength of the soil. This paper presents the initial development of a micro-mechanics
based soil-fibre model. This model considers the micromechanical soil-fibre interaction and
in particular utilises the shear lag model which is extended to include fibre de-bonding. The
effects of a single fibre are then homogenised using a numerical spherical integration technique
to take into account the distribution of fibre orientations. The fibre model is used in conjunction
with a hardening soil plasticity model. The proposed soil-fibre model is then compared against
experimental data for triaxial compression of fibres mixed with a well graded sand and different
fibre concentrations. The volumetric response shows the correct trend with different fibre con-
tents however the actual values are somewhat inaccurate, The shear stress response is very well
captured. It is concluded that the results could be improved by addressing the known limitations
in the base soil model and the fibre model. Future work will involve the improvement of both.
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1 INTRODUCTION

The requirements for engineering soils are becoming more and more demanding, with larger
structures being built and less choice in where to put them, engineers have fewer options with
site selection and soils often need to be improved. This can be achieved using methods such
as vibro-compaction and drop weight compaction to increase the soil density, or by importing
stronger soils. Geosynthetics is another option to improve soil strength which can be used in
conjunction with other methods. These include geogrids, geomats, geomembranes and fibre
reinforcement. One advantage of using fibre reinforced soils over planar grids / mats is that
they do not introduce any particular planes of weakness.

A variety of fibre materials are available for soil reinforcement. Possibly the original appli-
cation of fibre reinforcement is the use of plant roots which have been used historically for the
stabilisation of slopes and embankments. More recently, investigations have been undertaken
into the behaviour of manufactured fibres in soils. Such studies have looked at fibres constructed
from plastics such as polypropylene [5, 9, 11] and polyamide [15], or natural fibres such as coir
[13] and oil palm [1]. Figure 1 depicts the crimped polypropylene fibres used in this study.

The primary mechanism for strength increase is due to the interfacial friction between the
soil particles and the fibre: isotropic pressure compacts the composite material, causing soil
particles to partially embed in the fibre. The presence of the fibre resists shear displacements
hence increasing the shear strength of the soil.

Fibres used for reinforcing soils must be significantly stronger than the soil mass. It would be
futile adding fibres which would break before soil failure. Manufactured fibre materials such as
polypropylene and polyethylene generally do not reach the yield stress within the strain range
observed in soils; also axial fibre strains dominate radial fibre strains by far; thus fibres are
typically considered as one-dimensional axially loaded elastic elements in fibre models.

Several soil-fibre models have been developed in recent years. Namely, Maher and Gray [12]
created a micro-mechanical soil-fibre interaction model whereby fibres crossing potential shear
planes increased the shear strength across that plane. The effects on a single direction were then
homogenised using a spherical integration technique. Michalowski and C̆ermák [15] developed
a failure criterion for fibre reinforced soils whereby a Mohr-Coulomb type cone model was
expanded due to the presence of fibres. Diambra et al. [8] used the rule of mixtures to create
an equivalent fibre stiffness matrix which was superimposed onto the soil stiffness matrix. A
relationship for fibre debonding was included in this model and later improved by Diambra and
Ibraim [10].

2 FIBRE MODEL

The first step in modelling soil containing randomly distributed fibres is to analyse the effect
a single fibre has on the soil surrounding it; an idealised schematic of the soil and fibre is shown
in Figure 2. By taking an infinitesimal slice of fibre / soil, and balancing the forces due to the
applied matrix strain εma leads to the well known shear lag equation [7].

dσfa
dx

=
−2τ

rf
(1)

where σfa is the fibre tensile stress, x is the distance from the fibre centre, τ is the interface shear
stress, rf is the fibre radius. Through manipulation of Eq. 1, using stress/strain relationships in
the fibre and soil, the slip between the matrix and fibre at any point along the fibre is found to
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35mm

Figure 1: Polypropylene Loksand fibres used in experimental study [6]

x

εf

εma
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lf
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2rf

2rm

Figure 2: Single fibre and surrounding matrix material, showing debonding regions

be

S(x) =
εma

β cosh (βlf/2)
sinh (βx) (2)

where β is a constant relating various properties of the soil, the fibre and the interface. As
the matrix strain εma increases, the interface shear stress also increases, up to a limit τb. With
further loading, the limiting shear stress will expand towards the fibre centre. The length of this
debonded region is given by lb which is calculated using the applied matrix strain.

S(x) =


τb
ks

sinh (βx)

sinh (β(lf/2− lb))
if 0 < x ≤ lf/2− lb

τb
ks

if lf/2− lb < x ≤ lf/2
(3)

The fibre tensile stress is found by integrating the slip relations from the fibre centre to the
desired position. This applies to both the bonded case 2 and the debonding case 3. The axial
stress and shear stress distribution functions are visualised in Figure 3.
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Figure 3: Tensile fibre stress σfa (red) and interface shear stress τ (blue) distributions for bonded
and partially debonded fibre along the length of the fibre [4]

σfa =
−2ks
rf

∫ x

0

S(x)dx (4)

3 SPHERICAL INTEGRATION

To translate individual fibre stresses to global stresses suitable for use in finite element anal-
ysis, the behaviour of the fibres must be homogenised. Another important factor at this stage
is the distribution of fibre orientation. The sample preparation method has a significant impact
on the fibre orientations [11, 17]. In a triaxial compression test, the vertical fibres have little
impact on the results, whereas fibres on the horizontal plane resist the tensile strains and affect
the results significantly. The orientation distribution function used in this study [14] is given in
Eq. (5) with the parameters A = 0, B = 0.57, n = 7 based on results reported by Wang [17].

ρθ = A+B| sinn θ| (5)

The distribution is then used in a numerical spherical integration method [2]. This approach
is similar in form to Gauss-Legendre integration used in finite element formulations, summating
the fibre effects over a number of sampling directions and applying sampling weights to each
direction.

σf = vf

nd∑
id=1

ρ(θid) · χ(θid)
T

∫ lf/2

0

2

lf
σfa(x, εma) dx · wid (6)

The integral term in Equation (6) takes into account the different positions of the fibres. nd
is the number of sampling directions, σfa is the fibre axial stress for either fully or partially
bonded fibres and wid is the current sample weight. χ(θid) forms a direction cosine vector for
each sampling direction. This vector translates the fibre stresses into the global stress space
(Cartesian, axisymmetric etc.). The same vector is also used to translate the global strains into
the applied axial matrix strain εma.

4 THE HARDENING SOIL MODEL

The hardening soil model, initially developed by Schanz [16] and later improved by Benz
[3], is a constitutive soil model capable of capturing non-linear behaviour exhibited by many
soils including stress dependent stiffness, dilatancy and hardening from initial loading. The
model performs well for simulating both laboratory tests and more complex boundary value
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problems. The HS model relies on a set of yield surfaces which define the boundary of elastic
and plastic strains. The shear surface (7) is a curved cone in principal stress space (see [16]).

fs =
qa
E50

q

qa − q
− 2q

Eur
− γp (7)

where qa is the failure shear stress (governed by a Mohr-Coulomb criterion), E50 and Eur are
the current secant and unload-reload stiffnesses, q is the shear stress and γp is the current value
of the plastic shear strain and controls the size of the shear surface. This is a non-associated
surface and the plastic potential in shearing is the Drucker-Prager cone with the dilatancy angle
ψ controlling the cone steepness. The cap surface takes the form of an ellipse in p-q stress
space.

fc = p2 +
q2

α2
− p2p (8)

where p is the mean stress, α is a parameter which controls the cap steepness and pp is the
equivalent pre-consolidation stress and controls the size of the cap surface. The cap surface
uses an associated flow rule therefore the plastic potential function is equal to the yield function.
During drained triaxial testing, both surfaces are active, therefore a double hardening closest
point projection method is employed.

5 RESULTS

The predicted results were generated by a single point constitutive driver in Cartesian stress
space using the fibre and soil properties listed in Table 1 and Table 2. An additional subset of
soil properties were used in the hardening soil model, however they are not listed here. The
triaxial test simulation was undertaken by supplying an initial isotropic stress of 0.3 N/mm2, an
axial strain was applied at a rate of ∆εy = 0.6%. Shear stress and volumetric strain curves are
compared with experimental data [6] in Figure 4. A quadratic rate of convergence was observed
throughout the simulations.

Table 1: Properties of the Loksand fibre

Young’s modulus radius length
Ef rf lf

900 N/mm2 0.044 mm 35 mm

Table 2: Strength properties of the sand

Young’s modulus Poisson’s ratio Friction angle Dilatancy angle Cohesion
Em ν ϕ ψ c

40.6 N/mm2 0.3 35◦ 2◦ 0

6 DISCUSSION AND CONCLUSIONS

The shearing response of an unreinforced soil starts with a high stiffness which reduces with
increasing axial load until it reaches failure where no further shear stress can develop. For the
reinforced soil, this failure limit is not reached (Figure 4a), and the shear stress is allowed to
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Figure 4: Simulated (solid) and experimental (dashed) drained triaxial results for fibre contents
by weight of 0.0% (black), 0.3% (red), 0.6% (green) and 0.9% (blue); experimental results by
Chatzopoulos [6]

increase with axial load indefinitely within the strain range considered. With increasing fibre
content, this effect is increased. This behaviour is captured well in the soil-fibre model with
only small differences in the shear response past 10% axial strain.

The initial response (lower than 10% axial strain) is somewhat mis-represented in shearing.
The initial stiffness of the unreinforced sample is under-predicted; suggesting that there are
some limitations in the base soil model. Also, the initial stiffness of the reinforced samples
is shown to decrease with increasing fibre content; the fibre model does not reproduce this
behaviour.

The unreinforced sand undergoes an initial compressive stage, then after 3% axial strain
(Figure 4b), begins to exhibit dilatancy. The predictions of this do show dilatancy but at a later
strain of 6%. This is most likely due to the simplified dilatancy rule used in the soil model. The
experimental result also shows a dilatancy cut-off at εv = −1.8%, the model does not predict
this.

As the fibre content is increased, the experimental results show a decrease in dilatancy. This
trend is captured well however the values are less accurate than the shear response. The effects
of the simplified dilatancy rule in the soil model may be dominating over the influence of the
fibres, so it is difficult to comment on the accuracy of this element of the fibre model.

In summary, the predictions match the experimental results somewhat better than in previous
work in this ongoing project [4]. In particular, the volumetric response is much better predicted.
Further work will focus on the debonding behaviour of the fibres and the dilatant response of
the soil.
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Abstract. This paper deals with a collaborative model to represent hysteresis behavior at dif-
ferent strain rates. The model consists of two sub-models. The first one treats the behavior 
during loading path. The elastic and in-elastic strains are computed as well as the in-ply 
damages. The strain-rate sensitivity is also taken into account. The second sub-model involves 
a fractional derivate approach to describe viscoelastic material response during unloading 
path. The hysteresis loops and strain rate sensitivity are taken into account by fractional con-
stitutive law. Fractional model involves a few parameters which are easily identified through 
an optimization procedure from the experimental data. The model is validated for thermoset 
and thermoplastic composite materials at different strain rates. 
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1 INTRODUCTION 

The extensive use of composite materials in industrial applications requires a better under-
standing of their mechanical behavior. Composites materials are anisotropic and heterogene-
ous. Complex models are required to adequately describe their behaviors. There are a lot of 
works concerning the behavior of unidirectional or woven composites with thermosetting ma-
trix under quasi-static loadings [1, 2, 3]. These models take into account the damage propaga-
tion and the in-elastic strains appearing commonly in the shear and transverse directions. The 
strain rate dependent models were developed for unidirectional composites [4, 5] and for wo-
ven fabrics [6].  

The previously developed models describe different physical phenomena, such as, the elas-
tic and in-elastic strains, the damages propagation in orthotropic directions and the strain rate 
sensitivity very well. However, they cannot represent the hysteretic behavior of the material 
during its unloading path. The fractional derivative approach is a good technique to model the 
viscoelastic behavior for some natural structures and modern heterogenic materials such as 
elastomers and polymers [7]. A significant number of works deals with fractional viscoelastic 
constitutive equations for different materials under various types of loading. Caputo applied 
fractional Zener model to represent the behavior of glass and a few metals [8]. Bagley and 
Torvik proposed a fractional law in frequency domain to describe the response of certain pol-
ymers and elastomers [9]. The physical sense of fractional operators is given in the works [10], 
[11] for different types of polymers by using Rouse molecular theory [12]. Rabotanov pre-
sented a generalized rheological model to describe the behavior of hereditary medium [13], 
[14]. The hysteresis cycles for a few metals under fatigue loading, were represented by Ca-
puto, in the frequency domain [15]. Mateos [16] proposed a constitutive model for composite 
materials under cyclic quasi-static shear loading and this was based on the fractional deriva-
tive approach. This model also includes strain-rate dependence and thus can be applied for 
dynamic loading [17]. The model is also able to represent hysteresis composite behavior using 
a few material parameters. So, the elastic and irreversible strains, damage and strain rate ef-
fects are taken into account but not material hardening. To fill this gap, a collaborative model 
is developed [18] which includes the elastoplastic damage behavior law [2] with strain-rate 
sensitivity [4] and a fractional derivative approach. In this paper the simulation is made by the 
collaborative model at different strain rates.  

2 THEORETICAL MODEL FOR COMPOSITE PLY 

The constitutive model is developed within the framework of thermodynamics isothermal 
irreversible processes for a woven composite elementary ply under a state of plane stress. 
Subscripts 1 and 2 represent the warp and the weft directions, respectively. The	 composite	 is	
considered	to	be	perfectly	balanced	and	thus	the	longitudinal	and	transverse	behaviors	
are	 considered	 to	 be	 equivalent.	 The continuum damage mechanics theory is used to de-
scribe material degradation such as the matrix micro-cracking and the fiber/matrix debonding. 
Also an isotropic hardening is assumed and the viscoelastic effects are expressed by the frac-
tional derivatives.  

The material parameters are obtained from the experimental campaign based on the cyclic 
tensile tests. The tensile test performed on the [0°/90°] composite allows us to characterize the 
longitudinal (transverse) material behavior. The shear response is obtained from the tensile 
cyclic test on 45°  composite. Commonly, woven composite material has a brittle elastic 
response in the fiber direction. The elastic and the in-elastic strain, damage propagation and 
hysteresis loops, as well as the strain-rate sensitivity are present during shear cyclic test. The 
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typical material response is illustrated for thermoset woven composite (carbon/epoxy) in the 
fiber direction in the Figure 1 and in the shear direction, for two different strain rates, in the 
Figure 2.  

 

 
Figure 1. Longitudinal (transverse) traction curve for the carbon/epoxy composite 

 

 
Figure 2. Shear stress/strain curve for the carbon/epoxy composite for two different strain-rates 

 
The developed constitutive model is composed of two sub-models. The first one deals with 

the elastoplastic damage behavior during material loading and the second sub-model describes 
the hysteresis behavior using a fractional derivative law. Both sub-models are strain-rate de-
pendent and can be applied for the dynamic problems.  

Within the framework of thermodynamic irreversible theory, we choose Helmholtz poten-
tial depending on the internal variables: 

, ,  (1) 

where , ,  are internal variables associated with elastic strain, damage in the orthotropic 
directions and cumulated plasticity respectively. 

2.1  Damage model 

Following the second principal of thermodynamic, constitutive equations are deduced from 
the elastic strain energy of the damaged material (equivalent to the Helmholtz potential ) 
which has a following form: 

1
2

1 1 2

1 2  
(2) 
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where	 	and	 	are	the	Poisson’s	ratios,	 ,	 	and	 	are	components	of	stiffness	
matrix	(3).	

0
0

0 0
with 1

, 
1  (3) 

The stress-strain relation is:		

⟹ 

√2

1 0
1 0

0 0 2 1 √2
 

(4) 

Thermodynamic forces associated with internal variable  are defined as following: 

⟹ 

1
2

;
1
2

;
1
2

2

(5) 

These associated thermodynamic forces characterize the damage propagation. The state of 
damage can only grow [1, 2] and therefore, the threshold of undamaged zone is defined as a 
maximal thermodynamic force for all previous time (  up to the current time  [5]: 

, , 1,2  (6) 

The damage variables , , 1,2  represent a loss of material stiffness in different or-
thotropic directions. In shear the damage variable is defined from the shear modulus diminu-
tion during experiment: 

1  (7) 

where  is the current shear modulus associated to each unloading-loading.  
Damage evaluation law is chosen as the best approximation of experimental data. Different 

types of functions can be used such as linear, polynomial, logarithmic, Heaviside function. 	

2.2  Plasticity modelling and damage-plasticity coupling 

The experimental data shows irreversible strains appearance mainly in shear [3, 4, 5, 6]. 
Thus, plastic flow is considered to be blocked in fiber directions:  

0 ; 0 (8) 

The damage and plasticity coupling is made using the effective stress notation (9). 

1
 (9)

The isotropic strain hardening is assumed. The elastic domain is defined by the yield func-
tion :  
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| |

1
 (10) 

where  is a yield stress and the function  is a material characteristic function of the 
cumulative plastic strain . Generally, the hardening function  is approximated by a 
power law:  

	with 1  (11) 

where β and k are material parameters identified from the experimental data.  

2.3  Strain-rate sensitivity 

Polymer-matrix composite materials have strain rate dependence especially in the shear di-
rection [5, 19]. As the strain rate increases it becomes important to modify the shear modulus 
and the yield stress values accordingly. To describe the material response on dynamic loading 
the model developed by [4] is used. The material parameters are modified using following 
relations: 

1 ,  (12) 

1 ,  (13) 

where , , ,  functions are taken into account for the modification of shear 
modulus and the yield stress. These functions are dependent on the current strain rate  and on 
the “threshold” strain rate  from which the strain rate affects the composite behavior. Func-
tions , 	  are determined from the experimental data using traction tests at different strain 
rates. They can be expressed using different forms such as linear, polynomial, power, etc.  
 

 
Figure 3. Numerical and experimental stress-strain curve comparison at dynamic loading 

 
Damage parameters should now be recalculated from a new shear modulus value. The materi-
al parameter identification procedure is described in the next sections. Thus we can obtain the 
stress-strain curve (Figure 3) for the woven carbon/epoxy composite for a strain rate of 50 
mm/min using this method by using the experimental data for a strain rate of 5 mm/min. The 
first sub-model represents elastoplastic damage behavior of composite for different strain 
rates. The simulation results are found to be in good agreement with the experimental data. 
The next step is to adjoin the hysteresis loops modelling to the current model.  
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2.4  Fractional derivative model 

The hysteresis loops are associated with energy dissipation of composite under cyclic load-
ing. Hysteresis is a hereditary phenomenon, i.e. the previous loading history has to be taken 
into account. To describe this viscoelastic behavior, fractional derivatives are introduced in 
the constitutive equation. The Riemann-Liouville fractional derivative [20] is defined as fol-
lowing: 

1
1

, 0 1 (14) 

where  is a fractional derivative of order  and  is the Gamma-function defined by: 

, ∈ ∗ (15) 

According to elastoplastic damage model during unloading the plastic strain stays constant 
and the elastic strain is a linear function of time. However, a non-linearity of strain is ob-
served in the experimental curve in the unloading/reloading path (Figure 4). 

Figure 4. Total strain composition 

In order to represent strain non-linearity, fractional derivatives are introduced in the gov-
erning law in the second sub-model. The total strain within the hysteresis loop  is defined 
as following: 

2  (16) 

where  is the elastic strain determined by the elastoplastic damaged model,  is the Rie-
mann-Liouville fractional derivative (14) and ,  and  are fractional model parameters. 

As the plastic flow stays constant, the stress is expressed by the elastic law: 

1  (17) 

By substitution the equation (16) in the (17), the constative law is:  

1 2  (18) 

with 1 . 
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2.5  Collaboration of two sub-models 

The collaboration between the models is performed automatically, depending on the sign 
of the yield function (10) and its derivative. If 0 and 0, the elastoplastic damage 
model is used. During unloading if 0 or 0 and 0 and during reloading if 0 
or 0 and 0, we consider that the damage and plastic strain stays constant, and thus 
we switch to the fractional derivative model.  

3 PARAMETERS IDENTIFICATION 

In the following section, the identification procedure of material parameters is described. 
The suggested methodology of experimental identification is applied to unidirectional car-
bon/epoxy composite under different strain rates of loading. 

3.1  Material characterization in fiber directions  

In the fiber direction composite material has a linear brittle response. Damage of material 
is instantaneous and is described by the Heaviside function (19) (Figure 5). The parameters 
are hence easily identified and their values are presented in the Table 1 and Table 2. 

	if	 1 and ; otherwise 1, 1,2   (19) 

where  is a failure-damage threshold. 
 

 

Figure 5. Evaluation of the longitudinal damage function for the carbon/epoxy composite  
 

Parameter Value 

 57.3 GPa 

 0.07 

 687 MPa 

Table 1. Longitudinal (transverse) identification for the carbon/epoxy composite 
 

Parameter Value 

 2 MPa1/2 

Table 2. Longitudinal (transverse) damage parameters for the carbon/epoxy composite 
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3.2  Material characterization in shear 

From the shear test (Figure 2) we had observed the strain rate sensitivity even for low val-
ues: 5 mm/min and 50 mm/min. The identified elastic parameters are presented in the Table 3. 
Significant difference between yield stresses for two different strain-rates can be observed.  

 
Parameter Value for 5 mm/min Value for 50 mm/min 

 3.36 GPa 3.37 GPa 

 12 MPa 20.2 MPa 

 80 MPa 94 MPa 

Table 3. Elastic parameters in shear for the carbon/epoxy composite 
 

The damage propagation is identified, using the linear law (20) (Figure 6), for the low 
strain-rate of 5 mm/min. Using these damage parameters which are identified, the cumulative 
plastic strain  is obtained. The strain hardening function  is fitted by the power law (11) 
on the cumulative plastic strain  (Figure 7). The material parameters are presented in the Ta-
ble 4. 

	if	 1 and ; otherwise 1 (20) 

where  is the initial damage threshold,  is the failure-damage threshold and  is the 
speed of damage propagation.		
 

Parameter Value for 5 mm/min 

 2.25 MPa1/2 

 0.15 MPa /  

 0.8 MPa1/2 

 266.6 MPa 

 0.36 

Table 4. Shear damage and plasticity parameters for the carbon/epoxy composite 

 

Figure 6. Shear damage function of the carbon/epoxy composite  
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Figure 7. Hardening function  for the carbon/epoxy composite 

3.3  Identification of fractional derivative model parameters 

In order to determine fractional derivative model parameters, an optimization problem has 
been resolved. Due to specification of fractional operators, the differentiable function must be 
vanished at the first point of calculus. Otherwise, the fractional operator will tend to infinity. 

To avoid this singularity, zero initial conditions are required for the elastic strain function . 
That’s why we include in the computational interval the “preloading” path where 0. 
Once the fractional derivatives are calculated on “preload-unload-reload” time-interval, the 

optimal solution is found within the “unloading-reloading” time-interval or within the hyste-
resis loop ( 

Figure 8). The objective function is expressed by relative error : 

∑
 

(21) 

where  is the experimental strain determined by the equation (15),  is the strain calcu-
lated by the fractional model (22) and N is the number of time-points inside the considering 
interval. 

1
 (22) 

 

 
Figure 8. Elastic strain referring to a hysteresis loop 
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To implement the fractional derivative in a numerical code the M1-method [18] is used. 
The Riemann-Liouville fractional integral of elastic deformation  can be expressed in al-
ternative form as:  

1  (23) 

The fractional derivative is calculated using central difference scheme: 

∆ ∆
2∆

 (24) 

The M1-method provides numerical error less than 1%. It can be easily implemented in the 
numerical code if analytical expression of function  is known. Thus the elastic strain  is 
approximated by a piecewise function in further calculations.  

The fractional model parameters A, B, and α are determined by resolving an optimization 
problem for each loop. Their values stay constant within one hysteresis loop but they are var-
ied loop by loop. We consider A, B, and α as a function of damage as the damage is constant 
within one hysteresis loop. The parameters A, B, and α can be approximated by linear function 
of damage, for the carbon/epoxy composite during a shear test with a strain rate of 5 mm/min, 
as the following: 

Approximations are illustrated on the Figure 9, Figure 10 and Figure 11. Coefficients of 
fittings (25), (26) and (27) are presented in the Table 5. 

 
Parameter Value Parameter Value 

 0.0189  -0.0013 
 1.795 0.8605 
 0.6944 -0.0035 

Table 5. Coefficients of fractional parameters fitting for the carbon/epoxy composite 

 
Figure 9. Fractional parameter  evaluation with damage for the carbon/epoxy composite 

 

 (25) 

 (26) 

 (27) 
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Figure 10. Fractional parameter  evaluation with damage for the carbon/epoxy composite 

 

 
Figure 11. Fractional parameter  evaluation with damage for the carbon/epoxy composite 

4 RESULTS  

Taking into account the previous assumptions and the identified material parameters, the 
simulation of stress-strain curves is performed. The brittle elastic behavior in fiber directions 
is represented exactly in the Figure 12. The shear curve at 5 mm/min is represented by collab-
orative model in the Figure 13. The numerical simulation is in a good agreement with the ex-
perimental data. The in-elastic strains, damage and hysteresis loops are taken into account 
during the numerical simulation. 

 

 
Figure 12. Experimental and numerical behavior comparison in longitudinal direction for thermoset composite 
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Figure 13. Experimental and numerical behavior comparison in shear for carbon/epoxy composite for the strain-

rate of 5 mm/min  
 

 
Figure 14. Experimental and numerical behavior comparison in shear for thermoplastic composite  

 
The next simulation concerns the strain-rate sensitivity of carbon epoxy woven composite 

which is observed from the experimental data (Figure 2).  To take this into account, the mate-
rial parameters are identified for strain rates of 5 mm/min and 50 mm/min. The evolutions of 
the parameters are represented by the linear laws. The material response in shear for a strain 
rate of 50 mm/min is simulated by the collaborative model from the 5 mm/min shear test. The 
model is able to reproduce hysteresis loops from the quasi-static test at low strain rates. It is a 
promising approach to model the hysteresis loops at different strain rates and to signify dam-
age propagation.  

 

 
Figure 15. Stress-strain dynamic response for a woven thermoset composite  
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5 CONCLUSIONS 

The proposed collaborative model takes into account the damage, plastic strain and viscoe-
lastic effects such as hysteresis loops and strain rate sensitivity. The hysteresis behavior is 
modeled by a fractional derivative approach. Few parameters are required to represent the 
hysteresis loops. These parameters are determined by resolving an optimization problem. The 
simple implementation of M1-method is proposed for fractional derivatives. The model is val-
idated for thermoset and thermoplastic carbon fiber woven composite materials. The strain 
rate sensitivity is demonstrated on the example of carbon/epoxy composite material at low 
strain rates.  

This constitutive model is able to describe the behavior of woven composite materials un-
der cyclic quasi-static and dynamic loading. One of the main advantages of the proposed 
model is that the elastoplastic damage model [2] and strain rate dependent model [4] are clas-
sical and are completed by the fractional derivative model. The numerical implementation is 
simple and the computational cost is low. The collaborative model is a promising approach to 
quantify and correlate the material damage evolution in respect of the strain rate.	 
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Abstract. This work presents a methodology based on the numerical simulation for 
assessment of the effects of defects in the form of delamination on the mechanical properties 
of composite sandwich panels. Various types of core are used in these panels depending on 
their purpose - tubular, cellular or honeycomb, arranged in one, two or even three layers. 
High-quality bonding of core and skins is one of the key factors for providing of overall 
stiffness and structural strength. Often constructions with multilayer sandwich panels may 
work under the complex stress condition and the local areas of disbond between core and 
skins can considerably reduce bearing strength of the product. Also, defects in the form of 
delamination can be observed in multi-ply skins of sandwich panels. In addition, some skins 
have perforation which occupies up to 10% of the entire area, and perforation holes diameter 
is correlated with the ply thickness. This factor should also be considered in assessing of 
performance of the sandwich panels. 

The three-dimensional parametric models of panels with tubular and honeycomb cores 
were created. Both solid and shell models were used. Simulation of delamination was 
performed by contact parameters changing in local areas of predetermined shape and 
dimensions. Such materials as carbon fiber reinforced plastic (CFRP) and fiberglass were 
examined. The numerical stress-strain analysis of panels under various loading condition was 
obtained with ANSYS Workbench software. 

The developed numerical models allow to study the effects of delamination defects on the 
stress and strain fields in multilayer composite sandwich panels according to the size and 
location of the defect.  
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1. INTRODUCTION
Today sandwich panels made of fibrous polymer composite materials are vital elements of 

many modern aircrafts and turbojet engines. Sandwich structures consist of a lightweight 
thick core and two thin strong skins bonded by thin adhesive films. These structures have high 
specific stiffness, sound and thermal insulating properties [1]. 

Various types of core are used in these panels depending on their purpose - tubular, cellular 
or honeycomb, arranged in one, two or even three layers (Fig.1). High-quality bonding of core 
and skins is one of the key factors for providing of overall stiffness and structural strength. 
Often constructions with multilayer sandwich panels may work under the complex stress 
condition and the local areas of disbond between core and skins can considerably reduce 
bearing strength of the product. Also, defects in the form of delamination can be observed in 
multi-ply skins of sandwich panels.  

a)   b)   c) 
Figure1: Types of core: tubular (a), honeycomb (b) and cellular (c). 

The most researches that are devoted to mechanical behavior of sandwich panels describe 
the honeycomb core structures, for example [2-7]. A comprehensive review of the 
computational models on honeycomb sandwiches was given by Noor et al. [8], where 
numerous references were cited. 

Present work continues the previous study of the mechanical properties of composite 
sandwich panels with various core types [9-13]. The goal of this research is the development 
of methodology for analysis of effects of delamination on the mechanical properties of 
composite sandwich panels. 

It may be noted that the created numerical models and the results of this work will be used 
for fundamental investigation devoted to the development of experimental and theoretical 
principles of the mechanical analysis of smart materials with embedded fiber Bragg grating 
(FBG) sensors for structural health monitoring (SHM) [14-16]. 

2. STRUCTURES AND MODELS OF SANDWICH PANELS.

The numerical analysis of stress-strain state of sandwich panel under various conditions of 
loading was obtained with ANSYS Workbench software. For this simulation the 3D 
parametric models of sandwich panels corresponding to full-scale samples used for 
mechanical tests were created [9-11]. The describing of test technique and results can be 
found in [12, 13]. Initial mechanical properties and strength characteristics of the materials 
used in numerical studies were obtained in in-house tests. 

The following simulation cases were examined: 1 – the longitudinal tension of sandwich 
panel with tubular core made of fiberglass, 2 – the longitudinal tension and 4-point bending of 
sandwich panel with carbon skins and fiberglass honeycomb core.  

Simulation of delamination between the core and skins was performed by contact 
parameters changing in local areas of predetermined shape and dimensions. Thus the areas in 
form of circle with radius of 10 mm, 15 mm and 30 mm were searched.   
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Fig.2 shows the 3D models of panels with delamination area located in the center. For 
model of panel with tubular core (Fig.2, a) thanks to symmetry of the modelled specimens, 
simulations can be reduced by investigation of their halves only. Gripping fixtures, used for 
installing a sample in a testing machine, were also modelled in order to reproduce a character 
of load application in real experiments. The fixture system consisted of steel pads, a gasket, a 
seal and bolts. 

a) b) 

c) 
Figure 2: 3D models of sandwich panels with delamination area: longitudinal tension of sandwich panel with 

tubular core (a), longitudinal tension (b) and 4-point bending (c) of sandwich panel with honeycomb core 

The layouts of internal structure of sandwich panels are shown on Fig.3. For example, the 
studied sandwich panel with tubular core consists of three-ply 90/0/90 and two-ply 90/0 
laminate skins and tubes with 70/-70 laminate faces. 

a)               b) 
Figure 3. Layout of internal structure of sandwich panel: with tubular core (a), with honeycomb core (b) 

Fig.4 shows the FE meshes of sandwich panels for various simulation cases. Both solid and 
shell models were used for panel with honeycomb core to analyze the possible influence of 
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different approaches of FEM technique on the results. Meshing was automatically 
implemented in ANSYS Workbench using tetrahedral Solid186 or Shell281 finite elements. 
The mesh density was considered optimal when the difference between the results of 
successive calculations with a refined mesh did not exceed 5 - 10%. 

a) b) c) 

d) 
Figure 4: FE meshes of sandwich panels for various simulation cases 

Some skins of panels have perforation which occupies up to 10% of the entire area, and 
perforation holes diameter is correlated with the ply thickness. The direct modelling of such 
structural elements is connected with computational difficulties due to a large number of 
small-sized curved areas (holes) that require a fine FE mesh. Thus it was necessary to obtain 
the effective properties of each perforated laminate. Various reinforcement schemes and two 
types of perforation were considered. The first type of perforation is dense perforation with a 
distance between holes is about 9 mm. Perforation of the second type is sparse, with the same 
diameter of holes and distance of about 18 mm between them.  

As perforation was periodic, representative volume elements (RVE) of the laminates could 
be considered for assessment of their effective properties. Their dimensions were chosen as 
60 mm × 60 mm to include a significant number of perforation holes (Fig.5).  

Figure 5: FE mesh of representative volume elements (RVE) of the laminates. 

SOLID 186SHELL 181 

SHELL 181 

SOLID 186 
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The considered laminates were orthotropic, characterized by nine independent elastic 
constants: the Young's moduli XE , YE , ZE , Poisson's ratios XYν , YZν , XZν , and shear moduli 

XYG , YZG , XZG . Three types of numerical experiments were implemented for each RVE of 
the perforated laminates: tension along axes X and Y to determine the effective Young's 
moduli and Poisson's ratios, and pure shear in the XY plane to calculate the shear modulus. In 
each case the laminate RVE model was subjected to a kinematic loading condition of 1 mm 
displacement on the corresponding border.  

The calculations of effective elastic and strength characteristics of perforated layered shells 
were obtained with ANSYS Mechanical software employing Shell281 finite elements.  

The homogenized constants of the perforated laminates – the elastic moduli and Poisson’s 
coefficient – were obtained with the following equations: 

𝐸𝑥∗ =
〈𝜎𝑥〉
𝜀𝑥∗

,   𝐸𝑦∗ =
〈𝜎𝑦〉
𝜀𝑦∗

,   𝐸𝑧∗ =
〈𝜎𝑧〉
𝜀𝑧∗

𝐺𝑥𝑦∗ =
〈𝜏𝑥𝑦〉
𝛾𝑥𝑦∗

,   𝐺𝑦𝑧∗ =
〈𝜏𝑦𝑧〉
𝛾𝑦𝑧∗

,   𝐺𝑥𝑧∗ = 〈𝜏𝑥𝑧〉
𝛾𝑥𝑧∗

(1) 

 𝜈𝑥𝑦∗ = �
𝜀𝑦∗

𝜀𝑥∗
� ,   𝜈𝑦𝑧∗ = �

𝜀𝑧∗

𝜀𝑦∗
� ,   𝜈𝑥𝑧∗ = �

𝜀𝑧∗

𝜀𝑥∗
� 

where strains 𝜀𝑥∗, 𝜀𝑦∗ , 𝜀𝑧∗ and 𝛾𝑖𝑗∗  were predetermined in the numerical experiments. 

The mean stress values were calculated using the following relation: 

〈𝜎𝑖〉 = ∑ 𝜎𝑖𝑉𝑖𝑛
𝑖=1
𝑉𝑀

(2) 

where n is number of finite elements in the RVE, 𝜎𝑖 is stress in the ith  finite element, iV  is its 
volume, MV  is the representative volume. 

It was shown that the perforation leads to decrease of material stiffness up to 30%, and 
strength – up to 40-60%. 

Verification of the proposed numerical algorithm for calculation of effective properties of 
the perforated laminates and obtained results were carried out with the help of tensile tests of 
special specimens of 2-plies laminates (Fig.6) according to ASTM D 882 [17].  

a)              b) 
Figure 6: Perforated specimens of 2-plies laminate before (a) and after (b) tensile testing. 

Static tests were conducted on Zwick/Roell Pro Line Z100 testing machine with contact-
type long-travel extensometer. Tensile stress-strain curves for tested specimens are given in 
Fig.7. The results of numerical simulations were compared with the test data. Good 
correlation was found. 
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Figure7: Tensile stress-strain curves for perforated specimens with various reinforcement schemes and testing 
fixture with contact-type extensometer. 

3. NUMERICAL MODELLING OF MECHANICAL BEHAVIOUR OF SANDWICH
PANELS.

The numerical studies included development of finite-elements models of the considered 
sandwich panel specimens under tensile loading and 4-point bending. The problems were 
solved in a general statement for an anisotropic elastic body. A mathematical formulation was 
given in [10, 11].  

As a result of the numerical simulation, stress and strain fields were obtained for each 
structure component of panels. For example, Fig.8 shows the calculated total displacements in 
the sample of panel with delamination defect under the load of 100 kN and fields of stress in 
skins and tubular core.  

Similarly the stress analysis for sandwich panel with honeycomb core can be realized 
(Fig.9). The effective approach for research of mechanical behavior is the analysis of stress 
distribution along the different paths. Thus Fig.10 shows various paths on the top three-ply 
laminate skin of sandwich panel under 4-point bending load.  

A comparison of obtained solution data for various delamination defects with the results 
for a defect-free panel allows to estimate the impact of defect on the static strength and stress-
strain state of panel (Fig.11). 

The results analysis shows that delamination of the core from facesheet invokes the stress 
redistribution near the defect area. The several sizes of delamination were considered and it 
was shown that in general there was no effect on static strength of sandwich panel with 
tubular core under tensile loading condition. The local changes of stress components are more 
noticeably for sandwich panels with honeycomb core due to specific type of contact 
boundary. Nevertheless the difference between stress values for defect-free and defective 
panel does not exceed 5%.  
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a) b) 

c)                d) 
Figure 8: Calculated total displacements [mm] (a) and fields of stress [MPa] in skins (b, c) and tubular core (d) 

of sandwich panel with delamination defect. 

a)                b) 
Figure 9: Calculated fields of SY stress [MPa] in sandwich panel with honeycomb core 

 with delamination defect (a) and honeycomb cell (b). 

7806



A.N. Anoshkin, V. Yu. Zuiko, M.A. Alikin and A.V. Tchugaynova 

Figure 10: Paths for stress distribution analysis on the top three-ply laminate skin of sandwich panel under 4-
point bending load. 

a) 

b) 
Figure 11: Bending stress distribution along the A1-A2 path: a) – defect-free panel, b) – panel with delamination 

defect (radius 10 mm). 

4. CONCLUSION
This work is devoted to development of a methodology based on the numerical simulation 

for assessment of the effects of defects in the form of delamination on the mechanical 
properties of composite sandwich panels. Various types of core are used in these panels 
depending on their purpose - tubular, cellular or honeycomb. Several studies have shown that 
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delamination of the core from facesheet is a typical failure mode for sandwich panels. In 
addition, some skins have perforation which occupies up to 10% of the entire area, and 
perforation holes diameter is correlated with the ply thickness. This factor should also be 
considered in assessing of performance of the sandwich panels. 

The three-dimensional parametric models of panels with tubular and honeycomb cores 
were created. Both solid and shell FE models were used. The numerical stress-strain analysis 
of panels under various loading condition was obtained with ANSYS Workbench software. 
The following simulation cases were examined: 1 – the longitudinal tension of sandwich 
panel with tubular core made of fiberglass, 2 – the longitudinal tension and 4-point bending of 
sandwich panel with carbon skins and fiberglass honeycomb core. Simulation of delamination 
was performed by contact parameters changing in local areas of predetermined shape and 
dimensions. A comparison of obtained solution data for various delamination defects with the 
results for a defect-free panel allows to estimate the impact of defect on the static strength and 
stress-strain state of panel.  

The prior analysis has shown that in general there was no effect on static strength of 
sandwich panel with tubular core under tensile loading condition. The local changes of stress 
components depending on size of delamination are more noticeably for sandwich panels with 
honeycomb core due to specific type of contact boundary. Nevertheless the difference 
between stress values for defect-free and defective panel does not exceed 5%. However it is 
significant to note that the problem of delamination in composite sandwich panels is 
extremely important for fatigue life prediction for such structures. The solution of this 
problem will be the aim of the further researches.  

The analysis of effect of perforation on mechanical properties of fiberglass sheets was also 
performed in this work. It was shown that the perforation leads to decrease of material 
stiffness up to 30%, and strength – up to 40-60%. Verification of the proposed numerical 
algorithm and obtained results was carried out with the help of tensile tests of special 
specimens according to ASTM D 882. 

It can be concluded that the developed numerical models allow to study the effects of 
delamination defects on the stress and strain fields in multilayer composite sandwich panels 
according to the size and location of the defect. The results of this work can be used for 
structural health monitoring (SHM) of these structures with embedded fiber Bragg grating 
(FBG) sensors. Thus the numerically obtained stress distribution near the possible defect can 
help to determine the dimension of effective sensitive zone for embedding FBG sensors.  

The study was performed in Perm National Research Polytechnic University with support 
of the Russian Science Foundation (project №15-19-00243). 
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Abstract. Beam models are used for the aeroelastic time and frequency domain analysis
of wind turbines due to their computational efficiency. Many current aeroelastic tools
for the analysis of wind turbines rely on Timoshenko beam elements with classical cross-
sectional properties (EA, EI, etc.). Those cross-sectional properties do not reflect the
various couplings arising from the anisotropic behaviour of the blade material. A two-
noded, three-dimensional Timoshenko beam element was therefore extended to allow for
anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape func-
tions are identical to the original formulation. The new element was implemented into a
co-rotational formulation and validated against natural frequencies and several static load
cases of previous works.
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1 INTRODUCTION

Beam models are used for the aeroelastic time and frequency domain analysis of wind
turbines due to their computational efficiency. Many current aeroelastic tools for the
analysis of wind turbines rely on Timoshenko beam elements with classical cross-sectional
properties (EA, EI, etc.). Those beam properties do not reflect the various couplings aris-
ing from the anisotropic behaviour of the blade material. The cross-sectional properties
of anisotropic beams are commonly expressed in a 6 × 6 cross-section stiffness matrix.
Theories for determining the cross-section stiffness matrix have been presented by e.g.
Giavotto et al. [1] and Yu et al. [2]. The method by Giavotto et al. invokes the virtual
work per unit beam length to obtain a linear system of second-order differential equa-
tions with constant coefficients that have a homogeneous and particular solution. The
particular solution is used to determine the 6 × 6 cross-sectional stiffness matrix. The
homogeneous solution is related to warping and is generally ignored. The method by Yu
et al. is based on the variational-asymptotic method by Berdichevskii [3].

The anisotropic cross-sectional properties require a suitable beam element for the anal-
ysis. Ghiringhelli’s [4] element formulation uses the cross-section compliance matrix and
beam forces, which vary linearly along length, to obtain the element stiffness by principle
of virtual forces. The two-noded element of Kim et al. [5] assumes polynomial shape func-
tions of arbitrary order. The shape function coefficients are determined by minimizing
the elastic energy of the beam while satisfying the boundary conditions. Both elements
assume small nodal displacements and require a co-rotational or multi-body formulation
for geometric nonlinear analysis. A beam element that directly permits large displacement
analysis is the mixed variational formulation of Hodges [6].

This paper extends the two-noded, three-dimensional Timoshenko beam element by
Bazoune et al. [7]. A cross-section constitutive relationship with a 6× 6 stiffness matrix
was introduced and the 14 coefficients of the polynomial shape functions were eliminated
by two equilibrium equations of the shear force and bending moment relationship and
12 compatibility conditions of the nodal displacements at the element boundaries. With
the displacements and rotations known along the beam, the element stiffness matrix was
obtained by numerical integration along the element. For an uncoupled beam, where
the cross-section stiffness matrix is diagonal, the present formulation is identical to the
original formulation. The new element is implemented into a co-rotational formulation by
Battini and Pacoste [8] to allow for large displacements and rotations. The anisotropic, co-
rotational Timoshenko beam element is validated against natural frequencies and several
static cases of previous works. A new test case with a coupled 45-degree bend cantilever is
also proposed and compared to results obtained with the beam element by Kim et al. [5].

2 METHODS

In this section a Timoshenko beam formulation for the analysis of anisotropic beams
is derived. The present element is an extension of the two-noded, three-dimensional
Timoshenko formulation by Bazoune et al. [7] to allow for fully populated 6 × 6 cross-
section stiffness matrices.

2.1 Kinematic Assumptions

The element coordinate system has its origin at the first node of the element. The
beam axis x is along the length of the beam, pointing towards the second node. Axes y
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and z define the cross-sectional plane of the beam. The lateral displacements u, v and
w of the beam axis are expressed as a function of the cross-sectional coordinate x along
the element length L. A first order polynomial is assumed for displacement u along the
beam axis and third order polynomials are assumed for displacements v and w in the
cross-sectional plane.

u(x) = c1x+ c2 (1)
v(x) = c3x

3 + c4x
2 + c5x+ c6 (2)

w(x) = c7x
3 + c8x

2 + c9x+ c10 (3)

For torsional displacements along the beam a first order polynomial is assumed

θx(x) = c11x+ c12 (4)

The rotational displacements θy and θz around the beam cross section axes follow from
Timoshenko’s assumption that the curvature of the beam equals the slope plus a contri-
bution from shear deformation

θy(x) = −∂w
∂x

+ c13 (5)

θz(x) = ∂v

∂x
− c14 (6)

To express the displacements and rotations along the beam, the shape function coefficients
ck for k ∈ {1, . . . , 14} in the equations above have to be determined.

2.2 Constitutive Relations

By introducing the beam strain vector

ε =
{
∂u

∂x
,
∂v

∂x
− θz,

∂w

∂x
+ θy,

∂θx
∂x

,
∂θy
∂x

,
∂θz
∂x

}T

(7)

and the 6× 6 cross-section stiffness matrix

Kcs =



K11 K12 K13 K14 K15 K16
K22 K23 K24 K25 K26

K33 K34 K35 K36
K44 K45 K46

sym. K55 K56
K66


(8)

the cross-section constitutive relation is

F = Kcs ε (9)

where F = {Fx, Fy, Fz,Mx,My,Mz}T are the beam forces and moments in the cross-
section.
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2.3 Equilibrium and Compatibility

The 14 shape function coefficients ck are eliminated by introducing two equilibrium
equations of the shear force and bending moment relationship

∂My

∂x
− Fz = 0, ∂Mz

∂x
+ Fy = 0 (10)

and 12 compatibility conditions (6 nodal displacements + 6 nodal rotations) at the element
boundaries x = 0, L

u(0) = u1 u(L) = u2
v(0) = v1 v(L) = v2
w(0) = w1 w(L) = w2
θx(0) = θx1 θx(L) = θx2
θy(0) = θy1 θy(L) = θy2
θz(0) = θz1 θz(L) = θz2

(11)

where un, vn, wn and θxn, θyn, θzn for n = 1, 2 are the nodal displacements and rotations at
the first and second node of the element. With the displacements known along the beam,
the elastic energy is

V = 1
2

∫ L

0
εTKcsε dx (12)

The element stiffness Kel is obtained by creating the Hessian of the elastic energy V with
respect to the nodal degrees of freedom.

2.4 Implementation

For implementation in a finite element code the beam element derived above is rewritten
in matrix notation. The beam displacements and rotations u(x) = {u, v, w, θx, θy, θz}T of
Equations (1) – (6) can be expressed as

u(x) = A(x)c (13)

where A(x) is the coefficient matrix of the displacements and rotations with respect to
the shape function coefficient vector c = {c1, . . . , c14}T . And similarly for their derivative
with respect to the beam axis du(x) = {∂u

∂x
, ∂v
∂x
, ∂w
∂x
, ∂θx

∂x
, ∂θy

∂x
, ∂θz

∂x
}T

du(x) = dA(x)c (14)

The equilibrium and compatibility Equations (10) and (11) can be written as

E(x)c = T d (15)

where E(x) is the coefficient matrix of the equilibrium and compatibility equations with
respect to the shape function coefficient vector and

T =
 0

2×12
I

12×12

 (16)
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is a transformation matrix in which 0
2×12

is a 2 × 12 zero matrix and I
12×12

is a 12 × 12
identity matrix. The nodal displacements are expressed in the vector

d = {u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2}T (17)

Substituting Equation (15) into (13) and (14), the beam displacements and their deriva-
tives can be expressed as

u(x) = N (x)d (18)
du(x) = dN (x)d (19)

where N (x) = A(x)E(x)−1T and dN (x) = dA(x)E(x)−1T . Finally, the beam strains
ε are expressed in terms of nodal displacements and rotations

ε = B(x)d = [dN (x) + TNN (x)] d (20)

where B(x) = dN (x) + TNN (x) is the strain displacement matrix and

TN =



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(21)

a transformation matrix. The element stiffness matrix Kel of the anisotropic Timoshenko
beam element is obtained by numerical integration over the beam length L

Kel =
∫ L

0
B(x)TKcsB(x) dx (22)

A consistent mass matrix for the above element is obtained from

Mel =
∫ L

0
N (x)TMcsN (x) dx (23)

where Mcs is the cross-section mass matrix containing mass and inertia of the cross-section
with respect to the beam displacements and rotations.

3 RESULTS

The proposed element is validated by comparing the results of different test cases with
those of previous publications. To allow for large displacements and rotations, the beam
element above was combined with an implementation of the co-rotational formulation
proposed by Battini and Pacoste [8]. The system was solved using a Newton-Raphson
procedure.

3.1 Eigenfrequencies of a coupled cantilever
In the first example, the natural frequencies of a coupled cantilever box beam proposed

by Hodges et al. [9] were investigated. The beam is 2.54 m long, has a height of 16.76 mm
(0.66 in) and a width of 33.53 mm (1.32 in). The wall thickness is 0.84 mm (0.033 in)
with six layers of unidirectional lamina stacked (20/−70/20/−70/−70/20) from outside
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to inside. The material is T 300 / 5208 Graphite / Epoxy with properties provided by
Stemple and Lee [10]. The material density is given by Hodges et al. as 1604 kg/m3

(1.501 · 10−4 lbsec2/in4). The cross-section stiffness matrix was taken from Hodges et al.
and converted to SI units

Kcs =


5.0576 · 106 0 0 −1.7196 · 104 0 0

7.7444 · 105 0 0 8.3270 · 103 0
2.9558 · 105 0 0 9.0670 · 103

1.5041 · 102 0 0
sym. 2.4577 · 102 0

7.4529 · 102

 (24)

The cantilever was discretised with 16 elements. In Table 1 the results of the present
model are compared with beam models by Hodges et al. [9] and Armanios and Badir [11]
as well as a finite element shell model by Kim et al. [5].

3.2 Tip displacements and rotations of a coupled cantilever
A test case for the static analysis of a coupled cantilever was taken from Wang et al.

[12]. The stiffness matrix is provided in the original study as

Kcs =


1368.17 0 0 0 0 0

88.56 0 0 0 0
38.78 0 0 0

16.96 17.61 −0.351
sym. 59.12 −0.370

141.47

 · 103 (25)

The beam has a length of 10 m and was discretised by 10 elements. A tip load of 150 N
was applied to the cantilever. The tip displacements and rotations (in Wiener-Milenkovic
Parameter) are shown in Table 2.

3.3 Curvature and twist of a coupled cantilever

Chandra et al. [13] conduct experiments on box beams with different layups. The
cross-section has a dimension of 13.6×24.2 mm (0.537×0.953 inch) with a wall thickness
of (6 plies) 7.6 mm (0.03 inch). The length of the cantilever is 76.2 cm (30 inch). The
symmetric layup with (45)6 in the flanges and (45/− 45)3 in the webs under a tip load of
4.448 N (1 lb.) was chosen for comparison. As the material properties of the AS4/3501-6
Unidirectional Graphite/Epoxy are incomplete in the original publication, the following

Mode Freq. [Hz] Rel. Diff. [%]

Present Hodges Armanios Kim Hodges Armanios Kim

1 vert. 2.94 3.00 2.96 2.98 2.0 0.7 1.4
1 horiz. 5.07 5.19 5.10 5.12 2.4 0.6 1.0
2 vert. 18.38 19.04 18.54 18.65 3.6 0.9 1.5
2 horiz. 31.72 32.88 31.98 32.02 3.7 0.8 0.9
3 vert. 51.37 54.65 51.92 52.17 6.4 1.1 1.6
3 horiz. 88.43 93.39 89.55 93.39 5.6 1.3 5.6
1 tors. 180.10 180.32 177.05 - 0.1 -1.7 -
2 tors. 542.04 544.47 531.15 - 0.4 -2.0 -

Table 1: Eigenfrequencies of a coupled cantilever obtained with the present model compared to results
by Hodges et al. [9], Armanios and Badir [11] (both beam models) and Kim et al. [5] (FEM model).
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u1 u2 u3 θ1 θ2 θ3

Present -0.09013 -0.06320 1.22950 0.18447 -0.17987 0.00523
Wang -0.09064 -0.06484 1.22998 0.18445 -0.17985 0.00488
Rel. Diff. [%] 0.57 2.59 0.04 -0.01 -0.01 -6.77

Table 2: Tip displacements and rotations (in Wiener-Milenkovic Parameter) of a coupled cantilever
obtained with the present model compared to results by Wang et al. [12].

properties were assumed for this study

E11 = 142 GPa E22 = 9.81 GPa
G12 = 6.00 GPa G23 = 3.77 GPa
ν12 = 0.30 ν23 = 0.42

(26)

The cross-sectional properties were determined using BECAS, an implementation of the
theory by Giavotto et al. [1], as

Kcs =


11.387 · 105 2.909 · 105 0 −30.458 12.674 0

4.189 · 105 0 −11.932 8.689 0
3.122 · 105 0 0 12.302

62.692 −21.741 0
sym. 35.146 0

80.594

 (27)

Smith and Chopra [14] compare the experimental results by Chandra et al. to an an-
alytical formulation and a finite element beam model. Figures 1 and 2 show the slope
and twist along the beam obtained with the present model, the experimental results by
Chandra et al., and the beam model used by Smith and Chopra. The experimental and
beam model data was obtained by digitizing the plots of Smith and Chopra.

3.4 Pre-bend cantilever

This example illustrates a truly three-dimensional response and was initially presented
by Bathe and Bolourchi [15]. It comprises a 45◦ bend cantilever with a radius of 100 m as
shown in Figure 3. A square unit cross section with a modulus of elasticity of 107 N/m2

was used. Bend-twist coupling was introduced by setting K45 = −0.3
√
K44K55 of the

cross-section stiffness matrix. With a tip load of 300 N, the solution converges with 5
iterations on average. Table 3 shows the tip displacement of the uncoupled beam compared
to results by Simo & Vu-Quoc [16]. And the coupled beam compared to results obtained
with the element proposed by Kim et al. which was implemented in the co-rotational
formulation used in the present study.

4 DISCUSSION

A linear Timoshenko beam element with anisotropic cross-sectional properties was
derived by extending an existing formulation. The beam model was implemented into a
co-rotational formulation to allow for geometric nonlinear analysis and several test cases
were analysed. A Python implementation of the proposed beam element, together with
the element by Kim et al. and the co-rotational formulation by Battini and Pacoste is
available on GitHub 1.

1https://github.com/alxrs/eccomas 2016.git
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Figure 1: Comparison of slope along the beam obtained from experiments by Chandra et al. [13], beam
model by Smith and Chopra [14], and present formulation.
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Figure 2: Comparison of twist along the beam obtained from experiments by Chandra et al. [13], beam
model by Smith and Chopra [14], and present formulation.

Displacement [m] Rel. Diff. [%]

x y z x y z

Simo & Vu-Quoc -11.87 -6.96 40.08 - - -
Present uncpl. -12.15 -7.15 40.49 2.3 2.7 1.0

Present cpl. -10.66 -6.53 38.68 - - -
Kim et al. cpl. -10.66 -6.53 38.70 0.1 0.0 0.0

Table 3: Comparison of pre-bend cantilever tip displacements original and bend-twist coupled beam.
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F = 300 N
45◦

r = 100 m

y

z

x

Figure 3: Prebend cantilever.

The present beam element is in good agreement with other formulations. The eigen-
values of a coupled cantilever beam of the first three vertical and horizontal modes and
the first two torsional modes are within 2% of another beam formulation and within 6%
of a finite element shell model. The tip displacements and rotations of a different coupled
cantilever with a tip load are within 3% and 7% of the original study. The curvature and
twist along a third cantilever is in good agreement with previous beam model results but
deviates somewhat from experiments. The tip displacements of an uncoupled prebend
cantilever are within 3% of previous studies. The tip displacements of a coupled prebend
cantilever a nearly identical with the results obtained from a different beam element that
has been implemented.
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Abstract. This study lies within the general scope of damage and rupture prediction during 

transverse crash (edge crushing) of a beveled composite plate using numerical simulation. 

Structures under consideration are aeronautical composite structures in purpose of design 

and certification. The present study proposes as an enhancement of an existing crushing mod-

el the introduction of a continuous softening law to represent the highly complex local frag-

mentation process at the vicinity of the crushing process on the ground. It is shown how the 

added softening stress strain law helps the numerical stability and the reproduction of all the 

processes in the different phases of the crushing process. 
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1 INTRODUCTION 

 

This work is devoted to the analysis of the link between the initiation phase of the crushing 

of a chamfered composite plate up to the peak force, and the stability of the crushing process 

in a steady phase of the process of energy absorption. The analysis aims to evaluate the effect 

of interlaminar strength resistance and the predominant ruin modes corresponding to different 

combinations of strength values. More precisely, we propose a strategy of modelling the 

structure that uses two behavior laws, in order to represent both the creation of new surfaces 

by delamination and rupture through plies induced by diffuse damage, and delamination in-

duced by specific dust and chip formation at the vicinity to the ground. We are concerned here 

with CFRP composite plates crushed at about 9m/s, loading a heavy carriage at the ear face to 

represent the inertial effects of the structure to protect. Numerical simulations are compared 

with experimental results. 

1.1 General purpose and position of the work 

The Specific Energy Absorption (SEA) is the characteristics of a structure that represents 

its scalar capacity to absorb the of energy during either quasi-static or dynamic crushing pro-

cesses. The SEA is defined as the ratio between the mean crushing force Fmoy by the specific 

mass of matter that is involved and in the crushing process. This mass is obtained by the 

product of the specific mass of the material s and the involved area As. The energy is given 
by (1): 

 (1) 

          

Figure 1: Left: Crushing modes of a composite tube [1]; Right: splaying and fragmentation crushing modes for 

chamfered plates [2] 

The process is controlled by the ruin modes of the material, and constrained by the struc-

ture geometry. The SEA is conditioned by the co-existence and the competition of both ruin 

modes. The material ruin modes (fiber breakage, fiber/matrix decohesion, matrix cracking) 

can furthermore depend upon strain rate effects and distributed defects which are responsible 

of uncertainty on their relative contribution. The structure ruin modes are mainly described by 

geometrical aspects of the contact surface to the ground, and of the integrity (buckling, delam-

ination and lamina bending, lamina bundle). Theses modes are illustrated on Figure 1. In par-

ticular, the open or closed form of the structure is a crucial point [1, 2]. 
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For certification to crash of new generations of aircraft structures without landing gears, it 

is necessary to design energy-absorbing structures that are linked to the fuselage both maxim-

izing the absorbed energy and minimizing the total mass [3, 4]. The “quality” of the optimum 

design of energy absorption structure in driven by two criteria: the structure should stay in a 

stable energy absorption process, and a maximum volume of material should be damaged dur-

ing this process. The design must take into account the complexity of loading conditions and 

the competition of structural long-dimensions behaviours with the local structural thickness-

dimensions damages [5, 7]. Even if efforts have been made to represent material properties 

degradations, debris wedge generation, and residual shape of structures, initiation is the most 

critical phase [2, 7, 8] and the part of the process where fragmentation is the more active. 

Understanding the interactions between the structural geometry evolution and the degrada-

tion of the material properties is crucial. Well known for metallic materials, it is still a chal-

lenge to determine for composite materials for which the link between initiation in the first 

beginning of the crushing process up to the peak force, and stabilization of the process to 

reach a ‘stable’ or ‘steady’ crushing force. It is the main interest of this study to contribute to 

this understanding, and to propose a numerical model that controls all these phenomena. 

1.2 Structure effects on initiation and stabilization of the process 

Structural effects are associated to boundary evolutions, since boundaries define the geom-

etries either of the whole structure or the assemble of substructures. It is proposed here to de-

fine essentially two categories of boundaries for the crash/crush absorbers. First, boundaries 

through which the compression is applied (extremities), in particular the boundary which is in 

contact with the ground/wall which represent indeed the obstacle to the structure global dis-

placement. This boundary is responsible of the load increase, and is the place where the inter-

nal energy is released through decohesions of internal link, and where the three modes of 

energy absorption appear. Boundaries at the vicinity of the obstacle evolve as failures and 

ruptures appear and fragments are evacuated all the process long. Second, boundaries where 

internal energy is not increased but is only released because the fragments or parts separate 

from each other. The resulting SEA describes the balance between these entering and exiting 

energies through the evolution of the boundaries, or solely exiting energies through the sec-

ond kind. Following this boundaries decomposition, it is proposed to analyze and model sepa-

rately the phenomena appearing at the vicinity of the obstacle, and those appearing in the rest 

of the structure. 

 

Studies of the literature devoted to phenomena at the vicinity of the obstacle are much 

more numerous for closed profiles because these structures are historically used by transporta-

tion companies (cars for example). For closed structures it is interesting to focus on the effects 

of contact shape and geometry between the structure and the obstacle on the mean crushing 

force and stabilization of the crushing process. Interesting works can be found using variable 

thickness in the structure height (distance to the obstacle) to increase progressively the contact 

surface, thus avoiding any loss of contact or dynamic buckling or bundling effects [9-11]. The 

shape of the structure (polygonal) and thus of the contact also has an effect on the number of 

fragments and chips and on the global structure strength [12]. Some profiles are demonstrated 

to activate more progressive tear related by the authors to the stable distribution of the contact 

force between the rigid obstacle and the structure, for different composite structures [12, 3-4]. 

It is interesting to link this observation with the effect of the contact angle (20°) on the sudden 

and catastrophic breakdown of the structure for unidirectional CFRP [13], which is not the 

case for pultruded composite [14]. Pultruded composites appear to be more stable and the 
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structural effects are much more similar to metallic structure for which the shape of the initia-

tor as a low effect on the energy absorption performance [15]. As far as we are concerned, for 

unidirectional CFRP laminates, it has been proved that the trigger and the angles of contact 

have a great effect on the initiation of the crushing process. Furthermore, the mean crushing 

force depends considerably to what happens in the few instants of the contact between the 

chamfered structure and the obstacle [4, 6, 16-17]. This influence is due to the kind of materi-

al and the evolution of the contact conditions between the structure boundaries and the obsta-

cle [18-19]. As a consequence, it is of primary importance to represent the specificity of the 

material behavior and the contact non-linearities between all the boundaries as they are more 

and more created forward and interacting with the obstacle and the created fragments. This is 

the object of the first part of this work. 

1.3 Material effects on initiation and stabilization of the process 

In parallel with these local effects, it can be noticed that drops down and increase of resist-

ing forces after the peak force and in the mean force plateau, are conditioned by the capacity 

of the plies to continuously transmit the loading in the height of the structure (distance to the 

obstacle) or to break the loading path through local buckling kink band formation and rup-

tures (confined plies) or outward global buckling of plies [20]. This phenomenon has been 

identified by Lavoie [21] whose fundamental work shows that the plateau value and the oscil-

lations around the mean value for APC2 laminates is twice that of CFRP or GR-Kv epoxy 

laminates. Indeed, the PEEK matrix exhibits a high interlaminar fracture toughness which is 

suspected to be at the origin of these observations. The link between the frequency of the 

mean force oscillations in the plateau region and the width of the kink band can be due to the 

relative value of the interlaminar strength and the longitudinal strength and critical value of 

strength in compression of laminates [22]. The more the fiber proportion, the higher the SEA 

and the amplitude of the mean force in the plateau region [20]. As for the case of the influence 

of the structure profile, these result must be put into perspective with the kind of fibers [23]. 

Nevertheless, it is proven that the stability of the crushing process in the plateau region, and 

the amplitude and frequency of the mean force oscillations, are both related to damage modes 

of the material in the core of the laminate but are also influenced by the waves of loading that 

come directly from the contact vicinity. This loading transfer is continuous up to the limit 

load of the material. It is thus crucial to represent in a proper way the damage modes and the 

relative strength in the core and between the plies of the laminate. This interaction of the in-

terlaminar strength and the pies damage is the point of interest of the second part of this work. 

2 COMPOSITE LAMINATE CRUSHING PROCESS: MODELLING STRATEGY 

Based on observations made from experimental testing campaigns, different mechanical 

models were proposed in previous studies [8, 16-17]. The basic model used in this work is the 

nonlinear elastic anisotropic homogenized continuum damage mechanics model developed in 

the frame of the irreversible thermodynamics [17]. In order to circumvent the problems com-

ing from the local compression at the contact on the ground, the elements that face the ground 

are changed the material model into the MCS and FFC models to follow the strategy proposed 

by [16]. These elements are eroded when the maximum load bearing criterion is reached. This 

simulation strategy is illustrated on Figure 2. Damage is represented at the mesoscale (ply size) 

which is the scale under interest. 
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Figure 2: Deep ply damage and localized fragmentations models switch. 

The continuous diffuse damage model is available for 3D material, whatever the fibre ori-

entations are, and can manage strain rate effects (not considered here, despite the observation 

of Lavoie [21]). Modes of ruin are represented by criteria obtained from experiments and are 

directly related to the deformation energy. The MCS and FFC models have been characterized 

by other experiments. 

2.1 Continuous diffuse damage model 

The continuous Diffuse Damage Model has been developed on the basis of the previous 

work of Ylias [17]. Enhancements have been proposed to adapt the model to the strategy de-

scribed on Figure 2. The DDM emphasizes that anisotropy is unchanged after damage and the 

material remains elastic in each ply. Thus, as done “classically”, damage is modelled through 

its effect on the elastic rigidity loss in further loading or unloading without a change in the 

anisotropy directions until it reaches the value of 1: di is the damage of E ii for i=1,3, d4 is the 

damage of G12, d5 of G23 and d6 of G13.  
 

The model distinguishes 6 damage variables {di}, i=1,6 affecting the stiffness of the ply, 

and 6 failure modes {fj}, j=1,6 (eq. 2-7), where: 

<.> defines the Macauley brackets, 
 and T CX X  are respectively tensile/compressive failure stresses in fibres direction,  

 and T CY Y  are respectively tensile/compressive damage threshold stresses in direction 2, 
 and T CZ Z  are respectively tensile/compressive damage threshold stresses in direction 3, 

12 23 13,  and S S S  are respectively shear damage threshold stresses, 
 1,ir  

 is called the limit load ratio.  
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At the undamaged state, limit load ratios ri are set to 1. They evolve following the current 

state of damage using the first thermodynamics principle and following (eq. 8) [15]: 

 15 1

1

( , , ) . ( , ), 1 , 1
m

jm
i ij j j j j

j

r
d q m r e r    





     (8)

 

2.2 Mean Crushing Stress and Free Face Crushing laws for local fragmentation 

The stress-strain curve of elements at the tip of the plies that are in contact with the ground 

is similar to an elastic perfectly plastic behaviour in compression (Figure 3). 

    

Figure 3: Left: MCS law for both 0° and 90° plies; Right: expansion of 90° elements to allow initiation of delam-

ination using cohesive elements. 

Data used in this study have been characterized by Israr & al. [16]. The elastic defor-

mations  and  are given by equations (9) and (10), where H11c = 101 GPa, and H22c = 

9GPa. The maximum compression strain c and failure strain f are the same for plies at 0° 

and 90° and are respectively -3 (95%) and -4.6 (99%).  

  with H11c = 101GPa and  (9) 

 with H22c = 9GPa and  (10) 

In order to treat differently the elements where the continuous diffuse damage law is used 

or the Mean Crushing Sress law is used, and to reduce spurious oscillations in the contact 

force, the FFC is implemented in a user program and called as a sub-routine in the user mate-

rial of Impetus Afea. The principle of the Free Face Crushing is illustrated on Figure 4.  
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Figure 4: Free Face Crushing Concept. 

2.3 Cohesive failure 

The cohesive failure is generated through a tied contact with failure and propagated using a 

quadratic failure criterion using mode I and mode II strength related to GIc and GIIC energy 

release rates. Energy release follows a linear tension to opening relationship. In order to limit 

the mesh size effect in the opening crack propagation, a scale factor  is introduced [17]. 

2.4 Experimental case under interest 

[(0°/90°)4]s samples are made of 268g/m² T700GC/M21e prepreg (35% of resin), so that 

the global density is 1535 kg/m3. Sample plates are 160mm (0°_fiber_direction) x 60mm 

(90°_perp.plan_direction) chamfered rectangular plates so that initiation is conditioned by the 

wedge angle, here 45°. Each ply is 0,25mm thick. A heavy carriage is fixed at the upper 

boundary of the plate to adjust the desired initial kinetic energy. The mass chosen here is 36kg, 

and the initial velocity is 9 m/s. The free height for crushing is 20 mm. The experimental set-

up is described in detail in references [7-8, 16, 17]. 

2.5 Models inputs 

The finite element model is described Figure 5 (shortened in order to show details; the real 

model has the same height as in the experiment). Finite elements for the composite structure 

are eight nodes degree 1 fully integrated isogeometric elements, with an edge length of 

0,25mm. To generate the chamfer, lines of elements in the stacking plies are 1 element shorter 

from top to bottom along the (z) direction of the frame. In order to stabilize the ignition of the 

crushing process, the mesh of the extremity of the plate and the contact parameters has been 

smoothed to get a strait surface for the chamfer.  

 

 

Figure 5: One element thick finite element model for 2D simulation 

 

The heavy carriage is non deformable and perfectly tied to the composite structure’s end 

opposite to the contact extremity. This system has an initial velocity of 9m/s. The vertical 

guides are rigid and fixed in space. Penalty contacts are defined between the composite 

structure and the rigid guides, and between the structure and the base (with a friction of 15% 

MCS law 

initial velocity 

of 9 m/s 

20 mm 
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with the ground). Faces of elements perpendicular to the (y) direction are constrained with 

kinematic symmetry conditions to obtain a 2D plane strain model. 

2.6 Effects of damage modelling on the force 

Typical force-displacement curves obtained in experiments (grey plain and dashed lines) 

are compared on Figure 6 with the numerical result (orange line) of a previous model with the 

scale shape mesh at the extremity [8]. The contact force is derived from the total amount of 

internal energy in the simulation. Numerical and experimental frequencies higher than 

1500Hz are filtered (moving average). The displacement is that of the heavy carriage centre of 

mass. 

 

 

 
7 mm 

 

 
22 mm 

Figure 6: Numerical force – displacement curve versus experiments [8] 

As can be seen on Figure 6, the two experimental curves have similar peak force around 

32kN. They illustrate the variability in the experiments, but still the global phases in the 

crushing process remain. We have selected five phases in the force-displacement curve [8, 16-

17]. Phase 1 corresponds to the initiation of the crushing from the first contact (t=0) to the 

peak of force. Oscillations in this phase correspond to the propagation of the acoustic wave 

generated by the contact, up and down to in the height (160mm). The height of the plate dam-

aged during phase 1 corresponds to about one time the thickness for local fragmentation, and 

three times the thickness for diffuse core damage. Phases 2 and 3 correspond to the global 

breakdown of the structure. In these phases, the height of the plate that is damaged is the full 

free height, essentially in splaying (delamination of outer plies). Phase 3 is a transition phase 

during which the global damage and the local fragmentation modes interact to set the steady 

process in. Phases 4 to 5 illustrate the beginning of the stabilization process for which the 

mean crushing force is reached, and its shape as an oscillatory function in time is set. 

 

In a previous work [8], it was demonstrated that the proposed simulation strategy that rep-

resents in a different way the local fragmentation (dust) and the global core damage (diffuse) 

allows to catch the global behaviour in phases 1 3 and 5. This strategy uses erosion technique 

to represent the elimination of matter a yield of volume reduction [26]. For the present study, 

Force (kN)) 

Displacement (mm) 

2 
1 

4 

3 

5 
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element are eroded when they reach 8% of longitudinal crushing for 0° plies, and 10% for 90° 

plies. Because of this matter sudden suppression, the model is not precise enough to represent 

in one hand the peak force because of local instabilities at the vicinity of the ground, and in 

another hand phase 3-4 of stabilization because of losses of contact when a group of elements 

were eroded or when a group of bended plies slide on the ground. For that purpose, two phas-

es are particularly examined here, phase 1 and phase 3-4 and the effect of interlaminar frac-

ture toughness on the force and the crushing modes in these phases and in phase 5. 

3 STABILIZATION OF THE CRUSHING PROCESS 

Following the observation done by Lavoie [21], it is aimed here to investigate the effect on 

the different phases of the crushing process illustrated on figure 6, and the effect of the inter-

laminar toughness on the interaction between stress localization in the core of the laminate 

and the global breakdown and delamination. These interactions are suspected to be at the 

origin of the zero forces obtained in the simulations because of sudden erosion of groups of 

elements or loss of contact due to sudden sliding of elements done up to now with the finite 

elements models that do not use particles [8]. 

 

A simulation plan is defined and investigated, using different values of the interlaminar 

fracture toughness. The maximum normal and tangential stresses are kept constant (except 

one data set), and energy release rates are modified (see Table 1). 

 

Case # S (GPa) T (GPa) GI (N/mm) GII (N/mm) Comments 

1 0.075 0.15 0.6 2.1 T800s/M21e [8] 

2   0.54 1.89 T700s/M21e [16] 

3   0.54 2.1 Mixture of #1 and #2 

4   0.6 1.89 Mixture of #2 and #1 

5   0.6 1.6  GII*75% for dynamic effects 

6   0.75 2.1 GI*1.25% for dynamic effects 

7   0.75 1.6 GI*1.25% and GII*75% 

8   0.545 1.387 T700s/M21e [24] 

9 0.05 0.09 0.75 1.2 T800s/M21e [25] 

 

Table 1: Example of the construction of one table.  

All force-displacements curves obtained from the numerical simulations of cases #1 to #9  

are compared with experimental force 1 (grey line) presented in Figure 6. Numerical curves 

obtained for a thickness of 0.25mm in the frame of a 2D plane strain hypothesis are scaled in 

order to be compared with experimental curves obtained on the complete structure of 60mm 

thick. Cases #1 and #2 correspond to data sets of different materials obtained from experi-

mental characterization in the laboratory. Cases #3 and #4 are combinations of GI and GII 

from #1and #2. Cases #5 #6 and #7 are adjustments of the values of GI and GII for dynamic 

effects, that give values not far from data sets of cases #8 and #9. Cases #8 and #9 are ob-

tained from characterizations tests done in the laboratory, and #9 was the set used for the 

model that used the FE-to-particle switch technique [25]. Different comparisons are made to 

evaluate: the effect of GI value at the fixed values of GII for the T700 and the T800 compo-

sites; the effect of GII at the fixed values of GI for the T700 and the T800 composites. Dis-

cussions are proposed on the role of the stabilization in the initiation phase 1 on the transition 

phase 3 and the steady compression process in phases 4-5. 
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3.1 Effect of extreme of GII at different values of GI 

Figure 7, Figure 8, Figure 12, and Figure 12 present the effect of different values of GI at 

fixed values of GII, on the force-displacement curve. From the comparison of all these curves, 

it can be noticed that data sets of #8 and #9 for GII around 1.3N/mm gives really good corre-

lations of the numerical curves compared to experiment 1, both for the peak force and for the 

amplitude of the mean force in phases 4-5. But as reminded earlier, these data set exhibit long 

zones of almost zero force. For #8, this is due to breakdown of groups of plies that create very 

big fragments in an unsymmetrical mode of crushing while one half of the structure remains 

in contact. For #9, this is due to erosion of elements that are in contact with the ground, , or 

sliding or groups of elements associated with splaying of outer plies. 

 

Figure 7: Numerical force – displacement curve at fixed GII around 1.3N/mm versus experiment 1 

Comparing the three figures, we can see that increasing GII has two effects. In the initia-

tion phase 1, the force exhibits more oscillations, as observed in the experiment. For and more 

for #6 the force-displacement curve is very similar to the experiment up to 8mm (phase 3). 

 

Figure 8: Numerical force – displacement curve at fixed GII=2.1N/mm versus experiment 1 

Force (kN)) 

Force (kN)) 

Displacement (mm) 

Displacement (mm) 
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But for phases 4-5, comparing the curves of Figure 8, we can see that for the same high 

value of GII, the higher GI the earlier zero forces arise. For #3, where GI has the lowest value, 

the frequency and amplitude of the force-displacement curve are very similar to the experi-

mental one in phase 5 (>12mm). 

 

Crushing profiles of #3, #1, and #6, are presented at three stages of displacement, 6mm, 

8mm, and 12.7mm (see Figure 8). The high values of force in phase 5 of case #3 is explained 

by the accumulation of debris and the angle of contact between the outer plies and the ground. 

The angle of contact is explained by debris accumulation between groups of two plies at most 

(top right in Figure 9). The angle of contact is also quite high which explains the high re-

sistance of #6 in phase 3 (8mm). 

 

2.1 

N/mm 

d=6mm d=8mm d=12.7mm 

#3 ; 

GI= 

0.54 

N/mm 

   
#1 ; 

GI=0.6 

N/mm 

   

#6 ; 

GI= 

0.75 

N/mm 

   

Figure 9: Crushing modes for GII=2.1N/mm for #3, #1, and #6 

A good compromise for the force curve is obtained for #1 for which the outer plies are 

bended and slide on each other and on the ground with help of debris on which they ‘roll’ on 

the left part. On the right part very big debris ensure a non-zero effort for a long period. The 

angle of contact of the plies on the ground are nevertheless not well reproduced. This explains 

why the contact force decrease. For #3, the low value of GI coupled with a high value of GII 

is responsible of a rapid breakage of groups of plies subjected to bending. Debris are created 

by the brittle fracture of plies which explains the high amplitude of oscillations of the re-
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sistance force in phase 4. Even if the mean force is very similar to the experimental one, the 

crushing process is too brittle and not representative of the tests. 

3.2 Effect of relative variations of GII and GI  

As for GII=2.1N/mm on Figure 8, it can be observed on Figure 10 and Figure 12 that a 

lower value of GI generates higher amplitudes of oscillations in phase 1, more comparable to 

the experimental curve. Furthermore, a higher value of GI generates and more losses of con-

tact in phase 3. But on the crushing modes, a higher value of GI helps to stabilize the process 

and the symmetry of energy dissipation (Figure 11). 

  

Figure 10: Numerical force – displacement curve at fixed GII=1.89N/mm versus experiment 1 

1.89 

N/mm 

d=6mm d=8mm d=12.7mm 

#2 ; 

GI= 

0.54 

N/mm 

   

#4 ; 

GI= 

0.6 

N/mm 

   

Figure 11: Crushing modes for GII=1.89N/mm for #2, and #4 

For #2, which have the same GI=0.54N/mm than #3, an artificial peak force appears in 

phase 4 as well. This peak force is due to the bad configuration of the crushing process (big 

Force (kN)) 

Displacement (mm) 
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fragments broken by bending. It does not appear in #8. It is concluded that the peak appears 

only for higher values of GII in that transition phase. Drop down of the force in phase 3 is re-

alistic for both cases #5 and #7. 

 

The crushing profile of cases #2 and #3 are very similar. Case #2 generates two sizes of 

fragments. Clouds of single elements are confined between outer plies on the right part as in 

#3. This causes as in #3 an angle of contact that is responsible of a non-zero force during al-

most all the process except during short periods. Peaks of axial force are due to the break-

down of bigger fragments of about 3.5mm length and 1.5 mm width. Should these fragments 

not completely break but have a smoother behavior, case #2 would be very close to the test. 

 

Figure 12: Numerical force – displacement curve at fixed GII=1.6N/mm versus experiment 1 

1.6 

N/mm 

d=6mm d=8mm d=12mm 

#5 ; 

GI= 

0.6 

N/mm 

   
#7 ; 

GI= 

0.75 

N/mm 

   

Figure 13: Crushing modes for GII=1.6N/mm for #5, and #7 
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The same analysis can be conducted for #5 and #7. Phase 1 of #5 is very close to the exper-

iment. Oscillations are higher than for GII=1.3N/mm, but smaller than GII=2.1N/mm. This 

lead to the general conclusion that a high value of GII is responsible of the amplitude of oscil-

lations of the force-displacement curves, and of the size distribution of the fragments. 

 

This observation is also comforted by the observation of the crushing modes of Figure 13. 

From the comparison of cases #6 and #7, it can also be noticed that a higher GI helps the local 

fragmentation at the vicinity with the ground, and thus the symmetry of the process. 

3.3 Comparison with experiments  

Figure 14 below shows the evolution of the crushing profile in the different phases of the 

experiment, same phases used here to analyze the different cases of simulation. 

 

d=7mm d=8mm or 9mm d=12mm 

  
 

Figure 14: Crushing modes in the experiment 

 

 

Figure 15: Crushing modes in the previous model : loss of contact due to breakdown of group of elements, ero-

sion, or sliding at a flat angle 

Cases #5 and #7 give the best comparison with the experiment for the crushing force, as 

well for the crushing process. Values of GI and GII are quite close from values of #8 and #9. 

GII has a lower value allowing the stabilization of the process. In #5, the lower value of GI is 

responsible of the decrease in the resistance force, as it is in the real test. The final decrease in 

phase 3 is due to creation of big fragments which are not suspected to come from the GII ef-

fect, but rather from the erosion technique. Indeed, erosion creates unstable breakdown. It is 

necessary for us to improve the diffuse damage model in order to stabilize the crushing inside 

plies, and the formation of kink bands or shear local resistance instead of deleting the matter. 
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4 DISCUSSION AND CONCLUSIONS 

The proposed approach is an enhancement of previous developed numerical models that 

proved that it is necessary to represent the subtle coupling between the ruin modes of the ma-

terial and the geometric versus the continuous representation of them to capture the initiation 

phase of the crushing process and the energy absorption characteristics of the structure. The 

first model showed that the representation of each size of fragment was necessary and this 

was done by a FE-particle switching. But this first model also suffered from instabilities at the 

contact vicinity between the composite sample and the ground. To reproduce in a stable man-

ner, the peak and plateau forces at the macro scale, and the different fragmentation processes 

at the meso scale, it was necessary to deactivate the local crushing ruin mode in axial com-

pression in the stress-strain material model and to deactivate criteria that were responsible of 

spurious interactions between out of plane continuous damage inside plies and the cohesive 

failure between the plies. The present study has proposed an enhancement of this previous 

model through the introduction of a continuous damage law dedicated to the numerical repre-

sentation of the highly complex local fragmentation process at the vicinity of the crushing 

process on the ground in a soft manner. Since oscillations and sudden drops still appear dur-

ing the crushing process, it was suspected that the interlaminar fracture toughness was not 

correctly reproduced, leading to an early breakdown of groups of plies because of a dynamic 

unsteady bending of plies. 

The study presented here has investigated the influence of the interlaminar fracture tough-

ness on two measurements, the force-displacement curve, and the crushing process. The dif-

ferent combinations of GI and GII give contrary results for our models, whether the force-

displacement or the crushing process is analyzed, and two cases could be selected as the best 

compromise. It has been concluded from the comparison with the experiments that the inter-

laminar values are not solely responsible of the remaining instabilities of the model. The ero-

sion technique is suspected to be at the origin of the breakdown of groups of plies and the 

creation of very big fragments in the best configurations of GI and GII. This remain a per-

spective of our work to enhance the numerical representation of fractures and ruptures. 

In a more general analysis, it has been shown that high values of GII are responsible of gig 

fragments generation, and can either cause the complete rupture of the laminate near the rigid 

guides. GII is responsible also and for the same reason of the high amplitude of oscillations 

and disturbing peaks on the resistance force in the force-displacement curve during all the 

process. This result is concordant with results of the literature that have used other couples of 

matrix and fibers. For a given value of GII, it has been shown that the higher the GI, the high-

er also the amplitudes of oscillations in the initiation phase 1, leading also to a more symmet-

rical crushing mode from the stabilization phase 3 to the steady phase 5. This stabilization of 

the crushing process is a good thing up to a certain proportion indeed, because if the stable 

splaying mode is favored, plies only separate through delamination and slide on each other 

‘rolling’ on debris that are confined between them and the ground, and making a flat angle of 

contact with the ground. This rapidly leads to decreasing a lot the absorbed energy down to a 

quasi-null energy dissipation. Before this inefficient splaying mode appears, it has been 

shown that a right choice of GII and GI combination allows the separation of plies by groups 

of two or four (for the chosen layup) and at the same time the creation of small to intermedi-

ate debris confined between them, forcing the angle of contact and so the bending in the con-

figuration where the accumulated internal energy before rupture is maximized. 

It is also shown with these results, that a good design of architecture for a crushing struc-

ture is certainly a structure that is not uniform in the height, so that crushing modes are acti-

vated at different phases during the process. It is suggested here that the configuration of #6 
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should be used for the initiation phase because it is a good way to release a higher amount of 

energy and to initiate a stable crushing, then the structure should be designed to have a higher 

GI compared to GII for outer plies (like #8, #9, #5 or #7) in order to create small to intermedi-

ate debris confined between adjacent plies, forcing them to keep an optimized angle of contact 

with the ground and help the steady process in a higher level of energy absorption. 
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Abstract A mechanical model for predicting the response of a GFRP tubular truss member 
glued to terminal (nodal) devices is presented. The given model captures shear deformation 
and simulates adhesion between the composite tube and the nodal devices via an appropriate 
cohesive interface. A comparison between theoretical and experimental results highlights a 
very good theory-experiment matching in terms of failure load and global displacements. 
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1. INTRODUCTION 

Thick-walled tubular composite profiles with annular cross-section represent the optimal 
solution for 3-D large space frame trusses. 

Within this context, glass fibre-reinforced polymers (GFRPs) are usually considered, due 
to the best match between expected costs and benefits, in combination with adhesive bonding 
solutions [1-4] between the composite member and standard co-axial nodal devices, generally 
made of stainless stell parts (Fig. 1). 

 
Figure 1: Example of nodal device (spherical hinge). 

Although internal stresses essentially accord to the axial regime, shear stresses originated 
by the interfacial interactions over the adhesive bonding zones can be present within the com-
posite tube. As a consequence, the local behaviour of the composite profile is affected by 
shear stresses and, of course, the failure criterion should account for this aspect. 

Considering the usually low values of shear moduli for GFRP, there is a great interest in 
investigating the complex interplay between I/II interfacial failure modes [5-7] and local shear 
deformations [8-10] which occur within the thickness of the composite member. 

In this view, a mechanical model based on an appropriate kinematics has been proposed in 
combination with a mixed mode cohesive failure criterion. The aim is to predict both the 
structural response at the service conditions and the ultimate strength of the joint, thus allow-
ing a refined structural analysis of the whole structure accounting for the local shear strains 
too. 

In Figure 2 the equilibrium problem under discussion is exemplified with respect to a sin-
gle composite tube bonded to apposite hinge nodal devices able to guarantee the internal con-
nections among many parts of a generic space frame truss. Orthonormal unit vectors 1i , 2i  

and k  are introduced, with k  aligned to the z-axis, as well as the point O as an origin. An 
axisymmetric normal stress distribution ( )zp r  is considered over the end cross-sections of the 

system, being  r  the radial coordinate, as indicated in the following. 

 
Figure 2: Equilibrium problem under consideration.  

k
1i

2i

O

( )zp r

( )zp r
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2. THE MECHANICAL MODEL 

The mechanical model proposed for studying the adhesive bonding of tubular profiles is 
based on appropriate kinematic hypotheses, briefly summarised in the Appendix. 

Three coaxial elements are considered: the GFRP annular pultruded profile and the nodal 
devices bonded at the ends of the tube. Symbols are as indicated in Figs. 3.a-b. 

Orthotropic stress-strain relationships with transverse isotropy are chosen to simulate the 
constitutive response of the composite (see Appendix), while isotropic equations are used for 
what concerns the constitutive behaviour of the stainless steel. 

 

Figure 3.a : Geometric configuration (longitudinal section). 

 

  

Figure 3.b : Geometric configuration (relevant cross-sections). 

Due to axisymmetric condition, the adhesive bonding is modelled by a 2-D continuous 
distribution of cohesive forces acting over the bonding interfaces along both the normal  (n , 
radial) and the tangential (k , axial) directions; these forces work to contrast the interfacial 
displacements between the composite tube and the nodal devices. The following additional 
symbols are introduced with this regard: rd  and rrt  denoting the interfacial normal 

displacement (i.e. discontinuous) and the interfacial normal traction (per unit surface) as well 
as kd  and rkt  indicating the analogous quantities with respect to the axial direction (Fig. 4). 
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Figure 4 : Interfacial cohesive forces  rrt  and rkt  (per unit surface). 

An exponential cohesive interface model has been derived from that one proposed in [11-
12] in order to include possible coupling between normal and tangential discontinuous dis-
placements. The following potential has been considered: 

 ( ) ( )/
U 1 1 e ch h

c

h
F h

h
−  

= Φ − +  
   

 (1) 

In eqn. (1) the symbol h  indicates the norm of the vector h : 

 
I IIλ     λ   r kd d= +h n k  (2) 

with Iλ  and IIλ  accounting for the coupling between the normal and tangential interfacial 

displacements. The corresponding interaction, p , is assumed as follows: 

 
I II

1 1
  p

λ λ
rr rkt t

h
= + = h

p n k  (3) 

where: 

 ( )c1 /
c

c

e h hdF h
p p

dh h
−= =  (4) 

The quantities ch  and cp  are parameters of the interface model, while UΦ  represents the 

fracture energy per unit surface. It results: 

 ( ) ( )2 2

I IIλ  λ  r kh d d= +  
2 2

I IIλ λ

rkrr tt
p

   
= +   

   
 U c ce  p hΦ =  (5.a-c) 

The cohesive model simulates the softening effect for ch h> . Moreover, from a rigorous 

point of view, the full degradation is only asymptotic (for h → ∞ ). 

 
 

3,2r

2,2r

bL

2t

rkt

3,1r

1t

rrt
rkt

2,1r

z
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3. NUMERICAL ANALYSES 

The mechanical model presented in the previous Section 2 has been approximated via a 
finite element technique in order to provide many numerical results of major relevance 
concerning the behaviour of a tubular composite profile bonded at the ends to apposite nodal 
devices. 

The equilibrium problem indicated in Fig. 2 has been approached numerically by means of 
a finite element approximation. The mesh proposed is composed of 2 node finite elements 
characterized by 24 degrees of freedom, including  12 d.o.f. per each node. 

According to the discussion summarized in the Appendix, let , ( )i jw z  be the axial 

displacement field of the j-part at ir r= (with j=1 indicating the nodal device while j=2 

denoting the GFRP tube). The approximation of ,i jw  is obtained by cubic interpolating 

polynomials as follows: 
 

 ( ) ( ) ( ) ( ) ( )(1) (1) (2) (2)
, 10 , 11 , 20 , 21 ,h h h hi j i j i j i j i jw w w w wζ ζ ζ ζ ζ′ ′= + + +  (6) 

where: 
 

 ( )3
10

1
h 2 3

4
ζ ζ= − +  ( )2 3e

11h 1
8

l ζ ζ ζ= − − +  (7.a-b) 

 ( )3
20

1
h 2 3

4
ζ ζ= + −  ( )2 3e

21h 1
8

l ζ ζ ζ= − − + +  (7.c-d) 

 
being el  the length of the finite element; (1)

,i jw   and (2)
,i jw  the nodal values of the kinematic un-

known under consideration while (1)
,i jw′  and (2)

,i jw′  the nodal values of the derivative of ,i jw   

with respect to the axial coordinate z. 
Using standard notations, the following generalized displacements vector(e)w , with 

dimensions 6×1, is introduced as a function of the nodal unknowns(e)U  over the generic finite 

element: 

 ( ) ( )(e) 1,1 2,1 3,1 1,2 2,2 3,2 (e), , , , ,
T

w w w w w w = = w NU  (8) 

 
In eqn. (8) the symbol N denotes the following four-block matrix, with dimensions 6×24: 

 [ ]10 11 20 21, , ,=N N N N N  (9) 

where: 

 ( )pq pq pq pq pq pq pqdiag h ,h ,h ,h ,h ,h=N        (p=1, 2 and q=0, 1) (10) 

Furthermore, (e)U  is a numeric vector, with dimensions  24×1, which collects the values of 

the kinematic unknowns attained at both the nodes of the finite element: 

 
(e) (e,1) (e,2),

TT T =  U U U  (11) 
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with (e,n)U  denoting the kinematic unknowns at the n node (n=1, 2): 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
(e,n) 1,1 2,1 3,1 1,2 2,2 3,2 1,1 2,1 3,1 1,2 2,2 3,2, , , , , , , , , , ,

T
n n n n n n n n n n n nw w w w w w w w w w w w ′ ′ ′ ′ ′ ′=  U  

(12) 

 
In Figure 5 the whole list of the nodal unknowns is identified.  

node 1 node 2

le

k

n
(ζ= -1) (ζ=+1)

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

(1)

(1)

(1)

(1)

(1)

(1)

Τ

,

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

(1)

(1)

(1)

(1)

(1)

(1)

Τ
'

'

'

'

'

'

Τ

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

(2)

(2)

(2)

(2)

(2)

(2)

Τ

,

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

(2)

(2)

(2)

(2)

(2)

(2)

Τ
'

'

'

'

'

'

Τ

Figure 5 : Finite element. 

A more accurate discussion deals with the approximation of the non-linear interfacial in-
teractions. With reference to the generic finite element, the interfacial displacements along 
both the n-axis and the z-axis, rd  and kd , can be expressed as a function of the nodal un-

knowns (e)U . If Mode II only is present ( 0rd = ), then II λ   kd=h k . Under this assumption, 

the interfacial behaviour is represented by a unique cohesive relationship between rkt  and kd . 

It results: 

 
(e)kd = DNU  (13) 

 
with D  the following numeric vector, with dimensions 1×6: 

 [ ]0,0, 1,0,1,0= −D  (14) 

Moreover, the interfacial interaction along the z-axis,rkt , is: 

 
rk kt dκ=  (15) 

where the symbol κ denotes the secant slope of the cohesive law: 
 

 II(1 / )
II e k cd hc

c

p

h
λκ λ −=  (16) 

 
A standard iterative procedure can thereby be adopted for searching the numerical solution. 

The convergence of the numerical solution to the continuous solution is discussed in [13]. 
 
As a case study, a numerical simulation has been carried out in order to underline the pow-

er of the proposed model. The FE analysis deals with a configuration made of two stainless 
steel terminal devices bonded at the ends of a GFRP tube. The following geometric assump-
tions are considered. 
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inner radius of nodal device ( 2,1r = 59.5 mm) 

outer radius of nodal device ( 3,1r = 63.5 mm) 

thickness of nodal device wall ( 1t = 3,1 2,1r r− = 4.0 mm) 

inner radius of GFRP tube ( 2,2r = 66.0 mm) 

outer radius of GFRP tube ( 3,2r = 80.0 mm) 

thickness of GFRP tube wall ( 2t = 3,2 2,2r r− = 14.0 mm) 

length of the nodal device 
(coaxial part) 

( 1L =120.0 mm) 

length of the GFRP tube ( 2L = 500.0 mm) 

length of the bonding zones ( bL = 100.0 mm) 

thickness of the glue layer ( at = 2,2 3,1r r− = 2.5 mm) 

Table 1: Geometric properties. 

 

transverse normal modulus ( TE =3700 N/mm2) 

longitudinal normal modulus ( LE =37000 N/mm2) 

shear modulus (n -  k plane)  ( TLG =1850 N/mm2) 

Poisson coefficients ( 0TT TL LTν ν ν= = = ) 

Table 2: GFRP constitutive properties. 

 

normal modulus ( E =196000 N/mm2) 
shear modulus  (G =98000 N/mm2) 
Poisson coefficient ( 0ν = ) 

Table 3: Stainless steel constitutive properties. 

 

fracture energy 
(per unit surface)  

( 2
U 3.65 10−Φ = × Nmm/mm2) 

characteristic value of h  ( ch = 0.001 mm) 

Mode I / Mode II interaction ( I IIλ =λ =1) 

Table 4: Parameters of the cohesive potential. 

 

The loading condition considered is a resultant traction force equal to T=106000 N applied 
at the right end of the model, while the left end of the model is constrained to be fixed. From a 
mathematical point of view, the traction force has been simulated by means of two 
concentrated forces T/2 applied in a dual manner with respect to the following degrees of 
freedom, both relative to the steel device: 2,1w  and 3,1w . As discussed in [13], this is not 

rigorous in an absolute manner, but it can be acceptable for technical purposes when dealing 
with a moderately thick tubular wall. On the opposite end, the following degrees of freedom 
have been constrained to be equal to zero : 1,1w , 2,1w  and 3,1w . 
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The load intensity has been chosen in consideration that a preliminary experimental test 
has been recently performed, indicating the failure point of the bonded system exactly for 
T=106000 N, for a global elongation equal to 0.225 mm. Thereby, a numerical comparison in 
terms of interfacial energy absorption and global stiffness seems to be appropriate, in addition 
to a brief comment on the shear deformability of the composite tube.  

The FE simulation has been carried out by means of a mesh composed of 540 finite 
elements with a constant length el =1.0 mm. The convergence finally achieved corresponds to 

a residual vector with a norm equal to 59.82 10−× . 
The following Figure 6.a-d show the effects of the shear strains as a function of r  within 

the system at fixed values of the axial coordinate z. As it can be seen, these effects become 
relevant over the bonding zones (I IIIz z z≤ ≤  with I 150 mmz = and III 250 mmz = ). 

 

Figure 6.a : Axial displacement versus radial coordinate at 0 mmz =  

 

Figure 6.b : Axial displacement versus radial coordinate at I 150 mmz z= =  

 

( ) [ ]
I

, mm
z z

w r z
=

( ) [ ]
0

, mm
z

w r z
=

C D

[ ]mmr

C D

[ ]mmr

A B
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Figure 6.c : Axial displacement versus radial coordinate at II 200 mmz z= =  

 

Figure 6.d : Axial displacement versus radial coordinate at III 250 mmz z= =  

In Figure 7,  the interfacial cohesive force rkt  (per unit surface) has been plotted over the 

bonding length. Due to the symmetric behaviour of both the bonding zones, only the interface 
at the right end has been considered ( *0 bz L≤ ≤  with *

Iz z z= − , I 150 mmz = and 

100 mmbL = ). The numerical analysis indicates that under the applied resultant traction force 

T=106000 N, the full degradation of the interface is substantially achieved at the axial 
coordinate I 150 mmz = ( * 0 mmz = ), as observed for the experimental test. 

( ) [ ]
II

, mm
z z

w r z
=

[ ]mmr

( ) [ ]
III

, mm
z z

w r z
=

[ ]mmr

C D
A B

C D
A B
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Figure 7: Interfacial cohesive forces rkt  (per unit length) versus * Iz z z= − . 

Finally, the numerical prediction of the global elongation of the system is equal to 0.209 
mm, substantially the same that the experimental value (0.225 mm). 

The previous example has been presented for the pure scope of highlighting the main 
features of the proposed model. Further developments will concern more sophisticated 
approach to the interface behaviour, on line with what is proposed in [14-16], as well as the 
optimization strategy with regard to the design of complex spatial bridge following recent 
trends as discussed in [17-19].  

4. CONCLUDING REMARKS 

In this paper the authors have presented a mechanical model for the 1-D study of a compo-
site tubular profile loaded in traction/compression and bonded to coaxial terminal devices able 
to guarantee the connection of the member within a general structure. This problem is highly 
relevant in practice, considering the context of large space frame trusses, where the advantage 
in using GFRP members with annular cross-section is universally acknowledged. 

The proposed formulation is based on a cohesive approach for the modeling of the inter-
face as well as on appropriate assumptions for the kinematics of the composite member, 
which accounts for possible shear strains within the thickness of the tubular wall. This aspect 
assumes a relevant role in the structural analysis of the member from both a point of view 
concerning the accurate prediction of the global displacements and with reference to the local 
behavior of the tube. Over the bonding length, in fact, shear strains appear on the lateral sur-
face of the tube as an effect of the interface cohesive interactions between the tube and the 
nodal device. As a consequence, the interface behavior is affected from shear deformability of 
the tubular profile as well as the failure load of the system. 

 

 

2N/mmrkt   

[ ]* mmz

interface failure
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5. APPENDIX – KINEMATICS OF ORTHOTROPIC COMPOSITE TUBES 

5.1. Global reference frame  

According to the global reference frame shown in Fig. 8, the position of a generic point P 
is given by: 

 
1 2cos sinr r zϑ ϑ= + +x i i k  (A.1) 

where r ,ϑ  and z  are assumed as spatial variables. Due to axisymmetric geometry, the 
displacement field depends on r  and z only. Moreover, the displacement field components 
are: ru  (radial), 0uϑ =  (circumferential, null), w  (axial). 

 

Figure 8 : Global reference frame. 

5.2. Axial displacements 

The axial displacement field is proposed in the following form: 

 
i i( , ) ( ) ( )w r z w z f r=   ( i 1,  2,  3= ) (A.2) 

where i ( )w z  denotes the axial displacement field at a defined radial coordinate ir , while 

i ( )f r  is a polynomial truncated at the second order terms.  

The following assumptions are introduced: 

 
1 0r = ,  2 ir R= , 3 er R= . (A.3.a-c) 

being iR  and eR  the inner and the outer radius of the annular cross-section (Fig.9).  

2i1i

k

ϑ

x

r
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Figure 9 : Annular cross-section. 

The polynomials i ( )f r  can be specified as indicated below: 

 ( ) 2
1

1 1 1
 1

i e i e

f r r r
R R R R

   
= − + +   

   
, (A.4.a) 

 ( ) 2
2

1
 e

i i

R
f r r r

R t R t

   
= −   
   

, (A.4.b) 

 ( ) 2
3

1
 i

e e

R
f r r r

R t R t

   
= − +   

   
, (A.4.c) 

being e it R R= −  the thickness of the annular wall. It results: 

 
10

 lim 0
t

f
→

= , 20

1
 lim

2t
f

→
= , 30

1
 lim

2t
f

→
=  (A.5.a-c) 

5.3. Strain and stress components 

Due to the condition 0uϑ = , the infinitesimal strain tensor assumes the following form: 

 
1 13

2

31 3

0

 = 0 0

0

ε ε
ε

ε ε

 
 
 
  

ε  (A.6) 

where: 
 

1
r

r

u

r
ε ε ∂= =

∂
, 2

ru

rϑε ε= = , (A.7.a-b) 

2 ir R=

3 er R=
ϑ

t

1i

2i

r
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3 z

w

z
ε ε ∂= =

∂
, 13 31

1

2
r

rz

u w

z r
ε ε ε ∂ ∂ = = = + ∂ ∂ 

. (A.7.c-d) 

For orthotropic behaviour, it also results: 

 

11 12 13

21 22 23

31 32 33

44

0

0

0

0 0 0

r r

z z

rz rz

S S S

S S S

S S S

S

ϑ ϑ

ε σ
ε σ
ε σ
ε τ

     
     
     =
     
     
     

, 

11 12 13

21 22 23

31 32 33

44

0

0

0

0 0 0

r r

z z

rz rz

C C C

C C C

C C C

C

ϑ ϑ

σ ε
σ ε
σ ε
τ ε

     
     
     =
     
     
     

 (A.8.a-b) 

where: 

 
11

1

T

S
E

=  12
TT

T

S
E

ν= −  13
LT

L

S
E

ν= −  (A.9.a-c) 

 
21

TT

T

S
E

ν= −  22

1

T

S
E

=  23
LT

L

S
E

ν= −  (A.9.d-f) 

 
31

TL

T

S
E

ν= −  32
TL

T

S
E

ν= −  33

1

L

S
E

=  (A.9.g-i) 

 
44

1

2 TL

S
G

=    (A.9.j) 

 
11

1
,TL LT

T L

C
E E

ν ν−
=

∆
 12

TT LT TL

T L

C
E E

ν ν ν+
=

∆
 13

LT TT LT

T L

C
E E

ν ν ν+
=

∆
 (A.10.a-c) 

 
21

TT LT TL

T L

C
E E

ν ν ν+
=

∆
 22

1 TL LT

T L

C
E E

ν ν−
=

∆
 23

LT TT LT

T L

C
E E

ν ν ν+=
∆

 (A.10.d-f) 

 
31

LT TT LT

T L

C
E E

ν ν ν+
=

∆
 32

LT TT LT

T L

C
E E

ν ν ν+=
∆

 33

1 TT TT

T T

C
E E

ν ν−=
∆

 (A.10.g-i) 

 
44 2 TLC G=    (A.10.j) 

 

with LT TL

L TE E

ν ν= , 
1 2 2TT TT TL LT TT TL LT

T T LE E E

ν ν ν ν ν ν ν− − −∆ = , while 1−=C S . Moreover, the symbols 

“L” and “T” denote the axial and transverse directions. 

5.4. Radial displacements 

By appropriate steps: 

 
i 0r r

i

u u
a bw f

r r

∂ ′+ + =
∂

 (A.11) 
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where the symbol (.)' denotes the partial derivative with respect to z and the symbols “a” and 
“b” denote the following quantities: 
 ( ) ( )1i i2 1i i1/ 1a S C S C= −  ( ) ( )1i i3 1i i1/ 1b S C S C= −  (A.13.a-b) 

In eqs. (A.13) the Einstein summation has been considered. 
It is worth noting that for thin or moderately thick wall annular cross-section, the assump-

tion 0rσ ≅  [ ],i er R R∀ ∈ can be accepted if both the inner and the outer lateral surface are 

free of forces. This allows to specialize the values of a and b: 

 
1
TT TL LT

TL LT

a
ν ν ν

ν ν
+=

−
 

1
LT TT LT

TL LT

b
ν ν ν

ν ν
+=

−
 (A.14.a-b) 

A solution of eqn. (A.11) is searched according to the following form:  
 

i i i i( , ) q ( ) ( ) ( )a
ru r z w z r w z g r− ′= +  

(A.15) 

where iq 1=  while i ( )g r  (i=1, 2 , 3) are still unspecified functions of r . 

Now eqn. (A.11) can be rewritten accounting for eqn. (A.15), thus giving: 

 i i
i i

( ) ( )
( ) ( ) 0

dg r g r
w z a bf r

dr r
 ′ + + =  

 (A.16) 

By integrating the first order ordinary differential equations i i
i

( ) ( )
( ) 0

dg r g r
a bf r

dr r
+ + =  

(i=1, 2, 3), the final expressions of i ( )g r  are obtained: 

 
i i i

1
( ) ( ) a

a
g r c b f r r dr

r
 = − ∫  (A.17) 

with ic  (i=1, 2, 3) to be determined by means of appropriate boundary conditions, as dis-

cussed in [13]. 

5.5. Explicit strain components 

From eqs. (A.7.a-d), considering eqn. (A.2) and eqn. (A.15), it is easy to obtain the explicit 
form of the local strains ( 0a ≠ ): 

( 1) i
i i i

( )
q ( ) ( )a

r

g r
w z r w z

r
ε − + ∂′= +

∂
, ( 1) i

i i i

( )
q ( ) ( )a g r

w z r w z
rϑε − + ′= + , (A.18.a-b) 

i i( ) ( )z w z f rε ′= , i
i i i i i

( )1
q ( ) ( ) ( ) ( )

2
a

rz

f r
w z r w z g r w z

r
ε − ∂ ′ ′′= + + ∂ 

 (A.18.c-d) 

If 0a = , then eqn. (A.15) becomes 
 

i i i i( , ) q ( ) ( ) ( )ru r z w z w z g r′= +  
(A.19) 

As a consequence, eqs. (A.18.a-d) are replaced by: 
  

i i( ) ( )r bw z f rε ′= −  i
i i i

( )1
q ( ) ( )

g r
w z w z

r rϑε ′= +  (A.20.a-b) 
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i i( ) ( )z w z f rε ′=  i

i i i i i

( )1
q ( ) ( ) ( ) ( )

2rz

f r
w z w z g r w z

r
ε ∂ ′ ′′= + + ∂ 

 (A.20.c-d) 

 
If 0a =  and 0b = , eqn. (A11) indicates that ru does not depend on the radial coordinate r . 

Considering the condition: 
 

0
 lim  0r

r
u

→
=  

(A.21) 

it results: 
 

0ru =  
(A.22) 

Finally: 
 

0rε =  0ϑε =  (A.23.a-b) 

 

i i( ) ( )z w z f rε ′=  i
i

( )1
( )

2rz

f r
w z

r
ε ∂ =  ∂ 

 (A.23.c-d) 

More in detail, eqn. (A.23.d) indicates that the shear strain rzε  is a linear function of r . 

This last simplification has been considered with reference to the numerical example present-
ed in Section 3. 
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Abstract. In this work a real-time damage detection platform is presented, requiring little to 

no user input after initial installation and set-up. Diagnostic ultrasonic signals are generated 

using attached piezoelectric transducers, which also serve to capture the structural response. 

This paper shows real-time detection in a flat CFRP panel. The necessary data acquisition 

and signal processing is carried out in an automated manner. A visualization of the damage 

map is then given as the primary output highlighting the predicted damage location. The de-

veloped system is flexible in allowing scalable deployment to cater for an increased number 

of transducers. The detection platform is experimentally demonstrated by real-time localiza-

tion of artificial damages at various locations on a CFRP panel. This  was also done under 

operational environment vibration loading, yielding accurate damage localization. 
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1 INTRODUCTION 

There has been an increase in the use of Carbon fiber reinforced polymer (CFRP) compo-

sites for aerospace applications due to their superior properties in comparison to metallic 

structures. However, stringent requirements on damage tolerance are a major factor in pre-

venting greater adoption of composites in this sector. Barely visible impact damage (BVID) is 

a damage type of huge concern. As the name suggests these damages may not be readily de-

tectable with visual inspections. Non-destructive testing (NDT) methods can locate and char-

acterize damage. However, these often require operational downtime, are labor intensive and 

performed by highly trained specialists. With a spars network of permanently attached trans-

ducers, guided wave structural health monitoring (SHM) can be used for effective inspection 

of large plate like structures. In contrast to other NDT methods SHM approaches offer in-situ 

diagnostics with minimal intrusion to the operation schedule.  

With low mass and small overall size piezoelectric patches are often used both actuators 

and sensors in SHM. These allow for excitation of Lamb wave guided wave signal within the 

structure and measurement of the response. Propagation of Lamb waves are highly sensitive 

to geometric features. Thus through analysis of wave features it is possible to detect and local-

ize the damages. Many researchers have demonstrated the effectiveness of the baseline com-

parison approaches for detection of damage presence [1-3]. Delay and sum methods utilize 

key wave features in diagnostic signals; including time of flight (TOF), velocity and damage 

scatter, to predict the location of damage. Information from all transducers within the trans-

ducer network is fused to assemble a damage prediction map highlighting the location of 

damage. The delay and sum detection method adopted centers on comparison of the current or 

damaged signal with those recorded in a pristine condition. Through this baseline comparison, 

damage scatter features can be isolated. Assuming any residual between the baseline and cur-

rent signal are due damage, the TOF and envelope of the damage can be manipulated to local-

ize the damage. 

In previous work diagnostic signal acquisition has been accomplished with manual channel 

switching and also with automated switching systems. These have suffered from deteriorated 

signal quality including signal crosstalk, low signal to noise ratio or repeatability when a sig-

nal amplifier was not used [4, 5]. In this work a real-time automated damage detection plat-

form is presented, requiring little to no user input after initial installation and set-up. 

Diagnostic ultrasonic signals are generated using attached piezoelectric transducers. The dam-

age detection approach used has previously been shown to be effective in detecting BVID in 

curved stiffened CFRP panels [6]. This paper shows real-time damage detection in a flat 

CFRP panel. Using a signal switching system integrated into a high performance acquisition 

platform, all the necessary data acquisition and signal processing is carried out in an automat-

ed manner. The tone burst actuation is applied to the transducers in turn and pitch-catch sig-

nals are obtained with minimal interference, by exploiting the switch architecture. A 

visualization of the damage map is then given as the primary output highlighting the predic-

tion of damage location. The developed system is flexible in allowing scalable deployment to 

cater for an increased number of transducers.  

The SHM system developed must be demonstrated under the environmental and operation-

al conditions, in ordered to be deployed on aircraft. The RTCA DO-160 and MIL-STD 810 [7, 

8] provide testing conditions and procedures that must be tailored to the relevant operational 

environment. The operational environments that are relevant for SHM systems include hu-

midity, temperature, lightning strike, altitude, shock, ice formation and vibration. The main 

novelty in this work is demonstration of the integrity and performance of the developed real-

time damage detection system under operational vibration loading.   
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The detection platform is first verified using experimental results to detect a softening area 

in a CFRP panel. It is then experimentally demonstrated by real-time detection and localiza-

tion of artificial damages at various locations on a CFRP panel. Finally, the vibration tests are 

performed and the results are reported.  

2 FINITE ELEMENT SIMUALTION 

Computational methods have been used for simulation of wave propagation and finite ele-

ment (FE) methods have proven as an effective development tool [2, 9]. The Abaqus explicit 

FE package was used to simulate diagnostic signals in a composite plate shown in Figure 1. 

The layup was modeled as [0,45,-45,90]2s with an overall size of 300 x 225 x 2 mm. Only the 

PZT part of the six DurAct transducers were modeled using 3D solid elements. These were 

attached to the plate with surface tie constraints. The composite plate was modeled with S4R 

shell elements. It has been previously suggested that an element size of at least 20 nodes per 

wavelengths (NPW) are required to ensure a converged solutions [2, 9]. A NPW of 30 was 

used by setting an element sizes to 3.42 E-4 and 1.98 E-4 for the plate and PZTs respectively. 

Damage was modeled as a circular softening area of radius 5 mm with a 50% reduction in in 

in the local stiffness.   

 
Figure 1: Schematic of composite plate used for damage detection. 

A five cycled tone burst signal of central frequency 300 kHz was used as the actuation sig-

nalV :  

                                                    














 
 Hftsin

n

ft
cosV 221                                    (1) 

Where f is the central frequency, n  is the number of cycles, t is the time and H  is the Heavi-

side function.  

The actuation was applied as a radial displacement to the top circumference of the PZTs, 

Figure 2. Each transducers was excited in turn  as the actuator, while the response at the other 

transducers were recorded at a 1000 time points over the simulation time of 200 μs. 
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Figure 2: Actuation of piezoelectric patches with radial displacement. 

3 EXPERIMENTAL SETUP 

The developed real time detection system was built around a National Instrument (NI) in-

strumentation and software. Utilizing the available hardware, as outlined below, it was possi-

ble to collect all the necessary diagnostic signals from the structure under interrogation in 

under a minute. Immediately after the data was collected the damage detection algorithm was 

performed, providing a visualization of the predicted damage location. 

3.1 Signal Generation and Acquisition  

The data acquisition system was built around the NI PCI eXtensions for Instrumentation 

(PXI) system. For purposes of generating ultrasonic signals, a PXIe 5412 single channel arbi-

trary voltage generator card was used. This was operated, without the need for a standalone 

amplifier, at an amplitude of 12 volts. The voltage response of the PZTs were then captured 

and digitized using a PXIe 5105 digital oscilloscope card. To allow for time efficient and au-

tomated acquisition of the required signals, a Pickering 40-726A switch was used. This facili-

tated channeling of the actuation voltage to the correct transducer and capture of the voltage 

responses of the rest of the transducer network.  Each transducer was excited with a tone burst 

signal of central frequency 300 kHz with voltage defined in equation 1. The response of the 

plate was recorded as the voltage output of the transducers. 

3.2 Cross-Talk and Switch Architecture  

The actuation voltage was in the order of tens of volts while the voltage response of the 

transducers in the order of tens to a hundreds of millivolts. This disparity in the voltage scales 

of the input and the output exacerbates the effects of electromagnetic interference between 

these two sets of signals. This so called crosstalk can be mitigated by wire shielding, but typi-

cally the close physical proximity of the circuitry within switch card brings about significant 

signal crosstalk as shown in Figure 3a. 
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Figure 3: (A) Sensor voltage response with significant crosstalk (highlighted in purple ellipse), (B) signal 

without crosstalk obtained by exploiting switch architechture. 

  

The Pickering 12 x 8 RF switch caters for the interconnection of 8 Y (instrument) channels 

with 12 X (PZT) channels as illustrated in Figure 4. The internal architecture actually consist-

ed of four smaller sub-switches, allowing for decoupling of the relatively high voltage input 

from weaker output signal. Thus sub-switch two was used exclusively for sensing, with sub-

switch three reserved for actuation. This interference free signal could be obtained at the cost 

of a reduced number of instrument channels, meaning that four oscilloscope channels can be 

used at any one time. This would not result in a reduced overall PZT count, but rather an in-

crease in the overall time to record all the voltages, as PZTs signals can be recorded in sets of 

four. It thould be noted that separate switching cards can be interconnected. Hence the 

number of PZTs in the network is limited by the the avaliable number of switch cards.  
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Figure 4: Schematic of switch architecture, adapted from [10]. 

3.3 Plate Definitions 

The structure under interrogation was a composite panel of size 300 x 225 mm shown in 

Figure 1. The CFRP panel consisted of 16 unidirectional Fiberdux 914 TS 5 plies with layup 

[0,45,-45,90]2s and cured thickness of 2 mm. A total of six DurAct transducers were perma-

nently bonded to the plate with Hexcel Redux film adhesive.  

Researchers [11, 12] have used intuitive methods of simulating damage, including mastic. 

Though artificial damage does not fully represent actual damage, it provides a means by 

which to cause scattering of waves at a particular location. This allows for development of 

methods for finding the location of the source of this additional wave scatter. In this work 

BluTak mastic with a nominal diameter of 10 mm was used as artificial damage. 

3.4 Operational Environment: Vibration Test Setup 

The vibration profile applied during this test was selected from the RTCA DO-160 certifi-

cation requirements. This profile corresponded to that of the operational environment of an 

electronic components attached to the fuselage of a fixed wing aircraft with a turbofan propul-

sion system. The setup consisted of a TMS shaker with power amplifier, ICP high sensitivity 

accelerometer used as control accelerometer mounted on the fixture and a four channel con-

trol unit as shown in Figure 5.   

The vibration acceleration power spectral density (APSD) was set as per the requirements 

with slopes of 6 dB/octave and a grms value of 4.12. The plate was mounted into a fixture 

representative of a fuselage panel spaced within structural ribs. The tests were performed for 

one hour in the z-axis. The tests were set to abort if the APSD deviated from the set profile by 

more than 3 dB. Diagnostic signal was recorded with under no vibration before and after the 

tests. While the plate was subjected to vibrational loading signals were recorded with and 

without the simulated damage. 
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Figure 5: Setup used for vibration tests, (A) controller, (B) shaker power amplifier, (C) control accelerom-

eter, (D) shaker, (E) fixture, (F) real-time detection platform and (G) workstation. 

  

4 RESULTS  

4.1 Computational Results 

The obtained FE results were used as inputs to the detection system, mimicking the data 

acquisition system for the initial verification. The location of the 5 mm radius softening dam-

age was accurately predicted with a localization error of less than 9 mm. The damage predic-

tion map has been normalized to its peak value with a range of 0 to 1. It should be noted that 

the region with peak index is localized to an area around the actual damage location. 

 
Figure 6: Damage location prediction of a softening region with FE simulated results. 

7859



M.S. Salmanpour, Z. Sharif Khodaei, and M.H. Aliabadi  

4.2    Experimental Results  

The artificial damage was located at different locations and localization predictions shown 

below. For damage located outside the transducer area the location prediction as not accurate. 

It should be added that the peak index values did provide a coarse indication of the general 

location of the simulated damage. 

  
Figure 7: Real time damage location prediction maps for simulated damage outside the transducer area 

on a composite panel. 

 

It was found that for the positions within the enclosed transducer area the localization was 

very accurate as shown in Figure 8. Furthermore, areas with highest index were confined to 

locations near the actual damage position. 

 

 

  
Figure 8: Real time damage location prediction maps for simulated damage within the 

transducer area on a composite panel. 
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4.3    Vibration Tests  

The plate was subjected to the vibration profile for the full duration without the APSD 

abort limit being exceed. Real-time damage detection was performed at various intervals dur-

ing the vibration test. The final results obtained at nearly 59 minutes of vibration, highlighted 

accurate damage location prediction with localization of error of 7 mm, as depicted in Figure 

9. It should be noted that after the vibration test a similar level of detection accuracy could be 

attained. Also, visual and electro-mechanical impedance inspections did not highlight any loss 

in integrity of the transducers or wiring. 

 
Figure 9: Real-time damage detection under vibration loading 

5 CONCLUSIONS  

It was shown that the developed real-time damage detection system is able to record the 

all the diagnostic signal required and perform the necessary calculation for damage de-

tection in a matter of minutes. The system was first verified using FE simulated results to 

localize a softening region in CFRP plate. The real-rime detection system was applied to 

six transducer plate to localize artificial damage. It was able to accurate predict the loca-

tion of artificial damages within the area enclosed by the transducers. 

It was also shown that the permanently attached transducer network was able to maintain 

its integrity throughout the vibration tests specified for a fixed wing aircraft with a turbo-

fan propulsion system. There was also no significant reduction in performance of the 

damage location prediction during or after the test. Additional tests will be performed 

with actual BVID cases under other operation and environmental conditions including 

temperature and humidity, temperature shock, altitude and icing. 
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Abstract. The inherent possibilities of composites present an exciting frontier in architecture 

that has remained largely untapped. In light of the current computational capacities and new 

digital tools in manufacturing, composites are just beginning to re-situate themselves in the 

field of architecture. Efficiency and durability coupled with a load bearing capacity make a 

strong case for the use of composites as a primary building material. 

We now possess the computational and digital manufacturing tools that make the develop-

ment of a composite building viable. On a holistic level, the research has concerned itself 

with an overarching focus on developing a composite building which minimizes the required 

costs and labor while simultaneously creating the potential for customized forms. Based on 

the concepts of mass customization, when the workflow from digital conception to digital pro-

duction is seamless, a variety of composite structures can be produced at no greater expense. 

This potential for an efficient “one off” composite architecture empowered by digital manu-

facturing and computation, is where the research is positioned. 

At present, the research has been focused on exploring surface composite structures through 

a reinvention of the ‘mold’. This approach has involved using inflated bladders, rather than 

traditional molds of milled foam or aluminum in order to produce composite structures. In 

doing so, the benefits of inflatables are all encompassing. Not only do they allow for inexpen-

sive transportation and rapid deployment, but they also lend themselves to the production of 

large scale structures through the simple use of air and pressure, thus minimizing both mate-

rial and effort. This lies in stark contrast to traditional composite manufacturing techniques 

which require molds to be milled out of solid aluminum blocks or high density foam volumes, 

whereas inflatable molds are easily heat sealed and inflated. When considering issues of 

scalability, traditional molding techniques demand significantly more labor, material, and 

with that, overarching costs. Inflatable molds however, require only more air. 
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1. BACKGROUND 

1.1. Monsanto House 

     The Monsanto House of the Future, designed by Marvin Goody & Richard Hamilton, was 
the first of very few precedents for high performance, composite buildings. Sponsored by the 
Monsanto petrochemical company, the Monsanto House was built in 1958 from fiberglass 
composites and challenged the accepted notions of building materials and construction. Due 
to the one off nature of the house, and the manually intensive and expensive construction, it 
was not a viable housing concept at the time. However, nearly sixty years later with digital 
manufacturing, we now possess the technology to make the development of the Monsanto 
House feasible. 

1.2. Composite Constraints 

      Many limitations that have prevented composites from becoming a viable building 
material stem from the numerous misconceptions that have been harbored through decades of 
previously unsolved problems. In the past, composites were stereotyped and stigmatized by 
early concerns originating from high toxicity, consistent off gassing, and poor UV ray 
resistance. However, in recent years composites have evolved quickly and through consistent 
use and research, many of the previous downfalls have become obsolete. New and innovative 
solutions are constantly being developed today to address composites’ shortcomings, such as 
the use of low VOC resins, UV resistant resins as well as fire rated resins. 

      Because the materials involved in composites are critical to many industries outside of 
architecture such as the aerospace, automotive, and marine industries, many large 
international organizations and companies are quite invested in the success and performance 
of these materials. NASA, Boeing, Airbus, and BMW, just to name a few, all have ‘Research 
and Development’ departments aiming to extend the capacities of composite materials and 
resolve any shortcomings. The innovations and findings developed by these satellite 
industries, in particular with fiber and matrix systems, can be utilized and perhaps even 
further developed, in the field of architecture. Of particular interest is the ongoing research on 
methods and alternatives for more environmentally friendly materials. There has, for instance, 
been significant development in the utilization of natural fibers such as flax, rather than 
synthetic fibers like glass fiber. In addition to this, matrices have evolved from using 
thermosets to thermoplastics, which can be recycled to emerging natural bio resins. In the 
next five to ten years the possibility to produce natural composites will be readily available as 
they will not only be easier and safer to build with, but they will also become cheaper as 
synthetic, petro fibers become more and more expensive. 

1.3. Composite Advantages 

     Composite materials present many advantages and possibilities within the field of design 
that make them quite appealing. However, it is important to note that being a material which 
has been adopted from other fields, composites require a disparate set of criteria for their 
application within architecture. Rather than imitating methods of evaluation from other 
industries, architects and designers must form their own. For example, in the field of high end 
sailboats where composites have been used for many years, companies spend millions of 
dollars in order to achieve a lighter product by only a few hundred pounds. However in 
architecture, there is the chance to negotiate a wide variety of tradeoffs in order to efficiently 
and economically incorporate these new materials specifically to the needs and interests of the 
field of architecture. In relation to traditional building materials, composites transcend many 
of the typical concerns. The most widely known advantage is the strength to weight ratio 
whereby resulting composite structures are able to achieve supreme thinness and unparalleled 
lightness. This ultralight advantage simplifies transportation of materials to site and their 
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subsequent handling. Meaning, an entire building can potentially be brought to site at one 
time and then erected into place with minimal equipment. Architects have been limited by the 
capacity of traditional building materials, but composite materials extend these limitations. 
Perhaps less often considered, is the advantage of consolidation. Composite materials also 
present the opportunity to collapse many building systems into a single dynamically changing 
wall section. Much like a traditional wall section, a composite structure is made of many 
layers. Building systems, such as electrical and plumbing, can be integrated into this multi 
layered system. Composite parts are molded, allowing for extremely complex geometries to 
be produced in a single part. This reduces the number of required parts, greatly simplifying 
and expediting the assembly; assembly can be completed with a handful of individuals, rather 
than a large construction crew.  

 Fig. 1. (a) Wood Stud Wall 840 lbs; (b) CMU Wall 5,800 lbs; (c) Composite Wall 230 lbs. 

1.4 Composite Manufacturing 

     Architecture presents an interesting challenge in that nearly every built project is unique. 
When we discuss automotive, like the BMW i3 or Aerospace’s Boeing 787 Dreamliner, an 
economy of scale exists. Every BMW i3 chassis is exactly the same just as every Boeing 787 
Dreamliner is exactly the same. In architecture, a building must resolve the requirements of a 
specific site, specific program, and specific client, resulting in a custom product. Thus far, 
molds have been a large inhibitor to the integration and deployment of composites in 
architecture, particularly at a large scale, due to high costs and slow production times. 
However, as a result of digital manufacturing, molds are increasingly becoming cheaper and 
faster to produce. Innovation in mold production will be the deciding force on whether 
composites can become mainstream within architecture. The possibility of a composite 
building has only become feasible within the past five years as digital manufacturing and 
ideas of mass customization have become integrated into everyday practice. For example, 
automated tape placement has allowed for the first fully composite fuselage, eliminating the 
more typical, manually intensive processes. The benefit of this transition from manual to 
automated is clearly demonstrated by automobile assembly lines, which are continuously 
becoming more autonomous. The digital manufacturing paradigm has allowed the efficiency 
and accuracy of robotics to accelerate production in many fields, and will similarly allow 
composites to become active participants within the field of architecture. 
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 Fig. 2. (a) Hand Wet Layup; (b) Vacuum Bagging Wet Lay Up; (c) Wet Lay Up Compres-
sion Molding. 

2. METHODOLOGY 

     More and more I have become fascinated by the potential possibilities present in compo-

site materials. As part of a disaster relief effort after the 2010 earthquake in Haiti I designed a 

modular composite house for rapid deployment in the countryside. For my MIT architecture 

master’s thesis, I designed a composite house for southern Iraq as part of an effort to rebuild 

after the war which considered petroleum as a building material. Consistently however, I 

found that the limits of the design process were reached, since the ability to produce such de-

signs, do not in fact exist within architecture today. Composite manufacture thus far, has 

largely been tailored to high tolerances which entail extreme conditions, such as those found 

in aviation and aerospace. 

Fig. 3. (a) Prototypes 1 – 16, simulation and build-up. 
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      Embedded in the notion of architectural innovation is an intimate consideration of materi-

ality. In the capacity to understand material systems and manufacturing techniques, the dis-

covery for variable forms of architecture may unfold and present themselves as what was, 

previously unforeseen possibilities. In this unfolding, therein lies the necessity for full scale 

investigation and exploration in order to develop comprehensively the relationships and syn-

thesis between materiality and constructability. This direct method of working enables the de-

signer to more accurately and pointedly evaluate a material’s strengths and weaknesses, its 

advantages and disadvantages. In this process and exploratory development, composite mate-

rial systems are no exception.  

 

      Rooted in hands on material testing and making, the current tests have been modest in size 

partly due to funding and material costs. The opportunity to fully engage in one to one inves-

tigations, to confront and interface with composite materials on a full scale inquiry, has been 

instrumental in the enrichment of the research. Using hands on methodologies, and one to one 

scale investigations as a starting point has helped to identify and establish an effective compo-

sites workflow. The final goal of the research is to produce a full scale, one to one proto-

architecture. 

3. PROCESS 

3.1 Inflated Molds 

     Pneumatic structures have a long history in proto-architecture offering the promise of in-

expensive transportation and rapid deployment and scalability. By capitalizing on the simple 

use of air and pressure, with minimum effort and materials, inflated bladders can produce ar-

chitectural scale spaces. Typically, pneumatic structures require constant pressure but the use 

of inflated bladders as molds in a composites workflow capitalizes on the advantages of 

pneumatic structures while coupling it with the rigidity and structural capacity of composite 

materials. 

3.2 Workflow 

     The work flow begins with the design of an equal pressure geometry such as spheres and 

cylinders with spherical ends and conics with spherical ends. The combination of these geom-

etries can produce a wide variety of inflatable forms. These inflated geometries are then dis-

cretized and decomposed into flat unrolled shapes. Once the geometry has been broken down 

and laid flat onto the cut sheets the details of the part can be added to help form the bladder. 

This includes extending the edges to create lap joints or flange joints, adding registration lines 

and cut lines as well as annotating the disparate parts. The flat nested cut sheets are imported 

into a CAM (computer aided manufacturing) software where the part manufacturing is pro-

gramed. This includes all annotation with a fabric pen, as well as cut paths with a free wheel 

drag knife. 
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Fig. 4. (a) Nested cut sheets imported into a CAM (computer aided manufacturing) software. 

     The material is assembled into the anticipated composite before being placed on the 

vacuum table of the CNC machine. The layers of the assembly include three alternating 

directions of natural fiber fabric on both sides of a 3mm Soric infusion core. The bladder 

material, 18oz vinyl infused polyester fabric, is placed on top of the composite assembly and 

is used to tightly hold all the layers to the cnc vacuum bed. Once the parts are cut, the vinyl 

infused polyester fabric is stitched and chemically welded to produce the airtight seams of the 

bladder. The thread provides the strength and the chemical weld provides the air tightness. 

The two part chemical weld breaks down the polymers in the vinyl, fusing the material and 

creating a resilient airtight seal. The bladder itself is constructed of both lap and flange joints, 

which are designed to project into the inflated bladder to allow for a good infusion surface. 

During the stitching and welding process the through bag valve that is used to inflate the 

bladder is added. 

Fig. 5. Welded seam detail. 

     The preform (composite assembly) is also sewn together using a heavy weight polyester 

thread. VARTM (vacuum assisted resin transfer molding) requires inlet (resin) and outlet 

(vacuum) valves which are calibrated according to the geometry of the part. Inlets and outlets 

can either be point valves or distributed valves depending on the geometry and the infusion 

layout. Linear distribution uses a ⅜” polyethylene spiral tubing sewn into the preform. The 

spiral tubing allows the resin (intake) or vacuum (outlet) to rapidly travel the length of the 
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tube before penetrating the infusion core. This is an effective way to create an even 

distribution infusion. Point distribution uses a PLA 3d printed valve designed to allow rapid 

and even distribution of both resin and vacuum pressure. The 3d printed valve is sewn into the 

preform at the same layer in the composite as the infusion core. The integration of the inlets 

and outlets significantly reduces the setup time. 

 

Fig. 6. (a) Infusion seam detail. 

The integration and robustness of the preform reinforces the research ambition for a 

compactable and shippable composite. By integrating all the complexity and intelligence into 

the perform the entire assembly can be vacuum compressed, packaged and shipped. 

 

Fig. 7. (a) Inflation Process; (b) Transportation of deflated bladder. 

The most conventional aspect of the process is bagging the assembly. Bagging the composite 

puts the entire assembly under compaction in order to produce a high performance composite 

structure. Because a high performance part must be bagged for compaction the required 

elements for vacuum assisted resin transfer molding already exist. Using 300f nylon bagging 
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film and sealant tape an oversized bag is constructed, non specific to the geometry of the part. 

Once the entire assembly is constructed the bladder is inflated to 5 psi and a vacuum is pulled 

on the sealed assembly at 25 inHg. The assembly is checked for leaks to guarantee successful 

compaction and infusion. Once the assembly is surveyed, the inlet line is submerged in a low 

viscosity infusion epoxy resin. When the hose clamp is removed the vacuum pulls the resin 

through the linear / point valve and into the infusion core which wets out the fibers as it is 

pulled across the part. The infusion process is regulated by the viscosity and pot life of the 

resin and can be carefully calibrated as needed. Once the part is fully infused the vacuum 

continues to compress the part extracting excess resin into a resin trap in order to remove all 

voids and create a uniform, lightweight composite. 

 

Fig. 8. (a) Intlated and infused workflow using VARTM. 

4. CONCLUSION 

The workflow presented here has evolved over the last year by working directly with the ma-
terials. Initial challenges existed in producing the inflated mold in which a number of different 
materials were tested. After a number of mockups, the addition of sewing the heat sealed edge 
as a reinforcement and prevention of catastrophic failure was included. Another primary ma-
terial that was tested was the infusion mesh. Most infusion meshes are applied to the exterior 
of the part and allow resin flow between the part and the nylon vacuum bag. However, the 
welcomed discovery of an infusion mesh core that is situated between the fabric plies, has 
significantly reduced the waste and helped simplify the process while adding notable structur-
al properties. 
 
The process is just beginning to prove to be reliable. Future works is based on the desire to 
scale up, having thus far tested primarily in the object furniture scale. Following the success 
of the initial prototypes and the established understanding of the material systems, rules, and 
constraints, I would like to continue by designing a small proto-architecture, with the ultimate 
goal of designing a full scale house that evolves from this material and construction system. 
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Fig. 9. (a) Workflow for prototype number 16. 
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Fig. 10. (a) Final images after infusion. 

7873



David N. Costanza 

 

 

 

 

Fig. 11. (a) Final images after infusion. 
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Abstract. The two-dimensional problem on a curvilinear nanohole in an infinite elastic body
under arbitrary remote loading is solved. The shape of the hole is assumed to be weakly devia-
ted from the circular one and the complementary surface stresses are acting at the boundary.
The boundary conditions are formulated according to the generalized Laplace – Young law.
The study is based on Gurtin – Murdoch surface elasticity model. Using Goursat – Kolosov
complex potentials and the boundary perturbation technique, the solution of the problem is
reduced to a singular integro-differential equation for any-order approximation. The algorithm
of solving this integral equation is constructed in the form of a power series. Solutions of the
integral equation and corresponding complex potentials are obtained for zero-order and first-
order approximations. The size effect in the form of the dependence of the stress distribution at
the surface on the size of the hole is demonstrated.
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1 INTRODUCTION

Material properties are determined by its chemical composition and structure. The study
of surface phenomena is of great interest as it gives an opportunity to obtain an information
about the physical and mechanical behavior of a whole material as, for example, in the case of
mechanochemical corrosion [1, 2]. In particular, it concerns nanosized materials and structures
widely used for developing functional devices in the semiconductor industry, nanoelectrome-
chanical systems, gas and chemical sensors or even biomedical equipment [3].

During the past half-century, much effort to study the mechanical behavior of nanomaterials
(beams, plates, wires, films, etc.) and composites containing nanosized inhomogeneities (in-
clusions, voids and holes) has been made in materials science, solid state science and nanome-
chanics (see reviews [3, 4, 5]). Investigation of material properties and elastic fields of nano-
structures and nanocomposites is important for further development of nanotechnology invol-
ving analysis, design and fabrication of devises and structures at the nanoscale. At least one of
the overall dimensions of nanomaterials and nano-inhomogeneities is in the nanometer range.
This implies that the ratio of the volume occupied by the atoms at and near the corresponding
surface/interface to the volume of the bulk or nano-inhomogeneity becomes significant. As a
consequence, the energy of the atoms adjoining the surface/interface, called the surface free
energy [6], and the surface stress relating the variation of the surface free energy to the variation
of the surface strain [7] highly influence on material properties and elastic fields of nanomate-
rials and nanocomposites. The size dependency of an elastic state at the nanoscale is one of the
corroborations of this influence [8, 9, 10].

The basic concepts of surface/interface free energy and surface/interface stress in solids were
first formulated by Gibbs [6] and developed later by a lot of researchers. Gurtin and Murdoch
[11, 12] and Gurtin et al. [13] elaborated the mathematical framework incorporating surface
stress into continuum mechanics. Miller and Shenoy [8] performed atomistic simulations with
the embedded atom method of nanosized plates and beams subjected to uniaxial loading and
bending and found that their results were in excellent agreements with those obtained by means
of the Gurtin – Murdoch continuum model.

Within the Gurtin – Murdoch model of the surface/interface elasticity, a number of classi-
cal problems related to elastic phenomena at the nanoscale have been studied and some size
effects have been found for relevant nanoscale materials. For example, thin film, inclusion,
inhomogeneity and surface defect formation problems were resolved in the works [14]–[26].

The influence of surface stress on the elastic field was reported in [21] for the case when the
external forces applied to a flat surface have changed within a nanosized region (size effect).
Incorporating surface stresses, size effect is appeared as the dependence of an elastic field near
an elliptical nanohole [22] and nanoinclusion [16, 17] on their sizes, and the local instability of a
plate with a circular nanohole on the hole size under uniaxial tension [23, 24]. Recently, analysis
of elastic fields at the nanosized surface defects arising on a film coating due to diffusion has
been carried out in [25, 26] using the surface elasticity theory [11, 12] coupled with the universal
boundary perturbation technique.

In the previous paper [27], using the universal boundary perturbation method, we have solved
the 2-D elasticity problem on a nearly circular hole in an infinite plane at the macrolevel. The
results allowed us to evaluate the effect of deviation of the hole boundary from the circular
one on the stress concentration and the stress-strain state near the curvilinear macrohole. In
connection with the intensive development of nanotechnology and the use of nanomaterials and
nanostructures in a variety of optical, electronic and other devices, it is important to study the
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problem of changing the stress state near nanohole due to incorporating surface stress. So, the
purpose of the present work is to study the effect of the surface stresses on an elastic field of
a body containing a nearly circular nanohole. In order to solve the corresponding problem, we
use Gurtin – Murdoch surface elasticity theory [11, 12] and the boundary perturbation technique
developed in [25]–[29]. As a result, we come to the singular integro-differential equation in any
order approximation of the perturbation method. The analytical solution of this equation and
numerical results are given for the first-order approximation.

2 PROBLEM FORMULATION

We consider an infinite elastic plane of complex variable z = x1 + ix2 (i is the imaginary
unit) with a nanohole the shape of which is weakly deviated from the circle of radius a with
the center in the origin of Cartesian coordinates x1, x2. The plane is under arbitrary remote
loading and extra surface stresses at the boundary. The plane strain conditions are supposed to
be satisfied. The boundary of the hole Γ is determined by the equation:

z ≡ ζ = ρeiθ = a (1 + εf(s)) s, (1)

where s = eiθ, f(s) is the continuous function and |f | ≤ 1, ε is the small parameter which is
equal to the maximum deviation of the hole boundary from the circular one of radius a, ε > 0,
ε� 1.

The boundaries of the hole determined by the equation (1) are shown in Fig. 1 for f(s) =
= cos 2θ and a = 1, and different values of the parameter ε. These different forms of the hole
are used in our work to get numerical results.

Figure 1: Boundaries of the hole described by the function f(s) = cos 2θ in equation (1) for a = 1, ε =
= 0, 1; 0, 2; 0, 3 (curves 1, 2, 3) and ε = 0 ( curve 4).

In the case of the 2-D problem, the condition at the boundary is described by the generalized
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Laplace – Young law [14, 18] and has the form [22, 25]:

σn(ζ) = σnn + iσnt =
σstt
R
− i1

h

dσstt
dθ

+ p(ζ) ≡ ts(ζ) + p(ζ), ζ ∈ Γ, (2)

where σnn, σnt are normal and tangential stresses (in equation (2), the unit vectors n and t are
the basis vectors of the local Cartesian coordinates n, t); σstt = τ is the surface stress, p is
the external force. Metric coefficient h [30] and the curvature radius of the boundary R are
evaluated in terms of the radius a by the formulas:

L =
1

h
=

1√
x′1

2 + x′2
2
, K =

1

R
=
x′1x

′′
2 − x′2x′′1
h3

and can be written as

L =
1√

(δ′)2 + (1 + δ)2
, K =

2(δ′)2 − (1 + δ)δ′′ + (1 + δ)2

h3
, (3)

where δ = εf(s).
At infinity, the stresses σij (i, j = 1, 2) and rotation angle ω are specified as

lim
z→∞

σij = σ∞ij = sij, lim
z→∞

ω = 0. (4)

In the case of the plane strain, the constitutive equations of the surface [11, 12] and volume
[31] linear elasticities are respectively reduced to the following [21, 22]

σstt = γ0 + (λs + 2µs)ε
s
tt, σs33 = γ0 + λsε

s
tt (5)

and

σnn = (λ+ 2µ)εnn + λεtt, σtt = (λ+ 2µ)εtt + λεnn, (6)
σnt = 2µεnt, σ33 = λ(εtt + εnn).

In equations (5), (6), γ0 is the residual surface stress; εnn, εnt, εtt are the components of the
volume strain tensor; εstt is the surface strain; λs, µs are the surface elastic constants similar to
Lame constants λ, µ.

To find the surface stress τ and solve the boundary value problem, we use the relations
(2)–(6) and the inseparability condition of the surface and bulk, expressed in terms of hoop
strains:

εstt(ζ) = εtt(ζ), ζ ∈ Γ. (7)

3 BOUNDARY EQUATION FOR COMPLEX POTENTIALS

Goursat – Kolosov complex potentials and Muskhelishvili’s method [31] are used in order to
solve the problem. According to [27, 31], the vector of stresses σn = σnn + iσnt at the area
with the normal n can be expressed via two functions Φ and Ψ holomorphic outside of their
boundaries as

σn(z) = Φ(z) + Φ(z) +
[
zΦ′(z) + Ψ(z)

] dz̄
dz
, z ∈ Ω,
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where dz = |dz|eiα, dz̄ = dz, α is the angle between the axes t and x1.
Following [31], we introduce the new function Υ(z) holomorphic in the finite region D =

= {z : z̄−1 ∈ Ω} with the boundary Γ̃ which is symmetrical to the boundary Γ with respect to
the unit circle:

Υ(z) = −Φ(z̄−1) + z−1Φ′(z̄−1) + z−2Ψ(z̄−1), z̄−1 ∈ Ω.

Passing to the limit for z → ζ ∈ Γ, z ∈ Ω [27] and taking into account (2), we get the
following boundary equation for complex potentials Φ and Υ:

σn(ζ) = Φ(ζ) + Φ(ζ) +
ρ′ − iρ
ρ′ + iρ

[
1

ζ2

(
Φ(ζ) + Υ

(
1

ζ̄

))
+

(
ζ − 1

ζ̄

)
Φ′(ζ)

]
s̄2, (8)

where Φ(ζ) = lim
z→ζ

Φ(z) when z ∈ Ω and Υ(ζ) = lim
z→ζ

Υ(z) when z ∈ D.

4 BOUNDARY PERTURBATION PROCEDURE

Following perturbation method [25]–[29], we represent unknown functions Φ, Υ and the
surface stress τ as power series in the small parameter ε:

Φ(z) =
∞∑
n=0

εn

n!
Φn(z), Υ(z) =

∞∑
n=0

εn

n!
Υn(z), τ(ζ) =

∞∑
n=0

εn

n!
τn(ζ). (9)

We also derive the expressions for all functions in (8). Taking into account expansions

K =
∞∑
n=0

εn

n!
Kn(s), L =

∞∑
n=0

εn

n!
Ln(s), (10)

we obtain for the zero-order and first-order approximations:

K0 = 1, L0 = 1, K1 = −f ′′(s)− f(s), L1 = −f(s). (11)

Substituting series (9), (10) into equation (8), we equate the sum of coefficients of the same
power εn (n = 0, 1, . . .) to zero. Then we arrive at the Rimann – Gilbert boundary value problem
on the jump of the holomorphic function Ξn(z) for each-order approximation:

Ξ+
n (s)− Ξ−n (s) = −

(
τn(s) + sτ

′

n(s)
)

+ Fn(s). (12)

Here,

Ξ±n = lim
|z|→1∓0

Ξn(z), Ξn(z) =

{
Φn(z), |z| > 1,
Υn(z), |z| < 1.

According to Muskhelishvili [31], solution of the problem (12) can be written in terms of
Cauchy type integrals

Ξn(z) = −In(z) + Jn(z) + Sn(z), (13)

where

In(z) =
1

2πi

∫
|ζ|=1

τn(ζ) + ζτ
′
n(ζ)

ζ − z
dζ, Jn(z) =

1

2πi

∫
|ζ|=1

Fn(ζ)

ζ − z
dζ, (14)
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and S0 = C + C2z
−2, Sn = 0 (n = 1, 2, . . .), 4C = s11 + s22, 2C2 = s22 − s11 − 2is12.

The functions Fn (n = 1, 2, . . .) in (13) are the known functions depending only on all
previous approximations. So, in the zero-order and first-order approximations, we obtain:

F0(s) = −p(s),

F1(s) = −p′(s)− s̄f(s̄)
dΥ0 (s̄−1)

ds̄
+ sf(s)Φ

′

0(s) + 2(f(s)− if ′

θ(s))
(

Φ0(s) + Υ0

(
s̄−1
))
−

−2s̄f(s)Φ
′
0(s)− sf(s)

dτ0(s)

dθ
+ (f

′′

θ (s) + f(s))τ0(s) + i

(
sf(s)

d2τ0(s)

dθ2
− f(s)

dτ0(s)

dθ

)
.

It is easy to see that the integral Jn in the equation (14) is a known function.

5 INTEGRAL EQUATION OF N-ORDER APPROXIMATION. FIRST-ORDER AP-
PROXIMATION

As a result, we use the constitutive equations (5), (6) by Gurtin – Murdoch surface elasticity
theory and inseparability condition (7) and obtain the following singular integro-differential
equation in the unknown functions τn:

τn(s) +
M(κ + 1)

2a−M(κ − 1)
Re

 1

2πi

∫
|η|=1

τn(η) + ητ
′
n(η)

η − s
dη

 = Gn(s), (15)

where M = (λs + 2µs)/2µ; κ = (λ+ 3µ)/(λ+ µ).
The function G0 depends from the load p(s) (G0 = 0 when p(s) = 0), and functions Gn

(n > 0) are expressed through all the previous approximations.
For any-order approximation, the solution of the integral equation (15) can be found in the

form of a power series τn(ζ) =
∞∑

k=−∞
ankζ

k for any external forces p(s) and function f(s). In

the case of a hole free from external forces (p(s) = 0), the complex potentials in the zero-order
approximation, which correspond to the solution of the appropriate boundary value problem for
the circular hole, are determined as

Φ0(z) = C + C2z
−2 − a02z−2, Υ0(z) = C + C2z

−2 − a00 − 3a02z
2, (16)

where a00 = 4H1C − σ0, a02 = H2C2 and

σ0 = − γ0
a+M

, H1 =
M(κ + 1)

4(a+M)
, H2 =

M(κ + 1)

2a+M(κ + 3)
. (17)

So, surface stress is written in the form:

τ0 = a00 + a02ζ
2 + a02ζ

−2 (18)

and hoop stress for the circular hole (|z| = a) is defined by the equality:

σtt = σ0 + (1−H1)(s11 + s22) + (2− 3H2)(s22 − s11) cos 2θ − 2(2− 3H2)s12 sin 2θ. (19)

This solution is identical to the solution obtained in [22] by the another way.
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Consider a curvilinear hole the boundary of which is described by the relation (1) for the
function f(s) = cos 2θ. The integral equation in the first-order approximation is

τ1(s) +
M(κ + 1)

2a−M(κ − 1)
Re I1(s) = G1(s), (20)

where

G1(s) = − M(κ + 1)

2a−M(κ − 1)
Re J1(s).

To find the surface stress τ1 and therefore complex potentials Φ1 and Υ1, represent τ1 in the
form of the power series. Following the algorithm as shown for any-order approximation, one
can solve the boundary value problem in the first-order approximation.

To find the function G1, it is necessary to substitute equations (1), (11) and (16)-(18) in the
equation (14). After that, one can obtain the solution of the equation (20) in the form:

τ1(ζ) =
5∑

k=−5

a1kζ
k, a1−k = a1k, k = 0, 5 (21)

for the boundary of the hole given by the function f(s) = cos 2θ.
Coefficients a1k in the equation (21) depend on coefficients a00 and a02 of the first-order

approximation and aren’t given here because of bulky expressions. We substitute (21) into (12),
(13) and obtain the complex potentials as

Φ1(z) = −I−1 (z) + J−1 (z), Υ1(z) = −I+1 (z) + J+
1 (z), (22)

where I±1 (z) = I1(z) and J±1 (z) = J1(z) when ±|z| < ±1.
Using expressions (9), (10) and complex potentials (16), (22), we obtain σtt for the hole

determined by the function f(s) = (s2 + s−2)/2 = cos 2θ:

σtt = ε

(
Φ1(s) + 2Φ1(s) + Υ1

(
s̄−1
)

+ sf(s)Φ
′

0(s) + s̄f(s̄)

(
2Φ

′
0(s) +

dΥ0 (s̄−1)

ds̄

))
+ (23)

+2ε
(

(if
′

θ(s)− f(s))
(

Φ0(s) + Υ0

(
s̄−1
))

+ s̄f(s)Φ
′
0(s)

)
+

+σ0 + (1−H1)(s11 + s22) + (2− 3H2)(s22 − s11) cos 2θ − 2(2− 3H2)s12 sin 2θ.

6 NUMERICAL RESULTS

According to the equation (23), the hoop stress σtt depends on the radius a of the basic
circular hole (size effect). The dependence of maximum values of σtt (when θ = 0) in the
case of the uniaxial tension s22 along the axis x2, and p = γ0 = 0, is shown in Fig. 2. The
plots are constructed for aluminium [22]. Surface elastic modulus [8, 15] lead to M = 0, 1 nm
(continuous red lines in Fig. 2) or M = −0, 152 nm (dashed green lines in Fig. 2). Dotted lines
correspond to the classical solution (M = 0).
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Figure 2: Dependence of maximum hoop stresses upon the radius a of the basic circular hole when ε =
= 0; 0, 1; 0, 2; 0, 3 (a, b, c, d).

7 CONCLUSIONS

In the paper, we have presented the solution of the two-dimensional boundary value problem
on a nanohole slightly deviated from the circular one in an infinite elastic solid. In particular:

• The analytical approximate solution of the problem on a stress-strain state of an elastic
solid containing nanosized asperities at the surface is constructed by means of the pertur-
bation method developed in [27].

• Different forms of surface asperities have been considered.

• The rigorous mathematical algorithm of solving the problem to any-order approximation
of the perturbation technique has been developed.

• The solution of the integral equation is evaluated analytically in terms of a power series.

• The expressions for the hoop stress in the zero-order and first-order approximations were
obtained. In contrast with [22], the solution is built without the use of conformal mapping.
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• The size effect as a dependence of the stress state on the size of the hole has been demon-
strated.
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Abstract. This paper summarizes the GeMA (Geo Modelling Analysis) framework, a library
intended to support the development of new multiphysics simulators and its integration with
existing ones. GeMA uses software engineering techniques to allow engineers to focus on the
programming of the physical simulation and letting the framework take care of data manage-
ment and other necessary support functions to develop efficient, professional programs. These
programs are capable of simulating complex problems that may involve multiple physics that
interact in different spatial and time scales. GeMA architecture supports multiple simulation
and coupling paradigms, with particular emphasis given to finite element methods. GeMA sup-
port includes the coupling of different physics, each one with possibly different spatial domain
discretizations (meshes). It has functions to support efficient transfer of state variable values
from one discretization to another. The framework also implements some important concepts of
extensibility, through the combined use of plugins and abstract interfaces, configurable orches-
tration and fast prototyping through the use of the Lua language. In this paper, we also present
some results of a 2D basin modeling test case that couples FEM non-linear temperature cal-
culations, compaction and kinetic oil maturation and generation algorithms. This scenario
includes a time evolving mesh and different time scales among physics.
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1 INTRODUCTION

The building of a new physical simulator comprises three major steps. In the first one, the
problem at hand must be studied so that a physical representation can be created for it. This
representation is then mapped to a set of equations that define the mathematical model of the
problem, usually composed of ordinary or partial differential equations. In the second step,
these equations are are then discretized to allow the problem to be solved. Finally, the third
stage represents the construction of a simulation system that implements the models defined in
the previous steps [1].

Clearly, the knowledge and skills necessary to determine the appropriate physical represen-
tation and to create the mathematical model of the problem, are different from those needed to
transform this same model into a computer system capable of simulating the desired phenom-
ena. This dichotomy is even more pronounced when the objective is not the simulation of a
particular scenario, but the simulation of a class of scenarios supporting user given parameters,
in an efficient and robust way.

Ideally, simulators should be developed by multidisciplinary teams. Nevertheless, it is
common that these are implemented by researchers with extensive knowledge of the problem
physics, but limited software engineering skills, resulting in systems that are more error-prone
and difficult to maintain/extend, especially if the resulting system extrapolates the research en-
vironment and is used in a production environment by other users.

Physics and software engineering are different worlds. However, a framework supporting
the development of multiphysics simulations can create a “bridge” between these two worlds,
allowing the engineer to focus on the construction of the physical representation and on the
mathematical model, being supported and guided by the framework to follow best program-
ming practices. As a result, new simulators can be created in less time and with better quality,
compatible with production environments.

The idea behind the GeMA (Geo Modelling Analysis) framework is to bring state of the art
software engineering techniques such as extensibility, reusability, modularity and portability to
engineering physical modeling, leaving engineers free to focus on the mathematical formula-
tion of the physics of the problem. The framework takes care of all the data management and
required support functions, speeding up code development. A central point is that the frame-
work does not dictate how physics are simulated or how multiple physics are coupled. Those
decisions can be made by engineers according to the scenario at hand.

2 THE GEMA FRAMEWORK

Executing a simulation in the GeMA environment is a two-step process. In the first step, the
model data and the solution method description are loaded, defining, respectively, what will be
simulated and how. In the second step, an orchestration script is executed to do the required
calculations (Figure 1).

The orchestration script is the central object of the solution method. Its role is to allow
the user to describe the sequence of processes that should be applied to the model, so that the
desired results are calculated, providing the main simulation loop. This script is written by the
user using the Lua [2] language.

The Lua language is an interpreted language specially built to be embedded into applications,
allowing them to dynamically run user provided programs. It is considered a simple, easy to
learn language that includes some powerful concepts, such as dynamic typing, garbage collec-
tion, functions as first class objects and the use of associative maps for building data structures.
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Figure 1: Main steps in a GeMA simulation.

It is an extensible language that allows the creation of domain-specific languages. Widely used
as a language for integrating and extending applications, it is also considered as one of the
fastest available interpreted languages[3].

By adopting a complete programming language which includes, among others, flow control,
functions and support for data structures, instead of a simplified solution that only identifies
the process execution order, the framework gives the orchestration script the freedom to run
complex operations as needed. The GeMA orchestrator has a similar role as the orchestrator
used by the Rocstar framework[4], but the flexibility given by the use of a script, instead of a
C++ API as in Rocstar, allows for users with minimum computer language skills to be able to
create their own orchestration models.

Processes are the basic unit used to describe the solution method and can be written in C++ or
in the Lua language. In general, they are high-level primitives that describe a complete action,
such as running a finite element analysis, transferring data between meshes, adaptively refining
a mesh or saving a set of results.

Inside the framework, processes are abstract interfaces having concrete implementations
given by plugins. Meshes, linear system solvers and other relevant entities are treated the same
way. The use of abstract interfaces to model the main entities of the framework promotes its
extensibility. The use of plugins, among other advantages, forces the existence of a clear sepa-
ration of concepts and interdependencies, ensuring code modularity.

In this way, the combination of extensibility through abstract interfaces and plugins, with
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the flexibility introduced by the orchestration script, provides the modeler with all the needed
freedom to define how the simulation will be structured.

The possibility of implementing processes and physics in Lua, instead of in C++, allows for
the framework to be used for rapid prototyping of new ideas, which, once tested and validated,
can be converted into C++ code for greater efficiency, if at all needed.

The current framework implementation includes processes to support solutions based on
the finite element method. These processes, in turn, define abstract physics interfaces, also
implemented by plugins, which are responsible for providing the FEM process with the specific
discrete mathematical formulation for a problem. Other discretization methods are supported
by creating new processes. The framework also supports processes for integration with pre-
existing simulators.

For several reasons, multiphysics models can contain more than one spatial domain dis-
cretization. To support those situations, where there is need to work with multiple meshes, at
multiple scales, including heterogeneous types of elements and possibly representing different
partitions of the spatial domain, the GeMA framework allows the simulation model to contain
a set of meshes and includes processes for implementing data transfer between them, supported
by spatial index data structures.

3 TEST CASES

Several test simulations were implemented to assess the framework correctness and expres-
siveness, including basic tests using the finite element method for stress and temperature calcu-
lation. Stress simulations were carried out with linear and non-linear trusses and with elements
under plane stress state. Temperature simulations were based on heat conduction in steady and
transient states, with several types of boundary conditions and the possibility of using Lua user
defined functions to create temperature dependent material properties, such as thermal conduc-
tivity, making the problem nonlinear. Phase change scenarios were explored by the effective
heat capacity method [5]. Results were compared with analytical models and/or with literature
results.

Multiphysics simulations were tested by coupled stress-temperature models and by a consid-
erably more complex scenario of a 2D sedimentary basin model, described below. This model
includes treatment for several physical phenomena, such as geological layer sedimentation with
mechanical compaction, thermal history and hydrocarbon maturation and generation. The basin
evolution over time requires the use of a dynamic mesh to follow the deposition of sedimentary
layers and igneous intrusions, whose presence makes it necessary to use adaptive time steps in
the simulation. Temperature calculations were made based on the finite element method pro-
cess, implemented in C++. Other calculations, including the mesh evolution over time, were
implemented in Lua to evaluate the environment potential.

Basin modeling consists of a set of techniques designed to study the formation and the evo-
lution of sedimentary basins. Through the use of physical simulation, basin models are used to
characterize the petroleum system and to quantify potential hydrocarbon accumulations, clari-
fying the risks involved in exploration processes. More details can be found in [6].

The basin model under study is provided to the simulator through a mesh representing the
current layer geometry, associated with a table that provides, for each layer, ages for its deposi-
tion start and end. Figure 2 shows the mesh used in the example simulation. Due to confiden-
tiality issues, this model is not a real case, having been built to illustrate the simulator features.
It contains two intrusive layers represented by the “diabase” layers.

Layer compaction and decompaction calculations are done in 1D through equation 1, given
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Figure 2: Sample basin model for the test simulation.

by [7], where φ0 and c represent, respectively, the material initial porosity and compression rate,
z1 and z2 are today’s layer top and bottom depths and z′1 and z′2 are the layer top and bottom
depths at the compaction/decompaction moment.

z′2 = z′1 + z2 − z1 −
φ0

c
(e−cz1 − e−cz2) + φ0

c
(e−cz

′
1 − e−cz′2) (1)

Some restrictions were imposed on the current mesh layout to ease simulation mesh evolu-
tion over time and compaction calculations. The mesh should be structured and composed of
strips of vertically aligned quadrilaterals and/or triangles. Each layer should also consist of a
single mesh row. If a material change is necessary within a layer (facies change), that must
occur along a triangle diagonal, so that any vertical mesh edge always have the same material
on both sides, as proposed in [8]. This allows for 1D compaction calculations along vertical
mesh lines, without concerns about which material parameters should be used.

Temperature calculations over time are based on equation 2, where ρ is the material density,
cp is its specific heat capacity at constant pressure, T is the temperature, λ is the thermal con-
ductivity and G is the rate of internal heat generation. This equation is discretized in space with
the finite element method and in time by an implicit method based on finite differences. Applied
boundary conditions are given by the surface temperature, Ts(x, t), and by the heat flow at the
base of the basin, q(x, t), both varying over geological time.

ρcp
∂T

∂t
= ∇ · (λ∇T ) +G (2)

Sedimentary layers are porous media, and, therefore, material properties must reflect the
grain-fluid mixture in each layer. To do so, the model considers that density and internal heat
generation rates are porosity functions, ρ(φ) and G(φ). Specific heat capacity and thermal
conductivity are also functions of the temperature, cp(φ, T ) and λ(φ, T ), turning the problem
into a non-linear one. If desired, the model can also consider that the thermal conductivity
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is a function of the oil and gas saturation in the layer λ(φ, T, Sg, So). Mixture models and
temperature dependency models used in the simulator can be found in [6].

Kinetic models are used to quantify the conversion rate of a compound into its derivatives,
and can be used to quantify how the organic matter present in the source rock reacts to changes
in temperature over time, reducing the initial quantity of kerogen and forming hydrocarbons.
They can also be used to predict vitrinite reflectance (Ro), an important maturation indicator.
Equation 3 calculates the fraction of the converted material, depending on the thermal history
T (t) and on the organic matter kinetic properties, given by its activation energyE and frequency
factor A. Assuming that the basins thermal history can be decomposed into multiple periods
with constant heating rate, equation 3 can be solved analytically as shown in [9].

F (t) = 1− e−
∫ t
0 Ae

− E
RT (t) dt (3)

Figure 3 presents a schematic view of the simulation orchestration script, presenting the
coupling model between the required physics and the main processes called in each time step.
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Figure 3: Schematic view of the basin simulation orchestration script.

The simulation uses a second mesh, initially empty, that is constructed and updated as layers
are deposited to follow the progress of layer deposition and compaction. At each timestep, the
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simulator calculates the fraction of the layer that will be deposited, ensuring a constant layer
material deposition rate through time. This fraction is decompacted based on present thickness
to calculate the size of the deposited layer. After deposition, older layers are compacted due to
the weight of the new sediments and mesh node depths are adjusted accordingly.

If a time step involves the beginning of the deposition of a new layer, new elements are in-
cluded in the mesh, and their initial temperature adjusted according to the surface temperature.
If the new layer is presently over an intrusion that has not yet occurred so far in the simula-
tion history, the new layer is “sewn” over the layer below the intrusion. Intrusion layers are
always included instantaneously in a time step, being inserted between two layers, forcing the
reorganization of the mesh elements in the upper one.

After compaction and porosity determination, temperature and hydrocarbon generation cal-
culations are executed and repeated in a non-linear loop until convergence is achieved. The
last process step consists in determining the time step to be used in the next iteration. After an
intrusion, adaptive time steps are used to capture the cooling of the intruded body.

Figure 4 shows porosity, temperature, Ro and converted fraction values calculated at selected
time steps. It is interesting to notice the influence of intrusions in Ro and converted fraction
results. Temperature evolution in time steps following an intrusion event can be observed in
Figure 5, which shows how the influence of the intrusion in the basin temperature history is
localized and dissipates relatively quickly. In 100,000 years the effect has nearly vanished.
Its impact on the maturation and generation of hydrocarbons in nearby rocks are, however,
permanent.

4 CONCLUSIONS

The GeMA framework is, naturally, an extensible environment. The use of an architecture
based on abstract interfaces and plugins allows new functionality to be easily added by third
party users, without the need to modify or recompile existing code. It also promotes a sepa-
ration of concepts and the decoupling between system modules, easing their development and
maintenance.

Despite its current focus on simulations using the finite element method, the entire GeMA
environment is prepared to include new process types, implementing support for other dis-
cretization methods. In particular, the given basin modeling example includes new processes
based on analytical models for compaction, kinetic analysis and mesh evolution that were inte-
grated with the finite element method used for temperature calculations.

The use of an orchestration script based on the Lua language as a central simulation com-
ponent is largely responsible for the flexibility offered by the framework in the creation of
multiphysics simulations, allowing the user to easily define coupling strategies and the actions
to be taken at each time step.

The presented 2D basin modeling example illustrates some of the GeMA framework poten-
tial and flexibility. In its first version, the framework is currently being explored for the integra-
tion of hydro-mechanical simulators and their coupling with new chemical processes physics.
It is being actively developed and will be further extended to deal with parallel simulations.
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Figure 4: Basin analysis results on selected time steps.
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Abstract. We have extended the iterative multiscale patch method to a class of nonlinear prob-
lems using an adaptative linearization strategy. Theoretical convergence results are provided
in this paper, and we showcase this nonlinear patch method in a simulation of a space plasma
around a negatively charged array of solar generator interconnect.
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1 INTRODUCTION

Since 2005, the French aerospace laboratory (ONERA) together with the French and Euro-
pean space agencies (CNES and ESA) have been developing an open-source plasma-satellite
simulation code called Spacecraft Plasma Interaction System (SPIS) [16]. Modern spacecraft
technological challenges, such as the use of plasma thrusters and bigger solar generators, require
simulation codes to resolve small-scale structures in relatively big computational domains. In
order to solve these multiscale problems of interest to the industry, modern numerical methods
have to be integrated in plasma simulation codes.

Several numerical methods have been proposed for the simulation of multiscale plasma ef-
fects. One important category of methods uses analytical models for the small scales, as is done
in the Variational Multiscale method [13, 14]. Notably, it has been used to simulate the dynam-
ics of an electric arc in a hot plasma coupled with a flowing gaz [18], and to model the transport
of charges in fluids [20, 8]. While these methods are showing promising results, they require
the integration of analytical models in the simulation codes. One can use numerical models to
solve these scales instead, such as what is done in the case of highly oscillatory problems with
the Finite Element Heterogeneous Multiscale Method [2, 5, 1]. These methods are effective for
solving multiscale problems with non-local small-scale dynamics, such as fast varying medium
properties.

In our case however, the small-case effects are due to local singularities, for instance on a
boundary condition. Facing this type of problems, numerical zoom and finite element patches
have been used in various fields [10, 3, 15, 4]. We propose a linearization scheme that allows
to use the patch method to solve a class of nonlinear problems. These methods are sufficiently
flexible to be easily integrated in current plasma simulation codes such as SPIS, and allow the
resolution of local singularities to simulate their impact on the global problem.

We showcase this numerical method in a simulation of a plasma around a negatively charged
array of solar generator interconnects. These spacecraft components are typically highly inter-
acting with the surrounding plasma, and are too small to be resolved with classical numerical
schemes.

2 THE NONLINEAR PATCH METHOD

2.1 Overview

The patch method [19, 7] is a method to solve elliptic multiscale problems using multiple
grids. It is a flexible domain decomposition method similar to the Chimera method used in
computational fluid dynamics [17].

The algorithm used in this method is quite straightforward. The problem is successively
solved on a coarse mesh and on a finer, local mesh called patch to compute corrections added
the complete solution. An extensive analysis of this method has been carried out in [19], in-
cluding the derivation of convergence properties. This algorithm can be seen as a multiplicative
Schwarz domain decomposition method, without conformity between the meshes. Convergence
has been proven, and links between the convergence rate and the meshes geometry have been
established [19] in the linear case. A fast converging variant of the patch method using harmonic
functions has been presented in [9].

We here introduce an extension of the patch method to solve a class of nonlinear problems.
We propose a linearization strategy that provides good convergence while limiting the number
of linearizations. The proposed method is similar to a patch method variant of Newton-MG [11],
but does not require the full convergence of the multigrid solver loop between linearizations.
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2.2 Definitions

Consider a nonlinear problem on the domain Ω ⊂ Rn, which weak formulation can be
written

〈a(u) |ϕ〉 = l(ϕ), ∀ϕ ∈ H1
0 (Ω) (1)

Here, a ∈ C1(H1
0 (Ω)) is a nonlinear operator, and l is a continuous form on H1

0 (Ω). For all
u ∈ H1

0 (Ω), the Jacobian Ju of a near u is supposed continuous and coercive.
Suppose the solution u of the problem exists and varies rapidly in a small sub-domain Λ ⊂

Ω, but varies slowly in Ω\Λ. We define a coarse mesh of Ω, with associated function space
VH ⊂ H1

0 (Ω), and a fine mesh of Λ called patch, associated to the function space Vh ⊂ H1
0 (Λ).

We set V = VH+Vh and approximate the solution u of the continuous problem with the solution
uHh of

〈a(uHh) |ϕ〉 = l(ϕ), ∀ϕ ∈ V (2)

One should note that, even when a is linear, this problem is not trivial because it is generally
not possible to construct a finite element basis of the function space V . The patch method builds
the solution uHh by solving iteratively on VH and Vh, adding a source term to the problem,
corresponding to the coupling between the meshes.

The other difficulty arrising in this problem is the nonlinearity of the operator. Several lin-
earization schemes have been studied and provide convergence of the method toward the solu-
tion of the nonlinear problem:

• Unconditionnal linearization: provided the initial error is not too big, it can be shown that
linearizing the problem between each iteration will allow the solution to converge. Using
this scheme, a high number of linearization are required, but numerical results show good
stability.

• Linearization at convergence: similarly to the Newton-MG method, one can choose to
linearize the problem only when the previous linearized problem has been solved to a
given accuracy. This scheme minimizes the number of linearizations, but will require a
high number of overall iterations. Numerically, we have found that the stability of this
scheme is relatively poor.

• Conditionnal linearization: we propose a convergence criterion based on the relative lin-
earization and solving errors. As we will show in this paper, this scheme requires a limited
number of linearizations while ensuring good overall convergence and stability.

Let us introduce the following notation:

∀(ϕ,u`, δu) ∈ V 3, 〈Ru`
(δu) |ϕ〉 = l(ϕ)− 〈a(u`) + Ju`

δu |ϕ〉 (3)

In equation 3, Ru`
(δu) can be seen as a residual in the linearized problem at u`, with approxi-

mate solution δu. It is readily seen that equation 2 is equivalent to RuHh
(0) = 0.

2.3 Proposed algorithm

The proposed iteratif algorithm can be written as the following:

1. Find uh ∈ Vh s.t. ∀ϕh ∈ Vh,

〈Ju`
uh |ϕh 〉 =

〈
Ru`

(un − u`)
∣∣∣ϕh 〉
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2. Let un+ 1
2

= un + ωuh

3. Find uH ∈ VH s.t. ∀ϕH ∈ VH ,

〈Ju`
uH |ϕH〉 =

〈
Ru`

(un+ 1
2
− u`)

∣∣∣ϕH〉
4. Let un+1 = un+ 1

2
+ ωuH

5. If ‖Ru`
(un+1 − u`)‖ < ε‖Ru`

(0)‖, let u` = un+1

Note that the steps 1 and 3 are resolutions of the linearized problem, respectively on the Vh
and VH subspaces. The relaxation parameter ω has been studied in [19], and an optimal value
is computed from geometrical properties of the meshes used.

It is readily apparent that the biggest numerical challenge involved in this method is the
computation of the mixed terms a(uH , ϕh) and a(uh, ϕH). In a FEM code, these terms can be
approximated with a quadrature rule on the intersection of a coarse element and a patch element.
The computation of such intersection is trivial when using 2D structured meshes, but become
much more difficult when using 3D unstructured meshes. See [6] for an efficient algorithm
solving this problem.

2.4 Convergence properties

Let us prove the convergence of the proposed method. Let u` be an initial linearization and
u′` be the next computed linearization point. We note u∗` the solution of the linearized problem
around u`. It has been proven in [19] that the following holds:

Lemma 1. Let u∗` be the solution of the linearized problem. There is a constant C ∈]0, 1[
independent of the initial approximation u`, such that

‖u′` − u∗`‖ ≤ C‖u` − u∗`‖

The Taylor expansion of a near u can be written:

a(u + δu) = a(u) + Ju`
δu + hu`

(δu) (4)

where Ju is the Jacobian of a in u and hu is a quadratic residual verifying:

lim
δu→0

‖hu(δu)‖
‖δu‖

= 0 (5)

Moreover, since a is of class C1, the Jacobian J(·) is continue, so

lim
δu→0
‖Ju − Ju+δu‖ = 0 (6)

Using the Taylor expansion around u and v gives:

a(u)− a(v) = Jv(u− v) + hv(u− v)

= Ju(u− v)− hu(v − u)

Hence we have the following equation:

∀(u,v) ∈ V 2, hu(v − u) = (Ju − Jv)(u− v)− hv(u− v) (7)
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Lemma 2. Let (un)n∈N ∈ V N a convergent sequence and note u∞ its limit. Then,

lim
n→+∞

‖hun(u∞ − un)‖
‖un − u∞‖

= 0

Proof. From equation 7, we have

∀(u,v) ∈ V 2, ‖hu(v − u)‖ ≤ ‖Jv − Ju‖ · ‖u− v‖+ ‖hv(u− v)‖

Hence, ∀n ∈ N,

‖hun(u∞ − un)‖
‖un − u∞‖

≤ ‖Ju∞ − Jun‖+
‖hu∞(un − u∞)‖
‖un − u∞‖

Using equations 5 and 6, this upper bound converges to zero when un → u∞.

Lemma 3. Let α ∈]C, 1[, where C is the bound in lemma 1. Then

‖u∗` − uHh‖ <
α− C
1 + α

‖u` − u∗`‖ ⇒
‖u′` − uHh‖
‖u` − uHh‖

< α

Proof. Suppose ‖u∗` − uHh‖ < α−C
1+α
‖u` − u∗`‖, then

‖u′` − uHh‖ = ‖u′` − u∗` + u∗` − uHh‖
≤ ‖u′` − u∗`‖+ ‖u∗` − uHh‖

< C‖u` − u∗`‖+
α− C
1 + α

‖u` − u∗`‖

= α

(
1− α− C

1 + α

)
‖u` − u∗`‖

< α (‖u` − u∗`‖ − ‖u∗` − uHh‖)
≤ α‖u` − uHh‖

Lemma 4.
∀u` ∈ V, Ju`

(u∗` − uHh) = hu`
(uHh − u`)

Proof. ∀v ∈ V,

〈Ju`
(u∗` − uHh) |v〉 = 〈Ju`

(u` − uHh) |v〉+ 〈Ju`
(u∗` − u`) |v〉

= 〈Ju`
(u` − uHh) |v〉+ l(v)− 〈a(u`) |v〉 u∗` solution of linearized problem

= 〈Ju`
(u` − uHh) + a(uHh)− a(u`) |v〉 uHh solution of initial problem

= 〈hu`
(uHh − u`) |v〉

Theorem 5. Let α ∈]C, 1[, where C is the bound in lemma 1. Then

‖hu`
(uHh − u`)‖

CJu`
‖uHh − u`‖

<
α− C

1 + 2α− C
⇒ ‖u′` − uHh‖ < α‖u` − uHh‖
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Figure 1: Computational domain and meshes

Proof. If u∗` = uHh, lemma 3 gives the result. Suppose that u∗` 6= uHh, then

‖u` − u∗`‖
‖uHh − u∗`‖

≥ ‖uHh − u`‖ − ‖uHh − u∗`‖
‖uHh − u∗`‖

=
‖uHh − u`‖
‖uHh − u∗`‖

− 1

≥
CJu`
‖uHh − u`‖

‖Ju`
(u∗` − uHh)‖

− 1

=
CJu`
‖uHh − u`‖

‖hu`
(uHh − u`)‖

− 1 from lemma 4

Thus,
‖hu`

(uHh − u`)‖
CJu`
‖uHh − u`‖

<
α− C

1 + 2α− C
⇒ ‖u∗` − uHh‖ <

α− C
1 + α

‖u` − u∗`‖

and lemma 3 gives the result.

Using lemma 2, and since u 7→ Ju is continue, there exists a neighborhood B of uHh
verifying the left side expression in theorem 5, ensuring that, for every u` ∈ B, the proposed
algorithm converges towards the solution uHh.

3 NUMERICAL EXAMPLE

3.1 A nonlinear multiscale plasma problem

The simulation of multiscale plasmas can be done with a traditional FEM Poisson solver,
using a nonuniform mesh with caracteristic sizes of elements spanning several orders of mag-
nitude. This is the method currently used in the Spacecraft Plasma Interaction Software (SPIS)
to solve local sub-centimeter scales in complete satellite simulations [16]. When reaching to
sub-millimeter scales, the discrepancies on the size of the elements lead to an ill-conditioned
problem, which can be difficult to solve accurately. It is of interest to investigate new numeri-
cal methods, such as the nonlinear patch method, which can avoid this issue by using multiple
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meshes to solve each scale of the simulation. We will present here an application of the non-
linear patch method to solve the Poisson-Boltzmann equation describing the electrostatic po-
tential in a plasma at thermodynamic equilibrium[12]. This nonlinear equation is often used in
spacecraft-plasma simulations with low or negative potentials, modelling both the electrostatic
field and the electronic density distribution.

Here we present the simulation of a plasma around a negatively-biased array of solar cell
interconnects, which are small conductors exposed to the spacecraft environment. The Poisson-
Boltzmann equation can be written as:

−∆ϕ− qec
0
e

ε0
exp

(
− qeϕ

kBT

)
=
ρi
ε0

(8)

where ε0 is the medium permitivity, ϕ is the electrostatic potential, qe is the electric charge of
an electron, c0e the electronic density at 0V, ρi the ionic charge density, and kBT the electron
temperature.

The computational domain and the used structured meshes are presented in figure 1. The
spacecraft is modelled by a Dirichlet condition applied on the south boundary, were small local
discontinuities represent the interconnects. On the north boundary, an homogenous Dirichlet
condition models the space plasma. A patch is added locally, next to the interconnect.

The ion charge density will be computed using a Particle in Cell (PiC) solver, starting with
an uniform density c0i = c0e.

3.2 Numerical results

Using (ϕ)i and (ψ)i as basis of the subspaces Vh and VH , we note

‖Ru`
(u)‖2 =

∑
i

〈Ru`
(u) |ϕi〉2 +

∑
i

〈Ru`
(u) |ψi〉2 (9)

Hence, at iteration n using linearization at u`, ‖Ru`
(0)‖ is the norm of the linearization

residual, and ‖Ru`
(un)‖ is the norm of the residual in the linearized system.
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Figure 2: Convergence of the residuals
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Figure 2 shows the convergence of these residuals using our method for a coarse mesh of
11x11 cells, and a refined patch of 120x120 cells covering a 3x3 coarse cells area near the
interconnect. The relinearization criterion has been set to ε = 10−2.

On this figure, ‖Ru`
(0)‖ only changes on iterations involving linearization. Note that during

the first 8 iterations in this example, the problem is systematicaly linearized, and the method is
equivalent to a coarse Newton method. This is due to the fact that one patch iteration is enough
to make the solving error small relative to the linearization error. During these initial iterations,
the overall convergence is quadratic, as a typical Newton method convergence.

As soon as the linearization error reaches the same level as the solving error, our scheme
allows for more patch iterations between linearizations. This can be seen in figure 2, where
‖Ru`

(0)‖ is levelling for several iterations, starting at iteration numbers 8, 10, 16 and 21.
Notice that linearizing may increase the patch residual ‖Ru`

(un)‖, for instance at iteration
number 16, but that the linearization residual ‖Ru`

(0)‖ is monotonically decreasing. Tempo-
rary increase of patch residual is due to a previous over-resolution of the system, and can be
avoided by increasing the ε convergence parameter. Doing so will increase the frequency of
linearization, and allows to weight the cost of linearizing against the cost of a patch iteration. A
good value for the ε parameter would be the smallest one that ensures strict monotony for the
patch residual.

Overall, the convergence is assymptotically linear, as with the linear patch method.

4 CONCLUSION

A linearization scheme has been proposed to solve nonlinear multiscale problems using the
patch finite elements method, and a theoretical convergence result has been given. The re-
sulting nonlinear patch method allows nonlinear multiscale, such as the simulation of small
satellite elements in the space environment, to be solved efficiently with the required precision.
This method is being implemented in the numerical engine of SPIS, and will provide a mean
for industrial and scientific partners to simulate multiscale effects in the interaction between
spacecrafts and their surrounding plasma.
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Abstract. In structural engineering, the behavior of materials is often defined at the macro-
scopic level where experiments are suitable. Utilizing the advanced knowledge of the mi-
crostructure, multiscale modeling represents a beneficial tool for material properties estima-
tion. During the last two decades, multiscale models based on continuum micromechanics for
concrete have been developed. The implementation of these multiscale models is performed in
a two-step manner: First, the volume fractions of the phases at the lower scale are calculated,
followed by an upscaling process. These models require a high number of input parameters
which partially exhibit high uncertainties. The paper discusses the question how the uncertain-
ties of the input parameters are propagated through the different scales of concrete during the
upscaling process. It is investigated whether the upscaled mechanical properties will show a
high variability due to the diversifying properties of the initial components. Sensitivity analy-
sis is applied to cement pastes, mortars, and concretes with water-to-cement ratios of 0.40,
and 0.60. The total order sensitivity indices according to the variance decomposition method
by Sobol are computed for all input parameters. By means of interpretation of sensitivity in-
dices, the importance of parameters on the model output is quantified. A more accurate a priori
knowledge of the input parameters can lead to a decreased uncertainty of the upscaled results.
Furthermore, the uncertainty propagation starting at two commonly applied hydration kinetics
models is compared. The results show that the scatter of the model responses increases signi-
ficantly during the upscaling process; hence, it should be considered in the assessment of the
multiscale modeling results.
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1 INTRODUCTION

In civil engineering, the behavior of materials is mostly defined at the macroscopic level.
Macroscopic models for the prediction of the materials’ behavior are often empirical; therefore
they contain parameters without a specific physical meaning.
Concrete is commonly handled as a homogeneous material at the macroscopic scale in pre-
diction models. However, it behaves highly heterogeneous at the microscale. Utilizing the
additional knowledge of the microstructure and the materials’ chemistry, multiscale modeling
represents a beneficial tool for material properties estimation. Recently, multiscale models
based on continuum micromechanics have been developed and successfully applied to cemen-
titious materials. Following the modeling philosophy in continuum micromechanics, no fitting
parameters are introduced; rather, a particular physical meaning is assigned to the model pa-
rameters.
By means of multiscale models, properties regarding the elasticity, strength, and creep of con-
crete can be predicted using intrinsic elastic properties of the constituents and their volume
fractions (e.g. [1], [2], [3]). This paper focuses on the multiscale elastic analysis. The predic-
tion of elasticity via semi-analytical homogenization methods in the framework of continuum
micromechanics is performed in a two-step manner. The calculation of the volume fractions of
the phases at each scale is followed by an upscaling process. The evolution of the microstruc-
ture of cement paste during the hydration process is computed using hydration kinetics models.
In this study, two commonly utilized hydration kinetics models are employed: the Powers-
Acker hydration model [4], [5] and the hydration model proposed by Bernard [6] and refined
by Pichler et al. [7].

Commonly, multiscale analyses are performed using a deterministic approach including es-
tablished values of the input parameters. Calculations comprising the stochastic input para-
meters result in probabilistic multiscale analyses where the upscaled mechanical property re-
presents a stochastic variable which is a function of the parameter variation. This seems to be
useful because multiscale models require a large number of input parameters that commonly
exhibit a high uncertainty. The question arises whether the upscaled mechanical properties will
show an increased variability due to the diversifying properties of the initial components. The
paper aims to study the propagation of uncertainties of the input parameters through the dif-
ferent scales of concrete during the upscaling process.
Uncertainty quantification in multiscale modeling has been rarely investigated so far. Studies
have been conducted for several types of materials and with different methodologies of un-
certainty quantification. Clément et al. [8] considered the uncertain nature of hyperelastic
heterogeneous materials at the microscopic scale and proposed a methodology for the uncer-
tainty quantification based on polynomial chaos representation. Vu-Bac et al. [9] proposed a
stochastic multiscale method for polymer nanocomposites across four length scales and quan-
tified the uncertainties of several input parameters using different types of sensitivity analyses.
Particularly, approaches for independent as well as for correlated input parameters were intro-
duced. Uncertainties in the multiscale modeling of concrete were investigated by Berveiller
[10] and Venkovic et al. [11]. Berveiller in [10] discussed the variability of the Young’s mod-
ulus of cement paste using polynomial chaos expansions. Venkovic et al. [11] computed the
uncertainty propagation of a multiscale poromechanics-hydration model for concrete by means
of stochastic meta-models and polynomial chaos expansions.

However, a detailed uncertainty analysis at different scales of a continuum micromechanics-
based multiscale model for concrete has not been performed yet to the best of the authors’
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knowledge. This study aims to assess the influence of the variabilities and uncertainties of the
initial composition of cement-based materials on elastic properties across the scales. Addi-
tionally, differences in the statistical variation of the model output of two different hydration
kinetics models are appraised. A framework for the application of the sensitivity analysis on
probabilistic multiscale modeling for concrete is proposed. Results of the sensitivity analysis
applied to cement pastes, mortars, and concretes, respectively, with water-to-cement ratios of
0.40 and 0.60 are presented.
The paper is organized as follows: First, the fundamentals of continuum micromechanics are
recalled and the deterministic multiscale model is introduced. Then, probabilistic multiscale
modeling is performed considering uncertainties of all input parameters. The uncertainties of
the model predictions at different stages of the hydration process are computed. The para-
meters influencing the uncertainty most are identified, and their probability density functions
at different time steps are estimated. The paper is concluded with a discussion and further
recommendations.

2 DETERMINISTIC MICROMECHANICAL MODEL OF CONCRETE

Theoretical fundamentals of modeling and homogenization methods within the realm of
micromechanics have been presented in the works by [12], [13], [14], [15], [16]. Subsequent
investigations by [6], [17], [18][19], [1] extended the principles towards the application on
cementitious materials and the upscaling of elastic, strength, and creep properties from a mi-
croscopic to a macroscopic observation level.

2.1 Micromechanical representation

Within the framework of continuum micromechanics, the concept of representative volume
elements (RVE) including the separation of scales requirement is followed [20]. The mi-
crostructure of concrete cannot be resolved and described in every detail. Thus, at each scale
of the multiscale model, one RVE comprising quasi-homogeneous subdomains with known
physical quantities is defined [2].

The morphological model for concrete adopted here is based on [7]. The model includes
four scales of observation which are shown in Figure 1. For the sake of simplicity, the shapes of
all embedded phases are assumed to be sphericular. It is known that the distinction of different
phases morphologies increases the accuracy of the model prediction [1].

2.2 Hydration kinetics models

There are several models describing the kinetics and the evolution of volume fractions in
cement pastes during the hydration process of cement particles. The two most important and
principally used models are the Powers-Acker hydration model [4], [5] (”Powers model”) and
the hydration model proposed by Bernard [6], later improved by Pichler et al. [7] (”Bernard
model”).

2.2.1 The Powers model

The Powers model, often denoted as the ”engineering model”, provides the volume fractions
of unhydrated clinker (fclin), water (fH2O), hydration products (fhyd), and of air (fair) at the
cement paste scale as functions of the initial water-to-cement ratio (w/c) and of the degree
of hydration (ξ). The latter value is defined as the mass of hydration products formed up to
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Figure 1: Scales of observation of the continuum micromechanics-based multiscale model (adopted from [7])

the current stage of the hydration process divided by the mass of hydrates formed in case of
a completed hydration (ξ = 1). The calculation of the phase volume fractions is exemplary
described in [2].

2.2.2 The Bernard model

Bernard et al. [6] proposed a hydration kinetics model which describes the evolution of
relative volume properties of the elementary clinker phases. The model comprises stoichio-
metric and kinetic equations for the calculation of volume fractions of reactants and hydration
products at different stages of the hydration. The underlying stoichiometric relations utilized
in this model are adopted from Tennis and Jennings [21]. The kinetics of the hydration are
described by kinetic laws that link the reaction rate dξ/dt to the affinity A(ξx) as well as to
kinetic constants that determine the characteristic time associated with the chemical reaction τ .
Detailed information can be found in [6].

2.3 Upscaling of the elastic properties

Once the morphological model is established, the mechanical behavior of the material can
be estimated using homogenization schemes. The underlying fundamentals necessary for the
upscaling procedure of elastic properties can be found e.g. in [6], [17], [18][19], [1].
The self-consistent (SC) scheme [14], [15] is appropriate for polycrystalline structures, i.e., for
materials which phases are dispersed in the RVE. Then, the matrix medium coincides with the
homogenized medium. For materials in which a continuous matrix can be distinguished from
particular inclusions, the Mori-Tanaka (MT) scheme [22], [23] is suitable. In this work, the
MT scheme was applied to all RVE, except to the anhydrous cement particles. There, the SC
scheme was used.
The micromechanical model estimates the elastic properties of cement pastes, mortars, and
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concretes as functions of the degree of hydration and of the composition. Figure 2 shows the
homogenized Young’s modulus derived from multiscale modeling using the two introduced
hydration kinetics models at four scales of observation. The application of the homogenization
schemes yields simplified equations of the effective shear µhom and bulk modulus khom with
which the Young’s modulus can be computed. The respective equations can be found in [3].
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Figure 2: Deterministic Young’s modulus for the Powers model (left) and the Bernard model (right) as functions
of the degree of hydration calculated for a water-to-cement ratio of 0.60.

3 PROBABILISTIC MULTISCALE MODELING

Approaches for assessing the quality of the prognosis of engineering models are demanded.
Methods based on uncertainty and sensitivity analyses represent suitable tools to rank input
parameters according to their sensitivities on the output and to identify main contributors to the
uncertainties of models. Utilizing results of these analysis helps to improve the accuracy of
model predictions.

3.1 Assessment methodology

3.1.1 Sensitivity Analysis

The sensitivity analysis determines how the uncertainty of the model output can be linked
to the uncertainty of the model input parameters in a qualitative and a quantitative manner.
The main objectives are the identification of input parameters which have the most significant
influence on the model output and the quantification of their relative importance. In subsequent
modeling steps, input parameters with the least influences can be considered as deterministic,
i.e. fixing a non-influential parameter at one value of its range of variance.

In this study, the variance-based global sensitivity analysis according to Saltelli [24] was
applied. In contrast to local sensitivity analyses, global ones consider the simultaneous variation
of all stochastic input parameters.
For a model with a scalar output Y as a function of n random input parameter sets Xi (i.e.
Y = f(X1, X2, ..., Xn)), the first order sensitivity indices are calculated according to [25]:

Si =
VXi

(EX∼i
(Y | Xi))

V (Y )
,

k∑
i=1

Si ≤ 1, (1)

where V (Y ) denotes the unconditional variance of the model output, VXi
(EX∼i

(Y | Xi)) is the
variance of conditional expectation, and X∼i identifies the matrix of all factors but Xi.
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The first order sensitivity indices measure only the first order effect of Xi on the model
response, i.e. the influence of every single variable in a decoupled way. Hence, higher order
terms have been introduced (total effect sensitivity indices) [24]:

STi
= 1− VX∼i

(EXi
(Y | X∼i))

V (Y )
,

k∑
i=1

STi
≥ 1, (2)

where Y | X∼i is the variance of the model response caused by all input parameters Xi.
The method of Saltelli can only be applied in case of uncorrelated the input parameters. Me-
thods considering correlated input parameters are proposed by several researchers (e.g., [26]).

3.1.2 Uncertainty Analysis

Uncertainty describes the incomplete knowledge about models and parameters. By means
of uncertainty analysis, the uncertainty of the model response as a result of the uncertainty in
the input parameters is quantified. There are different sources of uncertainty in the modeling
process due to measurement inaccuracies, natural variations in the data, and uncertain scientific
backgrounds of models.

As a first step of the uncertainty analysis, all sources of uncertainties in the input parame-
ters that affect the model output have to be identified. The specification of model probability
distributions of all input parameters is required. These distributions are either reported in the
literature or are based on empirical evidence. Subsequently, the probability densitiy functions
(PDF) are used to generate sample sets independently for each of the input parameters. Then,
the model is evaluated with the respective parameter sets and, finally, its output is analyzed
using statistical methods.

3.1.3 Sampling Approaches

Several methods are used to generate samples from given probability density functions (PDF).
Some of these include the Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS)
and Advanced Latin Hypercube Sampling (ALHS).
In this study, the method of LHS has been used, since it is independent of the number of random
variables. Thus, the number of required samples is significantly reduced [27]. The underlying
idea of this method is the allocation of the ranges of the input parameters into intervals that have
equal marginal probabilities. In the presented probabilistic multiscale model, 10,000 samples
for each input parameter have been generated.

3.2 Model input parameters

The two hydration kinetics models from section 2.2 use several input parameters. In total,
there are 17 stochastic input parameters for the Powers model and 26 variables for the Bernard
model. All parameters are assumed to be uncorrelated.

The stochastic properties and specific values for all of the input parameters are given in
detail in Appendix A.1. Due to a lack of experimental data, some probability distributions
were assured by the authors which introduces bias in the results of both the uncertainty and the
sensitivity analysis [11]. This represents a future topic in research.
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4 RESULTS

The elastic multiscale analysis allows the prediction of the Young’s modulus of cement paste,
mortar, and concrete for several water-to-cement ratios at different stages of hydration. In
comparison to the deterministic approach, the probabilistic analysis allows the investigation
of distributions of the model responses.

4.1 Prediction of a probabilistic Young’s modulus

The multiscale model was evaluated for each of the sample sets. From the stochastic model
responses, the PDF and the Coefficient of Variation (CoV) of the model responses at three scales
of observation were determined.
Figure 3 shows the evolution of the CoV for the two hydration kinetic models, the Powers model
and the Bernard model, as functions of the degree of hydration and for different water-to-cement
ratios (w/c=0.40 and 0.60).
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Figure 3: Evolution of the coefficient of variation of the predicted Young’s modulus for the Powers model (left)
and for the Bernard model (right) as functions of the degree of hydration and the w/c-ratio.

Apparently, the coefficient of variation increases during the upscaling process. At the cement
paste scale, there is a fewer number of input parameters compared to the concrete scale. Thus,
the CoV is the lowest at the cement paste scale. Both, the Powers model and the Bernard model,
exhibit the same CoV at the fully hydrated stage. Major differences between the two hydration
models occur at early hydration stages (Degree of hydration < 0.4). A higher variation in the
Powers model is observed during the first stages of the hydration. In the Powers model, there
are no kinetic calculations included; the volume fractions of the phases are solely functions of
the w/c-ratio and the hydration degree. Since the reactions occuring in the early hydration are
not described in the same detail as in the Bernard model, the model responses of Powers are
constrained with larger CoV. With the advancement of the hydration process, the influence of
the kinetic parameters on the Young’s modulus is less significant. For the considered water-to-
cement ratios, the evolutions of the CoV are almost similar to each other.

Figures 4 and 5 show the probability densities of the model responses of the two hydration
kinetics model as functions of the degree of hydration. Using the 10,000 realizations of the
models at different time steps, the mean, the standard deviation, and the probability distribution
of the Young’s modulus were estimated. The model responses of both hydration kinetic models
were found to be normally distributed.
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Luise Göbel, Andrea Osburg and Tom Lahmer

0 10 20 30
0

2

4

6

8

10
Cement Paste (w/c=0.6)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

0 10 20 30
0

2

4

6

8

10
Cement Paste (w/c=0.4)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

0 20 40 60
0

0.5

1

1.5

2
Mortar (w/c=0.6)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

0 20 40 60
0

0.5

1

1.5

2
Mortar (w/c=0.4)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Concrete (w/c=0.4)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Concrete (w/c=0.6)

Elastic modulus [GPa]

P
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

DoH=0.01
DOH=0.1
DoH=0.3
DoH=0.5
DoH=0.7
DoH=1.0

Figure 4: Probability densities of the predicted elastic modulus for the Powers model for different degrees of
hydration (DoH) as well as for different w/c-ratios at the cement paste scale, the mortar scale, and the concrete
scale.
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Figure 5: Probability densities of the predicted elastic modulus for the Bernard model for different degrees of
hydration (DoH) as well as for different w/c-ratios at the cement paste scale, the mortar scale, and the concrete
scale.
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In Figure 4, the resulting probability densities of Powers’ model are presented. The proba-
bility densities are shown separately for the three respective scales of observation. It is observed
that the probability densities become lower during the upscaling modeling process. Further-
more, the shapes of the curves at the concrete scale are broader than at the cement paste scale.
This is closely related to the evolution of the CoV as described before. Large CoV come along
with broad proability density functions; both express a larger variability of the results. By show-
ing the PDF, the differences between the results of the two different w/c-ratios are more visible
than in the evolution of the CoV. The PDF shows slightly broader curves in case of a water-
to-cement ratio of 0.4. One reason might be that in case of w/c=0.4 more unhydrated cement
clinker particles remain in the material and thus contribute to the variation of the model results.
For a water-to-cement ratio of 0.6 almost no clinker particles are left in the material. Hence,
only the uncertainties of the hydration products influence the response variations.
The same conclusions can be drawn for the Bernard model. Compared to the distributions of
the Powers model, the distributions of the Bernard model are slightly sharper which is related
to a lower scatter in the model results. .

4.2 Sensitivity Analysis

The results of the global sensitivity analysis are exemplary discussed for the model responses
using the Powers model. They are represented in Figure 6. The sum of the sensitivity indices is
close to 1. Thus, interaction effects between the input parameters are negligible. The numerical
effort necessary for execution of the sensitivity analysis is much higher for the Bernard model
than for the Powers model due to the higher number of input parameters.

At the cement paste scale, the intrinsic elastic properties of the low-density C-S-H phase
are mainly important for the model output. It is obvious that the prediction of the Young’s
modulus at this scale is closely related to this mechanical value since this phase represents the
main component of cement paste. During the hydration process, Portlandite is formed which is
linked to an increase of its sensitivity index. At the mortar scale, the volume fraction of sand
is the most influencing factor whereat its influence on the model output decrease with ongo-
ing hydration and the accompanied production of hydrates. At the concrete scale, the volume
fraction of the coarse aggregates is determining at early-age hydration stages and the Young’s
modulus of the aggregates influences the model results in the later stages. Compared to the
results for a w/c-ratio of 0.4, the results for w/c=0.6 are lower. This might be due to the fact that
at the lower w/c-ratios there are some unhydrated clinker particles which also contribute to the
Young‘s modulus.
The elastic properties as well as the volume fractions of the minor components do not influence
the model responses much. Their sensitivity indices are mostly lower than 0.2.
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Figure 6: Evolution of total-order sensitivity indices of the Powers model as functions of the degree of hydration
for two different w/c-ratios and at three scales of observation (f – Volume fraction, E – Young’s modulus, CSH-
HD – C-S-H high density, CSH-LD – C-S-H low density, CH – Portlandite, Agg – Aggregate).
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5 CONCLUSION

A probabilistic approach was applied on a continuum-micromechanics based multiscale
model to investigate the uncertainty propagation of input parameters across the length scales
of concrete. The variability of the model responses was predicted and the parameters with
the highest influence on the model outputs were identified. A probabilistic multiscale analysis
through several scales of observation provides more insight on the nature of the upscaled elastic
properties of cementitious materials than a deterministic analysis. Probability distributions of
the model outputs and the intervals of the likelihood of the mechanical values were shown to be
some of the possibilities of probabilistic model analyses.

By means of the sensitivity analysis, the significant influences of the elastic parameters at the
cement paste scale and of the volume fractions at the larger scales were discussed. Furthermore,
the increase of the model output uncertainties during the upscaling process as a result of the
propagation of uncertainties in the input parameters was presented. In order to reduce the
uncertainty of the upscaled mechanical properties of cement-based materials, the input para-
meters having a high sensitivity towards the Young’s modulus should be determined precisely
prior to the modeling process.

Comparison between the two well-known hydration kinetic models from Powers-Acker and
Bernard revealed that the uncertainties and variations of both model responses are almost in the
same range. The Bernard model only shows slightly higher uncertainties which seems to be
surprising when the higher number of parameters in the Bernard model are considered.

This paper presented the application of a probabilistic assessment methodology on multiscale
models. A further research topic could be the assessment of the accuracy of the two hydration
kinetics models. It is worth to investigate whether the higher complexity of the Bernard model
with its higher number of input parameter leads to an improved model prediction compared to
the Powers model.
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A APPENDIX

A.1 Model input parameters and their stochastic properties for the Powers model

Table 1: Elastic parameters (** - assumptions).

Parameter Mean SD PDF Reference
Elastic parameters - E [GPa]

C3S 135 7.0 logn ACKER [28], VELEZ [29]
C2S 140 20.0 logn ACKER [28], VELEZ [29]
C3A 145 10.0 logn ACKER [28], VELEZ [29]
C3S 125 25.0 logn ACKER [28], VELEZ [29]

Gypsum 45.7 4.6 logn CHOY et al. [30]
Portlandite 38 5.0 logn CONSTANTINIDES and ULM [17]
C-S-H-LD 21.7 2.2 logn CONSTANTINIDES and ULM [17]
C-S-H-HD 29.4 2.4 logn CONSTANTINIDES and ULM[17]

Sand 60 15 logn **
Aggregate 65 20 logn **

Table 2: Quantitative phase compositions of the reactants (** - assumptions).

Parameter Mean PDF Reference
C3S 0.622 u (0.568, 0.676) VENKOVIC [11]
C2S 0.152 u (0.126, 0.178) VENKOVIC [11]
C3A 0.106 u (0.097, 0.115) VENKOVIC [11]

C4AF 0.009 u (0.008, 0.010) VENKOVIC [11]
C-S-H HD 0.7 u (0.55, 0.85) **

Table 3: Volume fractions (** - assumptions).

Parameter Mean PDF Reference
Sand content 3 u (2, 4) **

Aggregate content 5 u (4, 6) **
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A.2 Model input parameters and their stochastic properties for the Bernard model

Table 4: Quantitative phase compositions of the reactants.

Parameter Mean PDF Reference
C3S 0.622 u (0.568, 0.676) VENKOVIC [11]
C2S 0.152 u (0.126, 0.178) VENKOVIC [11]
C3A 0.106 u (0.097, 0.115) VENKOVIC [11]

C4AF 0.009 u (0.008, 0.010) VENKOVIC [11]

Table 5: Elastic parameters.

Parameter Mean SD PDF Reference
Elastic parameters - E [GPa]

C3S 135 7.0 logn ACKER [28], VELEZ [29]
C2S 140 20.0 logn ACKER [28], VELEZ [29]
C3A 145 10.0 logn ACKER [28], VELEZ [29]
C3S 125 25.0 logn ACKER [28], VELEZ [29]

Gypsum 45.7 4.6 logn CHOY et al. [30]
Portlandite 38 5.0 logn CONSTANTINIDES and ULM [17]
C-S-H-LD 21.7 2.2 logn CONSTANTINIDES and ULM [17]
C-S-H-HD 29.4 2.4 logn CONSTANTINIDES and ULM[17]

Sand 60 15 logn **
Aggregate 65 20 logn **
Elastic parameters - ν [-] (det* - determinstic)

C3S 0.3 det* ACKER [28], VELEZ [29]
C2S 0.3 det* ACKER [28], VELEZ [29]
C3A 0.3 det* ACKER [28], VELEZ [29]
C3S 0.3 det* ACKER [28], VELEZ [29]

Gypsum 0.33 det* CHOY et al. [30]
Portlandite 0.305 det* CONSTANTINIDES and ULM [17]
C-S-H-LD 0.24 det* CONSTANTINIDES and ULM [17]
C-S-H-HD 0.24 det* CONSTANTINIDES and ULM [17]
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Table 6: Activation energies.

Parameter Mean PDF Reference
Activation energies – EaX/R [K]

C3S 4500 u (4110, 4890) BERNARD [6]
C2S 2500 u (2285, 2715) BERNARD [6]
C3A 5500 u (5025, 5975) BERNARD [6]

C4AF 4200 u (3835, 4565) BERNARD [6]

Table 7: Kinetic Parameters.

Parameter w/c-ratio Mean SD PDF Reference
Kinetic parameters: Reaction order – κX [-]

C3S 0.4 1.79 0.18 logn BERNARD [6]
0.5 1.72 0.17 logn BERNARD [6]
0.6 1.69 0.17 logn BERNARD [6]

C2S 0.4 1.03 0.10 logn BERNARD [6]
0.5 0.96 0.10 logn BERNARD [6]
0.6 0.90 0.10 logn BERNARD [6]

C3A 0.4 1.07 0.11 logn BERNARD [6]
0.5 1.00 0.10 logn BERNARD [6]
0.6 0.93 0.09 logn BERNARD [6]

C4AF 0.4 2.37 0.24 logn BERNARD [6]
0.5 2.30 0.23 logn BERNARD [6]
0.6 2.23 0.22 logn BERNARD [6]

Kinetic parameters: Diffusion coefficient – DX [-]
C3S 0.4 1.05 · 10−10 0.13 · 10−10 logn BERNARD [6]

0.5 1.64 · 10−10 0.32 · 10−10 logn BERNARD [6]
0.6 6.42 · 10−10 0.77 · 10−10 logn BERNARD [6]

C2S 0.4 6.64 · 10−10 0.80 · 10−10 logn BERNARD [6]
0.5 6.64 · 10−10 0.80 · 10−10 logn BERNARD [6]
0.6 6.64 · 10−10 0.80 · 10−10 logn BERNARD [6]

C3A 0.4 2.64 · 10−10 0.32 · 10−10 logn BERNARD [6]
0.5 2.64 · 10−10 0.32 · 10−10 logn BERNARD [6]
0.6 2.64 · 10−10 0.32 · 10−10 logn BERNARD [6]

C4AF 0.4 1.05 · 10−10 0.13 · 10−10 logn BERNARD [6]
0.5 2.64 · 10−10 0.32 · 10−10 logn BERNARD [6]
0.6 6.42 · 10−10 0.77 · 10−10 logn BERNARD [6]

Table 8: Volume fractions (** - assumptions).

Parameter Mean PDF Reference
Sand content 3 u (2, 4) **

Aggregate content 5 u (4, 6) **
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Abstract. In multi-scale simulations of material forming processes, macroscopic zones of
nearly homogeneous strain response occur. In such zones the evolution of plastic anisotropy
at each finite element integration point can be approximated from the properties at a represen-
tative point. We show how these zones can be identified by a clustering algorithm and can be
utilized to reduce the computational cost of the simulation.
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1 INTRODUCTION

The Hierarchical Multi-Scale (HMS) software, developed at KU Leuven, simulates the defor-
mation of polycrystalline metallic alloys. HMS takes into account both the strain-driven evolu-
tion of the preferred orientation of crystallites (or texture) and the associated plastic anisotropy,
as they significantly influence the mechanical and physical properties of the material [1]. At
the macroscopic level, the deformation of the material is described by a Finite Element (FE)
model and the anisotropy of the plastic properties is approximated by an analytical plastic po-
tential function. On the other hand, the physics-based crystalline plasticity (CP) code provides
the micro-scale stress response. The HMS incorporates two categories of material state: a) the
direct material state (e.g. equivalent plastic strain, equivalent yield stress) that is directly needed
by the FE code in each time step, and b) the extended material state that has to be updated regu-
larly, but does not have to be accessed in each time step. The parameters of the plastic potential
function, together with the texture data (represented by the orientation distribution function [2])
form the extended state variables at the FE integration points. The HMS model assumes that
the texture and the coupled plastic anisotropy are initially identical in the whole volume of the
material, but may evolve independently in every FE integration point with increasing plastic
strain.

In principle, the texture can change at every time increment of the macroscopic FE model,
and the parameters of the plastic potential function should be updated at every time step, re-
sulting in a substantial computational cost. The HMS software partly resolves this issue by re-
constructing the function not after every time increment, but only if a given deformation-based
criterion is satisfied. Hence, the texture state variable remains constant in each time interval
between the updating events. In order to decide whether such an update of the texture state
variable should take place at a specific integration point, the HMS software tracks the recent
history of the deformation tensor d(t) ∈ R3×3 in that point by

Pt =

∫ t

ti

d(t)dt, (1)

which is the plastic strain that has been accumulated (at time t) since the previous update (at
time ti). The texture related material properties are updated if

‖Pt‖ ≥ Pcr, (2)

with Pcr is a user-defined threshold. Then, the accumulated plastic strain tensor Pt is passed to
the texture evolution model, which applies appropriate lattice rotations to the crystal orientations
to obtain the new orientations [3].

Similarly, reduction of update operations in the spatial domain is also an option. Instead
of updating the texture related material properties at each integration point inside a group of
points, updating a single representative point is more feasible. In this paper, we present methods
to reduce the simulation time of the HMS model by using spatial clustering of the finite element
integration points w.r.t. some relevant feature of interest.

The paper is organized as follows. Section 2 presents the principles of the proposed enhance-
ments to the existing hierarchical multi-scale software as well as the description of the test case
used for the simulation experiments. Section 3 outlines estimations of the approximation er-
ror and the performance gain due to the enhancements. A detailed analysis and discussions of
the simulation results are presented in Section 4. The last section contains a summary of the
ongoing works, concluding remarks and future research.
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2 SPATIAL CLUSTERING IN THE HMS SOFTWARE

Clustering is a technique to group data objects, based on information found in the data char-
acterizing the objects and their relationships. The aim is that the objects within a group are
similar to one another and different from the objects in other groups. The greater the similarity
within a group and the greater the difference between groups, the better the clustering. Spatial
clustering organizes objects based on spatial aspects such as distance, connectivity, relative den-
sity in space as well as other feature(s) of interest [4]. Due to its generic applicability, clustering
is used in a broad range of applications, e.g. in materials modeling, material discovery, general
finite element simulations and other fields of engineering [5, 6, 7, 8, 9]. The fundamental as-
sumption in this paper is that similar micro-structural state variables in neighboring integration
points subjected to a similar deformation history would evolve along nearly identical trajecto-
ries in state space. It can be expected that the derived macroscopic plastic anisotropy would be
similar as well. Therefore, we perform the actual update of the plastic anisotropy at a single
representative integration point per cluster and propagate the updated properties to the other in-
tegration points belonging to the cluster. This significantly reduces the number of updates of the
plastic anisotropy and subsequently the overall simulation time. Similar approaches to reduce
computational cost of engineering applications based on clustering are reported in [8, 10, 11].

In this work we consistently employ the implementation of the agglomerative clustering al-
gorithm provided by the scikit-learn library for machine learning [12]. This algorithm performs
a hierarchical clustering using a bottom-up approach. Initially each object is a cluster on its
own, and adjacent clusters are successively merged together. A variance-minimizing approach
is used for the merge strategy. It merges the pair of clusters for which the sum of squared dif-
ferences of the data points within the clusters is minimal. We developed an interface to this
clustering algorithm, for which the inputs are a set of features of interest, information about the
connectivity among the data points, and the number of clusters to construct. This interface com-
putes the connectivity among the integration points. Note that clustering is carried out based
on the data at the integration points and the connectivity among the integration points. This
makes the proposed methods completely independent of chosen element/mesh types, which is
an additional advantage.

However, the selection of input data, which represent the feature of interest, and the number
of cluster is not trivial and are discussed below. We also discuss the cluster representative
selection procedure.

Feature of interest: As stated in section 1, upon satisfaction of the deformation based update
criteria, given in (2), the accumulated plastic strain Pt is passed to the texture evolution model.
Thus, we assume that the accumulated plastic strain, i.e. the recent deformation history, deter-
mines the evolution of texture and the associated plastic anisotropy. However, as the updates at
the integration points are independent and may occur out of sync, the accumulated plastic strain
in a set of integration points can not be compared to measure the similarity in recent history.
Rather, the total plastic strain (accumulated since the beginning) that represents the total plastic
deformation history at an integration point, is a more logical feature to compare a set of inte-
gration points for our purpose. Furthermore, the plastic strain tensor having 9 components (6
independent components) may suffer from the limitations of clustering multidimensional data
[13]. Dimensionality reduction (e.g. subspace clustering/ projected clustering) is the typical
solution for this. Equivalently, state variable(s) with lower dimension which can correspond to
the total plastic strain may be considered as an alternative feature for clustering. HMS incorpo-
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rates the traditional approach of elastic predictor and plastic corrector in the elasto-plastic stress
integration algorithm [14]. The plastic strain increment ∆εp ∈ R5 is assumed to be

∆εp = ∆εpA, (3)

where the scalar ∆εp represents the magnitude of the plastic strain increment, and A is the
plastic strain rate mode that corresponds to the point on the yield locus in the direction of the
trial stress [15]. The increment in equivalent plastic strain ∆ε̄ ∈ R is calculated as

∆ε̄ = ∆εpψt(A), (4)

where ψt is the plastic potential function at time t. If εp,t and ε̄t respectively are the plastic strain
and the equivalent plastic strain at time t, at the end of time increment ∆t they are respectively
given by

εp,(t+∆t) = εp,t + ∆εp, (5)

and
ε̄t+∆t = ε̄t + ∆ε̄. (6)

As the calculation of the increment in plastic strain ∆εp and in the equivalent plastic strain ∆ε̄
depends on the set of same variables ∆εp, A, the equivalent plastic strain, which is a scalar state
variable at an integration point, can be considered as a scalar representation of the plastic strain,
and also a feature of interest for clustering.

Number of clusters: Most of the clustering algorithm constructs some prescribed number of
clusters instead of finding the optimal number of clusters. This limitation remains a fundamental
and largely unsolved problem in cluster analysis. A simple rule of thumb suggests to construct√
n/2 clusters out of n data points. The Elbow method recommends to choose a number of

clusters so that adding another cluster doesn’t give much better modeling of the data. However,
for several cases the stopping criteria can not be unambiguously evaluated. A number of similar
but more concrete approaches, primarily based on cluster evaluation and assessment, have been
proposed (e.g. [16, 17]) and reliably incorporated in popular software packages. Computational
efficiency of these algorithms is poor as they construct a number of clusters, measure an eval-
uation metric (e.g. silhouette coefficient), and repeat with an incremented number of clusters.
However, if the construction of clusters in the simulation is infrequent, one of these methods
can be utilized to decide about the optimal number of clusters. As the cluster evaluation metric
itself is computationally costly, in situations where we may frequently need to apply the cluster-
ing algorithm, we can utilize some simple heuristics instead. For example, we can measure the
distance between the minimum and the maximum of the data points and decide to construct two
clusters if the distance is larger than a threshold value. This can be recursively continued inside
the generated clusters. However, the clusters generated in this way would lead to sub-optimal
clusters, and still we need to choose a good threshold value.

Cluster representative: The selection of the cluster representative is quite intuitive. The
mean (or, the centroid for multi dimensional data) is commonly considered as the most appro-
priate representation of the cluster data points, as this value minimizes the distance between
the data points and the representative. However, we must select an integration point inside the
cluster to represent the cluster for practical purposes (e.g. in our case the cluster representative
would contain a number of extended state variables, which are common for all the members).
We choose the integration point whose average dissimilarity to all the integration points in the
cluster is minimal, known as the medoid, to serve this purpose in our case.
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For a brief explanation of the proposed strategy, let us consider the two dimensional miniature
model in Figure 1 with only 7 elements. Let each element has only one integration point located
at the center. Integration points in each element are labeled with A–G. The borders of the
clusters are marked by dashed lines, and the cluster representatives are encircled. Notice that
although the points C and E show exactly the same field values, they are put in different clusters
since point D with large difference in the field value is located between them, which violates
the connectivity constraint for forming a spatial cluster. In the proposed method only the cluster
representatives B, D, E, and G update the plastic anisotropy. Representative point B propagates
its updated properties to A and C, whereas G propagates to F. As D and E are the single member
of their own clusters, they only update the plastic anisotropy but need no propagation.

Figure 1: Subdivisions of the FE mesh into clusters with respect to the field value (color scale).
The elements are labeled with letters, while the cluster representatives are distinguished by
circles.

While the underlying micro-structure, texture and the associated plastic anisotropy are as-
sumed to be the same for the whole cluster, other variables such as the strain and the corre-
sponding stress at the integration points are independent of the clusters and evolve individually.

2.1 Selection of test case

In [18] we used a complex geometry specimen to simulate a tensile test. However, this test
case can be considered as very simple in four aspects: (i) the homogeneity of plastic strain
field across integration points at the beginning of plastic deformation is somehow maintained
for the rest of the simulation, (ii) the magnitude of the accumulated plastic strain is sufficient as
the clustering criterion because only one of the plastic strain tensor components is dominating,
which is equivalent to the strain magnitude, (iii) in principle the specimen was two dimensional,
and (iv) the model was comparatively small (2,226 integration points). For these reasons, a more
complex deformation is considered in the test case of this paper.

We consider the specimen in Figure 2, which is used in the simulation of a two stage de-
formation. The FE mesh consists of 12,168 elements of type C3D8R (i.e. 8 node linear brick
element with one integration point). The farthest Y-Z surface in the figure is always kept fixed.
In the first stage a moment load is applied on the nearest Y-Z surface in the figure along the
positive X direction and in the second stage tension is applied on the same surface in the same
direction with small displacements along the positive Y and the negative Z directions. Figure 3a
shows the equivalent plastic strain field at the integration points at some moment in the first
stage during the simulation, where regions of almost homogeneous field values can be easily
observed. If one groups the neighboring integration points with similar equivalent plastic strain
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in a cluster, a single update is needed per cluster instead of updates at each integration point,
based on the assumption of homogeneity of the underlying texture and the plastic anisotropy
inside the cluster. The corresponding 9 clusters are represented by distinct colors in Figure 3b.

Figure 2: Specimen used in a two step deformation for the simulation experiments. The FE
mesh consists of 12,168 C3D8R elements.

(a) (b)

Figure 3: a) The field of equivalent plastic strain in the specimen used in the two-stage defor-
mation simulation; and b) clusters (represented by distinct colors) are constructed according to
equivalent plastic strain in the highlighted area.

2.2 Static clustering

A static clustering strategy employs a fixed configuration of the clusters, which is constructed
based on the field values at a particular moment in the simulation and subsequently kept con-
stant. The advantage of this simple approach is that the overhead related to the construction
of the clusters is minimal. However, the choice of the particular moment for constructing the
clusters is crucial to obtain a good balance between the number of clusters (and thus the com-
putational cost of the simulation) and the accuracy.

We can perform a number of time steps in the actual HMS simulation without clustering,
and then construct the clusters based on the field of interest. If the clustering is performed
in an early time step, it may be that insufficient deformation history is available, leading to
suboptimal clusters. However, postponing the construction of the clusters leads to less savings
in the computational cost. Therefore, we suggest to construct the clusters in the time step in
which the update criterion is satisfied for the first time.

Figure 4a and 4b show the equivalent plastic strain field values at the middle and at the end
of the second deformation stage respectively. These clearly indicate that the clusters constructed
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by the static clustering approach do not reflect the homogeneous zones in the second stage. This
is particularly true if we use a small number of clusters. For example, we can compare the nine
clusters in Figure 5a and Figure 5b with the field values in Figure 4a and 4b. The incapability
of the static clustering to reflect the variation in time of homogeneity of field values among the
integration points is a fundamental drawback of it.

(a) (b)

Figure 4: The field of equivalent plastic strain at a) the middle, and b) at the end of the second
deformation stage.

(a) (b)

Figure 5: Statically constructed clusters at a) the middle, and b) at the end of the second defor-
mation stage.

2.3 Dynamic adaptive clustering

To overcome the limitations of static clustering, a dynamic adaptive clustering is proposed.
In this strategy the integration points are re-assigned to the clusters using criteria based on min-
imization of the variance w.r.t. the equivalent plastic strain among the cluster members. This
dynamic approach is more realistic, since it is able to capture the evolution of strain and, more
importantly, it does not rely on a single time step to determine the clusters. Hence, compared
with static clustering, we expect improvements in the accuracy and, at the same time, perfor-
mance gains, in particular if relatively large clusters can be retained for a longer time, leading
to fewer updates of the plastic anisotropy.

At the beginning of the simulation, the amount of the plastic strain as well as the equivalent
plastic strain is zero at each integration point and we assign all points to a single cluster. A
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cluster is split into two clusters if the difference between the maximum and the minimum of the
observed field values among the points inside the cluster exceeds a specified threshold value. Of
course, this splitting criterion is only tested when the deformation-based updating criteria at an
integration point is satisfied. As long as a cluster is not split, the cluster representative prevails
the role. At present, for simplicity the adaptation of clustering is based on splitting only without
the possibility of merging two clusters.

Clusters constructed with the dynamic adaptive approach are shown in Figure 6a and 6b.
Obviously, these clusters better represent the actual homogeneity of field values in Figure 4a
and 4b.

(a) (b)

Figure 6: Adaptively constructed clusters at a) the middle, and b) at the end of the second
deformation stage. In (a) and (b) the number of clusters are 3 and 62 respectively (only 24
colors are used).

A smaller threshold value for splitting (i.e. a more rigorous splitting condition) leads to
an early split of the clusters and ultimately results in better clusters. Figure 7a and Figure 7b
represent such a case. Comparison with the field values in Figure 4a and 4b makes it evident.
However, such a small threshold value for splitting result in a large number of clusters, and
consequently large number of updates and less computational gain.

Note that only 24 colors are used in Figure 6 and Figure 7 to visualize the clusters. In fact,
formed clusters are assigned unique labels from 1 to nc, where nc is the number of clusters (e.g.
nc = 3 in Figure 6a and nc = 62 in Figure 6b). These labels are assigned from low to high in
an sorted order of the mean data in each cluster, i.e. the cluster with the lowest mean data is
assigned label 1 and the cluster with the highest mean data is assigned label nc.

3 ERROR ESTIMATION AND COMPUTATIONAL PERFORMANCE

We approximate the anisotropy of plastic properties at each integration point in a cluster
by the properties at the cluster representative. This introduces an additional modeling error.
More specifically, the plastic anisotropy model is utilized uniformly inside the cluster. The
coefficients of the anisotropy model are periodically re-identified to follow the evolution of
anisotropy solely at the cluster representative. This approximation also affects the field values
(e.g. equivalent plastic strain, equivalent yield stress) that are calculated based on the plastic
anisotropy. Hence, we will estimate the approximation error in both the plastic properties and
the affected field values. In the rest of the paper the HMS software that is extended with spatial
clustering to reduce the computational cost is referred as the improved HMS and the original
HMS software that does not exploit spatial clustering is referred as the reference HMS. Note that
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(a) (b)

Figure 7: Adaptively constructed clusters with a smaller threshold value at a) the middle, and
b) at the end of the second deformation stage. In (a) and (b) the number of clusters are 2,119
and 6,013 respectively (only 24 colors are used).

the reference HMS is equivalent to the improved HMS using one integration point per cluster.
Using this maximal number of clusters results in no approximation error but also no reduction
of the computational cost.

3.1 Approximation error in terms of plastic properties

The plastic potential function can be utilized to estimate the error in plastic properties re-
gardless of the loading direction. We calculate the Euclidean distance of the plastic potential
function values at an integration point, computed with the reference HMS software, and the
plastic potential function values at the representative point, computed with the improved HMS
software. For an integration point, m almost evenly spaced strain rate modes in the 5D strain
rate space are chosen [19] and the value of the potential function is calculated for each of them.
We define the relative error in plastic properties as the relative difference in the plastic potential
function using the formulas

eψi =
1

m

m∑
j=1

|
ψ(Dj)i − ψ′(Dj)cr(i)

ψ(Dj)i
| × 100% (7)

and

ēψ =
1

n

n∑
i=1

eψi , (8)

where ψ(Dj)i and ψ′(Dj)cr(i) are the values of the plastic potential function at an integration
point i in the reference HMS and at the cluster representative cr(i) in the improved HMS re-
spectively, for a chosen strain rate mode Dj . Hence, eψi and ēψ represent the relative error
respectively in integration point i and in the whole model. In principle we can compute these
values at every time increment, but most often we are only interested in these errors at the end
of the simulation.

3.2 Approximation error in terms of field values

The plastic strain during a time step is affected by the approximation of the plastic anisotropy
using the clustering strategy. As the equivalent plastic strain field in the final state of the simu-
lation contains the total plastic deformation history summarizing the total effect of the approx-
imation, is selected for comparison with the reference HMS. In the improved HMS, this scalar

7930



Md Khairullah, Jerzy Gawad, Dirk Roose and Albert Van Bael

value is computed at each integration point using the plastic anisotropy computed at the cluster
representative. Hence, we compute the relative approximation error in the equivalent plastic
strain field at point i as

eγi =
|γi − γ′i|

γi
× 100%, (9)

where γi and γ′i are the equivalent plastic strain values at an integration point i calculated with
the reference HMS and the improved HMS respectively. As in the previous case, we also
compute the average of the error for the whole model

ēγ =
1

n

n∑
i=1

eγi . (10)

Note that (9) and (10) can be utilized to calculate the approximation error for any other relevant
scalar variables, for example the equivalent yield stress.

3.3 Computational gain

We measure the relative performance improvement in terms of the calculation time by gain
in time gt, defined as

gt =
tr
tc
, (11)

where tr is the simulation time with the reference HMS software and tc is the simulation time
with the improved HMS.

By using the methods proposed above, we only speed up the part of the software responsible
for the evolution of texture and the associated plastic anisotropy. If that part represents a fraction
f of the execution time, then the gain in time is limited by

gmaxt =
1

1− f
. (12)

Hence, if f ≈ 94%, as in the simulations performed below, gmaxt ≈ 16. The expected gain in
time is

get =
1

(1− f) + nc

n
f
≤ gmaxt , (13)

with nc the number of clusters used in the improved HMS software, cf. Amdahl’s law [20].
Note that get is an approximation of gt, for two reasons. Primarily, the computational cost of
all the integration points is assumed to be equal, which is not true in reality. In fact, different
integration points in the model undergo a different number of updates based on the position
of the point in the model and the applied loads and boundary conditions. For example, the
undeformed integration points need no update but the integration points experiencing the largest
deformation require the most updates. Additionally, there are some overheads to implement
spatial clustering in HMS.

For the dynamic adaptive clustering approach, the gain in time may be additionally affected
by the overhead due to construction and maintenance of the clustering information and may not
reflect the actual savings in update operations. For this reason, we can measure the computa-
tional benefit of the proposed methods by the reduction in update operations. We define gain in
updates gu to be

gu =
ur
uc
, (14)

where ur is the number of updates in the reference HMS and uc is the number of updates in the
HMS, which uses clustering.
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4 RESULTS AND DISCUSSIONS

The improved HMS software is used to simulate the new test case described in 2.1. We
compare the accuracy and the computational gain in the improved HMS and in the reference
HMS. In all simulations the texture and plastic anisotropy at an integration point are updated if
the norm of the accumulated plastic strain exceeds 0.05, i.e. Pcr = 0.05 in (2). The calculations
were carried out on a twenty-core Intel Xeon compute node (2.8 GHz processor). Multiple
cores were used for calculating the parameters of the plastic potential function. The simulation
time with the reference HMS is around 47 h, of which 3 h is attributed to the macroscopic FE
computations by Abaqus/Explicit 6.14-1 and required approximately 206,000 time increments
in total. The remaining 44 h were consumed by 90,502 updates of the texture and the anisotropic
plastic properties.

4.1 Static clustering

As described in section 2.2, the clusters are formed at the first update of texture and plastic
anisotropy to obtain a balance between savings in computational cost and accuracy of the sim-
ulation. Figure 8(a) shows the measured approximation error for the plastic anisotropy (plastic
potential function) ēψ, given by (8), for varying number of clusters. We observe a steady de-
crease in the approximation error with increasing of number of clusters, except for number of
clusters around 30. Note that the approximation error is measured at the end of the simulation.
So, it is possible that the statically constructed clusters, formed at the first update of texture and
plastic anisotropy, are not representative for the spatial variation in plastic properties during the
rest of the simulation. Figure 8b presents a comparison between the approximation error in the
affected equivalent plastic strain field ēγ given by (10), and the corresponding gain in time gt,
given by (11). We see that varying the number of clusters up to 100 has no significant effect
on the approximation error as well as on the gain in time. Hence, the error in equivalent plastic
strain and the error in plastic potential function evolve differently as a function of the number
of clusters. In fact, the equivalent plastic strain has a non-linear relationship with the plastic
potential function. Moreover, in (8) we considered almost all directions in the strain rate space,
whereas the equivalent plastic strain in (10) is affected only by the direction of corresponding
strain rate.

(a) (b)

Figure 8: (a) Approximation error in plastic anisotropy (plastic potential function) ēψ. (b)
Approximation error in equivalent plastic strain ēγ and gain in time gt for varying number of
clusters.

We measured that the evolution of texture and the associated plastic anisotropy consumes
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94% of the simulation time (i.e. f = 0.94). Figure 9 compares the gain in time gt obtained by
the improved HMS software with the expected gain in time get for a varying number of clusters,
see (13). We observe that the actual gain in time is higher than the expected gain. Possible
causes are stated earlier.

Figure 9: Actual gain in time gt compared to the expected gain in time get for varying number
of clusters.

4.2 Dynamic adaptive clustering

A set of simulations with the same specimen and same settings were run using adaptive
clustering. We mentioned above that a cluster is split if the difference between the maximum
and the minimum of the equivalent plastic strain within a cluster exceeds the specified threshold
value. If this threshold value increases, a cluster remains undivided for longer time, fewer
clusters are constructed and the required number of update operations is reduced. Thus, a
larger gain in time is achieved, whereby the approximation error increases. In Figure 10a we
observe that the approximation error in plastic potential function ēψ decreases rapidly with
decreasing threshold values, except for very small threshold values where clustering reached
the level of saturation. Figure 10b represents the effect of the adaptive clustering approach on
the approximation error in the equivalent plastic strain ēγ and on the gain in time gt for varying
threshold value for splitting. Again, the general tendency of the approximation error ēγ is
decreasing with decreasing threshold value (increasing number of effective clusters), but there
is not a linear correspondence between the approximation error in plastic potential function ēψ
and in the equivalent plastic strain ēγ .

For both static and dynamic adaptive clustering, we are interested in the evolution of the
approximation error in the equivalent plastic strain ēγ and the gain in time gt when the number
of clusters increases. A clear relationship between approximation error and gain in computation
time is observed in Figure 8b and Figure 10b. Moreover, the approximation error decreases
faster than the gain in time, which is an important advantage.

4.3 Comparison between static and dynamic adaptive approach

Figure 11a and Figure 11b compare the clustering approaches w.r.t. obtained gain in time and
accuracy. Clearly, the dynamic adaptive approach has a lower approximation error in plastic
potential function ēψ, except when the approximation error is very high or very low. On the
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(a) (b)

Figure 10: (a) Approximation error in plastic anisotropy (plastic potential function) ēψ, and
(b) approximation error in equivalent plastic strain ēγ and gain in time gt for varying threshold
value for splitting a cluster.

other hand, when we aim at a high gain in time, dynamic adaptive clustering is apparently
superior to static clustering w.r.t. approximation error in equivalent plastic strain ēγ . However,
for low gain in time values both clustering strategies give nearly identical results.

For a large number (e.g. ≥ 729) of statically constructed clusters, each consisting of a few
points, the clusters are not affected much by the evolution of homogeneous field values. On
the other hand, in the dynamic adaptive clustering approach with a small threshold value (e.g.
≤ 0.2) we end up with a large number of clusters and the construction and maintenance of
them require a significant amount of computation time. For example, with threshold value
of 0.2 we have 1949 clusters at the end of the simulation, which requires at least 1948 split
operations. Around 33 m of computation time is spent for this overhead, if a single split takes 1
s (roughly calculated), which is completely avoided in static clustering. This overhead increases
exponentially as the number of generated clusters increases exponentially with the threshold
value, also seen in Figure 12. However, if we ignore the computation time and pay attention
to the savings in updates, the significance of the dynamic adaptive approach can be shown,
see Figure 13. Again, the approximation error in plastic potential function is significantly less
for the dynamic adaptive approach and the gap reduces for large number of static clusters. The
dynamic adaptive approach leads to a lower approximation error also in equivalent plastic strain.
Thus, we can infer that the dynamic adaptive approach can better capture the real dynamics and
the deformation history.

5 CONCLUSIONS AND FUTURE WORK

The results presented above show that spatial clustering can considerably reduce the compu-
tational cost of the HMS model while retaining acceptable accuracy. Also, dynamic adaptive
clustering is preferable to static clustering as the former has lower approximation error with the
same number of updates. Additionally, the approximation error and the computational benefit
depend on the number of clusters used. A certain trade-off has to be made: by increasing the
number of clusters, the approximation error can be decreased, but at the same time the compu-
tational cost increases.

At present, we only consider the equivalent plastic strain value at an integration point as
the feature of interest for clustering. As described earlier, each of the strain tensor components
influences the evolution of the texture and the associated plastic anisotropy. Thus clustering
based on the strain tensor components is expected to generate more accurate clusters and sub-
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(a) (b)

Figure 11: Approximation error in (a) plastic potential function, (b) equivalent plastic strain for
varying gain in time.

Figure 12: Resulting number of clusters in the dynamic adaptive approach for varying threshold
value for splitting a cluster.

(a) (b)

Figure 13: Approximation error in (a) plastic potential function, (b) equivalent plastic strain for
varying gain in updates (gu), given in 14.

sequently a lower approximation error. We intend to implement a strain mode aware clustering
and updating.

The overhead of the dynamic adaptive clustering approach is significant in the simulation
experiments with the current test case. In the current approach of adaptive clustering, only
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splitting of clusters is considered. We can also consider merging two adjacent clusters, which
will effectively reduce the number of active clusters and update operations.
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Abstract. In the present work we propose an efficient black-box solver for one-dimensional
multiple scaled diffusion equation. For this problem it has been recently shown [1] that the
solution can be represented in a certain low parametric representation, namely the quantized
tensor train (QTT) format [2]. The key idea of the QTT format is to make the real space data
multidimensional by introducing virtual dimensionalities. The next step is to apply the ten-
sor train (TT) representation [3] to multidimensional data, which leads us to the logarithmic
complexity. Hence very fine grids that describe the finest scale can be used.

Since the solution of second order multi-scale problems can be represented in the QTT for-
mat, simple and efficient solvers can be developed using the existing software for the approx-
imate solution of linear systems in the TT-format. However, if equations are discretized using
standard finite element/difference methods, it is not possible to get to very fine meshes, say with
250 grid points due to the condition number. On the other hand, the theory guarantees the exis-
tence of a good QTT-FEM approximant of the continuous problem. Thus, another discretization
should be used to compute it numerically.

Our idea is to rewrite the initial formulation in a certain form without derivatives. After
that we get an explicit formula, which consists of the inversion of a diagonal matrix and the
multiplication by a dense matrix. The latter can be multiplied with logarithmic complexity in
the QTT format due to a special structure. The numerical experiment show that this formula
gives accurate results and can be used for 250 grid points with no problems with conditioning,
while total computational time is around several seconds.
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1 INTRODUCTION

We consider a model 1D diffusion equation

− ∂

∂x

(
k(x)

∂

∂x
u(x)

)
= f(x), u(0) = u(1) = 0 (1)

with coefficient k(x) that has multiple scales. The problem to solve this equation directly is
that very fine grid that describes the finest scale has to be introduced. Alternatively one can
solve this problem using the approach based on analytical expansions or use specific multiscale
finite element methods. Despite these approaches work very efficiently and are well-developed,
still they do not have enough generality and rely on the knowledge of analytical behavior of the
solution.

In [4] it was shown that the solution of (1) can be represented in a certain low parametric
representation, namely the quantized tensor train (QTT) format [2]. The idea behind the QTT
approach is as follows. First of all we introduce very fine grid that is able to describe the finest
scale of the problem. To work efficiently with such grids we use low-parametric representations,
namely tensor decompositions that deal with high-dimensional data. The key idea is to make
the real space 1D data multidimensional by introducing virtual dimensionalities, which leads us
to logarithmic complexity.

Although the solution can be approximated in the QTT-format [1], it is very diffucult to
recover using standard finite difference approaches. Indeed, even if k ≡ 1 the simplest dis-
cretization scheme reads

−ui+1 − 2ui + ui−1
h2

= f(xi), i = 1, . . . , n, u0 = un+1 = 0, h =
1

n+ 1
.

It is well known that ui− u(xi) = O(h2), i.e. the smaller the h, the better is the approximation.
However, in numerical computations we can not take h too small. Let ε be the accuracy of the
computations. Then the approximation error of the action of discrete operator can be estimated
as

O
( ε
h2

+ h2
)
,

which means that the minimal possible grid step is h ∼ ε−1/4. For the double precision ε ≈
10−16 the grid step h ∼ 10−4 is the minimal possible. In principle, such small grid steps are
rarely (not to say never) encountered in standard mathematical modelling, especially when we
go from one-dimensional to 2D and 3D problems. However, as was already mentioned we have
recently encountered a problem when we need h much beyond the number mentioned above,
even h ∼ 2−d where d ≥ 20.

In this paper we propose an explicit formula for finding solution of (1) that resolves the prob-
lem with accuracy on very fine grids. We describe how to apply this formula in the QTT format
and provide bound estimates for the rank of solution. We also show the relation between the
proposed formula and standard second order finite difference scheme. In numerical experiments
we illustrate theoretical results and provide comparison with the homogenization approach.

2 ROBUST DISCRETIZATION SCHEME

Consider a one-dimensional diffusion equation (1). This problem is equivalent to the mini-
mization of the functional

u = arg min
v(0)=v(1)=0

F (v), F (v) =

∫ 1

0

k

(
∂v

∂x

)2

dx− 2

∫ 1

0

vfdx.
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Now we introduce additional variable

vx =
∂v

∂x
= B(v). (2)

From (2) and taking into account the boundary conditions, we can write

v(x) =

∫ x

0

vx(t)dt.

To satisfy the boundary condition at x = 1 the function vx has to satisfy∫ 1

0

vx(t)dt = 0.

Finally we have the following optimization problem:

ux = argmin

∫ 1

0

kv2xdx− 2

∫ 1

0

B(vx)fdx, s.t.
∫ 1

0

vx(t)dt = 0, (3)

where ux = u′ is the derivative of the solution of equation (1).
Now we replace the integrals in (3) by the rectangular rule on the uniform mesh with grid

step h and have the following quadratic optimization problem:

F (vx) = (Dvx, vx)− 2(Bvx, f) = (Dvx, vx)− 2(vx, B
>f), s.t. e>ux = 0,

where B is the discretization of the operator B, D is a diagonal matrix with

di = k
(
xi− 1

2

)
, xi− 1

2
=

(
i− 1

2

)
h, i = 1, . . . , n

and e is the vector of all ones. The unknowns ux are defined in the midpoints as well. Introduc-
ing Lagrange multiplier for the constraint, we have

Dux = B>f + αe, e>ux = 0,

therefore

α = −e
>D−1B>f

e>D−1e
.

Finally the solution is given (not unexpectedly!) by the explicit formula

u = Bux = BD−1B>f − e>D−1B>f

e>D−1e
BD−1e. (4)

MatrixB plays a crucial role. Let u be defined on the grid points, and the centered second-order
finite different scheme reads

(ux)i− 1
2
=
ui − ui−1

h
,

and the matrix B is given as

Bij =

{
h, i ≥ j,

0, otherwise.
(5)

The formula (4) can be considered as a stable discretization of the original equation. It involves
only elementwise operations and Volterra integral operations, and it is easy to see that errors
decrease while h goes to zero. Moreover, these operations can be efficiently implemented in the
QTT-format, and this is the main motivation why such discretizations are interesting in practice.
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3 CONNECTION WITH FINITE DIFFERENCE SCHEME

The next theorem shows the relation between standard second order discretization scheme
and the formula (4).

Theorem 1. In exact arithmetics solution obtained by the proposed formula (4) is equivalent to
the solution obtained by the standard second order discretization scheme on uniform grid

−
ki+1/2ui+1 − (ki+1/2 + ki−1/2)ui + ki−1/2ui−1

h2
= f(xi), i = 1, . . . , n,

u0 = un+1 = 0, h =
1

n+ 1
.

(6)

Proof.

Let B = h


1
1 1
... . . .
1 . . . . . . 1

 , then B−1 =
1

h


1

−1 . . .
. . . . . .
−1 1

 ,

as it is easy to check that BB−1 = I . Let us denote by ux vector of approximate derivatives

ux ≡
(
u1 − u0

h
,
u2 − u1

h
, . . . ,

un+1 − un
h

)T
,

and u = (u1, . . . , un+1). Due to the fact that u0 = 0 we get

ux = B−1u.

Due to (6)

B−TDB−1u =

(
f(x1), . . . , f(xn), kn+1/2

un+1 − un
h2

)T
, (7)

where
D = diag(k1/2, . . . , kn+1/2).

Using additional information that un+1 = 0 we get(
h−2kn+1/2en+1e

T
n +B−TDB−1

)
u = f,

where ei is zero vector with only one 1 in the i-th position and f = (f(x1), . . . , f(xn), 0)
T .

Let us apply Sherman-Woodbury-Morrison formula

u = BD−1BTf − h−2kn+1/2
BD−1BT en+1e

T
nBD

−1BTf

1 + h−2kn+1/2eTnBD
−1BT en+1

. (8)

To get (4) let us simplify the latter expression. First of all,

BT en+1 = he, eTnB = h(1, . . . , 1, 0),

therefore,

BD−1BT en+1e
T
nBD

−1BTf = h−2BD−1e (1, . . . , 1, 0)D−1BTf = h−2BD−1eeTD−1BTf
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Finally the denominator in (8) can be written as

1 + h−2kn+1/2e
T
nBD

−1BT en+1 = kn+1/2

(
1

kn+1/2

+
1

k1/2
+ · · ·+ 1

kn−1/2

)
= kn+1/2 e

TD−1e,

As a result, we get formula (4)

u = BD−1B>f − e>D−1B>f

e>D−1e
BD−1e.

Remark 2. The important consequence of Theorem 1 is that solution obtained by the for-
mula (4) converges to the exact solution with the second order.

Remark 3. From (7) it follows that if Dirichlet-Neumann boudary conditions are used, i.e.
u0 = 0 and un+1 = un, then the formula (4) reads u = BD−1B>f .

4 QTT REPRESENTATION FOR THE ONE DIMENSIONAL CASE

The concept of the QTT looks as follows. Let n = 2d, then the vector has 2d unknowns. We
treat this one-dimensional vector as a d-dimensional tensor of size 2 × . . . × 2. This tensor V
is then approximated in the tensor-train (TT) format. A tensor V (i1, . . . , id) is said to be in the
TT-format, if

V (i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id),

where Gk(ik) is an rk−1 × rk matrix for each fixed ik, and r0 = rd = 1.
The main benefit of the QTT-format is that it leads to logarithmic complexity to represent

the vector of unknowns, if the ranks rk are bounded: we only need to store O(dr2) parameters.
For elliptic problems, the upper bounds of QTT-ranks were provided in [5] and extended to the
highly oscillating case in [4]. The last case is the most practically interesting, since it is exactly
the case when astronomically large grids are needed. In order to turn (4) into a computational
formula, we need a tensor representation of the matrices and vectors involved. Linear operator
acting on tensors from R⊗

d
i=1ni to R⊗d

i=1ni , and is naturally represented as a 2d tensor

A(i1, . . . , id; j1, . . . , jd).

Such linear operator is said to be in the TT-matrix format, if

A(i1, . . . , id; j1, . . . , jd) = A1(i1, j1) . . . Ad(id, jd).

For rk = 1 this boils down to the Kronecker product of 2 × 2 matrices. The product of two
TT-matrices is also a TT-matrix with ranks bounded by the product of the ranks of the terms,
thus it is only necessary to put the matrices B and D−1 into the QTT-format.

Lemma 4. The matrix B defined by (5) can be exactly represented in the QTT-format with
QTT-ranks equal to 2.

Lemma 5. Let d be a vector with 2d elements in the QTT-format with QTT-ranks rk. Then, the
matrix

D = diag(d),

can be represented in the QTT-format with QTT-ranks rk.
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Figure 1: Error of calculated solution u (on the left plot) and total calculation time (on the right plot) w.r.t. the
mesh size factor d (total number of grid nodes is 2d) for the model PDE with known analytic solution. Results are
presented for three different solvers, that are described in the text.

Thus, the most difficult task is to put the vector of values of the function k−1 to the QTT-
format. For many practically interesting cases, the QTT-ranks are bounded [6, 7, 8]. To get such
approximation the cross approximation algorithm is the method of choice [9], which allows to
recover the approximation by adaptively sampling O(dnr2) points. The right-hand also has to
be put into the QTT-format using the same cross approximation procedure.

Provided that both f and k−1 are represented in the QTT format, it is easy to find bounds on
rank of the solution.

Lemma 6. Let f and k−1 has maximal ranks rf and rk−1 correspondingly. In this case maximal
rank ru of the solution satisfies

ru ≤ 2rk−1(2rf + 1)

Proof. The proof immediately follows from the fact that the bound on rank of matrix-vector
product is product of ranks. In our case

rank(BD−1BTu) ≤ 2 · rk−1 · 2 · rf , rank(BD−1e) ≤ 2 · rk−1 .

5 NUMERICAL EXPERIMENTS

In this section we illustrate the theoretical results presented above with numerical experi-
ments. Firstly, we consider a PDE with known analytic solution for validation of the developed
solver (denoted hereinafter as finite sum QTT-solver or FS-QTT-solver). After that we consider
a more complicated case of multiscale PDE. Special analytic form of multiscale PDE coef-
ficients makes it possible to construct exact homogenized solution and first order correction,
hence we can check the accuracy of numerical computations result in the terms of energy.

We compared calculation results obtained by FS-QTT-solver with the results of two solvers
based on a finite difference discretization scheme. The first of them (denoted hereinafter as
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Figure 2: Error of the energy (D∇u,∇u) (on the left plot) and total calculation time (on the right plot) w.r.t.
the mesh size factor d (total number of grid nodes is 2d) for the multiscale PDE with scale parameter ε = 10−4.
Results are presented for three different solvers, that are described in the text.

FD-solver) is constructed in sparse format, and hence can operate only with moderate grids.
We also construct a QTT version of the FD-solver (denoted hereinafter as FD-QTT-solver).

5.1 Method validation for PDE with known analytic solution

First we consider a PDE with homogeneous Dirichlet boundary conditions:

− (k(x)u′(x))
′
= f(x), x ∈ [0, 1], u(0) = u(1) = 0, (9)

with k(x) = 1+ x and f(x) = π2(1+ x) sin(πx)− π cos(πx). This problem has exact analytic
solution of the form

u(x) = sin(πx). (10)

Then for the numerical solution ûh on a uniform grid with step h we can calculate an error:

E
(1)
h =

||ûh − uh||2
||uh||2

,

where uh is the exact solution (10) discretized on the same grid.
The dependence of E(1)

h and the total calculation time on grid size h for FS-QTT, FD and
FD-QTT-solver is presented in Figure 1. As follows from the results, all solvers have the same
accuracy for small grids (d < 10). FD-QTT-solver and FD-solver as anticipated become unsta-
ble for finer grids and the second order convergence for larger d is remained only for FS-QTT-
solver. At the same time FS-QTT-solver works faster than FD-solver for grids with d > 15 as
time scales linearly with d.

5.2 Multiscale problem

Here we consider the multiscale case of equation (9) with f = −1 and two-scale coefficient
kε of the form

k(x, y) = k0(x)k1(y), k0(x) = 1 + x, k1(y) =
2

3
(1 + cos2(2πy)).
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Figure 3: Error of the energy (D∇u,∇u) (on the left plot) and total calculation time (on the right plot) w.r.t.
the mesh size factor d (total number of grid nodes is 2d) for the multiscale PDE with scale parameter ε = 10−6.
Results are presented for three different solvers, that are described in the text.

that is Y -periodic function for
y =

x

ε
∈ Y = (0, 1).

The parameter ε > 0 stands for some small scale in the problem.
It is a classical result of homogenization theory [10] that for small ε, uε and ∇uε can be

approximated by
uε(x) ≈ u0(x) + εξ(y)∇xu0,

and
∇uε(x) ≈ ∇xu0(x) +∇yξ(y)∇xu0,

where y = x/ε and ξ is the Y -periodic solution of the so-called cell problem:

− (kε(x, y)ξ′(y))
′
y = (kε(x, y))′y . (11)

The considered two-scale limiting equation has the exact homogenized solution

u0(x) =
3

2
√
2

(
x− log (1 + x)

log 2

)
,

and ξ has a form

ξ =

(
1

2π
tan−1

(
tan(2πy)√

2

)
− y + C

)
. (12)

and is determined within an additive constant C for fixed x.
According to (4) FS-QTT-solver computes both the solution of the equation û and it’s deriva-

tive ûx, hence we can construct an energy functional: (Dûx, ûx), where (·, ·) is a scalar product,
and compare its value with the same functional for ∇uε from (11). FD-solver and FD-QTT-
solver calculate only solution û of the PDE, but for comparison purposes we also need to con-
struct approximation of ûx. We do it by applying finite difference operator for the obtained
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solution û. Then we can calculate an error:

E2
h =
|(Dûx, ûx)− (D∇uε,∇uε)|

(D∇uε,∇uε)
.

In the case of QTT-based solvers the calculations may be performed for a huge grid sizes
and the reference functions (12) and (11) must be constructed on the same grid for comparison.
We use a cross-approximation method for this purpose with accuracy two orders of magnitude
greater than the one that was used for the numerical solution of the equation and calculate both
error norms in the TT-format.

The dependence of E(2)
h and the total calculation time on grid size h for FS-QTT, FD and

FD-QTT-solver for scale parameter values ε = 10−4 and ε = 10−6 are presented in Figure 2 and
Figure 3 respectively. As follows from the results, FS-QTT-solver outperforms both FD-QTT-
solver and FD-solver in accuracy and in calculation time for fine grids.

6 CONCLUSIONS

In this paper we proposed explicit formula that resolves the problem with accuracy on very
fine grids. We showed how to use it in the QTT format. We also proved that in exact arithmetics
this formula is equivalent to the second-order finite discretization. Numerical experiments il-
lustrated efficiency of the proposed formula.
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Abstract. The aim of this paper is to perform a comparative study of the scale effect on the 

applicability of the theory of micropolar fluids to microflows modelling. Flows which often 

appear in microfluidics systems: the squeezing flow between flat plates and the Hagen–

Poiseuille flow are considered.  

For each flow the maximal geometrical dimension of the flow field for which the “micropolar 

ity” of the fluid affects flows characteristics is predicted and its value is calculated for water, 

blood and electro-rheological suspension. Results indicate that for the Hagen–Poiseuille flow 
the dimension is ten times greater than for the squeezing flow. 
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1. INTRODUCTION 

 Fluid flows in small scales have received increased attention over the last decade due to the 

fact that modelling and simulating micro- and nanoscale fluid systems is still a challenging 

task. In such scales the effect of interaction between the fluid molecules and the solid wall 

molecules is much more significant than in its bulk case described by classical (i.e. Cauchy 

type) continuum mechanics theories that are not capable of explaining the observed effects 

such as: microrotation of molecules, density fluctuations or the electrokinetic effect [1]. 

Recently, the most powerful, and perhaps the most widely used tools for studying such fluid 

systems are the molecular dynamic and the Monte Carlo methods. However, it is well known 

that both approaches are computationally expensive. 

 Other possibility to model flows in small scales is to employ a generalized continuum 

mechanics approach, in which more material constants allow to capture some microstructural 

features that are non-detectable by classical theories. The micropolar fluid theory was 

developed by Eringen in 1966 [2] in the frame of the generalized continuum mechanics. It 

takes into account the microrotation of molecules (microrotation – spinning motion of 

molecules that is independent on the rotation of the flow velocity field) and introduces 

additionally a couple stress tensor. In this theory, field equations are presentable in terms of 

two independent kinematic vector fields: the velocity and the microrotation vector, and 

equations involve six material coefficients. Microrotation vector differs from vorticity vector 

which is defined as rotation of velocity. The stress tensor is not symmetric.  

 Micropolar fluid flow equations are being reduced to their counterparts in the 

classical continuum mechanics (Cauchy), when the microrotation is omitted or when the 

characteristic linear dimension of the flow field is large enough [3]. It indicates that the 

geometrical size of the flow field plays a crucial role in the applicability of the micropolar 

fluid theory to microflows modelling. Till now, only the Hagen–Poiseuille flow in circular 

tube in this aspect was examined in detail [3].  

 This paper presents the analysis of the scale impact on the effective micropolar fluid theory 

microflows modelling. The Hagen–Poiseuille flow and the squeezing flow are considered. 

Flow characteristics are determined. Values of experimentally determined micropolar fluid 

constants [4] and values predicted on molecular dynamic simulations [5] are used in the 

calculations. Formulas for the maximal distance between plates for the squeezing flow and the 

maximal cross-sectional size of the channel for the Hagen–Poiseuille flow, for which the 

micropolar effects of the fluid affects flow characteristics are established and their values for 

some real fluids are calculated. Beyond this dimension, it pays off to carry on the calculations 

on the basis of the classical (Cauchy) hydrodynamics. The comparative study of obtained 

results for considered flows is performed. The results indicate that the scale effect depends on 

the type of the flow. The maximal geometrical dimension of the flow field, for which the fluid 

micropolar effects are negligible, is ten times greater for the squeeze flow than for the Hagen-

Poiseuille flow. It indicates that for each type of the fluid flow its “own” limiting dimension 

value should be estimated for effective modelling by using the micropolar fluid theory. 

2. MICROPOLAR FLUID FIELD EQUATIONS   

 The micropolar fluid theory (MFT) is referred as fluids with an asymmetric stress tensor or 

extended Navier–Stokes theory [6]. The coupling between the hydrodynamic flow degree of 

freedom which is described by the velocity vector, and the microscopic molecular spin 

angular velocity degree of freedom which is described by the microrotation vector is visible in 

field equations. In the most general form, the micropolar field equations which represent 
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conservation of mass, conservation of impulse and angular momentum for incompressible and 

viscous fluid are as follows: 

 div 0V   (1) 

 
d

grad ( )rotrot rot
d

p
t

        
V

f V ω   (2) 

 
d

( )graddiv rotrot rot 2
d

I
t

             
ω

ω ω V ω g  (3) 

where  is density, V = (V1, V2, V3), the velocity field,  = (1,2,3) the micro-rotation field, 

I the gyration parameter, f = (f1, f2, f3), body forces per unit mass, p the hydrostatical pressure, 

 the classical viscosity coefficient, ,  the vortex viscosity coefficients and , ,  are 

gyroviscosity coefficients satisfying the following inequalities: 

 3      0, 2    0,   3  2    0,     ,     0,     0. 

The constitutive equations for the stress tensor T = {Tij}, and the couple stress tensor 

{ },ijCC  are expressed by following equations, respectively as: 

 , , , ,( ) ( ) ( )ij k k ij i j j i j i ijk kT p V V V V             (4) 
 

 , , ,ij k k ij i j j iC        (5) 

ijk – the Levi-Civita tensor, ik – the Kronecker delta. 
 

 The micropolar fluid flow equations arrive at the classical Navier–Stokes equations: (i) 

if transport coefficients:,,, and  vanish (ii) if microrotation is ignored (iii) when the 

characteristic linear dimension of the flow field is large enough [3]. 

3. SIMPLE MICROPOLAR FLUID FLOWS  

 In this section the quantitatively analyze of a scale impact on the effective micropolar fluid 

microflows modelling is presented. Flows, for which analytical solutions are known, are 

considered. This way errors arising from numerical solutions are excluded. Two different 

flows are studied which represent two systems where fluid is confined in narrow channel: i) 

pressure driven planar Hagen–Poiseuille flow, ii) squeezing flow of narrow film between 

parallel plates. Such flows often appear in microfluidics systems. The influence of the 

molecular spin (microrotation) on the hydrodynamic quantities in dependence of 

characteristic linear flow dimension is analyzed. Exact, analytical solutions of Eqs (1-3) for 

the flows at hand are provided in the literature for different boundary conditions imposed on 

velocity and microrotation on the confining surfaces. In this paper, their simplest form is 

used; vanishing velocity and microrotation on the confined surfaces. Hydrodynamic quantities 

which characterize each of flows are expressed by analytical formulas. The results are 

compared with those obtained for classical (i.e. Cauchy type) continuum mechanics theory, in 

which mass transport is described by the Navier–Stokes equation and which omits 

microrotation vector. 

3.1. Flow reduction in a planar Poiseuille flow  

 A fluid confined between parallel walls located at z = 0 with h distance between them is 

considered. The z direction is the only direction of confinement and the walls are infinite in 

extent in the x, y-plane. Pressure gradient drives the planar flow. The micropolar equations  
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(1-3) can be solved analytically with Dirichlet slip boundary conditions where V (h) = 0,  

V (0) = 0 and  (h) = 0,  (0) = 0 It has been shown that the relative flow rate reduction due 

to spinning motion of molecules is given by [4]: 

 Q(h) = Qm(h)/QN(h)  (6) 

where 

 N 2

2 4 cosh( )
( ) ( ) 1 1

2 sinh( )( )
m

kh
Q h Q h

khkh





  
    

   
 

 
(2 )

( )
k

  

  





 

 0

N

(1 ) 





  

Qm and Qn are the flow rates when the fluid spinning motion of molecules described by 

microrotation is included (in the frame of micropolar fluid theory) and when it is ignored (in 

the classical - i.e. Cauchy type continuum mechanics theory). 

3.2. Squeezing flow of narrow film between parallel plates 

 

 

Fig. 1. Geometry of squeezing flow 

 A two-dimensional flow in fluid layer 0 < z < h, r < a between two parallel plates circular 

approaching each other symmetrically is considered. The plate at z = 0 is immobile, while the 

second plate moves with velocity VA. 

 The micropolar equations (1-3) can be solved analytically in Reynolds approach with 

Dirichlet slip boundary conditions where V(h) = VA, V(0) = 0  and  (h) = 0,  (0) = 0 and 

the relative load capacity increase due to the microrotation is defined as [8]: 

 

                                                         W(h)=Wm(h)/WN(h)                                                           (7) 

  

where: 

4

2
3

2

π
( )

1
8 coth

12 2 2

A
m

V a
W h

l Nl mh
h

hh
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and 

3

4

N
N

2

π3
)(

h

aV
hW A
  

 

Symbols Wm and WN denote the load capacity when the fluid microrotation is included and 

when it is ignored i.e. predicted in the frame of the micropolar fluid theory and in the frame of 

the classical - i.e. Cauchy type continuum mechanics theory respectively. 

4. RESULTS AND DISCUSION 

 In this section values of hydrodynamic quantities: (i) Q(h) – relative flow rate reduction for 

the Hagen–Poiseuille flow (6), (ii) W(h) – relative load capacity increase (7) for squeezing 

flow are calculated as a function of distance h between walls confined the flow for water, 

blood and electrorheological suspensions, and plotted in Figures 1 and 2 respectively. 

 The values of micropolar viscosity coefficients used in calculations were found in 

literature. For blood, the values  = 2.9 · 10
−3

,  = 2.32 · 10
−4

,  = 10
−6

 are listed in [7]. For 

water the values evaluated by Hansen et al. (2011) using equilibrium Molecular Dynamics are 

used:  = 0.7 · 10
−3

,  = 0.17 · 10
−3

,  = 2.1 · 10
−21

. For electro-rheological suspension, the 

viscosity coefficient values are given in reference to viscosity N and reads: /N = = 

1.922 · 10
−3

, /N = 5.845, /N = 9.94 · 10
−10 

[4]. 

 

Fig. 2. Relative flow rate Q(h) (6)versus distance h [m] between walls in Hagen–Poiseuille flow 
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Fig. 3. Relative load capacity W(h) (7) versus distance h [m] between plates in squeezing flow 

 It can be seen from data presented in Figure 2 that there exists a flow reduction with 

microchannels height. Results presented in Figure 3 show that for every fluid, beginning from 

a certain distance between approaching plates, the load capacity calculated using the 

micropolar fluid model is bigger than the one calculated with the use of the classical model of 

the fluid. Comparing relative quantities plots for a given fluid, we observe that values of 

distances h when deviations started are not the same in two different flows. For Hagen-

Poisuille the flow rate 1% reduction begins for h value greater than the value of h for which 

relative load capacity increment is equal to 1%. 

 What is more important, it can be observed that every fluid has its “own” value of the 

limiting distance h, starting from which the relative quantities plotted in Figs 2 and 3 begins 

to change. But comparing the limiting distance h for given fluid in two different flows we can 

observe that the distances differ. 

 To visualise the observed effect, the relative flow rate defined by formula (6) and the 

relative load capacity defined by formula (7) are plotted in Figs 4 and 5 in terms of the 

microstructural parameters L and N, very often used when compare various micropolar fluid 

properties. They are defined as follows: 

 
N N

, ,
2 4

cLκ
N L l

μ κ l μ


  


 (7) 

where N =  + /2. 

Symbol Lc denotes characteristic length for given flow geometry, therefore for considered 

problems Lc should be replaced by h - a distance between walls. 

To perform the data comparison, the parameter  N values are assumed:  N=0.3, N=0.6 and 

N=0.9.  
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Fig. 4. Relative flow rate Q(L,N) in Hagen–Poiseuille flow versus parameter L 

 

 

 
 

 

Fig. 5. Relative load capacity W(L,N) in squeezing flow versus parameter L 
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 Comparing plots from Figures 4 and 5 we observe that only for L parameter values 

satisfying inequality: L < 10000 the relative load capacity increases. The flow reduction in the 

planar Poiseuille flow appears when only L < 1000. It means that values of geometrical 

dimensions of flow field for which the “ micropolarity” affect characteristics are different for 

considered flows. Their values can be easily calculated by use formula (7) and are equal 

respectively: hmax=10
4
 (

,  hmax=10
3
 (

 

 

5. CONCLUSIONS 

 Results of the performed analysis prove that sufficient deviations of hydrodynamic 

quantities from classical results are important on the small scale which depends on 

rheological properties of the fluid. This means that the coupling between the molecular 

rotations must be taken into account to give a correct prediction of the flow characteristics 

on suitable small length scales. 

 Length scale for which the fluid micropolar effects are negligible is ten times greater for 

Hagen–Poiseuille flow then for squeeze flow. 

 Comparative study of obtained results for considered flows show that the scale effect 

depends on the type of the flow. 
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Abstract. Recent research has indicated that collocation-type Discontinuous Galerkin Spectral
Element Methods (DGSEM) represent a more efficient alternative to the standard modal or
nodal DG approaches. In this paper, we compare two collocation-type nodal DGSEM and a
standard nodal DG approach in the context of the three-dimensional Euler equations. The nodal
DG schemes for hexahedral elements are based on the polynomial interpolation of the unknown
solution using tensor product Lagrange basis functions and the use of Gaussian quadrature
for integration. In the standard nodal DG approach, we employ uniform interpolation nodes
and Legendre-Gauss (LG) quadrature points. The two collocated DGSEM schemes arise from
using either LG or Legendre-Gauss-Lobatto (LGL) points as both interpolation and integration
nodes. The resulting diagonal mass matrices and the ability to compute the fluxes directly from
the solution nodes give rise to highly efficient schemes.

The results of the numerical convergence studies highlight, especially at high approxima-
tion orders, the performance improvement of the DGSEM schemes compared to the standard
DG scheme. Although having advantages in the evaluation of the boundary values over the
LG-DGSEM, the lower degree of precision of the LGL quadrature negates this benefit. In ad-
dition, without the application of filtering techniques or over-integration, the lower integration
accuracy of the LGL-DGSEM leads to numerical instabilities at stagnation points. Hence, the
LG-DGSEM is found to be the most efficient scheme as it is more accurate and robust for the
considered test cases.
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1 INTRODUCTION

Through the permanently growing standards of modern turbomachines with regard to emis-
sion and noise pollution, there is a great need for new and more efficient engine technologies.
To accurately investigate such technologies, more efficient, flexible and precise numerical tools
for the simulation of turbomachinery flows are essential.

In this regard, the discontinuous Galerkin (DG) finite element method has become a very
popular method for the computation of unsteady flows as it combines an arbitrary order of
accuracy with local data and algorithmic structures. In contrast to the standard finite element
method, the polynomial interpolating functions are not restricted by continuity requirements be-
tween adjacent elements, cf. [12]. Due to the absence of global continuity, solutions at element
interfaces are obtained by techniques similar to those used in upwind finite volume methods,
leading to a stable finite element formulation even for advection-dominated problems. As a
consequence of their combined robustness, flexibility and accuracy, DG methods are generally
more computationally intensive and have higher storage requirements, cf. [1]. The necessity of
high-order accurate representation of curved boundaries, as pointed out by [3], enhances both
drawbacks.

As an efficient alternative to the standard nodal or modal approaches, spectral collocate
forms of the DG space discretization on hexahedral elements have recently been developed,
cf. [1, 2, 10, 16]. In these approximations, tensor product Lagrange polynomials are used to
interpolate the solutions and Gaussian quadrature for the integrals. Applying the same points as
interpolation and quadrature nodes, i.e. collocate them, gives rise to highly efficient schemes.
Unfortunately, this choice limits the maximal polynomial degree, which can be exactly inte-
grated. Therefore, numerical instabilities can occur as a consequence of the insufficient quadra-
ture for handling nonlinearities of the governing equations and high-order geometries, cf [2,14].

In this paper, we compare three nodal DG schemes in the context of the three-dimensional
Euler equations. In the first scheme, we employ uniform interpolation nodes and Legendre-
Gauss (LG) quadrature points. As we don’t exploit the collocation, this scheme serves as
a reference nodal implementation. The two collocated DG methods arise from using LG or
Legendre-Gauss-Lobatto (LGL) points as interpolation and integration nodes, respectively. No
over-integration or modal-filtering will be used in any scheme. All DG schemes investigated
have been integrated into DLR’s in-house CFD code TRACE, which is developed at DLR’s
Institute of Propulsion Technology, cf. [9].

This paper is organized as follows: In Section 2, the governing equations and the DG meth-
ods investigated in this work are presented. In Section 3, the methods are then applied to two
inviscid test cases. The last section summarizes the results.

2 DISCONTINUOUS GALERKIN APPROXIMATION

2.1 Governing equations

Three-dimensional compressible inviscid flow is described by the Euler equations, which
can be written in divergence form as

∂q

∂t
+∇ · F (q) = 0, (1)
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with suitable initial and boundary conditions. The Cartesian components of the conservative
state vector q and flux vectors 〈F (q),n〉 = F n(q) are

q =

 ρ
ρu
ρE

 , F n(q) =

 ρ 〈u,n〉
ρu 〈u,n〉+ pn
ρ 〈u,n〉H

 ,

where 〈·, ·〉 denotes the inner product, n = (nx, ny, nz) is the outward normal vector to the
boundary, ρ is the density, u = (u, v, w) are the Cartesian velocity components, E is the
total energy and H = E + p/ρ is the total enthalpy. The pressure is related to the other
thermodynamic variables by the equation of state for an ideal gas and can be computed as
p = (γ − 1)ρ (E − 1/2||u||2), where γ = 1.4 is the ratio between the specific heats of the fluid.

2.2 Discontinuous Galerkin discretization

The DG discretization of the Euler equations is based on the weak formulation, which can be
obtained by multiplying Equation (1) by a sufficiently smooth test function v and performing
integration by parts,∫

Ω

〈
v,
∂q

∂t

〉
dΩ +

∫
∂Ω

〈v,F n(q)〉 dσ −
∫

Ω

∇v : F (q) dΩ = 0, (2)

where the symbol : denotes the double inner product. The domain Ω is now subdivided into
shape-regular meshes Th = {K} consisting of non-overlapping elements K, where h denotes
a piecewise constant mesh function. Hereafter, the solution q and test function v are approx-
imated as piecewise polynomial functions qh and vh, which are discontinuous across the ele-
ments. The space of piecewise polynomials is defined as,

Vh = {vh | vh ∈ L2(Ω), vh
(
MK(ξ)

)
∈ Pp(Kref), ∀K ∈ Th}, (3)

where the solution vector and the test function belong to qh,vh ∈ (Vh)
5. Pp(Kref) denotes the

space of tensor product polynomials up to degree p on a reference element Kref and MK is a
polynomial continuous invertible mapping for each element K ∈ Th to a reference element
Kref with x = MK(ξ), where x = (x, y, z) are the Cartesian coordinates and ξ = (ξ, η, ζ) the
normalized coordinates of the reference element Kref, cf. [3, 6, 9].

By substituting q with qh and v with vh, the weak formulation (2) for each element K ∈ Th
can be rewritten as,∫

K

〈
vh,

∂qh
∂t

〉
dx+

∫
∂K

〈
vh,H(q+

h , q
−
h ,n)

〉
ds−

∫
K

∇hvh : F (qh) dx = 0. (4)

Due to discontinuities of the solution qh at element interfaces, the normal flux vector F n(q)
in the boundary integrals is replaced by a normal numerical flux functionH(q+

h , q
−
h ,n), which

depends on the outward normal vector n, the internal interface state q−h and the interface state
of the neighboring element q+

h . In the current DG code the Roe numerical flux is employed,
cf. [6].
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2.3 Polynomial approximation and numerical integration

The approximated solution qh and test function vh, belonging to the approximation space
(Vh)

5, can be expressed as their polynomial expansion,

qh(ξ, t) =

N(p)∑
i=1

qi(t)φi(ξ), vh(ξ) =

N(p)∑
j=1

vjφj(ξ), ∀ξ ∈ Kref. (5)

Here, φi(ξ) denotes the basis function of the polynomial space Pp(Kref), N(p) is the number of
interpolation points, and qi(t) and vj are the expansion coefficients of qh and vh, respectively.
In this work, we consider nodal approximations and, therefore, using Lagrange interpolating
polynomials as basis functions. In one space dimension, they are defined on the reference
element as follows,

li(ξ) =

p+1∏
j=1,j 6=i

ξ − ξj
ξi − ξj

, i = 1, . . . , (p+ 1), (6)

where ξj are the node coordinates. One can easily observe that for Lagrange polynomials

li(ξj) = δij, (7)

holds, where δ is the Kronecker delta. For hexahedral elements, the nodal basis functions are
the tensor product of one-dimensional Lagrange polynomials,

φi(ξ) = φmno(ξ, η, ζ) = lm(ξ)ln(η)lo(ζ). (8)

Considering the property of the Lagrange polynomials (7), the unknown expansion coefficients
qi(t) correspond to the solution values at the specific node qh(ξi, t), cf. [2].

Mapping Equation (4) into the reference space, substituting qh by (5) and testing only against
the basis functions φj(ξ) for all j = 1, . . . , N(p), yields,

∂qi(t)

∂t

∫
Kref

φjφi|JK(ξ)|dξ+

∫
∂Kref

φjH(q+
h , q

−
h ,n)SK(ξ) dŝ−∫

Kref

〈
(JK(ξ))−1∇ξφj,F (qh)

〉
|JK(ξ)|dξ = 0, (9)

where |JK(ξ)| and (JK(ξ))−1 denotes the determinant and inverse of the Jacobian matrix,
respectivly and SK(ξ) is the curved face area, cf. [9]. By assembling all element contributions,
Equation (9) can be rewritten in the compact form as,

M
∂q

∂t
+R(q) = 0. (10)

Here, M denotes the mass matrix, q the unknown degrees of freedom (DOF) and R the resid-
ual vector, containing the boundary and volume integrals. The integrals are carried out using
Gaussian quadrature formulae. For example, the mapped volume integral is approximated as,∫

Kref

〈
J−1
K (ξ)∇ξφj(ξ),F (qh(ξ, t))

〉
|JK(ξ))|dξ ≈

M∑
i=1

〈
J−1
K (ξi)∇ξφj(ξi),F (qh(ξi, t))

〉
|JK(ξi)|wi, (11)
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(a) DGNODAL (b) LG-DGSEM (c) LGL-DGSEM

Figure 1: Interpolation and quadrature nodes on the reference quadrilateral for an approximation
of order p = 3. The black triangles denote the interpolation nodes, the squares the volume
quadrature points and the circles the boundary quadrature points of the specific scheme.

where ξi = (ξi, ηi, ζi) and wi denotes the quadrature coordinates and weights, respectively. It
is now possible to choose various sets of interpolation and quadrature nodes in order to derive
different nodal DG formulations. Note, for all schemes presented, the number of quadrature
points is set to be equal to the number of interpolation points, e.g. M = N(p) := (p + 1)3 for
the three-dimensional case.

In the first scheme, we employ equidistant interpolation nodes and LG points as integration
nodes. Note, although equidistant interpolation nodes can lead to unstable formulations for very
high-order schemes, they are viable for moderate approximation orders, cf. [8, 11]. The degree
of accuracy of the Gaussian quadrature with LG quadrature nodes is 2M − 1, which means that
polynomials up to degree 2M − 1 are integrated exactly. In the following, this formulation is
called DGNODAL.

For the purpose of efficiency, we consider nodal collocation-type approximations in the
next schemes, i.e. using the same points as interpolation and integration nodes. As a result,
many numerical operations can be omitted, which give rise to highly efficient implementation,
cf. [2, 15, 16]. Two collocation formulations arise from using LG points or LGL points as both
interpolation and quadrature nodes. With LG nodes, the degree of accuracy of the Gaussian
quadrature is the same as in the DGNODAL formulation. Whereas, the degree of accuracy of
the Gaussian quadrature with LGL nodes is only 2M − 3. Hence, the inner product of two
polynomial functions of order p, e.g. appearing in the mass matrix, is not integrated exactly,
cf. [13, 16, 18]. The collocation formulations are named in the following as LG-DGSEM and
LGL-DGSEM, respectively.

In order to clarify the DG schemes investigated in this work, the volume and boundary
quadrature points and interpolation nodes for the two-dimensional case are shown in Figure 1.
The DGNODAL scheme represents the reference case in which all numerical operations are
performed. Therefore, the solution and the derivatives have to be interpolated onto all the
volume and boundary quadrature points. Additionally, the resulting element mass matrix is a
dense matrix. Taking the interpolation nodes as integration nodes and considering the property
of Lagrange polynomials (7), the mass matrix becomes diagonalized in both DGSEM schemes.
Furthermore, the solution is directly available at the quadrature points of the volume integral
and does not have to be interpolated. Through tensor product basis functions, the derivatives
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Figure 2: Gaussian pulse. Density contours of P7 solution on a coarse grid at z = 0.5.

can be evaluated at the volume quadrature points using an one-dimensional interpolation. The
disadvantage of the LG-DGSEM formulation, compared to the LGL-DGSEM, is however that
boundary values have to be interpolated additionally, see Figures 1b and 1c.

2.4 Explicit time integration

An explicit three-stage third order accurate Runge-Kutta method is used to integrate Equa-
tion (10) in time. The scheme can be written as follows, cf. [6, 9],

q(1) = qn + ∆tRM(qn, tn), (12)

q(2) =
3

4
qn +

1

4

(
q(1) + ∆tRM((q(1), tn + ∆t)

)
,

qn+1 =
1

3
qn +

2

3

(
q(2) + ∆tRM((q(2), tn +

1

2
∆t)
)
,

with RM = M−1R. Applied to the DG system with elements of order p this method has been
shown to be linearly stable for a Courant number less than or equal to 1

2p+1
, cf. [7].

3 NUMERICAL RESULTS

3.1 Gaussian pulse in density

In order to verify the formal order of accuracy of the DG schemes in practice, we consider
a test case with an analytical solution. Therefore, a three-dimensional Gaussian density fluc-
tuation is initialized in a cuboid domain with straight sided edges, cf. [17]. The pressure and
velocity fields are uniform. The initial distribution is as follows,

q0 =


ρ0 + a exp

[
− ln

(
2 (x−x0)2

σ2

)]
ρ0u0

p0

γ − 1
+
ρ0||u0||2

2

 ,

where x0 denotes the initial peak coordinates, σ the width of the fluctuation and a the ampli-
tude. The analytical solution can obtained by moving the Gaussian pulse with the specified
convective velocity u0. In Figure 2, the density contours of the P7 solution are displayed for a
coarse hexahedral mesh. The convergence rates of the schemes are investigated by performing
computations on increasingly fine grids. To ensure that the finite temporal accuracy of the time
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integration method does not influence the results, a small constant time-step size has be used
in all simulations. In Figures 3a, 3b and 3c, the L2-errors of the outlined schemes are plotted
against the characteristic mesh size h, i.e. the element edge length. The black dash-dot lines
illustrate the formal convergence rateO(hp+1) of the DG method. It can be seen clearly that the
schemes achieve the expected order of convergence.

To compare the efficiency, the L2-error is plotted against the run time in Figure 3d. The solid,
dashed and dash-dot lines indicate the LG-DGSEM, the LGL-DGSEM and the DGNODAL
implementations, respectively. It can generally be observed that the higher-order schemes out-
perform the lower-order ones beyond a certain accuracy level. Looking at the P3 results, the
theoretical efficiency disadvantage of DGNODAL, compared to both DGSEM schemes, is also
clearly evident. Furthermore, the results show that the LG-DGSEM is the most efficient scheme
for the inspected approximation orders. Therefore, the higher accuracy of the Gaussian quadra-
ture seems to offset the cost of the additional interpolation required at the element boundaries.
However, as the efficiency advantage of the LG-DGSEM decreases with increasing approxima-
tion order, this implies that the benefit of the higher integration order decreases relative to the
cost of the additional interpolation.

3.2 Flow around a NACA0012 airfoil

To investigate the behaviour of the schemes for flows with stagnation points and the usage
of high-order boundaries, the inviscid flow around a NACA0012 airfoil is considered. The
freestream Mach number is set to M∞ = 0.3 and an incidence angle equal to α = 1.49◦ is
applied. The computations are performed on a coarse mesh containing 200 hexahedral elements
with a single element in the spanwise direction. At the inlet and outlet boundaries Riemann
boundary conditions are imposed. The profile geometry is represented by high-order elements
of order q = 3, which are generated using the process chain introduced in [9]. In Figure 4a,
the Mach contours of the P3 solution of the LG-DGSEM scheme are presented. Same results
can be obtained using the DGNODAL implementation. However, computations with LGL-
DGSEM turn out be unstable. These instabilities occur near the stagnation point of the leading
edge. In [2], Bassi et. al. identified the numerical under-integration of the linear terms as the
most critical reason for this phenomenon with the decoupling of the DOF at stagnation points
being only the trigger of the numerical instabilities at lower orders. By using LGL interpolation
and integration nodes with over-integration, i.e. M = N + 1 and, therefore, applying non-
collocation approximations, both possible reasons are nullified and a stable scheme for the test
case can be obtained. Nevertheless, without collocation, the efficiency of the scheme is heavily
impaired. Notice that this is just a brief test and has to be further investigated and optimized,
cf. for example [4]. In Figure 4b, the pressure coefficient distributions on the profile of the P3

solutions of DGNODAL, LG-DGSEM and the over-integrated LGL scheme, respectively, are
plotted. All schemes show very similar distributions.

In Figure 5a, the pressure coefficient distributions of various polynomial approximation or-
ders, computed with LG-DGSEM, are plotted. The mesh and the geometrical approximation
order is the same in all presented simulations, i.e. q = 3. It can be observed that the distributions
converge with increasing polynomial approximation order.

As a last observation, the pressure coefficient distribution of P5 LG-DGSEM is compared
with solutions obtained with the second-order accurate finite volume (FV) solver in TRACE,
cf. [5]. For this comparison two simulations have been performed with the FV solver: one
on the coarse DG mesh with 200 elements and a second on a fine mesh with 9800 elements.
The pressure coefficient distributions are illustrated in Figure 5b. As one can notice, there are
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(a) DGNODAL (b) LG-DGSEM

(c) LGL-DGSEM (d) CPU time behaviour

Figure 3: Gaussian pulse. Convergence rates and efficiency rates of the outlined schemes.

large differences between the FV solution on the coarse mesh and the other results. Moreover,
the distribution of the fine FV simulation and P5 LG-DGSEM are very similar to each other.
The slight differences are most likely due to the not fully converged mesh used for the fine FV
simulation. However, these results suggest that the proposed DG scheme has the potential of
computing highly accurate solutions.

4 CONCLUSIONS

In this paper, a standard nodal DG approach and two collocation-type nodal DG formula-
tions are compared in the context of the compressible, three-dimensional Euler equations. All
schemes considered show the optimal order of accuracy O(hp+1) for an approximation order
Pp, whereby both collocation schemes have huge advantages in efficiency compared to the stan-
dard nodal DG approach. Matching both collocation methods, LG-DGSEM seems to be more
efficient than LGL-DGSEM, although the difference between both schemes decreases with in-
creasing polynomial approximation order as the influence of the lower integration order of LGL
quadrature compared to the more efficient boundary value evaluation decreases. Furthermore,
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(a) LG-DGSEM (b) Pressure coefficient distribution on the profile with
q = 3 of P3 solutions

Figure 4: NACA0012 airfoil, M∞ = 0.3, α = 1.49◦, geometric approximation of order q =
3. Mach contours of the P3 solution with LG-DGSEM and pressure coefficient distributions
obtained with LG-DGSEM, DGNODAL and the over-integrated, non-collocated nodal LGL
formulation.

(a) LG-DGSEM, p-refinement, q = 3 (b) P5 LG-DGSEM and 2nd order accurate FV solver

Figure 5: NACA0012 airfoil, M∞ = 0.3, α = 1.49◦. Pressure coefficient distributions. (a)
LG-DGSEM with various polynomial approximation orders; (b) LG-DGSEM with P5 (solid
black line with squares), 2nd order accurate FV scheme computed on the DG mesh, i.e. 200
hexahedral elements (orange dash-dot line) and on a refined mesh containing 9800 elements
(green solid line), respectively.

the LGL-DGSEM, without applying over-integration or modal filter, becomes unstable at the
stagnation point in the presented steady flow around a NACA0012 airfoil, whereas LG-DGSEM
and DGNODAL remain stable. Hence, the LG-DGSEM is found to be the most efficient scheme
as it is more accurate and robust for the considered test cases. Finally, comparisons with an ex-
tensively validated FV solver indicate the DG method is able to provide accurate results.
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Abstract. In this paper we describe a three-dimensional Isogeometric BEM in the time do-
main based on the T-spline and Non Uniform Rational B-Splines (NURBS) basis to study the
free surface behavior. Traditionally, the Lagrange polynomials have been used to discretize the
geometry and the BEMs variables. The Lagrange basis are discontinues across the elements
although the physical variables are continuous. In dynamics problems with high mesh distor-
tions this approach can produce numerical instabilities that can be quickly propagated. This
problem could be overcome using T-spline or NURB basis. The main advantages of this ap-
proach are: (1) the control of the continuity and smoothness of the T-spline and NURBS basis,
which makes the model numerically stable without the need of artificial smooth techniques;(2)
the high order geometrical approximation by non-rational splines;(3) the refinement capabil-
ities without affecting the geometry and BEM’s variables; and (4) the direct integration with
computer aid geometrical design tools. We use the concept of the Bézier extraction operation
which provides an element point of view of the T-Spline and NURBS similar to the traditional
finite element. The boundary integral Equation is solved at each time step by the GMRES algo-
rithm and the time marching scheme is performed with a fourth-order Runge-Kutta method to
update the model. Additionally, the hydrodynamic force is calculated by an auxiliary boundary
equation. Some numerical benchmark examples are analysed to show the accuracy and the
stability of the method
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1 INTRODUCTION

In the last decades, numerical models have been developed for the prediction of the prop-
agation of gravity waves in the time domain. These models have been applied to simulated
tsunami generation and [1] overturning waves [2–4], to design breakwaters [5,6], to predict the
wave pressure impact on structures [7], or to study radiation and diffraction waves produced
by a wave-maker [8–11]. Nowadays, because of the increasing interest on the ocean renewable
energy, in which the generation systems are installed near-shore or off-shore, new applications
of such models are being used to study the fluid-structure interaction considering the effect of
the waves [12–16].

Early numerical studies on the non-linear wave propagation appeared in 1976 when Longuet-
Higguin and Cokelet [17] presented their bi-dimensional (2D) approach to simulate the transient
surface waves. Their approach was based on the potential flow theory and used the Boundary
Element Method (BEM) to solve the Laplace’s equation in conjunction with a Mixed Eulerian-
Lagrange (MEL) technique to update the free surface. Similar models were used to study a wide
variety of non-linear water waves problems [18–22], but it was the study of Dommermuth et
al. [23] that demonstrated the validity of the potential flow theory applied to the unsteady gravity
wave propagation. These authors presented a successful comparison between the numerical
results obtained by a 2D-BEM model and experimental results in a water tank. It is worth to
mention the studies reported by Grilli et al. [2, 24, 25] who developed an advanced approach
using 2D high order BEM. Later, Grilli et al. [3] and Guyenne and Grilli [4] extended the model
to three-dimensional (3D) geometries to analyse overturning waves over an arbitrary bottom.

Some full non-linear high-order 3D BEM models have been proposed to simulate the un-
steady interaction of the wave with a rigid body. An overview of such works can be found in
Tanizawa [26]. Among them, Lee et al. [27] studied the non-linear waves and the hydrodynamic
force generated by the movement of a submerged sphere. Bai and Taylor [10] investigated the
wave radiation produced by a moving submerged truncated cylinder and the wave diffraction
around a vertical cylinder [28]. They used an unstructured triangular mesh constructed with sec-
ond order Lagrange elements in order to obtain a good approximation of the geometry. Later,
these authors extended the model to flared floating structures [29]. Sung and Grilli [30] anal-
ysed the waves generated by an advancing surface disturbance. Following the Grilli’s works,
these authors used a structured mesh formed by isoparametric bi-cubic piecewise overlapping
elements that provided a local smoothness of the geometry and of the physical variables. More
recently, Hannan et al. [31, 32] studied the interactions between water waves and fully sub-
merged fixed or moving structures. In the same line, but limited to 2D, Dombre et al. [33]
extended the early work presented in [34] to study the dynamics of free fully submerged struc-
tures.

In addition, other models have been proposed to analyse more specific problems such as
the post-breaking phenomenon, violent wave impact against structures, large fluid movement
in confined space with steep non-linear waves or viscous and vortex force in the context of
floating structure. In such cases, the potential flow theory is not valid and other tools based on
Computational Fluid Dynamics (CFD) solvers to resolve the full Navier-Stokes equations or
Lattice Boltzmann method (LBM) have been used [35–40]. Most of these problems have been
formulated in 2D, and despite the increase of computational power, the full 3D models require
a considerable computational cost. Therefore, unless in such specific cases, the potential theory
together with BEM provides good results for non-linear gravity waves problems with reduced
computational time. Some advantages are: (1) the reduced dimensionality of the domain; (2)
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the ability to handle complex 3D geometric models; (3) and the Sommerfeld radiation condition
is implicitly satisfied in the Green function.

In the last two decades, the Non-Uniform Rational B-Spline (NURBS) representation has
been widely used in the marine industry through of the modern Computational Aid Design
(CAD) systems. NURBS exhibits multiple advantages, such as: (1) the quadratic surface can
be represented exactly; (2) advanced construction techniques and shape modification tools are
available (3) the smoothness of the basis can be managed via knot; and (4) h, p and k-refinement
can be applied without modifying the geometry. These characteristics, in combination with
other mathematical properties, give to NURBS the ability to handle complex geometries and
provide suitable basis for numerical analyses. In this line, the incorporation of NURBS into
the BEM to simulate wave-structure interaction has appeared recently in the literature (see for
example references [41–46]). These approaches use two different basis functions, one to rep-
resent the geometry and the other for physical variables. Hughes et al. [47, 48] and Cottrell et
al. [49,50] introduced the concept of the Isogeometrical Analysis (IGA) in the context of Finite
Element Method (FEM) that consists on approximate the full model by the same basis functions
used for the geometry. This concept, that has acquired enough maturity in recent years, allows
a direct link between the CAD geometry and the engineering analysis tools. Politis et al. [51]
extended the IGA to the BEM and applied it to a 2D external potential flow problem. Simpson
et al. [52] applied an IGA-BEM method to a 2D elastoestatic problem. More recently, Belibas-
sakis et al. [53] presented a 3D IGA-BEM model based on the Neumann-Kelvin problem to
study the ship wave resistance and showed a novel combination of a modern CAD system with
hydrodynamic solvers.

Although the NURBS is widely used by the CAD industry, it has some limitations associated
with the fact that only surfaces with four edges can be represented. This entails that complicated
geometries require many NURBS patches and the smoothness between patches is lost. The
T-spline technology has been introduced to overcome these limitations [54]. T-splines are a
generalization of the NURBS, in which several NURBS patches can be integrated into a unique
T-spline. Moreover, unlike the NURBS, T-splines allow local refinements and unstructured
meshes this makes their use attractive for the engineering analyses. In this direction, Scott et al.
[55] and Li et al. [56] formulated the analysis-suitable T-spline in which necessary mathematical
properties of the basis (as linear independence) are guaranteed to be used in IGA. However, the
implementation of T-spline in the IGA requires a more advanced development. Adopting the
idea of the Bézier extraction operation, presented by Borden et al. [57] and Scott et al. [58],
the T-spline and NURBS can be incorporated efficiently via modifying the shape functions in
the classical BEM and FEM. Thomas et al. [59] developed a generalization of such technique.
In recent years, the application of the T-spline in the IGA framework to different areas has
been developed [60–64]. In the context of IGA-BEM Scott et al. [58] extended the analysis-
suitable T-spline to unstructured meshes for elastostatic problems and developed a collocation
procedure based on a generalization of the Grenville abscissae. Simpson et al. [65] applied
this method to acoustic problems and demonstrated the higher accuracy in comparison to the
conventional Lagrange discretization due to the superior geometric approximation. Ginnis et al.
[66] exploited IGA-BEM based on the T-spline to analyse in the ship wave resistance problem
and Kostas et al. [67] used this method to optimize the hull shape.

Other alternatives to analysis-suitable T-spline are appearing in the literature. These alterna-
tives include hierarchical spline (B-splines, NURBS and T-spline), PHT-splines and LR-splines.
In addition to the limited works cited above, the interested reader can be found an overview of
the IGA [68].
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The literature review performed shows that the IGA-BEM based on the NURBS and analysis-
suitable T-spline reveals that is a very recent topic. The objective of this study is the application
of this method to solve non-linear unsteady gravity wave propagation and wave-structure inter-
action problems. We consider the full non-linear potential flow theory in combination with the
MEL procedure. In this work we exploit the advantages of the IGA-BEM based on T-spline and
NURBS basis in the framework of the Bézier extraction procedure. The high continuity of the
basis functions allows to deal with large mesh distortion [69] in the Lagrange formulation as
well as it prevents numerical instabilities as the saw-tooth effect that occurs when classical C0

piecewise basis are used. The Bézier extraction concept provides an easy and standard way to
introduce the NURBS and T-spline basis in the BEM. In addition, we employ direct integration
with CAD software [70] to make and handle 3D geometrical models.

2 FORMULATION OF THE PROBLEM

We consider a fluid volume Ω(t) defined by an arbitrary lateral boundary ΓW (t), composed
by one or several surfaces, a bottom surface ΓS(t) and a free surface ΓF (t) located at the top.
The fluid can move freely with the time (t) by the action of a submerged moving rigid body
ΓB(t) or by imposing a specific initial condition. In Fig. 1 we show a sketch of the domain and
the Cartesian coordinate adopted. The plane z = 0 corresponds to the free surface at rest.

Figure 1: Sketch of the problem

The flow is assumed to be incompressible, inviscid and irrotational fluid. Under these hy-
potheses, the movement of a fluid particle x(t) can be described in terms of a velocity potential
(φ(x, y, z, t)), such that the velocity of a fluid particle can be expressed as:

v = ∇φ (1)

The continuity equation in the a fluid domain Ω(t) can be reduced to a Laplace equation:

∇2φ = 0 in Ω(t) (2)

that is subjected to different boundary conditions on the surfaces Γ(t) that define the domain.
On the free surface ΓF (t), the kinematic and dynamic conditions in the Lagrangian descrip-
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tion are expressed as:

Dx
Dt

= ∇φ on ΓF (t) (3)

Dφ

Dt
= −gz +

1

2
∇φ ·∇φ− pa

ρ
on ΓF (t) (4)

respectively. In Eqs. (3-4) D/Dt denotes the material derivative, g is the gravity acceleration,
pa is the atmospheric pressure and ρ is the density of the fluid.

The instantaneous kinematic conditions on the lateral boundaries ΓW (t), the bottom ΓS(t)
and wetted body surfaces ΓB(t) are:

∂φ

∂n
= 0 on ΓW (t) and ΓS(t) (5)

∂φ

∂n
= vB · n on ΓB(t) (6)

with n the normal pointing out of fluid and vB the velocity vector of the rigid body. In the case
of a free floating body, the velocity should be computed using the second Newton’s law. Here
we consider the rigid body motion given by vB = ẋG + θ̇G × rB , where ẋG and θ̇G are the
velocity and rotation vectors referred to the center of mass, and rB = xB − xG is the location of
a body particle respect to the center of mass.

As it can be noted in the formulation expressed above, the lateral boundaries are considered
solid and impermeable. This means that waves are reflected and kept into the domain as it
would occur in a tank. In some cases treated in this study, we are interested on simulating
an infinite domain. For these cases, an artificial damping method is used to absorb the wave
energy near the boundaries [10, 71]. This is done by modifying the kinematic and dynamic
boundary conditions over a finite zone of the free surface, known as damping zone, located near
the boundaries as follows:

Dx
Dt

= ∇φ− µ(x)(x− x0) on ΓF (t) (7)

Dφ

Dt
= −gz +

1

2
∇φ ·∇φ− pa

ρ
− µ(x)(φ− φ0) on ΓF (t) (8)

where x0 and φ0 are reference values at the rest state, and µ(x) is the damping factor, which is
gradually increasing along the damping zone as:

µ(x) =

{
α
(
lD(x)
LD

)2

in damping zone
0 otherwise

(9)

In Eq. 9 α is the maximum damping factor, LD is the length of the zone and lD(x) is distance
between xD and the specific location considered (see Fig. 1).

3 FORMULATION OF THE METHOD

3.1 Geometry

Considering a 3D BEM model, the geometry of the problem is defined uniquely by the
boundary surfaces Γ of the fluid domain. In this paper we use NURBS and cubic T-spline
technology which are widely used in CAD applications. Particularly, we focus on 3D surfaces
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where the physical space is given by Γ ∈ <ds with ds = 3 and the parameter space can be
reduced to Γ̂ ∈ <dp with dp = 2.

A NURBS surface is described in terms of a control mesh and a valid pair of knot vectors.
A knot vector is denoted by Ξi = {ξi1, ξi2, ..., ξi1+ni+pi

}, where ξik ∈ < is the kth knot value,
and ni is the number of B-spline basis functions of degree pi in the i direction. Hereinafter, we
denote the multi-index p = {p1, p2}, n = {n1, n2} and the parametric coordinate ξ = {ξ1, ξ2}.
The control mesh is a set of vertices that forms a structured set of quadrilateral elements. Each
vertex has associated a control point PA ∈ <ds and a weight wA ∈ <, where A = 1, 2, ..., ncp is
the global index that denotes all vertices ncp =

∏dp
i=1 ni.

If we define the parametric space by Γ̂ = [ξ1
1 , ξ

1
1+n1+p1

]× [ξ2
1 , ξ

2
1+n2+p2

], the NURBS surface
that maps the parametric space to the physical space x : Γ̂→ Γ can be expressed as:

x(ξ) =

∑ncp

A=1 PAwANA(ξ)∑ncp

A=1 wANA(ξ)
=

ncp∑
A=1

PARA(ξ) ξ ∈ Γ̂ (10)

where NA(ξ) is the bivariate B-spline basis functions associated with the global vertex A and
RA(ξ) denotes the rational basis functions made by the weights and the B-spline basis functions.

Note that the NURBS is limited to surfaces defined by four edges. To represent more com-
plex geometries it is necessary to divide the models in different rectangular patches. This lim-
itation can be overcome naturally using the T-spline framework T-splines which allows the
existence of hanging and extraordinary points within the control mesh. For a cubic T-spline,
the mapping is expressed in a similar way as in Eq. (10). However, unlike NURBS, the
surface is locally parametrized by defining of a local pair of knot interval vectors ∆Ξi

A =
{∆ξiA,1,∆ξiA,2, ...,∆ξiA,1+pi

} with ∆ξi = ξi+1 − ξi, associated to each vertex A where the T-
spline basis functions is restricted to be non-null. This provides the capacity of making unstruc-
tured meshes and local refinements. For more details about the T-spline or NURBS theory, the
reader is refereed to [47, 55, 72–75].

3.2 A finite element structure

The idea is to discretize the physical domain with a series of independent elements xe(ξ̃)

defined over a parent domain ξ̃ ∈ Γ̃ [57]. Considering the compact support property of the
basis functions, there exists a number of them, ne, which are non-null over each element e.
Then, we can construct a matrix A = IEN(e, a), that maps the local basis functions number
a in the element e to the global function A. The local geometry, restricted to each element
domain, is defined as:

xe(ξ̃) =

∑ne

a=1 PeaweaN e
a(ξ̃)∑ne

a=1w
e
aN

e
a(ξ̃)

ξ̃ ∈ Γ̃ (11)

and in compact form it can be rewritten as:

xe(ξ̃) =
(Pe)TWeNe(ξ̃)

weNe(ξ̃)
ξ̃ ∈ Γ̃ (12)

where Pe = {Pea}ne
a=1 is a set of the control points, we = {W e

a}ne
a=1 is a vector of weights,

We = diag(we) is a diagonal matrix and Ne(ξ̃) = {N e
a(ξ̃)}ne

a=1 is a vector of the basis functions
relative to the element e.

It should be noted that the number of T-spline basis functions contained in each element can
be different, while in the case of NURBS are exactly equal to

∏dp
i=1(pi + 1). Furthermore, the
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T-spline and NURBS basis functions affect to different elements and their definition depends
on the topology. An elegant and efficient way to standardize the T-spline and NURBS basis
functions to the same set of compact basis functions restricted to a unique element is using the
Bézier extraction operator. This operator determines the Berstein basis combination (Bp(ξ̃) of
p degree) in which the T-spline and NURBS basis functions are decomposed.

Let us define a vector of the Berstein basis functions B(ξ̃) = {Ba,p(ξ̃)}nB
a=1 with nB =∏dp

i=1(pi + 1). The geometry, can be expressed as:

xe(ξ̃) =
(Pe)TWeCeBe(ξ̃)

weWeCeBe(ξ̃)
= (Pe)TRe(ξ̃) ξ̃ ∈ Γ̃ (13)

being Ce ∈ <ne×nB the matrix extractor operator corresponding to the element e that only
depends on the topology. This method provides a Bézier-element point of view such that the
geometry is decomposed in a set of Bézier elements without changing the properties of the
geometry. In addition, this method provides a equivalent treatment for T-spline and NURBS. A
detailed explanation of the Bézier extraction can be found in [57–59].

3.3 Isogeometric BEM

Given the domain Ω(t) delimited for a piecewise smooth boundary Γ(t), the external Bound-
ary Integral Equation (BIE) applied to the potential problem can be written as:

C(x0)φ(x0, t) =

∫
Γ(t)

[
G(x, x0)

∂φ(x, t)
∂n

]
dΓ−−

∫
Γ(t)

[
φ(x, t)

∂G(x, x0)

∂n

]
dΓ (14)

The symbol −
∫

denotes that the integral is evaluated in the Cauchy Principal Value sense, C(x0)
is the solid angle defined at the source point x0 ∈ Γ, that can be calculated directly with the
expression proposed by Mantic [76] or indirectly as described in Section 4.1, andG(x, x0) is the
fundamental solution of the Laplace’s problem. In the examples treated here, we consider three
possible orthogonal symmetric planes parallel to the Cartesian planes, such that the geometric
complexity and computational costs can be reduced. Using the method of the images, the Green
function can be expressed as:

G(x, x0) =
−1

4π

8∑
i=1

[
1

‖x− x′i‖

]
(15)

where: 

x′1 = x0

x′2 = {x0, y0, 2zsym − z0}
x′3 = {x0, 2ysym − y0, z0}
x′4 = {x0, 2ysym − y0, 2zsym − z0}
x′5 = {2xsym − x0, y0, z0}
x′6 = {2xsym − x0, y0, 2zsym − z0}
x′7 = {2xsym − x0, 2ysym − y0, z0}
x′8 = {2xsym − x0, 2ysym − y0, 2zsym − z0}

(16)

with x = xsym, y = ysym and z = zsym being the location of the symmetric planes.
Considering a Isogeometric Analysis (IGA), the variables introduced in the BIE (i.e. the

potential and the flux) are defined in a finite dimensional space given by the same basis functions
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than the geometry. This provides the BIE variables and the geometry the intrinsic properties of
the T-spline (or NURBS) as demonstrated in the previous section. The BIE variables can be
written as:

φe(ξ̃, t) = Re(ξ̃)Tφe(t) (17)
∂φe

∂n
(ξ̃, t) = qe(ξ̃, t) = Re(ξ̃)Tqe(t) (18)

where φe(t) = {φea(t)}ne
a=1 and qe(t) = {qea(t)}ne

a=1 are the temporal potential and temporal flux
vector corresponding to the local basis functions of each element, respectively.

Introducing Eqs. (17) and (13) into Eq. (14), and applying the result on a particular source
point xeii = Rei

i (ξ̃
ei
i )TPei contained in the element ei, we obtain the discrete IGA BIE:

C(xeii )(Rei
i )Tφei =

N∑
e=1

[∫
Γe(t)

[
G(xe, xeii )(Re)Tqe

] ∣∣∣∣∂xe

∂ξ̃

∣∣∣∣ dΓ(ξ̃)

−−
∫

Γe(t)

[
(Re)Tφe

∂G(xe, xeii )

∂n

] ∣∣∣∣∂xe

∂ξ̃

∣∣∣∣ dΓ(ξ̃)

]
(19)

In Eq. (19)
∣∣∣∂xe
∂ξ̃

∣∣∣ is the Jacobian determinant of the geometrical mapping, N is the number of
elements. For more details about the calculation of the Jacobian and the tangential derivatives,
the reader is referred to [57, 77]. Hereinafter, we drop the upper index ei and for convenience
we keep the subindex i to refer to the source point.

In this study we employ a collocational method, such that the BIE must be satisfied for a
set of i = 1, 2, ..., ncp specific source points known as collocation points. Particularly, we use
a generalization of the Greville abscissae as presented in Scott et al. [58], since it provides
accurate results in the context of the IGA BEM. However, we relax the continuity condition for
the position of control points such as these are allowed to lie in sharp edges and corners. As
demonstrated in [65], this relaxation does not reduce the accuracy of the results and it facilitates
the special treatment of the velocity in these locations, as shown in Section 4.3.

4 NUMERICAL IMPLEMENTATION

4.1 Numerical integration

It is well known that the first and second kernel of the BIE (see Eq. 14) contain a weak and
a strong singularity, respectively, when the point of evaluation approaches to the collocation
point. The integrals are defined, but they have to be suitably evaluated to avoid numerical
problems. This topic has been studied intensively and an overview of the available techniques
can be found in [78–87].

In this study we regularize the second kernel using the rigid body method [78], that provides
an indirect way to calculate the jump term as:

C(x0) = −−
∫

Γ(t)

∂G(x, x0)

∂n
dΓ (20)

Introducing Eq. 20 in Eq. 14 gives:∫
Γ(t)

[
(φ(x, t)− φ(x0, t))

∂G(x, x0)

∂n

]
dΓ =

∫
Γ(t)

[
G(x, x0)

∂φ(x, t)
∂n

]
dΓ (21)
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The weak singularity is solved using a local change of variables over the element containing the
collocation point, as proposed by Lachat and Watson [79]. Once regularized, these kernels can
be numerically evaluated by applying the quadrature rule to each element in the parent domain.
We use the standard Gauss-Legendre quadrature. Recently, new specific quadrature rules for
NURBS have been proposed to take into account the continuity of the basis functions [80].
In addition, if the collocation point is not located on the element but very close, the integrals
become nearly singular and their calculation can exhibit numerical instability. For this case, we
use an adaptive regular element subdivision on the parent domain.

4.2 System of equations

The discretization of the BIE in all collocation points leads to a set of ncp equations with 2ncp
variables corresponding to the potential and the flux at the control points. This set of equations
can be written compactly as,

(CT + H)φ = Gq (22)

in which, using the global notation, φ = {φ}ncp

A=1 is the potential vector, q = {q}ncp

A=1 is the flux
vector, and the matrices C, T , H and G ∈ <ncp×ncp are given by:

HiA = −
∫

Γ(t)

∂G(x, xi)
∂n

RAdΓ (23)

GiA =

∫
Γ(t)

G(x, xi)RAdΓ (24)

T iA = RA(xi) (25)

CiA = −δiA
ncp∑
k=1

Hik (26)

As it has been shown in Section 2, the problem under consideration consists in a mixed
boundary problem in which the potential, once integrated in time, is known on the free surface
and its flux on the rest of the boundaries. The discretization of the boundary conditions on the
set of collocation points yields,

R(xi)Tφ = φ̄(xi) ∀xi ∈ ΓF (t) (27)

R(xi)Tq = q̄(xi) ∀xi ∈ ΓW (t) ∪ ΓS(t) ∪ ΓB(t) (28)

We reorder the system of equations (22), (27) and (28) to obtain a linear system that can be
written as Ka = b, where a ∈ <2ncp is a vector containing the control variables, b ∈ <2ncp is a
vector with the boundary conditions at the collocation points and K ∈ <2ncp×2ncp is in general
a dense non-symmetric matrix. The minimum residual method (GMRES) have been found to
be efficient and suitable for solving the system of equations [10, 88]. In the present study the
tolerance has been set to 10−12. Moreover, to correctly model the physical variables at the sharp
edge and corners, we use the semi-discontinuous basis technique, as presented in [58], such that
the flux is allowed to be discontinuous while the potential is continuous.

4.3 Velocity field

Before the update of the free surface, we need to calculate the velocity field. Following the
idea of IGA, we use the same set of T-spline (or NURBS) basis functions to approximate the
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velocity which can be expressed as,

v(ξ̃, t) = R(ξ)Tv(t) (29)

where v(t) = {vA(t)}ncp

A=1 is the global velocity vector.
Using Eq. (1), the velocity of the fluid particle at any point of the domain can be determined

as a function of the potential, of the flux and of the Jacobian of the mapping: vx
vy
vz

 =

 ∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

nx ny nz

−1


∂φ
∂ξ1
∂φ
∂ξ2
∂φ
∂n

 (30)

In the case of a damping zone on the free surface, the terms on the right hand side have to be
corrected as shown in Eq. (7).

The sharp edges and corners where several surfaces meet need a special attention. Because
the derivatives of the potential and the flux are discontinuous at the intersections, the velocity
associated to each surface can be numerically different and also it can be incompatible with the
movement of each boundary. An usual procedure to overcome this problem is, first compute an
average velocity and second make a normal projection of the intersections on the new boundary
position during the time marching [10]. In this work we employ an alternative procedure that
consists on calculating an unique velocity compatible with the normal velocity of each surface.
We consider two possible cases as shown in Fig. 2. The first one (Fig. 2a) correspond to a
corner at the intersection of three surfaces. In this case, the velocity can be determined using
the follow equation:

(a) (b)

Figure 2: (a) Corner at the intersection of three surfaces and (b) edge defined by the intersection two surfaces.

 vx
vy
vz

 =

 n1
x n1

y n1
z

n2
x n2

y n2
z

n3
x n3

y n3
z

−1  ∂φ
∂n1

∂φ
∂n2

∂φ
∂n3

 (31)

where ni are the normals corresponding to each surface.
The second case (Fig. 2b) is found in the edge defined by the intersection of two surfaces.

The velocity can be computed as, vx
vy
vz

 =

 n1
x n1

y n1
z

n2
x n2

y n2
z

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

−1  ∂φ
∂n1

∂φ
∂n2

∂φ
∂ξ

 (32)
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In Eq. (32) ξ represents the common axis along the direction of the edge. Note that, since φ is
continuous, its derivative along the edge is unique.

Now, if we particularize Eq. (30) for the collocation points contained inside the surfaces, Eq.
(32) for the collocation points on the edges and Eq. (31) for the corners, we obtain a system of
equations (Eq. 33) that allows the determination of the global velocity vector.

v(t) = T −1V (33)

In Eq. (33) V = {vi(ξi, t)}
ncp

i=1 is the velocity vector at the collocations points and T is an
invertible and well conditioned matrix. Note that this matrix, that we denote as the interpolation
matrix, allows the mapping of the information of the control points to the collocation points. In
addition, it can be applied to any variable because we use an IGA.

Therefore, using this procedure, the velocity field is forced to be unique and compatible with
the normal movement of the body or the walls. Moreover, the intersections can be managed
directly through collocation points due to the interpolatory nature of the basis functions at the
sharp edges or corners. However, a slight separation of the intersections from the body or the
walls can appear during the time marching. The points on these intersections are relocated back
by the normal projection technique as proposed by Bai and Taylor [10].

4.4 Hydrodynamic pressure

The pressure force exerted by the fluid on the surface of a body can be computed as,

FB =

∫
ΓB(t)

pndΓ (34)

The pressure field at any point can be calculated using the Bernoulli equation:

p = −ρ
(
∂φ

∂t
+ gz +

1

2
∇φ ·∇φ

)
(35)

The last term on the right hand side of the Eq. 35 can be computed directly once the BIE
(14) is computed. The term ∂φ

∂t
, which is not known at this stage, can be approximated by

using temporal integration schemes. However, this can produce numerical errors. Here, we
use an auxiliary BIE to find a more accurate approach. As proposed by Dombre et al. [3, 33],
an analogous BIE for ψ = ∂φ/∂t can be considered. This auxiliary BIE does not increase
significantly the computational cost because the discretization is the same as in the main BIE.
Only, the boundary conditions have to be changed. The equations for the new variable ψ can be
written as,

∇2ψ = 0 in Ω(t) (36)

ψ = −gz +
1

2
∇φ ·∇φ− pa

ρ
on ΓF (t) (37)

∂ψ

∂n
= 0 on ΓW (t) and ΓS(t) (38)

∂ψ

∂n
=
d(vB · n)

dt
− (vB ·∇∇φ) · n−∇φ

dn
dt

on ΓB(t) (39)

where d
dt

denotes Lagrangian time derivative following the body motion.
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4.5 Time marching

As shown in the formulation of the problem, the position of the fluid particles and the phys-
ical variables, Eq. (3) and Eq. (4), depend on the time. Therefore, to obtain the temporal
evolution of the free surface, a temporal integration scheme is needed. In the context of strong
non-linear gravity waves, several schemes has been proposed [3,29,71,90]. In this study, we use
the the standard 4th order Runge Kutta method (RK4), which has been shown to be numerically
stable and accurate.

An important aspect of temporal integration is the adequate selection of the time step to
provide an accurate and stable temporal resolution. This depends on the integration scheme,
physical discretization and the particular problem under consideration. For periodic wave prob-
lems the time step is usually chosen as a fraction of the wave period such that the physical
phenomenon is represented accurately [71]. For a solitary wave, Grilli et al. [3] proposed an
adaptive time steeping method as a function of the spatial discretization and the Courant num-
ber, C (Eq. 40). They demonstrated that there exists an optimal Courant number such that the
error is minimum. We use this method, adapted to the IGA-BEM, and investigate about the
optimal value of the Courant number.

∆t = CLemin/
√
gh (40)

In Eq 40 Lemin is the minimum characteristic element size defined as the square root of its
surface and h is the depth of the bottom surface.

The steps for the time marching procedure are:

1. The initial geometrical model is defined and an initial boundary condition for the potential
(φ̄0) and the flux (q̄0) are specified on the free surface and on the rest of the surfaces,
respectively.

2. A time step (∆tn) is selected. This can be set dynamically at each step depending on the
type of problem.

3. The time integration is carried out to update the position of the fluid particles and potential
( φn+1, xn+1) from the actual time (tn) to the next time step (tn+1 = tn + ∆tn). Due to
the non-linear behaviour, several sub-steps are required.

3.1. The BIE equation (22) is calculated, and the boundary conditions (Eq. (27) and Eq.
(28)) are applied at the each sub-step (k). A linear system of equations is obtained
and solved by using the GMRES.

3.2. The velocity is computed using Eq. (30), Eq. (31) and Eq. (32).

3.3. The potential is updated to the next sub-step (φk+1
n+1) by applying the integration

scheme to the kinematic relation for the free surface (Eq. (3) or Eq. (8)).

3.4. The positions of the fluid particles are updated to the next sub-step (xk+1
n+1) using the

known velocity field. If fluid particles are separated from the walls or body surface,
these are relocated back to the boundaries using a normal projection.

3.5. The flux is computed in the next sub-step (qk+1
n+1) using the kinematic equations for

the walls, bottom surface, and body surface.

3.6. For the RK4 scheme, this process is repeated four times (k = 1 to k = 4).
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4. The fluid forces on the body are computed (Eq. (35) and Eq. (34)).

5. The volume and total energy is calculated in order to monitor their temporal evolution as,

V (t) =

∫
Γ(t)

z(λzn)dΓ (41)

e(t) =
ρg

2

∫
Γ(t)

z2(λzn) + φqdΓ (42)

where λz is the unit vertical vector.

6. Steps 2 to 5 are carried out iteratively until a maximum time is reached.

It should be noted that we are employing a collocational method and all variables are evalu-
ated at the collocations points. The values of the variables on the control points can be obtained
using the interpolation matrix.

5 NUMERICAL RESULTS

In this section we show some numerical examples to validate the present IGA-BEM for-
mulation. Each example is focused on a particular computational aspect of the method. The
first example is a train of small amplitude waves and we analyse the spatial convergence of the
IGA-BEM solution. In the next example we simulate a solitary wave to evaluate the temporal
stability and the accuracy of the method. In the third example we check the ability of the method
to handle wave-structure problems by simulating the waves generated in a tank.

All geometric models were construct using the T-spline plugin of Rhino [70]. Symmetric
boundary conditions were imposed at the symmetric planes of the problems. These planes have
the zero flux condition as the wall and are not discretized because symmetric conditions are
implicitly incorporated in the Green function. Moreover, unless otherwise is specified, the time
was made dimensionless using the time scale

√
h/g with h being the depth of water tank. The

dimensionless variables are denoted with ∗.

5.1 Periodic wave: convergence of the spatial discretization

The objective of this example is to analyse the convergence of the IGA-BEM method pre-
sented in this study. The test, which has analytical solution, consists on the propagation of
steady regular gravity waves over a horizontal bottom surface. For the case of small wave am-
plitude with respect to the depth and the wavelength λ, the dynamic boundary conditions on the
free surface (Eq. (4)) can be linearised and the exact solution to potential and the free surface
elevation (η) can be written as:

φ̄(x, z, t) =
Aω

k

cosh(k(z + h))

cosh(kh)
sin(kx− ωt) (43)

η̄ = A cos(kx− ωt) (44)

where A is the amplitude, h is the depth, ω is the wave frequency, and k = 2π/λ is the wave
number.

This is a 2D periodic problem where the gravity waves propagate along the x-direction and
they are invariant along y-direction. Since the presented method is formulated in 3D, we study
a representative domain (Ω) defined by its length x = [0, 2λ], depth z = [0,−λ] and width
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y = [0, 2λ]. The parameters are set by the relation between the amplitude and the wave number
kA = 0.2, and the dispersion equation ω2 = gk tanh(kh). Moreover, a specific time t̄ =
π/(2ω) is chosen such the flux across the lateral boundaries along the longitudinal direction are
zero.

Considering three symmetric planes at x = 2λ, y = 2λ and z = −λ, the geometry is
discretized with three NURBS surfaces. Note that these surfaces can be converted into a unique
T-spline patch. We set a number of Bézier elements that varies in a range from 8 to 24 regular
elements with an increment of 4 elements per wavelength along the longitudinal direction, while
along the other two directions we utilize 24 Bézier elements. All weights are set to unity.
Moreover, three different basis degree p = 2, 3, 4 are selected.

It should be noted that a sinusoidal function cannot be represented exactly by a rational
spline, and a geometrical error is expected. To minimize this error we use a L2-projection
method. Fig. 3a shows the L2-error between the elevation function and the free surface repre-
sentation. It can be seen that the geometrical discretization shows an optimal convergence (i.e.
convergence rate ≥ p+ 1). In the same line, given the potential function expressed in Eq. (43),
we use the L2-projection technique to apply the boundary conditions on the free surface. Its
convergence is also optimal as shown in Fig. 3b.
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Figure 3: a) L2-Error between the elevation function and the NURBS surface that represent the free surface in a
central domain [λ×λ]. b) L2-Error between the potential function and the boundary conditions applied on the free
surface in the same domain.

In Fig. 4 we show the point-wise error between the analytic and BEM solution (‖w − wh‖
with wh being the flux or potential) for three levels of refinement (8, 16 and 24 elements per
wavelength) and the standard cubic basis degree. The error on the Neumann boundaries is con-
siderable lower (one order of magnitude smaller) than on the Dirichlet boundary (free surface).
Moreover, small fluctuations are detected near the intersections of the free surface due to lateral
boundary effects that become negligible for a distance greater than λ/2.

Given the previous findings, we limit the converge study of the IGA-BEM solution to a
central region [λ × λ] of the free surface. The result is given in Fig. 5 where an optimal
convergence ratio is shown for all cases.

5.2 Solitary wave: temporal accuracy

Our next benchmark example consists on a solitary wave propagating over constant depth.
This example has been studied by Tanaka [91], who obtained a 2D full non-linear numerical
solution, and then used by other authors to validate their models [3,25,92]. In this subsection we
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(a) (b) (c)

Figure 4: Point-wise error between the analytic and numeric (IGA-BEM) solution in the center region [λ × λ] of
the free surface using cubic basis functions for three levels of refinement: a) 8 elements/λ, b) 16 elements/λ and c)
24 elements/λ.
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Figure 5: L2-Error between the analytical and numerical (IGA-BEM) solution for the central domain [λ × λ] on
the free surface.

analyse the temporal stability and accuracy of the present method by computing the numerical
errors along the time with respect to the steady solution presented by Dutykha and Clamond
[92].

We consider a wave of amplitude A = 0.6h, where h is the depth of the free surface at the
rest. The domain is given by a length x = [0, 20h], width y = [0, 2h] and depth z = [0,−h].
The wave is propagated along the longitudinal direction (x-direction) and at the initial stage the
crest is located at x = 7.5h.

As in the previous example, we set three symmetric planes at at x = 20h, y = 2h and
z = −h and the model is represented by three NURBS surfaces with weight unity. The free
surface elevation and the potential are established with the L2-projection method applied over
the solution proposed by Dutykha and Clamond [92]. We consider two longitudinal discretiza-
tions with element lengths of 0.25 and 0.5. The element length along y-direction is 0.5 and
0.25 along z-direction. We use quadratic and cubic NURBS basis functions. Moreover, sim-
ulations with an equivalent model using the standard quadratic Lagrangian basis functions has
been performed for comparison purposes.

We carried out some simulations for different Courant numbers (calculated based on the
length of the elements of the free surface along x-direction, given the invariance along y-
direction) in the range of 0.3 ≤ C ≤ 1.0. The instantaneous shape, energy and volume
of the wave have been monitored during a period of ∆t∗ = 4. We found that the wave is
kept stable during the simulation for all cases and the elements are concentrated around the
crest, as it can be seen in Fig.6. In Fig. 7 we show the average of the relative energy error
(εe = (e(t)− e(0))/e(0)), volume error (εv = (V (t)− V (0))/V (0)) and L2-error of the shape
normalized by h

√
AF with AF being the area of the free surface. It can be seen that the errors
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Figure 6: Time evolution of the wave shape. The translucent surface correpond to he initial condition and the solid
surface to t∗ = 4. Simulation with the fine mesh using cubic NURBS basis functions.

are mostly constant for the complete range of Courant numbers considered. This demonstrates
the robustness and stability of the scheme of integration. These errors decrease as the physical
discretization is finer and the basis degree increase.
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Figure 7: Relative energy (triangle), volumen (circle) and shape (square) errors for a cubic NURBS (continuouos
line), quadratic NURBS (dash line) and cuadratic Lagrangian (dotted line) model, for a) the case of a coarse mesh
and b) the fine mesh .

We also analysed the numerical stability of the same solitary wave propagating over a 1:15
slope that starts at the initial position of the crest (x = 7.5h). This configuration, that produces
the overturn of the wave, was studied in detail by Grilli et al. [2] using a 2D BEM mode. Later
these results have been used used to validate a 3D BEM formulation [3]. Here we consider the
numerical model described above for the fine mesh and a Courant number of 0.5. Additionally,
we discretize the bottom surface with the same number of uniform elements than the free surface
and we extend the length of domain up to x = 22h. The simulation is carried out until the wave
reaches the breaking point (at t∗BP = 7.78). At larger times the lateral mesh becomes very
distorted and the numerical errors increase very fast. In fact, for the quadratic Lagrange model,
numerical instabilities appear before that point (at t∗ = 7.11), as it can be observed in Fig. 8a,
and the simulation stops. This problem is associated with the lack of smoothness across the
elements that produces a sawtooth effect near the crest. However, the models using NURBS
are stable for t∗ <= 7.78 and the free surface remains smooth (see Fig. 8a and b). For the
cubic NURBS model the wave reaches a maximum height of 6.85 · 10−1h which is very close
to the reported in [2] (6.89 · 10−1h), while for the quadratic NURBS model is lightly lower
(6.81 · 10−1h) due to the lower degree of accuracy. In Fig. 9 we compare the central section of
the cubic NURBS model and the results presented by Grilli et al. [2] at the breaking time. The
relative errors for volume and energy are εv = 1.21 · 10−4 and εe = 7.62 · 10−5, respectively,
and the shape is in very good agreement with the data reported in [2].
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(a) (b) (c)

Figure 8: Wave shape for a) the Lagrangian model at t∗ = 7.11, when numerical inestabilities appear, and for b)
the quadratic and c) cubic NURBS models at the breaking time (at t∗ = 7.78.)
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Figure 9: Wave shape of the central section (at y = 1h) for the present cubic NURBS model (circles) and for the
results presented by Grilli et al. [2] using a 2D BEM model (continuous line) at the breaking time (t∗ = 7.78).

5.3 Wave in a cylindrical tank: Fluid-structure interaction

The objective of this section is to demonstrate the ability of the present formulation to re-
produce fluid-structure phenomenon considering the effect of the waves propagating on the free
surface of a tank.

We consider a cylindrical water tank with a solid cylindrical bar located at the center. The
radius of the tank is rT = 10h and the bar is rB = 1hwith h being the depth of the tank. Initially
a wave is established in the middle point between the the bar and the external wall of the tank.
The elevation of the wave is given by a Gaussian pulse z = Aexp[−(x − (rB + rT )/2)2 − y2]
with A = 0.1h being the amplitude of the wave. This problem has been solved by Chern et
al. [93] using a Pseudo-Spectral Matrix Element Method and then used by Bai and Taylor [10]
to validated their BEM formulation. More details about the problem can be found in [10, 93].

The geometry is discretized using three regular cubic NURBS surfaces that represent the
free surface, the bar and the external wall. Two symmetry planes are considered at y = 0 and
z = −h. We set 26 × 25 Bézier elements (radial × circumferential) for the free surface, and
6 × 25 (vertical × circumferential) for the body and external wall. There are a total of 1316
control points.

A comparison of the surface elevation adjacent to the body ([x = rB, y = 0]) and horizontal
force along the time between the present results and those reported by Chern et al. [93] is shown
in Fig. 10. The simulation is run until t∗ = 30 with a time step ∆t∗ = 0.1. As it can be seen,
the present results are in good agreement with those in [93] where we have used less DoF than
the required by [10] to obtain a close approximation (this is, 1316 vs 4208 DoF of the mesh b
in Fig. 3a).
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Figure 10: Time evolution of a) surface elevation adjacent to the body ([x = rB , y = 0]) and b) horizontal force
(Fx/(ρghr

2)). Present results: continuous line and results in [93]: dash line.

6 CONCLUSIONS

In this paper a 3D IGA-BEM formulation using T-spline and NURBS basis to study fully
non-linear gravity wave propagation in the time domain has been presented. The use of splines
basis provides a high geometrical approximation and also it can be directly integrated with
computer aid geometrical design tools. The properties of these basis within the BEM have been
analysed using numerical examples. First, an optimal spatial convergence of the method have
been demonstrated simulating a periodic wave. Following, the temporal stability and accuracy
have been analysed simulating the propagation of a solitary gravity wave. The numerical errors
are kept practically constant to a low order over a wide range of time steps demonstrating
the robustness of the time marching scheme. Moreover, the smoothness of the basis provides
stability to the method without the need of artificial smooth techniques, and it allows relatively
large distortion of elements. In addition, the ability of the method to the simulate the fluid-
structure interaction with fixed bodies has been shown simulating the waves field in a tank.

ACKNOWLEDGMENTS

This study has been supported by the Spanish Ministerio de Economı́a y Competitividad
under project CTQ2013-46799-C2-1-P.

REFERENCES

[1] S. T. Grilli, S. Vogelmann, P. Watts, Development of a 3d numerical wave tank for mod-
eling tsunami generation by underwater landslides, Engineering Analysis with Boundary
Elements 26 (4) (2002) 301–313.

[2] S. T. Grilli, I. A. Svendsen, R. Subramanya, Breaking criterion and characteristics for soli-
tary waves on slopes, Journal of Waterway, Port, Coastal and Ocean Engineering 123 (3)
(1997) 102–112.

[3] S. T. Grilli, P. Guyenne, F. Dias, A fully non-linear model for three-dimensional overturn-
ing waves over an arbitrary bottom, International Journal for Numerical Methods in Fluids
35 (7) (2001) 829–867.

7984



J. Maestre, J. Pallarés and I. Cuesta

[4] P. Guyenne, S. T. Grilli, Numerical study of three-dimensional overturning waves in shal-
low water, Journal of Fluid Mechanics 547 (2006) 361–388.

[5] N. Mizutani, A. M. Mostafa, K. Iwata, Nonlinear regular wave, submerged breakwater
and seabed dynamic interaction, Coastal Engineering 33 (2–3) (1998) 177–202.

[6] H. K. Johnson, T. V. Karambas, I. Avgeris, B. Zanuttigh, D. Gonzalez-Marco, I. Caceres,
Modelling of waves and currents around submerged breakwaters, Coastal Engineering
52 (10–11) (2005) 949–969.

[7] S. Sun, G. Wu, Fully nonlinear simulation for fluid/structure impact: A review, Journal of
Marine Science and Application 13 (3) (2014) 237–244.

[8] M. Au, C. Brebbia, Diffraction of water waves for vertical cylinders using boundary ele-
ments, Applied Mathematical Modelling 7 (2) (1983) 106–114.

[9] W. Koo, M. Kim, Numerical simulation of nonlinear wave and force generated by a wedge-
shape wave maker, Ocean Engineering 33 (8-9) (2006) 983–1006.

[10] W. Bai, R. Eatock Taylor, Higher-order boundary element simulation of fully nonlinear
wave radiation by oscillating vertical cylinders, Applied Ocean Research 28 (4) (2006)
247–265.
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Abstract. This paper describes the implementation of an hybrid OpenMP/MPI parallelization
strategy in a Discontinuous Galerkin solver used for DNS and LES or CAA computations, to
fruitfully exploit the modern massively parallel HPC facilities. It is usually believed that the
sheared memory view of OpenMP can easily increase the parallel efficiency of codes dealing
with multi–core clusters. The idea consists of running calculations on those machines restrict-
ing as much as possible the use of the MPI library to the communications between nodes and
exploiting the shared memory paradigm within a node. However, in practice, the achievement
of a real parallel performance gain is not straightforward. Moreover, as far as DG solvers are
concerned, almost nothing is reported in the current literature about the hybrid MPI/OpenMP
implementation. In this work a colouring algorithm has been employed for OpenMP. The re-
sulting hybrid strategy performs quite satisfactory, since generally it is more efficient of the pure
MPI implementation. However, the performances are heavily dependent on hardware platforms,
as well as on computational details such as the polynomial order of space discretization or the
number of computational elements. Several scalability tests have been performed, resulting in
the conclusion that the best performance can be achieved only with a proper choice of the num-
ber of MPI partition and OpenMP threads to be used within a single node. The reliability of
the method was here assessed by solving the Taylor Green vortex problem at Reynolds numbers
equal to 800 and 1600 and the Linear Euler acustic scattering from a rigid sphere.
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1 Introduction

In recent years Discontinuous Galerkin (DG) methods have emerged as one of the most
promising high–order discretization techniques for CFD. DG methods have been successfully
applied to the simulation of turbulent flows by solving the Reynolds averaged Navier–Stokes
(RANS) equations [1, 2, 3], and more recently, have also been found very well suited for the
Direct Numerical Simulation (DNS) as well as Implicit Large Eddy Simulation (ILES) of tur-
bulent flows [4, 5] due to their favourable dispersion and dissipation properties. One of the
advantages of DG methods is the use of a compact stencil, which is independent of the degree
of polynomial approximation and is thus well suited for massively parallel implementations.

The most common strategy for exploiting HPC facilities relies on the usage of the Message
Passing Interface (MPI) library, which is suitable for both the shared and distributed mem-
ory platforms. As an alternative, on shared memory systems only, the Open Multi-Processing
(OpenMP) paradigm can be used. While the former strategy is widely used in the CFD/CAA
community, almost nothing is reported in literature about the latter with reference to DG meth-
ods. To the authors’ knowledge only [6] partially deals with this subject. However, even if
OpenMP is confined to shared memory systems, some advantages of this parallelization strat-
egy over the MPI approach are clear. The first one is the small programming effort required
for the parallelization, at least partial, of an executable. In fact, it is possible to use few work–
sharing directives in the most time consuming section of the source code. With this approach a
relevant reduction of the execution time can be obtained almost immediately using the multi–
core CPUs. At a later stage the developer can eventually improve the parallel performance
considering additional pieces of source code, resulting in an incremental development. The
second theoretical advantage refers to the expected performance gain achievable on multi– and
many–core platforms.

Especially for modern HPC facilities, the use of the MPI library within a computing node can
be a not optimal choice when compared to a sheared memory-oriented parallelism that can dras-
tically reduce the cost of the inter-core communication. For this reason, a hybrid OpenMP/MPI
implementation is considered to improve the parallel efficiency of codes running on clusters
of multi–core nodes. However, several papers highlight that for a large number of cores the
achievement of high OpenMP parallel efficiencies is not trivial and it is not clear if all the ap-
plications and hardware platforms can effectively benefit from the hybrid approach [7]. There
are several reasons for those evidences: 1) the code should be fully parallelized even in the
OpenMP context; 2) the use of OpenMP implies overheads due to the initialization of parallel
and/or work–sharing regions; 3) the overheads due to the explicit and implicit synchronizations
of some of the work-sharing constructs; 4) the penalization due to false sharing of cache lines
between processors; 5) the reduction of memory bandwidth of cache coherent Non Uniform
Memory Access (ccNUMA) hardware used for the more recent and common multi–core chips.

Some of these arguments shed some light on the great influence of the hardware characteris-
tics on the parallel effectiveness. At this regards it is particularly relevant the number of NUMA
regions within a node and the resulting latency encountered when transferring data from the ran-
dom access memory (RAM) of one of these regions to the cache memory of the core owned by
a different region. It is worth mentioning that, to date, OpenMP does not supply any instruction
to force the placement of one data in a particular NUMA region. The use of a first touch policy
within the source code or, alternatively, the use of some operating system utilities/commands,
such as numactl, are viable shortcuts for reaching this objective. In fact, they are able only
partially to control the affinity of a data to a socket. Even if they can improve the OpenMP
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performance, the effectiveness of these approaches may change with the platform hardware and
its operating system. OpenMP efficiency is also strongly affected by the used compiler. The
parallelization of the OpenMP directives is demanded to the compiler, thus depending on how
efficiently it implements the standard. This is not the only compiler characteristic impacting
the parallel efficiency. Just switching on the OpenMP option the effectiveness of the compiler
optimizations may vary significantly mainly within a parallel loop. Additionally, the choiche of
a proper parallelization strategy based on OpenMP is the key ingredient of an efficient solver.
While with an MPI parallelization the use of a domain decomposition algorithm is almost un-
avoidable, the shared memory parallel programming context offers more opportunities. Here
we explore a strategy commonly referred as colouring approach, which retains all the OpenMP
advantages and it can be very simply introduced in a already existing MPI solver. Moreover, it
is also well suited to deal with hardware accelerators, an opportunity considered in the current
OpenMP 4.0 standard.

Despite DG discretization is particularly well suited for a pure MPI implementation, due
to the compactness of the discretization which produces a limited amount of information ex-
changed between grid partitions, the proposed hybrid OpenMP/MPI implementation perform
well as shown in the numerical tests reported in Section 6. However, the best performance
can be achieved only with a proper choice of the number of partitions to be inserted within
a single node. The advantages are mainly evident for large numbers of computational cores
within a computing node, when the pure MPI implementation suffers for high communications
overheads. Our results show at most a 38% gain in terms of parallel efficiency of the hybrid
OpenMP/MPI implementation with respect to the pure MPI strategy.

2 DG approximation of the Navier–Stokes equations

The complete set of Navier–Stokes equations can be written as:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui + pδji) =

∂τji
∂xj

, (2)

∂

∂t
(ρe0) +

∂

∂xj
(ρujh0) =

∂

∂xj
(uiτij − qj) , (3)

where the total energy e0 and total enthalpy h0, pressure p, the total stress tensor τij and the heat
flux vector qj are given by

e0 = e+ ukuk/2,

h0 = e0 + p/ρ,

p = (γ − 1)ρ (e0 − ukuk/2) ,

τij = 2µ

(
Sij −

1

3

∂uk
∂xk

δij

)
,

qj = − µ

Pr

∂h

∂xj
.
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Here e is the internal energy, h is the enthalpy, γ = cp/cv is the ratio of gas specific heats, Pr is
the molecular Prandtl number and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the mean strain-rate tensor.

The governing equations (1)–(3) can be written in the following compact form

∂u

∂t
+ ∇ · Fc(u) + ∇ · Fv(u,∇u) = 0, (4)

where u,∈ RM denote the vectors of the M conservative variables and source terms, Fc,Fv ∈
RM⊗RN denote the inviscid and viscous flux functions, respectively, andN is the space dimen-
sion. In order to obtain the weak formulation of the equations, one can multiply equation (4) by
an arbitrary test function φ and integrate over the domain Ω. Integrating by parts the divergence
terms, the weak form of equation (4) reads:∫

Ω

φ
∂u

∂t
dx−

∫
Ω

∇φ · F(u,∇u) dx +

∫
∂Ω

φF(u,∇u) · n dσ = 0, (5)

where F is the sum of the inviscid and viscous fluxes.
In order to build a DG discretization of equation (5), we consider an approximation Ωh

of Ω and a triangulation Th = {K} of Ωh, i.e., a set of ne non-overlapping elements K not
necessarily simplices. We denote with F i

h the set of internal element faces, with F b
h the set of

boundary element faces and with Fh = F i
h ∪ F b

h their union. We moreover set

Γi
h =

⋃
F∈F i

h

F, Γb
h =

⋃
F∈Fb

h

F, Γh = Γi
h ∪ Γb

h. (6)

The solution is approximated on Th as a piecewise polynomial function possibly discontinuous
on element interfaces, i.e., we assume the following space setting for each component uhi

=
uh1 , . . . , uhM

of the numerical solution uh:

uhi
∈ Φh

def
=
{
φh ∈ L2 (Ω) : φh|K ∈ Pk (K) ∀K ∈ Th

}
(7)

for some polynomial degree k ≥ 0, Pk (K) being the space of polynomials of global degree
at most k on the element K. To overcome the ill-conditioning of elemental mass matrices for
higher-order polynomials on high aspect ratio and curved elements we have choose a hierar-
chical and orthogonal set of shape functions defined in physical space. This set is obtained by
using a modified Gram-Schmidt procedure, considering as a starting point a set of monomial
functions of the same degree k.

Following Brezzi et al. [8], it is also convenient to introduce the jump and average trace
operators, which on a generic internal face F ∈ F i

h are defined as:

[[q]]
def
= q+n+ + q−n−, {·} def

=
(·)+ + (·)−

2
, (8)

where q denotes a generic scalar quantity and the average operator applies to scalars and vector
quantities. By definition, [[q]] is a vector quantity. These definitions can be suitably extended to
faces intersecting ∂Ω accounting for the weak imposition of boundary conditions.
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The discrete counterpart of equation (5) for a generic element K ∈ Th then reads:∫
K

φh
∂uh

∂t
dx−

∫
K

∇hφh · F(uh,∇huh) dx +

∫
∂K

φhF(uh|K ,∇huh|K) · n dσ = 0. (9)

Due to the discontinuous functional approximation, the flux function in the third term of equa-
tion (9) is not uniquely defined. Moreover, a consistent and stable discretization of viscous
fluxes must account for the effect of interface discontinuities on the gradient ∇huh. Uniqueness
of interface fluxes is achieved by introducing a suitably defined numerical flux which couples
the solution in adjacent elements and ensures local conservation.

The inviscid F̂c and viscous F̂v parts of the numerical flux are treated independently. For
the former, exact Riemann flux, approximate Roe flux–difference splitting or the approximate
Van Leer flux-difference splitting as modified by Hänel [9] were used, while for the viscous
flux discretization we adopted the BR2 scheme presented in[10, 11] and theoretically analyzed
in [8, 12] (where it is referred to as BRMPS). The numerical viscous flux is given by:

F̂v

(
u±h , (∇huh + ηF rF ([[uh]]))±

) def
= {Fv (uh,∇huh + ηF rF ([[uh]]))}, (10)

where, according to [8, 12], the penalty factor ηF must be greater than the number of faces of
the elements. A very interesting feature of the outlined viscous flux discretization scheme is
that it couples only the unknowns already coupled by the inviscid flux discretization scheme,
irrespective of the degree of polynomial approximation of the solution.

Summing equation (9) over the elements and accounting for the above considerations, we
obtain the DG formulation of problem (5), which then requires to find uh1 , . . . , uhM

∈ Φh such
that:∫

Ωh

φh
∂uh

∂t
dx−

∫
Ωh

∇hφh · (Fc (uh) + Fv (uh,∇huh + r ([[uh]]))) dx

+

∫
Γh

[[φh]] ·
(
F̂c

(
u±h
)

+ F̂v

(
u±h , (∇huh + ηF rF ([[uh]]))±

))
dσ = 0,

(11)

for all φh ∈ Φh. The lifting operator rF , which is assumed to act on the jumps of uh component-
wise, is defined as the solution of the following problem:∫

Ωh

φh · rF (v) dx = −
∫
F

{φh} · v dσ,∀φh ∈ [Φh]N , v ∈
[
L1 (e)

]N
, (12)

and the function r is related to rF by the equation:

r(v)
def
=
∑
F∈Fh

rF (v). (13)

At the boundary of the domain, the numerical flux function appearing in equation (11) must
be consistent with the boundary conditions of the problem. In practice, this is accomplished by
properly defining a boundary state which accounts for the boundary data and, together with the
internal state, allows to compute the numerical fluxes and the lifting operator on the portion Γb

h

of the boundary Γh, see [10, 13].
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3 Time integration

Numerical integration of Eq. (11) by means of suitable Gauss quadrature rules leads to a
system of nonlinear ODEs that can be written as

M
dU

dt
+ R (U) = 0, (14)

where U is the vector of the degrees of freedom, R (U) is the residuals vector, and M is the
block diagonal mass matrix, which is, in our implementation, equal to the identity matrix due to
the choice of orthonormalized shape functions. It is worth noting that the degrees of freedoms
(DOFs) are related to the solution via the relation

uh,i = Ui,jφj

for all the elements K ∈ Th, where i = 1, ...,m, being m the number of conservative variables,
and j = 1, ..., NK

dof , being NK
dof the number of degrees of freedom on the element K. In

this paper we integrate in time the system (14) by using the explicit three stage, order three,
strong stability–preserving Runge–Kutta scheme of Gottlieb et al. [14]. The time integration of
Eq. (14) by means of this low-storage scheme can be written as

U(0) = Un,

U(i) =
i−1∑
k=0

(
αi,kU

(k) + ∆tβi,kR(U(k))
)
, i = 1, ..., s (15)

Un+1 = U(s).

where s is the number of stages, αi,k, βi,k are the coefficients of the scheme [14]. For the sake
of convenience, the dependence of the residuals vector by the independent variables U will be
omitted in the rest of the paper, moreover R will be splitted into the volumes, RK with K ∈ Th,
and the surfaces, RF with F ∈ Fh, contributions. The entries of RK and RF can be found by
comparison with Eq. (11).

4 Parallel OpenMP implementation

In order to implement the hybrid parallelization strategy, based upon the MPI and OpenMP
paradigms, it is first convenient to study an efficient and practical use of the OpenMP within
our existing algorithm. This can be done by considering the main characteristics of a modal DG
framework. In fact, it is typically convenient to arrange by elements the main arrays U and R
and to perform the evaluation of the latter vector according to two main loops. In the first one,
performed over the ne elements, all the volume contributions, RK , are evaluated. In the second,
performed over the faces F ∈ Fh, the numerical fluxes contributions RF are handled. Again,
the latter operation can be splitted in two parts: the first covers all the internal faces, RFi

with
F ∈ F i

h, the second takes in account all the boundaries faces, RFb
with F ∈ F b

h.
In the contest of OpenMP, the evaluation of the RK contribution to the residual vector can be

safely parallelized, for example using the Fortran !$OMP do work sharing directive, without
data race condition problems. The use of this straightforward strategy is not possible for the
loop over the faces, since for each face the residuals of both the K− and K+ elements are
simultaneously updated. Performing this loop in parallel require special attention, since two
threads may overwrite, at once, the same memory location of the R vector.
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Figure 1: Representation of the colouring algorithm

To solve this issue we adopted a colouring strategy. The colouring procedure is based on a
naive and simple to code algorithm similar to that used in [15, 16]. Here the main difference is
that the colouring procedure is applied to the faces and not to the elements. The key idea is that
one element cannot have more than one face of the same colour. The algorithm is described as
follows: when the face F has to be coloured, one must check the already assigned colours of the
neighbour faces. The scope is to assign a different colour to F . If there is not a available colour
in the current palette the number of colours is increased by one and this new colour is used
for F . Note that the neighbour faces correspond to all the faces owned by the two elements
connected by the face F . Once that all the faces are coloured the contribution of numerical
fluxes to the residual vector can be performed in parallel for all the faces of the same colour,
ensuring that the data race condition is avoided. In Figure 1 the RFi

components due to the
four red internal faces can be summed concurrently (in the figure this operation is represented
by an arrow) to the R global vector, the same consideration holds true for the two black and for
the two blue faces. It is clear that this algorithm is not optimized to obtain a group of colours
characterized by an equal number of faces. However, it is fast and it performs well as will be
shown in the remaining of the paper. Although it is evident that the colours distribution change
with the initial ordering of the faces, as well as with grid reordering, we verified that the overall
parallel performance is not significantly affected. Moreover, as pointed out in [16], it is possible
to add a a posteriori phase to the algorithm to balance the number of faces for each colour.

Regarding the boundary conditions, the same algorithm is used. Indeed, in this circumstance,
almost all the boundary faces have the same colour and only if one element owns more than one
boundary face a further colour is needed. Even in this case all the boundary of the same colour
can be safely evaluated in parallel, see Figure 1 in which the boundaries are depicted with
dashed lines. Finally, it is worth mentioning that the selected algorithm is well suited to deal
with accelerators, such as GPUs [16] or the Xeon Phi coprocessors in its offload mode, and that
it can be easily implemented in the context of an MPI solver resulting in a hybrid strategy.

Hybrid MPI/OpenMP implementation can also take advantage of possibly non–blocking
communications which are overlapped with computations. More in detail, the RFi

evaluation
and the exchange of messages required for updating the ghost elements DOFs are simultane-
ously performed. Note that for the diffusive volume terms our DG implementation uses the
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BR2 scheme [1], which relies on the lifting operator r ([[uh]]), that depends on the jumps of
the variables at the faces. It is more computationally convenient to evaluate these jumps in the
loop over the faces and to compute only later the RK residual contributions. Due to this imple-
mentation it is clearly not possible to overlap the last task with the MPI communications in the
viscous case.

5 The Taylor Green Vortex problem

The Taylor Green Vortex problem is a canonical test case used for studying the mechanism
upon which large scales vortices interact with each other producing turbulence decay and thus
allowing the study of the energy dissipation processes. Since the geometry, consisting on a
periodic cube with sides of length 2πL, is considerably simple, it has been used extensively
for testing the effects of numerical methods, grid resolution and turbulence modelling strategies
like DNS and LES on the simulation of turbulent flows.

The problem consists of a cubic volume of fluid that contains a smooth initial distribution of
vorticity, given by the following initial field

u = V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
, (16)

v = −V0 cos
(x
L

)
sin
( y
L

)
cos
( z
L

)
, (17)

w = 0, (18)
ρ = ρ0, (19)

p = p0 +
1

16

(
cos
(x
L

)
+ cos

( y
L

))(
cos
( z
L

)
+ 2
)
. (20)

The initial vortices start interacting together, resulting in a transition to turbulence and in the
following turbulence decay for sufficiently high Reynolds numbers. As there is no forcing term
on the equations, the flow field will slowly dissipate all the initial kinetic energy and it will
come to rest.

The flow conditions are those used in [17]. The Mach number M is equal to 0.1, resulting
in a nearly–incompressible simulation, and the Prandtl number is 0.72. Two different Reynolds
numbers have been employed, Re = ρ0V0L/µ = 800 and 1600. Both the Reynolds numbers
are high enough to make the solution unstable and to produce a nearly isotropic turbulent decay.
In order to monitor the development of the turbulent flow over time, two quantities have been
employed. The first one is the time derivative of the kinetic energy defined as

k
def
=

1

16π3ρ0

∫
Ω

ρukuk dx. (21)

The second one is the theoretical dissipation rate, evaluated as

ε
def
=

2µ

8π3ρ0

∫
Ω

∂ui
∂xj

∂ui
∂xj

dx. (22)

Theoretically, in the incompressible limit, the following relation holds

− dk

dt
= ε.

The numerical difference between these two quantities is thus somehow connected to the quality
of the simulation and its numerical dissipation.
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The solutions were advanced with a time step size corresponding to a maximum CFL num-
ber of 0.1, for both the P4 and the P5 approximations, or to 0.08, for P6. These values results
in negligible time discretization errors. Figure 2 shows the kinetic energy time derivative and
the theoretical dissipation rate for the case at Re = 800 for different grid sizes as well as for
different order of polynomial approximation. The figure highlights the increment in resolution
obtained increasing both the order of accuracy of the solution and the grid dimension. It is clear
from Figure 2(a) that the evolution in time t, non–dimensionalized by V0 and L, of the kinetic
energy time derivative is not captured by the coarsest grid (83 elements). However, the solu-
tions are in good agreement with the reference DNS data (Brachet et al. [18], digitalized from
Ref. [17]) starting from the 163 P6 case to the more resolved cases. Only a small difference can
be noted between the P5 and the P6 solutions obtained on the finest grid. The largest value of
this difference is close to t = 8.5, when the dissipation reaches its maximum value. Figure 2(b)
depicts the theoretical dissipation rate evaluated via Eq.(22). In this case, slightly larger differ-
ences between ε and reference data can be observed. This result suggests that for the most of
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Figure 2: Taylor Green vortex at Re = 800. Results for different numerical resolutions.

the cases our computations under–resolve the turbulent scales. It is worth noting that the 163

P6 and 323 P4 solutions produce nearly the same numerical dissipation over time. However,
they are obtained with a quite large difference of DOFs, which are approximately equal to 703

for the former and to 1053 for the latter case. This behaviour shows the benefits of using an
increased order of polynomial approximation instead of refining the mesh. Figure 3 shows the
λ2 = −1.5 iso–surface plot as reported in Ref. [17]. The resulting flow field resembles the
reference one, and as the calculation is refined the turbulent structures become more clean and
defined, especially for the 323 P6 case.

The effects of using different convective fluxes can be observed in Figure 4. The Roe ap-
proximate solver produces a negligible difference with respect to the exact Riemann solver,
that exploits the numerical iterative procedure of Gottlieb et al. [19]. The Hänel flux splitting
is revealed to be less accurate, as the theoretical dissipation rate, see Figure 4(b), is lower if
compared to the reference data and to the results obtained with the other fluxes.

Figure 5 shows the results for Re = 1600, with the same grids and polynomial orders of
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(a) 163 P6 (b) 323 P4 (c) 323 P6

Figure 3: Taylor–Green vortex at Re = 800. λ2 = −1.5 iso–surface at t = 8.5.

t

d
k
/d

t

0 2 4 6 8 10
0

0.005

0.01

0.015
P

4
 Riemann

P
4
 Roe

P
4
 Hanel

Ref.

(a) Kinetic energy k time derivative

t
0 2 4 6 8 10

0

0.005

0.01

0.015
P

4
 Riemann

P
4
 Roe

P
4
 Hanel

Ref.

(b) Theoretical dissipation rate, ε

Figure 4: Taylor Green vortex at Re = 800. Results for different numerical fluxes at 323 P4.

the previous test case. Since the smallest scales of turbulent decreases in size as the Reynolds
number increases, the turbulence is clearly under–resolved. Figure 5(a) shows that the kinetic
energy dissipation rate, for the test case 323 P6, is in good agreement with the reference DNS
5123 pseudo–spectral solution [20]. Concerning the theoretical dissipation rate, see Figure 5(b),
the difference from the reference data grows, showing that the numerical setup for this Reynolds
number filters part of the smallest turbulent scales. Moreover, the use of the Roe numerical flux,
employed for the finest test case, produces negligible difference in dissipation from the exact
Riemann solver, but reduces of about 20% the computational time, see Table 1.

Figure 6 shows the λ2 = −1.5 iso–surface coloured by the vorticity magnitude. It appears
clear that as the resolution is increased the turbulent structures become smaller and more de-
fined.

Figure 7 reports the sum − dk/ dt − ε, which ideally should be zero. The differences from
zero are related to the lack of numerical resolution. For both the solutions presented, as the
polynomial order as well as the grid resolution increases, the imbalance tends to diminish. A
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Figure 5: Taylor Green vortex at Re = 1600. Results for different numerical resolutions. Exact Riemann solver
employed unless otherwise stated.

(a) 163 P6 (b) 323 P4 (c) 323 P6

Figure 6: Taylor–Green vortex at Re = 1600. λ2 = −1.5 iso–surface at t = 10. Iso–surface coloured by
non–dimensional vorticity magnitude.
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Figure 7: Taylor Green vortex. −ε− dk/ dt imbalance as function of non–dimensional time.

peak value around t = 8.5 is produced, due to the fact that the dissipation reaches a maximum
and thus the turbulent scales produced in the flow field are the smallest. This clearly stresses
the resolution properties of the schemes. As shown in Figure 7(a), the 323 P6 computation
is able to solve almost completely the turbulent structures at Re = 800. However, the same
numerical discretization filters the smallest scales as the Reynolds is increased, see Figure 7(b).
Additionally, the Roe flux–difference splitting confirms its benefits over the exact Riemann
solver, not affecting the numerical resolution but increasing the efficiency of the computation.

Case DOFs ∆ε1 ∆ε2 Work Units
83 P6 353 3.2 · 10−1 7.3 · 10−1 3.0 · 103

163 P6 703 8.8 · 10−2 3.5 · 10−1 5.3 · 104

323 P4 1053 2.1 · 10−1 2.9 · 10−1 2.1 · 105

323 P5 1223 6.1 · 10−2 2.3 · 10−1 5.6 · 105

323 P6 1403 2.5 · 10−2 1.5 · 10−1 9.3 · 105

323 P6, Roe 1403 2.5 · 10−2 1.5 · 10−1 7.7 · 105

Table 1: Taylor Green vortex at Re = 1600. Error norms and work units for the hybrid MPI/OpenMP solver

The computational efforts, expressed in work units as defined in the 1st International Work-
shop on High-Order CFD Methods [21], for theRe = 1600 case are reported in Table 1 together
with the following error norms

∆ε1 =
||dk/dt− (dk/dt)ref ||L∞

max (−(dk/dt)ref )
,

∆ε2 =
|| − ε− dk/dt||L∞
max(−(dk/dt)ref )

,

where the subscript ref indicates the Van Ress et al. [20] solution taken as reference in that
Workshop also. It is worth noting that, since we use a polynomial approximation of global
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degree at most of k for a Pk solution, our finest simulation contains only about 1403 DOFs
for each of the physical variable. Clearly the theoretical order of convergence is not reached,
but it should be considered that the reported results are somehow under–resolved. Anyway, if
compared with the results reported in [21], our data appear satisfactory both in terms of solution
quality and computational efficiency.

6 Parallel performance of the Hybrid OpenMP/MPI

To obtain reliable indications about the parallel behaviour of the proposed hybrid imple-
mentation we report benchmarks results obtained on different multi–core machines, including
clusters. The characteristics of each of these computational platforms (hardware and software)
have a relevant influence on the parallel performance, thus a brief description of these architec-
ture will precede each numerical experiment. If not otherwise stated, the TGV problem has been
considered here to asses the performances of the the different parallel programming paradigms.
The timings were measured advancing the solution for 10 Runge–Kutta steps, which ensures
the independence of the results from eventual delay due to possible background processes of the
operative system. We chose three different grid sizes, 83, 163 and 323 as well as three different
polynomial orders, P1, P3 and P5.

To get indications reflecting the real usage of the solver, they were used in a completely
standard configuration, for instance even the ‖R‖L2 and ‖R‖L∞ values were written to a file
at the beginning of each time step. This task is performed exclusively to allow the user control
of the computation status and it is not strictly required by the DG method. To maximize the
performance we used in all the cases the OpenMP capability to bind threads to cores, while,
as regards the threads affinity, generally we observed that the way in which the threads are
assigned to the cores is not particularly relevant. The only exception is when a core pair of the
AMD 6276 Opteron CPU is employed, as it will be explained in the next sections.

For the sake of compactness in this paper we will use the following notation to describe a
parallel setting of a particular simulation: an hybrid MPI/OpenMP computation will be denoted
by a triple of positive integers (n,m, t), where n is the number of the employed nodes, m
represents the MPI processes running in each of this node and t reflects the OpenMP threads
activated for each of the MPI process. Clearly the product of these three numbers indicates
the total number of threads used, and usually this number is at most equal to the number of
the available cores. For a pure MPI run we will use only the couple of numbers (n,m), since
obviously t is always equal to 1. Finally, note that in this work all the computational grids were
partitioned by means of the Metis [22] library.

6.1 Results on the 1st multi–core platform

The first system consists of two nodes interconnected by a point to point Infiniband net-
work. Each node is equipped with two AMD Opteron 6276 processors, each with sixteen cores
working at a fixed 2.3 GHz frequency, since the application power management (APM) of the
operating system, Linux Debian 3.2.32-1, was disabled. Moreover even the AMD Turbo Core
technology was also turned off since it can dynamically increase up to 3.2 GHz the operating
frequency of a core. It is obvious that using these technologies it is not possible to produce
reliable and repeatable indications about the OpenMP scalability.

The sixteen cores AMD 6276 CPU is a multi–chip module built by two eight–cores CPU
die placed on a single die package (interconnected by a HyperTransport link). Each CPU in the
package has its own memory controller, which is shared by its 8 cores. This configuration leads
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to 4 NUMA regions, see [23]. Another relevant aspect of this hardware platform is that the cores
are organized in core pair, sharing some components such as the floating point units and the L2
cache. Due to this hardware configuration the maximum overall performance of one socket
should be not equal to sixteen times the single core performance. Indeed, we have verified that
the usage of both the cores of the pair, running two identical instances of the serial DG solver, a
significant performance reduction can be observed. In fact, the execution time becomes larger,
approximately equal to 1.25 times the standard wall clock time. Moreover, this performance
degradation is not visible if cores of different pairs are employed in the computation. As a
direct consequence, the theoretical maximum speed–up achievable using all the 32 cores is
limited to about 25.6, corresponding to an apparent parallel efficiency of 80%.

The code is compiled, and optimized following the AMD indications found in [24], with
the Open64 compiler suite. We verified that this choice, on our specific hardware, increases
extensively the performances of our solver. The MVAPICH-2.2.1 library, which is an open
source library suited for Infiniband networks and derived from the MPICH-3 library, was used
for MPI communications. This library uses shared memory channels for the inter–node commu-
nications, thus the message passing between cores sharing the memory is faster then message
passing between nodes.

MPI processes
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P
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Figure 8: Hybrid MPI/OpenMP solver, Speed–up using 32 AMD Opteron 6276 cores on the 323 grid.

According to Guo et al. [25] we firstly investigated how the performance is affected by the
subdivision of MPI partitions and OpenMP threads. In fact, those authors observed a signifi-
cant performance reduction using 16 or 32 threads on a node of the HECToR Cray XE6 system,
which consists of exactly two AMD Opteron 6276 CPUs. In their work this behaviour was
ascribed to the latencies and the bandwidth reduction related to the presence of the 4 NUMA
regions. To obtain a better parallel efficiency the authors used 4 MPI process per node and 8
OpenMP threads per each MPI process. The same idea has been applied to determine which
configuration is able to exploit better performance of the hybrid code. For the 323 grid a com-
parison between different strategies have been performed and reported in Figure 8. It should be
noted that the tests have been done using only the half of the cores available on the two nodes
to avoid the use of the core pairs and the intrinsic computational penalty. It can be seen clearly
that the Speed–Up grows when the total MPI partitions are between 4 and 16 reaching a plateau.
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This observation is confirmed both for the P3 case and for the P5 as well. From those evidences
it can be deduced that the optimal use of the hybrid algorithm coincides with having a number
of MPI partitions comparable to the number of NUMA regions. The strong scalability curves of
Figure 9 has been obtained following this approach. Table 2 reports the resulting optimal subdi-
vision between the OpenMP threads and MPI processes, using the compact notation introduced
above.

Cores MPI Hybrid MPI/OpenMP
1 (1, 1) (1, 1, 1)
2 (1, 2) (1, 2, 1)
4 (1, 4) (1, 4, 1)
8 (1, 8) (1, 4, 2)
16 (1, 16) (1, 4, 4)
32 (2, 16) (2, 4, 4)
64 (2, 32) (2, 4, 8)

Table 2: Subdivision between MPI processes and OpenMP threads on the AMD Opteron 6276 system

In Figure 9 the Speed–Up trends for the three different grids, increasing the polynomial
order from P1 to P5, are reported. Figure 9(a), which is related to the coarsest (83) grid, clearly
highlights that the parallel efficiency raises with the polynomial order and that it reaches the
ideal scaling at P5. Note that the pure MPI implementation is more efficient at the lower order
approximation, but at P5 the hybrid version is slightly more convenient.
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Figure 9: Performance of the hybrid MPI/OpenMP and the pure MPI solvers on four AMD Opteron 6276 CPUs
for different grid sizes and P1, P3 and P5.

For the 163 grid, see 9(b), the pure MPI code version performs considerably well, especially
at P5 when the Speed–Up curve is considerably above the ideal scaling law. This behaviour is
partially due to the poor performance of the serial version of the code in dealing with a large
memory allocation which is typical of the high–order approximation. The hybrid curve is in this
circumstance always above the one obtained using only the MPI parallelization strategy. Those
observations and trends are confirmed increasing the grid size, see Figure 9(c). The results show
that at highest computational loads the Speed–Up can be highly super–linear. It is worth noting
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that with the 323 grid, and 5th degree of polynomial approximation, the amount of memory
required exceeds 29Gb, and probably the TLB misses (Translation Lookaside Buffer) reduces
the application performance. In this case the HugePage support in the Linux kernel should
be enabled to limit this overhead. Moreover, the memory requirement exceeds the available
RAM of each NUMA region (the total amount of RAM for each node is 64Gb) and the memory
bandwidth and latency could be the bottlenecks. Just by partitioning the execution in two MPI
processes, since every process deals with the half of the total memory, the parallel efficiency
is highly super–linear, producing an efficiency of 120%. With 4 MPI processes the efficiency
still raises up to 170%, and this gain is affecting all the other numerical tests. However only the
hybrid implementation is able to retain this performance advantage (over the serial application)
when 32 and 64 cores are used. Using all the cores this behaviour results in a performance
improvement of about the 38%.

6.2 Results on the 2nd multi–core platform

The second cluster is built by 8 nodes interconnected by a gibabit ethernet that takes advan-
tage of a single switch. This network serves also the Network File System (NFS). Due to these
hardware characteristics the system is expected to scale poorly, especially when all the available
64 cores are involved in a parallel job. Each node consists of two NUMA regions equipped by a
quad–cores AMD Opteron 2378 CPUs, running at 2.4 GHz. The operating system is the same
employed in the first machine, while in this circumstance we used the GNU compilers 4.7.2 and
the MPICH–3.1.4 library.

The strong scalability curves are reported in Figure 10. Three different grid sizes, 83, 163

and 323 have been employed for the tests. For the first two grids, P1, P3 and P5 polynomial
approximations have been used, while for the finest one, the scalability has been performed
only using P1 and P3 polynomial approximation, due to the limitation in memory for running the
scalar version of the P5 case. Despite this platform produced quite counterintuitive results (the
Speed–Up does not always increase raising the polynomial order and/or the grid size) the hybrid
OpenMP/MPI algorithm produces a remarkable improvement of the performance over the pure
MPI approach, especially as the order of polynomial approximation grows. The advantage is
above 15% as far as cases of considerable computational load are considered. Also with this
machine super–linear scalability effects, due to cache efficiency, can be observed in some cases,
mainly at 83 P3. The experimented subdivision between MPI partitions and OpenMP threads is
reported in Table 3.

Cores MPI Hybrid MPI/OpenMP
1 (1, 1) (1, 1, 1)
2 (1, 2) (1, 2, 1)
4 (1, 4) (1, 2, 2)
8 (1, 8) (1, 2, 4)
16 (2, 8) (2, 2, 4)
32 (4, 8) (4, 2, 4)
64 (8, 8) (8, 2, 4)

Table 3: Subdivision between MPI processes and OpenMP threads on the AMD Opteron 2378 system
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Figure 10: Performance of the hybrid MPI/OpenMP and the pure MPI solvers on sixteen AMD Opteron 2378
CPUs for different grid sizes and P1, P3 and P5.

6.3 Results on the BlueGene/Q platform

Although we still have to verify the performances of the hybrid Navier–Stokes DG solver
on large HPC facilities, we already experimented the CAA (Computational Aeroacoustics) ver-
sion of the current code on the IBM–BlueGene/Q platform. This machine, named FERMI, is
available at CINECA, and it is characterized by a massively parallel architecture consisting of
10.240 nodes using sixteen cores of the IBM PowerPC A2 1.6 GHz chip. These cores are able
to execute concurrently up to 4 hardware threads and better performance is expected exploiting
more than one thread for each core. Each node is characterized by a symmetric access to all the
memory, resulting in a Uniform Memory Access (UMA) machine.

The Problem 4 of Category 1 of Second Computational Aeroacoustics (CAA) Workshop on
Benchmark Problems [26] was considered as test case. The problem of the acoustic scatter
from a rigid sphere has been computed by solving the Linearized Euler Equations (LEE). The
acoustic perturbations are generated by a spatially distributed acoustic source and the mean
flow is at rest. The computational domain has been discretized using an unstructured grid
consisting of 89628 hexahedral elements and the solution was computed using a P3 polynomial
approximation.

Figure 11(a) shows that the computed acoustic directivity pattern compares very favourably
with the analytical solution derived by Morris, [27], while Figure 11(b) presents a couple of
pictures of the p and u3 contours that help clarifying the solution structure.

As regards the parallel performance, Figure 12(a) reports the measured Speed-Up. Using
up to 16 threads, equal to the number of the cores, for each node we obtain good parallel
performances adopting both the approaches. The hybrid MPI/OpenMP performs slightly better,
for example its parallel efficiency at 4096 cores, corresponding to 22 elements per core, is 83.5%
against the 77.2% pure MPI value. However, with 64 threads for node, 4 hardware threads for
each core, the parallel performance of the hybrid code strongly outperforms that of the pure MPI
one. This gain increases, at a fixed grid size, raising the number of the employed computational
nodes. When using 16384 threads each process deals with an average value of 5.5 grid cells.

Figure 12(b) shows that the relative wall clock time, with respect to the best configuration,
using all the 64 hardware threads and varying the combination between the MPI processes and
the OpenMP threads. It comes clear that with this UMA platform the better performance is
obtained by using a small number of MPI process for each node.
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Figure 11: Acoustic scattering from a sphere. P3 solution, Ref. solution is from [28], exact solution is due to
Morris [27]
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tations on the BlueGene/Q platform.
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7 Conclusions

In this work we have considered two possibly OpenMP and hybrid OpenMP/MPI implemen-
tations of a high–order DG solver for CFD and CAA applications. OpenMP-based parallelism
for shared memory architectures is usually expected to give large gains when compared to pure
MPI implementations on massively parallel computers. Although the coding effort required by
an OpenMP parallelization is quite small, obtaining an efficient solver and clear usage guide-
lines (optimal load repartition among OpenMP and MPI processes) is not trivial and many
issues has to be considered. Here, a satisfactory parallel efficiency has been obtained using a
simple yet effective colouring algorithm, tested on several problems.

Numerical experiments indicate that our OpenMP/MPI implementation improves the parallel
efficiency of the solver on clusters made of largely multi-core nodes when compared to pure
MPI, although special care is required with NUMA architectures to prevent the reduction of the
memory bandwidth of CPUs. This suggest that an optimal usage of the computational resources
can be obtained by placing a single MPI process in each NUMA region.
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Abstract. In this paper we studied different techniques to stabilize the numerical solution of the
LWR traffic flow equation when using a modal version of the high order discontinuous Galerkin
finite element method (DGFEM). Based on a set of three standard examples of traffic flow initial
conditions, we compared four shock capturing strategies to control Gibbs phenomenon around
discontinuous solutions of the car density conserved variable: (1) generalized slope limiter
(ΠN ), (2) hierarchical slope limiter, (3) sub-cell shock capturing with elementwise constant
artificial viscosity, and (4) sub-cell shock capturing with local C0 artificial viscosity. Although
such stabilizing techniques were well documented for aerospace applications, our experiments
revealed important features which are worth mentioning. Firstly, regardless of the polynomial
order of the approximation, both limiters required quite refined meshes to achieve sharp shock
resolution. Secondly, shock capturing based on elementwise constant viscosity produced small
traveling spikes over the solution profiles destroying the locality of the method and resulting
in excessive smearing of the discontinuities. Finally, C0 artificial viscosity addition produced
sharp shock resolutions with very coarse meshes and high order polynomial approximations.
Overall, this technique demonstrated the better cost-benefit in terms of computational effort
(number of degrees of freedom) to achieve a certain level of shock resolution.
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1 INTRODUCTION

The LWR nonlinear equation due to Lighthill, Witham and Richards [1, 2, 3] is one of the
most popular PDEs used to describe traffic flow problems. The model dynamics is written as a
scalar hyperbolic conservation law in one dimension [4]. The LWR mathematical formulation
assumes a monotonically decreasing relation between speed and density of cars leading to a
strictly concave form of the convective flux associated to the hyperbolic PDE [5].

In this paper we discretized the LWR equation using the modal version of the high order
discontinuous Galerkin method (DGM) [6]. The Lax-Friedrichs’ numerical flux was chosen to
approximate the solution of Riemman problems at element boundaries within the mesh. Details
of the DGM numerical formulation implemented in this work can be found in [7]. As the
unsteady LWR scalar equation naturally develops shocks along time integration and we wanted
to use high order approximations, we were specially interested in shock capturing strategies to
stabilize solutions and get rid of undesirable wiggles.

The main goal of the present study is to implement and compare different shock capturing
strategies to stabilize the numerical solution of the LWR equation and establish the most suited
way to deal with Gibbs phenomenon in terms of shock resolution and computational efficiency.
Four well known stabilizing techniques were considered to accomplish this task: (1) generalized
slope limiter (ΠN ) [8]; (2) hierarchical slope limiter [9]; (3) sub-cell shock capturing with
elementwise constant artificial viscosity [11] and (4) sub-cell shock capturing with local C0

artificial viscosity [12]. We used the LDG numerical flux [10, 8] to discretize the 2nd order
diffusive operator associated to the viscous formulation of the LWR equation when considering
the stabilization techniques based on artificial viscosity. A five step 4th order strong stability
preserving Runge-Kutta explicit integrator [8] was used to evolve the semi-discrete formulation
in time. Numerical examples for typical traffic flow situations were chosen to validate and
compare the algorithmic performance. The following examples, with three different initial
conditions, were evaluated: (a) red light at road exit; (b) green light at half way of road length
and (c) exponential car density at road entrance.

This paper is organized as follows: section 2 introduces the LWR equation and its corre-
sponding boundary value problem, section 3 briefly describes the DGFEM discretization used to
numerically approximate the solution of the LWR boundary value problem, section 4 discusses
the four different shock capturing strategies considered to stabilize the numerical solutions, sec-
tion 5 discusses the results obtained when comparing all shock capturing mechanisms through
a set of three typical examples of traffic flow initial conditions, finally, section 6 summarizes the
main results and point out the strongest and weakest features of each shock capturing scheme
used in our numerical experiments.

2 THE LWR TRAFFIC FLOW MODEL

To model traffic flow behavior along single roads the present study considers the Lighthill-
Whitham-Richards (LWR) equation which can be written as follows,

∂u(x, t)

∂t
+
∂f(u(x, t))

∂x
= 0, x ∈ [L,R] = Ω, (1)

with appropriate initial and boundary conditions given by

u(x, 0) = u0(x), u(L, t) = uL(t), u(R, t) = uR(t), (2)

where u(x, t) is the traffic density, x ∈ R and t ∈ R+ are the space and time coordinates and Ω
is the problem domain, respectively.
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The main conserved quantity in the LWR model is the traffic density which is defined as the
average number of cars per unit length of road. A fundamental assumption of this model is the
car speed as a monotonically decreasing function of the car density. Such hypothesis, postulated
in [5], implies the following quadratic flux function f : R→ R in equation 1,

f(u) = Vmax

(
u− u2

umax

)
(3)

where the constants Vmax and umax stand for maximum car speed and maximum car density,
respectively.

Fig. 1 depicts the monotonically decreasing car speed as a function of car density as well as
the resulting quadratic flux described in equation 3.

Figure 1: Monotonically decreasing car speed and quadratic traffic flux.

3 DGFEM DISCRETIZATION

Following a standard DGFEM approach, we rewrite the boundary value problem defined
by equations 1 and 2 in a weak form valid for each grid element separately, and enforce a
global approximate solution choosing a numerical flux at each element boundary to establish
communication among elements.

We consider an approximation of Ω by K non-overlapping elements, x ∈ [xkl , x
k
r ] = Ωk and

for each grid element Ωk, we start forming the local residual as follows

x ∈ Ωk : Rh(x, t) =
∂ukh
∂t

+
∂fk

h

∂x
, (4)

where ukh and fk
h are numerical approximations to the traffic density, u(x, t), and the physical

flux, f(u), respectively. We also assume that both functions can be expressed as polynomials
of order N

x ∈ Ωk : ukh(x, t) =
N+1∑
j=1

ûkj (t)ψk
j (x), (5)

fk
h (uh(x, t)) =

N+1∑
j=1

f̂k
j (t)ψk

j (x). (6)
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where ψk
j (x) are polynomial basis functions belonging to a finite dimensional vector space

V k
h = span

{
ψk
j (Ωk)

}N+1

j=1
. In this work, we considered the Legendre polynomials, Pn(ξ),

ξ ∈ [−1, 1], as our set of modal basis functions defined over the reference element Ω̂, i.e.,
ψk
j (x(ξ)) = Pn(ξ).

Returning to equation 4, we require the residual to be orthogonal to every basis function
ψk
j (x) belonging to the vector space V k

h ,∫
Ωk

Rh(x, t)ψk
i (x) dx = 0, 1 ≤ i ≤ N + 1, (7)

After integrating by parts the expression 7, we arrive at the local weak form of the LWR
equation ∫

Ωk

(
∂ukh
∂t

ψk
i (x)− fk

h (ukh)
dψk

i (x)

dx

)
dx = −

[
ψk
i (x)f ∗

]xk
r

xk
l

, 1 ≤ i ≤ N + 1. (8)

At this point it is necessary to define the numerical flux f ∗. We chose the Lax-Friedrichs flux
because of its simplicity and effectiveness.

After some tedious algebra manipulation, we can write the matrix form of our local semi-
discrete weak statement [7]

hk

2
M d

dt
ûk

h − ST f̂
k

h =

[
−1

2
Fk+1

l

(
f̂

k+1

h − Cûk+1
h

)
− 1

2
Fk

r

(
f̂

k

h + Cûk
h

)
+

1

2
Fk−1

r

(
f̂

k−1

h + Cûk−1
h

)
+

1

2
Fk

l

(
f̂

k

h − Cûk
h

)]
, (9)

whereM and S are the local mass and stiffness matrices, respectively. The term hk/2 is the
jacobian associated to the affine transformation between the reference element Ω̂ = [−1, 1] and
each grid element k-th. In the above formula we also identify the Lift matrices, F , associated to
the boundaries of each element. These matrices are defined as the dyadic products of elemental
basis functions evaluated at the boundaries of the standard element Ω̂ [7]. The vector variables
ûk

h and f̂
k

h account for the degrees of freedom of the model and their meaning were already
described by expressions 5 and 6. It is worth mentioning that we locally recover f̂k

i coefficients,
in terms of the approximate solution ukh, through a L2 projection as detailed in [7]. Finally, the
variable C is defined as the upper bound of the characteristic wave speed of the approximate
numerical solution.

When dealing with artificial viscosity based techniques for shock capturing, we must write
a viscous version of the original LWR equation. Thus, we add a second order diffusive term at
the right hand side of equation 1 and define an auxiliary variable q to keep the DG approach of
the numerical approximation which contains only first order derivatives. The resulting system
of first order equations is now given as,

∂u

∂t
+

∂

∂x
(f(u)−

√
εq) = 0 (10)

q =
√
ε
∂u

∂x
,

where ε(x) is the artificial viscosity function.
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As before, we assume that the auxiliary variable q which approximates the derivative of the
conserved variable u(x, t) can be written as a polynomial expansion of order N as follows,

qkh(x, t) =
N+1∑
j=1

q̂kj (t)ψk
j (x). (11)

Following the same discretization steps applied to the original equation we arrive at the local
weak statement of the modified traffic flow problem,∫

Ωk

∂ukh
dt

ψk
i (x) dx−

∫
Ωk

fk
h (ukh)

dψk
i (x)

dx
dx+

∫
Ωk

√
ε qkh(ukh)

dψk
i (x)

dx
dx = −

[
ψk
i (x)f ∗

]xk
r

xk
l

+
[
ψk
i (x)(

√
εqkh)∗

]xk
r

xk
l

, 1 ≤ i ≤ N + 1, (12)∫
Ωk

qkh(ukh)ψk
i (x) dx+

∫
Ωk

ukh
d

dx
(
√
εψk

i (x)) dx =
[
ψk
i (x)(

√
εukh)∗

]xk
r

xk
l

, 1 ≤ i ≤ N + 1. (13)

The numerical fluxes (
√
εq)∗ and (

√
εu)∗ above, corresponding to the second order dissipative

operator, were approximated by the Local Discontinuous Galerkin (LDG) flux which shows
optimal convergence rates [10].

After choosing Lax-Friedrichs and LDG as our numerical fluxes and upon substitution of
the polynomial expansions for ukh, fk

h , qkh in equations 12 and 13, we can write the final matrix
form of the semi-discrete DGFEM approximation of the viscous version of LWR traffic flow
equation,

hk

2
M d

dt
ûk

h − ST f̂
k

h + (S
√
ε)T q̂k

h =

[
− 1

2
Fk+1

l

(
f̂

k+1

h − Cûk+1
h

)
− 1

2
Fk

r

(
f̂

k

h + Cûk
h

)
+

1

2
Fk−1

r

(
f̂

k−1

h + Cûk−1
h

)
+

1

2
Fk

l

(
f̂

k

h − Cûk
h

)
+
√
ε(xkr) Fk

r q̂
k
h −

√
ε(xk−1

r ) Fk−1
r q̂k−1

h

]
, (14)

hk

2
Mq̂k

h + (S̃
√
ε)T ûk

h = +
1

2

(√
ε(xk+1

l ) +
√
ε(xkr)

)
Fk+1

l ûk+1
h

− 1

2

(√
ε(xk−1

r ) +
√
ε(xkl )

)
Fk

l û
k
h, (15)

where q̂k
h is the vector of degrees of freedom associated to the auxiliary variable q and S

√
ε and

S̃
√
ε are modified stiffness matrices which take into account the artificial viscosity function ε(x)

[7]. It is worth noting that as f̂
k

h, the vector q̂k
h is also locally computed.

4 SHOCK CAPTURING SCHEMES

As a typical nonlinear PDE based on a conservation law, the LWR equation naturally devel-
ops shocks along time integration. When high order discretization techniques such as DGFEM
are used to approximate solutions for this equation, stabilizing schemes are necessary to control
undesired oscillations in the vicinity of discontinuities due to the Gibbs phenomenon.

We chose two standard approaches to stabilize the numerical solutions computed by the
high order DGFEM solver: limiters and sub-cell shock capturing based on artificial viscosity
adding. In the first case we implemented a generalized slope limiter (ΠN ) as described in [8] and
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a hierarchical slope limiter proposed in [9]. In the second approach we implemented the sub-
cell shock capturing scheme as originally proposed in [11] which uses elementwise constant
artificial viscosity. We also implemented a modified version of this strategy which considers
the artificial viscosity as a C0 function [12]. The details of the mathematical formulation of the
sub-cell shock capturing scheme applied to the LWR traffic flow equation can be found in [7].

5 NUMERICAL EXPERIMENTS

The LWR equation was approximated considering three different initial conditions: (1) Red
light at the exit of the road; (2) Green light at half way of the road length and (3) Exponen-
tial density configuration at the entrance of the road. All examples were set with appropriate
Dirichlet or Neumann boundary conditions. For each of these initial conditions the numerical
solutions were marched in time for 2.0 minutes.

The five step 4th order strong stability preserving Runge-Kutta explicit integrator suggested
in [8] was used to evolve the semi-discrete formulation (equations 9 and 14) in time.

We organized our experiments in four subsections: the first subsection presents the overall
aspect of the numerical solution of the LWR equation for the three initial conditions considered.
For each initial condition, we depict the behavior of the four shock capturing schemes we have
chosen. In the second subsection, we compare the performance of both limiters, namely, hi-
erarchical slope limiter (HL) and generalized slope limiter (GSL) in isolation when increasing
the number of grid elements (K) and polynomial order (N ). Likewise, in the third subsection,
we compare the performance of both stabilizing schemes based on artificial viscosity, namely,
sub-cell shock capturing with elementwise constant artificial viscosity (Constant-SCSC) and
sub-cell shock capturing with local C0 artificial viscosity (C0-SCSC) in isolation in terms of
the number of grid elements and polynomial order. Finally, we compare the two schemes show-
ing the better performance (limiter vs. artificial viscosity) in terms of the number of degrees of
freedom (NDOF) to achieve an acceptable resolution of the jump discontinuity.

5.1 Traffic initial condition examples

5.1.1 Red light

For the red light example a traffic light indicating stop is positioned at the end of a road
of 4 Km long. Cars accumulate quickly near the road exit, where we have the maximum
allowed density of cars between 3 and 4Km. There is an incoming traffic of 50% the maximum
allowed density (u = 0.5umax). This is a standard benchmark problem for the LWR equation
because it has an exact solution given by a moving shock wave traveling backward from the
exit to the entrance of the road. The remaining parameters of the problem were defined as
follows: car speed limit Vmax = 1.0 Km/min, and maximum car density per unit length
umax = 10.0 cars/Km. Non homogeneous Dirichlet boundary conditions were set at both
limits of the road with the following values: u(x = 0) = 5.0 cars/Km, at left, and, u(x =
4) = 10.0 cars/Km, at right.

The red light problem solutions were stabilized with the four shock capturing schemes de-
scribed in section 4. For limiters, we set the number of grid elements and the polynomial order
of approximation as K = 500 and N = 2. In the case of artificial viscosity based schemes, we
set K = 20 and N = 10. Figure 2 depicts the 3D graphics of the numerical solution of this
problem for the four shock capturing schemes.

We can clearly notice that the Constant-SCSC scheme produced many spikes over the nu-
merical solution in different time instants. The other schemes showed very similar solution
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Figure 2: Red Light problem solutions using the four shock capturing schemes.

profiles.

5.1.2 Green light

For the green light example we suppose there exists a traffic light at the half way of a road
of 4 Km long where cars are bumper-to-bumper. The traffic density decreases linearly to zero
towards the entrance of the road and ahead of the traffic light the road is clear. When the traffic
light turns green cars start to move and the car density profile changes its original triangular
shape. The car density profile starts with a jump discontinuity at the wave front and develops
a shock at the rear of the propagating wave. For this example, the following setup parameters
were used: car speed limit Vmax = 1.0 Km/min, and maximum car density per unit length
umax = 10.0 cars/Km. Homogeneous Dirichlet boundary conditions were set at both limits
of the road.

As in the previous example, numerical solutions were stabilized with the four shock captur-
ing schemes and the following configurations were set for limiters: K = 500 and N = 2, and
for artificial viscosity based schemes: K = 20 and N = 10. Figure 3 depicts the 3D graphics
of the numerical solution of the green light problem for the four shock capturing schemes.

8019



A.C. Nogueira Jr., J.L.S. Almeida and C.A.C. Silva

Figure 3: Green light problem solutions using the four shock capturing schemes.

The same observations made for the numerical solutions of the red light example are valid
for the green light problem.

5.1.3 Exponential

The exponential problem is a rather theoretical case study for the LWR equation which shows
a shock formation from a smooth initial profile. In this case, there is no traffic light along a
road of 2π Km long. The remaining setup parameters were chosen as follows: speed limit
Vmax = 1.0 Km/min, and maximum traffic density umax = 1.0 car/Km. At left, it was set
a non homogeneous time dependent Dirichlet boundary condition given as u(t) = 1.0 + sin(t)
and, at right, a homogeneous Neumann boundary condition was prescribed.

Again, we can see in the figure 4 the 3D graphics representing the numerical solution of the
exponential problem for the four shock capturing schemes. In this case, again, the following
setups were fixed for limiters: K = 500 and N = 2, and for artificial viscosity based schemes:
K = 20 and N = 10.

For this example, all the numerical solutions revealed very similar shapes and no spikes
could be noticed over the solution stabilized by the Constant-SCSC scheme, at least visually.
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Figure 4: Exponential problem solutions using the four shock capturing schemes.

5.2 Limiters

This subsection aims at checking the ability of each slope limiter, HL and GSL, to improve
shock resolution when increasing the number of grid elements, K, and the polynomial order,
N . For each traffic problem studied, these quantities were fixed as K = 100, 170, 240, 300, and
N = 2, 6, 10. Snapshots of the shock formation were taken at t = 1.2, 1.0, 0.7 min for the red
light, green light and exponential examples, respectively.
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5.2.1 Hierarchical slope limiter

Figures 5, 6 and 7 depicts the performance of the hierarchical slope limiter as a function of
the total number of grid elements and the polynomial order of approximation.

Figure 5: Red Light initial condition.
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Figure 6: Green Light initial condition.

Figure 7: Exponential initial condition.

We can observe from these graphics that the increase of grid elements rather than the poly-
nomial order is the best way to improve the shock resolution. Moreover, we can note that the
greater the polynomial order the worse the overall quality of the solutions for a fixed number of
elements.
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5.2.2 Generalized slope limiter

Figures 8, 9 and 10 depicts the performance of the generalized slope limiter (ΠN ) as a func-
tion of the total number of grid elements and the polynomial order of approximation.

Figure 8: Red Light initial condition
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Figure 9: Green Light initial condition

Figure 10: Exponential initial condition.

We can notice that the GSL showed better resolution capabilities when using a large number
of elements as in the case of the HL despite being less sensitive to polynomial order increment.
Our goal with this first set of experiments was to prove that limiters are not greatly affected
by the increment of polynomial order to display sharp shock resolution requiring quite refined
grids to achieve reasonable sharpness.
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5.3 Sub-cell shock capturing schemes

As in the previous study using limiters, this subsection intends to verify the ability of the
artificial viscosity based schemes, Constant-SCSC and C0-SCSC, to improve shock resolution
as a function of the number of grid elements,K, and the polynomial order,N . We fixedK = 40
for the Constant-SCSC scheme and K = 20 for the C0-SCSC scheme as the former scheme
required more degrees of freedom to show minimally acceptable results. For both schemes, the
polynomial order were set as N = 2, 6, 10. Again, snapshots of the shock formation were taken
at t = 1.2, 1.0, 0.7 min for the red light, green light and exponential examples, respectively.
It is worth mention that sub-cell shock capturing strategies required much smaller time steps
than limiters to ensure stable solutions. Overall, limiters used four times larger time steps than
sub-cell shock capturing schemes.

5.3.1 Constant-SCSC

Figures 11, 12 and 13 depicts the overall performance of the constant-SCSC scheme as a
function of the total number of grid elements and the polynomial order of approximation.

Figure 11: Red Light initial condition

Figure 12: Green Light initial condition
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Figure 13: Exponential initial condition

From the above mentioned figures, it is evident that the sub-cell shock capturing scheme
based on a globally discontinuous viscosity function ε(x) produced very poor quality results
for low polynomial orders. Even with high order polynomial approximations such scheme
developed small traveling spikes over the solution profiles destroying the locality of the method
and resulting in excessive smearing of the jump discontinuities.

5.3.2 C0−SCSC

Figures 14, 15 and 16 depicts the overall performance of the C0-SCSC scheme as a function
of the total number of grid elements and the polynomial order of approximation.

Figure 14: Red Light initial condition

Contrary to what has been revealed by the Constant-SCSC approach, the C0-SCSC scheme
demonstrated very reliable even for very coarse grids. Sharpness in shock resolution was clearly
improved with polynomial order increasing and the locality of the added artificial viscosity was
definitely proved. This second set of experiments aimed at showing that artificial viscosity
mechanisms perform much better with very high order approximations and larger elements,
and high resolution of the shock representation is achieved with the increment of the polynomial
order.
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Figure 15: Green Light initial condition

Figure 16: Exponential initial condition

5.4 Limiter vs. Sub-cell shock capturing

This subsection was designed to evaluate which shock capturing scheme shows the best
cost-benefit to sharply resolve the shock formation using an unbiased criterion to measure com-
putational performance. To achieve such goal, we compare GSL to C0-SCSC in terms of the
total degrees of freedom required by each scheme to reach a reasonable resolution of jump
discontinuities.

Figures 17, 18 and 19 compare the overall performance of the GSL and the C0-SCSC
schemes as a function of the total number of degrees of freedom. Snapshots of the shock
formation were taken at t = 1.2, 1.0, 0.7 min for the red light, green light and exponential ex-
amples, respectively. The number of elements and the polynomial orders are indicated in the
caption of each figure for both schemes. For GSL we kept N = 1 and increased the number
of elements K as we have previously demonstrated the weak impact of polynomial order in the
shock resolution. In the case of C0-SCSC, we increased N as much as we reduced K once the
most remarkable feature of this scheme is to achieve sharp shock resolution with very coarse
grids and high order polynomial approximations.

Results from both techniques showed very similar for the red light example. With just a
few degrees of freedom to approximate the solution, C0-SCSC was very dissipative but GSL
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(a) GSL: K = 116, N = 1. C0- SCSC: K = 116, N = 1 (b) GSL: K = 152, N = 1. C0- SCSC: K = 76, N = 3

(c) GSL: K = 192, N = 1. C0- SCSC: K = 64, N = 5 (d) GSL: K = 224, N = 1. C0- SCSC: K = 56, N = 7

Figure 17: Red light initial condition

showed a small oscillation at the base of the discontinuity. For the maximum number of degrees
of freedom, GLS seemed to slightly trim the sharp corners of the shock.

(a) GSL: K = 116, N = 1. C0- SCSC: K = 116, N = 1 (b) GSL: K = 152, N = 1. C0- SCSC: K = 76, N = 3
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(c) GSL: K = 192, N = 1. C0- SCSC: K = 64, N = 5 (d) GSL: K = 224, N = 1. C0- SCSC: K = 56, N = 7

Figure 18: Green light initial condition

For the green light example, GSL trimmed the top corner of the shock in every case. As
expected,C0-SCSC solutions were slightly more dissipative but still able to sharply characterize
the shock resolution.

(a) GSL: K = 116, N = 1. C0- SCSC: K = 116, N = 1 (b) GSL: K = 152, N = 1. C0- SCSC: K = 76, N = 3

For the exponential example, C0-SCSC scheme proved superior as GSL was not able to
control instabilities at the base of the jump discontinuity and also trimmed the top corner of the
shock in every situation. As already observed, the C0-SCSC scheme worked quite well for very
high order approximations.

8030



A.C. Nogueira Jr., J.L.S. Almeida and C.A.C. Silva

(c) GSL: K = 192, N = 1. C0- SCSC: K = 64, N = 5 (d) GSL: K = 224, N = 1. C0- SCSC: K = 56, N = 7

Figure 19: Exponential initial condition.

6 CONCLUSIONS

This paper discussed the implementation and verification of four different strategies to sta-
bilize the numerical solution of the LWR equation discretized with a modal version of the high
order discontinuous Galerkin method. We selected two efficient limiters (HL and GSL) [8, 9] as
well as two artificial viscosity based schemes (Constant-SCSC and C0-SCSC) to stabilize our
numerical solutions. We proposed three examples of initial conditions to test our implementa-
tions: (a) red light at road exit; (b) green light at half way of road length and (c) exponential car
density at road entrance.

We were able to prove that limiters are not greatly affected by the increment of polynomial
order to display sharp shock resolution requiring quite refined grids to achieve reasonable re-
sults. The HL revealed more sensitive to polynomial order refinement as it produced poorer
results when compared to the GSL for high order approximations.

Both sub-cell shock capturing schemes demonstrated good robustness to sharply represent
shock structures with very coarse grids. High resolution was achieved for increasing polynomial
order. However, it is worth remarking that sub-cell shock capturing with elementwise constant
artificial viscosity produced traveling spikes over the solution profiles during time integration
causing the shock sensor activation most of the spatial domain and therefore destroying the
acclaimed locality of the method. It also resulted in excessive smearing of the shock structure.

Sub-cell shock capturing with C0 artificial viscosity [12] proved very reliable to stabilize
solutions in the presence of jump discontinuities although it required smaller time steps for ex-
plicit time integration. Such stabilizing scheme displayed the most noticeable results exhibiting
sharp shock resolution features in very coarse meshes with very little dissipation. Overall, such
scheme revealed the best cost-benefit in terms of computational efficiency based on the number
of degrees of freedom for a certain level of shock resolution.
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Abstract. The present paper describes the use of various high-order schemes in a finite
volume formulation for use on structured grids. In particular, WENO and compact upwind
schemes as well as central and upwind schemes are investigated. Their efficiency and accuracy
are compared to the well-established second- and third-order MUSCL family of schemes. The
different schemes are analyzed and tested numerically using canonical flow problems in the
context of the two-dimensional Euler equations. Results are shown for the two-dimensional
advection of a density pulse to quantify the dissipation and dispersion properties of the schemes.
To investigate the non-oscillatory nature of the schemes and the resolution of discontinuities
the Riemann problem is analyzed. The simulations are performed on uniform as well as non-
uniform meshes.
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1 INTRODUCTION

Over the past decades there has much research into the design and application of high-order
accurate numerical methods. In the context of computational fluid dynamics (CFD) high-order
methods are especially desirable to simulate flows with complicated structures. In compressible
flows, the existence of shocks, interfaces and other discontinuities present additional challenges
to high-order schemes as, alongside providing high-order accuracy in smooth regions of the
solution, they must remain non-oscillatory and stable in regions of high nonlinearity.

This paper examines the behavior of various high-order schemes in a finite volume for-
mulation for the use of structured grids and compares their efficiency and accuracy to the
well-established second- and third-order MUSCL family of schemes. In particular, weighted
essentially non-oscillatory (WENO) and compact schemes show great potential for further im-
provements due to the fact that these schemes are active fields of research since many years.
But also central and upwind schemes are good candidates for very efficient high-order schemes
by the reason of their relatively simple nature.

The different schemes are analyzed and tested on both uniform and non-uniform grids in the
context of the two-dimensional Euler equations. The accuracy, convergence and resolution are
studied for the advection of a Gaussian entropy pulse and the non-oscillatory behavior across
the discontinuities is investigated with the classical shock tube test problem by Sod [1].

2 THE FINITE VOLUME SCHEMES

2.1 Governing Equations

The flow of two-dimensional, compressible, inviscid fluid can be described in conservation
form by the Euler equations:

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (1)

where Q = (ρ, ρu, ρv, ρe)T and

F =


ρu

ρu2 + p

ρuv

u (ρe+ p)

 , G =


ρv

ρuv

ρv2 + p

v (ρe+ p)

 .

Here p, ρ, u, v and e are the pressure, density, velocity components and the total energy per
unit mass, respectively. The pressure is given by the equation of state for perfect gas:

p = (γ − 1) ρ

(
e− 1

2

(
u2 + v2

))
where γ is the ratio of specific heats.

Considering a structured mesh, the finite volume formulation is derived by integrating Eq. 1
on an interval

[
xi−1/2,j, xi+1/2,j

]
×
[
yi,j−1/2, yi,j+1/2

]
∂

∂t
Q̄i,j = − 1

∆ix∆jy

(
Fi+1/2,j − Fi−1/2,j +Gi,j+1/2 −Gi,j−1/2

)
(2)

where
Q̄i,j =

1

∆ix∆jy

∫ xi+1/2,j

xi−1/2,j

∫ yi,j+1/2

yi,j−1/2

Qdxdy
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is the cell average of Q̄ in the (i, j)-th cell. The Gaussian quadrature used to integrate the flux
on each cell interface is second-order accurate.

Temporal integration in Eq. 2 can be accomplished by treating this as a system of ordinary
differential equations, via a method-of-lines approach. In particular, the explicit third-order
Runge-Kutta method of Gottlieb and Shu [2] will be used. This method is high-order accurate
and total-variation diminishing (TVD) in the sense that the temporal operator does not increase
the solution’s total variation in time.

Q̄(1) = Q̄(n) + ∆tR(Q̄(n))

Q̄(2) =
3

4
Q̄(n) +

1

4
Q̄(1) +

1

4
∆tR(Q̄(1))

Q̄(n+1) =
1

3
Q̄(n) +

2

3
Q̄(2) +

2

3
∆tR(Q̄(2))

Where R is the right hand side of Eq. 2.
The fluxes in R are approximated by solving the local Riemann problems at the cell inter-

faces with a solver due to Roe [3] for all asymmetric discretization schemes. E.g. for

Fi+1/2,j =
1

2

(
FL
i+1/2,j + FR

i+1/2,j

)
− |A|

(
UL
i+1/2,j + UR

i+1/2,j

)
where A is the Roe matrix with U = (ρ, u, v, p)T . In the case of symmetric schemes, for which
UL and UR are identical the fluxes are directly evaluated from the flow state at the cell interface
position.

2.2 Discretization Schemes

To obtain the face fluxes the left and right states of U are computed. There are several
choices of the variable to be reconstructed, such as the primitive, conservative or characteris-
tic variables. In the context of this paper for all investigated schemes the primitive variables
are used even if it is recommended to use the characteristic variables in context of WENO
schemes for shock simulation (see e.g. Borges et al. [4]). The reconstruction with all investi-
gated schemes are accomplished in a dimension-by-dimension fashion. For the sake of brevity
only the reconstruction of the left state is denoted here.

The first class of discretization schemes are the well-established second- and third-order
MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) family.

UL
i+1/2 = Ūi +

1

4
[(1 + κ) riΦ (1/ri) + (1− κ) Φ (ri)]

(
Ūi − Ūi−1

)
(3)

The function Φ (ri) is a limiter function to limit the slopes ri. The parameter k determines the
spatial accuracy of the interpolation. In this work the minmod, Van Leer, superbee, monotonized
central, Van Albada and Van Albada 2 limiter functions are considered for uniform meshes.
Zeng [5] proposed also non-uniform versions of the limiter functions for minmod, Van Leer,
superbee, monotonized central and Van Albada. Leng et al. [6] developed an optimized MUSCL
scheme to minimize the dissipation and dispersion error in combination with the monotonized
central limiter. This family of schemes is usually second or third-order, since it is difficult to
develop limiter functions for higher-order MUSCL schemes.

The second class of discretization schemes are the WENO (weighted essentially non-oscillatory)
schemes.

UL
i+1/2 =

r−1∑
k=0

ωkq
r
k (4)
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qrk are rth-order accurate polynomial interpolants evaluated at xi+1/2 computed by

qrk =
r−1∑
l=0

arklŪi−r+k+l+1

where arkl are stencil coefficients. The weights are defined by

ωk =
αk∑r−1
k=1 αk

(5)

and
αk =

Cr
k

(ε+ βk)2
.

where

βk =
r−1∑
m=1

(
r−1∑
l=1

drkmlŪi−r+k+l+1

)2

and ε is small number designed to prevent division by zero. The smoothness indicators βk
become large when discontinuities are present within the stencil k and remain relatively small
otherwise.

In the case of odd-order WENO schemes considered here an one point upwind biased inter-
polation polynomials are used for qrk. For the classical fifth-order WENO scheme after Jiang
and Shu [7] the above definition results in a convex combination of three third-order candidate
stencils. This version is denoted as WENOJS in the rest of the paper. In critical points where
multiple derivatives vanish the weight ωk are far away from the optimal weightsCr

k and the order
of convergence decreases dramatically. In the literature several approaches have been proposed
to recover the formal order of accuracy in the smooth regions of the solution. In this work, in
addition to the above formulation in Eq. 5, the modified weighting procedures WENOM after
Hendricks et al. [8], WENOZ after Borges et al. [4], WENOYC after Yamaleev and Carpen-
ter [9], WENOZS after Shen and Zha [10] and WENON after Xiaoshuai and Yuxin [11] are
considered. Within the context of WENO schemes the sensitivity parameter ε is also a subject
of active research and can cause a drop of the rate of convergence in some cases. In this work
both constant values ranging between 10−60 and 10−2 are used as well as methods suggested by
Peer et al. [12], Yamaleev and Carpenter [9] and Don and Borges [13].

Martin et al. [14] developed a central symmetric WENO scheme. Since in classical WENO
schemes the center of the stencil collection lies slightly upwind of the reconstruction point the
WENO scheme proposed by Martin et al. uses an additional stencil to form a symmetric central
scheme which is capable of providing zero dissipation.

Additional class of schemes investigated are compact schemes. The general form of the
interpolation formula for the cell faces is

αUL
i−1/2 + UL

i+1/2 + βUL
i+3/2 = aŪi−2 + bŪi−1 + cŪi + dŪi+1. (6)

Here only compact upwind interpolations with narrow stencils are considered so as to use ef-
ficient matrix inversion algorithms of a tridiagonal matrix, such as the Thomas algorithm. The
used coefficients of Eq. 6 can be found in Tab. 1. For a more detailed description of the schemes
see Broeckhoven et al. [15]. Following the notation of Broeckhoven et al. two different types
of upwind-biased interpolations are investigated. The implicit (left-hand side) part purely cen-
tral and the explicit (right-hand side) part upwind-biased (ICxEUyz). Here x is the number of
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Scheme Order α β a b c d

IC3EU22 3 −1
5
−1

5
0 − 3

10
9
10

0

IC3EU33 4 −1
8
−1

8
1
8
−5

8
5
4

0

IC3EU43 5 − 3
14
− 3

14
1
84
− 5

84
67
84

19
28

IU22EU21 3 1
2

0 0 0 5
4

1
4

IU32EU32 5 1
2

1
6

0 1
18

19
18

5
9

Table 1: Overview of different coefficients of compact schemes

points in the implicit and y the number of points in the explicit part. z indicates the position of
Ūi. And both implicit and explicit part upwind-biased (IUxyEUzw). Here x is the number of
points in the implicit and z the number of points in the explicit part. y indicates the position
of Ui+1/2 and w indicates the position of Ūi. For periodic problems these schemes are solved
using the Thomas Algorithm for periodic tridiagonal systems. Otherwise the standard Thomas
Algorithm is used by applying different boundary closures to IU32EU32 (compactBC), which
can be found in Pirozzoli [16] and Ghosh and Baeder [17]. Also the impact to the accuracy
and stability of the application of an explicit central filter is investigated to reduce non-physical
oscillations.

The last class of schemes are simple explicit upwinding (Eq. 7), symmetric (Eq. 8) and
asymmetric (Eq. 9) central schemes without any stabilization techniques such as limiters or
filtering. These schemes are based upon Lagrange interpolation polynomials which are also
used to construct the WENO schemes. Therefore, they can be considered as WENO schemes
with fixed optimal weights Cr

k .

UL
i+1/2 = aŪi−3 + bŪi−2 + cŪi−1 + dŪi + eŪi+1 + fŪi+2 + gŪi+3 (7)

UL,R
i+1/2 = aŪi−3 + bŪi−2 + cŪi−1 + dŪi + dŪi+1 + cŪi+2 + bŪi+3 + aŪi+4 (8)

UL
i+1/2 = aŪi−3 + bŪi−2 + cŪi−1 + dŪi + eŪi+1 + fŪi+2 + gŪi+3 + hŪi+4 (9)

Tab. 2 provides an overview of the reviewed methods, their order of accuracy and used
acronym for the rest of this paper. The theoretical order of convergence is denoted with a
number after the scheme acronym if appropriate.

3 NUMERICAL RESULTS

The application of the described schemes to the two-dimensional Euler equations is dis-
cussed in this section. The accuracy and convergence properties are studied on a smooth prob-
lem that involves the advection of a Gaussian entropy pulse. The non-oscillatory nature of
the schemes and the resolution of discontinuities are studied in this section using the Riemann
problem.

3.1 Entropy Advection

The advection of a smooth density pulse over a periodic domain is considered in this section.
The pressure and velocity fields are constant, thus reducing the Euler equations to a linear
advection equation for density, with the advection speed as the freestream velocity. The exact
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Scheme Acronym Implemented
Order

Equation

Monotonic Upstream-Centered Scheme
for Conservation Laws

MUSCL 1, 2, 3 3

Optimized MUSCL oMUSCL 2 -

MUSCL for non-uniform grids nuMUSCL 2 -

Weighted Essentially Non-oscillatory
Schemes

WENO 3, 5, 7 4

Central symmetric WENO CWENOSym 4, 6, 8 -

Compact upwind scheme compact 3, 4, 5 6

one point upwind biased scheme upwind 3, 5, 7 7

central symmetric schemes centralSym 2, 4, 6, 8 8

centralSym for non-uniform grids nuCentralSym 2, 4, 6, 8 8

central asymmetric schemes centralASym 2, 4, 6, 8 9

optimized centralASym oCentralSym 5, 7 9

Table 2: Overview of review discretization schemes

solution is given by:

ρ (x, y, t) = ρ∞ + Ae−((x−u∞t)2+y2)

u (x, y, t) = u∞

v (x, y, t) = v∞

p (x, y, t) = p∞

In the present example, the freestream conditions are taken as ρ∞ = 1.2 kg/m3, u∞ = 180 m/s,
v∞ = 0 m/s, p∞ = 94040 Pa and the amplitude of the entropy wave is taken asA = 0.05 kg/m3.
The domain is taken as [−25 m, 25 m] × [−25 m, 25 m] and periodic boundaries are assumed
on both sides. The solution is obtained after one cycle (t = L/u∞ = 0.28 s) and the L1 error
norms are compared. An initial grid with 21 points is taken and progressively refined. The
CFL number corresponding to the grid with 21 points is 0.08 and is decreased with each grid
refinement, to ensure that errors due to time discretization converge at the same order as those
due to space discretization.

The simulations were carried out on three different grids, see Fig. 1. This first consists of
uniform distributed cells. The second is a non-uniform grid where every i constant line (and
every j constant line) has been shifted in the x-direction (or respectively the y-direction) by a
random distance. The last investigated grid is additionally distorted by a random shift of every
vertex and every second i constant line shifted in y-direction by a constant distance.

Fig 2 shows the convergence rate of the various scheme classes on the uniform grid. The
L1 errors from the simulations with different formulation in one class of schemes are averaged.
This way it is possible to compare not only single schemes with each other but rather to get
an overview of the different classes. With every grid refinement the error decreases. But since
every scheme shows the theoretical order of convergence for this simple test case a clustering
of schemes can be observed.
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(a) uniform grid (b) non-uniform grid (c) distorted grid

Figure 1: Solution of the advection of a density pulse with MUSCL1

Figure 2: Convergence rate of various scheme classes for the advection of a density pulse on uniform grids
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In order to choose an efficient scheme, it is helpful to consider the simulation duration in-
stead of the number of cells for a given accuracy. In Fig. 3 error versus the wall-clock time
required to obtain the solution on the given grid. Each symbol represents one grid tested with
all schemes. Here it is easy to see that the simple schemes use significant less computational
effort to reach a certain level of error. E.g. the advantage of the upwind5 compared to the
WENO5 scheme is evident in Fig. 3(a) but not in Fig. 2. Since the upwind and central schemes
are constructed without any shock-capturing abilities, they offer a very efficient possibility to
simulate wave propagation phenomenon in smooth flow regimes. Also the high-order versions
are preferable due to lower dissipation. In the category of shock-capturing schemes, in the di-
rect comparison of MUSCL3 and WENO3, it appears that the computational cost to determine
the non-linear weights in the WENO schemes can not be compensated by a lower error. Es-
pecially the oMUSCL2 scheme shows advantages on coarse grids. Due to the wave number
optimization they are able to provide lower dissipation on these grids. The compact schemes
are not able to show the ability to provide a high spectral resolution. Here spurious oscillations
appear even with the use of upwind biased compact schemes which contaminate the solution.
To address this problem an explicit central filter (see [18]) was used but it was found to reduce
the accuracy. Still compact schemes including an inversion of a tridiagonal matrix seems to
be faster than WENO schemes. For the class of central schemes shown in Fig. 3(b) there is
a similar pattern. The centralSym schemes are very efficient since there is no need to solve
a Riemann problem at the cell interfaces. So the computational effort is smaller than for any
upwind biased scheme. However, their use is limited to only a few very simple flow conditions.
CWENO schemes have also no need for a Riemann solver but the computation of the expensive
non-linear weights is needed. The high error in the solutions with the centralASym is due to the
fact than the advection speed is overestimated.

(a) upwind biased schemes (b) central schemes

Figure 3: Efficiency of various scheme classes for the advection of a density pulse on uniform grids

On non-uniform grids all schemes investigated produce significantly higher errors and even
the rate convergence drops to mainly second-order. Furthermore, it is found that the upwind
schemes designed for uniform grids produce the lowest error. Only the non-uniform formulation
of the MUSCL2 schemes can give comparable results. Most notably the compact schemes are
very sensitive to non-uniform spacing and have only first-order accuracy. However, most central
schemes were not able to provide acceptable solutions due to the high stretching ratios in the
grid. For the third grid type, the distorted grid, the situation is even worse. No scheme class
is able to achieve a first-order convergence rate. Actually the nuMUSCL2 have a convergence
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rate of 0.48. This scheme is designed to take a stretching ratio into account, but still relies on
cell orthogonal to the flow direction.

Figure 4: Efficiency of upwind biased schemes for the advection of a density pulse on non-uniform grids

3.2 Sod Shock Tube Problem

The non-oscillatory nature of the schemes and the resolution of discontinuities are assessed
using a Riemann problem. The problem consists of an initial discontinuity that decomposes
into a rarefaction wave, a contact discontinuity and a shock wave, corresponding to each of
the characteristic fields of the Euler equations. The Sod shock tube problem [1] is an inviscid
benchmark problem. The exact solution to this problem is obtained using a Riemann solver.
The initial conditions are:

ρL = 1 kg/m3, uL = 0 m/s, vL = 0 m/s, pL = 100000 m/s

ρR = 0.125 kg/m3, uR = 0 m/s, vR = 0 m/s, pR = 10000 m/s

The domain is taken as [−10 m, 10 m]× [−10 m, 10 m] and the initial discontinuity is placed at
x = 0m. The solution is obtained at t = 0.01 s on a grid with 20 points, a CFL number of 0.1
and is decreased with each grid refinement.

The analytical solution for the density and pressure at y = 0m is shown in Fig. 5. In addition,
the simulation results obtained on an uniform grid with the first-order MUSCL scheme, the most
efficient schemes of the MUSCL and WENO classes and upwind scheme are presented. Due to
the relatively high dissipation of the MUSCL1 scheme the discontinuity is smeared while the
Upwind5 scheme shows strong oscillations. The MUSCL2 scheme with the superbee limiter
and WENOYC3 are able to sharply resolve the contact discontinuity and the shock wave.

An overview of the efficiency averaged for the different classes can found in Fig. 6. The
results for compact schemes are not shown since it was not possible to obtain stable solutions
for this test case. The other central schemes as expected suffer from severe oscillations and
are not able to produce comparable smooth solutions. The WENO and upwind (a.k.a. optimal
WENO) classes show a similar efficiency behavior. The calculation of the non-linear weights
in the WENO schemes produces a large computational overhead that is not compensated by the
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(a) Density (b) Pressure

Figure 5: Solution of Sod shock tube problem with exemplary schemes

higher accuracy. However, this observation does no longer hold for stronger shocks since the
stencil of the simple upwind schemes uses cells containing the shock and becomes unstable.
Through the construction of WENO schemes the use of these cells is reduced. The candidate
stencils which contain the discontinuities are assigned a nearly zero weight in the formation of
the final interpolation polynomial. The well-established MUSCL scheme class is able to create
fast a solution with only minimal oscillations at a low level of errors.

Figure 6: Efficiency for the Sod shock tube problem

To have a more detailed look only the best versions of each upwind biased class is shown
in Fig. 7. For the MUSCL class the second-order schemes seem to represent the best choice.
Within the context of the WENO schemes only the seventh-order method is not able the com-
pensate the computational overhead with a lower error. Note, even the most efficient versions
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of these shock-capturing schemes need significantly more computational time than the upwind
schemes. Since this test case simulates a moderate shock problem the oscillations are not criti-
cal for the stability of the simulation. But in the presence of stronger shocks the MUSCL2 and
WENO5 versions show better results. The non-uniform version of the MUSCL family is also

Figure 7: Efficiency of best versions of upwind biased scheme classes

able to reach the same accuracy, but is slightly more expensive. When applied to non-uniform
grids, however these methods are found to be more efficient than their uniform counterparts as
non-uniform parameter provides greater accuracy.

Of particular interest for the accuracy of WENO schemes especially near critical points, is
the formulation of the non-linear weights. In Fig. 8 the analysis of all used accuracy order
and sensitivity parameter formulations illustrated. Here the average of all WENO schemes,
alongside the method with the best and worst efficiency is shown. The WENOM formulation
has a significant larger computational cost. The other versions lie close together while the
WENOYC seems to be the best choice within the WENO family.

In Tab. 3 the convergence order of the analyzed sets of schemes is documented. No class is
able to provide a first-order convergence for the L1-error even on uniform grids. The WENO
schemes have a slightly better convergence rate than the MUSCL schemes. However, in terms of
efficiency they are not able to outperform the MUSCL schemes due to the expensive calculation
of the non-linear weights. In general, in the case of stronger shocks or non-uniform or distorted
grids the total error increases and the order of convergence drops. Although the effect is only
marginal this holds also for non-uniform schemes.

4 CONCLUSIONS

In this paper, the well-established MUSCL family of schemes are compared to modern
shock-capturing WENO schemes, compact schemes of high-order accuracy and simple upwind
and central schemes. Numerical experiments were performed by means of academic test cases
within the framework of the two-dimensional Euler equations on uniform and non-uniform
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Figure 8: Efficiency distribution of WENO weight formulations

Scheme class Convergence Order

uniform grid non-uniform grid

MUSCL 0.83 0.70

MUSCL1 0.54 0.52

MUSCL2 0.86 0.73

MUSCL3 0.89 0.72

oMUSCL2 0.69 0.41

nuMUSCL2 0.89 0.81

WENO 0.87 0.78

WENOJS 0.87 0.75

WENOM 0.86 0.66

WENOYC 0.90 0.83

WENOZ 0.87 0.77

upwind 0.80 0.77

centralASym 0.47 0.40

centralSym 0.45 0.34

Table 3: Order of convergence for Sod shock tube problem on uniform grids for different scheme classes
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grids. It is found, for a given computational effort, that the high-order schemes are better able
to accurately propagate wave disturbances. In particular, the simple upwind and central schemes
show high efficiency in smooth flow regimes on uniform grids. On non-uniform grids, however,
the order of accuracy drops for all investigated schemes and the absolute error level increases.
Here the extra computational cost for non-uniform coefficients is found to be justified. In the
case of discontinuities, the shock-capturing schemes are found to be superior over the simple
schemes, since these schemes are not able to obtain an oscillation free stable solution. In terms
of efficiency the MUSCL family provides good results. The WENO schemes show comparable
results, but are not able to outperform the MUSCL schemes due to the high computational cost
of the non-linear weights.
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Abstract. The variation diminishing property of non-uniform rational B-splines (NURBS)
makes NURBS-based isogeometric analysis attractive for applications involving travelling stress
waves generated, for example, by impulsive loads. Over their finite elements counterparts, the
advantage of NURBS basis functions is the higher continuity at every point of single-patch
domains. This research investigates the applicability of isogeometric analysis for the ballistic
performance of titanium alloys. Numerical results, in the framework of explicit time-integration,
present the effect for k-refined trivariate NURBS. A comparison with the classical finite element
analysis is also presented. Although the global continuity of NURBS results into a superior ap-
proximation of the travelling waves, it does not allow physical discontinuities in the displace-
ment field. This prevents, for example, a projectile to penetrate a target plate. It is argued
that the realistic physical response can be captured by adopting material models incorporating
strain-rate-sensitive failure criteria.
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1 INTRODUCTION

Ballistic tests provide greater insight into the dynamic response of mechanical components.
Usually, ballistic tests aim to measure the ballistic limit of a target: the threshold velocity for
which penetration occurs. Nowadays, these tests are not restricted to military applications;
bird-strike and safety equipment tests are only few of the many case studies involving ballistic
experiments.

The complexity and the high costs of experimental test are often a limitation to the accurate
measurement of the ballistic limit. Numerical simulations provide tangible benefits and are,
in fact, an integral part of the design process for mechanical components undergoing ballistic
loads. The general tool adopted in many engineering communities is the finite element analysis
(FEA). Several works using this method have been published in the fields of aerospace and
mechanical engineering to model ballistic tests on steel [1], woven fabric [2] and titanium plates
[3]. We now want to expand these studies to the a higher-order approximation method by means
of isogeometric analysis.

Isogeometric analysis (IGA) [4] is a numerical paradigm that has several advantages com-
pared to the classical FEA. Firstly, by employing non-uniform rational B-splines (NURBS) as
basis functions, IGA avoids the geometrical inaccuracies introduced by the FEA meshes. More-
over, spline provide a superior approximation to stress travelling waves, making IGA appealing
for dynamic simulations.

During perforation, FEA models are usually coupled with element erosion techniques that
have major drawbacks [5, 6]. By taking away mass from the system, these methods inevitably
compromise the inertia and thus the dynamic response of the system itself. If the features of
spalled plug or residual crater are not of primary interest, and if the ultimate goal of the inves-
tigation is to predict whether penetration would occur or not, element erosion can be avoided
altogether. More accurate numerical methods allowing for cracks growth have been proposed in
the literature. These approaches face enormous computational challenges as they have to take
into account for geometrical instabilities and discontinuities [7]. The extended finite element
method (X-FEM) [8], reproducing kernel particle method (RKPM) [9] and phase field models
[10] are just few of the well-established approaches available in the literature. Nevertheless, the
advantages of such methods come at the price of a higher computational cost. For this study a
pragmatic and closer to in-service engineering applications is pursued.

To predict the ballistic limit we propose to combine IGA with a material model with failure
criterion. For this work the constitutive model developed by Børvik et al [11] was selected.
Originally formulated starting from the Johnson-Cook [12] material model and the continuum
damage mechanics model by Lamaitre [13], this is one of the most diffused constitutive models
for the simulation of ballistic tests. At last, we provide a comparison of numerical results
obtained with IGA and FEA.

2 NURBS-BASED ISOGEOMETRIC ANALYSIS

Higher-order NURBS shape function have a great advantage over their finite element coun-
terparts, that is, splines do not oscillate nor overshoot near discontinuities. Instead, higher-
order polynomials yield to the so-called Gibbs phenomenon [14]. Another advantage is that
NURBS are found in the every computer aided design (CAD) software packages for engineers.
NURBS-based IGA represents CAD models exactly and thus reduces the gap between CAD
and numerical analysis.
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A NURBS curve of order p is defined over a one-dimensional parametric domain as:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

0 ≤ u ≤ 1 (1)

The control points Pi map the curve from parametric to Euclidean three-dimensional space R3.
To each control point is associated a weight wi which, together with the B-spline basis function
Ni,p(u), defines the rational basis function Ri,p(u) such that:

C(u) =
n∑

i=0

Ri,p(u)Pi (2)

The most common formulation of B-spline basis function for computer application is the recur-
sive Cox-de Boor [15] formula:

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise
(3)

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

The functions in Eqs. (1) and (2) are defined on a knot vector Ξ, which is a nondecreasing
and nonuniform sequence of real numbers between 0 and 1. Each entry is a knot, and each knot
has multiplicity at the most p + 1. Only the extremes of Ξ have multiplicity necessarily equal
to p+ 1. For example, a general knot vector may be written as

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξ1, . . . , ξm, 1, . . . , 1︸ ︷︷ ︸
p+1

} (4)

For the tests presented in this work, the set of knots {ξj} is obtained by evaluating the equation
below at m = n− (p+ 1) equally distributed points between −a and a.

ξj =
tan tj

2a
+ 0.5 t ∈ [−a, a] j = 1, . . . ,m (5)

For the present study a = 7π/3. Figure 1 shows an example of NURBS curve with knot vector
obtained from Eq. (5) for m = 3 and wi = 1 for all i = 1, . . . , n.

The curve C(u) inherits a series of properties from its basis functions. The functions Ri,p(u)
form a partition of unity (

∑n
i=0Ri,p(u) = 1 ∀u) and have compact support (Ri,p = 0 if

u /∈ [ui, ui+p+1) ). Similar properties exist for the Lagrange polynomials used in FEA. The dif-
ference is that the rational function Ri,p(u) are nonnegative (Ri,p(u) ≥ 0 ∀ i, n and 0 ≤ u ≤ 1),
do not necessarily interpolate the Kronecker delta functions [14] and benefit from the variation
diminishing property [16].

The most striking consequence of the latter property is the absence of Gibbs phenomenon
for higher-order spline interpolants. This is a spurious numerical oscillation that occurs when
a sharp discontinuity (e.g. the step function) is approximated by a high-order polynomial. The
inefficiency of Lagrange polynomials to describe jumps and discontinuities is inevitably seen in
the classic FEA. The variation diminishing property of NURBS curves establishes that a plane
cannot intersect more times the curve C(u) than control polygon. Intuitively, this property
ensures that a NURBS curve does not oscillate more than its control grid.
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(a) (b)

Figure 1: (a) Cubic NURBS curve C(u) defined over the knot vector
Ξ = [0, 0, 0, 0, 0.3819, 0.5, 0.6181, 1, 1, 1, 1] illustrated with its control grid. (b) Repre-
sentation of the basis functions Ni,p(u) of C(u).

From the tensor product of three NURBS curves, a trivariate solid element may be obtained.
This is a vector-evaluated function of three parameters. Each parametric variable may have an
order p and an h-refinement different from the other two. As a result, tensor product NURBS
solids can be illustrated as a solid cube in parametric domain. By mapping the parametric cube
one can, for example, obtain the uniaxial test specimen in Figure 2. For this study the parametric
cube was mapped into a simple plate.

It should be noted that the variation diminishing property does not exists for NURBS surfaces
and solids. For these, however, the property applies somewhat in a weaker sense. Reference is
made to [18] for NURBS and to [19] for NURBS-based IGA.

Figure 2: Uniaxial test specimen model described by tensor product solid NURBS.

3 NUMERICAL MODEL

3.1 Description

The numerical model of the ballistic test includes a target, a rounded nose projectile and four
semi-spherical supports. Figure 3 illustrates the model at time t = 0. For this model the effect
of friction is considered negligible and a rigid body assumption is made for the projectile and
the supports. These assumptions will have a minor effect on the predicted physical response,
but do not cancel the outcome of the comparison between IGA and FEA.

The projectile impacts the target at a velocity of 400 m/s , which is well above the ballistic
limit of the plate. The target is a 7 mm thick, 127 mm wide titanium plate mounted onto four
fixed supports. The mass of the projectile is equal to 67.3 g. The contact between the plate,
supports and projectile uses a standard penalty master-slave formulation.
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Figure 3: Perspective view of the ballistic test numerical model

3.2 Spatial discretization

For the discretization of the titanium plate, IGA uses a single solid NURBS patch, while FEA
employs solid brick elements. The starting point to produce the NURBS patch is a quadratic
trivariate model (Figure 4a). If a higher-order approximation is required, the order of this ref-
erence patch is elevated accordingly. Afterwards, the NURBS is h-refined by knot insertion.
The knots inserted in the two parametric direction creating the face of the plate are defined by
Eq. (5). The three models depicted in Figures 4b-4d (only the top-right quarter of each model
is shown), are obtained for values of m = 10, 15, 23 respectively.

The FEA model employs Lagrange first-order polynomials to describe the titanium plate.
For the numerical solution under-integrated hexahedral finite element are used. After a mesh
sensitivity study, it was observed that a mesh with approximately 20000 elements would have
generated convergent results in terms of projectile velocity after perforation. However, a finer
mesh with about the double of number of elements was used to mitigate the hourglass effect.
Detailed information about the spatial discretizations are presented in Table 1.

3.3 Material model

In this work we use the material model proposed by Børvik et at [11]. This constitutive
model couples viscoplasticity with ductile damage and was designed for modelling impacts
that exhibit penetration. Some application of this model that can be found in literature are
[17, 20].

The model describes the equivalent stress using the following equation

σ =
(
A+Bεnp

)(
1− T − Tr

Tm − Tr

)(
1 +

ε̇p
ε̇0

)C

(6)

where A, B, C, n, m are material constants. The accumulated plastic strain is εp, the equiv-
alent strain rate and the reference strain rate are ε̇p , ε̇0, respectively. The second term in the
equation above considers the temperature effect; T is the absolute temperature, while Tr and
Tm are room and melting temperatures, respectively.

This model couples damage with the constitutive equation by means of following the fracture
strain law:

εf =

[
D1 +D2 exp

(
D3σm
σ

)][
1 +

ε̇p
ε̇0

]D4 [
1 +D5

T − Tr
Tm − Tr

]
(7)
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(a) (b)

(c) (d)

Figure 4: Spatial discretization for the IGA model. (a) Backside view with supports and
NURBS patch. (b)-(d) Top-right quarters of the model after various h-refinements.

This is an empirical formulation for which the material constants D1, . . . , D5 need to be cali-
brated experimentally. The evolution damage rule is relatively simple and given as

Ḋ =

{
0 for εp ≤ εd

Dc
ε̇p

εf−εd
for εp > εd

(8)

where εd is the value of the damage threshold. The material fails as the damage parameter D
reaches the critical value Dc.

The advantages of this constitutive model are the simple calibration and its computational
efficiency. An experimental campaign was conducted in our laboratory to obtain the material
parameters which will be disclosed in a future publication.

3.4 Results

Numerical tests are carried out using the commercial software LS-DYNA. This allows to
use solid NURBS element as well as the material model described in the previous section. The
velocity of the projectile and the stress state of the target are the main outcomes of the numerical
tests presented in this work.

Herein, we present the numerical results for an initial velocity of the projectile v = 400 m/s.
All tests, for both IGA and FEA, predicted penetration. The results are summarised in Table 1.

Figure 5 shows the velocity of the projectile for both IGA and FEA. The comparison do not
show good agreement. FEA simulation result in a much lower velocity after penetration. In
this sense IGA produces somewhat conservative results. At first sight this might be attribute to
volumetric locking effect. It is however interesting to observe that NURBS basis functions of
order p = 3 (test 052) approximate the FEA solution better than those of p = 2 order.
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Figure 5: Comparison between second-order IGA (tests 051 and 054), third-order IGA (test
052) and FEA (test 040).

Table 1: Results for projectile initial velocity v = 400 m/s.

Test ID Method p m Nodes vfinal (m/s) CPUtime (h)
051 IGA 2 10 726 324.5 23
052 IGA 3 10 1008 308.2 40
054 IGA 2 15 2048 321.0 61
040 FEA 1 - 40368 279.7 64

The stress state of the target plate for the IGA test 052 is illustrated in Figure 6. The backside
view of four solution frames represent: supports, deformed meshes (with magnified displace-
ment) and von Mises stress contour plots. It can be seen that, as the simulation evolves, the
stress builds up (Figures 6a and 6b ). Once failure emerges, the stress in the damaged area
drops (Figure 6c ) until complete penetration of the plate (Figure 6d ).
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(a) (b)

(c) (d)

Figure 6: Von Mises stress contour plots from the backside view of the target at different time
frames: (a) t = 0.0009, (b) t = 0.0386, (c) t = 0.0460 and (d) t = 0.0800. The red colour
corresponds to stress of 800 MPa and above, while the blue colour indicates zero stress.
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4 CONCLUSIONS

This study presents preliminary results of a ballistic test model that couples IGA with con-
tinuum damage mechanics. The numerical results are compared with classic FEA. For both
methods mesh sensitivity is preformed and the constitutive model successfully predicts failure
of the titanium target plate.

When penetration occurs the dynamic responses predicted by IGA and FEA diverge. Given
the different nature and properties of the basis functions employed by the two methods, this
difference is justifiable. An experimental validation, together with a systematic study on volume
locking effects, will be addressed in future works.
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Abstract. In this paper we present a new family of approximate Riemann solvers for the nu-
merical approximation of solutions of hyperbolic conservation laws. They are approximate,
also referred to as incomplete, in the sense that the solvers avoid computing the characteristic
decomposition of the flux Jacobian. Instead, they require only an estimate of the globally fastest
wave speeds in both directions. Thus, this family of solvers is particularly efficient for large
systems of conservation laws, i.e. with many different propagation speeds, and when no explicit
expression for the eigensystem is available. Even though only fastest wave speeds are needed
as input values, the new family of Riemann solvers reproduces all waves with less dissipation
than HLL, which has the same prerequisites, requiring only one additional flux evaluation.
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1 INTRODUCTION

In the finite volume method, integrating conservation laws over a control volume leads to a
formulation which requires the evaluation of the flux function at cell interfaces. Because the
exact information is not available, a sequence of local Riemann problems needs to be solved
[4]. The initial states for these problems are typically given by the left and right adjacent cell
values, (uni , u

n
i+1) for each i [8]. These local Riemann problems have to be solved many times

for finding the numerical solution, therefore, the Riemann solver is a building block of the
finite volume method. Note that the numerical flux function at interfaces also appears in the
Discontinuous Galerkin (DG) formulation. Therefore, Riemann solvers are also needed in DG.

Over the last decades, many different Riemann solvers have been developed, see e.g. [8].
The challenge is that the solver needs to be computationally efficient and easy to implement. At
the same time, it needs to yield accurate results which do not create artificial oscillations. The
latter is ensured by requiring the solver to be monotone.

Riemann solvers can be classified into complete and incomplete schemes, depending on
whether all present characteristic fields are considered in the model or not. According to this
classification, the upwind scheme and Roe’s scheme [6], respectively, are complete schemes.
They yield good, monotone results, however, an evaluation of the eigensystem of the flux Ja-
cobian is needed. This characteristic decomposition might be expensive to compute, especially
for large systems, and in some cases, an analytic expression is not available at all. However,
if possible, using Roe’s scheme typically yields the best resolution of the Riemann wave fan,
since all waves are well-resolved. Therefore, this scheme can be considered as the optimum,
also taking into account that less dissipation than upwinding leads to non-monotone solutions.
In order to keep its high resolution and at the same time reducing the computational cost, there
have been many attempts to approximate the upwind scheme without solving the eigenvalue
problem, see e.g. [9, 2] and references therein.

In this article, we are interested in approximate Riemann solvers. Their advantage is the
easy implementation and the requirement of few characteristic information. However, incom-
plete Riemann solvers contain more dissipation than the upwind scheme and thus, yield lower
resolution, especially of slow waves. Nevertheless, in many test cases, these Riemann solvers
may be sufficient to obtain good results, especially if the system contains only fast waves.

2 FINITE VOLUME METHOD

We consider a hyperbolic system of conservation laws in one space dimension of the form

∂t U(x, t) + ∂xf(U(x, t)) = 0 in R× R+ (1)
U(x, 0) = U0(x) (2)

where the unknown variable vector is given by U : R×R+ → RN , with some initial conditions
U0(x) and a flux function f : RN → RN , such that the Jacobian A(U) = Df(U) only has real
eigenvalues. In finite volume methods, the domain is subdivided into cells Ci = [xi−1/2, xi+1/2]
and Equation (1) is integrated over a cell Ci. The cell average at time tn, given by

1

∆x

∫
Ci

U(x, tn)dx, (3)

is approximated by Ūn
i . The update of the approximation at time tn+1 = tn + ∆t reads [5]

Ūn+1
i = Ūn

i −
∆t

∆x

(
f̂i+1/2 − f̂i−1/2

)
(4)
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and contains the numerical flux function f̂i+1/2 = f̂(U−i+1/2, U
+
i+1/2). This function takes as

input values the left and right limiting values of the variable vector U at the cell interface
i+ 1/2.

The choice of the numerical flux function - or Riemann solver - of the method, determines
the mathematical properties of the scheme, such as accuracy and monotonicity. Thus, the choice
of the solver is crucial for the resulting scheme.

In this work, we consider the general formulation of the numerical flux, given by

f̂(UL, UR) =
1

2
(f(UL) + f(UR)) +

1

2
D(UL, UR) (UL − UR) (5)

with a dissipation matrix D which depends on the left and right states UL and UR, respectively.
D also depends on characteristics of the flux Jacobian A(U).

Let us denote by λmin(U) and λmax(U) the minimal and maximal eigenvalue of A(U). The
spectral radius at U , i.e. the maximum absolute characteristic speed, is given by
λ̄ = max{|λmin|, |λmax|}.

3 REVIEW OF RIEMANN SOLVERS

In this section we recall some well-known Riemann solvers which are necessary for the
development of the new family of hybrid Riemann Solvers. First, we note that the dissipation
matrix D completely dictates the numerical flux function (5) and hence the numerical scheme.
Therefore, we break down the following discussion to comparing the dissipation matrices of
the schemes. Furthermore, for the sake of comparability, we introduce the notation of the
dimensionless scalar dissipation function d(ν):

The flux Jacobian A(U) can be diagonalized as A(U) = T (U) Λ(U)T (U)−1, where Λ(U) is
the eigenvalue matrix Λ(U) = diag(λ1(U), . . . , λN(U)), with λ1 < λ2 < . . . < λN , and T (U)
the corresponding eigenvector matrix. Since the dissipation matrix D is a function of the flux
Jacobian A, it can be shown that

∆t

∆x
D(A) = T−1

∆t

∆x
diag(d̃(λ1), . . . , d̃(λN))T = T−1 diag(d(ν1), . . . , d(νN))T, (6)

holds. Here, νi = λi∆t/∆x and d(ν) is the dimensionless scalar dissipation function. The
eigenvector matrix T is the same, independent of D.

We will compare the dissipation functions of different schemes in a ν − d(ν)-plot at the end
of this section.

For a linear system, where we can write f(U) = AU with some constant matrix A ∈ RN×N ,
the dissipation matrix of the upwind scheme reads

Dup = |A| ↔ dup(ν) = |ν|. (7)

For non-linear systems with general flux function, the scheme has been extended by Roe [6].
The dissipation matrix of Roe’s scheme is given by

DRoe = |Ã| ↔ dRoe(ν) = |ν|, (8)

with a so-called Roe Matrix Ã, satisfying Ã(UL, UR)(UL − UR) = F (UL) − F (UR). The
upwind Godunov solver and its non-linear extension, the Roe solver are complete Riemann
solvers. Now follows a list of incomplete solvers with decreasing dissipation.
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The dissipation function of the monotone Lax-Friedrichs scheme is

DLF =
∆x

∆t
I ↔ dLF(ν) = 1. (9)

A solver which decreases the dissipation is the Rusanov scheme, also referred to as local Lax-
Friedrichs scheme. It takes into account the globally fastest eigenvalue of the system:

DLLF = max{λ̄(UL), λ̄(UR)} I ↔ dLLF(ν) = max(|νmin|, |νmax|). (10)

Harten, Lax and van Leer [3] further decreased the dissipation, especially of slow waves, by
considering the fastest and slowest waves of the system:

DHLL =
|λL| − |λR|
λL − λR

Ã− |λL|λR − |λR|λL
λL − λR

I (11a)

↔ dHLL =
|νL| − |νR|
νL − νR

ν − |νL| νR − |νR| νL
νL − νR

. (11b)

Here, λL = λmin(UL), λR = λmax(UR), and νL/R = λL/R∆t/∆x.
A scheme which further reduces the dissipation is the Lax-Wendroff scheme,

DLW =
∆t

∆x
Ã2 ↔ dLW(ν) = ν2. (12)

Discontinuities are approximated with steep gradients using the Lax-Wendroff scheme, how-
ever, the method is known to cause oscillations at discontinuities because it is non-monotone
[4], see also Fig. 1.

4 A FAMILY OF NEW HYBRID RIEMANN SOLVERS

We want to construct Riemann solvers which require as few information as HLL but are
less dissipative. This is advantageous for the resolution, especially for slow waves, i.e. λ ≈
0. Demanding the same input values as HLL, we require the knowledge or an estimate of
the globally slowest and fastest characteristic waves of the system. Only one additional flux
evaluation shall be required.

4.1 P2 - conditions

We now pick up three requirements which have been proposed by Degond et al. [1]. The
resulting monotone Riemann solver, named P2, is based on a quadratic dissipation function,
fully determined by

dP2(νmin) = dup(νmin) = |νmin|, (13a)
dP2(νmax) = dup(νmax) = |νmax|, and (13b)

d′P2
(ν̄) = d′up(ν̄) = sign(ν̄), ν̄ =

{
νmax, if |νmax| ≥ |νmin|
νmin, if |νmin| > |νmax|.

(13c)

This function automatically fulfills dP2(ν) ≥ |ν| for ν ∈ [νmin, νmax] which means that it is
monotone in this region. This can also be seen in Fig. 1, which additionally shows that P2 is
less dissipative than HLL, especially for ν ≈ 0. The dissipation function dP2(ν) can be written
in the simple form

dP2(ν) = dHLL(ν) + α(ν − νmin)(ν − νmax), (14)
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Figure 1: Scalar, non-dimensional dissipation functions of different Riemann solvers.

with

α =
νmax − νmin −

∣∣|νmax| − |νmin|
∣∣

(νmax − νmin)2
. (15)

4.2 P ω
2 - Beyond Monotonicity

The main idea of P ω
2 is to construct a quadratic dissipation function, in the form of P2. This

new function shall be closer to the absolute value function, i.e. the upwind scheme, for all
waves λi (and thus for all νi) of the hyperbolic system. Since we do not want to increase neither
the number of input information, nor the number of flux evaluations, we lower the dissipation
function by a certain amount. This amount is described by a parameter ω ∈ [0, 1], which
determines the monotonicity behavior of the solver. For ω = 0 we recover the monotone P2

solver, and for ω = 1, the non-monotone Lax-Wendroff solver. All intermediate members of
the P ω

2 family are slightly non-monotone for a certain range of waves. However, we show in
this section that under some mild assumptions, the results do not show spurious oscillations.

4.2.1 Monotonicity Study

Before we introduce this family of Riemann solvers, we state and validate some observations
made by Torrilhon [9]. Firstly, it was perceived that the MUSTA fluxes introduced by Toro [7]
slightly drop below the upwind flux, which means that they do not fully lie in the monotonicity
preserving region. Thus, as expected, the numerical solutions obtained with MUSTA fluxes
show some non-monotone behavior. However, this behavior is far from the oscillations created
by the Lax-Wendroff scheme. Additionally, the observed oscillations of MUSTA solutions
decay in time and disappear after a certain number of time steps, cf. [9, Fig. 5, p. A2084].
These results are essentially independent of the grid size.

These interesting results were observed for a dissipation function which slightly drops be-
low the absolute value function. Let us introduce the dissipation function dω(ν), which is the
weighted average of the dissipation functions of the monotone upwind scheme and the non-
monotone Lax-Wendroff scheme,

dω(ν, ω) = ω dLW(ν) + (1− ω) dup(ν) ω ∈ [0, 1]. (16)

For ω = 0 we recover the monotone upwind scheme dω=0(ν) = dUP (ν) and for ω = 1, dω=1(ν) =
dLW (ν) holds true. Fig. 1 shows dω(ν, ω) for ω = 0.3.

The aim of this section is to study the monotonicity behavior of dω(ν) and produce similar
effects as studied in [9]. Let us therefore investigate the solutions of the numerical flux function
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(a) Maximum value of the solution u as a
function of the number of time steps. (b) Zoom of the solution for different ω.

Figure 2: Test case with initial condition sign(x) on x ∈ [−1, 1] with n = 200 grid cells,
CFL = 0.5, and end-time Tend = 0.25, which corresponds to 50 time steps.

Eq. (5) with Eq. (16) for different values of ω. The test problem is the scalar transport equation
ut + ux = 0 with initial condition u0(x) = sign(x) on the interval [−1, 1]. The jump evolves
with time on a grid with n = 200 grid cells until Tend = 0.25. The Courant number is set to
CFL = 0.5, which shows the maximal deviation of Lax-Wendroff from Upwind.

The numerical results for all tested values of ω are shown in Fig. 2b. It can be easily seen, that
ω = 0 and ω = 1 correspond to the upwind and the Lax-Wendroff schemes. That is, for ω = 1
we can observe the well-known oscillations. As ω decreases, the oscillations also decrease and
for ω ≤ 0.4 no oscillations can be seen anymore. This can also be seen in Fig. 2a, which shows
the maximum value of the solutions u depending on the number of time steps. Here, 50 time
steps correspond to Tend = 0.25. This figure shows that the oscillations, which appear in the
Lax-Wendroff scheme do not decrease over time. However, as soon as the monotone upwind
scheme has enough weight, the oscillations start decreasing over time. This phenomenon can
be explained by looking at the modified equations [4] of upwind, Lax-Wendroff and the their
weighted average. In the modified equation of the latter, the diffusive upwind term remains
the dominant term. This avoids the creation of oscillations caused by the Lax-Wendroff disper-
sion term, when this term has enough weight. More details on the modified equations will be
presented in future work.
dω(ν, ω) could also be used as a limiter function, increasing ω in smooth parts of the solution

and setting it to 0 (i.e. recovering the upwind solver) when discontinuities are encountered.

4.2.2 HLLω

Based on the findings above, let us define a Riemann solver which is a modification of HLL
with less dissipation. We shall call this solver HLLω. In the same way HLL is constructed
[3, 8], the dissipation function of this solver is of the form dHLLω(ν) = b0 + b1ν. Here, the
coefficients depend on ω, i.e. b0 = b0(ω), b1 = b1(ω). Additionally, instead of intersecting with
the absolute value function at νmin and νmax, HLLω fulfills the following constraints:

dHLLω(νmin) = dω(νmin), dHLLω(νmax) = dω(νmax). (17)

The dissipation function is shown in Fig. 1, where it is well-visible, that HLLω is less dissipative
than HLL and is non-monotone for some wave speeds.
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4.2.3 P ω
2

Now we can come back to the aim of this section, the construction of a new family of
approximate Riemann solvers - P ω

2 . The dissipation functions of these solvers are similar to
dP2 , only closer to the absolute value function for all emerging wave speeds of the system. The
dissipation functions are given by

dPω
2

(ν) = dHLLω(ν) + β(ν − νmin)(ν − νmax), (18)

with

β = ω + (1− ω)
νmax − νmin −

∣∣|νmax| − |νmin|
∣∣

(νmax − νmin)2
. (19)

Note that β = ω + (1 − ω)α, with the P2 coefficient α (15). Thus, it is easy to verify that for
ω = 0, the monotone P2 solver is recovered.

It can be seen in Fig. 1 that P ω
2 is less dissipative than HLL and P2. However, it does not fully

lie in the monotonicity preserving region, thus, one would expect some non-monotone behavior.
Nevertheless, we observe that oscillations appearing close to discontinuities disappear after a
certain number of time steps. Thus, the final result obtained with P ω

2 is non-oscillatory.
The choice of ω remains problem-dependent. However, ω ≤ 0.5 turned out to be a good

choice and will be used in the following.

5 NUMERICAL RESULTS - APPLICATION TO IDEAL MHD

We will apply the new family of Riemann solvers to the equations of ideal magnetohydro-
dynamics (MHD) and compare it to other solvers. Ideal MHD describes the flow of plasma,
assuming infinite electrical resistivity. The equations of ideal MHD in one-dimensional pro-
cesses read

∂t


ρ
ρvx
ρvt

Bt

E

+ ∂x


ρvx

ρv2x + p+ 1
2
B2

t

ρvxvt −BxBt

vxBt −Bxvt

(E + p+ 1
2
B2

t )vx −BxBt · vt

 = 0 (20)

with density ρ, normal and tangential velocities vx, and vt = (vy, vz), respectively. The normal
magnetic field Bx is constant in the one-dimensional case, the tangential magnetic field is Bt =
(By, Bz) and the energy E is given by

E =
1

γ − 1
p+

1

2
ρ(v2x + v2

t ) +
1

2
B2

t (21)

in terms of the pressure p. The adiabatic constant γ is set to 5/3. Since the normal mag-
netic field Bx is constant, system (20) contains seven equations for the seven unknowns, U =
(ρ, vx,vt, p,Bt), exhibiting seven characteristic velocities, and therefore can be considered as
a large system of conservation laws.

Let us consider the Riemann problem given by

U0(x) =

{
UL = (3, 0, (0, 0), 3, (1, 1)) if x < 0

UR = (1, 0, (0, 0), 1, (cos(1.5), sin(1.5))) if x ≥ 0,
(22)
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(a) Density profile for different solvers. (b) Zoom of the slow shock around x = 1.3.

Figure 3: Solution of the ideal MHD equations (20) with initial conditions (22) in the domain
x ∈ [−4, 4] with n = 300 grid cells, CFL = 0.9, ∆t = 0.01, and end time Tend = 1.0.

and Bx = 1.5. The computational domain is [−4, 4], and the solutions depicted in Fig. 3
have been obtained with N = 300 grid cells, CFL number 0.9, ∆t = 0.01, and end time
Tend = 1.0. Fig. 3a shows the solution of the density profile obtained with HLL, P2 and P ω

2 ,
ω = 0.3, 0.5. The exact solution has been obtained by [10]. Fig. 3b shows a zoom of the slow
right moving shock at x = 1.3, where the resolution of all solvers can be nicely compared. It
can be stated that P2 increases the resolution compared to HLL, causing a steeper gradient. P ω

2

further increases the steepness of the gradient for increasing ω, due to decreasing dissipation.
This effect is present in an even stronger form at the contact discontinuity, which corresponds
to a slower wave. At the fast shock, the differences between the solutions of the four solvers
are less significant, because this discontinuity relates to a larger wave speed λ. This observation
corresponds well to Fig. 1, where we showed that the differences of the discussed dissipation
functions are larger for slower waves.

6 CONCLUSIONS

This paper presented a family of approximate hybrid Riemann solvers, P ω
2 , for non-linear

hyperbolic systems of conservation laws. The solvers do not require the characteristic decom-
position of the flux Jacobian, only an estimate of the maximal propagation speeds in both di-
rections is needed. The family of solvers contains a parameter ω which orders the solvers from
fully-monotone to fully non-monotone. The intermediate solvers contain monotone as well as
non-monotone parts. We showed that these intermediate family members, even though contain-
ing non-monotone parts for certain wave speeds, do not lead to oscillatory solutions.

Extremely slow waves and stationary waves will still be approximated with higher dissi-
pation than the upwind scheme, however, the computational cost of the new solvers is lower.
Compared to solvers with similar prerequisites, the new Riemann solvers are able to rigorously
decrease the dissipation of the scheme.

The numerical examples underline the excellent performance of the new family of solvers
with respect to other solvers.
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Abstract. The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method
which combines the advantages of the Boundary Element Method (BEM) and the Finite Element
Method (FEM). Like in the BEM, only the boundary needs to be discretized. On the other hand,
the SBFEM is based on the virtual work principle and does not need any fundamental solutions.
If the scalability condition is fulfilled, a separation of variables representation can be employed
leading to a quadratic eigenvalue problem and a linear equation system which can be solved by
standard methods. The SBFEM has proven its high efficiency and accuracy in the presence of
stress singularities, especially in 2D fracture mechanics when the singularity is entirely located
within the considered domain.

However, in 3D elasticity problems, there can also be singularities on the discretized bound-
ary itself. Then, the SBFEM suffers from drawbacks also well known from the standard FEM,
i.e. moderate accuracy and bad convergence. To overcome these deficiencies in such 3D cases,
we propose the enrichment of the standard separation of variables representation with analyti-
cal fields which are known to exactly fulfill the local boundary conditions:

u = N(η1, η2)u(ξ)︸ ︷︷ ︸
standard

+ F(r, ϕ)a(ξ)︸ ︷︷ ︸
enrichment

. (1)

The examples of a single plane crack and two perpendicularly meeting cracks in an isotropic
continuum are considered. It is demonstrated that the method’s original excellent accuracy
and convergence are regained, at a minimum cost of additional degrees of freedom (DOF). The
normalized errors in the solution of the quadratic eigenvalue problem already become negligibly
small for very coarse boundary meshes. The obtained convergence orders are often optimal and
sometimes even superconvergence is observed.
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1 INTRODUCTION

This work is concerned with the efficient numerical solution of three-dimensional boundary
value problems of linear elasticity which involve stress singularities. Stress singularities in lin-
ear elasticity theory involve infinite stresses and strains at certain points or lines which typically
represent discontinuities of geometry (e.g. cracks and notches), material (e.g. multi-material
junctions) or loading. Although such singularities cannot actually occur in a real material as
they are locally reduced by non-linear deformations, in brittle materials, their near-field still is a
good approximation to the real stress and displacement fields (e.g. already in 1927 their occur-
rence was considered by Knein [19] because he found his pressure test blocks to unexpectedly
often fail at the corners instead of their center). Usually, as e.g. by Williams [38], the near-field
solution at a singular point for the displacements and stresses respectively is represented by a
power law function series of the kind

u(r, ϕ, ϑ) =
∞∑
j=1

cujr
λjφ

uj
(ϕ, ϑ) , σ(r, ϕ, ϑ) =

∞∑
j=1

cσjr
λj−1φ

σj
(ϕ, ϑ) (2)

given in spherical coordinates r, ϕ, ϑ. Here, λj are complex exponents, φ
uj

are vector and Φ
σj

are tensor functions of the angle coordinates ϕ and ϑ. Line singularities can be similarly repre-
sented in e.g. cylindrical coordinates. The free constants cuj respectively cσj are determined by
conformance to the boundary conditions.

It is considerably more difficult to find solutions for three-dimensional boundary value prob-
lems containing singularities than for two-dimensional ones. This resulted in the development
and application of appropriate numerical (e.g. FEM [44]) but also semi-analytical methods
(e.g. [6, 28, 4]). The probably most employed semi-analytical method for such elasticity prob-
lems is the FEM eigenanalysis, which has been used by a number of researchers for several
2D (e.g. [40, 42, 15, 30, 34, 43]) and 3D applications (e.g. [5, 32, 24, 13, 31, 9, 20, 26, 18]).
The FEM eigenanalysis is based on the approximation of the displacements by a separation of
variables representation with FE-shape functions in the circumferential direction, i.e. only the
boundary needs to be discretized. This representation is substituted in the Galerkin method gen-
erally leading to a Cauchy-Euler differential equation system of second order. This, in turn, can
be transformed into a quadratic eigenvalue problem. The solution of the quadratic eigenvalue
problem yields approximations for the quantities λj and φ

uj
in eq. (2) but not for the free con-

stants cuj , which would be necessary to solve the complete boundary value problem. Generally,
the solution of the complete quadratic eigenvalue problem is computationally expensive which
practically was the main reason that the method was hardly used for the solution of complete
boundary value problems.

The Scaled Boundary Finite Element Method (SBFEM) [34, 8, 39] is a variant of the FEM
eigenanalysis technique. To the authors’ knowledge, it was the first used to solve complete
boundary value problems, but only for 2D situations. Its striking advantages in the treatment of
2D boundary value problems with stress singularities were consequently exploited (e.g. [33])
up to the development of codes which automatically predict crack growth ([41, 29, 7]). For 3D
situations, it has lately been used e.g. by the current authors in [16].

A major challenge of the SBFEM in 3D situations containing singularities is that its accuracy
and convergence properties suffer when line singularities reach the boundary mesh, meaning
a loss of the method’s initial advantages in the treatment of boundary value problems with
singularities. Indeed, this is a phenomenon which also is well-known in the standard FEM
(e.g. [35, 44]) and the usual remedy is a graded mesh with a strong refinement towards the
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singularity. This approach has also been used for the FEM eigenanalysis (e.g. [2]) but still led
to linearized eigenvalue problems so large that a complete solution with the QR-algorithm was
avoided.

The QR-algorithm is computationally very expensive as its computational effort grows cubi-
cally with the number of degrees of freedom (DOF). But in return, it gives the complete set of
eigenvalues and eigenvectors needed for the solution of the complete boundary value problem.
Other solution methods for the quadratic eigenvalue problem, which have been implemented
(e.g. [9]), are a lot more efficient but only partly solve the eigenvalue problem, i.e. they only
give a small set of eigenpairs or only give the eigenvalues but not the eigenvectors. Thus,
they can compensate the reduced convergence and accuracy with a strong refinement of the
boundary mesh around the singularity but cannot be used to solve the complete boundary value
problem. Consequently, an approach making it possible to still solve the complete eigenvalue
problem while increasing the accuracy of the eigenpairs at a minimum cost of additional DOF
is sought-after.

To the authors’ knowledge, Lee and Im [23] have been the only ones engaged in this venture
so far. They used simple quarter-point element formulations [17] to resolve a classical crack
singularity on the boundary mesh. As this approach is limited to the classical crack singularity
order, we propose a more general approach based on an enrichment of the separation of variables
approach for the displacement field. In the past 20 years, such enrichment approaches have
been intensely studied in the framework of the XFEM introduced by Belytschko and coworkers
[10, 12]. From this stock of knowledge, we selected the DOF-efficient plateau method [22] in
conjunction with blending element formulations [11, 37] and Fleming’s decomposition of the
crack tip near-field [10] for our implementation.

In section 2, the prerequisites of the newly developed method are presented. In section 3, its
advantages regarding accuracy and convergence are demonstrated for the generic examples of
a simple crack [1, 25] and two meeting cracks in a homogeneous isotropic cube [16]. Section 4
contains the major conclusions of our analyses.

2 THE SCALED BOUNDARY FINITE ELEMENT METHOD WITH ENRICHED DIS-
PLACEMENT REPRESENTATIONS

Our three-dimensional SBFEM formulation (cf. [39], [16]) with an enriched displacement
field is based on the virtual work principle

δWi =

∫
V

σ : δε dV =

∫
V

f ∗ · δu dV +

∫
St

t∗ · δu dA = δWa (3)

in which σ, δε, f ∗, δu, t∗ are the stress tensor, the virtual strain tensor, body forces, virtual dis-
placements and prescribed boundary tractions respectively. δWi is the internal and δWa the
external virtual work. V is the volume of the considered domain and St the part of the domain’s
boundary with prescribed traction boundary conditions. We write stresses and strains in vector
notation σ and ε and use a differential operator L

LT =

 ∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0

 (4)
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ϕ
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z
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scaling
rays

Figure 1: Plane, 4-node scaled boundary finite element forming a square-based pyramid (scaling center S with
ξ = 0 at origin of a global cartesian coordinate system x, y, z). An isoparametric scaled boundary coordinate
system ξ, η1, η2 and a conical coordinate system ξ, r, ϕ are present, the latter such that r = 0 at the crack front
(singularity line) and ϕ = ±π at the crack faces. Enriched nodes are circled in red.

such that the equilibrium equations and strain-displacement relations can be written in matrix
form

σij,j + fj = 0 → LTσ + f = 0 (5)
εij = (ui,j + uj,i)/2 → ε = Lu (6)

with i, j = 1, 2, 3. The latter relation is equally valid for the virtual displacements and strains.
Furthermore, linear material behavior in the form of Hooke’s law with the elasticity tensor in
matrix notation C is assumed:

σ = C ε. (7)

The kinematic relations (6) and Hooke’s law (7) are used in the virtual work principle (3) such
that it can be given in terms of the displacements u and virtual displacements δu:∫

V

δuTLTC Lu dV =

∫
V

δuTf dV +

∫
St

δuTt∗ dA. (8)

A fundamental prerequisite in the application of the SBFEM is that the considered elastic-
ity problem is geometrically scalable, i.e. it must be possible to connect any point on a simply
connected boundary to a chosen scaling center by a straight line (scaling ray), without this line
meeting the boundary at any other point. An exception only is possible if the scaling center
itself is located on the boundary and a scaling ray coincides with the boundary. In fact, this
exceptional case is beneficially exploited in the analysis of cracks, V-notches and multimate-
rial corners. However, if the scalability condition is fulfilled, the displacement field can be
expressed by a separation of variables representation. In the standard SBFEM for bounded do-
mains (only one simply connected, outer boundary as it is exclusively considered within this
work), the boundary is discretized creating pyramidal scaled boundary finite elements (SBFE).
For each SBFE, an isoparametric formulation with a scaled boundary coordinate system is intro-
duced (Fig. 1). The scaling coordinate ξ runs from the scaling center (ξ = 0) to the discretized
boundary (ξ = 1). The boundary coordinates η1, η2 specify the position on the discretized
boundary (η1, η2 ∈ [−1, 1]) each being zero at the center of the SBFE. This coordinate system
is not necessarily orthonormal. Then, the approximated displacement field ũ(e)

st of a standard
SBFE e is represented as

ũ
(e)
st (ξ, η1, η2) = N(η1, η2)u

(e)
n (ξ) (9)

8069



Sascha Hell and Wilfried Becker

with 2D-element-shape-functions N(η1, η2) and nodal displacement functions u(e)
n (ξ) on the

scaling rays of the boundary nodes (ξ ∈ [0, 1]). Unless stated otherwise, the following deriva-
tions all apply to a single SBFE e. So from now on, the labeling (·)(e) is omitted for brevity.

Our proposition is to enrich this separation of variables representation (9) by an additional
field to better fulfill local boundary conditions at discontinuities, e.g. at crack faces:

ũ(ξ, η1, η2) = ũst(ξ, η1, η2) + ũenr(ξ, η1, η2). (10)

It is often advantageous to define a new conical coordinate system ξ, r, ϕ for this additional
field. Its origin is placed at the scaling center as well and ξ again is the scaling coordinate.
The scaled distance from the considered singularity line is denoted by r, while ϕ represents
the angular coordinate. This coordinate system again is not necessarily orthonormal. Then, the
separation of variables representation for the enriched field can be written in conical coordinates

ũenr(ξ, r, ϕ) = F(r, ϕ)a(ξ). (11)

with the enrichment functions F(r, ϕ) and their free coefficients a(ξ) which can be functions
of the scaling coordinate. The coordinates r, ϕ can also be given in terms of the boundary
coordinates η1, η2 if and only if the r, ϕ-plane and the η1, η2-plane are identical.

To be able to use the resulting enriched separation of variables representation in the virtual
work principle (8), the differential operator L needs to be partitioned into the partial differential
operators of the introduced coordinate systems.

L = Lx
∂

∂x
+Ly

∂

∂y
+Lz

∂

∂z
= Lξ

∂

∂ξ
+Lη1

1

ξ

∂

∂η1
+Lη2

1

ξ

∂

∂η2
= Lξ

∂

∂ξ
+Lr

1

ξ

∂

∂r
+Lϕ

1

ξr

∂

∂ϕ
(12)

The partial differential operators Lx,Ly,Lz of the cartesian coordinate system and the corre-
sponding Jacobi matrices Jη,Jrϕ are used to determine the partial differential operators Lξ, Lη1 ,
Lη2 , Lr, Lϕ of the conical and the scaled coordinate system. Lξ happens to be identical for the
conical and the scaled boundary coordinate system if the boundary is plane.

In the general case, the scaling center is located at certain coordinates x0 in a global cartesian
coordinate system x, y, z. Then, the cartesian coordinates can be expressed in terms of the
scaled boundary coordinates

x = x0 + ξ xη(η1, η2) (13)

and in terms of the conical coordinates

x = x0 + ξ xrϕ(r, ϕ) (14)

where both xη(η1, η2) and xrϕ(r, ϕ) denote the coordinates on the boundary (ξ = 1). These two
equations describe the coordinate transformations needed for the determination of the Jacobi
matrices. In this notation, the Jacobi matrices Jη(η1, η2) and Jrϕ(r, ϕ) are functions of only the
boundary coordinates so that the volumetric differential can be written as

dV = dx dy dz = ‖Jη(η1, η2)‖ ξ2 dξ dη1 dη2 = ‖Jrϕ(r, ϕ)‖ ξ2r dξ dr dϕ. (15)

Before the enriched displacement field approximation (10) is substituted in the virtual work
principle (8), some terms of the differential operator and the enriched displacement field ap-
proximation should be combined. We distinguish between the standard SBFEM part of the dis-
placement field approximation (9) and the enriching part (11). The shape functions N(η1, η2)
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in eq. (9) are combined with the partial differential operators of the scaled boundary coordinate
system, resulting in the matrices Bst

ξ (η1, η2),B
st
η (η1, η2).[

Lξ
∂

∂ξ
+ Lη1

1

ξ

∂

∂η1
+ Lη2

1

ξ

∂

∂η2

]
N(η1, η2) = Bst

ξ (η1, η2)
∂

∂ξ
+ Bst

η (η1, η2)
1

ξ
(16)

On the other hand, the enrichment functions F(r, ϕ) in eq. (11) are combined with the partial
differential operators of the conical coordinate system, resulting in the matrices Benr

ξ (r, ϕ) and
Benr
rϕ (r, ϕ). [

Lξ
∂

∂ξ
+ Lr

1

ξ

∂

∂r
+ Lϕ

1

ξr

∂

∂ϕ

]
F(r, ϕ) = Benr

ξ (r, ϕ)
∂

∂ξ
+ Benr

rϕ (r, ϕ)
1

ξ
(17)

Restructuring of the matrices leads to the following formulation of the product of the differential
operator and the enriched displacement field approximation ũ (strain field approximation ε̃,
cf. eq. (6):

(ε̃ =) L ũ(ξ, η1, η2) =

( [
Bst
ξ

Benr
ξ

]
︸ ︷︷ ︸
Bξ(η1,η2)

∂

∂ξ
+

[
Bst
η

Benr
rϕ

]
︸ ︷︷ ︸
Bη(η1,η2)

1

ξ

)[
un(ξ)
a(ξ)

]
︸ ︷︷ ︸
unc(ξ)

(18)

with both coordinates r and ϕ being expressed in terms of η1 and η2. The vectorunc contains the
complete set of degrees of freedom on the boundary. Analogously, its virtual counterpart will be
denoted δunc. As it is assumed that this approximation also holds for the virtual displacements,
the internal virtual work can be written as

δWi =

∫
V

[
δuT

nc,ξ BT
ξ + δuT

nc BT
η

1

ξ

]
C

[
Bξ unc,ξ + Bη unc

1

ξ

]
dV (19)

This expression is identical to the standard SBFEM derivation except for the divergent formula-
tion of the matrices Bξ and Bη. Expansion of the product and integration by parts over ξ results
in an expression which can be integrated separately. Integration over the boundary coordinates
η1, η2 yields the matrices

E0 =

∫
Sξ

BT
ξ (η1, η2) C Bξ(η1, η2) ‖Jη(η1, η2)‖ dη1 dη2,

E1 =

∫
Sξ

BT
η (η1, η2) C Bξ(η1, η2) ‖Jη(η1, η2)‖ dη1 dη2,

E2 =

∫
Sξ

BT
η (η1, η2) C Bη(η1, η2) ‖Jη(η1, η2)‖ dη1 dη2.

(20)

Sξ denotes the discretized boundary with constant scaling coordinate ξ. A numerical integration
procedure is implemented but attention has to be paid that a sufficiently high integration order
is used to account for the enrichment functions. In fact, we distinguish between integration of
the purely standard SBFEM parts of the matrices, for which we can use appropriate low order
Gauss integration schemes, and all other parts which also depend on the enrichment functions.

Nevertheless, we omitted special integration schemes otherwise used in literature (e.g. [22,
27, 37]) because we already achieved adequate accuracy with a simple high order Gauss in-
tegration. However, more sophisticated integration schemes surely would further improve the
numerical efficiency.
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If the considered boundary value problem involves more than one SBFE, which generally
is the case, the element matrices E0,E1,E2 are similarly assemled like the element stiffness
matrices in the standard Finite Element Method (FEM [44]). Then, they are substituted in the
internal virtual work yielding one integral term and one boundary term which is to be evaluated
at the boundaries ξ = 0 and ξ = 1.

−
∫ 1

0

δuT
nc(ξ)

[
ξ2E0unc(ξ),ξξ + ξ

[
2E0 − E1 + ET

1

]
unc(ξ),ξ +

[
ET

1 − E2

]
unc(ξ)

]
dξ

+ δuT
nc(ξ)

[
ξ2E0unc(ξ),ξ + ξET

1unc(ξ)
]1
ξ=0

= δWi (21)

If it is assumed that virtual external work terms are nonzero only at the discretized boundary Sξ
(i.e. stress free boundary conditions at all other boundaries), these terms are independent of the
scaling coordinate so that they only interact with the boundary term of the internal virtual work.
Then, the virtual work principle is fulfilled if the integrand of the integral term in the internal
virtual work is zero on the one hand, which yields a homogeneous Cauchy-Euler differential
equation system of second order. On the other hand, all remaining terms in the virtual work
principle form a linear equation system for enforcing the boundary conditions at the discretized
boundary Sξ.

Cauchy-Euler differential equation systems can be solved using standard methods leading to
a quadratic eigenvalue problem with eigenvalues λ and eigenvectors φ.(

λ2E0 + λ
[
E0 − E1 + ET

1

]
+
[
ET

1 − E2

])
φ = 0 (22)

We solve the quadratic eigenvalue problem by, first, transforming it into a linear one at the cost
of doubling the degrees of freedom, and second, applying the QR-algorithm implemented in the
eig() function in the numerical mathematics software MATLAB.

If the solution does not contain any Jordan blocks, i.e. the geometric multiplicity of all the
eigenvalues is equal to their algebraic one, the solution can be written as

unc(ξ) = Φ ξλ c (23)

with ξλ being a diagonal matrix with entries ξλi and c being a vector of free constants which are
to be determined from the linear equation system for the boundary conditions at Sξ. The matrix
Φ contains all eigenvectors φi, which in turn comprise the nodal boundary displacements and
the enrichment functions’ coefficients at the discretized boundary Sξ.

Interpreting the eigenvectors φi as deformation modes and the eigenvalues λi as their asso-
ciated decay rates, this representation just matches the power series representation (2) for 3D
boundary value problems containing singularities.

3 NUMERICAL RESULTS AND DISCUSSION

Next, we present some results that we obtained using this newly developed method. First, the
situation of a simple crack in an isotropic homogeneous material is considered as a benchmark
example before we proceed to the more complex structural situation of two meeting cracks as
it has been studied in [16].

In both cases, a cubic domain containing the discontinuities is modeled as depicted in fig. 2.
Only the boundary is discretized and plane 4- or 8-node SBFEs with linear or quadratic shape
functions respectively are used. The scaling center is located at the cube’s center and the cracks
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(a) (b)
Figure 2: SBFE boundary meshes of cubes consisting of plane, 4-node SBFEs with (a) one crack (shaded) and (b)
two meeting cracks. Enriched nodes are circled (red). Cracks are modeled using double nodes. The scaling center
S is placed at the cube’s center.

are modeled by inserting double nodes where a crack breaks the boundary. Consequently, the
crack just reaches the scaling center and the crack front coincides with scaling rays. This also
means that, contrary to the common practice in the popular XFEM which involves similar crack
enrichments, the cracks are located between the elements instead of within them and there is no
need for Heavyside enrichments.

The only enrichment functions needed are based on the classical crack tip near-field (e.g. [1,
14]). We adopt the decomposition of Fleming et al. [10]:

F(r, ϕ) =
√
r · [sin(ϕ/2), cos(ϕ/2), sin(ϕ/2) sin(ϕ), cos(ϕ/2) sin(ϕ)]. (24)

Only nodes close to a crack front breaking through the boundary are enriched. For saving
degrees of freedom (DOF) in the quadratic eigenvalue problem, which is essential for the nu-
merical efficiency of its solution, the plateau method, e.g. used by [22, 11, 37], is adopted. In
this method, all enriched nodes in the domain of influence of one crack tip are constrained to
the same enrichment function coefficients, leading to only 4 additional DOF per dimension and
per crack tip. In our formulation, it does not have to be accounted for crack tips but for locations
where the crack front meets the boundary, leading to only 4 · 3 · 2 = 24 additional DOF per
crack.

As only certain domains and not all nodes are enriched, so-called blending elements are also
needed. We follow the implementation of [11, 37] and denote the set of all nodes of one element
N and the set only containing the element’s enriched nodes P . Furthermore, the values of the
enrichment functions at the nodes are subtracted from the enrichment so that the functionsun(ξ)
remain the actual displacement functions at the scaling rays. Then, the complete separation of
variables representation for the displacements in index notation can be written as

ũi(ξ, η1, η2) =
∑
k∈N

Nk(η1, η2) ũik(ξ) +

∑
l∈P

Nl(η1, η2)

[
nF∑
m=1

(
Fm(r, ϕ)−

∑
k∈N

Nk(η1, η2)Fm(rk, ϕk)

)
aim(ξ)

] (25)
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Figure 3: Deformation modes of a crack in an isotropic continuum for eigenvalues λ = 0.5 (1st line) and λ = 1.5.
1st line: classical crack modes I, II and III [1]. 2nd and 3rd line: modes IV, V, VI and VII,VIII,IX.

with i = 1, 2, 3 and nF being the number of enrichment functions (here: nF = 4). The coeffi-
cients of un(ξ) are simply denoted ũik(ξ). The quantities rk and ϕk are the coordinates of the
respective element nodes.

In fact, all elements on a cube face exhibiting a boundary breaking crack front contain en-
riched nodes and, consequently, require high order integration. Of course, the effect of the high
integration order on the computational effort for the numerical integration is significant. For ex-
ample, the computation time on a standard desktop PC (without exploiting any parallelization
techniques), increases from 1.3 seconds (all elements with low order integration) to 9.3 seconds
(high order integration at two cube faces) for a cube with 6 elements along each edge. But
due to the increasing dominance of the computational effort necessary for solving the quadratic
eigenvalue problem, the effect of the high integration order on the overall computational effort
fades out with increasing mesh density.

The effect of the enrichment on the computational effort for solving the quadratic eigenvalue
problem quickly becomes negligible as the number of elements ne along each edge of a cube is
increased because the enrichment for one crack only adds 24 DOFs while a standard SBFEM
approach for a cube with one crack and ne = 6 already results in [(6n2

e+2)+(2ne−1)]·3 = 687
DOF (ne = 10: 1863 DOFs; ne = 20: 7323 DOFs). On a standard desktop PC, the solution
of the linearized quadratic eigenvalue problem using MATLAB’s eig() function (QR-algorithm
implementation) takes about 2.5 seconds for ne = 6 but already about 42 seconds for ne = 10
and 1655 seconds for ne = 20. This, again, strongly emphasizes the need for a DOF-efficient
formulation and implementation.

3.1 Crack in isotropic homogeneous continuum (benchmark example)

The benchmark example of an isotropic homogeneous continuum containing a single plane
crack is considered (fig. 2a)) [1, 14]. In the three-dimensional solution, there are the three
classical singular deformation modes with λ = 0.5 and six deformation modes with λ = 1.5.
Please note, that three of the six deformation modes with decay rate λ = 1.5 cannot be found
by a two-dimensional SBFEM analysis as they involve a displacement variation in the direction
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(d)
Figure 4: Convergence of some eigenvalues λi using the standard (a,b) and the enriched SBFEM (c,d), both with
uniform meshing and linear 4-node SBFE (C4) (cf. fig. 2a). Plots (a,b) contain the classical crack modes I (red),
II (blue) and III (black). Plots (c,d) contain the deformation modes IV (red), V (blue), VI (black), VII (magenta),
VIII (cyan) and IX (green).

of the crack front (cf. fig. 3, 3rd line, deformation modes VII, VIII, IX).
In double logarithmic plots, fig. 4 shows the relative error of the calculated eigenvalues λi

from the quadratic eigenvalue problem solution (22) to the analytical values of 0.5 and 1.5 for a
uniform meshing with ne = 2, 4, 6, 8, 10, 12, 14, 16 and 20 elements with linear shape functions
(C4). As the computational effort quickly increases with an increasing number of DOF in the
quadratic eigenvalue problem, computations with higher mesh densities were avoided. Yet at
a glance, it can be seen that the enrichment of the displacement field leads to a tremendous
reduction of the approximation error of the considered eigenvalues. Indeed, the relative error
is reduced by several orders of magnitude, even for very low discretization levels: while the
standard formulation with ne = 20 elements along each edge of the cube and a computation
time of about 30 minutes is not even capable of pushing the error in the singular modes below
1% (fig. 4a), the enriched formulation already attains an error < 0.1% for a discretization with
only ne = 4 and an overall computation time of 5 seconds (fig. 4c). It is to be noted that
ne = 4 actually is the lowest discretization which fully benefits from the enrichment because the
discretization with ne = 2 only contains blending and standard elements but no fully enriched
ones.

The convergence orders mostly are considerably improved as well. However, at very low rel-
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deformation mode I II III IV V VI VII VIII IX
mλ SBFEM (C4) 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 1.0

mλ enrSBFEM (C4) 1.6 1.6 1.1 2.0 2.1 1.9 2.0 1.8 2.2

Table 1: Comparison of the approximated convergence orders mλ of the standard (SBFEM) and the enriched
formulation (enrSBFEM) with linear shape functions (C4) for considered deformation modes.

ative errors an improvement seems difficult, especially because the convergence is not always
monotonic and only comparably low mesh densities were considered. Especially in the case
of crack mode II (fig. 4c blue line and dots), we expect a further increase of the approximated
convergence order with decreasing element size. Table 1 gives the approximated convergence
orders mλ of the eigenvalues λi. They were approximated from the last few values using a
fitting procedure. The convergence orders achieved by the standard SBFEM formulation do not
reach the optimal convergence order of mopt

λ = 2 (e.g. [2]) for most of the considered defor-
mation modes. For deformation modes I to III and VII to IX, we get the reduced convergence
order of mλ ≈ 1 which indeed is the expected value when a singularity of order 0.5 is present
on the mesh. Surprisingly, for the deformation modes IV, V and VI, which contrary to the
deformation modes VII, VIII, IX also occur in a 2D SBFEM analysis, optimal convergence is
achieved anyway but we do not have an explanation for this observation so far. However, the
enriched formulation achieves about optimal convergence for all deformation modes IV to IX.
For the deformation modes I to III, the convergence order is smaller but the relative error of the
eigenvalues is of an almost negligible order of magnitude anyway.

Fig. 5 shows the relative error of the calculated eigenvalues λi from the quadratic eigenvalue
problem solution (22) for a uniform meshing with 2, 4, 6, 8, 10 and 12 elements ne along the
edge of the considered cube with quadratic shape functions (C8). A uniform mesh with ne = 12
already accounts for [(18n2

e + 2) + (4ne−1)] ·3 = 7923 DOF and a computation time of almost
one hour for solving the complete eigenvalue problem. Thus, no finer meshes were considered,
here. For SBFE with quadratic shape functions, an optimal convergence order of mopt

λ = 4 is
expected but not achieved for any eigenvalue or formulation considered. In the cases for which
optimal convergence was achieved with linear shape functions (C4), now, the convergence order
is bounded by the decay rate of the next two-dimensional deformation mode on the meshed
plane which cannot be resolved by a polynomial. This is the decay rate and eigenvalue λ = 1.5
resulting in a maximum convergence order of mλ = 3 as long as this deformation mode is not
included in the enrichment. Nevertheless, wherever this increased convergence rate is achieved,
there also is a considerable gain in accuracy. Otherwise, the error reduction may seem rather
small when discretizations with the same number of nodes along each edge of the cube are
compared. But there is an additional gain in efficiency as the employed serendipity elements
(C8) have only 8 nodes instead of 9 and, thus, less DOF than a comparable mesh with 4-node
elements. Finally, it should be mentioned that, naturally, the approximation of eigenvalues
λ = 2 is distinctly superior compared to SBFE with linear shape functions (C4). Consequently,
8-node SBFE (C8) seem preferable whenever they are applicable.

Up to this point, only the error of the eigenvalues λi has been studied. We would like to
complete this section with a consideration of the quality of the eigenvectors φi, i.e. the actual
deformation modes (angular functions in eq. (2)). Here, we concentrate on the classical crack
modes, which pertain to the eigenvalue λ = 0.5. The first check involves the coefficients aim(ξ)
of the enrichment functions Fm(r, ϕ) (eq. 24). To be able to exactly reproduce the analytical
displacement fields [25, 14] given below, they must fulfill certain relations which we are going
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Figure 5: Convergence of some eigenvalues λi using the standard (a,b) and the enriched SBFEM (c,d), both with
uniform meshing and quadratic 8-node serendipity elements (C8). Plots (a,b) contain the classical crack modes
I (red), II (blue) and III (black). Plots (c,d) contain the deformation modes IV (red), V (blue), VI (black), VII
(magenta), VIII (cyan) and IX (green).

to examine in the following (cf. Table 2 column 2).

uI(r, ϕ) =
KI

2G

√
r

2π
(κ− cos(ϕ))

cos(ϕ/2)
sin(ϕ/2)

0

 mode I (26)

uII(r, ϕ) =
KII

2G

√
r

2π

sin(ϕ/2)[2 + κ+ cos(ϕ)]
cos(ϕ/2)[2− κ− cos(ϕ)]

0

 mode II (27)

uIII(r, ϕ) =
2KIII

G

√
r

2π

 0
0

sin(ϕ/2)

 mode III (28)

The shear modulus is denoted by G and Poisson’s ratio by ν. Further, it is κ = 3− 4ν for plane
strain assumptions, which, different from plane stress assumptions, make use of the full elastic-
ity tensor and are completely consistent with the governing equations of 3D linear elasticity.

For a simpler comparison, we use the following enrichment functions for our reference cal-
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required relations analytical enrSBFEM (8x8C4) relative deviation
crack mode I a12/a14 = −κ -1.8 -1.800213 +0.012%

a21/a23 = −κ -1.8 -1.799897 -0.006%
crack mode II a11/a13 = κ+ 2 +3.8 +3.802018 +0.053%

a22/a24 = κ− 2 -0.2 -0.202246 +1.123%

Table 2: Comparison of analytical and numerical coefficient relations for crack modes I and II.

culation with ne = 8 and linear shape functions (C4):

F(r, ϕ) =
√
r · [sin(ϕ/2), cos(ϕ/2), sin(ϕ/2) cos(ϕ), cos(ϕ/2) cos(ϕ)]. (29)

They are more convenient because they better conform to the analytical field (26-28) but are
still equivalent to Fleming’s approach [22]. Table 2 shows the analytical coefficient relations
and the results obained numerically for a material with a Poisson’s ratio ν = 0.3. It can be
seen that the relative deviation of the numerically obtained values from the analytical ones for
crack modes I and II is rather small. A further requirement for the exact representation of the
analytical fields of crack modes I and II is that all other coefficients should be zero. Indeed,
most of them are numerically zero and only single coefficients reach values of maximum 0.1%
(mode I) and 0.03% (mode II) of the largest coefficient pertaining to the respective crack mode.
Crack mode III only contains one analytical coefficient a31 which is none-zero, so the only
requirement resulting from this crack mode is that all other coefficients are zero, which also is
fulfilled (maximum relative deviation 0.006%).

After the comparison of the enrichment contribution of the displacement approximation,
which naturally is only valid within the enriched pyramidal parts of the cube, now, the behavior
along the crack front is considered. The left plot in Fig. 6 shows the variation of the magnitude
of the displacements of each crack mode along a path running parallel to the crack front at a
distance of 1/6 (dashed lines) and 1/3 (solid lines) of the considered cube’s edge length. The
figure for the example of ne = 6 elements along a cube’s edge with linear shape functions
(C4) is symmetric as it is to be expected. It can be seen that the variation of the magnitude of
displacements is marginal. The right plot showing the relative displacement magnitude with re-
spect to the boundary values confirms this observation as the relative deviation remains< 0.7%.
The contribution of the enrichments to the displacement magnitude is neglected. This results
in a piecewise linear form whose first (solid lines) respective second (dashed lines) section
corresponds to a blending element where the largest part of the deviation initiates.

The actual magnitude of the displacements is of minor interest as the deformation modes’
scaling indeed is arbitrary and only affects the stress intensity factors in a complete boundary
value problem which we here do not intend to solve. Under the obvious assumption that the
analytical fields are best matched within the enriched elements, it is most important, how the
displacements inside the cube deviate from those at the enriched cube faces. From the obtained
results for the rather coarse mesh, we conclude this deviation to be of negligible magnitude.

3.2 Two meeting cracks in homogeneous isotropic continuum

In this section, the more complex structural situation of two plane, perpendicularly meeting
cracks (fig. 2b) studied in [16] is revisited and the convergence behavior of the first six eigen-
values resulting in stress singularities is investigated. The associated deformation modes are
depicted and labeled in figure 7.
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Figure 6: Plot of magnitude of displacements (left) and relative deviation of the displacement magnitude with
respect to the boundary displacements (right) over a non-dimensional coordinate parallel to the crack front for
crack modes I (red), II (blue), III (black). They are given on one crack face at 1/3 (dashed lines) and 2/3 (solid
lines) of the distance of the crack front to the outer boundary for the example of ne = 6 (C4). The displacement
contribution of the enrichments is neglected.

As no analytical and, accordingly, no exact reference solution is known for this situation,
the converged values are identified by a Richardson extrapolation, i.e. a function of the type
λ = C nmλe λext is fitted to the numerical data. The quantities ne (number of elements along edge
of cube) and mλ (convergence order) have already been introduced in the previous section. The
eigenvalue approximated by the numerical procedure is denoted as λ. λext is the extrapolated
“exact” eigenvalue and C is a free constant.

deformation mode co1 co2 cs1 cs2 ct1 ct2
λext SBFEM 0.38260 0.67315 0.50749 0.50749 0.33982 0.79260

λext enrSBFEM 0.38241 0.67299 0.50775 0.50775 0.33846 0.79206
mλ SBFEM (C4) 1.0 1.2 1.0 1.0 1.2 1.0

mλ enrSBFEM (C4) 1.8 1.8 1.5 1.5 2.9 2.0

Table 3: Comparison of the identified convergence orders mλ of the standard (SBFEM) and the enriched formula-
tion (enrSBFEM) with linear shape functions (C4) for the considered deformation modes.

Table 3 shows the results from this extrapolation procedure for the standard SBFEM formu-
lation and the enriched one. It can be seen that the extrapolated eigenvalues λext in essence
coincide for both methods, but also that the associated orders of convergence differ consid-
erably. While the convergence order of the standard formulation hardly exceeds the value of
mλ = 1, this value is easily surpassed by the enriched formulation. The eigenvalue associated
to deformation mode ct1 converges considerably faster than the others. In fact, even supercon-
vergence seems to be achieved for this deformation mode but, up to date, we lack an explanation
for this phenomenon.

From fig. 8, it can furthermore be concluded that the relative error in the eigenvalues is
reduced by approximately two orders of magnitude when the enriched formulation is employed.
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co1 cs1 ct1

co2 cs2 ct2

Figure 7: Deformation modes of two plane, perpendicularly meeting cracks in a homogeneous isotropic continuum
for a cubical boundary mesh: 2 crack opening modes (co1/2), 2 crack shearing modes (cs1/2), 2 crack twisting
modes (ct1/2).
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Figure 8: Convergence of first six eigenvalues λi which result in stress singularities using the standard (a) and the
enriched SBFEM (b), both with uniform meshing and linear 4-node SBFE (C4). The corresponding deformation
modes are co1 (red line), co2 (magenta), cs1 (blue), cs2 (cyan), ct1 (black) and ct2 (green).

4 SUMMARY AND CONCLUSIONS

It was our goal to improve the efficiency of the solution of three-dimensional linear elastic
boundary value problems containing stress singularities. In the semi-analytical FEM eigenanal-
ysis techniques like the SBFEM, a separation of variables representation can be employed in
the virtual work principle if the scalability requirement is fulfilled. This leads to a differential
equation system (DES) of second order which can be transformed into a quadratic eigenvalue
problem. The obtained solution of the DES is of power series form. Additionally, a linear
equation system (LES) for the conformance of the DES solution to the boundary conditions
is obtained. Only the boundary needs to be discretized, typically using linear shape functions
similar to those in the standard FEM. This results in a considerable reduction of the degrees
of freedom so that the low computational efficiency of the eigenvalue solvers often only has a
negligible effect on the overall efficiency of the method. Consequently, the SBFEM has already
proven its suitability in the two-dimensional case.
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However, in the three-dimensional case, we have demonstrated its deficiencies when a stress
singularity is present on the discretized boundary. Then, the relative error increases by orders
of magnitude and the convergence order is reduced by a factor of 2. As a similar phenomenon
is also known from standard FEM techniques, the employment of their remedies seems natural.

We selected the enrichment approach to be the most suitable one and implemented a separa-
tion of variables representation enriched with the classical crack’s near-field. For the example
of a single plane crack in an isotropic continuum, we demonstrated that, at the cost of only
24 additional degrees of freedom, excellent accuracy of both the eigenvalues and eigenvectors
can already be achieved for a very coarse boundary mesh. Moreover, due to the implemented
plateau method, this number of additional degrees of freedom is independent of other meshing
parameters. It only depends on the number of enrichment functions and the number of singular
points on the boundary mesh. The obtained convergence order also is substantially improved,
often optimal and sometimes even superconvergence is observed.

For the more complex example of two plane cracks meeting perpendicularly in a homoge-
neous isotropic continuum, the results could not be compared to an analytic reference solution.
So, the converged eigenvalues were estimated using a Richardson extrapolation and the relative
error was computed with respect to these values. Indeed, the standard SBFEM and the enriched
formulation yielded almost the same extrapolated eigenvalues, but with a very different relative
accuracy and convergence order.

We conclude that the proposed approach, which can easily be coupled with standard 3D
finite elements, has turned out to be uniquely DOF-efficient. In our opinion, it thus shows the
potential of providing easy access to the general solution of complete 3D linear elastic boundary
value problems containing stress singularities (instead of only determining singularity order and
possibly also mode). Although, its excellent accuracy and convergence properties have so far
only been shown for the classical crack singularity, we hope to extend its applicability to more
general cases (notch singularities, multi-material junctions, etc.) in future works.
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Abstract. This paper presents a new methodology for solving the eigenvalue problem for time 

dependent structures. The time dependent structures of interest are structures with a moving 

discontinuity such as crack or structures with moving free (external/internal) surfaces. For 

the last case, they can result from a removal of material during a machining process or from 

a deterioration of the structure’s geometry. The methodology that we developed, is based on a 

combination of the eXtended Finite Element Method (X-FEM) and the Directional Derivatives 

method. X-FEM enables to overcome the drawbacks of conformity and remeshing: indeed, 

using standard FEM, a moving discontinuity in time within a structure requires not only that 

the mesh must conform to the discontinuity geometry but also to fully remesh the structure as 

much as necessary to follow the discontinuity in time. In order to alleviate this last point, the 

directional derivatives are a powerful tool because they allow to estimate the evolution of 

quantities from on reference domain to another one. In our case, they will allow to estimate 

the solutions of the eigenvalue problem. We suggest on the first sections to remind the main 

keys of both methods and we present then the combined methods in order to solve an 

eigenvalue problem. The application will be done on a one-dimensional eigenvalue problem 

and the numerical results will be presented to demonstrate the accuracy and the advantages 

of selected approaches. We conclude on the future prospects of the current work that mainly 

consist of to develop the methodology at the second order in order to increase the accuracy 

and to find a criteria in order to automatize the combined methods.  
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1 INTRODUCTION 

The eigenvalue problems are of a great importance and play a crucial role in many 

engineering fields. In the aeronautical field for instance, the identification of natural 

frequencies and natural shapes during the design of a plane is compulsory before its 

commercialization to ensure the security of passengers. A modal analysis is usually done for 

the whole plane as well as for some structural parts such as engines or blades. In the field of 

machining, we can also cite the problem of quality insurance for the dimensions of machined 

pieces: the reliability of the processing machines must be ensured in order to avoid some 

critical interactions of their possible vibrations modes on the constraints of the dimensions of 

the piece. At last, in some other cases, the design of optimized structures to prevent failure 

due to instabilities and vibrations brings the problem of the determination of optimal physical 

parameters so that the load carrying capacity or the fundamental natural frequency is 

maximized. 

Nowadays, there is a need for solving eigenvalue problems for time dependent structures. 

Changes of a structure can occur due to the propagation of cracks. They can also appear due 

to the fact that the shapes of a structure are modified because of the removal of material 

during its machining process or because of the deterioration of its geometry. They can also 

happen during design process when the structure has to be optimized with respect to 

frequency criteria. To investigate such issues, standard ways involve remeshing the structure 

in order to follow its changes and to conform to its current geometry. They also involve 

solving the eigenvalue problem for each configuration of the structure which has been meshed. 

Besides, we can also notice a possible loss of accuracy as the data is mapped from the old 

mesh to the new one. In other words, the FEM applications can lead to lot of limitations and 

complexities for engineers and can really be time consuming. 

To offer an alternative solution to the above issues, we propose in this paper a new 

methodology combining two approaches. The first one is the Extended Finite Element 

Method (X-FEM) [1-2] which is based on the Partition of Unity [3]. The aim of this method is 

to alleviate the mesh constraints that come from discontinuities, using the level sets [4-7]. 

That is the main reason that X-FEM is effectively applied to solve many problems in material 

modeling, crack propagation problems [8] and structures with holes (or free surface) [9,10]. 

For our problem, the X-FEM method solves the mesh dependency of the structure due to the 

changing of boundaries or/and due to the discontinuities. 

Since the simulation in order to follow the discontinuity in time and its consequence on the 

natural frequencies imposes to continuously compute the eigenvalue problem, it seems that 

this method is not quite optimal in terms of CPU time cost. In order to avoid computing the 

eigenvalue problem on each configuration where information is needed, we focus on a second 

approach: the Directional Derivatives [11-13]. This mathematical tool allows us to get the 

evolution of a quantity from one domain to another one. Applied to our problem, it becomes 

possible to estimate natural frequencies and natural shapes for a given configuration without 

solving the eigenvalue problem for this configuration. 

In the next sections of this paper, we generalize joint application of the above techniques in 

one unique approach; we first introduce the state of eigenvalue problem, expose some key 

points of the X-FEM method and the basic definitions for the Directional Derivatives of first 

order in the general case. We then suggest applying the joint techniques (X-FEM and 

Directional Derivatives) for solving the eigenvalue problem in the one-dimensional case. In a 

last section, we discuss about the obtained results for the 1D case and we present the works 

and the main key-points for the application of the methodology in 2D case. 
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2 STATE OF THE PROBLEM 

 

Figure 1: The eigenvalue problem associated with free oscillations. 

The free-vibration natural frequencies and mode shapes of a linear structural system can be 

computed by solving the following eigenvalue problem. With the assumption of small 

perturbations in the framework of the linear elasticity theory, the free oscillations of a 

structure (Figure 1) are governed by the following equations system: 

 local equations 

     ̿      ̈ (1) 

 behavior law 

 ̿     ̿̿   ̿            ̿    
      

 
  (2) 

 boundary conditions 

                (3) 

 ̿    ⃗           (4) 

Where: 

        is the displacement field; 

      is the deformation field induced by        in the framework of the 

assumption of small perturbations; 

  ̿    is the stress field induced by       ; 

     is the part of boundary where the displacement field is known; on    , 

boundary conditions are essential or geometrical ones; 

     is the part of the boundary where the stress field is known; on    , boundary 

conditions are natural ones; 

  ⃗  is the external normal on the boundary    ; 

   is the density; 

  ̿̿ is elasticity tensor. 

Usually, the solution of (1) is set in a following way: 

                 

where      is a displacement field (function of the variable  ) and      is a scalar 

function of time. We obtain: 

     ̿           ̈ (5) 
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For longitudinal vibrations of an uniform bar, the equation (5) becomes           

   ̈   . Due to stability of solution in time, it is necessary that  ̈         with   constant. 

That leads for longitudinal vibrations:            . 

For the general case, we can write: 

     ̿                     (6) 

If the set of kinematically admissible displacement fields is defined by: 

       { ̂           ̂             } 

The solutions of the eigenvalues problem        satisfies the three following relationships: 

(    )                 ̿(  )          ̿        ⃗           

and therefore    ̂        , we obtain: 

∫  ̿(  ) 

 

 (̿  ̂)     ∫    

 

  ̂   (7) 

Owing to the fact that the stress tensor is symmetric, we can write the relation (7) as: 

∫  ̿(  ) 

 

   ̂     ∫    

 

  ̂   

The above relation corresponds to the standard variational formulation of the eigenvalue 

problem that occurs in Dynamics. We obtain that the solutions        satisfy: 

(    )           

∫  ̿(  )    ̂     ∫       ̂       ̂        

 

 

 

 (8) 

2.1 The X-FEM method 

To solve the eigenvalue problem for time dependent structures, we use the X-FEM method 

which introduces a local enrichment of the approximation space in order to treat any kind of 

discontinuities within a structure (material discontinuity, cracks, free surfaces). These 

enrichment functions can include an analytical solution or an a priori knowledge of the 

experimental solution of test results. They are a combination of nodal functions that are 

associated with a mesh and the product of shape functions, which describe the discontinuity. 

This approach allows to independently model a discontinuity from the mesh. In the case of 

discontinuity’s propagation, the method also avoids remeshing at each step. Besides, the 

enrichment functions are only added locally, i.e. when the domain requires to be enriched. As 

a result, the algebraic system of equations consists of two types of unknowns: standard 

degrees of freedom and enriched degrees of freedom. All the above features provide some 

important advantages to the X-FEM method compared to the standard FEM method for 

modeling arbitrary discontinuities. 

The feature of X-FEM is to add special functions to some nodes of the global mesh domain. 

The purpose of these additional functions is to enrich the approximation of the existing 

displacement fields. The description of discontinuities in the framework of the X-FEM is 
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usually realized by the level-set method: it allows to locate the cutting elements by the level 

set and to determine the nodes of interest for which the additional degrees of freedom will be 

added. According to the method of partition of unity [3], the X-FEM displacement 

approximation          is assumed to be as the following general form [6]: 

                ∑       

   ⏟      
   

 ∑           
   ⏟          

          

 
(9) 

Where: 

    are shape functions of node  ; 
    are unknown of finite element part at node  ; 
     is nodal subset of the enrichment; 

    are partition of unity functions of node  ; 

      is enrichment function; 

    are the additional degrees of freedom. 

2.2 Definition of the changing of configuration in two-dimensional case 

As it has been said, the changing of a structure can concern, for instance, the moving of its 

boundaries or the growth of a crack. So, for a given structure, each position of its boundaries, 

or each position of a crack, allows to define one configuration of this structure. For each 

configuration, we can associate one eigenvalue problem. Consequently, eigenvalues and 

eigenshapes will depend of the configuration of structure and will change as the configuration 

of the structure will evolves. The main benefit of X-FEM method lies in the fact that it 

becomes possible to follow the discontinuities within a structure without remeshing: the mesh 

dependency vanishes. But using merely X-FEM, the eigenvalue problem must still be solved 

on every configuration where an estimation of natural frequencies is needed.  

To overcome the above shortcoming that can be time consuming, we propose to use the 

directional derivatives. They are a universal tool to avoid multiple calculations. It can be used 

to estimate the evolution of a quantity with respect to the change of configuration. In our case, 

the directional derivatives will provide a way to estimate the derivative of eigensolutions with 

respect to a change of configuration of the structure. Therefore, the eigenvalue problem will 

only be solved for some configurations until the accuracy has decreased drastically. 

In order to take into account the time dependency of the structure, we introduce a function 

     which governs the changing of the shape from a reference configuration (noted   ) to a 

current one (noted     ).   is a scalar parameter which allows to follow the evolution of the 

structure and   represents the position of a point on the reference configuration. If we note    

its position on the current configuration, we have (10): 

             (10) 

Concerning the function       which governs the changing of configuration, the following 

remarks can be done: 

 Remark 1: 

The transformation between both configurations must be a bijective one. 

 Remark 2: 

The transformation doesn’t change the part of boundary where displacement conditions 

are imposed. 
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 Remark 3: 

It should also be noted that the changing of configuration characterizes a changing of 

geometry in the initial considered domain, but the material remains the same. The 

density and the elasticity tensor for both configurations are the same. 

 

Figure 2: The transformation from    to     . 

The transformation’s gradient from the reference configuration to the current one is 

defined by (11): 

 ̿       𝕝      (  ) (11) 

The determinant of the gradient transformation can be obtained in the following way: 

 𝑒  ̿  |
1            

     1       
|  1         

  

 
                    (12) 

A displacement field   on the current configuration can be regarded as a displacement field 

on the reference configuration. We have: 

                          (13) 

It follows that: 

                    ̿   (14) 

From relation (11), it can be readily deduced that for small values of parameter  , we have: 

 ̿   𝕝      (  )       (  )   (  )                   
   

 ‖    ‖     (15) 

2.3 Expressions of the directional derivatives for eigenvalues and eigenshapes 

The solution of eigenvalue problem, illustrated on Figure 2 for initial and current 

configurations, are noted (16): 

(        )             

(        
     )         (    )            

              

(16) 

Where         and    (    ) are the sets of admissible functions for both reference and 

current configurations. With these definitions, the directional derivatives of eigenvalue    [ ] 
and eigenshape    [ ] for the first order are given by: 
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   [  ]     
   

        

 
  (17) 

   [  ]     
   

             

 
  

(18) 

Starting from expressions (17) and (18), it becomes possible to obtain an estimation of 

eigenvalues and eigenshapes for the current configuration as soon as the directional 

derivatives are known. We have: 

             [  ]  (19) 

                  [  ]  (20) 

The both above expressions represent the connection between previous domain and current 

one and express the eigenvalues at the current time from the reference time as well as the 

eigenshape        , which depends on the parameter   and the space. More precisely, as it 

can be noted, the eigenvalues and the eigenshapes on the current configuration are written in 

terms of the solution of the eigenvalue problem on the reference configuration and its 

directional derivatives, both quantities being computing on the reference configuration. 

Therefore, knowing the solution of the eigenvalue problem on the reference configuration and 

its directional derivatives, the solution of the eigenvalue problem on the current configuration 

can be approximated, according to (19) and (20), by varying the value of parameter  .  

2.4 Variational formulation of eigenvalue problem in two-dimensional case 

To obtain the expression of the directional derivatives of eigenvalues and eigenshapes, one 

can start from the variational formulation of the eigenvalue problem that has to be solved in 

Dynamics. On the initial configuration, this variational formulation can be set as follows: 

∫  ̿ (     )

  

   ̂      ∫       

  

 ̂    

  ̂     
             

      { ̂         ̂   ⁄             } 

(21) 

The variational formulation of the eigenvalue problem on the current configuration takes 

the form: 

∫  ̿ (  
     )

    

   ̂        ∫    
     

    

 ̂   

  ̂     
 (    )          

       

 { ̂    (    )  ̂    ⁄              } 

(22) 

As the function doesn’t change the part of the boundary where displacements are imposed, 

we have: 

  ̂     
 (    )    ̂     
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Starting from the relation (22), using the relation (10) between    and   and taking into 

consideration the relation (14), one can note that solution (            ) of the eigenvalue 

problem on the current configuration must satisfy: 

∫  ̿ (       )

  

    ̂ ̿    𝑒  ̿         ∫          ̂ 𝑒  ̿   

  

   ̂     
      

  ̿ (       )   ̿̿ (         ̿  )
 
 

(23) 

It has to be noticed that all integrals of the relation (23) are established on the reference 

configuration. Therefore, the solution of eigenvalue problem (              ) for 

configuration      is an element of the set       
      satisfying for any element  ̂ of 

   
     : 

∫ [ ̿̿ (         ̿  )
 
 ]

  

    ̂ ̿    𝑒  ̿   

⏟                            

 

    

       ∫         

  

 ̂ 𝑒  ̿   

⏟                    
    

 
(24) 

In the neighborhood of    , we can write      and      as an expansion in series of the 

variable  . By taking into account only the zero and first orders, we obtain: 

          
  

  
|
   

         (25) 

          
  

  
|
   

         
(26) 

The identification of terms of order zero, namely          , leads to the definition of 

the eigenvalue problem on the reference configuration. The equality of terms of first order 

leads to: 

 
  

  
|
   

 
  

  
|
   

 

The derivative of     , with respect to the parameter  , is a sum of four terms, each one 

depending of  : 

     

  
 ∫ [ ̿̿ ( 

        

  
 ̿  )

 

]

  

 (  ̂ ̿  ) 𝑒  ̿   

⏟                              
     

  

 ∫ [ ̿̿ (        
  ̿  

  
)

 

]

  

    ̂ ̿    𝑒  ̿   

⏟                              
     

  

∫ [ ̿̿ (         ̿  )
 
]

  

 (  ̂
  ̿  

  
) 𝑒  ̿   

⏟                              
     

   

(27) 
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∫ [ ̿̿ (         ̿  )
 
]

  

 (  ̂ ̿  )
  𝑒  ̿

  
   

⏟                              
     

 

The derivative of     , with respect to the parameter  , is a sum of three terms, each one 

also depending of variable  : 
     

  
   

      

  
∫         
  

 ̂ 𝑒  ̿   ⏟                      

     

 

     ∫   
        

  
  

 ̂ 𝑒  ̿   

⏟                    
     

      ∫         

  

 ̂
  𝑒  ̿

  
   

⏟                    
     

 
(28) 

Starting from expression (27), using relations (11), (12), (14), (15) and (20), we finally 

obtain, by taking the limits when   vanishes:  

  

  
|
   

 ∫ [ ̿̿ (    [  ])
 
]

  

 (  ̂)     

∫ [  ̿̿ (      )
 
 

  
( ̿̿ (   )

 
)       ̿̿ (   )

 
      ]  (  ̂)     

(29) 

In a similar way, starting from expression (28), using relations (12), (19) and (20), it can 

been shown, by taking the limits when   vanishes, that: 

  

  
|
   

    [  ] ∫    

  

 ̂      ∫     [  ]

  

 ̂   

   ∫    

  

 ̂         

(30) 

Consequently, the expressions (29) and (30) of 
  

  
|
   

 and 
  

  
|
   

 lead to the following 

relation between the directional derivatives of eigenvalue and eigenshape. We have: 

∫ [ ̿̿ (    [  ])
 
]

  

 (  ̂)       [  ] ∫    

  

 ̂   

    ∫      [  ]

  

  ̂    

  ∫ [ ̿̿ (      )
 
 ( ̿̿ (   )

 
)     ]  (  ̂)    

  

 

 ∫ [ ( ̿̿ (   )
 
)  (  ̂)        ̂]          

  

 

(31) 

Clearly, the relation (8) defines an eigenvalue problem for a self-adjoint system. The self-

adjointness comes from the symmetry of integrals and the nullity of boundary conditions. It 

can be ascertained through integrations by parts. It follows from this self-adjointness that the 
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eigenfunctions       constitute a complete orthogonal set of infinite dimension [14] which 

we use as basis for        . Consequently, using the expansion theorem for self-adjoint 

systems, the directional derivative of eigenshape on the reference configuration can be set as: 

   [  ]  ∑    
     (32) 

In relation (32), it should be pointed out that the series ∑    
     converge in energy to 

   [  ]. The expressions of the directional derivatives for eigenvalues and eigenshapes can be 

deduced from relation (31) using the expansion (32) of    [  ] and the orthogonality relations 

between eigenshapes on the reference configuration. 

3 RESULTS 

This section deals with the numerical calculation of the eigenvalue problem for a clamped-

free bar which is illustrated on Figure 3. The length of the bar which contains two different 

sections is named  . It is discretized using 200 finite elements. In this one-dimensional case, 

the discontinuity corresponds to the change of the cross section of the bar: in this particular 

case, the level set is reduced to one unique point. It follows that the enrichment function has 

to be built for only one element (the one containing the cross section discontinuity). 

The used material is steel for which Young’s modulus   is equal to      1       and the 

density is defined by               . The length of the bar   is    . The initial position 

of the discontinuity (change of cross section) is noted   . The sections    and    are equal 

respectively to 1      1       and        1      . Our purpose is to obtain an estimation 

of natural frequencies and natural shapes when the position of the discontinuity moves, that is 

to say when the size of each part is varied, the whole length of the bar staying unchanged. 

 

Figure 3: Bar with a discontinuity of the cross section. 

For our problem, the bar is a free-clamped one. As the length of the whole remains 

constant, we have to consider a function      satisfying            . 

 

Figure 4: The transformation for one-dimensional case. 
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The calculation of the directional derivatives of the eigenvalues and the eigenshapes was 

carried out for one-dimensional case. Starting from the relations (19) and (22) we have: 

∫  
 

  
(   [ ])

  ̂

  
  

 

 

   ∫     [ ] ̂     

 

 

    [ ]∫        ̂      

 

 

 ∫[  
      

  

  ̂

  
           ̂   ]        

 

 

 

 

As the above expression is verified,   ̂     
     , we obtain, after discretization: 

([ ]       [ ]){   [ ]}      [ ][ ]{  }  

  ([   ]       [   ]){  }
  

 (33) 

Where: 

 [ ]   ∑ ∫   [
  

  
]
 
[
  

  
]   

            

 [ ]   ∑ ∫   [    ] [    ]  
            

 [   ]   ∑ ∫   [
  

  
]
 
[
  

  
]        

            

 [   ]   ∑ ∫   [    ] [    ]       
            

Due to the orthogonality of eigenshapes and after pre-multiplying left and right sides of 

expression (35) by {  }
  

 
, we obtain: 

   [ ]   
{  }

  

 
 ([   ]       [   ]){  }

  

{  }  
 [ ]{  }  

 (34) 

Owing to relation (32), we assume a directional derivative {   [ ]}
  

 in the form (35). 

{   [ ]}
  

  ∑  
 {     }  

   

 (35) 

Starting from the relation (33), introducing the expression (35) of the directional derivative 

{   [ ]}
  

, pre-multiplying by {  }
  

 
 with     and using the orthogonality relation 

between eigenshapes on the reference configuration leads to: 

  
  

{  }  
  ([   ]       [   ]){  }

  

{  }  
 [ ]{  }          

 (36) 

Thus, the approximate expression of {       }
  

 can be written as: 

{       }
  

  {  }
  

   ∑  
 {  }  

   

 
(37) 

For a bar of two different sections, the exact solution of the eigenvalue problem is given by: 
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where    
          and    

  
  

  
       .    satisfy: 

             
     

     
               

It leads the opportunity to compare exact solution of this problem and the solution obtained 

with the proposed method. 

For studying the dependence of the eigenvalues and eigenshapes with respect to the 

position of the discontinuity, we have to take a function      which allows to move the 

position of the discontinuity, the total length of the bar is remained to be constant. 

Consequently, the function      has to satisfy:  

        for the fixed extremity; 

        in order to impose the total length of the bar unchanged;  

       1 if we have noted    the initial position of the discontinuity. 

We here present the results that we have obtained by choosing a polynomial piecewise 

function for     . Two initial positions of the discontinuity have been studied:  

                          1 1     

For these two cases, the functions      that we have considered are presented on the Figure 5.  

 

Figure 5: Functions      for both initial position cases. 

The estimated values of natural frequencies have been obtained owing to relation (19). As 

our formulation only uses directional derivatives of first order, the approximation of the 

eigenvalue is linear. Directional derivatives have been computed according to relation (34). 

The estimated values have been compared to exact ones. To compare both solutions, the 

frequency deviation can be used. It corresponds to the relative error between both methods. 

For the i
th

 natural frequency, this frequency deviation is defined by 

|
                     

        
| 

The graphs of Figure 6, Figure 7 and Figure 8 show the evolution of the first three 

frequencies with respect to the position of the discontinuity. For each natural frequency, the 

exact values and estimated ones have been represented for two positions of the initial 

discontinuity. 

                          1 1     
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Figure 6: Dependence of the first natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

 

Figure 7: Dependence of the second natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

 

Figure 8: Dependence of the third natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

As seen in these graphs, the curves of exact and estimated solutions are very close. But the 

exact solution has a parabolic shape. The approximate solution, obtained with relation (19), is 

linear. On these curves, it can be observed that when directional derivatives of eigenvalue are 

close to zero (for instance when           ), the gap between exact natural frequencies 
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and estimated ones increases rapidly. It provides from the fact that according to relation (19), 

our approximation is linear. Therefore, when directional derivatives are close to zero, the 

accuracy is weak. In order to overcome this drawback, it would be useful to calculate 

directional derivatives of second order which would allow to define a parabolic 

approximation of eigenvalues and eigenshapes. In the second case, when    1 1    , 

directional derivatives of eigenvalues are not close to zero and the gap between both solutions 

decreases significantly. In this second case, the linear approximation provides more accurate 

results.  

Graphs of the Figure 9 show the frequency deviation for the three first natural frequencies 

when directional derivatives are calculated in    1 1    . The relative error is less than 

   for the three natural frequencies. 

 

 

Figure 9: Frequency deviation for the three first natural frequencies when directional derivatives are calculated 

for           . 

The evolution of the three first eigenshapes is given Figure 10 for several values of 

parameter  . Exact eigenshapes and estimated ones are represented. The estimated 

eigenshapes have been obtained according to relation (20). Just like for the eigenvalues, our 

approximation for eigenshapes is linear. The directional derivatives    [ ] are calculated 

with 20 modes. 
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Figure 10: Comparison of exact and approximate solutions. 

For the eigenshapes, to make an accurate comparison between estimated values and 

theoretical ones, we use the Modal Assistance Criterium. When we compare the estimated and 

theoretical eigenshapes of the same order, the MAC is close to one and decreases as τ grows 

up. On top of that, the MAC between estimated and theoretical eigenshapes of different order 

is nearly to zero. From these two results, we can deduce that  
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 the correlation between exact eigenshapes and estimated ones is good; 

 orthogonality properties are verified between estimated eigenshapes. 

 

Figure 11: Modal Assistance Criterium for the first natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 

 

Figure 12: Modal Assistance Criterium for the second natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 

 

Figure 13: Modal Assistance Criterium for the third natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 
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4 CONCLUSION 

A methodology for solving the eigenvalue problem for a time dependent structures has 

been proposed. This methodology combines both the directional derivatives and X-FEM 

methods. The convenience of the use of X-FEM is the possibility to avoid remeshing. A 

discontinuity can be depicted with a Level Set function. This Level Set function is used to 

define a local enrichment for taking into account this discontinuity. Consequently, due to 

enrichment, the mesh is not mandatory to be conform to the geometry. The application of 

directional derivative allows to avoid many calculations at every time step and gives an 

approximation of the solutions of the eigenvalue problem. This study focuses on the fact that 

directional derivatives is a convenient tool for following the evolution of natural frequencies 

and shapes. 

The main idea of our approach consisted in obtaining the expression of derivatives for 

eigenvalues and eigenshapes in a given direction which is described by a function     . This 

function determines the transformation from a reference configuration to a current one. 

Starting from the variational formulation of the eigenvalue problem on the current 

configuration, derivatives of eigenvalues and eigenshapes can be expressed in terms of the 

solutions of the eigenvalue problem for the reference domain by the mean of this function 

    . Once we have computed the directional derivatives of eigenvalues and eigenshapes, it 

becomes possible to evaluate the evolution of these values when the domain is modified. To 

obtain solutions at the required time step (that is to say on the current configuration), it is 

sufficient to know information from the initial one. The main advantage of this procedure lies 

in the fact that numerical calculations are done without time consuming. 

The numerical results for a one-dimensional structure varying in time and the accuracy of 

the new technique were presented. Geometric transformation of the eigenvalue problem for 

one-dimensional element with discontinuity was defined. To compute the natural shapes for a 

current configuration, the directional derivatives of natural shapes have been performed on the 

reference configuration, these directional derivatives have been set in terms of natural shapes 

of the reference configuration. 

Using the general methodology which combines of the offered methods gives possibility to 

illustrate the application of this technique on a two-dimensional eigenvalue problem for a 

plate with shapes which are moving. One of the aspects for future work is to look upon the 

expressions of directional derivatives of eigenvalue problem for second order to improve the 

existing linear approximation. Another issue which has to be solved is to find a criteria to 

determine when accuracy has decreased significantly which means that directional derivatives 

have to be computed. The numerical implementation will be tested on on real simple and 

more complex cases. 
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Abstract. Based on a first-order shear-deformation theory a four-noded shell element is for-

mulated for composite laminates with and without a delamination. Interlaminar 

stresses are calculated to evaluate a delamination criterion. The presentation will 

show how and how accurate. Once the danger of delamination is detected the dis-

placement field is enriched in the sense of the eXtended FEM to account for a discon-

tinuity at an arbitrary position. The remaining strength after starting delamination is 

simulated by a mixed-mode cohesive zone model based on energy release. Contact 

when reclosing a discontinuity is included. Large rotations are covered by Green’s 

strain.   

The developed formulation is tested for shell problems by comparing its results with 

available benchmark tests for in- and out-of-plane load cases. The feasibility and 

practicality of the presented model and its advantage over the approach using two 

shell elements at the predefined plane of the discontinuity, connected by a third one, a 

cohesive zone element, is demonstrated. Then, linear and non-linear buckling analyses 

for composite laminates containing a delamination are performed. It is shown how 

imperfections of the delamination type, i.e. concerning the discontinuity, used for non-

linear analysis are based on the modes from linear buckling.  

The full process from starting with one layer of elements over detecting a delamina-

tion to simulating its growth and its interaction with buckling is outlined. 
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1 INTRODUCTION 

When modeling delamination this can be done with two shell or solid elements over each 

other where all the interface area is bonded but the delaminated region. In such a model de-

lamination propagation can be accounted for by a fracture criterion or a stress criterion in 

bonded contact, residual strength by a cohesive zone element. However, this requires double 

elements for the continuous region, too. Furthermore, if the delamination can appear between 

arbitrary layers not known before starting the analysis n thin solid elements and n-1 cohesive 

zones above each other are needed leading to enormous model sizes. 

In the present formulation, the discontinuity can be activated at any region of interest with-

out extra simulation effort. To do so, shape functions are enriched by defining extra degrees 

of freedom (DOF), holding the property of the partition of unity [1]. Thus, the behaviour of 

the discontinuous subdomains is described using these DOFs. A flat-shell formulation based 

on a First-order Shear Deformable Theory (FSDT) is developed. The proposed model is im-

plemented in the finite element method using four-noded elements. Due to the robustness and 

simplicity of lower-order theories in the non-linear simulations [2], in the present formulation 

the XFEM topology and the geometrically non-linear terms can be effectively combined. The 

shell formulation is verified for a benchmark test problem of shells in non-linear regime. Then, 

several numerical tests are carried out for the linear and non-linear delamination buckling 

analyses of composite laminates. More tests an details are published in [8].  In the next sec-

tion, the formulation is briefly described. 

2 FORMULATION 

All the formulations are developed with respect to the local Cartesian coordinate system 

which is located on each flat element. Later, a transformation from local to the global Carte-

sian coordinate system is required to include the coupling between membrane and bending 

components of shell structures [3, 4].  

2.1 Discontinuous flat-shell element 

The first-order displacement field in the local Cartesian coordinate system is enriched by 

XFEM as follows:  

 
 

0 0 0 0

0 0 0 0

0 0
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( , , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )

( , , ) ( , ) ( ) ( , )

y

x

d u y d

d v x d

d w
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where
0u ,

0v ,
0w , 0

x , and 
0

y are the normal DOFs while 0

ua , 0

va , 0

wa ,
0

xθ
a , and 0

yθ
a are associ-

ated to the enriched DOFs. The superscript 0 indicates the middle plane kinematic variables. 

H(zd) is the Heaviside function, let it be H
*
, shifted by zd which gets values zero and one be-

low and above the discontinuous surface, respectively:  










d

d
dd

zzfor

zzfor
zzHzH

0

1
)(:)( *  

This function is being used to activate the extra DOFs when they are required. Therefore, 

two subdomains (  and  ) are identified by zd, being the location of delamination in the 

thickness direction. The introduced discontinuous element and subdomains are shown in Fig-

ure 1. 
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Figure 1: A discontinuous XFEM element. 

By inserting the proposed displacement field into the Green-strain tensor and considering 

the quadratic terms associate to the in-plane components, the strain field is calculated as 
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, , , , , , , , , , , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

y xxy y d u y x d v x y y d y x x d x

x d u x y d u y x d v x y d v y x d w x y d w y

u H z a v H z a z H z a z H z a
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 0 0 0 0

, ,( )
yxz x y d w xw H z a a    

         (2)
 

 0 0 0 0

, ,( )
xyz y x d w yw H z a a      

The higher-order terms in Eq. (2) are utilized to capture the large deflection response of the 

laminates. By substituting the acquired strain field into the constitutive equation of 

orthotropic materials, the stress field is acquired. Due to the lack of parabolic distribution of 

transverse shear stresses in this theory, the so-called shear correction factor is calculated. In 

addition, since the formulation is based on a lower-order approach which shows locking for 

very thin laminates, the shear strain field has been replaced by an assumed one.  

The principle of virtual work is applied to obtain the governing equations. To achieve a 

quadratic convergence in the context of the Newton-Raphson algorithm, the obtained formu-

lations should be linearized with respect to all normal and enriched unknowns [2, 7]. A trans-

formation from the local Cartesian coordinate system to the global one has been performed to 
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form the flat elements on the curved surface. This transformation is based on the standard 

procedure using four rotational matrices (in XFEM formulation eight rotational matrices) ex-

plained by Zienkiewicz and Taylor in Ref. [4]. Henceforth, owing to the transformation into 

the curve surface the coupling between membrane and bending components are formed as 

well as two extra variables, being the drilling DOFs. One of the drilling variables belongs to 

the finite element part of the problem whereas the other one corresponds to the XFEM.  

2.2 Drilling degrees of freedom 

To avoid the singularity which is faced in the solution process of co-planar elements due to 

missing stiffness related to drilling dofs pointing out of plane, the penalty method is imple-

mented[4]. In this case, the rotational stiffness coefficient is related to the membrane stiffness 

components in such a manner that the overall equilibrium equation is not disturbed. Therefore, 

the drilling potential energy, containing a penalty parameter, is defined as 

 
2

0 0

Ω

1
Π Ω

2
drilling zP d    (3) 

where P is the penalty parameter, 0

z  is the drilling degree of freedom, and   is the in-

plane rotation of the shell which is related to the membrane DOFs as follows 

 0 0 0

, ,

1

2
x yv u    (4) 

The amplitude of the penalty parameter can be chosen as P=10
-4

E1h. The stiffness which is 

driven based on the presented potential energy can be included for all elements whether they 

are co-planar or not. It is of importance to conquer the singularity by the aforementioned 

methods in the local Cartesian coordinate system before the transformation into the global co-

ordinate system. 

2.3 Contact formulation 

In the linear buckling analysis, it is possible to obtain a few mode shapes concerning the 

penetration of discontinuous surfaces. Though, these mode shapes cannot be physically inter-

preted. In addition, performing the non-linear analysis may lead to the overlaps between con-

tact subdomains in the post-buckling regime. Therefore, a simple contact formulation based 

on the penalty method has been taken into account. The relative displacements at the interface 

region can be simply calculated through the enhanced DOFs in where the contact force values 

are retrieved as 

Fc=Pδz (5) 

where Fc is the contact force, P is the penalty stiffness value, and δz is the gap between the 

subdomains. Once the overlapping of the subdomains lead to negative values for the relative 

displacement δz during the non-linear buckling analysis, the above formulation is activated 

and the contact forces hold the equilibrium at the contact area. It is noted that the penalty 

stiffness value should be chosen sufficiently high to ensure a perfect bonding at the interface 

region.   

All the developed formulations are set up as a user element routine in ANSYS 14.5 com-

mercial software. In the next section, some numerical case studies are carried out based on the 

developed formulation. 
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3 NUMERICAL TESTS 

In this section numerical tests are carried out to verify the accuracy of the XFEM model in 

predicting the structural response of composite laminates containing the delamination. In ad-

dition, convergence studies are performed to check the precision of the formulation. The ma-

terial properties of studied laminates are given in Table 1.  

 
Type E11 E22 v12 G12 G13 G23 

Shell [5] 3300 Pa 1100 Pa 0.3 660 Pa 660 Pa 660 Pa 

Plate [6] 142 GPa 10.8 GPa 0.3 5.49 GPa 5.49 GPa 3.72 GPa 

 

Table 1: Material properties of studied laminates. 

3.1 Nonlinear static analysis 

The three layers cross-ply [0°/90°/0°] and [90°/0°/90°] cylindrical panels are analysed. The 

dimensions of the shell are: L=508 m, R=2540 m, and  =0.1 rad. The shell is supposed to be 

hinged at the edges along the axial direction while it is free on the other edges. Two different 

thicknesses h1=6.35 m and h2=12.7 m are modelled and they are subjected to an external point 

load at the centre. Due to the symmetry, only a quarter of the shell is simulated. A schematic 

view of the shell is shown in Figure 2. 

 

Figure 2: The schematic view of the hinged cylindrical shell. 

In order to precisely track the response of the laminate under the applied load, arc-length 

solution available in ANSYS software is activated. The load versus transverse displacement 

response of the laminates at the point where the load is applied is depicted in Figure 3. 
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(a) (b) 

Figure 3: Load-deflection response of the cylindrical shell: (a) h=6.35 m; (b) h=12.7 m. 

As it is shown in Figure 3, the results agree very well with the ones reported in Ref [5]. 

3.2 Delamination buckling analysis 

Next, the buckling analysis of multi-layered laminated plate [45°/-45°/0°/90°]s is investi-

gated. The dimensions of the plate are a=0.5 m, b=0.025 m, and h=0.001 m where a delami-

nation of length t is inserted exactly in the middle of the thickness, between the fourth and 

fifth layers. The plate is considered as fully clamped on one of the small edges whereas sub-

jected to axial compressive load on the other small edge. The schematic view of the studied 

laminate is shown in Figure 4. 

 

Figure 4: Schematic view of the delaminated composite plate. 
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In the simulation process of the continuous part, only the normal degrees of freedom are 

considered. However, extra degrees of freedom are activated in where the discontinuous re-

gion exists. To survey the precision of the XFEM model developed, a convergence study on 

the linear buckling analysis of composite laminate with the delamination length t=40 mm is 

carried out.  

For the linear buckling analysis, the tangent stiffness matrix can be split up into linear and 

non-linear parts. Therefore, the tangent operator KT can be written as 

KKKK  ULT  (6) 

where KL is the linear stiffness matrix, KU is the non-linear part of the stiffness matrix 

which is related to the initial deformation, and Kσ is the other non-linear part which is the so-

called geometric stiffness matrix or initial stress matrix, in case of a Green-strain formulation 

not directly depending on the displacements, only via the stress. Hence, the linear eigenvalue 

analysis can be formulated as follows [7] 

  L i i  K K 0  (7) 

where λi is the critical load factor whereas Φi is the corresponding mode shape. The first 

nine predicted buckling loads are reported in Table 2. 

 

Method Element size 
Buckling mode 

1 2 3 4 5 6 7 8 9 

 0.005 m 18.122 93.933 271.33 418.66 455.50 764.19 791.48 917.11 994.67 

Present 0.0025 m 17.984 91.723 255.49 375.17 422.26 710.01 710.88 825.61 892.06 

 0.00125 m 17.923 91.057 251.12 364.37 413.41 685.82 694.39 801.73 856.76 

ABAQUS (S4) [6] Element number 17.9435 93.7975 269.975 418.400 452.825 - - - - 

XSHELL [6] 200 18.148 94.0725 272.200 420.725 456.975 - - - - 
 

Table 2: Convergence study on linear buckling loads of delaminated plate (t=40 mm). 

A fair convergence property is achieved for the model containing extra DOFs. The ob-

tained results are closer to the ones of ABAQUS (S4) standard element in where the delami-

nated region was simulated through defining double nodes. The corresponding first and fourth 

mode shapes of the finest mesh scheme are depicted in Figure 5. All post-processing concern-

ing the delaminated state is performed in the standard postprocessor of ANSYS by creating 

virtual elements and assigning results obtained from extra dofs to them.  

Next, the length of the delamination is altered to 45 mm and 50 mm and the first nine 

buckling loads are compared in Table 3. The element size for the present model is supposed to 

be 0.00125 m.  

 

t 

(mm) 
Method 

Buckling mode 

1 2 3 4 5 6 7 8 9 

45 
Present 17.331 80.522 214.04 282.01 392.91 562.48 635.95 714.14 725.66 

XSHELL [6] 17.937 90.702 256.900 390.730 446.800 - - - - 

50 
Present 16.634 72.425 182.85 224.15 372.36 458.72 595.60 640.83 649.24 

XSHELL [6] 16.850 74.378 196.450 242.790 410.500 - - - - 

 

Table 3: Buckling loads of composite plates with delamination (t1=45 mm and t2=50 mm). 
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As it was expected, by increasing the delaminated area the predicted buckling loads are re-

duced. The calculated buckling loads, especially the fundamental ones, are in a good agree-

ment with Ref [6]. 

 

 

Figure 5: Linear buckling mode shapes of delaminated composite plate (t=40 mm). 

In the final example, the non-linear buckling analysis of the previous plate is carried out. In 

order to enable tracking the post-buckling response of the laminate under compressive load 

condition, very small imperfection amplitudes has been utilized. In the present XFEM formu-

lation we are restricted to only one middle plane, even for discontinuous regions. Therefore, 

the application of geometric imperfection for the aforementioned problems is not provided. 

Void layers of variable thickness as well as non-zero initial jumps for the z-coordinates of the 

upper region had been under discussion to get stress-free imperfections but finally a force-

type perturbation was chosen. This type of imperfection is applied in literatures to the discon-

tinuous layers when the plate with delamination under compression is investigated. This 

method can be effectively implemented in the XFEM topology through the availability of the 

extra DOFs. Herein, a new algorithm which describes a method to apply forces leading to a 

deformation proportional to the buckling mode has been applied. The flowchart view of this 

algorithm is shown in Figure 6. The proposed method is applied to ANSYS version 14.5 

commercial software. 

The algorithm is started with performing a linear buckling analysis. By depicting the linear 

buckling mode shapes, one can identify whether the critical load corresponds to the local de-

lamination mode shape or not. If so, a factor of dislocations is utilized in the form of dis-

placement constraints to retrieve the nodal reaction forces in a linear static analysis. Next, the 

force values of the extra DOFs are applied to the discontinuous section of model and the non-

linear analysis is initiated in its first step. By doing so, the deformations proportional to that 

buckling mode are calculated. Thereafter, the same analysis is being continued after applying 

compressive loads. It is noted that when the linear buckling analysis of laminates with discon-

tinuity is carried out, the critical buckling mode shape is not necessarily represents the local 

delamination mode shape. Therefore, one further step is required to include the geometrical 
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imperfection from the critical buckling mode shape. By following the above algorithm, the 

possibility of opening multi bifurcation paths is provided. 

 

 

Figure 6: Flowchart of the non-linear delamination buckling analysis. 

In the previous linear buckling study, the critical buckling mode was associated to the 

bending of the structure whereas the fourth one was corresponded to the outward separation 

of layers. Therefore, in order to carefully track the response of the laminate, a combination 

effect of the mode I and IV is considered. The amplitudes of imperfections are assumed as 

κ1=h and κ2=0.025h. It should be mentioned that excluding the bending imperfection will lead 

to negative pivot values in the vicinity of the critical buckling load. The element size is sup-

posed to be 1.25 mm. The load versus the transverse displacement of the edge in where the 

compressive load was applied is compared with the undamaged one in Figure 7. 

A meaningful reduction of the maximum carried load is observed for the laminated plates 

containing the greater delaminated surface. Moreover, higher load magnitudes are supported 

by the undamaged plate than the delaminated ones. Taking the results of the linear buckling 

analysis as the reference, the maximum supported load for the undamaged laminate is close to 

the critical one. However, less load amplitudes was supported by the delaminated ones. 
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Figure 7: Axial load versus transverse displacement of composite laminated plate under compressive load. 

The deformed shape of the composite laminates with delamination t=40 mm at the last load 

step is shown in Figure 8. 

 

Figure 8: Deformed shape of the composite laminated plate with delamination under compressive load. 

4 DELAMINATION INITIATION AND PROPAGATION 

The danger of delamination is checked by a stress criterion based on interlaminar shear and 

normal stress obtained from equilibrium. However, the determination of interlaminar shear 

stress requires the derivative of in-plane normal stress which is constant in a low order ele-

ment. Therefore, nodal averaging of in-plane stress is carried out before forming the deriva-

tive. 

 

Figure 9: Elemental and averaged stress. 

Furthermore, interlaminar normal stress is in equilibrium with the change of transverse 

shear stress, requiring another derivative. This can deteriorate the accuracy. In the example 

shown in Figure 10 this mainly holds for the normal stress. 
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Figure 10: Shear- and out-of-plane normal-stress distribution, comparison of interfacial stress and stress from 

equilibrium with analytical solution from [9]. 

The simulation of delamination propagation with this XFEM shell element including a 

mixed-mode cohesive-zone model and the influence of the integration scheme has been pre-

sented by the authors e.g. in [8]. The relative displacements in the interface between lower an 

upper part are directly obtained from the extra dofs ai multiplied by the element shape func-

tions. Instead of using a stress-strain relation the interfacial stress depends on the relative mo-

tion. Hence, this stress distribution is continuous over the element edges and one order higher 

than that from strain anywhere else in the finite element. All interfacial stress components are 

available from the cohesive model. Therefore, for delamination initiation and propagation the 

algorithm is as follows: 

 start with continous model – one element over the thickness for all layers 

 at certain load levels  

o calculate interlaminar stress from equilibrium between all layers 

o evaluate the delamination criterion 

o if the criterion indicate danger of delamination at a certain location  

set the element and its neighborhood to discontinuous and  

introduce the interfacial cohesive model 

 continue with loading 

5 CONCLUSIONS 

The delamination buckling analysis of composite laminates is investigated. Thus, a new 

XFEM model based on a lower order laminate theory is developed. In the present approach, 

the formulation is enhanced by adding extra DOFs; and subsequently, the delaminated surface 

can be described by only one four-noded element. Therefore, no extra element are needed to 

simulate the subdomains. Moreover, the definition of contact element and imperfections for 

the post-buckling analysis are facilitated through the available enriched DOFs. The perform-

ance of the model is successfully verified with the available results in literature. 
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Abstract. This paper presents a meshless point collocation method for three-dimensional
crack propagation. The meshless point collocation method is based on direct discretization
of strong-form governing equations to achieve a truly meshless scheme that does not require
mesh structures or a numerical integration procedure. These characteristics of the point col-
location method enable the direction of an arbitrary crack propagation to be defined purely
according to the fracture criterion of the mechanical model because node-wise topology can
be easily transformed by the simple addition of nodes and polygonal surfaces. The main ad-
vantages of the presented method are that there is no need to consider the consistency between
the mesh connectivity and continuity of fracture zone locations and that the crack propagation
procedure is relatively simplified with no additional implementation features from numerical
integration used in weak formulations. The constrained moving least squares approximation
(C-MLS) is employed for meshless interpolation so that essential boundary conditions can eas-
ily be applied. A cohesive crack model is directly introduced in combination with the crack
growth procedure to express the fracture of quasi-brittle materials such as concrete. The ac-
curacy and robustness of the presented method were demonstrated through its application to
several numerical examples.
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1 INTRODUCTION

The meshless method is an attractive numerical technique that can solve various natural phe-
nomena and engineering problems that conventional mesh methods are not applicable to. To
date, a number of computational methods have appeared, such as smoothed particle hydrody-
namics (SPH) [1, 2], the diffuse element method (DEM) [3], the element-free Galerkin method
(EFGM) [4], the reproducing kernel particle method (RKPM) [5], and the partition of unity fi-
nite element method (PUFEM) [6]. Although these meshless methods have been applied to var-
ious engineering problems and become popular in computational mechanics, each still exhibits
several disadvantages. Some are not completely meshless and use background meshes or other
mesh structures over the problem domain because of the numerical integration in weak-form
governing equations. Most also have difficulties with treating essential boundary conditions
because of the lack of interpolation properties. For example, the moving least squares approxi-
mation (MLS) [7] lacks the Kronecker delta property. Further research is required on meshless
methods to overcome these issues.

The point collocation approach—of which examples include the finite point method (FPM) [8],
meshfree point collocation method (MPCM) [9], and particle difference method (PDM) [10]—
is known to achieve a completely meshless method based on node-wise strong formulation.
There are two characteristics to transforming the point collocation approach into a truly mesh-
less method: using strong-form governing equations to avoid any complex implementation fea-
tures caused by the numerical integration scheme of the weak formulation and using interpola-
tion schemes that do not require meshes to construct shape functions, such as the reproducing
kernel approximation and MLS approximation. Compared to other meshless methods, the point
collocation approach is a relatively simple scheme because most meshless methods need some
additional mesh structures or numerical integration procedure. Point collocation methods have
been applied to fluid flow problems [8], elasticity of solid mechanics [11], solid elastoplastic-
ity [12, 13], and crack growth problems [14] in two dimensions.

This paper presents a meshless point collocation method for the analysis of three-dimensional
fracture. The constrained moving least squares (C-MLS) approximation, which is a meshless in-
terpolation technique proposed by Noguchi et al. [15, 16], is introduced to easily treat essential
boundary conditions. The topological change due to crack propagation is simply represented
by the addition and subtraction of nodes and surfaces. A cohesive crack model is employed
to deal with the fracture of quasi-brittle materials such as concrete. The cohesive crack model
suggested by Barenblatt [17] is widely exploited to address the fracture of engineering materi-
als to which classical linear fracture mechanics cannot be applied. The cohesive crack model
assumes that a virtually narrow band called the cohesive zone exists ahead of a crack tip and
represents the fracture process zone. The resistance to fracture is considered to be a gradual
process in which separation between incipient crack surfaces is given by the cohesive traction
of the cohesive zone following a cohesive constitutive law. The cohesive constitutive law rep-
resents the failure characteristics of the materials and is governed by cohesion at the atomistic
scale, crack-bridging ligaments, interlocking of grains, and other factors. Crack growth occurs
when the cohesive traction applied to the outer end of the cohesive zone disappears. Several
numerical examples were considered, and the results were compared with those in the literature.
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Figure 1: Support domain Ωy for C-MLS approximation of the local center y

2 ANALYSIS METHODS

2.1 Constrained moving least squares approximation

This section introduces the C-MLS approximation procedure with some extensions and mod-
ifications based on the original scheme [15, 16]. Consider a domain Ω surrounded by a boundary
Γ in Rn, as shown in Fig. 1. Suppose that a continuous function u(x) : Ω̄ → R is to be approxi-
mated and that the nodal values uI at xI ∈ Ω̄, I = 1,2, ...,N are given, where N is the number of
nodes included in the support domain Ω̄. For the sake of convenience, multi-index notation has
been adopted. Let x = (x1, ...,xn) be an n-dimensional vector and ααα = (α1, ...,αn) be an n-tuple
of non-negative integers. Then, the αth power of x is interpreted as xααα = xα1

1 xα2
2 . . .xαn

n and
|ααα | = ∑n

i=1 αi. In addition, Dααα
x := ∂ α1

x1 ∂ α2
x2 . . .∂ αn

xn
indicates the αth partial derivative operator

with respect to x. The αth derivative of the differentiable function f (x) is given by

Dααα
x f (x) =

∂ |ααα| f (x)
∂ α1

x1 ∂ α2
x2 . . .∂ αn

xn

. (1)

The C-MLS approximation employs an approximate function based on a Taylor series instead
of the normal polynomial approximation used in general MLS. The local approximation of u(x)
derived from the mth order Taylor polynomial is written as

uh(x,y) = uy +pT
m(x,y)a(y) (2)

where pT
m is constructed from all of the elements in the set Pm =

{
(x− y)ααα/ααα!

∣∣ ααα ∈ Am
}

,
a(y) is the corresponding unknown coefficient vector made from the elements in the set Dm ={

Dααα
x u(y)

∣∣ααα ∈ Am
}

, and Am =
{

ααα
∣∣ 1 ≤ |ααα | ≤ m

}
. In addition, the number of all elements in

the set Am is L = (n+m)!/(n!m!)−1. The above equation implies that a constraint condition
is imposed on the approximate function used in MLS approximation, and all of the derivative
approximations for u(y) up to the mth order are obtained by a(y). In the sense of a discrete L2
norm, the residual J is defined by

J =
N

∑
I=1

w
(

xI −y
ρy

)[
pT

m(xI,y)a(y)+uy −uI
]2 (3)

where w is the support of the weight function and ρy (i.e., the dilation parameter) determines
the size of the support domain Ω̄. The best local approximation is derived by minimizing the
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functional J(y) in Eq. (3) under the stationary condition. This yields the following normal
equation:

a(y) = M−1(y)B(y)u (4)

M(y) =
N

∑
I=1

w
(

xI −y
ρy

)
pm(xI,y)pT

m(xI,y) (5)

B(y) =

(
w
(

x1 −y
ρy

)
pm(x1,y), . . . ,w

(
xN −y

ρy

)
pm(xN ,y)

)
(6)

where u = (u1 −uy,u2 −uy, . . . ,uN −uy)
T . The local approximation of u(x) is interpreted as

uh(x,y) = uy +pT
m(x,y)M

−1(y)B(y)u. (7)

Thus, the C-MLS approximation clearly satisfies uh(y,y) = uy because a constraint condition is
imposed, which means that no special implementation is required to treat the essential boundary
conditions. These are the distinctive characteristics of C-MLS compared to MLS [7] and other
approximation schemes.

Consider the derivative approximation of u(x) at the local center y. Then, the derivative
coefficients of the Taylor polynomial can be related to differentiation with respect to x by sub-
stituting x = y as Dααα

x uh(x,y)
∣∣
x=y ≈ Dααα

x u(y) = Dααα
x u(x). Equation (4) is transformed as shown

below: Dααα1
x u(x)

...
DαααL

x u(x)

=

Φ[ααα1]
1 (x) . . . Φ[ααα1]

N (x)
... . . . ...

Φ[αααL]
1 (x) . . . Φ[αααL]

N (x)


u1

...
uN

 (8)

where ααα1, . . . ,αααL are the elements in the set Am sorted in a lexicographic order and Φ[αααK ]
I (x)

denotes the αααKth derivative of the nodal shape function. If K is omitted, Φ[αααK ]
I (x) is expressed

as

Φ[ααα]
I (x) = eT

αααM−1(x)cI(x) (9)

cI(x) =


w
(

xI −x
ρx

)
pm(xI,x) for xI ̸= x

− ∑
xI ̸=x

w
(

xI −x
ρx

)
pm(xI,x) for xI = x

(10)

where eT
ααα = (0, . . . ,1, . . . ,0) is a unit vector of the same order as the polynomial basis, whose

non-zero component is related to the αααth derivative. Then the derivative approximation Dααα
x u(x)

is given by

Dααα
x u(x) =

N

∑
I=1

Φ[ααα]
I (x)uI. (11)

Therefore, C-MLS does not need direct differentiation of the shape function, which is a costly
process in most meshless methods. This means that the computation speed for the derivatives
can be considerably improved, especially when computing high-order derivative approxima-
tions.
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The weight function used in all numerical calculations is non-smooth and is given as follows:

w(r) =

{(
1−∥r∥ 1

2
)2 for ∥r∥ ≤ 1

0 for ∥r∥> 1
(12)

where r = (xI − x)/ρx. Although several numerical methods based on MLS approximation
require a differentiable weight function to approximate the derivatives, C-MLS does not need
the weight function to be differentiable because the derivative of the approximation includes no
derivatives of the weight function. Yoon [10] stated that non-smooth functions are more suitable
for strongly formulated meshless methods than smooth ones.

The dilation parameter ρx indicates the support radius of the weight function and how many
nodes are included in the local approximation. Although some early meshless methods used
a constant radius probe regardless of the node density [4, 5], several surveys [18] have noted
that this may affect the approximation and suggested the variable dilation parameter to adjust
the support range depending on the position of the local center and node density. In the present
work, ρx was chosen to maximize the support radius under the condition N ≤ 7.89L where
m = n = 3.

2.2 Point collocation scheme

Next, the framework of the point collocation method based on the strong formulation is
explained. Let Ω be a bounded domain in Rn with the boundary Γ, as shown in Fig. 1. Then,
the nonlinear problem is governed by the following set of partial differential equations:

AΩu=fΩ in Ω (13)
AΓu=fΓ on Γ (14)

where AΩ denotes the partial differential operator of the given problem and AΓ denotes the
boundary value operator for the boundary condition. The above equations can be interpreted as

rΩ(u)=AΩu− fΩ=0 in Ω (15)
rΓ(u)=AΓu− fΓ =0 on Γ (16)

where rΩ(u) and rΓ(u) are the residual functions in the domain and on the boundary, respec-
tively. To solve the nonlinear problems, Newton’s method is employed. Then, the residuals are
linearized as follows:

DrΩ(u)[δu]=KΩδu in Ω (17)
DrΓ(u)[δu]=KΓδu on Γ (18)

where KΩ and KΓ represent the directional derivative operators in the domain and on the bound-
ary, respectively. The residuals and unknown function u can be computed by iterating the fol-
lowing scheme when updating the (k)th iteration step to the (k+1)th iteration step:

r(k)Ω = AΩu(k)− fΩ (19)

r(k)Γ = AΓu(k)− fΓ (20)

KΩδu =−r(k)Ω (21)

KΓδu =−r(k)Γ (22)

u(k+1) = u(k)+δu (23)

8119



Eiji Tanaka

Both Eqs. (21) and (22) are linear, so δu can be obtained by using a numerical solution of
algebraic equations. The operators rΩ(u) and rΓ(u) are also constructed in each step up to
the unknown function u(k). Most meshless methods based on the particle collocation approach
discretize Eqs. (13) and (14) directly for the numerical solution. In contrast, the presented
method introduces Eqs. (21) and (22) to extend the point collocation approach so that nonlinear
problems can be solved by using the linearization and the iteration scheme.

2.3 Governing equations

In the classical theory of elasticity, the analytical solution for crack problems is obtained to
solve the equilibrium equation by imposing boundary conditions on the crack faces. Similarly,
the point collocation method can express cracks by imposing the traction boundary condition
on the crack faces. Consider a solid mechanics problem with a small deformation in the domain
Ω with the crack Γc (Γc++Γc−), i.e., bounded by Γ (Γt ∪Γu ∪Γc) as shown in Fig. 2. At each
point x ∈ Ω, the problem is governed by the following set of differential equations:

divσσσ +b = 0 in Ω (24)
σσσn = t on Γt (25)
u = ū on Γu (26)
σσσnc+ = tc+ on Γc+ (27)
σσσnc− = tc− on Γc− (28)

where σσσ is the Cauchy stress tensor; b is the body force; n, nc+, and nc− are the outward surface
normal vectors; t and tc+ = −tc− are the tractions; and ū is the prescribed displacement. This
means that Eq. (14) directly applies to not only Γt but also Γc. In other words, the boundary
condition of cracks is simply embodied by the addition of nodes on crack faces and by imposing
a node-wise strong formulation. Then, the residual functions are given as

rΩ = divσσσ +b in Ω (29)
rΓt =σσσn− t on Γt (30)
rΓu = u− ū on Γu (31)
rΓc+ =σσσnc+− tc+ on Γc+ (32)
rΓc− =σσσnc−− tc− on Γc− (33)
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Figure 2: Schematic drawing of a cracked body
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and the linearization is derived as[
DrΩ[δu]

]
i =

∂Di jkl

∂x j

∂ sδuk

∂ sxl
+Di jkl

∂
∂x j

∂ sδuk

∂ sxl
in Ω (34)

DrΓt [δu] = (DDD : ∇sδu)n on Γt (35)
DrΓu [δu] = δu on Γu (36)
DrΓc+[δu] = (DDD : ∇sδu)nc+−Dtc+[δu] on Γc+ (37)
DrΓc−[δu] = (DDD : ∇sδu)nc−−Dtc−[δu] on Γc− (38)

where the summation convention is applied in Eq. (34) andDDD is called a tangent modulus tensor.
The operator ∇s is defined as

∇sδu =
∂ sδui

∂ sx j
=

1
2

(
∂δui

∂x j
+

∂δu j

∂xi

)
(39)

with the summation convention. The tangent modulus for the isotropic elastic material is written
by

DDD= 2GIIId +KI⊗ I (40)

where K is the bulk modulus, G is the transverse elasticity modulus, IIId is the deviatoric pro-
jection tensor, and I is the identity tensor. By discretizing Eqs. (29)–(38) through the C-MLS
approximation, linear algebraic equations related to Eqs. (21) and (22) for the iteration proce-
dure are obtained from

Kδu =−r (41)

where K is a coefficient matrix (i.e., Jacobian matrix) and r is the residual vector. When the
(k)th step is updated to the (k+ 1)th step in the iteration for Newton’s method, the above for-
mulation is decomposed as 

KΩ

KΓt

KΓu

KΓc+

KΓc−





δuΩ

δuΓt

δuΓu

δuΓc+

δuΓc−


=−



r(k)Ω

r(k)Γt

r(k)Γu

r(k)Γc+

r(k)Γc−


(42)

where r(k)Ω , r(k)Γt
, r(k)Γu

, r(k)Γc+
, r(k)Γc−

, KΩ, KΓt , KΓu , KΓc+ , and KΓc− are sub-matrices obtained by the
discretization of Eqs. (29)–(38), respectively. In particular, KΓu is simply expressed as follows
owing to the C-MLS approximation:

KΓu =
[
0 I 0

]
(43)

where the elements of I are located corresponding to δuΓu . The coefficient matrix is sparse and
banded but is generally non-symmetric because it is based on the strong formulation. Equation
(41) should be linearly independent so as not to cause singularity of the coefficient matrix.

The steps of the method for updating the time step tn to tn+1 are written below:

Phase 1. Construct the coefficient matrix K of discretized Eqs. (34)–(38).
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Phase 2. Obtain δu by using the numerical solution for Eq. (41) and update the displacement
u(k)

n+1 to u(k+1)
n+1 for the (k+1)th iteration step given by Eq. (23).

Phase 3. Update the stress σσσ (k+1)
n+1 and traction on the crack faces tc+ =−tc−.

Phase 4. Compute the residual vector r(k+1)
n+1 by using discretized Eqs. (29)–(33).

Phase 5. If the convergence criteria are satisfied, end the iteration and take the next time step;
otherwise, continue the iteration by returning to Phase 1.

The shape function approximated by C-MLS is constructed only once before the above pro-
cedure because of the hypothesis of a small deformation. Newton’s method is widely used
to solve nonlinear problems, so this procedure has a framework based on Newton’s method
that is basically common to conventional numerical methods such as the finite element method
(FEM). However, the coefficient matrix and linear algebraic equations derived from the strong-
form governing equations distinctly differ from those employed in FEM when the weak form is
assumed. Hence, the presented method, which needs no meshes or numerical integration, can
achieve a simpler scheme and reduce the computational costs for iterations.

2.4 Crack propagation modeling

In order to deal with the displacement discontinuity due to cracks, the so-called visibility
criterion [19] used in other meshless methods is employed with the C-MLS approximation.
In contrast to the conventional FEM, the meshless interpolation procedure used in meshless
methods such as MLS can adjust the size and shape of its domain of influence for the crack
discontinuity. The visibility criterion simply cuts through the domain of influence and ignores
the nodes placed at the opposite side of the crack, as shown in Fig. 3. As a result, the C-MLS
approximation modified by the visibility criterion allows the displacement field to contain jump
discontinuities across the crack face.

Most other meshless methods employ a special function in the approximation to deal with the
singularity of the stress field near the crack tip [19], but there have been few reports suggesting
a special function that can be applied to complex three-dimensional singularity. In this work,
the solution at the concave corner including the crack tip is defined by superposition of multiple
nodal solutions. As an example, the methodology for the two-dimensional case is depicted in
Fig. 4 (a). Consider the concave corner node and two lines modeling surfaces Γ1 and Γ2 with
outward normal vectors n1 and n2, respectively. Assume that the natural boundary condition of
the concave corner node is approximated by the following average:

σσσ1n1 +σσσ2n2 = t1 + t2 (44)

Γ

y

Neighbor node

Local center y

Ω Modified domain of influence

Surface

Figure 3: Modification of the domain of influence by the visibility criterion
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Figure 4: Corner node located at concave boundary surfaces
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Figure 5: Crack propagation modeled in surface patches and tip nodes

where n1 and n2 are the surface tractions. The stress σσσ1 and σσσ2 are computed by using shape
functions approximated by C-MLS with the visibility criterion corresponding to each surface.
These are derived for each domain of influence, as shown in Fig. 4 (a). In three dimensions,
the crack faces is represented by a polyhedron with triangle patches, as illustrated in Fig. 4 (b),
and approximate the natural boundary condition of the concave corner node as the following
extension of the two-dimensional case:

n

∑
k=1

θkσσσ knk =
n

∑
k=1

θktk (45)

where n is the number of surface patches around the corner node and θk, σσσ k, nk, and tk
are the angle between two sides, the stress, and the traction corresponding to each surface
patch. When using individual nodal values, the stress at the corner node is represented by
σσσ = (∑n

k=1 θkσσσ knk)/(∑n
k=1 θk). The above procedure is similar to the treatment for the natural

boundary condition at the corner in the finite difference method (FDM) in terms of averaging
the directional derivatives for the surface patches to obtain the approximation. The accuracy of
this procedure for the singularity of a crack tip was tested in an example described below.

Next, the procedure of crack propagation is explained. The point collocation method is a
truly meshless method based on a strong formulation. Thus, geometric changes to the analysis
model, such as the addition and subtraction of nodes and surfaces, are applied more easily than
in conventional mesh methods. As shown in Fig. 5, the crack front is composed of tip lines
and tip nodes on a collection of surface patches representing crack faces. Crack propagation
is defined as the motion of the crack front. The advance of the crack front is expressed by
the locations of the newly added tip nodes, and the direction of the crack propagation is as-
sumed according to the maximum principal stress. For each tip node, the direction of crack
propagation is defined as perpendicular to the direction of the maximum principal stress and
the direction along the tip line. In other words, two direction corresponding to the tip lines
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are defined, and two new tip nodes are generated for each tip node. The length of the crack
growth dc for each increment is predefined as a sufficiently small value to simulate the actual
crack shape. Once the positions of the new tip nodes are determined, the crack faces need to be
updated. This is easily done in two dimensions by the addition of tip lines. In three dimensions,
a series of surface patches is constructed. In addition, the surface patches are refined if the crack
front edge is too long or too short. Specifically, a crack edge that is longer or shorter than the
user-specified threshold is subdivided or deleted, as shown in Fig. 5. Most conventional mesh
methods have difficulty with applying the above geometric changes due to crack propagation
because the change in a system based on the weak formulation causes additional features to be
implemented. For instance, the change in element formulation due to the addition and subtrac-
tion of nodes, consistency between the mesh connectivity and continuity of the fracture zone
location, and others need to be considered. In contrast, the presented method maintains simplic-
ity and effectiveness due to the strong formulation. Therefore, this is a significant advantage of
the presented method for dealing with crack propagation.

2.5 Fracture criterion and cohesive crack model

This section describes the physical model of the crack propagation. The presented method
employs a Rankine-type fracture criterion where the crack is assumed to be initiated when the
maximum principal stress exceeds the uniaxial tensile strength. The crack face is introduced
perpendicular to the direction of the maximum principal stress, as noted previously. For some
geomaterials such as concrete, this provides sufficiently accurate results if no significant lateral
compression is present [20].

When the fracture criterion is met, discrete crack faces are introduced by adding the surface
patches and nodes. Then, a cohesive crack model is assumed, i.e., cohesive traction is applied
along newly generated crack faces. In other words, the crack faces of the model represent the in-
terface between the cohesive zone and the surrounding material. The cohesive traction depends
on a cohesive law that relates the traction to the jump in displacement across the discontinuity
of the crack faces. The relative displacement across the crack faces is represented by

wwwc = xc−−xc+ (46)

where xc+ and xc− are the positions of the nodes on the pair of surface patches. In this work,
only the normal component of the cohesive traction was considered. The cohesive traction
prescribed on the surface patch Γc+ is written as follows:

tc+ = tc(wc)nc+ (47)

where tc+ = −tc− is the cohesive traction on Γc+, tc(wc) is the cohesive traction force deter-
mined by the cohesive law, wc is the normal component of wwwc, and nc+ is the surface normal.
The cohesive traction is linearized as follows:

Dtc+[δu] =
∂ tc
∂wc

(
nc+⊗nc+

)
δwwwc (48)

where ∂ tc/∂wc is the modulus computed by the cohesive law. In this study, an exponential
cohesive law was employed. As shown in Fig. 6, the energy dissipated by the development
of the crack opening matches the fracture energy. Thus, tc is related to wc by the following
softening relationship:

tc(wc) = ft exp
(
− ft

G f
wc

)
(49)
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Figure 6: Schematic drawing of the exponential cohesive law

where G f is the specific fracture energy of the material and ft indicates the traction force at
failure. In addition, note that a penalty force is introduced to consider the crack surface over-
lap. Most conventional methods apply the cohesive crack model to the material constitutive
law to easily treat the discontinuity. In contrast, the presented method directly expresses the
framework of the cohesive crack model because the crack surfaces and cohesive traction are
simply introduced in combination with the crack growth procedure. Particularly in this regard,
the presented method is attractive for the analysis of brittle and quasi-brittle fracture.

3 NUMERICAL EXAMPLES

3.1 Near-tip crack field problem

A patch test for a singular field was performed. A closed-form solution for a crack can be
derived by using the known near-tip field in a domain about the crack tip. A cuboid region was
considered as shown in Fig. 7, and the known near-tip displacement fields from the solution
for a mode I crack were prescribed along the boundaries parallel to the tip line. Symmetric
boundary conditions were imposed on the surfaces perpendicular to the tip line to assume the
plane strain condition, and traction-free boundary conditions were applied to the crack faces.
This example is an intrinsically two-dimensional problem, and the displacement for the near-tip
field is given by

ux =
KI

2G

√
r

2π
cos
(

θ
2

)[
κ −1+2sin2

(
θ
2

)]
(50)

uz =
KI

2G

√
r

2π
sin
(

θ
2

)[
κ +1−2cos2

(
θ
2

)]
(51)

2a

z
y
x

b

a

a

a

ux uz,

Figure 7: Cuboid region for a
near-tip crack problem

(a) 95,335 nodes (b) 206,195 nodes

Figure 8: Node distribution for a near-tip crack problem
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Table 1: Recalculated stress intensity factors for a near-tip crack problem

Case Number of nodes Node density Recalculated SIFs Relative error (%)

1 15,160 Homogeneous 0.99059 0.94
2 95,335 Homogeneous 0.99789 0.21
3 300,514 Homogeneous 1.00256 0.26
4 206,195 Heterogeneous 1.00005 0.01

Figure 9: Von Mises stress in the
section at y = 0 for a near-tip
crack problem

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

15160 nodes

95335 nodes

300514 nodes

206195 nodes

exact

σ zz
 (

M
P

a
)

x (mm)

Figure 10: Distribution of the normal stress σzz for the near-
tip field along the line y = z = 0 for a near-tip crack problem

where r is the distance from the crack tip line in the cylindrical coordinate system, θ is the
angle measured from the line ahead of the crack, KI is the stress intensity factor, and κ is the
Kolosov constant defined as κ = 3−4ν for the plane strain [21]. The parameters of a = 10 mm,
b = 4 mm, KI = 1 MPa ·mm1/2, Young’s modulus E = 200 GPa, and Poisson’s ratio ν = 0.3
were used. For the convergence test, four cases for the number of nodes given in Table 1 were
used. As shown in Fig. 8, irregular patterns of the node distribution were adopted for each case.
The node density of the case with 206,195 nodes was locally refined near the crack tip, and the
others were nearly homogeneous.

Table 1 provides the stress intensity factors (SIFs) for the numerical results recalculated by
the M-integral method [22], and Fig. 9 illustrates the von Mises stress distribution in a section
of y = 0 for the case with 206,195 nodes. The recalculated SIFs showed good agreement with
the prescribed value in every case. In addition, Fig. 10 plots the numerical results for the
distribution of normal stress σzz ahead of the crack tip along the line of y = x = 0 with the exact
solution. The results indicated that the modeling approach described above worked successfully,
even though the near-tip field was not enriched to capture the stress singularity at the crack
tip strictly. Furthermore, it is confirmed that the C-MLS approximation provides the accurate
numerical results as well as other meshless approximations.

3.2 Double-edge notched specimen under tension

The second example was the simple fracture analysis of a uniaxial tension test on a double-
edge notched (DEN) specimen. The geometry and prescribed boundary conditions are illus-
trated in Fig. 11. The specimen was weakened by two notches to initialize fracture. Because
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Figure 11: Geometry and applied
boundary conditions for a DEN test

Figure 12: Node distribution for a
DEN test

(a) u = 1.6 µm (b) u = 2.4 µm (c) u = 3.2 µm (d) u = 4.0 µm (e) u = 4.8 µm

Figure 13: Crack propagation for a DEN test

of the symmetry, one quarter of the specimen was discretized with proper symmetric boundary
conditions, as displayed in Fig. 12. This also implies that the symmetry of the crack propagation
was enforced. The numerical simulation was carried out for the irregular node distribution of
23,988 nodes and the crack increment length of dc = 1.04 mm. The material parameters were
taken to be equivalent to those of Comi et al. [23] as follows: E = 36 GPa, ν = 0.1, ft = 3.0 MPa
and G f = 0.011 N/mm. A displacement control procedure was employed based on the uniform
displacement in the z-direction u prescribed on the top of the specimen.

Fig. 13 depicts the resulting crack evolution and Fig. 14 provides the maximum principal
stress distribution where the displacements are scaled by a factor of 100. Two planar cracks ex-
tended from each notch until they joined within the specimen, and the specimen was completely
cut by the crack at the end. Note that the fracture process can be nonsymmetric if the symmet-
ric property is not considered because a possible scenario is that only one of the two cracks
extends while the other crack unloads owing to the material imperfection. Fig. 15 compares the
load–displacement response with the numerical results obtained by using the extended finite
element method (XFEM) with a continuum damage model [23]. Both response curves had a
rapid drop after the peak load, although the falls in the load after the rapid drop were different.
The numerical results of the presented method seem to qualitatively agree with the experimental
results [24].
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(a) u = 1.6 µm (b) u = 2.4 µm (c) u = 3.2 µm

(d) u = 4.0 µm (e) u = 4.8 µm (f) u = 20.0 µm

Figure 14: Maximum principal stress for a DEN test
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Figure 15: Reaction load versus prescribed displacement for a DEN test

3.3 Anchor pull-out test

The next example was the pull-out test of a steel anchor embedded in a cylindrical con-
crete block. The dimensions and material parameters were set to E = 30 GPa, ν = 0.2, ft =
3.0 MPa, and G f = 0.106 N/mm, which are similar to those used by Rots [20] and Gasser and
Holzapfel [25]. Fig. 16 displays a quarter of the geometric data and applied boundary condi-
tions. A vertical load F was imposed on the center of the steel disk, and the embedded disc
was pulled against a counter pressure placed concentric with the disc on the surface until the
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surrounding concrete fractured. As shown in Fig. 17, a quarter of the whole structure was mod-
eled, and symmetric boundary conditions were applied. Note that the three-dimensional model
was used in this work to investigate the presented method in three dimensions, although this
problem is intrinsically axisymmetric and can be modeled more simply. The irregular node
distribution of 23,232 nodes and crack increment length of dc = 18 mm were used. The steel
anchor was not explicitly modeled; instead, an incremental displacement u in the z-direction
was prescribed at the nodes of the upper contact surface between the steel disc and concrete by
assuming that the steel disc was rigid. The numerical analysis is conducted under displacement
control; a constant incremental displacement of 0.025 mm was imposed in each load step until
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Figure 16: Geometry and applied boundary
conditions for an anchor pull-out test

Figure 17: Node distribution for an anchor
pull-out test

(a) u = 0.075 mm (b) u = 0.15 mm (c) u = 0.225 mm

(d) u = 0.275 mm (e) u = 0.35 mm (f) u = 0.4 mm

Figure 18: Crack propagation for an anchor pull-out test
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(a) u = 0.225 mm (b) u = 0.4 mm

Figure 19: Normal stress in the loading direction σzz for an anchor pull-out test
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Figure 20: Reaction load versus prescribed displacement for an anchor pull-out test

the displacement reached the final value of 0.4 mm.
Fig. 18 depicts the propagating crack surface of the concrete cylinder, where the different

stages are associated with different levels of prescribed displacements. The crack initiated from
the outer edge of the upper contact surface of the steel disc into the concrete, and the final crack
surface exhibited a conical shape similar to those observed in the experimental results [20] and
numerical results of the literature [25]. Fig. 19 shows the normal stress distribution plotted
on the deformed representation corresponding to the results of the load steps at the applied
displacements u = 0.225 mm and u = 0.4 mm, respectively. Finally, Fig. 20 shows the evolu-
tion of the corresponding load versus the prescribed displacement, where the resulting curve is
compared with the numerical result from Gasser and Holzapfel [25] using PUFEM. The load–
displacement curve was almost linear until a load of about 500 kN was reached. Afterwards,
there was a short drop in the reaction load with an acceleration of the succeeding crack propa-
gation. The accelerated crack growth ended when the crack front reached below the ring zone
to which the displacement boundary condition uz = 0 was applied. Finally, the load increased
again when the displacement went beyond about 0.28 mm. Both the aforementioned phenom-
ena and load–displacement response showed good agreement with the numerical results in the
literature [25].
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4 CONCLUSIONS

This paper presents a meshless point collocation method for three-dimensional crack prop-
agation. The presented method yields a truly meshless fracture analysis by using C-MLS ap-
proximation, node-wise discretization based on the strong formulation, and crack propagation
represented by the addition of nodes and surfaces. The C-MLS approximation provides deriva-
tive approximations without direct differentiation and does not require any special implementa-
tion to treat essential boundary conditions. The geometric change due to crack growth is simply
represented by the addition and subtraction of nodes and surfaces, and the cohesive crack model
is employed in association with the crack propagation procedure to directly embody the frac-
ture of quasi-brittle materials in a sufficient manner. Numerical examples were performed to
demonstrate the accuracy and effectiveness of the presented method. This method has the po-
tential to solve other problems involving geometric and boundary nonlinearity, such as large
deformations.
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Abstract. A cell-based smoothed point interpolation method (CSPIM) for the numerical 
modelling of saturated porous media in axisymmetric conditions is proposed. Spatial 
discretisation is performed using a simple triangulation. Both displacement and fluid 
pressure gradients are smoothed by incorporating the smoothing gradient operation 
technique. Thus, the integration over the supporting domains (i.e. elements) is transformed to 
that over the boundary of the elements. The field variables, the displacement and excess pore 
water pressure, are interpolated using point interpolation shape functions (polynomial and 
radial), which possess the Kronecker function property and facilitate imposing the essential 
boundary conditions. The global property matrices of the discretised system of equations are 
derived using the generalised smoothed Galerkin method and the three-point time 
discretisation scheme for discretisation of the governing equations in space and time, 
respectively. A novel approach is introduced for the computation of the property matrices, 
which avoids the singularity problem that will otherwise arise when cell-based smoothed 
interpolation method is used in axisymmetric conditions. The salient feature of the proposed 
method is that it incurs no additional computational costs, and it does not compromise on 
accuracy of the method. The validity of the proposed method is investigated by simulation of 
Cryer’s benchmark consolidation problem. The numerical results are in excellent agreement 
with the analytical solution.   
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Introduction 

A wide class of efficient smoothed point interpolation methods (SPIMs) have been recently 
developed [1, 2] by incorporating strain smoothing operation [2] to point interpolation 
methods (PIMs).  In SPIMs, instead of using a compatible strain field, a smoothed strain field 
is constructed through a smoothing operation performed over smoothing domains. The 
smoothed strain field overcomes the problems associated with continuity of the 
approximation field over the problem domain through elimination of the need for the 
derivatives of the shape functions. Different smoothing domains can be adopted for the 
smoothing operation leading to different SPIMs [3-6]. The simplest SPIM is perhaps the cell-
based SPIM (CSPIM) in which the cells of a triangular background mesh are used as the 
smoothing domains. To date, CSPIM has been successfully applied to plane strain problems 
in geotechnical engineering with results showing its superiority to similar methods (e.g. finite 
element methods) in terms of both efficiency and convergence rate [7]. 

Axisymmetric problems are of considerable importance in geotechnical engineering because 
of their many applications including simulation of uni-axial and tri-axial loading conditions, 
pile installation, and tunnels. Nonetheless, application of SPIMs to axisymmetric problems 
has received little attention in the literature. This may be attributed to the difficulties 
associated with application of SPIMs in axisymmetric conditions due to the existence of 
Gauss points on the boundary of the smoothing domains on the axis of the symmetry. In 
particular, CSPIM cannot be directly extended to axisymmetric conditions due to singularity 
problem arises in the analysis. 

In this paper, a novel approach is presented to extend the formulation of the CSPIM to 
axisymmetric conditions. The approach is general in nature and can also be applied to other 
SPIMs to extend their application to axisymmetric problems. The technique presented does 
not include any approximation and therefore, does not adversely affect the accuracy of the 
numerical procedure. The validity of the proposed method is verified by analysis of Cryer’s 
benchmark problem [8].  

Governing equations 

The equations governing flow-deformation of saturated porous media, first presented by Biot 
[9], are derived based on the momentum balance of the solid and fluid phases and mass 
conservation of the fluid phase, as 

𝝏𝝏𝑇𝑇�𝑫𝑫�̇�𝜺 + 𝜂𝜂𝑝𝑝�̇𝑓𝑓𝜹𝜹� + �̇�𝑭 = 𝟎𝟎         (1) 

𝜵𝜵𝑇𝑇 �𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓
�𝜵𝜵𝑝𝑝�𝑓𝑓 + 𝜌𝜌𝑓𝑓𝒈𝒈�� = 𝑎𝑎𝑓𝑓𝑝𝑝�̇𝑓𝑓 − 𝜵𝜵𝑇𝑇𝒖𝒖�̇       (2)        

with  

𝑎𝑎𝑓𝑓 = 𝑛𝑛�𝑐𝑐𝑓𝑓 − 𝑐𝑐𝑠𝑠� + 𝜂𝜂𝑐𝑐𝑠𝑠   ,   𝜂𝜂 = 1 − 𝑐𝑐𝑠𝑠
𝑐𝑐

       (3) 
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where 𝑫𝑫 is the drained stiffness matrix of the soil, 𝜺𝜺 is the soil skeleton strain, 𝜹𝜹 is the 
Kronecker delta, 𝑭𝑭 is the vector of body force per unit volume, 𝑎𝑎𝑓𝑓  is the apparent 
compressibility of the fluid, 𝑐𝑐𝑓𝑓 is the compressibility of the fluid, 𝑐𝑐𝑠𝑠 is the compressibility of 
solid grains, 𝑐𝑐 is the drained compressibility of the solid skeleton and 𝜂𝜂 is the effective stress 
parameter. 𝒌𝒌𝑓𝑓 is the intrinsic permeability matrix of the soil, 𝜇𝜇𝑓𝑓 is the dynamic viscosity of 
the fluid and 𝜌𝜌𝑓𝑓 is the intrinsic mass densities of the fluid. 𝒖𝒖� stands for the displacement 
vector of the soil skeleton and 𝑝𝑝�𝑓𝑓 is the pore fluid pressure (the tilde denotes a continuous 
field as opposed to the discretised field introduced later). 𝒈𝒈 is the vector of gravitational 
acceleration and 𝑛𝑛 is the soil porosity. 𝝏𝝏 and 𝜵𝜵 are the differentiation matrix and the gradient 
operator, respectively. 

Construction of the shape functions  

Radial Point Interpolation Method (RPIM) [10] is adopted in this study for the construction 
of the nodal shape functions. To derive RPIM shape functions, the field approximation 
function, 𝑢𝑢(𝒙𝒙), in the space coordinates 𝒙𝒙=[𝑟𝑟, 𝑧𝑧] is approximated at any point in the problem 
domain with the following series representation:  

𝑢𝑢(𝒙𝒙) = ∑ 𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖(𝒙𝒙)𝑝𝑝
𝑖𝑖=1 + ∑ 𝑏𝑏𝑗𝑗𝑝𝑝𝑗𝑗(𝒙𝒙)𝑙𝑙

𝑗𝑗=1 = 𝑹𝑹𝑇𝑇(𝒙𝒙)𝒂𝒂 + 𝒑𝒑𝑇𝑇(𝒙𝒙)𝒃𝒃                               (4) 

in which 𝑅𝑅𝑖𝑖(𝒙𝒙) and 𝑝𝑝𝑗𝑗(𝒙𝒙) are the radial basis functions (RBFs) and monomial terms, 
respectively; 𝑎𝑎𝑖𝑖 is the coefficient for radial basis 𝑅𝑅𝑖𝑖(𝒙𝒙), and 𝑏𝑏𝑗𝑗 is the coefficient for the 
polynomial basis 𝑝𝑝𝑗𝑗(𝒙𝒙). 𝑝𝑝 is the number of nodes in the compact support domain of the point 
of interest, and 𝑗𝑗 is the number of monomial terms. Detailed discerption of derivation of 
shape functions can be found in previous works [10-14]. 

Cell-based smoothed strains 

In CSPIM, the cells of the background mesh serve as the smoothing domains, with the 
smoothed strains computed for each cell through the smoothing operation technique. The 
smoothed strain for cell 𝑘𝑘 can be calculated from [2],   

𝜺𝜺�𝑘𝑘 = 𝑩𝑩�1𝒖𝒖 = 1
𝛺𝛺𝑘𝑘 ∫ 𝜵𝜵𝑢𝑢(𝒙𝒙)𝑑𝑑𝛺𝛺𝑘𝑘 = 

𝛺𝛺𝑘𝑘
1
𝛺𝛺𝑘𝑘 ∫ 𝑳𝑳𝑛𝑛𝑢𝑢(𝒙𝒙)𝑑𝑑𝛤𝛤𝑘𝑘      

𝛤𝛤𝑘𝑘                                         (5) 

where 𝑩𝑩�1 is the smoothed strain-displacement matrix for each smoothing domain, which is 
obtained by the summation of the smoothed strain-displacement matrices computed at the 
Gauss points on the edges of the smoothing domain, as follows: 

𝜺𝜺�𝑘𝑘 = ∑ 𝑩𝑩�1𝑖𝑖𝒖𝒖𝑖𝑖
𝑞𝑞
𝑖𝑖=1                                 𝑖𝑖 ∈ 𝑆𝑆𝑠𝑠                                                                              (6)                             

where 𝑆𝑆𝑠𝑠 is the set of 𝑞𝑞 support nodes that includes all the nodes involved in the interpolation 
of the quadrature points located on all segments of the boundary 𝛤𝛤𝑘𝑘 for the smoothing 
domain 𝛺𝛺𝑘𝑘. 𝑳𝑳𝑛𝑛 in equation (6) is unit outward operator for each segment of the boundary of 
cell 𝑘𝑘. Further details about the computation of the smoothed strain-displacement matrix can 
be found in [7]. 
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Node selection schemes  

In CSPIM, a number of node selection schemes, known as T-schemes, have been proposed 
for the selection of the supporting nodes at each point of interest. Comprehensive details of 
the T-Schemes can be found in Liu and Zhang [2]. In the current study, a simple node 
selection scheme, referred to as T4, is adopted. This scheme selects four nodes of the two 
cells that share the edge hosting the Gauss point of interest. A linear approximation is applied 
when the Gauss point of interest is located on the boundary of the domain. 

Spatial and temporal discretisations 

Using the Generalised Smoothed Galerkin (GS Galerkin) approach [2], the spatial 
discretisation of equations (1) and (2) are obtained as follows [7]: 

𝑬𝑬�𝑼𝑼 +  𝜚𝜚𝑪𝑪�𝑷𝑷𝑓𝑓 = 𝑹𝑹                                                                                                          (7) 

𝜚𝜚𝑪𝑪�𝑇𝑇�̇�𝑼 − 𝑯𝑯�𝑷𝑷𝑓𝑓 − 𝑎𝑎𝑓𝑓𝑴𝑴�̇�𝑷𝑓𝑓 = 𝑸𝑸                  (8) 

The smoothed-displacement matrix for an axisymmetric setting is as follows 

𝑩𝑩�1 = ∑ 𝑩𝑩�1𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑

⎣
⎢
⎢
⎢
⎡𝑏𝑏
�𝑖𝑖𝑖𝑖 0
0 𝑏𝑏�𝑖𝑖𝑖𝑖
𝑏𝑏�𝑖𝑖𝑖𝑖 𝑏𝑏�𝑖𝑖𝑖𝑖
𝜙𝜙𝑖𝑖
𝑖𝑖

0 ⎦
⎥
⎥
⎥
⎤

𝑖𝑖∈𝑆𝑆𝑠𝑠                                                                                           (9) 

where  

𝑏𝑏�𝑖𝑖𝑙𝑙 = 1
2𝛺𝛺𝑘𝑘

∑ �𝐿𝐿𝑚𝑚𝑘𝑘 ∑ 𝑤𝑤𝑛𝑛 𝜙𝜙𝑖𝑖(𝒙𝒙𝑚𝑚𝑛𝑛)  𝑛𝑛𝑙𝑙(𝒙𝒙𝑚𝑚𝑛𝑛)  𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
n=1 �  𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔

m=1   (𝑙𝑙 = 𝑟𝑟, 𝑧𝑧)                                         (10) 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is the number of line segments, 𝐿𝐿𝑚𝑚𝑘𝑘  is the length of the 𝑚𝑚th segment of 𝛤𝛤𝑘𝑘, 𝑛𝑛𝑙𝑙 is 
the component of the unit outward normal and 𝑁𝑁𝑠𝑠𝑔𝑔𝑔𝑔 is the number of Gauss points used in 
each segment of 𝛤𝛤𝑘𝑘, which is taken two in this study. 𝒙𝒙𝑚𝑚𝑛𝑛 is the 𝑛𝑛th Gauss point of the 𝑚𝑚th 
segment of 𝛤𝛤𝑘𝑘, and 𝑤𝑤𝑛𝑛 is the Gauss integration weight. 𝜙𝜙𝑖𝑖(𝒙𝒙𝑚𝑚𝑛𝑛) is the shape function value 
for node 𝑖𝑖 ∈ 𝑆𝑆𝑠𝑠 at the point of interest 𝒙𝒙𝑚𝑚𝑛𝑛. If the current quadrature point 𝑖𝑖 ∉ 𝑆𝑆𝑛𝑛, 
then 𝜙𝜙𝑖𝑖(𝒙𝒙𝑚𝑚𝑛𝑛) = 0. 

As can be seen, the term 𝜙𝜙𝑖𝑖/𝑟𝑟 in equation (9) leads to a singularity problem when the Gauss 
point of interest is on the axis of symmetry. To overcome this problem, the smoothed strain-
displacement matrix is decomposed into two matrices:  

𝑩𝑩�1 = 𝑩𝑩�1𝑠𝑠 + 𝑩𝑩1ϴ                                                                                                                     (11) 

where  
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𝑩𝑩�1𝑠𝑠 = ∑ 𝑩𝑩�1𝑠𝑠𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑

⎣
⎢
⎢
⎡𝑏𝑏
�𝑖𝑖𝑖𝑖 0
0 𝑏𝑏�𝑖𝑖𝑖𝑖
𝑏𝑏�𝑖𝑖𝑖𝑖 𝑏𝑏�𝑖𝑖𝑖𝑖
0 0 ⎦

⎥
⎥
⎤

𝑖𝑖∈𝑆𝑆𝑠𝑠                                                                                     (12) 

𝑩𝑩1θ = ∑ 𝑩𝑩1𝜃𝜃𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑

⎣
⎢
⎢
⎡

0 0
0 0
0 0
𝜙𝜙𝑖𝑖
𝑖𝑖

0⎦
⎥
⎥
⎤

𝑖𝑖∈𝑆𝑆𝑠𝑠                                                                                         (13)     

The decomposition separates the terms causing singularity from the rest of the strain-
displacement matrix. Given that no smoothing is required for 𝜙𝜙𝑖𝑖 𝑟𝑟⁄  terms, the integrations 
involving this term can be carried out over the smoothing domains rather than the boundary 
of the smoothing domains, resulting in the removal of the singularity problem. The procedure 
involves no additional computational cost as in any case, the shape function values are 
calculated at the Gauss points inside the smoothing domains for the calculation of 𝑴𝑴 and 𝑪𝑪�, 
even in plane strain problems [7]. For the stiffness matrix,   

𝑬𝑬�  = ∑ 2𝜋𝜋𝑟𝑟�𝑩𝑩�1𝑠𝑠𝑇𝑇 𝑫𝑫𝑩𝑩�1𝑠𝑠 + 𝑩𝑩�1𝑠𝑠𝑇𝑇 𝑫𝑫𝑩𝑩�1𝜃𝜃 + 𝑩𝑩�1𝜃𝜃𝑇𝑇 𝑫𝑫𝑩𝑩�1𝑠𝑠 + 𝑩𝑩�1𝜃𝜃𝑇𝑇 𝑫𝑫𝑩𝑩�1𝜃𝜃�𝛺𝛺𝑘𝑘
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                (14) 

The first term in equation (14) is calculated similar to the computation of the stiffness matrix 
in CSPIM of plane strain problems [9]. The second and third terms are calculated adopting an 
approach similar to that proposed in [1] for the calculation of the 𝑪𝑪� matrix. The last term is 
calculated over the smoothing domains using the standard Gauss integration approach.  

The coupling matrix is calculated as follows 

𝑪𝑪� = ∑ 𝑪𝑪�𝑆𝑆𝑆𝑆𝑁𝑁SD
𝑘𝑘=1 = ∑ 2𝜋𝜋 �∫ (𝑩𝑩�2𝑠𝑠 + 𝑩𝑩2ϴ)𝑇𝑇𝜱𝜱𝑝𝑝𝑟𝑟𝛺𝛺𝑘𝑘 𝑑𝑑𝛺𝛺𝑘𝑘�𝑁𝑁SD

𝑘𝑘=1                                                     (15) 

where 𝜱𝜱𝑝𝑝 is the matrix of shape functions. The first part of the integration is calculated 
similar to the 𝑪𝑪� matrix in plain strain formulation [7]. The second term is obtained over the 
smoothing domain using the standard Gauss integration approach. 

The Permeability matrix (𝑯𝑯� ) and the compressibility matrix of the fluid phase (M) can be 
computed with small modifications to the formulations presented in [7], as follows 

𝑯𝑯� = ∑ 𝑯𝑯�𝑆𝑆𝑆𝑆𝑁𝑁SD
𝑘𝑘=1 = ∑ 2𝜋𝜋

𝜇𝜇𝑓𝑓
𝑁𝑁SD
𝑘𝑘=1 𝑩𝑩�3𝑇𝑇𝒌𝒌𝑓𝑓𝑩𝑩�3 ∫ 𝑟𝑟𝛺𝛺𝑘𝑘 𝑑𝑑𝛺𝛺𝑘𝑘                                                                    (16) 

𝑴𝑴 = ∑ 𝑴𝑴𝑆𝑆𝑆𝑆𝑁𝑁SD
𝑘𝑘=1 = ∑ 2𝜋𝜋 ∫ 𝜱𝜱𝑝𝑝𝑇𝑇𝜱𝜱𝑝𝑝𝑟𝑟𝑑𝑑𝛺𝛺𝑘𝑘 𝛺𝛺𝑘𝑘

𝑁𝑁SD
𝑘𝑘=1                                                                      (17) 

Equations (7) and (8) are then discretised in time using a three point time discretisation 
scheme [15] resulting in the fully discretised systems of equations, as follows 

𝑲𝑲𝑲𝑲 = 𝒀𝒀                                                                                                                                (18) 
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𝑲𝑲 =  �
𝐴𝐴𝑬𝑬�2𝑁𝑁×2𝑁𝑁 𝐴𝐴𝜚𝜚𝑪𝑪�2𝑁𝑁×𝑁𝑁

𝐴𝐴𝜚𝜚𝑪𝑪�𝑻𝑻𝑁𝑁×2𝑁𝑁 −�∆𝑡𝑡𝑯𝑯� + 𝐴𝐴𝑎𝑎𝑓𝑓𝑴𝑴�𝑁𝑁×𝑁𝑁

�
3𝑁𝑁×3𝑁𝑁

                                                             (19)                                                    

𝑲𝑲 =  �
𝑼𝑼𝑡𝑡+𝛼𝛼∆𝑡𝑡

2𝑁𝑁×1

𝑷𝑷𝑓𝑓             𝑁𝑁×1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 �

3𝑁𝑁×1

                                                                                           (20)               

𝒀𝒀 =  �
 𝐴𝐴(𝑹𝑹𝑡𝑡+𝛼𝛼∆𝑡𝑡)2𝑁𝑁×1

(∆𝑡𝑡𝑸𝑸𝑡𝑡+𝛼𝛼∆𝑡𝑡 +  𝐵𝐵𝜚𝜚𝑪𝑪�𝑇𝑇𝑼𝑼𝑡𝑡 −  𝐶𝐶𝜚𝜚𝑪𝑪�𝑇𝑇𝑼𝑼𝑡𝑡−∆𝑡𝑡 −  𝐵𝐵𝑎𝑎𝑓𝑓𝑴𝑴𝑷𝑷𝑓𝑓𝑡𝑡 +  𝐶𝐶𝑎𝑎𝑓𝑓𝑴𝑴𝑷𝑷𝑓𝑓𝑡𝑡−∆𝑡𝑡)𝑁𝑁 ×1
�
3𝑁𝑁×1

         (21) 

Verification 

The benchmark consolidation problem of Cryer is adopted here for verification purposes. In 
this problem, a uniformly distributed surface load of 𝑝𝑝0 = 1 𝑘𝑘𝑘𝑘𝑎𝑎 is concentrically applied to 
a sphere of radius 𝑎𝑎 = 1.0 𝑚𝑚. Only a quarter of the sphere was modelled, because of the 
symmetry. The outer boundary of the sphere was assumed permeable and the permeability of 
the sphere was assumed 𝑘𝑘 = 1 𝑚𝑚/𝑠𝑠. The geometry and boundary conditions of the problem, 
along with the triangular background mesh used for the spatial discretisation are shown in 
Figure 1. Three different cases were studied using three different sets of elastic properties as 
presented in Table 1. Case 3 here approximates an incompressible material (v = 0.5). In all 
cases, the first dimensionless time step was taken as 0.0005 with a time step growth factor of 
1.2. 

Table 1. Soil properties used in the analysis of Cryer’s problem  

Case Number v E 
1 0.0 1.0 
2 0.333 0.666 
3 0.496 0.0299 

 

 
(a) 

 
(b) 

Figure 1. consolidation problem of Cryer; a) Geometry and boundary conditions; b) Spatial discretisation used 
in this study 
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As an example, the numerical results for the excess pore water pressure contours from the 
analysis of case 1 at dimensionless time 0.01979 is shown in Figure 2. The symmetry of the 
geometry and the applied load result in the symmetry of the excess pore water pressure 
contour, as expected.  

The analytical solution for the excess pore water pressure generated at the centre of the 
sphere versus dimensionless radial displacement of the surface of the sphere, and also the 
variation of the dimensionless surface settlement with time were derived by Cryer [8]. For the 
verification of the proposed formulation, the results of the numerical analysis are compared 
with the analytical solution as presented in Figure 3. As can be seen, there is an excellent 
agreement between the results of the proposed method and the analytical solution for all three 
cases studied. In all cases, the pore pressure increases over the entire sphere to the value of 
the applied load upon the application of the load. The pore pressure then initially increases at 
the centre of the sphere in cases 1 and 2, before decreasing due to consolidation process. This 
effect, known as the Mandel-Cryer effect [8, 16], is perfectly captured in the numerical 
analyses. For case 3, when the soil is incompressible, no increase of pore water pressure is 
observed which also agrees with the analytical solution. The Mandle-Cryer effect cannot be 
captured using the original Terzaghi’s formulation for consolidation and can only be 
simulated when the governing equations for the solid and water phases are properly coupled. 
More discussion on this matter can be found in [17]. 

 

Figure 2. Excess pore pressure contour for Cryer’s problem at dimensionless time of 0.01979. 
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(a) 

 
(b) 

Figure 3. Comparison between numerical results and analytical solution; (a) Dimensionless excess pore pressure 
at the centre of the sphere versus dimensionless surface displacement; (b) dimensionless surface displacement 

versus �𝑇𝑇𝑣𝑣 
 

Conclusion  

A cell-based smoothed point interpolation method (CSPIM) for the analyses of axisymmetric 
poro-elastic problems has been proposed. This method is based on a novel approach for 
systematic decomposition of the system matrices to remove the inherent singularity problem 
in SPIMs when an axisymmetric problem is considered. Solid and fluid phase property 
matrices and coupling matrices of a fully discretised system of equations have been derived 
in an axisymmetric setting based on the proposed approach. The method has been verified by 
numerical analysis of Cryer’s benchmark problem of consolidation of a saturated sphere. It 
has been shown that the proposed method can accurately reproduce the analytical solution 
and in particular, the Mandel-Cryer effect is precisely captured when a compressible medium 
is considered. 
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Abstract. Meshless methods have shown increased accuracy and better convergence rates 
compared to other well-known simulation methods in a variety of computational mechanics 
problems. In adaptivity analysis, besides the effortless node addition at each step, their compu-
tational cost is relatively higher, since the construction of updated shape functions and shape 
functions derivatives that are used to construct the stiffness matrix is burdensome.  
EFG and other similar methods use the moving least squares procedure, where the approxima-
tion of the displacement field is expressed as a polynomial with non-constant coefficients. In 
order to determine these coefficients, a weighted residual is solved for every point of interest, 
usually the Gauss points. Each time the domain of influence changes or a new node is added 
or subtracted from the domain, the shape functions and their derivatives have to be re-calcu-
lated for the influenced areas, requiring a significant amount of computational effort. 
In this work, the shape function construction procedure is analyzed in depth and several new 
approaches are proposed ranging from an explicit analytical form for typical arrangement of 
nodes -which corresponds to a significant percentage of typical problem domains- to complex 
hierarchical formulations in the context of an h-type refinement scheme. The addition of new 
nodes and subsequently the re-calculation of the influenced moment matrices, that are neces-
sary for obtaining the shape functions and their derivatives and subsequently for the construc-
tion of the stiffness matrix, are properly addressed. Unconventional types of weight and shape 
functions are also proposed and the results are critically assessed. 
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1 INTRODUCTION 
Meshless methods (MMs) have been used for solving problems that are difficult or impos-

sible to be dealt with by mesh related procedures of established simulation methods like the 
finite element method (FEM). Problems of large deformations, discontinuities, contact and 
moving boundaries or problems demanding very high accuracy, are some of the problems MMs 
are mostly used. In MMs there is no need to construct a mesh while the solution and its deriv-
atives are continuous throughout the domain of interest leading to more accurate stress distri-
butions as well as to less sensitive to distortions due to large deformations. In areas where 
increased accuracy is needed, refinement by adding nodes (h-adaptivity) may implemented ef-
fortlessly. Moreover, established methods like FEM may be partially enriched with features of 
some MMs, or be coupled with, enhancing their effectiveness. 

One of the first and most prominent meshless methods is the element free Galerkin (EFG) 
method introduced by Belytschko et al.. EFG requires only nodal data and no element connec-
tivity is needed to construct the shape functions. However, a global background cell structure 
is necessary for the numerical integration. Moreover, since the number of interactions between 
nodes and/or integration points is heavily increased, due to large domains of influence, the re-
sulting matrices are more densely populated and the computational cost for the formulation and 
solution of the problem is much higher than in the conventional FEM. 

The calculation of the shape functions and shape functions derivatives that are used to con-
struct the stiffness matrix add significantly to the abovementioned computational cost. EFG 
uses the moving least squares procedure, where the approximation of the displacement field is 
expressed as a polynomial with non-constant coefficients. In order to determine these coeffi-
cients, a weighted residual is solved for every point of interest, usually the Gauss points. Each 
time the domain of influence changes or a new node is added or subtracted from the domain, 
the shape functions and their derivatives have to be re-calculated for the influenced areas. Thus, 
in the context of an adaptive scheme this procedure can be burdensome.  

2 BASIC INGREDIENTS OF THE MESHLESS EFG METHOD 

The approximation of a scalar function 𝑢	in the meshless EFG method can be written as 

	 𝑢 x, 𝑡 = 𝛷( x 𝑢( 𝑡
(∈*

	 (1)	

where 𝛷(	are the shape functions, 𝑢(	are the values of the scalar function 𝑢	at node 𝑖	located at 

position x( , and 𝑆	 is the set of nodes 𝑖  for which 𝛷( x   obtains non zero values. The shape 

functions in eq.(1) are only approximants and not interpolants, since generally 𝑢( ≠ 𝑢(x(). 

The shape functions 𝛷(	are obtained from the weight coefficients	𝑤(, which are functions of a 

distance parameter 𝑟 = x( − x 𝑑(	 where 𝑑(	defines the domain of influence (DoI) of each 

node	𝑖. The size primarily, but also the shape of the domain of influence, is crucial to solution 

accuracy, stability and computational cost, as it co-defines the degree of continuity between the 

nodes and the bandwidth of the resulting system matrices. 

8143



P. Metsis and M. Papadrakakis 
 
If p x 	is a complete polynomial of length 𝑚	and a x 	contains non-constant coefficients that 

depend on x: 

	 a x = 𝑎8 x 𝑎9 x 𝑎: x … 𝑎< x =	 (2)	

then the approximation 𝑢?	 is expressed as a polynomial of length 𝑚	 with non-constant 

coefficients. The local approximation around a point x, evaluated at a point x	is given by 

	 𝑢@? x, x = p= x a(x)	 (3)	

In two dimensional problems, the linear basis p x 	is given by 

	 p=(x) = 1 𝑥 𝑦 ,																																												𝑚 = 3	 (4)	

and the quadratic basis by 

	 p=(x) = 1 𝑥 𝑦 𝑥: 𝑦: 𝑥𝑦 ,																	𝑚 = 6	 (5)	

The minimization of a functional 𝐽 x 	defined by a weighted average over all nodes	𝑖 ∈ 1, … , 𝑛: 

	 𝐽 x = 𝑤 x − x(

J

(K9

𝑢@? x(,x − 𝑢(
:
= 𝑤 x − x(

J

(K9

p= x( a(x) − 𝑢( :	 (6)	

determines the parameters 𝑎L x 	at any point x. In eq.(6) the parameters 𝑢(	are specified by the 

difference between the local approximation 𝑢@? x, x 	and the nodal value 𝑢(, while the weight 

function satisfies the condition 𝑤(𝑥 − 𝑥() ≠ 0.  

An extremum of 𝐽 x 	 with respect to the coefficients 𝑎L x 	 can be obtained by setting the 

derivative of 𝐽	with respect to a x 	equal to zero. This condition gives the following relation 

	 A(x)a(x) = W x u	 (7)	

where the moment matrix A(x) is defined as 

	 A(x) = 𝑤 x − x( p x(

J

(K9

p= x( 	 (8)	

and 
 

W x = 𝑤 x − x9 p x9 𝑤 x − x: p x: … 𝑤 x − xJ p xJ 	 (9)	

The approximants 𝑢?	can be defined by solving for a x 	in eq.(7) and substituting into eq.(3): 

	 𝑢? x = p= x [A x ]V9W x u 	 (10)	

which together with eq.(1) leads to the derivation of the shape function 𝛷(	associated with node 

𝑖	at point x: 

8144



P. Metsis and M. Papadrakakis 

	 𝛷( x = p= x A x V9W(x()	 (11)	

A solution of a local problem A x z = p x 	of size 𝑚×𝑚	is performed whenever the shape 

functions are to be evaluated. This constitutes a drawback of moving least squares (MLS)-based 

MMs since the computational cost can be substantial, while it is possible for the moment matrix 

A x 	to be ill conditioned. In adaptive procedures, where nodes are gradually added and the 

shape functions of enriched areas are recalculated at each adaptive step, the required 

computational effort can be considerably increased. 

The Galerkin weak form of the above formulation gives the discrete algebraic equation 

	 Κu = f	 (12)	

with stiffness matrix components Κ(L  

	 Κ(L = Β([EBL𝑑𝛺
_

	 (13)	

and	force	vector	f(	

	
f( = Φ(t𝑑𝛤 + Φ(b𝑑𝛺

_et

	 (14)	

In 2D problems, matrix B	is given by 

	 B( =
𝛷(,f 0
0 𝛷(,g
𝛷(,g 𝛷(,f

	 (15)	

and subsequently in 3D problems by 

	 B( =

𝛷L,f 0 0
0 𝛷L,g 0
0 0 𝛷L,h
𝛷L,g 𝛷L,f 0
0 𝛷L,h 𝛷L,g
𝛷L,h 0 𝛷L,f

	 (16)	

Due to the lack of the Kronecker delta property of shape functions, the essential boundary 

conditions cannot be imposed the same way as in FEM. Several techniques are available such 

as Lagrange multipliers, penalty method and EFG - FEM coupling. 

For the integration of eq.(13), virtual background cells are considered by dividing the problem 

domain into integration cells over which a Gaussian quadrature is performed: 

	 f x 𝑑𝛺
_

= f 𝜉j 𝜔l𝑑𝑒𝑡𝐽n(𝜉)
j

	 (17)	

where	𝜉 are the local coordinates and 𝑑𝑒𝑡𝐽n 𝜉 	is the determinant of the Jacobian. 
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3 FORMULATION OF THE SHAPE FUNCTIONS BY PARTS 

The shape functions of eq.(11) are calculated after computing the moment matrix A x  from 

eq.(8). Suppose that 𝐴(𝑥)(J(p(qr is the moment matrix of the initial node distribution of a par-

ticular domain of influence (DoI) and some new nodes are added to that DoI. The enriched 

moment matrix	𝐴 𝑥 sJt(u?sv is given by: 

	 𝐴 𝑥 sJt(u?sv = 𝑤 x − xw p xw

J_sJt(u?sv

wK9

p= xw 	 (18)	

where the weight function 𝑤 x− xw 	and the polynomial p x𝑘  depend only on the position of 

the node under consideration. Thus for cubic spline weight function: 

 

	 𝑤 x − x( =

2
3
− 4 𝑥 − 𝑥( : + 𝑥 − 𝑥( z, 𝑓𝑜𝑟	 𝑥 − 𝑥( ≤

1
2

4
3
− 4 𝑥 − 𝑥( + 4 𝑥 − 𝑥( : −

4
3
𝑥 − 𝑥( z, 𝑓𝑜𝑟	

1
2
< 𝑥 − 𝑥( ≤ 1

0, 𝑓𝑜𝑟	 𝑥 − 𝑥( > 1

	 (19)	

 
𝐴 𝑥 sJt(u?sv consists of two parts that can be computed independently to each other. 

	
𝐴 𝑥 sJt(u?sv = 𝑤 x − x( p x(

J_(J(p(qr	

(K9

p= x( 			+ 𝑤 x − xL p xL

J_qvv(p(�Jqr

LK9

p= xL 	

𝐴 𝑥 sJt(u?sv = 𝐴 𝑥 ������� + 𝐴 𝑥 qvv(p(�Jqr	

(20)	

where	𝑛_𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 = 𝑛_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑛_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙.  

The enriched shape function 𝛷(	associated with node 𝑖	at point x is calculated from eq.(11) as 

follows: 

	

𝛷( x sJt(u?sv = p= x 𝐴 𝑥 sJt(u?sv V9
W x(

= p= x 𝐴 𝑥 ������� + 𝐴 𝑥 qvv(p(�Jqr V9W x( 	

(21)	

where the issue of the inverse of the sum of two matrices arises. Following the Binomial inverse 

theorem: 

 
If 𝑎	and 𝑎 + 𝑏 are invertible, then 

	 (𝑎 + 𝑏)V9 = 	𝑎V9 + 𝑋			 (22)	

with 
 
 
	

𝑋 = 	−		(𝐼 + 𝑎V9	𝑏)V9	𝑎V9	𝑏	𝑎V9	 	
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the inverse matrix of eq.(21) can be easily calculated since (𝐴 𝑥 �������)V9 is already computed 

from the initial step. Thus, 

	
𝛷( x sJt(u?sv = p= x 𝐴 𝑥 ������� + 𝐴 𝑥 qvv(p(�Jqr V9W x(

= p= x 𝐴 𝑥 ������� V9W x( 	+ 	p= x 	[X]	W x( 	
(23)	

where 

	
𝑋

= 	−		(𝐼 + {𝐴 𝑥 �������}V9𝐴 𝑥 qvv(p(�Jqr)V9{𝐴 𝑥 �������}V9𝐴 𝑥 qvv(p(�Jqr{𝐴 𝑥 �������}V9	
(24)	

Then, since 

	 𝛷( x (J(p(qr = p= x 𝐴 𝑥 (J(p(qr V9W x( 	 (25)	

and  

	 𝛷( x qvv(p(�Jqr = p= x 	[𝐗]	W x( 	 (26)	

the enriched shape function is given by: 
 

	 𝛷( x sJt(u?sv = 𝛷( x (J(p(qr + 𝛷( x qvv(p(�Jqr	 (27)	

The above derivation expresses the enriched shape functions as the sum of the initial shape 

functions and the contribution of the newly added nodes.  

 

The proposed formulation is demonstrated in the following one-dimensional problem.  

Consider an interval 0 4x≤ ≤  divided into four unequal parts by five nodes, as shown in Fig. 

1.  

 
Fig. 1: Node distribution 1D example.  initial nodes,  added node 

 
The typical expression of the shape functions for each node is given by eq.(11) which is eval-

uated at each Gauss point. The linear basic function [ ]( ) 1T x x=p  is used. For a certain Gauss 

point, eq.(11) can be written as: 

	
𝜱 x��
9��

= 𝑝= 𝑥��
9�:

𝐴9:� x��
V9

:�:

𝑊(x��)
:��

	 (28)	

where 

	 p=(x��) = 1 x�� 	 (29)	

Eq.(8) for the initial nodes m and the additional node n is written: 
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	 𝑨9:(<�J) x�� = 𝑤 x�� − x( p x(

(<�J)

(K9

p= x( = 𝑤 x�� − x(
1
x(

1 x(

(<�J)

(K9

	 (30)	

while eq.(23) becomes: 

	

𝛷9: <�J x��
sJt(u?sv

= 𝛷9:< x�� +𝛷J x�� =	

= 𝑝= x�� 𝐴9:(<�J) x��
V9
𝑊9:< x + p= x�� 𝐴9:(<�J) x��

V9
𝑊J x 	

(31)	

For the example of Fig. 1, the first term includes the value of the shape functions for the first 

four nodes (m=4), at a certain Gauss point, and the second term the value of the shape function 

for the fifth node (n=1). 

The weighted moment matrix A can also be separated into two parts as follows: 

	

𝐴9:(<�J) x�� = 𝐴9:< x�� + 𝐴J x�� =	

= 𝑤 x�� − x( p x(
<

(K9

p= x( + 𝑤 x�� − xJ p xJ p= xJ 	
(32)	

Using the Binomial inverse theorem, we obtain   

	 𝐴9:(<�J) x��
V9
= 𝐴9:< x�� + 𝐴J x��

V9
= 𝐴9:< x��

V9
+ 𝑋	 (33)	

where 	 𝑋 = − 𝐼 + 𝐴9:< x��
V9
𝐴J x��

V9
𝐴9:< x��

V9
𝐴J x�� 𝐴9:< x��

V9
	 (34)	

Since 𝐴1:𝑚 x𝐺𝑝
−1 is already calculated in the previous (initial) step, the above equation is 

reduced computationally to one inversion and multiplication of matrices. Finally by combining 

the eq.(31) and eq.(33) the values for the shape functions of the five nodes, at a certain Gauss 

point can be written in parts as follows: 

	
𝛷9:< x�� = 	𝑝= x�� 𝐴9:< x��

V9
𝑊9:< x

 J(p(qr	¡¢:£

+ 𝑝= 𝑥�� [𝑋]𝑊9:(<�J) 𝑥
(J¤r¥sJus	�¤	J�vs¦	J

	 (35)	

and 

	 𝛷J x�� = 	𝑝= x�� 𝐴9:< x��
V9
𝑊J x + 𝑝= 𝑥�� [𝑋]𝑊J 𝑥 	 (36)	

The first term of eq.(35) describes the values for the shape functions of the initial four nodes 

which divide the domain into three sections. The second part of the eq.(35) modifies the initial 

part, when the fifth node is added into the problem domain in order to add the contribution of 

the added node and retain the partition of unity. 
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Fig. 2 and Fig. 3 show the shape functions of the first four nodes before and after the enrichment 

with the fifth node, for a cubic spline weight function. Fig. 4 illustrates the shape function of 

the fifth node. The factor dm of the support domain is chosen to be 2.2.  

 

	 	
Fig.	2	-	Initial	nodes	in	the	problem	domain.	Shape	

functions	of	each	node.	
Fig.	3	-	Refinement	from	four	to	five	nodes.	Shape	

functions	of	the	first	four	nodes.	

	 	
Fig.	4	-	Shape	function	of	the	fifth	node.	 Fig.	5	-	Refinement	from	four	to	five	nodes.	First	

derivatives	of	the	shape	functions	of	the	first	four	
nodes.	

 
These figures illustrate the degree of modification of the existing shape functions at a specific 

domain when an extra node is added, since the shape function of the added node affects the 

values of all nodes of that DoI. The above process is directly extendable to more than one nodes, 

and in two or three dimensions.  

The shape function derivatives which are necessary for the construction of the stiffness matrix 

(eqs.(13) and (15)) are as follows: 
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𝛷§
9:(<�J) x��

sJt(u?sv
= 1 0 𝐴9:(<�J) x��

V9
𝑊9:(<�J) x 	

−𝑝= x�� 𝐴9:(<�J) x��
V9

𝐴§9:(<�J) x�� 𝐴9:(<�J) x��
V9
𝑊9:(<�J) x 	

+𝑝= x�� 𝐴9:(<�J) x��
V9
𝑊§

9:(<�J) x 	

(37)	

By employing the updated moment matrix of eq.(20) the derivatives can be calculated by parts. 

In order to illustrate the effect of the proposed refinement implementation to the shape function 

derivatives we consider again the problem shown in Fig. 1. The first part of the derivatives 

corresponds to the first four nodes and describes the values for the first derivative of the shape 

functions when the fifth node is not added in the problem domain. The second term modifies 

the initial part when the fifth node is added into the problem domain.  

 
Fig. 5 illustrates the first derivative of the shape functions of the first four nodes, before and 

after the addition of the fifth node in the problem domain.  

4 EXPLICIT ANALYTICAL FORM FOR TYPICAL ARRANGEMENT OF NODES  
 

The case of uniform arrangement of nodes, though restricting, is used in a number of meshless 

analyses, especially in the main areas of even geometrically irregular bodies. For this case an 

analytical form of the derived shape functions could be produced, diminishing the computa-

tional effort of the shape function construction stage.  

 
Fig. 6 – Typical Cantilever with uniform arrangement of nodes 

 

In such cases, the moment matrix 	A(x) = 𝑤 x − x( p x(J
(K9 p= x(   depends only on the dis-

tance between the nodes of each domain of influence, therefore it could be written with respect 

to the unknown x. In cases where the above-mentioned moment matrix is of adequate condition, 

which is a prerequisite for the calculation of the shape functions in general, an analytical (not 

numerical) inversion follows which leads to the subsequent analytical formulation of the shape 
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functions 𝛷( x = p= x A x V9W(x() at every point x. The same apply for the calculation of the 

shape functions derivatives.  

It should be noted that the analytical form of the referred shape functions is quite complex and 

lengthy, depending on the arrangement of nodes. For example, for the cantilever of Fig. 6 one 

of the resulting shape functions for a point	x is: 

𝜱𝟏 x = -(2*(abs(L) - abs(x))^3*(24*x*abs(L - x)^3 - 6*L*abs(L/2 - x)^3 + 12*x*abs(L/2 - x)^3 - 

5*L*abs(L)^3 + 6*x*abs(L)^3 - 24*L*abs(L - x)^3 - 12*x*abs(L/2 - x)^2*abs(L) + 24*L*abs(L)*abs(L - 

x)^2 - 24*x*abs(L)*abs(L - x)^2 + 6*L*abs(L/2 - x)^2*abs(L)))/(L*(11*abs(L)^6 - 18*abs(L/2 - 

x)^2*abs(L)^4 + 18*abs(L/2 - x)^3*abs(L)^3 - 12*abs(L/2 - x)^3*abs(x)^3 - 30*abs(L)^5*abs(x) + 

36*abs(L/2 - x)^3*abs(L - x)^3 - 10*abs(L)^3*abs(x)^3 + 30*abs(L)^4*abs(x)^2 + 54*abs(L)^3*abs(L - 

x)^3 - 54*abs(L)^4*abs(L - x)^2 - 48*abs(x)^3*abs(L - x)^3 - 36*abs(L/2 - x)^2*abs(L)^2*abs(x)^2 + 

36*abs(L/2 - x)^2*abs(L)^2*abs(L - x)^2 + 144*abs(L)*abs(x)^2*abs(L - x)^3 + 48*abs(L)*abs(x)^3*abs(L 

- x)^2 - 144*abs(L)^2*abs(x)*abs(L - x)^3 + 144*abs(L)^3*abs(x)*abs(L - x)^2 + 12*abs(L/2 - 

x)^2*abs(L)*abs(x)^3 + 36*abs(L/2 - x)^2*abs(L)^3*abs(x) + 36*abs(L/2 - x)^3*abs(L)*abs(x)^2 - 

36*abs(L/2 - x)^3*abs(L)^2*abs(x) - 144*abs(L)^2*abs(x)^2*abs(L - x)^2 - 36*abs(L/2 - 

x)^2*abs(L)*abs(L - x)^3 - 36*abs(L/2 - x)^3*abs(L)*abs(L - x)^2)) 
 

where L is the average length of the domain of influence. 

5 HIERARCHICAL TYPE 1 REFINEMENT OF THE STIFFNESS MATRIX  
 

The derivation of the shape functions and their derivatives in two parts leads to the adaptive 

formulation of the stiffness matrix when extra nodes are added in the problem domain. There-

fore the shape functions of the initial m and the additional n nodes in the problem domain are 

given by eq. (27). Similarly, the partial derivatives of the shape functions are expressed by: 

 

	 𝛷9:<§
sJt(u?sv x = 𝛷9:<§

(J(p(qr x + 𝛿𝛷9:<§ x 	 (38)	

 

	 𝛷(<�9):(<�J)§ qvv(p(�Jqr 𝑥 = 𝛷(<�9):(<�J)§ 𝑥 	 (39)	

 
The enriched global stiffness matrix components is obtained from eq.(13): 
 

	
𝛫(LsJt(u?sv = 𝛣(sJt(u?sv

[
E	𝛣LsJt(u?sv𝑑𝛺

_

	 (40)	

where for 2D elasticity problems 
 

8151



P. Metsis and M. Papadrakakis 
 

	

𝐵(sJt(u?sv =
𝛷(,fsJt(u?sv 0

0 𝛷(,gsJt(u?sv

𝛷(,gsJt(u?sv 𝛷(,fsJt(u?sv

=

𝛷(,f(J(p(qr + 𝛿𝛷(,f 0
0 𝛷(,g(J(p(qr + 𝛿𝛷(,g

𝛷(,g(J(p(qr + 𝛿𝛷(,g 𝛷(,f(J(p(qr + 𝛿𝛷(,f

,			𝑖 ≤ 𝑚

𝛷(,fqvv(p(�Jqr 0
0 𝛷(,gqvv(p(�Jqr

𝛷(,gqvv(p(�Jqr 𝛷(,fqvv(p(�Jqr
,			𝑚 ≤ 𝑖 ≤ (𝑚 + 𝑛)

	

(41)	

 
Further elaboration on the expression of the strain matrix 𝐵(𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 leads to: 
 

	

𝐵(sJt(u?sv =

𝛷(,f(J(p(qr 0
0 𝛷(,g(J(p(qr

𝛷(,g(J(p(qr 𝛷(,f(J(p(qr

®
®¯®°®±²

+
𝛿𝛷(,f 0
0 𝛿𝛷(,g

𝛿𝛷(,g 𝛿𝛷(,f
³®

,			𝑖 ≤ 𝑚

0 0
0 0
0 0
®
®¯®°®±²

+
𝛷(,fqvv(p(�Jqr 0

0 𝛷(,gqvv(p(�Jqr

𝛷(,gqvv(p(�Jqr 𝛷(,fqvv(p(�Jqr

³®

,			𝑚 ≤ 𝑖 ≤ (𝑚 + 𝑛)

= 𝐵((J(p(qr + 𝛿𝐵( 	

(42)	

A similar expression can be derived for 3D elasticity problems.  

After substituting eq.(42) into eq.(40) the stiffness matrix can be written as follows: 

 

	

𝛫(LsJt(u?sv = 𝐵((J(p(qr + 𝛿𝐵(
[
E	 𝐵((J(p(qr + 𝛿𝐵( 𝑑𝛺

_

	

= 𝐵((J(p(qr
[
E	 𝐵((J(p(qr 𝑑𝛺 +

_
´®µ®¯®°®±²

+ 𝐵((J(p(qr
[
E	 𝛿𝐵( 𝑑𝛺	 + 𝛿𝐵(

[
E	 𝛿𝐵( 𝑑𝛺 + 𝛿𝐵(

[
E	 𝐵((J(p(qr 𝑑𝛺

___
³´®µ

	

(43)	

	 𝜥sJt(u?sv = 𝜥(J(p(qr + 𝜹𝜥	 (44)	
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The first part of 𝜥𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 corresponds to the first m nodes, while the second term	𝜹𝜥 contains 

the contribution of the additional nodes and their interactions with the existing terms. In this 

respect, only 𝜹𝜥 matrix needs to be calculated at the refinement step, instead of recalculating 

the enriched matrix from the beginning, a process that saves substantial computational effort.  

 

In order to demonstrate the stiffness matrix topology of the hierarchical h-type refinement, the 

2D cantilever of Fig. 7 subjected to a parabolic load at the free end is considered. Problem 

details are given in Table 1. 

 
Loading	 P=1000		N	
Young's	modulus		 E=3	x	107		N/m2	
Poisson's	ratio	 ν=0.30	
Height	of	the	beam	 D=6m	
Length	of	the	beam		 L=24m	

Table 1 – 2D cantilever problem details 
 
The beam is analyzed with a 11x4 node distribution as shown in Fig. 7. The set of nodes with 

initial and added nodes is illustrated in Fig. 8. Background cells are considered for the numerical 

integration of the weak form. In each Gauss cell a 2x2 Gauss quadrature is used. A linear basis 

and a cubic spline weight function are used for the MLS approximation. The support domain is 

rectangular with dimension 2 times the nodal spacing. The penalty method was chosen for im-

posing the boundary conditions with a penalty factor of	𝛼 = 1010.      

 
Fig. 7 - Initial arrangement of nodes  and integration points  

 

A node enrichment is subsequently performed with the addition of 8 new nodes in the problem 

domain indicated with the symbol  as seen in Fig. 8.  

The calculation of the stiffness matrix is performed with standard procedure and the proposed 

two hierarchical schemes. For the second hierarchical procedure, only the additional matrix 𝜹𝜥 

is computed and then added to the existing initial stiffness matrix. 
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Fig. 8 – Initial nodes , added nodes  

Fig. 9 illustrates the topology of the non-zero elements of the stiffness matrices before and after 

refinement. Matrix 𝜹𝜥	expresses the influence of the additional nodes. Fig. 9(d) depicts 

𝜥𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 after renumbering. 

	
(a)	𝜥(J(p(qr 	[88x88]	

	
	(b)	𝜹𝜥	[104x104]	

	
(c)	𝜥𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑	[104x104]	

	
(d)	𝜥𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑	renumbered	[104x104]	

Fig. 9 – Non-zero elements of the stiffness matrices 
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6 HIERARCHICAL TYPE 2 REFINEMENT OF THE STIFFNESS MATRIX  
The addition of extra nodes and their corresponding influence can be treated slightly different, 

with respect to the existing nodes, leading to a purely hierarchical formulation of the shape 

functions and derivatives and subsequently of the stiffness matrix. In this context the additional 

refining shape functions are treated hierarchically without altering the previously calculated 

shape functions and their derivatives.  

The addition of the n nodes creates n shape functions according to eq.(36) and alters the m 

previous ones as follows: 

	
𝛷9:< x = 	𝑝= x 𝐴9:< x V9𝑊9:< x

 J(p(qr	¡¢:£

+ 𝑝= x [𝑋]𝑊9:< 𝑥
(<�J)°¹J�vs	(J¤r¥sJus	³¡¢:(£º¯)

	 (45)	

We consider the (m+n) node influence as additional refining functions that enrich the existing 

shape function field and choose to retain 𝛷9:< x  unchanged. In order to achieve this type of 

hierarchical formulation the last term of eq.(45) is omitted leading to:  

 

	
𝛷9:< x = 	𝑝= x 𝐴9:< x V9𝑊9:< x

 J(p(qr	¡¢:£

	 (46)	

which introduces an approximation since it violates the partition of unity. 

The enriched shape function values is now applied for the extra nodes only, without the need 

for modification of the existing shape functions. Therefore, for the existing nodes: 

 

	 𝛷9:< x sJt(u?sv = 𝛷9:< x (J(p(qr	 (47)	

and for the additional nodes (refinement functions): 
 

	 𝛷(<�9):(<�J) x sJt(u?sv = 𝛷(<�9):(<�J) x ?(st	 (48)	

 
where 𝛷(<�9):(<�J) x ?(st indicates the values of the shape functions of the extra nodes that 

are added hierarchically and are computed according to eq.(36). The partial derivatives of the 

shape functions that are used for the construction of the stiffness matrix are subsequently given 

by: 

 

	 𝛷9:<§ x sJt(u?sv = 𝛷9:<§ x (J(p(qr	 (49)	

 

	 𝛷(<�9):(<�J)§ x sJt(u?sv = 𝛷(<�9):(<�J)§ x ?(st	 (50)	
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The global stiffness matrix component 𝛫(L is assembled using eq.(13): 
 

	
𝛫(LsJt(u?sv = 𝛣(sJt(u?sv

[
E	𝛣LsJt(u?sv𝑑𝛺

_

	 (51)	

where 
 

	

𝐵(sJt(u?sv =
𝛷(,fsJt(u?sv 0

0 𝛷(,gsJt(u?sv

𝛷(,gsJt(u?sv 𝛷(,fsJt(u?sv
=

=

𝛷(,f(J(p(qr + 𝛿𝛷(,f 0
0 𝛷(,g(J(p(qr + 𝛿𝛷(,g

𝛷(,g(J(p(qr + 𝛿𝛷(,g 𝛷(,f(J(p(qr + 𝛿𝛷(,f

= 𝑩𝒊𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ,			𝑖 ≤ 𝑚

𝛷(,fqvv(p(�Jqr 0
0 𝛷(,gqvv(p(�Jqr

𝛷(,gqvv(p(�Jqr 𝛷(,fqvv(p(�Jqr
= 𝑩𝒊𝒉𝒊𝒆𝒓 ,			𝑚 ≤ 𝑖 ≤ (𝑚 + 𝑛)

	

(52)	

Substituting eq.(52) into eq.(51), the strictly hierarchical stiffness matrix can be written in parts 
as follows : 
 

	 𝜥𝒉𝒊𝒆𝒓 =

𝛫((𝒊𝒏𝒊𝒕𝒊𝒂𝒍
:<	f	:<

𝛿𝛫(L
<(fsv

𝛿𝛫L(
<(fsv 𝛿𝛫LL

qvv(p(�Jqr

:J	f	:J

	 (53)	

where 
 

	
𝛫((𝒊𝒏𝒊𝒕𝒊𝒂𝒍 = 𝛣(𝒊𝒏𝒊𝒕𝒊𝒂𝒍

[
E	𝛣(𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝑑𝛺

_

	 (54)	

	 𝛿𝛫(L
<(fsv = 𝛿𝛫L(

<(fsv= 𝛣(𝒊𝒏𝒊𝒕𝒊𝒂𝒍
[
E	𝛣L?(st𝑑𝛺_ 	 (55)	

 

	 𝛿𝛫LL
qvv(p(�Jqr= 𝛣L?(st

[
E	𝛣L?(st𝑑𝛺_ 	 (56)	

Through the procedure described above, the addition of extra nodes in the problem domain is 

taken into consideration without modification of the existing stiffness matrix. In eq.(53) 

𝛿𝛫LL
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	is the stiffness matrix of the additional forms, while 𝛿𝛫(L

<(fsv expresses the inter-

action between the initial and the newly added nodes. This type of purely hierarchical formula-

tion reduces further the computational effort for the assembly of the enriched stiffness matrix. 
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Moreover, specially tailored solution procedures can be applied that avoid refactorization of the 

initial stiffness matrix in a similar manner as applied in hierarchical FEM, which further reduces 

the solution effort of the resulting algebraic equations. 

 

The proposed hierarchical type 2 refinement formulation is demonstrated using the 2D cantile-

ver of Fig. 7 with the refinement scheme depicted in Fig. 8. The addition of the extra nodes is 

performed with the hierarchical concept described previously. The already calculated values of 

the shape functions of the first 44 nodes, are kept unaltered, and the influence of the shape 

functions of the 8 additional nodes to the initial nodes is omitted. In Fig. 10 the additional shape 

function of node 48 and the influence on the initial nodes is demonstrated.  

 

 
Fig. 10 - Additional shape function of the 48th node and its DoI 

 
The stiffness matrix of the initial 44 nodes	𝛫((𝒊𝒏𝒊𝒕𝒊𝒂𝒍, is not affected by the additional nodes. To 

perform the hierarchical refinement only matrices 𝛿𝛫(L
<(fsv	and 𝛿𝛫LL

qvv(p(�Jqr  from eq.(55) 

and eq.(56) need to be computed. Fig. 11 illustrates the sparsity pattern of the matrices, used to 

assemble the final stiffness matrix of the cantilever in which 𝛿𝛫LL
qvv(p(�Jqr  is (16x16) and 

𝛿𝛫(L
<(fsv is (16x56). The final KsJt(u?sv has the same pattern of non-zero terms as depicted in 

Fig. 9c and 9d of the type-1 hierarchical refinement. However, the stiffness terms corresponding 

to the initial nodes are not modified as per the additional terms illustrated in Fig. 9b. 
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(a)	𝜥(J(p(qr 	[88x88]	

	
(b)	𝜹𝜥	

                   
Fig. 11 - Non-zero elements of the stiffness matrices 

 
In order to compare the two hierarchical formulations proposed, the energy and displacement 

norms are calculated before and after the addition of new nodes. For illustration purposes, only 

the shear stress field for each case is plotted in Fig. 12.  
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Fig. 12 - Shear stress field for the cantilever beam 

 

 
Table 2 - Energy and Displacement norms for the cantilever beam 

 
As can be seen from Fig. 12 and Table 2, type-2 hierarchical formulation gives results close to 

type-1 solution. The calculated displacement and stress fields are improved and overall much 

higher accuracy is obtained.  

 

Energy	norm 0.2362 0.0977 0.0688

Displacement	norm 5,98E-05 7,37E-06 1,47E-06

Initial	vs	
Analytical

Hierarchical	type	1	
vs	Analytical

Hierarchical	type	2	
vs	Analytical
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CONCLUSION 
 

Two h-type hierarchically refinement schemes of the element free Galerkin method are pro-

posed in which the expressions of the shape functions have been separated in two parts leading 

to a hierarchical decomposition of the stiffness matrix. In the first refinement scheme the con-

tribution of the additional nodes in a problem domain can be achieved with the computation of 

an additional matrix δK, which is combined with the existing stiffness matrix describing the 

initial arrangement of nodes in the problem domain, to give the final stiffness matrix. In the 

second refinement scheme, the addition of extra nodes is taken into consideration, without the 

need for recalculation or modification of the existing stiffness matrix. 

 
 

This work has been supported by the European Research Council Advanced Grant 
“MASTER—Mastering the computational challenges in numerical modeling and opti-
mum design of CNT reinforced composites” (ERC-2011- ADG 20110209).  
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Abstract. The evolution of software technology leads to continuous migration of software 

components and applications. Particularly, most software applications in applied science and 

engineering are for desktop computers and there is a need to migrate them to mobile 

technologies. This kind of migration faces many challenges due to the proliferation of 

different mobile platforms. New programming languages are thus emerging to integrate the 

native behaviors of the different platforms targeted in development projects. In this direction, 

the HAXE language allows writing mobile applications that target all major mobile platforms. 

Novel technical frameworks for information integration and tool interoperability such as the 

Model Driven Development (MDD) can help to manage a huge diversity of mobile 

technologies. A specific realization of MDD is the Model Driven Architecture (MDA) 

proposed by the Object Management Group (OMG).  In this work, we propose a migration 

process from C/C++ software to different mobile platforms that integrates MDA standards 

with HAXE. C/C++ is one of the most commonly used programming language in science and 

engineering domains and numerous legacy software components written in C++ require to be 

modernized. On the one hand, the proposed process follows model-driven principles: all 

artifacts involved in the process can be viewed as models that conform a particular 

metamodel, the process itself can be viewed as a sequence of model-to-model transformations 

and all the extracted information is represented in a standard way through metamodels. On 

the other hand, HAXE easily adapts the native behaviors of the different platforms targeted in 

development projects enabling extremely efficient cross-platform development, ultimately 

saving time and resources.  The proposal was validated in Eclipse Modeling Framework 

considering that some of its tools and run-time environments are aligned with MDA standards. 

The paper includes a simple case study, the migration of a C++ application, “the Set of 

Mandelbrot”, that allow us to exemplify the different steps of the process.  
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1 INTRODUCTION 

Mobile devices such as smartphones or tablets come with engineers and researchers all the 

time and everywhere. Among other novel features, mobile devices contain global positioning 

sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities. 

These features offer the possibility to adapt functionality to user needs and preferences and 

can be used to build context-aware applications [29].  

The evolution of software technology leads to continuous migration of software 

components and applications. Particularly, most software applications in applied science and 

engineering are for desktop computers and there is a need to migrate them to mobile 

technologies. This kind of migration faces many challenges due to the proliferation of 

different mobile platforms. The high cost and technical complexity of targeting development 

to a wide spectrum of platforms, has forced developers to make applications tailored for each 

type of device. New programming languages are thus emerging to integrate the native 

behaviors of the different platforms targeted in development projects. In this direction, the 

HAXE [10] language allows writing mobile applications that target all major mobile 

platforms, such as Android, iOS and BlackBerry, in a straightforward way.  

Novel technical frameworks for information integration and tool interoperability such as 

the Model Driven Development (MDD) can help to manage a huge diversity of mobile 

technologies [6]. MDD provides principles and techniques to represent software through 

models at different abstraction levels. A specific realization of MDD is the Model Driven 

Architecture (MDA) proposed by the Object Management Group (OMG) [23].  The 

outstanding ideas behind MDA are separating the specification of the system functionality 

from its implementation on specific platforms, managing the software evolution from abstract 

models to implementations. Models play a major role in MDA which distinguishes 

Computation Independent Model (CIM), Platform Independent Model (PIM) and Platform 

Specific Model (PSM). Some authors also distinguish Implementation Specific Model (ISM) 

as a description (specification) of the system in source code. 

The essence of MDA is MOF (Meta Object Facility), an OMG standard for defining 

metamodels that provides the ability to design and integrate semantically different languages 

such as general-purpose languages, domain specific languages and modeling languages in a 

unified way. Significant advantages can be made of this unification to construct powerful 

mobile design environments. The modeling concepts of MOF are classes, which model MOF 

meta-objects; associations, which model binary relations between meta-objects; Data Types, 

which model other data; and Packages, which modularize the models [21]. Consistency rules 

are attached to metamodel components by using OCL [22].  MOF provides two metamodels 

EMOF (Essential MOF) and CMOF (Complete MOF). EMOF favors simplicity of 

implementation over expressiveness. CMOF is a metamodel used to specify more 

sophisticated metamodels. The MOF 2.0 Query, View, Transformation (QVT) metamodel is 

the standard for expressing transformations [25]. 

The Architecture Driven Modernization (ADM) approach has established a set of solutions 

for information system modernization [2]. ADM is defined as “the process of understand and 

evolve existing software assets for the purpose of software improvement, modifications, 

interoperability, refactoring, restructuring, reuse, porting, migration, translation, integration, 

service-oriented architecture deployment”. The OMG ADM Task Force (ADMTF) is 

developing a set of standards (metamodels) to facilitate interoperability between 

modernization tools.  
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The success of approaches such as ADM and MDA depend on the existence of CASE tools 

that make a significant impact on software processes such as forward engineering and reverse 

engineering processes [8]. The Eclipse Modeling Framework (EMF) was created for 

facilitating system modeling and the automatic generation of Java code [26]. EMF started as 

an implementation of MOF resulting ECORE, the EMF metamodel comparable to EMOF. 

EMF has evolved starting from the experience of the Eclipse community to implement a 

variety of tools and to date is highly related to MDD [15]. The subproject M2M supports 

model-to-model transformations that take one or more models as input to produce one or 

more models as output. For instance, ATL (Atlas Transformation Language) is a model 

transformation language that is developed on top of the Eclipse platform [4]. Another 

subproject is ACCELEO, which is an implementation of the M2T (Model-to-Text) 

transformation standard of the OMG for EMF-based models [1]. It is used in forward 

engineering processes. 

In the Eclipse environment, MDA is integrated with Java language but it is weakly 

supported for other programming languages such as C++ [26]. In particular, C++ is one of the 

most commonly used programming language in science and engineering domains. Numerous 

legacy software components written in C++ require to be modernized. EMF4CPP is the first 

step at providing a set of tools for MDD in C++ as an alternative to the Eclipse tools for Java 

[16]. It is a C++ implementation and type mapping for the Eclipse Modeling Framework core, 

the ECORE metamodel. The main facilities provided by EMF4CPP are to generate C++ code 

from ECORE metamodels and to parse and serialize models and metamodels from and into 

XMI documents [30]. However, an implementation of a MOF-compliant C++ metamodel 

would be necessary for other MDD processes (for example, reverse engineering or software 

modernization). 

In this work, we propose a migration process from C/C++ software to different mobile 

platforms that integrates MDA standards with HAXE. An ECORE metamodel for the C++ 

language is provided. On the one hand, the process follows model-driven principles: all 

artifacts involved in the process can be viewed as models that conform a particular metamodel, 

the process itself can be viewed as a sequence of model-to-model transformations and all the 

extracted information is represented in a standard way through metamodels. On the other 

hand, HAXE easily adapts the native behaviors of the different platforms targeted in 

development projects enabling extremely efficient cross-platform development, ultimately 

saving time and resources.   

The paper includes a simple case study, the migration of a C++ application “the Set of 

Mandelbrot” that allow us to exemplify the different steps of the process. We believe that our 

approach provides benefits with respect to processes based only on traditional ad-hoc 

migration techniques increasing productivity due to the automation introduced in the 

generation of the new software. 

The paper is organized as follows. Section 2 presents related work. In Section 3, we 

summarizes our contribution: a migration process from C++ to mobile platforms. Section 4 

describes the HAXE language and its metamodel. Section 5 describes the C++ metamodel. 

Section 6 details the different stages of the migration process through of a simple case study. 

Finally, in Section 7 and 8 we present discussion and conclusions respectively. 

 

2 RELATED WORK 

In this section, we describe existing approaches for the development of mobile applications 

related to MDD.  
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Reference [7] proposes a new software architecture with the objective of providing the 

same service as mobile Web service as well as mobile application. The authors report on the 

feasibility study that they conducted in order to evaluate whether to use model driven 

software development for developing mobile applications. They argue that the architecture is 

flexible enough to support mobile Web services and mobile applications at the same time. 

They have develop a metamodel to describe mobile application and have shown how to 

generate mobile application from that model.  

The project BAMOS and an architecture designed and implemented for the generic and 

flexible development of mobile applications is described in [14]. A declarative description of 

the available services supports the architecture. The authors describe a model driven approach 

for generating almost the complete source code of mobile services.  

Reference [19] goes through mobile development process and architectural structures and 

their analysis with empirical mobile application development. The architecture and 

architecture role on the development has been studied in mobile application and multiplatform 

service development. 

Various authors describe challenges of mobile software development, for example, in [11] 

authors highlight creating user interfaces for different kinds of mobile devices, providing 

reusable applications across multiple mobile platforms, designing context aware applications 

and handling their complexity and, specifying requirements uncertainty. Issues related to 

ensuring that the application provides sufficient performance while maximizing battery life 

are remarked in [28]. 

A proposal for supporting mobile application development by using models as inputs to an 

emulator is outlined at [5]. The authors describe an MDD-based emulator for using in the 

design of graphical interfaces and interactions. They propose transform functional behavior 

and requirement models with design restrictions into emulated applications.  

Reference [20] describes a DSL (Domain Specific Language), named MobDSL, to 

generate applications for multiple mobile platforms. They perform the domain analysis on two 

cases in the Android and iPhone platforms. This analysis allows inferring the basic 

requirements of the language defined by MobDSL. 

The proliferation of mobile devices generated the need to adapt desktop applications to 

mobile platforms.  A reengineering process that integrates traditional reverse engineering 

techniques such as static and dynamic analysis with MDA is presented at [3]. The article 

describes a case study that shows how to move CRM (Customer Relationship Management) 

applications from desktop to mobile platforms. The proposal was validated in the open source 

application platform Eclipse, EMF, EMP, ATL and Android platform. Reference [13] 

describes a migration process from Java to mobile platforms through the multiplatform 

language HAXE. 

ANDRIU, a reverse engineering tool based on static analysis of source code for 

transforming user interface tiers from desktop application to Android, is described in [24]. 

ANDRIU has been developed for migrating traditional systems to Android applications 

although it was designed to be extended for different migrations to others mobile platforms. 

Reference [18] describes six major trends affecting future smartphone design and use: 

personal computers, internet of things, multimedia delivery, low power operation, wearable 

computing and context awareness. 

In this paper, we describe an original model-driven migration process that includes 

automatic analysis of existing code, reverse engineering of abstract high-level models, model 
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transformation to target models in the HAXE platform and code generation. Our approach 

offers an opportunity for increasing the automation in software migration. In the following 

section, we detail the main steps of the proposed migration process.  

 

3 OUR CONTRIBUTION : THE MIGRATION PROCESS  

The migration process follows model driven development principles: all artifacts involved 

in the process can be viewed as models that conforms to ECORE meta-metamodels, the 

process itself can be viewed as a sequence of model-to-model transformations and the 

extracted information is represented in a standard way through ECORE metamodels. For each 

transformation, source and target metamodels are specified. A source metamodel defines the 

family of source models to which transformations can be applied. A target metamodel 

characterizes the generated models.  

Figure 1 summarizes the proposed process. The first step is the reverse engineering of the 

C/C++ code to build a high-level model of it by using a model injector. Then, the obtained 

model is refactored to improve the design and eliminate dependencies of C/C++ language. 

The following step is related to model-to-model transformations that allow integrating C/C++ 

models with HAXE models. Specifically, this transformation is an ATL transformation that 

generates a model of the HAXE platform from a C/C++ model. Next, it is possible to generate 

source code in HAXE from the HAXE model by using M2T transformations expressed in 

ACCELEO. Considering that HAXE has one cross-platform standard library and various 

platform specific APIs used to natively access platform features, it is possible to write a 

mobile application once and have this application instantly available to different mobile 

devices.  

The proposal was validated in the open source application platform Eclipse considering 

that some of its tools and run-time environments are aligned with MDA. C++ and HAXE 

metamodels were specified as ECORE instances and model-to-model transformations were 

implemented in ATL. 

The HAXE Language and, HAXE and C/C++ metamodels are described in the following 

sections. The HAXE metamodel was previously described in a related work [12]. It is worth 

mentioning that our research also contributes the definition of an ECORE metamodel for the 

C/C++ language.  

 

4 THE HAXE LANGUAGE  

HAXE is an open-source high-level multiplatform programming language and compiler 

that can produce applications and source code for many different platforms from a single 

code-base [10]. 

Reference [9] summarizes the HAXE principles as follows: “support mainstream 

platforms”, “write once, reuse everywhere”, “always native, no wrapper”, “generated but 

readable” and “trust the developer”. Some languages allow cross-platform development, but 

neither their features nor their standard libraries are designed to run on multiple platforms. 

HAXE was designed from scratch to run and compile for many different platforms. 
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Figure 1. Our contribution: A Migration Process 

 The HAXE programming language is a high level programming language that mixes 

features of object-oriented languages and functional ones. It is similar (but not pure) to object-

oriented languages. The compiler supports novel features such as type inference, enforcing 

strict type safety at compile time. 

Since language can be compiled for different platforms, it is useful for a wide variety of 

applications such as games, web and mobile. In previous work, we show an integration the 

HAXE with MDD defining an ECORE metamodel of the Cross-Platform Framework HAXE. 

This metamodel corresponds to the HAXE version 3.1.3. In the context of MDA, the 

instances of this metamodel are platform specific models (PSM). This metamodel allowed us 

to integrate HAXE with MDA migration process from Java or C/C++ to mobile platform.  

HAXE easily adapts the native behaviors of the different platforms targeted in 

development projects enabling extremely efficient cross-platform development, ultimately 

saving time and resources. Currently there are nine supported target languages: Javascript, 

Neko, PHP, Python, C++, Actionscript3, Flash, Java and, C#. In the context of Mobile App 

Development, HAXE allows writing mobile apps that target all major mobile platforms and 

run at native speed. The C++ target allows us to target Android or iOS and OpenFL 

(www.openfl.org) provides support for creating interfaces using a Flash-like API. OpenFL is 

a free and open source software framework and platform for the creation of multiplatform 

applications and video games. OpenFL programs are written in HAXE and may be published 

to Flash movies, or standalone applications for Microsoft Windows, Mac OS X, Linux, iOS, 

Android, BlackBerry OS, Firefox OS, HTML5 and Tizen. 

Next, we summarizes the main characteristics of the HAXE metamodel. 
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4.1 The HAXE Metamodel 

    The HAXE metamodel conforms to ECORE and is partially shown in Figure 2. The main 

metaclasses of the HAXE metamodel are those that allow specifying an application using 

HAXE as language. One of the main metaclasses of the metamodel is HAXEModel, that 

serves as element container used to describe an application and store additional information 

on it, for example, some options of compilation and different metaclasses for modeling such 

as modules, classes and packages. HAXEModel owns HAXEModule and 

HAXEPathReferentiable. Starting from the relations haxeModules, referenced and elements, 

the class HAXEModel allows storing different information. Relation haxeModules allows 

accessing the different HAXE modules used in the project. Through relation elements, it is 

possible to access the different elements of the package tree. Relation referenced provides 

access to elements, which are referenced in the project but are not defined completely. In the 

case of relations and referenced elements, the type used is HAXEPathReferentiable, which is 

the parent type of metaclasses such as HAXEType and HAXEPackage. The HAXE language 

includes different kind of types such as class (the types class and interface), function, abstract 

type, enumeration, and anonymous structures. The full HAXE metamodel can be found in 

[12].  

 

 

Figure 2. HAXE metamodel 
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5 THE C++ METAMODEL  

The C++ metamodel conforms to ECORE and is partially shown in Figure 3. The root 

metaclass is Program that represents a C++ program, which owns source files, instances of 

TranslationUnit.  A translation unit contains declarations such as block declaration, function 

definitions, template declarations, among others. A SimpleDeclaration, instance of Block-

Declaration, has a DeclSpecifierSeq that is a sequence of DeclSpecifiers which refers to a 

declaration specifiers and a type specifier. In addition, a simple declaration has an 

InitDeclaratorList containing a variable declaration list that is a list of specifiers and the name 

of a variable and its corresponding initialization. A FunctionDefinition has a Declarator 

containing the function identifier and the parameter list. Function and CtorOrDestFunction, 

instances of FunctionDefinition, have a body that contains compound statements such as 

declarations, iterations, and selections. In addition, a Function has a DeclSpecifierSeq that is a 

sequence of DeclSpecifiers such as function specifiers and a type specifier. TypeSpecifier 

subclasses are SimpleTypeSpecifier, ClassSpecifier and EnumSpecifier among others. A 

ClassSpecifier has a ClassHead containing the class key (class or struct) and a 

MemberSpecification that contains MemberDeclarations such as variables, function 

declarations, function definitions, constructors, destructor, template members, etc. 

 

 

Figure 3. C++ metamodel 
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6 MIGRATING C/C++ TO MOBILE PLATFORMS 

In this section, we describe a migration process from C++ code to different mobile 

platforms through HAXE. This process starts extracting models from the C++ legacy system. 

Next, these models are transformed into HAXE models that allow generating HAXE code 

which can be compiled to multiple target languages in a straightforward way.  

To illustrate the migration process we describe a simple case study, how to migrate the 

C++ code of “the Set of Mandelbrot” to HAXE code. The original application consists of a 

main class, called Mandelbrot, that is responsible for the calculation of the set of Mandelbrot 

and serves as entry point for the application. It also includes several classes that collaborate in 

the realization of the task. The class Mandelbrot is responsible for generating the set and 

displaying it as image. To perform these tasks, the class depends on Picture and Complex 

classes, the first is used as a data type that supports the manipulation of digital images. The 

second class is a data type used to model complex number with their respective operations.  

The following subsections describes the steps of the migration process. 

6.1 Injection 

This first step extracts a complete model of code from C++ code. To carry out this task, we 

constructed a model injector by using EMFText [17]. To generate this injector, EMFText 

requires the language metamodel and the concrete syntax specification. In our approach, to 

generate the injector we first specified the C++ metamodel based on the C++ grammar [27]. 

Then, we specified the concrete syntax that defines the textual representation of all 

metamodel concepts. Taking these specifications, the EMFText generator derives an 

advanced textual editor that uses a parser and printer to parse language expressions to EMF 

models or to print EMF models to languages expressions respectively.  

Figure 4 exemplifies the first step of the process. It partially shows C++ code of 

Mandelbrot Set that is the input of the model injector and the C++ model of the application in 

XMI format [30].  

6.2 C++ Model Refactoring 

This refactoring reorganizes and modifies the syntactic elements to improve the design and 

to adapt own behavior of the C++ language in order to be directly translate to HAXE, such as 

remove multiple inheritance, remove multiple class constructors. 

The refactoring is implemented as a model-to-model transformation whose source and 

target models are instances of C++ metamodel. In our case study, refactoring is applied to 

remove the multiple class constructors of Mandelbrot class.  

6.3 Transformation of C++ models into HAXE models 

Model-to-model transformations were implemented in ATL that is a model transformation 

language in the field of MDE developed on top of the Eclipse platform. ATL is a hybrid 

language that provides a mix of declarative and imperative constructs. ATL mainly focuses on 

the model-to-model transformations which can be specified by means of ATL modules. An 

ATL module is composed of the following elements:  

 A header section that defines the names of the transformation module and the variables 

of the source and target metamodels. 

 An optional import section that enables to import some existing ATL libraries. 

 A set of helpers that can be used to define variables and functions. 
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Figure 4.Mandelbrot Class: Code and Model 
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 A set of rules that defines how source model elements are matched and navigated to 

create and initialize the elements of the target models. 

In our case study, the model-to-model transformation from C++ to HAXE takes as input 

the model obtained in the previous step and release an HAXE model conforming to the 

HAXE metamodel. This ATL transformation is partially depicted in Figure 5. The module 

CPP2HAXE that corresponds to the transformation specifies the way to produce HAXE 

models (target) from C++ models (source). Both source and target models must conform to 

their respective metamodels. The main rules that carry out the transformation are the 

followings: 

 The rule Program2Model transforms each C++ program into a HAXE model that 

contains, among others, elements such as HAXETypes and HAXEPackages. 

 The rule TranslationUnit2Module transforms each C++ translation unit into a HAXE 

module that contains a set of HAXEDependencyDeclarations, references a set of 

elements instances of HAXETypes, etc. 

 The rule Classifier2HAXEClass transforms each C++ classifier, such as class and 

structure, into a HAXE class whose fields are derived from the classifier members. 

All models obtained in this chain of transformations are saved in the interchange format XMI, 

an OMG standard that combines XML, MOF and UML for integrating tools, repositories, and 

applications in distributed heterogeneous environments [30].   

6.4 HAXE Code Generation 

      From a model HAXE, it is possible to generate a source code in HAXE by using 

ACCELEO. HAXE allows writing mobile applications that target all major mobile platforms 

in a straightforward way. The generated code is syntactically correct, although, it does not 

compile on other platforms without doing changes due to the code refers to proprietary 

technologies of C++. To run on mobile environments, these technologies can be replaced with 

OpenFL and HAXEUI (that is an open source, multi-platform application-centric user 

interface framework designed for HAXE and OpenFL). The code obtained is partially shown 

in Figure 6. 

 

7 DISCUSSION  

  Our work shows the viability of semi-automatic migration processes based on MDD 

(MDA in particular). Due the fact that the objective of the migration is not only “compile” an 

application in a mobile platform but also to create a modified version of the application using 

quality criteria, the process can not be fully automated. Next, we informally compare the 

model-driven migration process with brute-force re-development migration.  

A crucial limitation of our approach is to require preliminary activities that requires time 

and cost, for instance we need to define metamodels if they do not exist. It is assumed that 

using a brute-force redevelopment, developers do not need training to write model 

transformations, however the programming interfaces of these languages generally restrict the 

kind of transformation that can be performed. In addition, general-purpose languages do not 

provide a sufficient level of abstraction to specify them. Changes will be difficult to write and 

understand and, therefore their maintenance is hard. On the contrary, model driven 

transformations are expressed in specialized languages for that purpose. Model 

transformations allow developers to concentrate on conceptual aspects of the relations 

between models and then to delegate the production of the transformation rules. We can 

consider that the generation of models by model transformations in ATL, aims to generate 
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models “Correct-by-Construction” with respect to metamodel specifications. 

Even with these issues, there is still activities done by hand and the migrated application has 

to be tested.  

A general limitation on both processes is the cost of testing due to the fact these activities 

in general are handled manually. In the context of model driven approaches there is a need to 

reduce the cost of testing by defining semiautomatic process based on metamodels. 

Beyond the previous issues, we consider that mobile developers need frequently adapt 

software components and applications developed in Java or C/C++. Then, model driven 

migration processes could be reused and the cost of preliminary activities is recovered. 

 

 
Figure 5. CPP2HAXE Transformation 
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Figure 6. HAXE Code 

8 CONCLUSIONS 

  This paper describes an approach for adapting object-oriented software in C/C++ to 

mobile platforms. A migration process, based on the integration of MDA and the HAXE 

platform, has been proposed. The main contributions of our approach are the definition of a 

metamodel for C/C++, the specification of a metamodel transformation between a source C++ 

metamodel and a target HAXE metamodel, and a generic and extensible migration process for 

the implementation of cross-platform, multi-device mobile applications from C/C++ code. 

The proposal was validated in the open source application platform Eclipse considering 

that some of its tools and run-time environments are aligned with MDA standards. We believe 

that our approach provides benefits with respect to processes based only on traditional 

migration techniques.The migration process can be divided in smaller steps focusing in 

specific activities, and be automated thanks to the chaining of model transformations. All the 

involved artifacts can be reused, modified for evolution purposes or extended for other 

purposes. The metamodel approach enables covering different levels of abstraction and 
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satisfying several degrees of detail depending on the needs of the migration and is the key for 

interoperability. All artifacts can be actually represented as models so that there is no 

information loss during the migration process. Model transformations allow developers to 

concentrate on the conceptual aspects of the relations between models and delegate the 

implementation of the transformation. 

Our approach has already shown to work on real applications of medium size. We foresee 

to apply our approach in real industrial projects. 
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Abstract. In this study a simple code is developed in powerful programming software 

MATLAB. Graduate engineering students are generally expected to cope with Finite Element 

Method in two and three dimensions during their Finite Element Courses. However textbooks 

of that courses, sometimes, do not have enough solved examples for students, because in two 

and three dimensions calculations are difficult to do manually. At this step a computer program 

which includes infinite number of examples, as user defines them, and their solution steps, is of 

crucial importance. The produced MATLAB code has these features as it can display stiffness 

matrix with or without boundary conditions, deformed shape of the body, displacement, strain 

and stress distributions over the surface. This code also makes it possible to analyze bodies as 

it is a plane stress or plane strain body. Besides, this MATLAB code can generate a step by step 

solution report for students to comprehend the Finite Element procedure. Since this code is a 

simple and educational tool, only one-piece rectangular bodies can be analyzed. The body to 

be analyzed can be meshed into various number of rectangular elements. These rectangular 

elements utilize bilinear Lagrangian shape functions, and Gauss Quadrature technique is used 

to deal with integrations. In this study four Gauss integration points are used as two in X 

direction and two in Y direction, which yields the exact integration as approximation functions 

are bilinear. 
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1 INTRODUCTION 

Finite Element Method (FEM) courses are essential for most engineering students, 

especially mechanical engineering and civil engineering students. FEM courses in graduate 

level generally include two dimensional problems. However, textbooks of those courses are 

short of solved problems and solutions are not explanatory, for example only necessary terms 

of stiffness matrix are determined because of its difficulty to do manually. Those deficiencies 

become motivation for this study. As an outcome of this study, a simple software is developed 

via MATLAB [1] to create two dimensional FEM examples. There are a number of important 

advantages of this software. First of all, this software makes it possible for user to create infinite 

number of examples with their FEM solutions. FEM solutions of those problems are written to 

a text file as a solution report which includes all necessary matrices. Also those matrices are 

written to a Microsoft Excel file for convenience of user. Deformed shape of the system, stress 

and strain distributions are also among the visual outputs. 

Two dimensional FEM problems includes plane stress problems and plane strain problems 

[2]. The developed software can handle both of these two kinds of problems. Planar problems 

to be solved with the developed software must include one-part rectangular geometries. Since 

the motivation of this study emerges from educational necessities, that level of simplicity is 

adopted. 

Meshing algorithm of the developed software is also simple, only rectangular meshing is 

available. Four node rectangular elements are created during meshing process. To determine 

element stiffness matrix for those four node rectangular elements numerical integration is used. 

Using Lagrangian shape functions for rectangular elements with four nodes, and utilizing Gauss 

Quadrature technique for numerical integrations yields the exact solution when using four 

Gauss points per element [3]. 

2 TWO DIMENSIONAL FEM FUNDAMENTALS 

2.1 Constitutive Matrix  

In two dimensional FEM, problems can be either plane stress problems or plane strain 

problems. The difference between these two kinds of problems can be illustrated as shown in 

Figure 1. If the planar geometry, which is considered in FEM problem, has a small thickness 

with respect to other two dimensions then it can be said that this problem is a plane stress 

problem. If that thickness is large enough, which causes zero strain through that direction, with 

respect to other two dimensions then it can be said that this problem is a plane strain problem 

[3]. 
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Figure 1 – Plane stress and plane strain geometries 

During Finite Element procedures that difference is defined by the constitutive matrix or 

stress-strain relation matrix, denoted by  D . The constitutive matrix for plane stress problems 

is given in equation (1), and constitutive matrix for plane strain problem is given in equation 

(2) where E  is Young’s modulus and   is Poisson’s ratio [3]. 
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In the developed software, user is expected to define material properties. For two 

dimensional elastic isotropic materials, Young’s modulus and Poisson’s ratio are necessary and 

sufficient parameters to define material. In the software user defines these two parameters, 

besides user defines problem state as plane stress or plane strain. 

2.2 Element Stiffness Matrix  

As stated before rectangular elements with four nodes are used for the FEM analysis. Those 

rectangular elements utilize Lagragian shape functions and uses Gauss Quadrature technique 

for numerical integrations. Lagragian shape functions are given in Figure 2, and Gauss point 

coordinates and weights are given in Figure 3 [3]. Numerical integration with those shape 

functions and four Gauss points yields exact integration result. 
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Figure 2 – Lagragian shape functions for rectangular element with 4 nodes 

 

Figure 3 – Gauss quadrature point coordinates and weights 

Considering Figure 2 and Figure 3 together, it can be seen that node numbering starts from 

bottom left node and goes on in counter clockwise direction. 

Element stiffness matrix for a rectangular element with four nodes can be determined by the 

formulae given in equation (3) where  D  is constitutive matrix and  B  is strain-displacement 
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transformation matrix. Strain-displacement transformation matrix is defined as shown in (4) 

[3]. 
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2.3 Topology Matrix and Global Stiffness Matrix  

To form global stiffness matrix in FEM topology matrices can be used, despite requiring 

large memory. Since this study introduces an educational tool for FEM, it is necessary to 

determine topology matrix. Topology matrix relates nodal degrees of freedoms with each other 

briefly, by utilizing topology matrix global stiffness matrix can be determined easily as shown 

in equation (5) where  C  is topology matrix and  diag k  is a matrix which have element 

stiffness matrices on the diagonal [3]. 

        . .
T

K C diag k C  (5) 

2.4 Boundary Conditions and Solution  

In two dimensional FEM problems, nodes have two degrees of freedom as translation in X 

direction and translation in Y direction. Therefore natural boundary conditions can include 

restrains in X direction and restrains in Y direction. Also the external forces at nodes can be 

defined in X direction and Y direction. In the developed software, a user friendly interface 

makes it possible to define nodal forces and nodal restrains in two directions. For simplicity, 

each direction represented with a color, X direction is represented with red, Y direction is 

represented with blue and both directions represented with green. For example, if user defines 

a nodal force in X direction than it is displayed as a red dot. Those symbols and their meanings 

are given in Table 1. 

Function of Button Symbol of Button 

Nodal force in X direction  

Nodal force in Y direction  

Nodal force in both directions  

Restrain in X direction  

Restrain in Y direction  

Restrain in both directions  

Table 1 – Symbols for supports and nodal loads 

After applying boundary conditions to global stiffness matrix and load vector, nodal 

displacements can be determined by using the equation (6) where  F  is load vector. 

      
1
.U K F


  (6) 
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Determined nodal displacements can be used to calculate element strain and stress values 

by utilizing equation (4). Using the Lagragian shape functions given in Figure 2 results in linear 

strains and linear stresses [3]. However, strain and stress values at element centroid are 

considered during visualization of strains and stresses. 

3 EDUCATIONAL TOOL DESCRIPTION 

3.1 Introducing the Program Interface 

The graphical user interface of the developed software has three menus as “Analysis”, 

“Output” and “Report” and has eight buttons, the interface and dialog boxes which are used 

during problem definition are show in Figure 4. A brief explanation of problem definition is 

given below. 

 

Figure 4 – Graphical user interface of the developed software 

By clicking “Define Geometry” button, user can define two lateral dimensions and thickness 

of the rectangular part. Then, by clicking “Define Material” button, user can define material 

properties. When geometry definition completed, meshing tool becomes enabled. By using 

“Define Mesh” button user can input number of seeds in X directions and number of seeds in 
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Y direction. After defining mesh, user can assign nodal forces and restrains to nodes generated 

after meshing. The dialog windows for geometry definition, material definition, mesh 

definition, force assignment and restrain assignment are also shown in Figure 4. Figure 5 shows 

the functions and icons of the buttons mentioned above. 

 

Figure 5 – Button icons and functions 

3.2 Example Problem Definition and Solution 

A simple rectangular plate problem and a simply supported beam problem are solved to 

illustrate capabilities of the developed software. In the first problem a coarse mesh preferred to 

explain the software briefly. In the second problem a fine mesh preferred to display visual 

capabilities of the software. For the plate problem, a rectangular plate with dimensions 

1 m 1 m 0.05 m   is meshed into 4 elements as two in X direction and two in Y direction. A 

material with Young’s modulus 7 23.10  kN/mE   and Poisson’s ratio 0.3   is defined. The 

bottom corner nodes of the rectangular plate are restrained in both X and Y directions and two 

equal nodal forces with a value of 1000 kN  are assigned to the top corner nodes in X direction. 

For the beam problem, a beam with dimensions 5 m 0.5 m 0.25 m   is meshed into 40 elements 

as 10 in X direction and 4 in Y direction. The same material with plate problem is used. The 

bottom corner nodes of the beam are restrained in both X and Y directions and a 1000 kN  nodal 

load assigned to the top-mid node of the beam in Y direction. Problem geometries, mesh 

properties and boundary conditions of these two problems are shown in Figure 6 and Figure 7 

respectively. 

 

Figure 6 – Plate problem geometry, mesh and boundary conditions 
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Figure 7 – Beam problem geometry, mesh and boundary conditions 

As thicknesses of these two geometries are smaller with respect to other two dimensions of 

the geometries, both of the problems are solved as plane stress problems. Deformed shape of 

both geometries are shown in Figure 8 and Figure 9 respectively. Also stress distributions for 

beam problem are shown in Figure 10. Stress distributions of the plate problem are not given 

here, since it would not be satisfying because of the coarse mesh defined. 

 

Figure 8 – Deformed shape of the plate 

 

Figure 9 – Deformed shape of the beam 
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Figure 10 – Stress distributions (kN/m2) for 
X , 

Y  and 
XY  respectively 

3.3 Example Problem Outputs 

As stated before the developed software can generate a solution report which includes 

material properties, problem state and all matrices of FEM procedure. Those matrices can also 

be exported to Microsoft Excel sheets. To illustrate these capabilities, constitutive matrix and 

element stiffness matrix of plate problem are given in equations (7) and (8). 

  

32967032,97 9890109,89 0,00

9890109,89 32967032,97 0,00
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  40 370879,12 267857,14
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20604,40 453296,70 267857,14 370879,12 20604,40 82417,58 267857,14 741758,24

 












   

   













 (8) 

Topology matrix, load vector, displacement vector and global stiffness matrices can also be 

illustrated via the developed software. 

4 CONCLUSION 

The developed software meets the aim of this study, which is to prepare an educational 

software to create two dimensional FEM examples and solutions easily. The product of this 

study can easily be used for FEM courses in graduate level. A large variety of examples from 

basic examples to complicated examples and their solutions can be prepared with the developed 

software. Outputs of the software are also very impressive. A solution report in text format can 
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be generated after completing the analysis. Visual outputs also meet demands, visual 

capabilities of the software suppress many commercial FEM software. 

Results given by the software are compared with a reliable FEM software which is a well-

known earthquake engineering simulation tool named as OpenSees [4]. The comparison ended 

up with a good harmony of the results which verifies the developed software. 
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Abstract. The challenge of reduce energy consumption in buildings is fundamental for the near 
future, considering the impact of buildings in the overall energy needs. Buildings enclosure is 
a constructive element with a high impact on buildings thermal behavior. Masonry is yet the 
most popular and used solution to produce buildings external walls. Consequently, the im-
provement of the thermal resistance of those walls is fundamental. The masonry materials in-
dustry, including masonry units, mortars, insulation and finishes is very concerned about this 
problem, which is complex because there are several constraints namely the wall thickness, 
enough mechanical resistance and the price.  

The development of new materials and systems must be very well supported for a good level of 
knowledge of its behavior, including thermal. Experimental testing in laboratory conditions is 
expensive for several characteristics and numerical simulations based on the 2D or 3D finite 
element models are implemented.  

In this paper a numerical sensibility analysis of the thermal performance of a new masonry 
system is presented. This analysis was applied to a lightweight concrete masonry system tested 
in laboratory in order to evaluate the influence of the thermal properties of the constituent 
materials. The numerical simulations are based on 3D FE model. The main results are pre-
sented and discussed.  
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1 INTRODUCTION 

The reduction of the energy consumption and efficient use of energy in buildings have be-
come increasingly important in recent decades. The growing energy demands caused high im-
pact on the building sector since it is estimated that this sector is responsible for consuming 40% 
of the total energy usage in the European Union. In order to reduce this energy consumption 
the new directive on buildings energy performance [1] established that all buildings constructed 
after 2018 to 2020 should be nearly zero energy buildings.  

To achieve this demanding goal it is necessary to minimize energy consumptions without 
affecting the thermal comfort requirements. In the case of the construction sector, the perfor-
mance of the materials/components used in buildings has to be improved, such as enclosure 
walls with lower thermal transmittance. 

Masonry is yet the most popular and used solution used for external/enclosure walls of build-
ings. Consequently, the reduction of the thermal transmittance of these walls is an important 
factor to be considered, along with an appropriate combination with the thermal mass, espe-
cially in moderate climates and if passive solar design principles are adequately used [2] (build-
ing solar orientation and level of shading, surface properties of the glazing elements, amongst 
others). The masonry materials industry, including masonry units, mortars, insulation and fin-
ishes is very concerned about this energy problem, which is complex because there are several 
constraints to be considered simultaneously, such as the wall thickness, enough mechanical 
resistance and a competitive price.  

 Focusing on the reduction of thermal transmittance of masonry, this can be achieved through 
the use of raw/base materials with lower thermal conductivity and with the use of units whose 
topology/geometry is conceived to optimize the thermal resistance. For more demanding per-
formances, complementary thermal insulation layers (thermal renderings, external insulation 
systems) and the filling of the unit voids with thermal insulation materials can also be used, in 
particular when the increase of wall thickness isn’t possible due to practical or economic rea-
sons. 

The impact on the energy consumption of building by reducing the thermal transmittance of 
enclosure walls has been estimated in some scientific studies. For example, according to a nu-
merical study [3] performed on building with four floors and two exposed facades (masonry 
walls made with vertical hollow units made with thermally enhanced clay) with 33 % of glazing 
area, annual energy savings near 8% was estimated, when decreasing the equivalent thermal 
transmittance of the enclosure walls by 43%. 

2 METHOLOGY  

The main objective of this paper is to study the influence of the thermal properties of the 
constituent materials on the thermal performance of a new single wall system made with light-
weight concrete masonry and thermal enhanced rendering. The thermal properties studied were 
the thermal conductivity of the base materials, namely 3 new types of lightweight concrete to 
be used in the units and one thermal enhanced mortar to be used in the bed joints. It is mentioned 
that this wall system was previously tested in laboratory for other properties that are outside the 
scope of this paper, such as mechanical resistance of masonry, acoustics behavior and water-
tightness.  

Therefore, the work methodology followed in this study was: 
• Experimental determination of the thermal conductivity for the 3 types of concrete used in 

masonry units (latter to be inserted in the numerical model); 
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• Experimental determination of the compressive strength of units made with the 3 types of 
concrete (to better evaluate the viability of application of these concretes in masonry prod-
ucts) 

• Numerical characterization of the thermal performance of the wall system made with ma-
sonry units and joints with lower thermal conductivity materials (main focus of the paper), 
through a 3D FE model calibrated and validated according to a standard methodology and 
experimental studies; 

 

3 NUMERICAL SIMULATIONS 

3.1 Construction aspects of the wall system  

The single-leaf wall system in analysis is to be used as external enclosure/facade of buildings 
and was considered in this study according to the constructive/detailing provisions given by the 
manufacturer/producer: 

• Masonry unit/block made from lightweight concrete (concrete with a dry density of 1200 
kg/m3 produced with lightweight expanded clay aggregates), vertical perforations (49%) 
and with external dimensions of 490x250x190mm (length x wide x height), Figure 1; 

 
Figure 1: Schematic representation of the masonry unit.  

• Vertical joints are interlocking joints (without mortar or dry joints) and bed joints are made 
with general purpose mortar laid with a central air gap with 65mm wide and 10mm thick 
(these bed joints are laid on the blind side of the unit, which is made during the production 
of the unit with 5mm of concrete, thus avoiding mortar penetration into the voids);  

• External thermal rendering system applied with 47mm of total thickness, i.e., 40mm of 
thermal mortar and 7mm of bonding/finishing mortar layers; 

• Internal coating/rendering system made with a mineral mortar applied with 20mm of total 
thickness.  
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Figure 2: Horizontal cut of the wall system in analysis (1- Internal rendering; 2- Masonry units; 3- External ther-
mal rendering; 4- Shell bedded mortar joints; 5- Dry vertical joints; 6- Central airgap). 

3.2 Thermal properties of the base materials  

Three new types of lightweight concrete (LWC) with different dosages of cement, light-
weight expanded clay aggregates, sand and additives were developed by the wall system man-
ufacturer/producer. These new LWC were named in this study according to their dry density 
(ρg,dry): 

• LWC670 (lightweight concrete with 670kg/m3); 

• LWC810 (lightweight concrete with 810 kg/m3);  

• LWC1100 (lightweight concrete with 1100kg/m3).  

Laboratory tests were performed according to EN12664 [4] (Guarded hot plate) to determine 
the thermal conductivity in dry state (λ10,dry,mat) of these new LWC. Since these types of LWC 
are molded into masonry units by an industrial vibration/compression process, 6 test samples 
were cut off directly from units produced in factory conditions (2 shells/webs for each type of 
concrete, Figure 3), therefore reproducing the real manufacturing conditions of the LWC ma-
sonry units. 

 

 
Figure 3: Example of test samples removed from the masonry units (shells/webs).  

4

5

6
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Also 2 types of mortar were considered for the bed joints: a thermally improved lightweight 
mortar and a general purpose mortar (mortar used in the original wall system).  

The properties of the base materials used in the joints and in the renderings were given by 
technical documents provided by the wall system manufacturer. 

In order to consider the base materials affected by the moisture content, a design thermal 
conductivity (λdesign,mat) was calculated according to standard methodology (EN 1745 [5] and 
EN ISO 10456 [6]) for an environment with relative humidity and temperature of 23°C and 
80%.  The results obtained are presented in table 1 and were used in the numerical simulations. 

 

Layer / element Base material ρg,dry 
(kg/m3) 

λ10,dry,mat 

(W/mK) 
λdesign,mat 

(W/mK) 
Internal rendering system Mineral based mortar 1500 0.610 0.775 

Masonry wall (unit) Reference LW Concrete (LWC1200) 1200 0.410 0.462 
Masonry wall (unit) New LW Concrete (LWC1100) 1100 0.215 0.242 
Masonry wall (unit) New LW Concrete (LWC 810) 810 0.160 0.180 
Masonry wall (unit) New LW Concrete (LWC 670) 670 0.122 0.132 

Masonry wall (bed joints) Therm. improved lightweight mortar  1500 0.610 0.775 
Masonry wall (bed joints) General purpose mortar 1800 0.930 1.182 

External thermal render-
ing system  

Thermal mortar 150 0.042 0.053 
Bonding mortar 1250 0.450 0.572 
Finishing mortar  1750 0.820 1.042 

Table 1: Thermal properties of the base materials  

For the experimental results obtained its highlighted that the dry thermal conductivity ob-
tained for the new developed LW concretes (LWC1100, LWC810 and LWC670) are lower than 
the tabulated values given in EN 1745 [5]. 

3.3 Mechanical Strength of units  

Laboratory tests were performed according to EN772-1 [7] to determine the compressive 
strength (perpendicular to the bed joints) of the unit made with the new developed concretes 
(Figure 4). Only 9 blocks were used (3 units per type of concrete) due to the availability of test 
samples. The final results obtained are succinctly presented on Table 2. 

 

   
Figure 4: Example of compressive strength tests performed on the masonry units (before and after testing). 
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Type of concrete used in the 
units/blocks  

Average compression 
strength (N/mm2) 

C.V.  
(%) 

LWC670 1.4 16.6 

LWC810 2.3 16.3 

LWC1100 3.1 5.8 

Table 2: Experimental results obtained for the compressive strength of the units  

Considering the results obtained, the units made with LWC 810 and LWC1100 concrete has 
showed the highest compressive strengths, demonstrating viability to have enough mechanical 
strength to be used as masonry material in real applications (e.g. near the reference limit of 2,5 
N/mm2 defined in a French standard for LWC units to be used in non-structural walls [8]). The 
unit made with LWC 670 has shown the lowest compressive strength and must be improved. 

3.4 Main aspects of the numerical model 

A micromodel based on FEM was used to simulate the thermal behavior of a wall part, de-
tailing the geometry of the blocks, joints (Figure 5) and rendering/coating layers. 

 

    
a)                                                                                          b) 

Figure 5: Geometrical model used in thermal simulations (a) Considered part of the masonry wall; b) Detailed 
3D modelling of the masonry wall part).  

The simulations were performed by considering a stationary thermal/heat flow obtained from 
a temperature gradient of 20oC, the internal and external surface resistances of the wall (Rsi and 
Rse), the equivalent thermal transmittance of the voids (calculated according to EN ISO 
6946[9]), the thermal transmittance of the base materials (see Table 1) and the existence of 
adiabatic boundaries on the considered part of the wall. 

The model accuracy was evaluated and validated according to standards EN 1745[5] e EN 
ISO 10211[10], i.e., calculation deviations/errors lower than the maximum allowed (1%) were 
obtained for heat flux in the simulation of standard reference cases of masonry walls. Moreover, 
this numerical model was previously used and validated in other scientific studies against ex-
perimental results obtained from standard laboratory tests (hot box method using heat flow me-
ters and large wall samples). In these studies the numerical and experimental results obtained 
exhibited differences near ± 4% [11, 12], which are considered acceptable for masonry. 

3.5 Presentation and discussion of results  

As mentioned before, the thermal performance of the wall system was analyzed with the 
following variations in the masonry base materials: 
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• Variation on the type of concrete originally used in masonry units (reference situation), 
i.e., using units made with the developed concretes (LWC670, LWC810 and LWC1100); 

• Variation on the type of mortar originally used in bed joints (reference situation), i.e., using 
bed joints made with thermally improved lightweight mortar. 

This performance was evaluated through the thermal resistance of the masonry in design 
conditions without renderings (Rdesign,mas) and through the thermal transmittance of the wall 
system in design conditions (Udesign). Its highlighted that these design conditions were estab-
lished by considering that all base materials were affected by moisture content (see 3.2) and 
had no ageing effects nor other environmental attacks (initial conditions of use were considered). 
The obtained results are presented in Table 3. 

 

Type of con-
crete used in the 

units/blocks  

Rdesign, mas  
Design thermal resistance of ma-

sonry without renderings (m2K/W) 

Udesign  
Design thermal transmittance of the 

wall system (W/m2K) 
Bed joint mortar Bed joint mortar 

Lightweight 
improved 

General purpose 
(reference) 

Lightweight 
improved 

General purpose 
(reference) 

LWC670 1.29 1.21 0.44 0.46 
LWC810 1.12 1.06 0.48 0.50 
LWC1100 0.98 0.94 0.52 0.53 
LWC1200  
(reference) 

0.73 0.70 0.60 0.60 

Table 3: Results obtained in numerical simulations   

An example of the thermal/heat flow distribution obtained for masonry walls is presented in 
Figure 6 and the thermal transmittance in design conditions (Udesign) of the wall system is pre-
sented in Figure 7 according to the type of concrete and type of mortar joints. 

 

Figure 6: Example of the heat flow in the masonry wall (without renderings)  
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Figure 7: Design thermal transmittance obtained for the wall system made with different base materials  

From the obtained results the following aspects are highlighted: 
• The units made with the new lightweight concretes (LWC670, LWC810 and LWC1100) 

improved the thermal resistance of masonry (increase of 34 to 77%) and the thermal trans-
mittance of the wall systems (decrease of 12% a 27%), although in last case with lower 
impact due to the use of external rendering system with high thermal insulation capability; 
Moreover, this improvement is higher when using both mortar joints and units with the 
highest thermal resistances; 

• The use of bed joints made with thermally improved mortar only had slight improvement 
on the masonry thermal resistance (increase of 4 to 7%) or on the thermal transmittance of 
the wall systems (reduction of almost 0 to 4%), since there is a low quantity of mortar 
applied on the masonry joints (use of discontinuous and dry joints). Nevertheless, this 
slight improvement is higher when using both mortar joints and units with the highest 
thermal resistances; 

4 GENERAL CONCLUSIONS  

The experimental results revealed the development of new lightweight concretes with a 
lower thermal conductivity and enough mechanical strength to be used in masonry applications, 
in particular for the LWC810 and LWC1100 concretes. However, the LWC670 concrete should 
be improved given the lower mechanical strength obtained.  

The numerical simulations demonstrated that the use of these concretes on the units, together 
with the use of thermal enhanced mortar in the bed joints, can significantly reduce the thermal 
transmittance of the wall system.  

Therefore, the use of these new lightweight concretes in masonry applications, especially in 
the case of LWC810 and LWC1100, have a high potential to produce units and walls systems 
with enough mechanical strength and lower thermal transmittance, the latter contributing for 
the reduction of energy consumption of buildings. 
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Abstract. Multiphysics simulations of deep penetration laser welding are performed with the
meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) method. Compared to mesh-
based methods, SPH has advantages in handling phase transitions, free-surface melt flow, and
fluid-structure interaction. Based on previous work on simulating conduction mode laser weld-
ing using SPH, the numerical model is extended to include further physical effects such as
evaporation and exertion of recoil pressure on the melt due to evaporation. Particular empha-
sis is placed on modeling the energy input through the laser beam. A co-simulation approach
is developed by coupling an SPH code with a ray tracer that tracks the propagation of the laser
beam in the keyhole in order to achieve spatial distributions of energy transferred to the melt
layer. A surface detection and reconstruction algorithm is implemented to exchange current
surface data. Simulation results of spot welding and seam welding are shown using this co-
simulation approach. The developed model serves as a basis to investigate the influence and
sensitivity of process parameters on the weld and to better understand transient effects around
the keyhole leading to weld imperfections.
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1 INTRODUCTION

Laser welding is widely applied in industry nowadays. It offers significant advantages over
conventional welding techniques, such as a small heat affected zone resulting in low mechanical
and thermal distortions in the workpiece, high heating and cooling rates, and the ability to join
dissimilar materials. Depending on the absorbed power density from the laser beam, laser weld-
ing is classified in conduction mode and deep penetration welding. During conduction mode
welding, evaporation plays no significant role and the energy is transferred to a more or less flat
surface. In contrast, during deep penetration welding, a part of the material evaporates and a
vapor-filled capillary surrounded by molten material is formed by the vapor pressure exerted on
the melt, a so-called keyhole. Multiple reflections of the laser beam on the walls of the keyhole
lead to a very high absorbed intensity by the molten material. As the keyhole follows the move-
ments of the laser beam along the weld joint, the melt flows around the keyhole and solidifies,
producing a deep and narrow weld seam. Deep penetration welding is a preferred welding tech-
nique, distinguished by high efficiency and fast welding speeds. However, the process easily
becomes unstable and weld imperfections like spatters, pores, cracks, and humping, may then
occur.

To simulate the process of deep penetration welding, the novel contribution of this paper is
that we extend a developed SPH model for conduction mode welding [1, 2] to include evapo-
ration and exertion of recoil pressure on the melt due to evaporated material. Concerning the
laser-material interaction, knowledge about the spatial intensity distribution as energy input is
essential. We propose a co-simulation approach with a ray tracer that tracks the propagation of
the laser beam in the keyhole to obtain spatial intensity distributions. Further steps during the
co-simulation are the transformation of the intensities to heat sources, and the surface detection
and reconstruction to send an updated surface geometry to the ray tracer.

2 MODELING WITH SPH

The SPH method was developed by Gingold and Monaghan [3] and Lucy [4]. As a mesh-
less Lagrangian method, it has been successfully applied to problems with large deformations,
fluid flow with free surfaces, multiphase flow, etc. [5]. In SPH a continuum is represented by
a set of particles acting as discretization points. Material properties and field variables like ve-
locity and acceleration are associated to each particle such that the overall state of the system
is characterized properly. The particles interact with each other within a smoothing length h
of a kernel function W . The evaluation of field variables and their derivatives for a particle is
approximated by sums over all neighboring particles. As a general discretization method, all
systems that are described by partial differential equations can be simplified to a set of ordinary
differential equations.

The modeling approach for laser welding using the SPH method is based on previous work of
simulating the conduction mode laser welding process [1, 2]. Therefore, only a short summary
is given in the following. The solid material is modeled with solid SPH particles extended to
a thermomechanically coupled formulation. For the liquid melt flow, the standard formulation
of weakly compressible SPH proposed by Monaghan [5] is used. Additionally, a temperature-
dependent surface tension model for thermocapillary flow as shown in [6] is implemented. Heat
transfer through conduction is modeled based on [7]. Temperature-dependent material proper-
ties are taken into account, as an example, different heat conductivities and heat capacities for
the solid and liquid phases are included in the model. For both solid and liquid phases, the
conservation laws of mass, momentum, and energy are discretized and used as basis for the
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interaction between solid particles, fluid particles, and also for the fluid-structure interaction.
The developed model is implemented into the software package Pasimodo [8, 9], which is used
for the welding simulations.

2.1 Phase transitions

During deep penetration welding, the occurring phase transitions are melting, solidification,
evaporation, and condensation. For phase transitions from solid to liquid or vice versa, the
latent heat of fusion Hf has to be considered. If the absorbed amount of heat exceeds the latent
heat of fusion, the melting has completed. The particle type is then dynamically changed from
a solid to a fluid particle during the simulation. On the contrary, during solidification heat is
released from the material. If the released amount of heat exceeds the latent heat of fusion, the
solidification has completed and the particle type is then changed from a fluid to a solid particle.

Analogously, for phase transitions from liquid to vapor, the latent heat of evaporation Hv

has to be taken into account. Currently, the vapor phase is not simulated, instead, the particles
are deleted during the simulation after the evaporation has completed. Thus, condensation is
neglected.

The specific enthalpy h is used to characterize the thermal energy stored in the system. At
constant pressure, the increase in enthalpy is equal to the amount of heat added to the system.
Therefore, a change in enthalpy may be converted to a change in temperature with the heat
capacity as proportionality factor. The specific enthalpy over temperature is plotted in Fig. 1, in
which constant heat capacities cs and cl are used for the solid and liquid phase, and the latent
heat of fusion Hf and evaporation Hv are considered in a transition range between two phases.

Tm Tl Te Tv
temperature in K

sp
ec

ifi
c

en
th

al
py
h

in
J/

kg solid liquid vapor

csTm

csTm +Hf

csTm +Hf + cl(Te − Tl)

csTm +Hf + cl(Te − Tl) +Hv

Figure 1: Specific enthalpy over temperature simplified as integrated values
∫
c dT , i.e. the

pressure changes are neglected here

2.2 Calculation of recoil pressure

Different models exist in literature for the calculation of recoil pressure acting on the surface
of an evaporating material due to high-intensity laser irradiation [10, 11]. Here the physical
model proposed in [12] is applied, since the predicted recoil pressures using this model are in
reasonable agreement with experimental results.
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The laser power absorbed by the material surface and spent in evaporation is

Qs = Q0α(1− r)−Qheat , (1)

where Q0 is the incident power of the laser beam, α the transmission coefficient in the laser-
induced plasma plume, r the reflection coefficient at the material surface, and Qheat the energy
rate in W spent in heating and melting of the irradiated material. The recoil pressure is then
evaluated as

ps =
Qs

AHv

√
πkBTs
2mv

, (2)

in which A is the area of the laser spot at the surface, Hv is the latent heat of evaporation, kB
the Boltzmann constant, Ts the surface temperature, and mv the mass of a vapor molecule. The
Clausius-Clapeyron equation [13, 14]

pa + ps
p0

= exp

(
mvHv

kB

(
1

Tv
− 1

Ts

))
(3)

relates the pressure at the surface to the temperature at the surface. In Eq. (3) pa is the environ-
mental pressure, p0 the atmospheric pressure, and Tv the evaporation temperature.

In [12] the value of Qheat is obtained from empirical relations based on experimental results
and Qs is calculated for the whole surface. In the developed model, a local approach is applied
instead and Qs is approximated for each particle using its specific enthalpy

Qs = {h− [csTm +Hf + cl(Te − Tl)]}
m

∆t
, (4)

where m is the mass of the particle, and ∆t the time increment. To obtain both unknowns Ts
and ps, first the nonlinear equation

f(Ts) :=
pa
p0

+
Qs

p0AHv

√
πkBTs
2mv

− exp

(
mvHv

kB

(
1

Tv
− 1

Ts

))
= 0 (5)

is solved with the Newton-Raphson method, where the evaporation temperature is chosen as
starting value T 0

s = Tv. The iteration step

T n+1
s = T ns −

f(Ts)

f ′(Ts)
(6)

with the derivative

f ′(Ts) =
df

dTs
=

Qs

2p0AHv

√
πkB

2mvTs
− mvHv

kBT 2
s

exp

(
mvHv

kB

(
1

Tv
− 1

Ts

))
(7)

is repeated until a relative or absolute convergence criterion is fulfilled, or if the maximum
number of iterations is reached. Afterwards ps is evaluated using Eq. (2) and the recoil pressure
is added to all surrounding particles.

8199



Haoyue Hu, Peter Eberhard, Florian Fetzer and Peter Berger

3 RAY TRACING ALGORITHM

A ray tracing algorithm introduced in [15] is applied to calculate the local absorbed intensity
from the laser beam on a discretized surface. The idea is to use geometrical optics to track the
propagation of independent light rays. The geometry of the surface is meshed with triangles and
specified in STL format. During the calculation, a large number of rays are generated randomly
based on a Monte Carlo method. The overall distribution of the rays corresponds to the intensity
profile of the laser beam. When a ray hits a triangle, the local absorbed intensity is evaluated
from the absorbed power of the ray divided by the area of that triangle. The absorption is
calculated using the Fresnel equations [16]. Then the reflected ray is traced and the calculation
of the local absorbed intensity is repeated. After multiple reflections are performed, the total
absorbed intensity at each triangle is obtained from the sum of each absorbed intensity from
individual rays at the triangle. If no intersection between a ray and the triangles is detected, the
ray is deleted during the simulation.

The existing algorithm from [15] is extended to include further physical effects. Temperature-
dependent optical material parameters are specified in a data table, and the values are interpo-
lated in between. Furthermore, diffuse reflection according to Lambert’s emission law may be
chosen in addition to Fresnel absorption.

4 CO-SIMULATION APPROACH

To model the laser-material interaction, a co-simulation approach is developed with a server-
client architecture, where Pasimodo [8, 9] acts as the server, and the ray tracer as a client. The
data exchange is carried out via a TCP/IP network connection.

The procedure of the co-simulation is shown in Fig. 2. The initial surface as input for the
ray tracer is taken as a circular plane. The calculated absorbed intensities for each triangle
are transferred to Pasimodo as initial energy input through the laser beam. In Pasimodo heat
source particles are added at the center of gravity positions of each triangle. To reduce the
computational effort, only triangles with an absorbed intensity above a threshold value set as
100 W/m2 are considered. In Pasimodo the welding simulation using SPH is performed with
these dynamically added heat sources. After a user-defined time interval of ∆t, the updated
geometry of the free-surface melt flow and the temperature of the surface particles are sent
to the ray tracer. The co-simulation loop is repeatedly executed until the welding simulation
has finished. The additional steps performed during the co-simulation are explained in the
following.

4.1 Transformation of intensities to heat sources

For the SPH simulation in Pasimodo, the absorbed intensities Is are transformed to heat
source particles at the center of gravity positions of each triangle. The radius of the heat source
particle is set to

rs =

√
As
π

=

√
1
2
‖a× b‖
π

, (8)

whereAs is the area of the triangle which may be obtained by half the norm of the cross product
of two edge vectors a, b originating from one vertex, see Fig. 3. All neighboring particles with a
distance less than 2rs interact with the heat source particle. To ensure that the total power added
to all neighboring SPH particles is equal to the absorbed power from the laser beam at the
triangle, a correction factor is determined similarly to [17]. The correction factor is evaluated
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Pasimodo
- fluid dynamics
- heat transfer
- phase transitions
- time integration

server

Ray tracer
- laser-material 
  interaction
- spatial intensity 
  distribution

surface detection and
surface reconstruction

transformation of intensities
into heat source particles

TCP/IP
surface geometry
and temperature
in STL format

TCP/IP
absorbed intensity
for each triangle 

client

Figure 2: Co-simulation loop

as the total volume of the neighboring particles,

ζs =
∑
j

mj

ρj
=
∑
j

Vj , (9)

where mj is the mass, ρj the density, and Vj the volume of particle j. Afterwards, a source term

1

ρj

IsAs
ζs

(10)

in the unit W/kg is added to the right hand side of the energy equation for each SPH particle
within a distance of 2rs.

j

rs

a

b

2rs

Figure 3: Transformation of a triangle into a heat source particle with radius rs interacting with
its neighbor particles j within a distance of 2rs
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4.2 Surface detection algorithm

The applied algorithm for the detection of surface particles in the vicinity of the laser beam
is adopted from [18] which combines the ideas given in [19] and [20]. For each particle i the
normal vector of the surface is approximated by a so-called cover vector

bi =
∑
j

xi − xj
‖xi − xj‖

, (11)

which is evaluated based on the distance to its neighbor particles j. Around the cover vector, a
scan cone is defined with an apex angle of θ, as shown in Fig. 4. In a second step, it is checked
if at least another neighbor particle is located in the scan cone created by bi. An interior particle
has to fulfill the condition

arccos

(
xj − xi
‖xj − xi‖

· bi
‖bi‖

)
≤ θ

2
(12)

for at least one neighbor particle j, otherwise the considered particle i is regarded as surface
particle. In Fig. 4 the dashed circle has the radius of the smoothing length h of particle i. All
neighboring particles located in the influence range contribute to the cover vector, and Eq. (12)
is checked for each of them. In Fig. 4(a) particle i is detected as a surface particle, since there
are no other particles located in the scan cone created by bi. In Fig. 4(b), however, there is a
neighbor particle located in the scan cone, for which Eq. (12) is satisfied. Therefore, particle i
is identified as an interior particle in this case.

This method is rather simple and fast, but it is not always accurate. Especially for randomly
distributed particles, interior particles may be detected as surface particles and vice versa. An-
other drawback is the detection of different surface particles depending on different apex angles
set for the scan cone. Here the angle θ is set to 60◦ in accordance with [18].

bi

i

θ
2

θ

xj − xi

h

(a) Particle i is a surface particle, since no other
particles are located in the scan cone

bi

i

θ
2

θ

xj − xi

(b) Particle i is an interior particle, since a neigh-
bor particle is detected in the scan cone

Figure 4: 2D example of a small set of SPH particles to illustrate the surface detection algorithm

4.3 Surface reconstruction algorithm

After all relevant surface particles are detected, the surface is reconstructed and a surface
mesh consisting of triangles is created for the next simulation loop with the ray tracer. The

8202



Haoyue Hu, Peter Eberhard, Florian Fetzer and Peter Berger

surface mesh is obtained with a Delaunay triangulation [21], in which the surface particles act
as vertices of the triangles. Delaunay triangulations tend to avoid badly shaped triangles by
maximizing the minimum angle of all triangles. There are several algorithms implementing the
Delaunay triangulation method with O(n log n).

The applied algorithm is from [22, 23] which is based on randomized incremental construc-
tion. Currently, a 2D triangulation is performed based on the x- and y-coordinates of detected
surface particles. Afterwards, the vertices of the triangles are shifted in z-direction. This ap-
proach is inadequate for keyhole geometries with undercuts, but works well for convex geome-
tries.

After the triangulation function call which delivers an index list of all triangles, the surface
geometry and temperature data are sent to the ray tracer in binary STL format. The surface
temperature of each triangle is approximated as mean value of the temperatures at its vertices.

5 EXAMPLES

To evaluate the co-simulation approach, two characteristic welding examples are chosen.
The first example is spot welding of iron, and the second example is seam welding of aluminum.
For both simulation examples the co-simulation loop is repeated every 0.1 ms.

5.1 Spot welding of iron

This example shows the formation of a keyhole during spot welding of iron. The applied laser
beam has a power of 3 kW and a spot diameter of 0.3 mm. The surface geometry of the melt
pool which is sent from Pasimodo to the ray tracer is shown for several time instants in Figure 5.
For the given set of process parameters, the aspect ratio of depth to spot radius is approximately
one at 0.5 ms, which marks the threshold from conduction mode to deep penetration welding.
The aspect ratio increases to two at 1.5 ms.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 1.5 ms (d) t = 1.8 ms

Figure 5: STL surface geometries sent from Pasimodo to the ray tracer which illustrate the
formation of a keyhole during spot welding of iron
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The temperature distribution around the keyhole at t = 2 ms is shown in Fig. 6. The evapo-
rated particles are deleted during the simulation and thus, are not displayed. Nearly all surface
particles around the keyhole have reached the evaporation temperature, but the absorbed amount
of heat is still less than the latent heat of evaporation. The particles at the tip of the keyhole
have a lower temperature, which indicates that the particle layer above have evaporated almost
instantaneously shortly before the depicted instant of time. Therefore, both the evaporated par-
ticles and the laser beam did not have enough time to heat the current surface layer at the tip of
the keyhole up to evaporation temperature.

(a) view at mid cross section (b) view at top surface

Figure 6: Temperature distribution in the vicinity of the keyhole at t = 2 ms

5.2 Seam welding of aluminum

As another example, seam welding of aluminum is simulated with a constant welding speed
of 25 m/min. The laser power is set to 4.5 kW and the laser spot diameter is 0.6 mm. In Fig. 7 the
SPH particles are colored based on the number of phase transitions. The particles in grey form
the liquid weld pool, the particles in red were melted and solidified to form the resulting weld,
and the particles in blue remained solid during the welding process. Again, we can analyze
the aspect ratio of depth to spot radius, which is slightly larger than one, indicating that the
threshold for deep penetration welding is reached. This corresponds well with the fact that
some particles at the center have evaporated, but the amount of evaporated material is not large
enough to form a considerable keyhole that results in a deep weld seam.

(a) view at mid cross section (b) view at half of the top surface

Figure 7: Seam welding of aluminum with weld pool colored in grey and solidified weld colored
in red
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6 CONCLUSIONS

The process of laser welding is simulated using the SPH method, where both the solid and
liquid phase are modeled including significant physical effects such as surface tension, heat
conduction, and thermal expansion. The phase transitions melting, solidification, and evapora-
tion are taken into account together with the absorption or release of the latent heat of fusion
and evaporation. The evaporated material is currently not modeled, but the recoil pressure that
affects the melt is implemented based on a physical model in [12].

A co-simulation approach is developed by coupling an SPH code with a ray tracer to capture
the laser-material interaction for complicated surface geometries. The data exchange is based on
a TCP/IP protocol. Preliminary steps to the data exchange are the transformation of intensities
into heat source particles interacting with other SPH particles at the surface of the melt, the
surface detection, and the surface reconstruction. Suitable algorithms are chosen from literature
and implemented. The obtained results are promising, but there are still some drawbacks and
limitations in the implemented versions.

For future work, more complex algorithms for surface detection and reconstruction shall be
implemented to better characterize the keyhole during laser welding. The goal is then to inves-
tigate instabilities that arise during the process, such as pore formation, spatter, and humping.
This will be done numerically and also experimentally.
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Abstract. Electro-magnetic (EM) fields are widely used in metallurgy in order to stir con-

ducting metals without the risk of contamination or causing an instability or chemical reaction. 

During the manufacturing of metal matrix composites (MMC), ceramic micro- and nano-par-

ticles are added into the metal melt, and ultrasonic (US) processing and EM stirring are used 

to break the agglomerates and to enhance the dispersion of the particles. EM stirring can also 

be used to remove the unwanted particles from liquid metal by pushing them towards the walls 

of the crucible where they adhere and can be easily removed. 

A model has been developed to account for the complex interaction of the particles with each 

other, with the walls, as well as with the flow of the metal melt. Particles are modelled as elastic 

spheres with adhesion. Adhesion is incorporated in the model using the Johnson, Kendal, Rob-

ert (JKR) and Derjaguin, Muller, Toporov (DMT) theories. The case of the oblique impact of 

the particles is modelled according to the Thornton and Yin method based on the partial-slip 

theory developed by Mindlin & Deresievics. The developed particle model is then coupled with 

the magneto-hydrodynamics (MHD) code PHYSICA in order to demonstrate the effect of the 

EM stirring and vibration. 

Multiple time-scales are used which permits modelling the realistic time range of metal-

processing and at the same time capture the individual collisions between particles with suffi-

cient precision. Several methods of predicting the particle collisions are employed and their 

efficiency is compared for the case of removing contaminating particles from liquid metal. 
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1 INTRODUCTION 

This research is focused on developing the computational model of interacting particles and 

particle clusters suspended in liquid metals. The application of such model includes manufac-

turing of metal-matrix composites (MMC), where understanding of the forces acting on parti-

cles is required to prevent the formation of clusters and to disperse the reinforcing particles 

evenly in the volume of metal melt [1], [2]. Another application is removing the contaminants 

from liquid metal [3]-[5] which can be achieved by combining electro-magnetic (EM) stirring 

with EM expulsion owing to the fact that the metal is liquid and electrically conducting while 

the contaminants are solid and non-conducting. 

Both applications share the same difficulty: the interaction of the particles with each other 

and with the walls of the crucible is essential for the outcome of the process, and therefore must 

be resolved accurately. The elastic forces, friction and cohesion between the particles dictate 

whether the clusters of particles form or break in the case of MMCs, while in the second case 

the efficiency of decontamination largely depends on the ability of the particles to adhere to the 

walls. The EM stirring is typically quite slow (5-10 cm/s, [5], [6]). In order to trace the particles 

during the stirring, at least one full cycle of stirring should be simulated, which is of the order 

of 1s for a 10 cm crucible. The large disparity in time-scales associated with particle collisions 

on one side, and on fluid flow on the other side, calls for multi-scale analysis of the problem, 

similar to that proposed in [7].  

1.1 Fluid time-scale 

In this paper the fluid flow is a consequence of applying the EM fields to electrically con-

ducting liquid metal. EM fields induce electrical current in liquid metal that gives rise to a 

Lorentz force, which drives the stirring motion. It is assumed, that fluid flow is too slow to 

affect the imposed EM fields, therefore the EM fields are solved in the amplitude and frequency 

domain and no time-scale is associated with the EM fields. The fluid flow is modelled by solv-

ing the Navier-Stokes equation with an additional term representing the Lorentz force. The fluid 

time-scale for a 10 cm crucible is then of the order of 1 s. In the time reference of individual 

particle collisions the flow field can be assumed steady. 

1.2 Fluid particle time-scale 

If no collisions are happening, the particle motion depends on the fluid-particle interaction 

forces, where the most prominent contribution is that of the drag force, while other forces in-

clude lift and added mass, Magnus effect, pressure gradient force etc. These and other forces 

are reviewed in e.g. [8]-[13]. Some works involve resolving the fluid particle interaction using 

fluid mesh elements surrounding the particle [14] [15]. This method is convenient to accurately 

simulate the local fluid flow around the particle and derive the global fluid particle forces. It is 

however practical only if particles are larger than fluid flow mesh cells, or in other words, if 

particle size is comparable to the features of the flow. In this paper, particle’s size ranges from 

1 nm to 100 µm, while the minimum size of the fluid flow cell is ~3 mm. All the fluid particle 

interaction forces therefore rely on interpolated values of the fluid velocity and pressure. Under 

these conditions it is safe to assume that the forces acting on a particle do not significantly 

change until the particle moves to the distance, comparable to its own size. The fluid-particle 

time-scale is therefore associated with the particle size and average fluid velocity: 

𝑇𝑓𝑝 =
𝑅𝑝

𝑈
                                                               (1) 

To ensure accurate simulation, the fluid-particle time-step then must be  
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Δ𝑓𝑝𝑡 = 𝐶𝑓𝑝
𝑅𝑝

𝑈
                                                            (2) 

Where Cfp≤1 is a parameter. For particles of 1µm radius immersed in the fluid stirred on 

average at U=5 cm/s the time-step Δfpt≤20 µs for Cfp=1. If fluid velocity gradient is large then 

care should be taken to reflect this in the choice of Cfp. Taking Cfp=0.01 makes Δfpt=200 ns. 

1.3 Collision time-scale 

The average collision time can be estimated based on the Young’s modulus (Ep), particle 

radius (Rp), density (ρp) and approach velocity (U) [7]  

𝑇𝑐 = 2𝑅 (
𝜌𝑝

2

𝑈𝐸𝑝
2)

1

5
                                                         (3) 

For two SiC particles of 1µm radius approaching each other at U=5 cm/s the collision time 

Tc=2ns. Equation (1) is of course an approximation, as it does not take into account the impact 

angle, tangential forces, spin of the particles, adhesion force, surrounding fluid and presence of 

other particles. To ensure the accuracy of force transmission during the collision of particles, 

the time-step in modelling must be associated with the Rayleigh wave speed Vr  [16]: 

Δ𝑐𝑡 = 𝐶𝑟
𝜋𝑅𝑝

2𝑉𝑟
,                                                         (4) 

Where Rp is the particle radius, and Cr≤1 is a proportionality coefficient. Approximation of 

the Rayleigh wave speed Vr using the material Poisson’s ratio ν was presented by e.g. [17]:  

𝑉𝑟 ≈
256

293
+ 𝜈 (

60

307
− 𝜈 (

4

125
+ 𝜈 (

5

84
+

4

237
𝜈)))                               (5) 

For SiC particle of 1µm radius and C=1, (2) and (3) give Δct=0.2ns. This is equivalent to 

Tc/10, so C=1, 0.5 and 0.1 corresponds to modelling collision in 10, 50 or 100 time-steps. The 

ratio between the collision and fluid-particle time-steps is then 
Δ𝑓𝑝𝑡

Δ𝑐𝑡
= 10000                                                        (6) 

Which totally justifies the multi-scale approach. 

2 REVIEW OF ADHESION THEORIES 

Bradley [18] first described the van der Waals force acting between two rigid spheres in 

contact and calculated the pull off force as Pc=4πγR, where γ is interfacial energy of the con-

tacting materials 1 and R is the radius of the sphere.   

Derjaguin [19] pointed out that elastic deformations of the spheres need to be accounted for 

as well as the adhesive interactions. He presented the first attempt to consider the problem of 

adhesion between elastic spheres: calculating the deformations of the spheres using Hertzian 

contact theory, he evaluated the work of adhesion assuming only the pair-wise interactions of 

the closest surface elements. The interaction energy between small elements of curved surfaces 

was assumed the same as for parallel planes which is known as the Derjaguin approximation.  

On the other hand, Johnson [20] made an attempt to solve the adhesive contact problem by 

combining the Hertzian spherical contact problem and the problem of a rigid flat-ended punch. 

Johnson et al. [21] applied Derjaguin’s idea to equate the work done by the surface attractions 

against the work of deformation in the elastic spheres to Johnson’s [20] combined stress super-

position. This resulted in the creation of the famous JKR (Johnson, Kendall, and Roberts) the-

ory of adhesive contact [21]. According to them the attractive adhesion force is acting only over 

the contact area and significantly affects the shapes of the contacting spherical bodies. The pull 

                                                 
1   The formulae for the pull off force of adhered particles are often used with the notation Δ which is the work of adhesion. 

For spheres of the same material Δ ≈ /2, therefore Pc=2 ΔR 
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off force calculated using JKR model is Pc=3πγR. The contact area is a circle with radius a, 

defined as follows: 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 + √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2],                                (7) 

where P is the applied normal load and E is the combined Young’s modulus. Hertzian theory 

evaluates the contact radius simply as a3=3PR/4E, therefore JKR theory is reduced to Hertzian 

if adhesion is neglected, i.e γ=0. 

Derjaguin et al [22] developed a contact theory (DMT – Derjaguin, Müller, Toporov) that 

combined Bradley’s adhesion force with Hertz elastic contact theory. The attractive intermo-

lecular force is assumed applicable in the contact area as well as in the surrounding annulus 

zone. The resulting profile of the deformed spheres remains Hertzian and the pull off force is 

equal to the one derived by Bradley, Pc=4πγR. The contact radius is then given by 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 4𝜋𝛾𝑅]                                                                 (8) 

Qualitative analysis of both JKR and DMT models performed by Tabor [23] as well as more 

detailed analysis based on the Lennard-Jones potential conducted by Muller et al [24] showed 

that the contradiction between the models lies in the physical principles of adhesive contact 

assumed by the authors. Both Tabor and Muller concluded that the adhesive contact of larger, 

softer bodies with stronger surface interaction can be described by the JKR model, while the 

DMT model is applicable to the smaller, harder bodies with weaker surface interaction. Param-

eters τ, μ were introduced in [23] and [24] to determine which model is more appropriate:  

𝜏 ≅ [
𝑅𝛾2

𝐸2𝑧0
3]

1/3

, 𝜇 =
32

3𝜋
[

2𝑅𝛾2

𝜋𝐸2𝑧0
3]

1/3

,                                                   (9) 

where z0 is the equilibrium separation distance, typically 0.16-0.4 nm [25]. According to Muller 

if <1 then DMT is applicable whereas if >>1 it is JKR.  

Maugis [26] suggested a smooth transition model between JKR and DMT approaches which 

exploits the principles of fracture mechanics. For simplicity, Lennard-Jones interaction poten-

tial is replaced by the step-function, which is known as Dugdale approximation. Greenwood 

and Johnson [27] suggested an alternative model to Maugis based on a combination of two 

Hertzian profiles that also connect both the JKR and DMT models in one general theory. These 

two models use a parameter, which defines the area where the adhesion force is applicable. The 

necessity to evaluate this parameter at every time step during particle collision makes it imprac-

tical to use either Maugis [26] or Greenwood and Johnson [27] theories in a DEM solver. There-

fore in the present paper the JKR and DMT models are implemented and the Müller parameter 

μ is used to determine which one is more applicable.  

3 CONTACT MECHANICS 

3.1 Oblique loading without adhesion. 

The most commonly used particle contact model was first introduced by Cundall and Strack 

[28] in attempt to predict the complex behaviour of sand specimens under loading and unload-

ing. They suggested treating sand particles as spheres which can move individually and interact 

only at the contact spots. The contact model consisted of linear spring elements as well and 

viscous damping elements in both normal and tangential directions, as shown schematically in 

Figure 1a. The modifications of this model are reviewed in e.g. [9][10]. The developments of 

this approach can include addition of rolling and twisting resistance [7] which are neglected in 

this paper.  
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Figure 1 (a) Commonly used spring-dashpot and sliding element model; (b) contact traction distribution of 

two contacting spherical bodies according to the Mindlin and Deresiewicz model.  - indicates circular zone 

with radius a0 where elastic tangential force is applicable,  - indicates the ring-shaped micro-slip area with ex-

ternal radius a1.. 

While being extensively used in CFD-DEM simulation codes such as developed by Goniva, 

Kloss, Hager, Wierink and colleagues [12], [13], this model has a number of disadvantages. 

Firstly, accurate description of the contact between spherical bodies given by Hertz predicts 

non-linear normal elastic stiffness as kn=2E*a, where E* is the combined Young’s modulus and 

a is the radius of the (circular) contact area. It is noted in [7] that for small deformations Cundall 

and Strack model works well, although it is not obvious how to correlate the constant elastic 

stiffness values knorm, ktan and viscous damping coefficients cnorm, ctan with properties of the 

materials involved. In addition to that, this paper considers nano- and micro-particles of sizes 

50 nm to 100 μm, and therefore adhesion force must be incorporated. All of the adhesion models 

mentioned in the Section 2 of this paper are based on Hertz elastic theory. For these reasons, 

Hertz theory is used in this paper to evaluate the relationships between normal force and dis-

placement as well as contact area.  

The tangential contact forces are implemented in this paper by means of the Mindlin and 

Deresiewicz theory [29]. It is assumed that two elastic spheres in tangential contact experience 

a partial-slip, where the total force is a combination of elastic tangential force in the circular 

area in the centre of the contact zone and sliding friction force in the ring shaped exterior of the 

contact zone. Once the partial-slip tangential force exceeds the total sliding friction force, the 

bodies slide relative to each other. The tangential force in this case is then equivalent to the 

sliding friction force Fs=P, where  is the friction coefficient, P is the normal load. The dis-

tribution of contact traction is illustrated in Figure 1b. 

Thornton and Yin [30] combined all the major cases of the loading/unloading conditions 

described by Mindlin & Deresievicz [29] and derived the following expression for the tangen-

tial stiffness during oblique loading:  

𝑘𝑡 = 8𝐺∗𝑎𝜃 ± 𝜂(1 − 𝜃)
Δ𝑃

Δ𝛿𝑡
                                                (10) 

where G* is the combined shear modulus, a is the contact radius,   is the friction coefficient, 

ΔP is the increment of the normal load, Δδt is the increment of the tangential displacement and 

is a parameter defining the ratio of the elastic force to the micro slip friction force. The pa-

rameter depends on the loading history and is defined as follows: 
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𝜃3 = 1 −
𝑇 + 𝜂Δ𝑃

𝜂𝑃
; 𝜃3 = 1 −

𝑇∗ − 𝑇 + 2𝜂Δ𝑃

2𝜂𝑃
; 𝜃3 = 1 −

𝑇 − 𝑇∗∗ + 2𝜂Δ𝑃

2𝜂𝑃
, 

(11) 

for loading for unloading for reloading 

where T is current value of the tangential force and T* and T** are the load reversal points. 

Normal elastic stiffness is defined as kn=2E*a according to Hertz theory; see [30] for details. 

3.2 Oblique contact with JKR adhesion 

Savkoor and Briggs [31] extended the JKR contact theory to consider the effect of adhesion 

in the case of oblique loading. It was suggested that applying the tangential force reduces the 

potential energy by an amount of Tδt/2. Adding this term to the JKR energy balance equation 

modified the contact radius (7) as:  

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 ± √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2 −

𝑇2𝐸

4𝐺
]                              (12) 

It was concluded that in the presence of tangential force, the contacting spheres peel off each 

other thus reducing the contact area. The peeling process continues until T reaches the critical 

value of 

𝑇𝑐 = 4√(3𝑃𝜋𝛾𝑅 + 9𝜋2𝛾2𝑅2)G/E.                                          (13) 

For the normal load Thornton and Yin [21] have adopted the JKT theory. The stiffness is 

then evaluated as 

𝑘𝑛 = 2𝐸∗𝑎 [3 − 3 (
𝑎𝑐

𝑎
)

3

2
] / [3 − (

𝑎𝑐

𝑎
)

3

2
]                                     (14) 

where ac=9πγR is the JKR contact radius at the moment of separation (pull off radius). 

In the case of oblique loading Thornton and Yin [30] followed [31] in what concerns the 

peeling process. They however assumed that once the peeling process is complete, the contact-

ing bodies operate in the partial slip regime as described before with the difference that the 

normal force P is replaced with P+6πγR.  

3.3 Oblique contact with DMT adhesion. 

 In this paper it is suggested to combine the Thornton and Yin [30] partial slip no adhesion 

model with DMT adhesion. The DMT theory assumes that the deformed shapes of the contact-

ing bodies remain within Hertzian elastic theory. Therefore a no-adhesion model [30] was 

adopted where the normal force P is replaced with P+4πγR to account for the adhesion force. 

This approach considers instantaneous separation of the particles, as opposed to the JKR theory, 

where particles stretch elastically prior to pulling off. The maximum stretching in the JKR case 

is evaluated as 𝛿𝑐 = (
3𝜋2𝛾2𝑅

16𝐸2 )
1/3

whereas δc=0 in the DMT case. The effect of the stretching 

prior to separation is illustrated in [2]. 

4 VISCOUS DRAG  

The momentum of the fluid is transferred on the particles via the drag force. Di Felice’s [32] 

theory is used to account for the effect of presence of other particles. Drag force on a single 
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particle in a flow with relative velocity 𝑣 = 𝑣𝑓 − 𝑣𝑝, where vf, vp are the velocities of the fluid 

and the particle, can be evaluated as follows: 

𝐹𝑑 =
1

2
𝜌𝑓𝑣2C𝑑𝜋𝑅𝑝

2휀−𝛽

Cd = (0.63 +
4.8

√Rep 
)

2

𝑅𝑒𝑝 =
𝜌𝑓

𝜇𝑓
𝛼𝑓𝑅𝑝|𝑣𝑓 − 𝑣𝑝|

                                                    (15) 

where Rep is the particle Reynolds number, μf and ρf are dynamic viscosity and density of the 

fluid, ε is the void fraction value, Cd is the drag coefficient for spherical particles, and function 

𝑔(휀) = 휀−𝛽 is a measure of how much the drag force is affected by the presence of other parti-

cles. Empirical parameter β was evaluated to fit the experimental data for a wide range of Reyn-

olds numbers (10-2 to 104) and void fraction values (0.4 to 1):  

𝛽 = 3.7 − 0.65𝑒−0.5(1.5−𝑙𝑜𝑔10 𝑅𝑒𝑝)
2

                                              (16) 

In the literature, modifications of g(ε) are used, such as 𝑔(휀) = 휀1−𝛽 [10],  𝑔(휀) = 휀2−𝛽, 

[12], [13], or 𝑔(휀) = 휀−1−𝛽 [11]. Di Felice noted however that in the case of the flow through 

random packed spheres (ε≈0.4), Ergun’s equation predicts 𝑔(0.4) =
14.6

𝐶𝑑
(1 +

51.4

𝑅𝑒𝑝
). For a wide 

range of Reynolds numbers 𝑔(0.4) is best predicted by 𝑔(휀) = 휀−𝛽. In e.g. Stokes drag formula 

is used multiplied by 𝑔(휀) = 휀−𝛽 [7]. If the void fraction ε is close to unity, which is true for 

dilute suspensions, the choice of 𝑔(휀) does not significantly affect the resulting drag force 

value. 

The void fraction value ε is typically evaluated based on the density of particles in a mesh 

cell (see e.g. [12], [13]). In the present model the CFD mesh is not defined, therefore the void 

fraction is evaluated based on the particles located within 10Rp distance of the current particle 

centre.  

5 PREDICTING PARTICLE COLLISIONS 

5.1 Computational model 

In order to obtain the positions, orientations, linear and angular velocities of the particles, 

the linear and angular momentum equations are solved: 

𝑚𝑝
𝑑𝑣

𝑑𝑡
=𝐹0+𝐹𝑓𝑝+𝐹𝑐

𝐼𝑝
𝑑𝜔

𝑑𝑡
=𝑀𝑓𝑝+𝑀𝑐

                                                             (17) 

where mp and Ip are particle mass and moment of inertia, v and ω are linear and angular 

velocities, Ffp and Mfp  and Fc and Mc are total force and torque acting on the particle due to 

fluid particle interaction and collisions respectively, while F0 is a sum of other forces, such as 

gravity or buoyancy. Equations (17) are discretized up to second order terms for positions and 

orientations and first order terms for velocities:  

𝑃(𝑡0+Δ𝑡)=𝑃(𝑡0)+𝑣(𝑡0)Δ𝑡+
1

2
∆𝑓𝑝𝑡2𝐹(𝑡0,𝑣0)

𝑚𝑝

𝑣(t0+Δ𝑡)=𝑣(𝑡0)+Δ𝑡
𝐹(𝑡0,𝑣0)

𝑚𝑝

                                          (18) 

where P is particle position vector,  F=F0+Fc+Ffp is total sum of forces, t0 – current time and 

Δt time-step. It is not defined at this stage whether Δt is a fluid- particle or collision time-step. 
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For the equations for particle orientation and angular velocity the position must be replaced 

with orientation, velocity by angular velocity, forces by torques and mass by moment of inertia.  

5.2 Multi-scale approach 

The multi-scale approach is implemented is a similar way to that in [7]. Authors of [7] con-

sider fluid, particle and collision time-steps, where collision time-step is used only for the par-

ticles that collide. The workflow of the method is schematically illustrated in Figure 2. The 

same method with minor modifications is implemented by the authors of this paper and is pre-

sented in Section 5.3. Fluid time-step is not applicable in this paper as the fluid flow is assumed 

steady. One way coupling is implemented from the fluid scale to fluid-particle scale, i.e. the 

effect of particle motion on the fluid flow is considered negligible in this paper. The term “par-

ticle time-step” in [7] is replaced by the authors with “fluid-particle time step” in this paper as 

it seems to be less confusing. From the description of the method [7] it follows that the collision 

time-step is applied to the particles as soon as they are identified as colliding, i.e. at the begin-

ning of the fluid-particle time-step. In the case where the ratio between collision and fluid-

particle time-steps is Δfpt/Δct ≈10000, modelling the motion of the particle using the collision 

time-step before the actual collision is an unnecessary waste of CPU time. 

 

Figure 2 Work-flow of an algorithm with fluid-particle and particle collision timesteps 

Section 5.4 presents a method where not only the collision pairs (particle-particle or particle-

wall) are identified, but also the time of collision is evaluated. This allows to advance the col-

liding particles to the moment of their collision using the non-contact forces evaluated at the 

fluid-particle time-step. Then, the collision is resolved using collision time-step and particles 

are advanced to the end of the fluid-particle time-step. Most of the fluid-particle interaction 

forces are based on the relative velocity and spin of particle and fluid. In both methods therefore 

care should be taken to recalculate these forces using the velocity, direction of motion and spin 

modified due to collision. Both methods presented in Sections 5.3 and 5.4 are called “dilute” 

because they operate under the assumption that a colliding pair does not affect any other parti-

cles. This assumption holds provided that collisions are well dispersed in space and/or time. 

8214



Anton Manoylov, Georgi Djambazov, Valdis Bojarevics and Koulis Pericleous 

This brings us to the method described in Section 5.5. It combines the benefits of time-step 

and event-driven methods. Event-driven methods are used in modelling granular gases or mo-

lecular dynamics [33], where collisions are rare and collision time is small in comparison to the 

global time-scale of the problem. The method considers identifying the whole sequence of col-

lisions. Starting from the earliest collision, all the particles are advanced to the time of collision. 

After collision is resolved using the collision time-step, the trajectories of the colliding and 

neighbouring particles are re-evaluated. New collisions might be added to or removed from the 

sequence due to the changes in trajectories. The procedure is then repeated for the next collision 

in the sequence. The work-flow of the method is illustrated in Figure 3 .  

 

Figure 3 A combined time-step and collision event driven method: fluid particle forces evaluated every fluid-

particle time-step are used for predicting particle trajectories; collisions are resolved using collision time-step; 

when particles are not colliding, the system of particles evolves from one collision event to another until the end 

of the fluid-particle time-step.. 

5.3 Linear dilute method 

Let particles positions at the time t0 at the beginning of the fluid-particle time-step be P1(t0) 

and P2(t0). Equation (18) then renders 

𝑃𝑖(𝑡0 + ∆𝑓𝑝𝑡) = 𝑃𝑖(𝑡0) + 𝑣𝑖(𝑡0)∆𝑓𝑝𝑡 +
1

2
∆𝑓𝑝𝑡2 𝐹𝑖(𝑡0)

𝑚𝑖
, 𝑖 = 1,2                 (19) 

The trajectories of the particles within the fluid-particle time-step Δfpt are then parabolic 

curves connecting Pi(t0) with Pi(t0+Δfpt). For simplicity, let us assume, that particles move along 

the straight lines connecting Pi(t0) with Pi(t0+Δfpt) as shown in Figure 4a.  

These straight lines can be parameterized for 𝑡 ∈ [𝑡0, 𝑡0 + Δ𝑓𝑝𝑡] as: 

𝑃𝑖(𝑡) = 𝑃𝑖(𝑡0) + 𝑣𝑖
∗𝑡                                                           (20) 

where vi* is given by: 

𝑣𝑖
∗ =

𝑃𝑖(𝑡0+Δfp𝑡)−𝑃𝑖(𝑡0)

Δfp𝑡
= 𝑣𝑖(𝑡0) +

1

2
Δ𝑓𝑝𝑡

𝐹𝑖(𝑡0)

𝑚𝑖
                                      (21) 
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Figure 4 (a) Predicting particle collisions using the closest distance between (a) straight line approximation of 

particle trajectories; (b) parabolic trajectories of the particles 

Note, that this linear approximation of the trajectory is different to that, obtained using first 

order terms for particle positions, as vi*(t0)=(vi(t0)+ vi(t0+Δfpt))/2. Assuming that particles are 

moving along a parameterized line defined by equation (20), the distance between them can be 

evaluated as [34]: 

𝑑(𝑡) = |𝑃1(𝑡) − 𝑃2(𝑡)| = |𝑃1(𝑡0) − 𝑃2(𝑡0) + 𝑡(𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0))|            (22) 

The “closest point of approach” as it is described in [34] is reached when d(t) is minimum, 

therefore d(t)2 is minimum:  

𝑑(𝑡)2 = 𝑡2(𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0))
2

+ 2𝑡(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0)) + (𝑃1(𝑡0) − 𝑃2(𝑡0))
2
       (23) 

where “·” denotes the dot product, and power of two denotes dot product of a vector with itself. 

Since d(t)2 is minimum, the derivative must be equal to zero:  

0 = 2
𝑑

𝑑𝑡
𝑑𝑡 = 2𝑡(𝑣1

∗(𝑡0) − 𝑣2
∗(𝑡0))

2
+ 2(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1

∗(𝑡0) − 𝑣2
∗(𝑡0))                 (24) 

which gives a solution t=tcpa 

𝑡𝑐𝑝𝑎 = −
2(𝑃1(𝑡0)−𝑃2(𝑡0))∙(𝑣1

∗(𝑡0)−𝑣2
∗(𝑡0))

|𝑣1
∗(𝑡0)−𝑣2

∗(𝑡0)|
2                                                        (25) 

The minimum distance d(tcpa) is then compared to the sum of the particle radii R1+R2. If 

d(tcpa)>R1+R2 then there is no collision. If d(tcpa)≤ R1+R2 and tcpa is within the fluid-particle 

time-step then the collision occurs. If d(tcpa)≤ R1+R2 and tcpa is out of the range of the fluid-

particle time-step, then various scenarios are possible, which are illustrated schematically in 

Figure 5. Equation (22) defines a parabola facing upwards. If therefore, tcpa<t0 then d(t) is in-

creasing monotonously within the fluid-particle time-step, and it is only necessary to check 

whether collision occurs at the beginning of the fluid-particle time-step. If however tcpa>t0+ 

Δfpt then d(t0+ Δfpt ) should be tested for collision.  

 

Figure 5 Set of conditions that the closest approach distance between particles is tested against  

This method is the easiest for implementation among those considered in this paper. How-

ever, as a consequence of approximating the trajectories of the particles by the straight lines, 

the collision predictions are not accurate. Particles moving along the parabolic trajectories may 
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collide a time different to the predicted one, or not collide at all. The collision event is ap-

proached in a series of collision time-steps. The particles tagged as colliding are then advanced 

using the collision time-step until they have collided or until the end of the fluid-particle time-

step is reached. The particle collisions are identified only at the beginning of the fluid-particle 

time-step. If collision of the particles changes their trajectories in a way that creates new non-

predicted collisions, or renders some of the predicted collisions obsolete, this will not be re-

flected in the analysis. Reasonable accuracy can then be achieved with the optimal fluid-time 

particle step chosen by the cost of computation. The method has also been found efficient for a 

dilute concentration of particles, where collisions of more than two bodies (three particles or 

two particles and a wall) are negligibly rare. 

5.4 Quartic dilute method 

This method is similar to the linear dilute method described in Section 5.3 and the workflow 

is the same as represented diagrammatically in Figure 2. The only differences are how the col-

lisions are identified and how the collision events are approached. In this method the trajectories 

as given by Equation (19) are not approximated by straight lines as shown in Figure 4a but 

treated as parabolic (Figure 4b). The squared distance between the particles is compared to the 

squared sum of the radii: 

|𝑃1(𝑡) − 𝑃2(𝑡)|2 = (R1 + 𝑅2)2                                                     (26) 

Equation (26) is a quartic equation in t:  

A4𝑡4 + 𝐴3𝑡3 + 𝐴2𝑡2 + 𝐴1𝑡 + 𝐴0 = 0                                                 (27) 

where  

𝐴4 =
1

4
(

𝐹1

𝑚1
−

𝐹2

𝑚2
) ∙ (

𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴3 = (𝑣1 − 𝑣2) ∙ (
𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴2 = (𝑣1 − 𝑣2) ∙ (𝑣1 − 𝑣2) + (𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (
𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴1 = 2(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1 − 𝑣2) 

𝐴0 = (𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑃1(𝑡0) − 𝑃2(𝑡0)) − (𝑅1 + 𝑅2)2 
 

Note that particle positions P1 and P2, velocities v1 and v2, and forces F1 and F2 are vectors, and 

“·” denotes dot product. 

Equation (27) is then solved analytically for real roots using the algorithm adapted for com-

putations [35]. The method developed in [35] is easy to implement and far less computationally 

expensive than the classic Cardano-Ferrari formulae for quartic equations. Equation (27) has 

none, or one to four real roots. If there are no real roots, the trajectories of the particles do not 

intersect. The smallest real root fitting into the range of the fluid-particle time-step 𝑡 ∈ [𝑡0, 𝑡0 +
Δ𝑓𝑝𝑡] is used as a collision time for a pair of particles. Note that conditions shown in Figure 5 

do not have to be checked, as the solution of (27), if exists, represent the moment of collision, 

rather than the shortest approach distance between trajectories as in Section 5.3 

For particle collisions with walls that are represented by planes, Equation (27) is reduced to 

quadratic equation. If walls and other geometrical features of the problem are represented by 

(parts of) spheres, cylinders or cones, then a quartic equation different to (27) must be solved, 

which is not covered in this paper.  
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This method saves computational time because the colliding particles are advanced to the 

moment of collision in one step rather than in a long series of collision time-steps. This method 

however shares the same disadvantage with the linear dilute method: particle collisions are pre-

dicted at the beginning of the fluid particle time-step and the predictions are not corrected due 

to collisions that have occurred previously. 

5.5 Quartic collision driven method 

This method is a development of the quartic dilute method (Sections 5.4) which takes into 

account the effect of the particle collision on other predicted collisions. For this purpose the 

collision that occurs first is identified. All the particles are then advanced to the moment of 

collision and the collision is resolved using the collision time-step. The new trajectories for all 

the particles are computed and the process is repeated until the end of the fluid-particle time-

step. Additional modification allows to re-evaluate only the trajectories of the neighbouring 

particles. 

The work-flow of the method is schematically illustrated in Figure 3. The collision loop 

stops or interrupts (“end of collision” block in the diagram) if one of three conditions are met: 

(a) particles have separated, (b) particles have stuck to each other (or to the wall), (c) collision 

took a certain number of time-steps (parameter) and is not yet resolved. Condition (c) is of 

particular importance if particles oscillate during the collision until the balance between attrac-

tive-adhesive and repulsive-elastic forces is achieved. If oscillation takes a long time, the colli-

sion loop must be interrupted in order to re-evaluate the fluid-particle forces and update the 

collision predictions. Condition (b) is met if a decaying oscillation between particles (or a par-

ticle and a wall) is detected. This condition is essential in the case where particles stick to the 

walls and remain there: particles that are stuck can then be removed from the computation cycle. 

6 SIMULATION RESULTS 

Earlier work by authors [2] considered the effect of the shock waves on dense agglomerates 

of particles in the context of de-agglomeration of ceramic nano-reinforcements in the produc-

tion of aluminium based metal-matrix nano-composites [1]. The effect of the choice of adhesion 

model (JKR or DMT) was studied for a two-dimensional case of 36 densely packed particles 

as well as the effects of size, material properties and characteristics of the shock wave pulse [2]. 

The developments presented in the current paper are aimed at up-scaling the time and dimen-

sions of the simulated problem. First, a test case is presented where particles are stirred using 

electro-magnetic fields (Section 6.1). In Section 6.2 the execution time is compared for the 

collision prediction methods described in Sections 5.2-5.5. 

6.1 Electro-Magnetic Stirring of SiC particles 

Test case considered in this paper simulates 216 SiC particles suspended in liquid silicon in 

the context of recycling of PV silicon kerf. The technique that is being developed in the project 

[3] aims to remove the SiC contaminants with the help of EM stirring. In brief, the solid non-

conducting SiC particles approach the crucible walls as they move with the stirring flow of 

liquid silicon. Particles stick to the walls due to adhesion force and can be easily removed from 

the solidified silicon ingot by polishing the surface. The EM stirring (both the EM part and the 

fluid flow) has been modelled using the finite volume method which is described in detail in 

[36]. The current paper concentrates on the fluid-particle interaction and particle collisions only. 

Initially, 216 particles are located in the nodes of a 6×6×6 grid as shown in Figure 6a. The 

pressure contours and velocity vectors obtained for the case of EM stirring of liquid silicon are 

shown in Figure 6b. Two distinct stirring poloidal motion patterns are indicated by arrows in 
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Figure 6b.  Figure 7 (a) and (b) present the positions of particles after 10 seconds of stirring: (a) 

particles radius is 100 µm, (b) 10 µm. Black particles are those stuck to the walls or bottom of 

the crucible. Two conclusions can be drawn from Figure 7 (a) and (b). First, that larger, i.e. 

heavier, particles of 100 µm radius (Figure 7 (a)) sink to the bottom of the crucible before they 

get carried by the stirring motion. Second, that 10 seconds of stirring is clearly not sufficient to 

push all the particles towards the walls, thus allowing them a chance to stick. In reality, silicon 

is slowly cooled down, and stirring may last for several hours, giving plenty of time for the 

particles to stick to the walls. Several hours of processing is however rather large time-scale for 

modelling. The execution time of the simulation software for 10 second of real time is presented 

in the next section. 

 

Figure 6 (a) Initial distribution of 216 particle (not to scale) located  in the nodes of a 6x6x6 mesh within a 

cuboid domain of 20.5×20.5×23 cm3 (b) fluid pressure contours and velocity vectors in a 41×41×23 cm3 cruci-

ble; quarter of the crucible is shown, assuming symmetry conditions with respect to YZ and XZ planes, large 

arrows schematically indicate the sense of poloidal motion caused by EM stirring. 

6.2 Execution time of collision prediction algorithms  

In this section the execution time for 10 second of EM stirring of 216 particles suspended in 

liquid silicon is presented. The developed simulation code has room for significant improve-

ment by utilizing multiple CPUs or a GPU card(s) using message passing interface. Using par-

allel computing would help to up-scale the model in terms of the number of particles. The 

algorithms developed in this paper helped to up-scale the model in terms of time and lateral 

dimensions. The code was tested on a single CPU of a multi-CPU machine based on Intel Xeon, 

3.4GHz with 128 GB RAM.  

The fluid-particle interaction and collision time-steps are defined as described in Sections 

1.2 and 1.3, and therefore proportionally depend on the particle size. It is expected, that pro-

vided that all the conditions are similar, including the likelihood and frequency of collisions, 

the execution time for particles of different sizes should change proportionally with the sizes. 

This was found to be the case, as shown in the bar chart of Figure 8, where execution times are 

compared for particles of 100, 10 and 1 µm radii for the three described collision prediction 

methods, and a direct single-scale method, where no predictions are used and the whole prob-

lems is modelled using collision time-step. 
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Figure 7 Particles after 10 s of stirring; black particles are those stuck to the bottom or walls of the crucible; 

(a) 100 µm (b) 10 µm; particles are not to scale. 

Using the direct method it would take ~ 4 months, ~3.5 years and ~34 years to complete the 

simulation. The execution was halted after 48h of running and the total execution time was 

estimated based on the progress made so far. Using collision prediction models the simulation 

took approximately 45 min, 9 h and 90 h for particles of 100, 10 and 1 µm radii respectively, 

which is faster than the direct method by a factor of ~3000. Note that time-step coefficients Cfp 

=0.01 (2) and Cr =0.01 (4) were used, i.e. at least 100 time-steps to resolve an average estimated 

collision event. Increasing the coefficients up to e.g. 0.1 would decrease the simulation time by 

a factor of 10. There is also room for potential improvement of the code, which includes opti-

mizing loops structure and data storage as well as using parallel computing. Main aim of this 

test case is to compare the prediction methods. 

Owing to a very dilute concentration of particles, there was no noticeable difference in the 

particle trajectories. In fact, no predictions were compromised by the presence of other particles, 

i.e. the quartic dilute method gave perfectly accurate result, which might not be the case for a 

larger number of particles, if the initial positions are more concentrated, or if the fluid flow 

causes local concentrations of particles. The quartic dilute method was always the fastest due 

to the fact that particles were advanced to the exact moment of their collision and in spite of the 

fact that solving quartic equation requires extra algebraic operations and therefore is more com-

putationally expensive. When using the collision driven method, time is lost due to re-evaluat-

ing the particles trajectories after each collision, which in general (not dilute) systems is 

expected to give a more accurate result. Linear dilute is algebraically the easiest, but time is lost 

when approaching the collision event in collision time-steps. Minor differences in the execution 

time for the prediction methods were: 45 minutes for linear dilute, 40 min for quartic and 43 

min for collision driven methods for 100 µm particles; 10 h, 8 h 30 min and 9 h 20 min respec-

tively for 10 µm particles, and 90 h, 84 h and 91 h for the smallest, 1 µm particles. The execution 

times are shown in Figure 8. Note that the execution time of a model that uses direct method 

goes far beyond the chart. 

Figure 8 demonstrates that using the direct method results in unreasonably long computa-

tional time, while all of the prediction methods take approximately the same time. The quartic 

collision driven method although somewhat more complex in implementation is an obvious 

choice as it gives accurate predictions as opposed to the “dilute” methods.  
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Figure 8 Comparison of the execution times for 10 seconds of real time simulation for linear dilute, quartic 

dilute, quartic collision driven and direct methods. Bars corresponding to the direct method case go well beyond 

the chart. 

7 CONSLUSIONS 

This paper considers CFD-DEM modelling of particles suspended in liquid metals. Dense 

agglomerates of particles are studied in detail in an earlier paper [2], while the current paper 

concentrates on the problem where concentration of particles is dilute, but the time and dimen-

sions are large in comparison to the particle size and collision time. Multiple time-scale ap-

proach was implemented and three collision prediction methods are developed. Two methods 

are based on resolving the particle collisions independently, assuming that each collision is not 

interfering with other particle. These methods are called dilute as they are applicable to the 

dilute systems of particles only. The third method combined the benefits of time-step and event 

driven modelling. This method is also applicable to dense systems of particles, although the 

efficiency has not been tested. The execution time for the three prediction methods was com-

pared and it was found that using multi-scale approach and collision prediction methods reduces 

the computational time by a factor of ~3000 for dilute systems. The differences in computa-

tional time for the three methods were minor, which makes the collision driven quartic method 

the optimal choice.  
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Abstract. The statistical distribution function introduced by Boltzmann and his kinetic equa-
tion are the fundamental basis of the kinetic theory of gases and of the basic methods of solution
of problems in the gas dynamics. At present time one of the areas of high interest in modern
physics is the plasma in fusion processes and astrophysics which requires an extension of the
kinetic description to charged particles dynamics, in particular regarding the electromagnetic
interactions. We propose a unified distribution function which includes the electromagnetic in-
teractions for charged particles in electromagnetic magnetic field and is suitable for the solution
of problems of charged particle dynamics with Boltzmann type equations and kinetic consistent
magneto gas dynamic equations.
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1 INTRODUCTION

The Boltzmann equation is the fundamental basis of the kinetic theory of gases [1]. The
distribution function and the kinetic equations were introduced by Boltzmann for the accu-
rate description of the microscopic properties and the dynamics of gases. The macroscopic
properties of gases can be extracted as the moments of the distribution function. Despite the
known difficulties in the solution of the Boltzmann equation modern developments are going
to explore its solution on powerful high performance computing systems by numerical meth-
ods. Two modern examples are Lattice Boltzmann Schemes (LBS) , which use the evolution
of the distribution function and calculate the macroscopic gas dynamic parameters as moments
of the distribution function [2] and Kinetically Consistent Difference Schemes (KCDS), which
derive the gas dynamic equation from the Boltzmann equation by integrating the velocity space
with the summational invariants [3]. The resulting equations gives a more reach physical mod-
els of the dynamics of gases in comparison to the gas dynamic equations, as the Navie-Stokes
equations, which are formulated phenomenologically [4].

Many modern important problems require not only to study the dynamics of neutral particles,
as a gas, but also to deal with the dynamics of charged particles, as clouds of electrons, or
charged interstellar matter in astrophysics or ionized gas in strong electromagnetic fields as in
plasma physics processes. In order to solve these problems one has to take into account the
electromagnetic interactions of the charged particles or charged media.

The study of the relations between the statistical gas dynamics and the electromagnetic laws
goes in the direction of trying to combine directly the kinetic equations of the charged particles
with the electromagnetic equations. One approach was done by Vlasov, who introduced the
electromagnetic forces in the kinetic equation - Boltzmann - Vlasov equations. In this approach
electromagnetic interactions are introduced phenomenologically as an external Lorentz force
[5] in the momentum equation. Few later attempts to implement the electromagnetic terms
directly in the distribution function faced the difficulty with the axial vector behaviour of the
magnetic interactions [6, 7, 8].

We propose a new approach to define an unified distribution function, which includes the
electromagnetic terms in the distribution function for the solution of the magneto gas dynamic
problem by BLS or KCDS for charged particles in an electromagnetic field.

The main goal of this paper is to formulate the statistical distribution function with included
electromagnetic terms and prove at the first step the validity of the proposed distribution func-
tion by the reconstruction of the kinetic consistent magneto gas dynamic equations including
the equation of the evolution of the magnetic field in the ideal case for charged particles.

2 THEORETICAL ISSUES

The goal of the present study is the definition of the united distribution function describing
the dynamics of the charged particles (electron cloud, ionised gas), including conditions with
the external electromagnetic field.

2.1 Distribution Function of Gas Dynamic Processes

The kinetic theory describes the gas dynamics by the Boltzmann differential equation through
the evolution of the distribution function f (x, ξ, t) [1]:

∂f (x, ξ, t)

∂t
+ ξ · ∇f (x, ξ, t) = C (f) , (1)
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where: C (f) is a nonlinear integral operator which
describes the collisions of particles.

The computational interest in the kinetic formulations of gas dynamics is high due to the
linearity of the differential operator on the left side of Eq. (1). The nonlinearity is confined by
the collision term, which is generally local in x and t.

Another important feature for numerical methods is that the collision integral vanishes in the
equilibrium state when the local Boltzmann distribution function is Maxwellian:

fM =
ρm1/2

(2πkT )3/2
exp

{
− m

2kT
(ξ − u)2

}
(2)

The dynamic of the gas could be defined as the time evolution of the Maxwellian distribu-
tion function with the conditions that the collision processes is occurred during a characteristic
time at the end of which the distribution function became Maxwellian [9]. The macroscopic
observables such as density, momentum, energy flux as a function of x and t are defined from
the moments of the distribution function with respect to the particle velocity.

2.2 Electromagnetic Interactions

Earlier investigations [11] show that the electromagnetic fields do not destroy the validity of
the distribution function and Boltzmann equation for the electrons cloud and open the way to
the implementation of the electromagnetic processes terms in the distribution function.

From the kinetic relations, in addition to the gas kinetic motions, the motions of the charged
particles is defined through nature of the electric and magnetic fields and the forces acting on
the charged particles.

The electric field has the polar vector behaviour and the corresponding velocity of charged
particles follows the direction of the electric field and can be considered as simple drift of the
charged particles in the direction of the electric field.

The magnetic field has the axial vector behaviour and acts in a different way respect to other
fields. As well known the motions of the charged particles in magnetic field affects only the
direction of the velocity and the motion of the charged particle has a circular trajectory in the
plane perpendicular to the magnetic field. The theory of complex variables is ideally suited
to solve problems involving two dimensional circulation and in many ways complex variable
theory is simpler than real variable theory and much more powerful [12].

As an example let’s consider the motions of the charged particle in the uniform magnetic
field [13]. The magnetic filed is directed along the z - axis. The equation of the motions is:

d

dt
p =

e

c
v ×B (3)

can be rewritten in term of momentum:

p =
Ev

c2
(4)

where: E is the energy of particle, which in the magnetic field is constant,

E

c2
dv

dt
=
e

c
v ×B (5)
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Or in the velocity components:

d

dt
vx = ωvy,

d

dt
vy = −ωx,

d

dt
vz = 0 (6)

where: ω = ecB
E

Multiplying first eq. of 6 on i and summing with second eq. of 6

d

dt
(vx + ivy) = −iω(vx + vy) (7)

from which:

vx + ivy = v0te
i(ωt+α) (8)

where the v0t =
√
v2x + v2y and α defined by the initial conditions.

This relation means that v0t is the velocity of the charged particle in plane xy, constant during
the motions in the magnetic field.

2.3 Proposed Distribution Function

Following the above considerations the contribution to the velocity as result of the electro-
magnetic interaction can be defined as a complex term and the important that the magnetic
interaction term in the conditions when the Larmor radius is smaller in comparison to the total
volume is part of the statistical kinetic process, the charged particles don’t changing the energy,
momentum, but just the direction.

Using the above definitions we can obtain the local complex Maxwellian distribution func-
tion of charged particles with drift velocity u including the electric field interaction contribution
and statistical term as complex velocity including the magnetic interaction contribution with the
characteristic velocity is chosen as Alfven velocity [14] .

fM =
ρm1/2

(2πkT )3/2
exp

{
− m

2kT

∣∣∣∣(ξ − u)− i B
√
µρ

∣∣∣∣2
}
, (9)

where:
ρ is the density,
ξ is the particle velocity
u is the drift velocity,
T is temperature,
µ is the magnetic permeability, generally is a function of ρ.

2.4 The Macroscopic Magneto Gas Dynamic Parameters

The macroscopic hydrodynamic and electromagnetic observables can be obtained as a mo-
ments of the proposed distribution function respectively as the real and imaginary part of the
integral along the line L parallel to the real axis and shifted by iB/

√
µρ in the imaginary axis

direction.

ρ =

∫
L

mfMd
3ξ (10)
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u =
1

ρ

∫
L

mξfMd
3ξ (11)

E =

∫
L

1

2
mξ2fMd

3ξ (12)

B = − 1
√
µρ

∫
L

mξ∗fMd
3ξ (13)

Thus, by using the proposed distribution function can calculate the mass, momentum, energy
fluxes and most of the electromagnetic observables are calculated directly, i.e. one does not
have to evaluate the hydrodynamic and magnetic force components separately or differently, as
it will be shown below.

3 RECONSTRUCTION OF THE IDEAL MAGNETO GAS DYNAMICS SYSTEM OF
EQUATIONS

In order to provide the validity of the proposed statistical complex distribution function,
we show that the equilibrium condition reproduces correctly the ideal magneto gas dynamics
system of equations.

The magneto gas dynamics system of equations is obtained by the integration of Eq. (1)
with vanishing collision integral along the line L with respect to the particle velocity ξ. The
summational invariants φ(ξ) =

(
m,mξ, 1

2
mξ2

)
and φ(ξ) = mξ∗ are used, respectively, for the

gas dynamics observables and the magnetic induction:

∫
L

φ (ξ)
∂

∂t
fM(x, ξ, t)dξ

+

∫
L

φ (ξ) div(ξfM(x, ξ, t))dξ = 0 (14)

The continuity equation for the density is obtained from the real part of Eq. (14) with the sum-
mational invariant φ (ξ) = m:

< :

∫
L

m
∂

∂t
fM(x, ξ, t)dξ

+

∫
L

m
∂

∂xi
(ξifM(x, ξ, t))dξ = 0; (15)

After substituting the integration variable and inserting the proposed distribution function, we
obtain:

∂

∂t

∫ +∞

−∞
m

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

+
∂

∂xi

∫ +∞

−∞
m (ξ′i + ui)

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

= 0 (16)
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Finally from the evaluation of the integrals in Eq. (16) we obtain:

∂ρ

∂t
+
∂ρui
∂xi

= 0. (17)

Similarly, using the summational invariants φ (ξ) = (mξ, 1
2
mξ2) respectively, we obtain from (14)

the conservation laws for the momentum and energy, including the magnetic field contribution:

∂

∂t
ρui +

∂

∂xk

[(
p+

B2

2µ

)
δik + ρuiuk −

BiBk

µ

]
= 0 (18)

∂

∂t
E +

∂

∂xi

[
ui

(
E + p+

B2

2µ

)
− Bi

µ

∑
k

ukBk

]
= 0 (19)

The total energy density includes thermal, kinetic and magnetic energies:

E =
3

2
p+

1

2
ρu2 +

B2

2µ
(20)

The magnetic induction evolution equation is obtained from the imaginary part of Eq. (14) with
the summation invariant φ (ξ) = (mξ∗):

= :

∫
L

mξ∗i
∂

∂t
fM(x, ξ, t)dξ +

∫
L

mξ∗i
∂

∂xk
(ξkfM(x, ξ, t))dξ

= 0; (21)

After substituting the integration variable and inserting the distribution function, we get the
equation for the imaginary part as:

− ∂

∂t

∫ +∞

−∞
m

Bi√
µρ

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

− ∂

∂xk

∫ +∞

−∞

(
m

1
√
µρ

(ξ′kBi − ξ′iBk + ukBi − uiBk)

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

})
dξ′ = 0 (22)

The evaluation of the Eq. 22 gives:

∂

∂t
Bi +

∂

∂xk
(ukBi − uiBk) = 0 (23)

For the compressible media, we use the linear approximation of the magnetic permeability:

µ =
µv
ρ

(24)

where µv is a constant representing the magnetic permeability per volume.
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4 CONCLUSIONS

We propose the novel complex Maxwellian distribution function which includes electro-
magnetic interactions in a natural way and gives the possibility to reconstruct the macroscopic
observables and magneto gas dynamic equations through moments of the distribution function.

This approach gives the possibility to use the proposed distribution function for the solution
of the magneto gas dynamic problems by kinetic consistent methods and lattice Boltzmann
methods, which are now considered as the most perspective ones for the calculation on modern
parallel computing systems.

The computational kinetic schemes with the use of the proposed complex distribution func-
tion provide a methods derive the full magneto gas dynamic equations for the charged particles
in a more physical way.
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Abstract. An explicit Total Lagrangian mixed momentum/strains formulation [1–5], in the
form of a system of first order conservation laws, has been recently proposed to overcome the
shortcomings posed by the traditional second order displacement-based formulation, namely:
(1) bending and volumetric locking difficulties; (2) hydrostatic pressure fluctuations; and (3)
reduced order of convergence for derived variables. Following the work of Bonet and Ku-
lasegaram [6, 7], the main objective of this paper is the adaptation of Corrected Smooth Parti-
cle Hydrodynamics (CSPH) in the context of Total Lagrangian mixed formulation. Appropriate
nodally conservative Jameson-Schmidt-Turkel (JST) stabilisation is introduced by taking ad-
vantage of the conservation laws. This mixed linear momentum-deformation gradient technique
performs extremely well in nearly incompressible bending dominated scenarios [1, 2] without
the appearance of spurious pressure oscillations. Additionally, as both linear momentum and
deformation gradient are used as primary variables of the system, equal order of approximation
should be achieved in both fields. A series of numerical examples are carried out to assess the
applicability and robustness of the proposed algorithm.

8231



G. Greto, S. Kulasegaram, C. H. Lee, A. J. Gil, and J. Bonet

1 INTRODUCTION

Dynamic explicit displacement-based finite element codes based on low order finite element
technology are commonly used for complex numerical simulations in the aerospace, automo-
tive, biomedical, defence and manufacturing fields. However, difficulties arise in modelling
high speed impacts or materials capable of enduring large finite deformations before failing.
Most computational codes prefer to employ the 8-noded underintegrated hexahedral element to
model solid components. Many practical applications (i.e. crashworthiness and drop-impact
modelling), however, experience extremely large solid deformations accompanied by severe
mesh distortion. This may lead to poorly shaped elements, unless some form of adaptive
remeshing is applied.

From the viewpoint of spatial discretisation, the standard displacement based formulation
with low order elements is known to experience locking behaviour in nearly-incompressible,
bending dominated scenarios. It is also known that the use of linear interpolation within a
finite element leads to second order convergence for the primary variables, but one order less
for derived variables. From the time discretisation point of view, the Newmark method has a
tendency to introduce high frequency noise in the solution field, especially in the vicinity of
sharp spatial gradients.

In order to address these issues, a new mixed-formulation for Total Lagrangian fast solid
dynamics has recently been proposed [4]. The new mixed-formulation consists in a system of
first order conservation laws, formally akin to Computational Fluid Dynamics (CFD) models,
with linear momentum and deformation gradient being the unknown conservation variables.
In [2], the technique was applied in the framework of Finite Volume method, incorporating a
Jameson-Schmidt-Turkel (JST) stabilising contribution [8]. Adding JST has the dual aim of
(a) accurately representing potential discontinuities in the solution, and (b) introducing arti-
ficial dissipation to it where continuous. In [3], stabilisation is achieved through the use of
Petrov-Galerkin algorithm. All these attempts have yielded promising results in two- and three-
dimensional applications, with velocities (or displacements) and stresses (or strains) achieving
the same degree of accuracy.

The main goal of this paper is the introduction of a stabilised Corrected Smooth Particle Hy-
drodynamics (CSPH) methodology, tailor-made for the aforementioned mixed formulation. The
adoption of a system of first order conservation laws allows CFD techniques to be introduced
within the context of particle methods for solid mechanics, in the form of an adapted nodally
conservative JST stabilisation [2]. Incorporation of JST stabilisation will be useful to provide
artificial (numerical) dissipation and shock-capturing capabilities. In particular, the second or-
der (harmonic) and fourth order (biharmonic) operators employed in the JST stabilisation can be
readily obtained by closed-form differentiation of the interpolating kernel functions. A quintic
kernel approximation [6] is suitably used, due to the presence of the biharmonic JST operator.

This paper is structured as follows: section 2 outlines the theoretical framework of the p-F
mixed formulation system of equations; section 3 focuses on SPH spatial discretisation of the
governing equations. After that, section 4 describes the Total Variation Diminishing Runge-
Kutta (TVD-RK) time integration method, used in the numerical computations. A series a
numerical examples in section 5 assesses the feasibility and robustness of the proposed formu-
lation. Concluding remarks are summarised in section 6.
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2 p-F MIXED METHODOLOGY IN REVERSIBLE ELASTODYNAMICS

A deformable continuum body, of initial shape and position described by X ∈ V ⊂ R3,
finds itself in a current (or deformed) configuration x ∈ V (t) ⊂ R3 at the end of a motion Φ
that links each material particle in X to its current position x at time instant t, x = Φ(X, t),
see fig. 1a.

Neglecting dissipative effects, the dynamics of motion Φ can be described by a p-F mixed
formulation system of first order conservation laws as [1, 2]:

∂p

∂t
−∇0 · P (F ) = ρ0b

∂F

∂t
−∇0 ·

(
1

ρ0

p⊗ I

)
= 0

(1)

Here, p (= ρ0v) is the linear momentum per unit of undeformed volume, ρ0 is the material
density, v represents the velocity field, P is the first Piola-Kirchhoff stress tensor, b is the body
force per unit mass, F is the deformation gradient and I is the identity matrix. The notation∇0

denotes the material gradient operator (in undeformed space), where [∇0]I ≡ ∂
∂XI

. The first
equation in (1) represents the conservation of linear momentum, while the second equation in
(1) is a conservation law for the deformation gradient F . The above laws (1) can be written in
a more compact form:

∂U
∂t

+
∂F I

∂XI

= S ∀I = 1, 2, 3 (2)

whereU is the vector of conservation variables,F I is the flux vector in the material direction
I = 1, 2, 3 and S is the source term described by:

U =

[
p
F

]
FN = F INI =

[
−PN

− 1
ρ0

p⊗N

]
S =

[
ρ0b
0

]
(3)

For closure of the above system (1), a material constitutive law that describes the way in
which P depends on F has to be introduced. For this purpose, a standard nearly incompressible
hyperelastic NeoHookean model will be used below. The path-independent behaviour of a
hyperelastic material enables the direct extraction of the first Piola-Kirchhoff stress P from a
strain energy functional ψ(F , J) as

P =
∂ψ

∂F
(4)

where J is the Jacobian of the deformation gradient, J = detF .
It is useful to decompose the strain energy functional ψ into the summation of a volumetric

and a deviatoric component:

ψ = ψvol + ψdev (5)

where

ψvol =
1

2
κ(J − 1)2 ψdev =

1

2
µ
(
J
−2/3
F (F : F )− 3

)
(6)

in (6), κ is the bulk modulus of the material, and µ is its shear modulus.
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The first Piola-Kirchhoff stress tensor P can then also be decomposed into the summation
of deviatoric, Pdev, and volumetric, Pvol , contributions:

P = Pdev + Pvol Pvol = pH Pdev = µJ−2/3

(
F − 1

3
(F : F ) F−T

)
(7)

in (7), p = κ(J −1) is the hydrostatic pressure, and H = JF−T is the cofactor matrix of F .

3 SPATIAL DISCRETISATION

In the present work, system (1) will be spatially discretised using the SPH method. Being
a mesh-free technique, SPH can be employed effectively in the simulation of high-velocity
impacts and high strain-rate deformations. Another advantage of SPH is the locality of the
spatial discretisation, with consequent savings in computational power [9]. In a discretised
domain, the SPH interpolation at the position x of a quantity φ(x), denoted here as 〈φ(x)〉, can
be approximated by a summation over all neighbouring particles xb:

〈φ(x)〉 ≈
∑
b

Vb φ(xb) W (xb − x, h) (8)

where h is the smoothing length, and W (x − x′, h) is usually a polynomial function with
compact support (W vanishes for ‖x − x′‖L2 ≥ 2h) for which the following properties are
valid: ∫

W (r, h) dr = 1; lim
h→0

W (r, h)→ δ(r)

Calculation of the first derivative of a function φ in SPH involves the derivation of the kernel
function W :

∇φ(x) =
∑
b

Vb φ(xb) ∇W (xb − x, h) (9)

A typical SPH kernel function is presented in fig. 1b.
The SPH interpolation technique described above performs poorly at and near boundary

regions. During the spatial discretisation, the border kernel supports are rendered incomplete
by boundary edges, leading to kernel interpolations that are not partitions of unity. To improve
the accuracy of the SPH interpolation near boundaries, and to exactly preserve momentum,
corrections must be introduced on both the kernel and the kernel gradient [6,7,10]. The resulting
corrected SPH (CSPH) formulation greatly enhances the accuracy and the consistency of the
discretisation.

3.1 CSPH mixed formulation equations

The mixed p-F system described by equation (1) will be discretised in space using the CSPH
particle method with added dissipation from the JST technique (p-F JST-CSPH scheme). To
achieve this, and following the work of Bonet and co-authors [6, 7, 10, 11], the weak state-
ment for the linear momentum evolution must be obtained through the use of work-conjugate
principles [1] and integration by parts:∫

V

δv · ∂p
∂t
dV =

∫
V

δv · ρ0b dV +

∫
∂V

δv · tBdA−
∫
V

P :∇0δv dV (10)
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(a) (b)

Figure 1: (1a): The motion Φ of a continuous solid from a reference configuration X to the
current configuration x. (1b): Section of a typical, bell shaped SPH kernel function. The

contribution of neighbouring particle in x′ to the computed property at target position x is
weighted by the value of its kernel at distance ‖x′− x‖.

Upon application of the particle integration on the above expression (10), and using the
kernel approximation∇0δv(X) =

∑
b∈Λb

X
Vb δvb ⊗∇0Wb(X) to express the arbitrary virtual

velocity field δv, one obtains:

dpa
dt

= ρ0ba +
Aa
Va

tBa +
∑
b∈Λb

a

Vb (Pb + Pa) ∇̃0Wb(Xa) (11)

where Vb is the volume fraction assigned to the particle in xb and Wb(X) is the kernel
function value there.

Following References [6,7,9–11], the first Piola-Kirchhoff stress tensors {Pa,Pb} are further
approximated by using values of {Fa,Fb} estimated directly at the particles. In (11), corrections
are introduced on the kernel gradient to yield ∇̃0Wb(Xa), ensuring the correct evaluation of a
gradient of a general linear function [6, 10]. However, the above semi-discrete formulation still
suffers from the appearance of accumulated numerical instabilities over a long term response.
To overcome this, in contrast to the dissipative mechanism introduced by Monaghan [9] through
viscous fluxes, here a nodally conservative JST stabilisation D(pa) will be incorporated into
(11), mirroring CFD techniques [2]:

dpa
dt

= ρ0ba +
Aa
Va

tBa +
∑
b∈Λb

a

Vb (Pb + Pa) ∇̃0Wb(Xa) +D(pa) (12)

The nodally conservative JST stabilisation is additively decomposed into a second order
(harmonic) operatorD2(pa) and a fourth order (biharmonic) operatorD4(pa):

D(pa) = D2(pa) +D4(pa) (13)

where

8235



G. Greto, S. Kulasegaram, C. H. Lee, A. J. Gil, and J. Bonet

D2(pa) =κ(2)cp hmin

∑
b∈Λb

a

Vb (pb − pa) ∇̃2
0Wb(Xa) (14)

D4(pa) =− κ(4)cp h
3
min

∑
b∈Λb

a

Vb
(
∇2

0pb −∇2
0pa
)
∇̃2

0Wb(Xa) (15)

In (14) and (15), cp is the pressure wave speed, hmin is the particle spacing, κ(2) and κ(4) are
user-defined parameters and ∇̃2

0 represents the corrected Laplacian operator [6].
In regard to the fibre map evolution (1b), the application of particle collocation method [6]

directly on (1b), along with the use of kernel approximation W , leads to:

dFa
dt

=∇0v
∣∣
a
≈
∑
b∈Λb

a

Vb
ρ0

(pb − pa)⊗ ∇̃0Wb(Xa) (16)

Finally, the set of stabilised particle equations (12) and (16) can then be explicitly integrated
from time step tn to tn+1. As described in [1], the scheme is suitably modified to guarantee the
conservation of angular momentum.

4 TEMPORAL DISCRETISATION

As the resulting set of semi-discrete equations (12) and (16) is not simple, it will be more
appropriate to use an explicit type of time integrator. The spatial discretisation discussed above
yields a system of ordinary differential equations of the form:

dUa
dt

=Ra(Ua, t) (17)

whereRa(Ua, t) represents the right-hand-side of SPH spatial discretisation associated with
particle a. To advance (17) in time from tn to tn+1, an explicit, two-stage TVD-RK time inte-
grator is used: 

U∗a = Una + ∆tRa(Una , tn)

U∗∗a = U∗a + ∆tRa(U∗a, tn+1)

Un+1
a =

1

2
(Una + U∗∗a )

(18)

The explicit TVD-RK has been adopted here due to its excellent entropy conserving proper-
ties [1, 2]. The time step ∆t = tn+1 − tn is calculated based on the Courant-Friedrichs-Lewy
number αCFL, by means of ∆t = αCFL (h /cp,max) where cp,max is the maximum p-wave speed
and h is the smoothing length.

Along with p and F , the geometry, x, is also advanced in time using the same time integrator
in a monolithic manner.

5 APPLICATIONS

A series of benchmark examples are tested in order to assess the applicability and effec-
tiveness of the p-F JST-CSPH mixed algorithm over the Total Lagrangian CSPH displacement
based formulation [6, 7, 10].
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1-D rod in tension A 1D bar is clamped on one end and left free at the other, where is
given an initial velocity of 5m/s. The chosen material is linearly elastic, with elastic modulus
E = 200GPa and density ρ = 8000 kg/m3. The bar is discretised in space using 200 uniformly
distributed particles. Aim of this example is to perform a preliminary assessment of the method
on a simple problem.

Fig. 2a shows the velocity history at the free tip, while fig. 2b displays the tip displacement.
The JST term here has a decisive effect towards achieving a more accurate solution. The Total
Lagrangian setting ensures that the simulation does not suffer from tensile instability, a major
issue in solid mechanics SPH simulations (see [7, 12, 13]).

(a) Velocity plot at tip particle with (red) and
without (blue) JST dissipation.

(b) Displacement plot at tip particle with (red)
and without (blue) JST dissipation.

Figure 2: 1d tensile test, p-F CSPH based model.

Bending column A bottom end clamp is imposed at t = 0 s on a 3D column of length 6m,
with unit cross section, initially travelling at constant side velocity v = 10m/s. The column
is made of a rubbery material modelled as nearly incompressible NeoHookean, with properties
E = 17MPa, ν = 0.45, ρ = 1100 kg/m3. The spatial discretisation is obtained through the
CSPH-JST p-F model, using a total of 3969 particles, while a value of αCFL = 0.3 has been
chosen to control the time step size. Fig. 3 demonstrates the performance of the model in a
bending dominated scenario.

Figure 3: Bending simulation, JST-CSPH p-F based model. NeoHookean material
(E = 17MPa, ν = 0.49, ρ = 1100 kg/m3), 3969 particles. Pressure plot captured on a cross

section of the column at different simulation times.

Twisting column A column with the same geometric and material properties as the one in the
previous example is now subjected to a sinusoidal angular velocity of ω = 100 sin

(
πz
2L

)
z
‖z‖ rad/s
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and its bottom is clamped. A comparison between fig. 4a (standard CSPH) and fig. 4b (p-F
JST-CSPH) illustrates the robustness of the mixed Total Lagrangian method: while the simu-
lation in fig. 4a fails after a few time steps, the one in fig. 4b accurately captures the structure
behaviour.

(a) standard CSPH model (b) JST-CSPH p-F mixed formulation model

Figure 4: Twisting column, NeoHookean material (E = 17MPa, ν = 0.49,
ρ = 1100 kg/m3), 3969 particles. Pressure plot captured at different simulation times.

Punch test A rectangular region of 3 cm × 1 cm is punched with a constant vertical velocity
of −10m/s on one-third of the top surface. The billet is made of a NeoHookean hyperelastic
material with parameters E = 1MPa, ν = 0.4, ρ = 1000 kg/m3. The particle discretisation
has been realised with 225 uniformly distributed particles; the CFL constant has been chosen as
αCFL = 0.3. As reported in [11], the standard CSPH method [6,7,10] is not capable of solving
this problem, which involves extremely large distortions. This deficiency can be alleviated using
the proposed JST-CSPH p-F mixed algorithm, as demonstrated in fig. 5.

Figure 5: Pressure contour plot for a punch test on a rectangular, 2D billet, captured at various
instants of simulation times. Material properties: NeoHookean hyperelastic material,

E = 1MPa, ν = 0.4, ρ = 1000 kg/m3. JST-CSPH p-F mixed formulation model, 225
particles employed.

Tensile cube A 3-D cube of unit side length is constrained at the bottom face and left free
on the other sides. The cube is made of NeoHookean material (E = 21GPa, ν = 0.3, ρ =
7000 kg/m3) and is discretised using 11 particles per edge. It is subjected to a prescribed initial
sinusoidal velocity field of w = 500 sin

(
πz
2

)
z
‖z‖ m/s. In the top row of images in fig. 6, JST
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dissipation has not been added to the solution, and chequerboard pressure behaviour develops as
the simulation advances in time. To the contrary, as can be observed in the bottom row of fig. 6,
the use of JST-CSPH p-F mixed formulation with κ(4) = 1/1024 eliminates the appearance of
non-physical pressure fluctuations in near incompressibility regime, stabilising the solution.

Figure 6: Tensile cube, (top) CSPH p-F mixed formulation, (bottom) JST-CSPH p-F mixed
formulation. NeoHookean material (E = 21GPa, ν = 0.3, ρ = 7000 kg/m3), 1331 particles.

Pressure plot captured at different simulation times.

6 CONCLUSIONS

In this work, a stabilised Total Lagrangian mixed formulation p-F JST-CSPH algorithm is
presented for the solution of large strain solid dynamics problems. The methodology is based
on a system of first order conservation laws, where the linear momentum p and the deformation
gradient F are regarded as the primary variables. The well known SPH particle formulation
has been modified to accommodate corrections to the kernel interpolating function, resulting
in improved behaviour at or near the boundaries of the problem. A nodally conservative JST
stabilisation is incorporated into the CSPH p-F mixed formulation algorithm, taking advan-
tage of the conservation laws. The obtained spatial discretisation is combined with a two step
TVD Runge-Kutta algorithm for the time integration. Once the numerical model has been so
defined, results from numerical simulations of benchmark problems are presented in order to
demonstrate the applicability and robustness of the proposed methodology.
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tional Research Network for Advanced Engineering and Materials, United Kingdom.

REFERENCES

[1] A.J. Gil, C.H. Lee, J. Bonet and R. Ortigosa. A first order hyperbolic framework for large
strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly in-
compressible and truly incompressible elasticity. CMAME, 300, 146–181, 2016.

8239



G. Greto, S. Kulasegaram, C. H. Lee, A. J. Gil, and J. Bonet

[2] M. Aguirre, A.J. Gil, J. Bonet, A.A. Carreño. A vertex centred Finite Volume Jameson-
Schmidt-Turkel algorithm for a mixed conservation formulation in solid dynamics. JCP,
259, 672–699, 2014.

[3] C.H. Lee, A.J. Gil, J. Bonet. Development of a stabilised Petrov-Galerkin formulation for
conservation laws formulation in Lagrangian fast solid dynamics. CMAME, 268, 40–64,
2014.

[4] C.H. Lee, A.J. Gil and J. Bonet. Development of a cell centred upwind finite volume
algorithm for a new conservation law formulation in structural dynamics. C&S, 118, 13–
38, 2013.

[5] I.A. Karim, C.H. Lee, A.J. Gil and J. Bonet. A Two-Step Taylor Galerkin formulation for
fast dynamics. EC, 31, 366–387, 2014.

[6] J. Bonet, S. Kulasegaram. Correction and stabilization of smooth particle hydrodynamics
methods with applications in metal forming simulations. IJNME, 47, 1189–1214, 2000.

[7] J. Bonet, S. Kulasegaram. Remarks on tension instability of Eulerian and Lagrangian Cor-
rected Smooth Particle Hydrodynamics (CSPH) methods. IJNME, 52, 1203–1220, 2001.

[8] A. Jameson, W.Schmidt, E. Turkel. Numerical Solutions of the Euler Equations by Fi-
nite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA 14th Fluid and
Plasma Dynamic Conference, AIAA paper 81-1259, Palo Alto, USA, June 1981.

[9] J.J. Monaghan. Smoothed particle hydrodynamics. ARA&A, 30, 543–574, 1992.

[10] J. Bonet, T.-S.L. Lok. Variational and momentum preservation aspects of Smooth Particle
Hydrodynamic formulations. CMAME, 180, 97–115, 1999.

[11] Y. Vidal, J. Bonet and A. Huerta. Stabilized updated Lagrangian corrected SPH for explicit
dynamic problems. IJNME, 69, 2687–2710, 2007.

[12] L.D. Libersky, A.G. Petschek, T.C. Carney, J.R. Hipp, F.A. Allahdadi. High strain La-
grangian hydrodynamics. JCP, 109, 67–75, 1993.

[13] J.W. Swegle, D.L. Hicks, S.W. Attaway. Smoothed particle hydrodynamics stability anal-
ysis. JCP, 116, 123–134, 1995.

8240



ECCOMAS Congress 2016 

VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10 June 2016 

BLOOD FLOW SIMULATION USING SMOOTHED PARTICLE 

HYDRODYNAMICS 

Mohammed K. AL-SAAD
1
, Sivakumar Kulasegaram

2
 and Stephane P.A. Bordas

2 

1
School of Engineering, Cardiff University  

Cardiff University, Queen’s Buildings, the Parade, CARDIFF 

CF24AA, Wales, UK 
Al-SaadMK@Cardiff.ac.uk 

2
School of Engineering, Cardiff University  

Cardiff University, Queen’s Buildings, the Parade, CARDIFF 

CF24AA, Wales, UK 

KulasegaramS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu, 

Keywords: smooth particle hydrodynamics (SPH); blood flow; thrombus; arteries 

ABSTRACT: To understand the characteristics of blood flow, it is important to identify key 

parameters that influence the flow of blood. The characterisation of blood flow will also 

enable us to understand the flow parameters associated with physiological conditions such as 

atherosclerosis. Thrombosis plays a crucial role in atherosclerosis and it also helps to stop 

bleeding when a blood vessel is injured. This article focuses on using a meshless particle-

based Lagrangian numerical technique, named the smoothed particles hydrodynamic (SPH) 

method, to study the flow behaviour of blood and to explore the flow conditions that induce 

the formation of thrombus in a blood vessel. Due to its simplicity and effectiveness, the SPH 

method is employed here to simulate the process of thrombogenesis for various blood flow 

parameters. In the present SPH simulation, blood is modelled by particles that have the 

characteristics of plasma and of platelets. To simulate the coagulation of platelets which 

forms thrombus, the adhesion and aggregation processes of the platelets are modelled by an 

effective inter-particle attraction force model. With these models, the motion of platelets in 

flowing blood, and their adhesion and aggregation are effectively coupled with viscous blood 

flow. In this study, the adhesion and aggregation of blood particles are analysed on a 

(straight vessel) under various velocities of blood scenarios. The results are compared with 

experimental results, and a good agreement is found between the simulated and experimental 

results.  
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1 INTRODUCTION 

A thrombus is considered to be one of the most important causes of many diseases in 

human body. On the other hand, A blood clot anchored to a damaged vascular wall can stop 

bleeding or it can prevent atherosclerosis in arteries. The danger is that a thrombus can affect 

the blood flow in the vessels and this can cause potentially deadly accidents, such as cardiac 

infarction (or heart attack) or ischemic stroke when the damage occurs in the coronary or the 

carotid arteries, respectively[1, 2]. The formation of a thrombus depends on platelet flow; for 

example, the transport to denuded subendothelium, formation of membrane tethers, adhesion 

to the subendothelium, and aggregation[3]. Many experimental studies have provided 

information on the biochemical effects of fluid forces on thrombogenesis. In recent years, due 

to the availability of vast computational power, research on computer simulation of 

thrombosis has become a field of deep interest. Although fluids can be simulated in either the 

Eulerian or Lagrangian method, the Lagrangian method is considered to be more suitable for 

this type of simulation due to their obvious advantages in tracking movement of particles 

similar to platelets[4]. The purpose of this study is to analyse flow parameters that influence 

the formation of thrombosis inside arteries. A Lagrangian smoothed particles hydrodynamics 

(SPH) is used for numerical simulations of the blood flow consisting plasma and platelets. 

2 NUMERICAL METHODOLOGY 

The governing equations for solving incompressible or weakly compressible isothermal 

fluid flow using SPH are mass and momentum conservation equations given by, 

1

𝜌

𝐷𝜌

𝐷𝑡
+ ∇. 𝐯 = 0       (1) 

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇p + 𝑣∇2𝐯 + 𝐅  (2) 

where 𝜌,  𝑡,  𝑣,  𝐯, and  p represent the density, time, kinematic viscosity, velocity and 

pressure of the fluid particles and, 𝐅 represents the external force acting on fluid particles. The 

fluid pressure for weakly compressible SPH formulation  is obtained by an equation of state 

as presented in [5]. The numerical procedure to calculate fluid velocity is derived from the 

momentum equation (2) as, 

𝐯𝑛+1 = 𝐯𝑛 + (−
1

𝜌
∇𝑃 + 𝑣∇2𝐯𝑛  + 𝐅) ∆𝑡       (3) 

Where superscript 𝑛 and 𝑛 + 1 refer to current and next time steps, respectively, and ∆𝑡 is the 

numerical time step. The position and density of the fluid can be updated respectively at every 

time step by, 

        𝐱𝑛+1 = 𝐱 + 𝐯𝑛+1∆𝑡,  (4) 

And (from the continuity equation (1)), 

 𝜌𝑛+1 = 𝜌𝑛 − 𝜌𝑛(∇. 𝐯𝑛+1)∆𝑡.     (5) 

The pressure is then estimated from the updated density. 
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3 MODELLING PLATELET MOTION 

The platelets tend to adhere and aggregate when the blood vessel is damaged. This can lead 

to formation of a primary thrombus. Inside the primary thrombus the neighbour platelets link 

together, which are then bound by vWF fibrinogen in plasma and collagen in the sub-

endothelial tissue [6]. This process takes place by making a link between neighbouring 

platelets and bound by vWF fibrinogen in plasma and collagen in the sub-endothelial tissue. 

To numerically model such platelet motion, an algorithm based on a penalty or spring force 

mechanism [7] is adopted. This model dictates the interactions between platelets and plasma 

inside the blood vessel. When the platelets are within a distance 𝑑𝑎𝑑 from the damaged 

area, the platelets are attracted towards the damaged wall by an adhesive force given by eq. 

(6). The platelets adhering to the wall are then activated and attract other platelets which are 

within a distance of 𝑑𝑎𝑔 from them. This attractive force is called an aggregation force which 

is given by eq. (7). The aggregation force takes the same form as that of the adhesive force 

but has a different spring constant. 

𝑭𝑎𝑑 = {
𝐾𝑎𝑑(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑑)

  0  (|𝒓𝑖𝑗| > 𝑑𝑎𝑑)
(6) 

 𝑭𝑎𝑔 = {
𝐾𝑎𝑔(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑔)

  0  (|𝒓𝑖𝑗| > 𝑑𝑎𝑔)
  (7) 

In the above equations 𝑭𝑎𝑑, 𝑭𝑎𝑔 are the adhesive and aggregate forces and 𝐾𝑎𝑑, 𝐾𝑎𝑔 are the 

corresponding spring constants. The 𝒓𝑖𝑗 here is distance between activated platelet and vessel 

wall (or other non-activated platelets), 𝑟𝑜 is the original or natural length of the spring and  𝒏𝑖𝑗 

is a unit vector linking platelet and damaged wall (or linking activated platelet and other 

surrounding platelets). These two forces are introduced in equation (2) for platelet particles 

which are influenced by adhesion and aggregation.  

4 BLOOD FLOW MODEL 

In this work, the blood flow simulations were performed inside a straight blood vessel with 

velocity range of blood flow between100-700 μm/s  defined at the inlet of vessel. The total 

length of the vessel (L) and the width between two walls (D) are respectively 130𝜇m 

and 40 𝜇m. The dimensions of the damaged wall (Li) is 30𝜇m (refer to the length of the wall 

damage) and the distance from the inlet to the damaged wall (Lo) is 40𝜇m (see Fig.1). The 

total number of particles used in the simulation was 5371. Four layers of boundary dummy 

particles were also used. The initial distance between particles is 1.0 𝜇m. The density 𝜌 and 

kinematic viscosity 𝑣 of the plasma and platelets, were set as 𝜌 = 1x103kg/m3 and 𝑣 =
1x10−6m2/s. The boundary conditions were; a uniform velocity at the inlet, zero pressure at

the outlet and, non-slip condition at the walls enforced by dummy boundary particles. The 

amount of the platelet particles used in the simulation is approximately 8.8% of the plasma to 

resemble normal physiological condition. The time step was set to 5x10−7s to ensure the

stability of numerical integration scheme. In the reported numerical simulations, the spring 

constants 𝐾𝑎𝑑 and the  𝐾𝑎𝑔 are 9.0x109 𝑁/m  and 4.5x109 𝑁/𝑚 respectively, while 𝑑𝑎𝑑=

3.0μm = 𝑑𝑎𝑔, and 𝑟𝑜 = 2.0μm. 
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5 NUMERICAL RESULTS 

The purpose of this study is to demonstrate the formation of thrombus and to investigate the 

applicability of SPH in modelling such process. The corrected SPH is used to improve  the 

accuracy [8] of the simulation. Normally, a thrombus is formed by adhesion and aggregation 

of platelets which are transported by the blood flow in different geometries of arteries or 

vessels, where the growth rate of thrombus formation varies with the stenosis and the flow 

rate of blood. Figure 1 illustrates the formation of thrombus at two different stages of the 

flow. In these figures, for clarity, plasma and platelet particles are shown by two different the 

plasma and platelets are denoted by light and the dark grey respectively. The platelets are 

activated when they are within 𝑑𝑎𝑑 distance from the damaged region and form a primary 

thrombus. During the course of time, a primary thrombus is developed to cover the whole 

damage area by forming several layers of platelets. When thrombus grows to a certain 

volume, part of the thrombus is separated and transported downstream by the blood flow. 

Figures 1, 2 and 3 depict the growth of thrombus at different times for velocities 100 ,500 and 

700 μm/s  of the blood flow. From the figures below, various stages of thrombus growth on 

the damaged area of the wall are clearly evident. It can be noted from Fig. 1(b), 2(b) and 3(b) 

that, part of the thrombus is separated from primary thrombus once the primary thrombus 

grows to a substantial volume. It is interesting to observe that the volume of the primary 

thrombus and the time at which separation of the thrombus takes place are affected by the 

flow rate. From these figures it can also be noted that, when the flow rate was 700 μm/s the 

thrombus growth was thinner compare to the cases where the blood flow rate was 100 and 

500μm/s. Further, it was observed that with higher flow rates the separation of thrombus 

takes place quicker. In Figure 4, the growth rate of thrombus against various blood flow 

velocities are plotted. It transpires from Fig. 4 that the growth rate of thrombus gradually 

increases with blood velocity until approximately 500 μm/s . Beyond 500 μm/s, the thrombus 

growth rate drops to a lower level. The results illustrated in Figure 4 qualitatively agree with 

experimental observation made in [9]. As results reported here are from 2-dimensional 

simulations, direct comparisons could not be made at this point. It is evident from all the 

results listed below that the blood flow rate plays a crucial role in the build-up and separation 

of thrombus. The results show that the growth rate of the thrombus, its thickness, and 

formation/separation vary according to the blood flow rate and these results are consistent 

with experimental observations reported in [9]. 

  Figure1: The platelet aggregation in the velocity=100 μm/s at (a) t=0.2s; (b) t=0.6s 
(a) (b) 
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Figure2: The platelet aggregation in the velocity=500 μm/s at (a) t=0.2s; (b) t=0.6s 

 Figure 3: The platelet aggregation in the velocity=700 μm/s at (a) t=0.2s; (b) t=0.6s 

Figure 4: Effect of blood flow velocity with thrombus growth rate 

(a) (b) 

(a) (b) 
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7 CONCLUSIONS 

This work has focused on the simulation of the thrombogenesis process using the SPH 

method by considering platelet adhesion/aggregation and the influence of blood flow rates on 

thrombus growth.  In the numerical simulations, blood inside a straight vessel is discretised by 

particles which are assumed to have the characteristics of blood constituents, such as plasma 

and platelets. The platelet adhesion and aggregation process during the blood flow is 

modelled by adopting an inter-particle penalty force method. The aforementioned model 

proved efficient in simulating adhesion and aggregation process without rigorous 

computational efforts. The potential of SPH method to simulate thrombogenisis process is 

demonstrated via numerical examples. The numerical simulations were able to indicate how 

blood flow velocity influenced thrombus growth rate in a straight vessel.  Further, the 

numerical results also qualitatively agree with experimental observations reported in 

literature. This study also demonstrates the ability and accuracy of the SPH method in 

modelling blood flow with low Reynolds numbers. 

It is essential to further investigate the accuracy of the methods developed here in a 3-

dimensional context. The 3-dimensional simulations will enable the results to be directly and 

quantitatively compared with the experimental observations reported in [9]. In addition, the 

assumed penalty values (or spring constants) used in the analysis discussed above can be 

more accurately estimated or calibrated by 3-dimensional numerical models. 
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Abstract. Extracting the optimal amount of power from an array of tidal turbines requires an
intricate understanding of tidal dynamics and the effects of turbine placement on the local and
regional scale flow. Numerical models have contributed significantly towards this understand-
ing, and more recently, adjoint-based modelling has been employed to optimise the positioning
of the turbines in an array in an automated way and improve on simple man-made configura-
tions (e.g. structured grids of turbines) [1].

Adjoint-based optimisation of high-resolution and ideally 3D transient models is generally
a very computationally expensive problem. Multiple approaches are therefore used in practice
to obtain feasible runtimes: using high viscosity values to obtain a steady-state solution, or a
sequence of steady-state solutions for “time-varying” setups; limiting the number of adjoint
computations; or reformulating the problem to allow for coarser mesh resolution to make it
feasible for resources assessment (e.g. [2], [3]). However, such compromises may affect the
reliability of the modelled turbines, their wakes and interactions, and thus bring into question
the validity of the computed optimal turbine positions.

This work considers a suite of idealised simulations of flow past tidal turbine arrays in a
two-dimensional channel. It compares four regular array configurations, detailed by Divett
et al. [4], with the configuration found through adjoint optimisation in a steady-state, high-
viscosity setup. The optimised configuration produces considerably more power than the other
configurations (approximately 40% more than the best man-made configuration). The same
configurations are then used to produce a suite of transient simulations that do not use con-
stant high-viscosity, and instead use large eddy simulation (LES) to parameterise the resulting
turbulent structures. All simulations are performed using OpenTidalFarm [1].

It is shown that the ‘low background viscosity’/LES simulations produce less power than that
predicted by the constant high-viscosity runs. Nevertheless, they still follow the same trends in
the power curve throughout time, with optimised layouts continuing to perform significantly
better than simplified configurations.
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1 INTRODUCTION

Tidal stream turbines are a promising new source of renewable energy. In order for the
deployment of turbines to be effective and economically viable, their placement in a turbine
array/farm must be carefully considered. Knowledge of the tidal flow conditions, the effect
the turbines will have on the flow and any natural habitats, and how any resulting changes will
affect turbine power generation downstream (e.g. through blockage effects), all need to be
investigated. Experimental studies are often limited to small-scale domains with idealised flow
conditions, which may not scale well to realistic marine environments. As more computational
resources become available to solve bigger problems, numerical modelling and adjoint-based
optimisation of tidal turbine positions is becoming an increasingly popular alternative.

Current work on adjoint-based optimisation has shown very promising results with regards
to improving the efficiency of turbine farms over simple man-made configurations, such as a
structured grid of turbines or staggering them in some regular way. For example, Funke et al.
[1] optimised an array in the Inner Sound of the Pentland Firth, comprising 256 turbines, which
resulted in a 33% increase in power extraction. Similar array optimisation studies by Culley et
al. [5] and Barnett et al. [6] in idealised scenarios and once again in the Pentland Firth yielded
increased power generation of up to 25%. However, despite the power that adjoint-based op-
timisation offers, it is extremely computationally-demanding. Such optimisation requires both
the forward run and the adjoint run (i.e. the simulation run backwards in time) to be per-
formed at every iteration of an optimisation procedure, based on numerical algorithms such as
L-BFGS-B (the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with
bound constraints) [7, 8]. High-resolution transient simulations of flow past marine power tur-
bines, particularly those that feature turbulent wakes and thus require even smaller time-steps
to capture the physics, are often prohibitively expensive.

As a result, current work on the adjoint optimisation of tidal turbine placement in the lit-
erature has been mostly limited to steady-state simulations in which very high, uniform and
constant, non-physical values of the background viscosity are required to ensure that a steady-
state solution exists (e.g. 0.5 m2s−1 [2], 3 m2s−1 [9, 6], 30 m2s−1 [5, 3, 1], 90 m2s−1 [10]). Such
simulations only require one solve of the governing forward equations (with the time deriva-
tives removed) and one solve of the adjoint equations1, per optimisation iteration, making the
problem tractable with available resources. However, the wake downstream of each turbine is
likely to be diffused out in such simulations, and no turbulence is modelled. The validity of
the results from the optimisation process is therefore questionable. The size of the wake and
the presence of any turbulent eddies can potentially affect the power generated by the turbines
further downstream, and any blockage effects from neighbouring turbines may not be realistic.
When the optimised turbine positions from the steady-state computations are applied to a realis-
tic, transient flow comprising a much lower background viscosity and higher Reynolds number,
the amount of power generated by the flow may be substantially different and the benefits of
the optimisation process may not be as pronounced compared to the steady-state, high-viscosity
case.

The work presented in this paper first considers four simple man-made turbine array config-
urations by Divett et al. [4]. Steady-state simulations are run with each of these configurations,
and the configuration that provides the highest amount of generated power is then optimised
using adjoint-based optimisation. The resulting optimised configuration, and also the four man-

1The simulation can also be divided up into n steady-states, in which case 2n solves are required per optimisa-
tion iteration.
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made configurations, are then each considered in a transient setup in which a more realistic
background viscosity is used and Large Eddy Simulation (LES) is applied to parameterise the
turbulence. Section 2 presents the shallow water equations that are solved by the numerical
model, along with details of the Smagorinsky LES turbulence parameterisation that is enabled
in the transient flow simulations. Setup details are provided in Section 3, followed by an analy-
sis of the steady-state and transient simulation results in Section 4. The paper closes with some
concluding remarks in Section 5.

2 NUMERICAL MODEL

This work uses the OpenTidalFarm numerical modelling package [1] for solving the shallow
water equations. It uses FEniCS [11] to discretise the equations with the finite element method,
and the Dolfin-Adjoint framework [12, 13] to automatically annotate the forward model system
and compute the adjoint model based on that.

2.1 Momentum equation

The equation governing conservation of momentum is given by

∂u

∂t
+ u · ∇u = −g∇η +∇ · T− cb + ct

H
‖u‖u, (1)

where u is the depth-averaged velocity, g is the acceleration due to gravity, η is the free-surface
displacement, h is the free-surface height at rest, H is the total free-surface height (i.e. h + η),
cb is the (dimensionless) bottom drag coefficient, and ct is the (dimensionless) tidal turbine drag
coefficient. The Euclidean norm ‖u‖ =

√
u · u is used here. The stress tensor T is given by

T = ν
(
∇u +∇uT

)
, (2)

where ν is the kinematic viscosity.
Each of the N turbines is represented by a two-dimensional Gaussian profile, such that for a

turbine i of radius ri centred at (xi, yi),

ct =
N∑
i=1

Kiφxi,ri(x)φyi,ri(y), (3)

where Ki is a dimensionless friction coefficient and

φp,r(x) =

{
exp(1− 1/(1− |x−p

r
|2)) if |x−p

r
| < 1

0 otherwise. (4)

2.2 Continuity equation

The continuity equation is given by

∂η

∂t
+∇ · (Hu) = 0. (5)

2.3 Turbulence parameterisation

Large eddy simulation (LES) is used to parameterise the turbulence generated in the transient
flow simulations with a low background viscosity. The crux of LES is to resolve the large-scale
eddies by using a fine enough mesh spacing, whilst modelling any smaller, sub-grid scale eddies
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with an eddy viscosity term which acts as a diffusive agent; it essentially describes the energy
transfer from the larger (resolved) eddies down to the smaller eddies. The particular LES model
employed in this work is the standard Smagorinsky model [14, 15]. The eddy viscosity term is
given by

ν ′ = (cs∆)2 |S|, (6)

where cs is the Smagorinsky coefficient, set to 0.2 in this work (within the range of typical cs
values [16]). The filter width ∆ is an estimate of the local element size which is defined here as
the square root of the area of each element. The strain rate tensor S is defined as

S =
1

2

(
∇u +∇uT

)
, (7)

The modulus of S is given by

|S| =
√

2
∑
i

∑
j

SijSij. (8)

where Sij is the (i,j)-th component of S. The eddy viscosity ν ′ is added to the background
viscosity ν in (2) and is updated at the beginning of each time-step.

Turbulence is a truly three-dimensional phenomenon. Furthermore, LES requires a substan-
tial amount of resolution to sufficiently resolve the large-scale eddies. The validity of applying
an LES model in this work to a two-dimensional domain is therefore questionable. Neverthe-
less, 2D turbulence modelling in the context of tidal turbine simulation has shown good agree-
ment with experimental data [17], and similar LES schemes such as MILES have generated
promising results in resolving turbine wakes [18, 19].

3 SIMULATION SETUP

All the simulations presented here are two-dimensional and were performed in a 3 × 1 km2

rectangular domain (in the x-y plane), following a similar setup to the work by Divett et al.
[4]. A total of 15 turbines were deployed in the four man-made configurations as described in
[4], and a suite of steady-state shallow water simulations was first performed for each of the
configurations. The physical parameters are provided in Table 1.

3.1 Mesh

The computational mesh that discretised the 3 × 1 km2 domain, comprising triangular ele-
ments, was generated using Gmsh [20]. The inner region defined by 500 ≤ x ≤ 2,500 m and
125 ≤ y ≤ 875 m, where all the turbines are situated, contained a structured grid of solution
nodes with a characteristic element length of ∆x = 2 m. The outer section of the domain’s mesh,
which is outside the region of interest and therefore does not require high numerical resolution,
was unstructured with ∆x = 100 m.

3.2 Initial and boundary conditions

The initial conditions u(x, t = 0) = [0, 0]T ms−1 and η(x, t = 0) = 0 m were applied at
t = 0 s. Throughout the simulations a Dirichlet velocity boundary condition of 2 ms−1 was
strongly imposed to allow inflow from the left. For the steady-state simulations, outflow was
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Parameter Value
Free-surface height at rest h = 50 m

Kinematic viscosity (steady-state) η = 1 m2s−1

Kinematic viscosity (transient) η = 10−6 m2s−1

Smagorinsky coefficient cs = 0.2
Gravitational acceleration g = 9.81 ms−2

Water density ρ = 1,000 kgm−3

Bottom drag coefficient cb = 0.0025
Number of turbines N = 15

Turbine radii ri = 10 m ∀ i = 1, . . ., N
Turbine friction coefficient Ki = 12 ∀ i = 1, . . ., N

Table 1: The common parameter values used in all simulations. The Smagorinsky coefficient cs is only required in
the transient simulations where the Smagorinsky LES model is used. Note also the difference in the background
kinematic viscosity between the steady-state and transient simulations.

modelled by a zero-value Dirichlet free-surface condition strongly imposed along the right-
hand boundary. For the transient simulations, a Flather [21] condition was used to minimise
spurious reflections at the outlet. No-normal flow conditions were weakly imposed along the
lateral walls.

3.3 Spatial and temporal discretisation

The Galerkin finite element method was used to discretise the model equations in space.
Continuous piecewise quadratic Lagrange basis functions were used to represent the velocity
solution field, whereas continuous piecewise linear Lagrange basis functions were used for the
free-surface η (thereby forming the P2-P1, or Taylor-Hood, element pair [22]) as well as all
other fields (including ν and ν ′).

Unlike the steady-state simulations, the transient simulations required temporal discretisation
due to the presence of time derivatives. The implicit backward Euler method was used for this
purpose so that larger time-steps could be taken. All transient simulations were run until T =
2,000 s with a time-step of ∆t = 4 s, which gave ample opportunity for the turbulent flow to
become fully developed and for any spurious reflections from the outflow to dissipate. Newton
iteration dealt with the non-linearity introduced through the advection term in (1); for each time-
step, k iterations were performed such that ‖uk+1 − uk‖ ≤ 10−9, where k is typically between
3 and 10. Once both (1) and (5) are discretised and assembled to form a fully block-coupled
system, the system was solved directly with LU decomposition.

3.4 Man-made turbine configurations

3.4.1 Centred

As per the work in [4], the centred configuration illustrated in Figure 1 considered a regular
5 × 3 grid of turbines positioned in the centre of the channel. The turbines in each row are 7.5d
away from each other, and each row is 10d apart, where d=2r is the turbine diameter.
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Figure 1: The centred turbine configuration. The whole 3 × 1 km2 channel is shown.

Figure 2: The offset turbine configuration. The whole 3 × 1 km2 channel is shown.

3.4.2 Offset

The offset case (see Figure 2) considers the same regular grid of turbines as the centred case,
but instead of being placed in the centre of the domain, the grid is positioned closer to one of the
side walls. Such a configuration may be required to, for example, allow cargo to be transported
via ship down one side of the channel [4].

3.4.3 Staggered

This is similar to the centred configuration, but each row is staggered such that the turbines
in one row are aligned between the turbines of the adjacent row. This is illustrated in Figure 3.

3.4.4 Larger spacing

In the larger spacing case (see Figure 4), the spacing between each turbine in a given row
remains the same as the centred case, but the spacing between each row is now 20d instead of
10d.

Figure 3: The staggered turbine configuration. The whole 3 × 1 km2 channel is shown.
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Figure 4: The larger spacing turbine configuration. The whole 3 × 1 km2 channel is shown.

3.5 Adjoint optimisation

Adjoint-based optimisation was employed to maximise the amount of power extracted by the
turbines with respect to the individual turbine positions. Such optimisation of high-resolution
transient simulations is computationally expensive. Therefore, in order for the adjoint problem
to be feasibly solved with available resources, only the steady-state problem was optimised in
this work.

The Dolfin-Adjoint library [12, 13] was used to annotate the governing equations and auto-
matically differentiate the forward model with respect to the optimisation variables, chosen to
be the individual turbine positions here. The adjoint system was solved to obtain gradient in-
formation, which was then passed to the L-BFGS-B algorithm [7, 8] to optimise the functional
describing the total power extracted by the turbine array, defined by

P (u,m) =

∫
Ω

ρct‖u‖3 dx, (9)

where ρ is the density of water (1,000 kgm−3), m is the vector of optimisation variables (in
this case, the coordinates of each turbine), and Ω denotes the whole domain [1].

The staggered array configuration was used as the initial condition for the optimisation pro-
cess, since this was found to be the best man-made configuration (see Section 4). The opti-
misation was constrained such that turbines must be at least 1.5d apart, where d is the turbine
diameter, and can only be placed in the region defined by 500 ≤ x ≤ 2,500 m and 125 ≤ y ≤
875 m (i.e. the area of highest mesh resolution). The optimisation was terminated after 100
iterations, resulting in the configuration shown in Figure 5.

4 RESULTS

4.1 Steady-state simulations

The results from the steady-state simulations in Figure 6 show that the centred array was the
poorest choice of configuration for this setup. The power extracted by such a setup was limited
because, apart from the turbines in the first row, all the turbines downstream were situated in the
wakes/separated flow regions of the ones upstream (as shown in Figure 7). By definition there is
a velocity deficit in these regions and thus, from equation (9), the power extracted was reduced.
When a larger turbine spacing was used, the wake was able to recover before interacting with
the downstream turbines (as shown in Figure 8), and thus 23% more power could be extracted
from the flow. By offsetting the centred array configuration such that the turbines are closer to a
side wall, the power extraction was increased, albeit fairly insignificantly, relative to the centred
configuration. The staggered array configuration yielded the best power extraction potential,
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Figure 5: The optimised turbine configuration from the steady-state simulation after 100 optimisation iterations.
The whole 3 × 1 km2 channel is shown. The optimisation process was constrained such that turbines were not
allowed to be placed outside of the dotted region shaded in blue. For the steady channel flow considered here
a symmetric configuration would be expected, but this is not the case since the optimisation process was termi-
nated after 100 iterations and had not fully converged (see Figure 10). Asymmetry may also be expected if the
optimisation gets stuck in a local minimum.

generating 75% more power than the centred configuration. As Figure 9 shows, the accelerated
region of flow around the first row of turbines interacts with the second (staggered) row behind
it, resulting in more energy being removed from the flow and thus more power extraction. Each
of these findings agrees qualitatively with the transient simulations of [4] which showed that,
relative to the centred array, only a 4% increase in power extraction could be obtained with the
offset array, whereas a 31% and 54% increase could be obtained with the larger-spaced and
staggered configurations, respectively.

Since the staggered array yielded the most power, it was used as the initial condition and
improved on throughout the adjoint optimisation process. This yielded a configuration that
could extract 48.12 MW of power — a 156% increase relative to the centred array, as shown in
Figure 10. This is greater than any difference in power extraction between the simple man-made
configurations. Relative to the staggered array (i.e. the optimisation’s initial condition and the
best man-made configuration considered here), 46% more power could be extracted.

Flow around a turbine results in acceleration around its edges, but also in a velocity deficit
immediately behind the turbine (i.e. in its wake). It would be unwise to place a turbine in the
wake of another since the power is related to the velocity. It therefore makes sense that the
optimisation process re-positioned the turbines such that the effect of wakes from other turbines
is minimised. Furthermore, regions of accelerated flow can be used to harness more power
which is why some turbines are packed closer together in the cross-flow direction (e.g. the row
of four turbines on the right-hand side of Figure 5). This is highlighted in Figure 11.

4.2 Transient simulations

Unlike the steady-state simulations which featured highly dissipated wakes due to the pres-
ence of a uniformly high background viscosity, the transient simulations exhibited longer,
sharper regions of separation with some downstream turbulent eddy shedding as Figure 12
demonstrates. From the power profiles in Figure 6, the oscillations caused by turbulent ed-
dies were relatively small. However, considerably less power was extracted compared to the
steady-state setups, after the initial spin-up period; the initial peak was caused by the inflow
condition of 2 ms−1 superimposing itself with a region of 2 ms−1 outflow generated by the
Flather boundary condition, which eventually exited the domain.

With respect to the differences in power between the configurations, qualitatively similar
behaviour was observed. For example, in the centred configuration the turbine rows were still
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Figure 6: The total power generated against time, for each of the steady-state and transient simulations.

Figure 7: The flow speed around the centred turbine array in the steady-state simulation.
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Figure 8: The flow speed around the array with larger turbine spacing in the steady-state simulation.

Figure 9: The flow speed around the staggered turbine array in the steady-state simulation.
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Figure 10: Total power generated at each adjoint optimisation iteration. Iteration 0 represents the power from the
initial staggered configuration.

Figure 11: The flow speed around the optimised turbine array in the steady-state simulation. Note the increased
upper limit of the colour bar.
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Figure 12: The flow speed around the centred turbine array in the transient simulation. Note the decreased lower
limit of the colour bar.

Figure 13: The flow speed around the optimised turbine array in the transient simulation. Note the increased upper
limit of the colour bar as a result of increased flow speed around the turbines on the right-hand side that are situated
very close together.
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sufficiently close to be in the wakes of the upstream turbines. However, in the transient runs
the velocity deficit was much stronger, dropping to a near-zero flow speed immediately behind
the turbines, resulting in decreased power generation. In the simulation with larger turbine
spacing, the improvement in power extraction relative to the centred array was not as significant
compared to the steady-state setup, because the wakes were longer and sharper. The turbines
should therefore be placed even further apart to allow the wake to sufficiently recover.

Once again, the optimised array configuration out-performed all four man-made configura-
tions under consideration. Interestingly, many of the wakes were entrained into the regions of
acceleration and flowed around the downstream turbines as Figure 13 shows, instead of im-
mersing them in the region of low flow speed and limiting power generation. Unlike the other
configurations, turbulent eddies were only shed downstream of all the turbines, which explains
why the power in Figure 6 remained constant once the flow became fully established.

5 CONCLUSIONS

• Adjoint optimisation can be used to greatly improve the power extraction potential of
tidal turbine arrays/farms.

• The use of a lower background viscosity and turbulence modelling shows that the velocity
deficit is much stronger in reality, resulting in decreased power generation relative to the
high viscosity steady-state runs. Furthermore, turbulent eddies have the potential to affect
the amount of power extracted, to a small degree in the configurations considered here.

• The power curves of the transient, turbulent runs are qualitatively similar to the steady-
state runs, in that the best (staggered) man-made setup is still out-performed by the opti-
mised configuration from adjoint modelling.

• Horizontal LES (HLES) [23] or 3D LES turbulence models, coupled with more realistic
turbine parameterisations (e.g. rectangular blocks of drag as opposed to smooth Gaussian
functions), should be adopted in future work.
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Abstract. A novel method for extracting the geometric and constitutive material properties of 
pneumatic tyres from available numerical or experimental data for the development of realis-
tic and reliable tyre numerical models is proposed. This method involves an optimization pro-
cedure, which incorporates a finite element model as a solver (ABAQUS) properly coupled 
with an optimiser function (MATLAB). Following that, an initial tyre model (P235/75R17) is 
developed, and then its properties are suitably adjusted via the optimization process, in order 
for the former to best fit a target model available in the literature, with respect to eigenfre-
quency analysis results. After the termination of the algorithm, the “optimum” tyre model (i.e. 
the model which best conforms to the target model) is obtained, the response of which is fur-
ther investigated to ensure its realistic behaviour, which warrants its use for various numeri-
cal simulations. The results of this study show clearly the efficiency of the optimization 
procedure proposed, as well as the realistic response of the tyre model developed. 

 
1 INTRODUCTION 

Handling low frequency interior noise and vibrations which transmits through subframe 
components on vehicles is a main issue regarding their design. The importance of this aspect 
is apparent from the related legislation which limits the level of noise a vehicle is allowed to 
produce. The main source of the vehicle noise is the vibrations induced by the tyres. These, 
after being transmitted from the tyre to the wheel axle, and through that to the passengers in 
the vehicle, can have various undesirable effects, some of which are the passengers’ incon-
venience or body distress, the low performance of the vehicle and its suspension system, etc. 
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A tyre is subjected to dynamic forces mainly from two main sources: (a) road surface irregu-
larities, potholes, bumps and various other obstacles which impose dynamic loads to the tyre, 
and (b) dynamic loads originating from various nonuniformities of the tyre, such as slight im-
balances or asymmetric tread pattern designs. 

It is essential to consider the dynamic characteristics of the tyres of a vehicle, to minimise 
the aforementioned negative consequences. For this purpose, there is need for detailed 
knowledge of the dynamic response of a tyre, which is associated with the energy that is being 
transmitted to the vehicle from various external dynamic events. The dynamic response of a 
tyre is characterized by its vibration modes, or eigenmodes, namely the natural frequencies of 
the tyre and the corresponding mode shapes. These, apart from their significance for the de-
sign process and troubleshooting of various problems, can constitute a basis for the computa-
tional efficiency of the various numerical models of tyres used by both tyre and automotive 
industries for prediction of performance. 

In this study the eigenmodes at the low frequency range are considered for the develop-
ment of a realistic tyre model, based on numerical data published in the literature. This is 
achieved through an optimization process which efficiently adjusts various tyre parameters, so 
that the eigenmodes of the final tyre model reach the corresponding data as close as possible. 
After the optimum tyre properties are found, the configured model is then used to study the 
effect of inflation pressure and vertical load (i.e. stationary tyre loaded with vertical force) on 
its eigenmodes. 

2 LITERATURE REVIEW 
Tyre vibration modes are widely used over the years to represent dynamics in tyre models. 

The dynamic response of tyre models has been studied analytically, experimentally or semi-
empirically, and numerically, however due to the limitations of the analytical and experi-
mental studies, many studies in the literature employ numerical (often finite element) models, 
which can simulate complex geometries as well as material, geometric and boundary nonline-
arities. In this study, the effect of the various parameters on the tyre response is incorporated 
into an optimization procedure, which ultimately determines the optimum values of these pa-
rameters, in order to minimise the error between the numerical model and the available data. 
Relevant studies about tyre dynamics, as well as optimization procedures are mentioned in the 
next.  

2.1 Experimental studies  
Experimental studies about the eigenmodes analysis of tyres can be found in [1-3]. In [1], 

the dynamic response of the vehicle in terms of accelerations was monitored at the wheel axis 
and the passenger compartment. The tyre vibration modes were identified from the peaks in 
the response. In [2] a lumped parameter model was developed to study the behaviour of a tyre 
running on a road surface with irregularities characterized by short wave-length spectrum 
components. However, the parameters of the lumped model are given by empirical relations, 
which have resulted from an experimental methodology. In [3] an experimental modal param-
eter estimation method is presented, in which the frequency response function (FRF) of a tyre 
is decomposed into the components of individual modes based on the Fourier transform algo-
rithm. 

2.2 Analytical studies  
The analytical models developed for the estimation of the eigenproperties of a tyre range 

from simple mass/spring systems to various forms of idealized, spring supported, flexible 
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rings. Representative studies are these in [4], where a rotating and vibrating tyre coupled at its 
spindle to a secondary structure is simulated. A model of a membrane on an elastic foundation 
is used for the description of the vibration of a rolling tyre, as well as models for the calcula-
tion of the forces at the spindle of a tyre rolling over a small cleat. In [5], the tyre is modelled 
as a shell structure in contact with the road surface. The contact patch is simulated as a pre-
scribed deformation, and the coupled tyre-cavity governing equation of motion is solved ana-
lytically to obtain the tyre structural and acoustic responses. 

2.3 Numerical studies  
Numerical studies regarding the modal analysis of tyres can be found in [6-9]. In [6] the 

vibration modes of radial tyres on a fixed spindle can be seen and the effect of the tyre com-
ponents and their contribution in the mode shapes is investigated. Following that, the corre-
sponding tyre model under rolling conditions was considered in [7], and it was shown that 
non-rolling tyre models are subordinate to their rolling counterparts, as they do not take into 
account the proper kinematics. In [8], the finite element commercial software ANSYS was 
used to study the effects of the inflation pressure, the ply angle, the tread pattern and the 
thickness of the belt on the natural frequencies of the tyre. A basic assumption in this study 
was that the rubber was simulated as a linear elastic material. Another commercial finite ele-
ment software (ABAQUS) has been used in [9], where by using various capabilities of 
ABAQUS, the footprint under purely vertical load was obtained for a vertically loaded tyre. 
Afterwards, the nodes (node coordinates) being in contact with the road were maintained in 
contact by applying an equivalent distributed vertical load, whereas the centre of the wheel 
was set free in all degrees of freedom. In this condition of the model, a frequency analysis was 
performed and it was found that the boundary conditions on the tyre model can have large 
impact on its eigenmode response. 

2.4 Optimization  
In general, the methods used to optimise a model (optimization methods) range from rela-

tively simple mathematical programming based (exact) methods to novel heuristic search 
techniques. The methods belonging to the first category are very efficient for cases with a few 
design variables. Methods belonging to this category are those using the sequential quadratic 
programming procedure for nonlinear optimization (used in this study), as well as others. 
More details regarding these methods are presented in [10]. More robust optimization tech-
niques, which are capable of searching effectively the whole design variable domain and not 
being trapped into local optima, can be used for increased number of design variables, or non-
differentiable functions. Recently developed heuristic methods, such as genetic algorithms, 
simulated annealing, threshold accepting, tabu search, ant colonies, particle swarm, etc. pro-
vide more attractive alternatives.  

3 NUMERICAL MODELING 

3.1 Introduction  
The tyre considered in this study was modelled in the commercial finite element code 

ABAQUS 6.13. Implicit integration was performed using ABAQUS/Standard, which was al-
so used for the eigenfrequency and eigenmode extraction of the tyre. The optimization proce-
dure, as well as the necessary coupling with ABAQUS, was implemented in MATLAB 
programming language. 
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3.2 Tyre modeling  
The cross section of the tyre, P235/75R17, is shown in Figure 1. The tyre is comprised of 

the belt region, the tread region and the side walls which are being modelled with a hyperelas-
tic material, representative of rubber. The hyperelastic material is simulated by the one term 
polynomial strain energy potential (Mooney-Rivlin model) with one term Prony series to ac-
count for viscoelasticity [11]. The belt region contains reinforcement of two layers (illustrated 
as Belt layer 1 & 2 in the Figure), and the reinforcement of carcass. The last extends over the 
belt region and it covers the side walls. Both belt layers and the carcass are discretized with 
surface elements with twist (SMFGAX1). The rim is discretized with 2-node, linear links for 
axisymmetric planar geometries (RAX2), and the belt, bead, sidewall and tread regions are 
discretized with 4-node bi-linear, reduced integration elements with hourglass control 
(CGAX4R). The nodes of the surface elements of the carcass share the same nodes with those 
of the belt region elements. If separate nodes are used for these two sections (which have the 
same coordinates) numerical instabilities may occur during the analysis.  

Belt Layer 1

Belt Layer 2

Side Walls 

Tread Region
Carcass

Belt Region

Rim
Bead

 
Figure 1: Tyre half-cross section geometry. 

By utilizing the capabilities of ABAQUS with regard to symmetric model generation 
(SMG), symmetric results transfer (SRT) and restart option, the full 3d numerical model of 
the tyre is developed, as shown in Figure 2. Inflation pressure is imposed on the inner surface 
of the tyre as a distributed load. Regarding the boundary conditions, two cases can be distin-
guished: (a) for the unloaded tyre, the boundary conditions are imposed on the six degrees of 
freedom of the wheel centre (fixed-spindle), and (b) for the loaded tyre, the road is considered 
to be fixed and the tyre centre is constrained along all degrees of freedom except for the de-
gree of freedom along which the vertical load is imposed. The rim is rigidly constrained to the 
tyre centre. The friction between the tyre and the road (in the case of the loaded tyre) is as-
sumed to be of Coulomb type, with coefficient equal to 0.5. 
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Figure 2: Illustration of the tyre model. 

3.3 Formulation of the optimization problem  
In this section, the optimization procedure is outlined, and its various aspects are presented 

(design variables, parameters, constraints and objective function). 
 

• Design variables 
The geometric properties of the belts and carcass reinforcement, as well as the hyperelastic 
Mooney-Rivlin C10 constant are selected as design variables. The reinforcement layers are 
defined in ABAQUS as smeared layers with a thickness equal to the ratio of the area of each 
reinforcing bar to the reinforcing bar spacing. This calculated thickness is assumed to remain 
constant all over the extent of the layer. This consideration has a considerable effect on the 
selection of the design variables, since the stiffness of each reinforcement layer contributes to 
the eigenproperties of the tyre. Due to the fact that the rebar stiffness is given by a fraction of 
two separate input parameters, for constant layer stiffness they become dependent on each 
other. Therefore, it is objective that only one of the two parameters for each layer is selected 
as an independent design variable, and the other remains fixed. The variable to remain fixed is 
the easier to be measured, in terms of order of magnitude. Another point to be mentioned is 
that, because the two belt layers have symmetric orientation with respect to the plane of the 
tyre, and the tyre is a centre symmetric structure, its eigenmodes are expected to be also 
symmetric; this means that the cross section areas of the two belt reinforcements have to be 
equal, and therefore the belt reinforcement cross sectional area was considered as a single de-
sign variable. The design variables of the optimization problem, along with their upper and 
lower bounds are shown in Table 1. 
 

Design 
variable  

Lower 
bound  

Upper 
bound 

Abelt  10-7 10-5 
Acarcass  10-8 10-5 
C10 105 107 

 
Table 1: Design variables of the optimization problem and their lower and upper bounds. 
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• Parameters 
The parameters of the optimization problem are the design input data that remain fixed 

during the optimization process. These include, as aforementioned in the previous section, the 
spacing of the rebar layers, which is set to be equal to 0.00116m for the belts and 0.001m for 
the carcass. Furthermore, the constants of the Mooney-Rivlin strain energy potential are 
C01=0 and D1=5.085*10-8Pa-1. The cord angles are 70 and 110 degrees for the two belt layers, 
and 0 degrees for the carcass. The material properties of the belts and the carcass are also held 
fixed during the optimization process. More details about these properties can be found in 
[11]. The inflation pressure with which the tyre is inflated is 240kPa.  

• Constraints 
No constraints are imposed to the model being optimised, apart from the upper and lower 

limits of the design variables. The latter require some experience to be specified, because 
large upper bounds or small lower bounds can lead to numerical instabilities in the solver, 
such as excessive element distortion, etc, which result in the premature termination of the op-
timization procedure. 

• Objective function 
The objective function for the optimization problem has to be of an appropriate form, so 

that it becomes minimum if the numerically calculated eigenfrequencies coincide with the 
ones available from the literature. The first 16 eigenfrequencies of the tyre are considered in 
the objective function, which is given by the equation: 

 ( )
16 2

, ,
1=

= −∑ i num i lit
i

obj f f  (1) 

where fi,num is the ith eigenfrequency calculated by the numerical model in every iteration of 
the algorithm and fi,lit is the corresponding ith eigenfrequency available in the literature. The 
correspondence between the various eigenfrequencies is made by taking into account the de-
formed configurations of the various eigenmodes. 

3.4 Algorithm used for the optimization problem  
The optimization algorithm used in this study is a sequential quadratic programming (SQP) 

method. In this method, a quadratic programming (QP) subproblem is solved at each iteration. 
For this purpose the MATLAB built in function fmincon is used. This function used an active 
set strategy and updates an estimate of the Hessian of the Lagrangian at each iteration using 
the BFGS formula. An active-set method initializes by making a guess of the optimal active 
set, and if this guess is incorrect, it repeatedly uses gradient and Lagrange multiplier infor-
mation to proceed towards the optimum solution. 

The fmincon optimiser (MATLAB) is properly coupled with the analysis solver 
(ABAQUS) in order to take the frequency analysis results. This is done inside the objective 
function in which ABAQUS is called to perform the necessary analyses. Except for this, the 
necessary input (*.inp) files for the ABAQUS runs are created by suitable MATLAB func-
tions. To read the results of the analyses from the corresponding ABAQUS results (*.fil) files, 
special MATLAB functions are used. While the analysis solver is running the optimiser is 
halted and its execution is continued after the lock (*.lck) file has been deleted. 

4 OPTIMIZATION RESULTS 
The results of the optimization process as presented in the previous sections are shown in 

Table 2. 
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 Initial model Optimised 
model 

Wheeler 
et al. [6] 

Deviation 
(%) 

Design Variables 
Abelt (m2) 2.11868*10-7 3.64826*10-7 N/A - 
Acarcass (m2) 4.20835*10-7 8.01133*10-8 N/A - 
C10 (Pa) 106 106 +0.01489 N/A - 

Eigenfrequencies 
f1 [0,0] (Hz) 36.85 30.86 31.7  2.66 
f2 [0,0] (Hz) 37.17 35.85 35  2.43 
f3 [1,1] (Hz) 43.85 36.92 37.8  2.33 
f4 [1,1] (Hz) 43.85 36.92 37.8  2.33 
f5 [1,0] (Hz) 65.07 58.75 58.5  0.43 
f6 [1,0] (Hz) 65.07 58.75 58.5  0.43 
f7 [2,1] (Hz) 76.33 68.41 66.1  3.49 
f8 [2,1] (Hz) 76.33 68.41 66.1  3.49 
f9 [2,0] (Hz) 86.65 78.67 79.5  1.04 
f10 [2,0] (Hz) 86.65 78.67 79.5  1.04 
f11 [3,0] (Hz) 104.36  96.42 97.6  1.21 
f12 [3,0] (Hz) 104.36  96.42 97.6  1.21 
f13 [3,1] (Hz) 117.07  107.9 102.7  5.06 
f14 [3,1] (Hz) 117.07  107.9 102.7  5.06 
f15 [4,0] (Hz) 122.65  114.9 115.9  0.83 
f16 [4,0] (Hz) 122.65  114.9 115.9  0.83 

Algorithm Details 
Min. value of obj. 
function - 8.59 - - 

Number of obj. 
function evalua-
tions 

- 25 - - 

 
Table 2: Results of the optimization procedure of the tyre frequency analysis considered in this study. 

It is noted that each natural frequency corresponds to a pair of integers enclosed in brackets 
([c,m]). The first integer denotes the number of sinusoidal waves in the circumferential direc-
tion of the wheel, whereas the second integer shows the number of waves in the meridional 
direction at a specific location, where the deformation of the eigenmode shape is maximum. 
In addition, only the first 16 eigenmodes were considered for the development of the realistic 
tyre model, in order to reduce the computational cost. 

The first column of Table 2 shows the data of the initial model, used as the starting point of 
the optimization process. It is evident that the eigenfrequencies of the initial model have large 
difference from the eigenfrequencies of the model published in [6]. In the second column, the 
parameters of the optimum model are shown, as well as the values of the design variables 
leading to it. Regarding the eigenfrequencies, it is observed that they are much closer than 
those of the initial model, leading thus to a numerical model that conforms more to the availa-
ble numerical data, and therefore it is more realistic. The maximum deviation of the eigenfre-
quencies is noted to be roughly 5%. The optimum model has higher cross section of the 
reinforcement of the belts, and lower cross section area of the reinforcement of the carcass 
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than the initial model. The hyperelastic constant C10 is only slightly increased after the opti-
mization. Regarding the algorithm output, the minimum value of the objective function is 
equal to approximately 8.59Hz, and the algorithm converged after 25 objective function eval-
uations. The reason for the termination of the algorithm is that the magnitude of the search 
direction was less than the corresponding tolerance. The most important factor affecting the 
tyre modal behaviour during the optimization procedure is proved to be the cross section area 
of the carcass (Acarcass). Due to the fact that the initial model has generally higher eigenfre-
quencies than those of the target model [6], its stiffness had to be decreased, in order for the 
model to approach the latter. The decrease in stiffness is achieved with a relatively large de-
crease in the cross sectional area of the carcass, although the cross section area of the belt re-
inforcement increases. 

In Figure 3 the various eigenmodes of the optimised tyre model are shown. The figure is 
divided into 9 subfigures, each of which shows a tyre eigenmode shape viewed from 4 differ-
ent perspectives. The fundamental eigenmode is the axial or lateral mode, and after this the 
torsional, pitch, diametric, and higher modes follow. There is total correspondence between 
the integer pairs which appear in the bottom of each subfigure, and the ones shown in the first 
column of Table 2. 

[0,0] Axial/Lateral (f1) [0,0] Torsion (f2)  

[1,1] Pitch (f3, f4) [1,0] Diametric (f5, f6)  
Figure 3: Eigenmode shapes of the optimised tyre model (continued in the next page). 

8269



Chrysostomos-Alexandros Bekakos, George Papazafeiropoulos, Dan J. O’Boy and Jan Prins 

[2,1] (f7, f8) [2,0] (f9, f10)  

[3,0] (f11, f12) [3,1] (f13, f14)  

[4,0] (f15, f16)  
Figure 3: Eigenmode shapes of the optimised tyre model (continued from previous page). 
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5 EFFECT OF INFLATION PRESSURE ON MODAL RESPONSE OF OPTIMUM 
TYRE 

The optimised model is the most realistic version of the selected tyre type (P235/75R17) 
with respect to its modal response. It is close to the modal data available in [6], and for this 
reason, it allows its use for dynamic response analyses. In an attempt to further valildate the 
optimised model, the variation of its eigenmodes and eigenfrequencies is studied for varying 
inflation pressure.  
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Figure 4: Eigenfrequencies of various mode shapes of the optimised tyre model for various inflation pressures. 

In Figure 4 the effect of the inflation pressures on the eigenfrequencies of the tyre can be 
observed. As it can be expected, as the inflation pressure rises, the eigenfrequency of a specif-
ic eigenmode increases, as the increased inflation pressure makes the tyre stiffer. This is a 
trend widely observed in the literature and once again corroborates the realistic behaviour of 
the optimum tyre. Moreover, it is apparent that the increase of the eigenfrequency of each 
mode for increasing inflation pressure is nonlinear. Specifically, for lower values of the infla-
tion pressure, the rate of increase in the eigenvalues becomes higher than that for higher val-
ues of the inflation pressure. Finally, for the higher order eigenmodes, the increase in the 
eigenfrequency for the same difference in the inflation pressure is larger than that for the low-
er eigenmodes, which is in agreement with relevant results found in [8].  

6 COMPARISON BETWEEN OPTIMUM AND INITIAL TYRE MODELS 
In this section the static response of the initial tyre model and the optimised tyre model is 

considered with a view to make a comparison between the two models in terms of their re-
sponse. For this purpose, the contact area of a vertically loaded tyre on a rigid surface is cal-
culated for the two tyre models. The results are shown in Figure 5. It seems that the contact 
area of the optimised tyre model is generally larger than that of the initial tyre model, for the 
same values of vertical load, with an exception in the interval of vertical load around 2 kN, 
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where the two areas are roughly equal. This is a direct consequence of the fact that, the eigen-
frequencies of the optimum tyre model are lower than the corresponding ones of the initial 
tyre model, which indicates lower stiffness, and therefore larger contact area. Although the 
difference seems to be relatively small for vertical loads lower than 2 kN, the discrepancy is 
expected to be quite significant for vertical loads higher than 4 kN. The values of the contact 
area calculated for the optimum model are close to numerical [12] and experimental [13] re-
sults found in the literature which proves that this tyre model exhibits realistic behaviour. 
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Figure 5: Contact area versus vertical load for the two tyre models considered in this study. 

 

7 CONCLUSIONS  

• An optimization procedure has been implemented which successfully adjusted the geo-
metric properties of a tyre (P235/75R17), so that its modal properties match closely those 
available in the literature [6].  

• The optimization procedure proposed in this study can be extended for the calibration of 
various tyre material constitutive models, which in most cases are unknown, based on 
experimental data, such as contact area and modal analysis results. For instance, the pa-
rameters of the Mooney-Rivlin hyperelastic material model can be extracted from tyre 
response data through the optimization procedure. In general, this procedure can be fol-
lowed for the development of any realistic tyre model. 

• Successful coupling between the finite element software ABAQUS (used as the solver) 
and MATLAB (used as the optimiser) was performed, in a way that optimises the run-
ning speed of the whole optimization process. 
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• The deviation of the eigenfrequencies of the optimised tyre model from the correspond-
ing eigenfrequencies of the target tyre model [6] (i.e. the model to which the initial mod-
el is fitted) was generally small, not larger than roughly 5%. 

• The response of the optimised tyre model was found to be in close agreement with avail-
able numerical and experimental data. 
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Abstract. Meteorological data assimilation is formulated as a large-scale nonlinear optimiza-
tion problem. In order to solve the problem, modified L-BFGS-B algorithm is used. At each
search, the algorithm requires the gradient of a cost function. Automatic differentiation trans-
forms a source computer program that computes a mathematical vector function into a new
source program that computes derivatives of this function. A source computer program that
simulates the atmospheric flow is differentiated in reverse mode by automatic differentiation
tool TAPENADE, and the adjoint program is generated. The gradient is computed by using the
adjoint program. Numerical experiments are presented for a three-dimensional downburst.
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1 INTRODUCTION

Numerical simulation of the atmospheric flow is an initial/boundary value problem: given an
initial condition of the atmosphere, and appropriate surface and lateral boundary conditions, the
model simulates the atmospheric evolution. Assimilation of meteorological observations is the
process through which all the available information is used in order to estimate as accurately as
possible the state of the atmospheric flow (an initial condition) [1]. The available information
consists of the observation proper, and of the physical laws that govern the evolution of flow. In
this paper, the assimilation is formulated as a nonlinear optimization problem; a cost function
is minimized. At each iteration, an optimization algorithm requires the gradient of the cost
function.

We developed a method for gradient computation by perturbing the initial condition for the
discretized model equation [2, 3]. In this paper, however, we compute the gradient using an
adjoint program.

The adjoint program is obtained by automatic differentiation (AD) tool. Automatic differ-
entiation transforms a source computer program that computes a mathematical vector function
into a new source program that computes derivatives of this function. A source computer pro-
gram that simulates the atmospheric flow is differentiated by the AD tool TAPENADE [4]. The
generated adjoint program is employed to compute the gradient of the cost function.

2 AUTOMATIC DIFFERENTIATION

Given a vector argument X ∈ Rn, a source computer program P computes some vector
function Y = F (X) ∈ Rm. The AD tool generates a new source program that, given the
argument X , computes some derivatives of F . P represents a sequence of instructions, which is
identified with a composition of vector functions. Thus

P is {I1; I2; . . . Ip} (1)
F = fp ◦ fp−1 ◦ . . . ◦ f1 (2)

Here each fk is the elementary function implemented by instruction Ik.
The chain rule gives the Jacobian F ′ of F . Using the Jacobian, for a small perturbation δX

in X , the corresponding perturbation δY = F (X + δX) − F (X) in Y is computed:

δY = F ′δX = f ′
p(Xp−1)f

′
p−1(Xp−2) . . . f ′

2(X1)f
′
1(X0)δX (3)

Here, Xk are the values of all variables after each instruction Ik; X0 = X and Xk = fk(Xk−1).
The tangent program computes this perturbation; the program is generated by differentiating

the source program in tangent mode. On the other hand, we define a scalar linear combination
Y T W as the new result of the source program; W is the weighting vector. The gradient of
Y T W is

F ′T (X)W = f ′T
1 (X0)f

′T
2 (X1) . . . f ′T

p−1(Xp−2)f
′T
p (Xp−1)W (4)

The adjoint program is generated by differentiating the source program in reverse mode, and
computes the gradient.

3 SOURCE PROGRAM

The model equation for the atmospheric flow [5] is written as

∂x

∂t
= F(x,y) + D(x,y) (5)
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∂y

∂t
= C(x,y) (6)

where
x = (θ, qv, qc, qr, Km) y = (u, v, w,π) (7)

Here qv, qc, and qr are the mixing ratios of water vapor, cloud water, and rainwater, respectively;
θ and Km are the potential temperature and the SGS eddy coefficient for momentum, respec-
tively; u, v, and w are the x , y, and z components of the wind velocity, respectively; and π is
the deviation of the nondimensional pressure.

This is the model in differential form. Once it has been discretized in space using finite
differences, the model is written as a set of nonlinear-coupled ordinary differential equations.
Next, once a time-difference scheme is used, it becomes a set of nonlinear-coupled difference
equations.

Let x(t0), y(t0) denote the initial condition. The time-difference scheme integrates the model
equation by marching outward from the initial condition. The initial condition defines a unique
solution x(t), y(t) to the model equation.

4 COST FUNCTION

The cost function is taken as

J =
N
∑

i=0

H[x(ti),y(ti)] dt (8)

where H[x(ti),y(ti)] is a scalar measuring the distance between x(ti), y(ti) and its observations
available at time ti = i∆t; ∆t is the time interval. The available observations are assumed to
be distributed over a limited time interval [t0, tN ]. The constraint is the model equation. For
a given initial condition and for the corresponding solution x(ti), y(ti) of the model, the cost
function is evaluated. Thus, the cost function is regarded as a function of x(t0), y(t0).

Hence, assimilation of meteorological observations is formulated as a large-scale nonlinear
optimization problem. This problem has thousands or millions of variables. Modified L-BFGS-
B algorithm [6, 7] is employed in order to solve this problem.

5 NUMERICAL EXPERIMENTS

Numerical experiments are presented for a three-dimensional downburst. A downburst is
a strong downdraft which induces an outburst of damaging winds on or near the ground. A
downburst is simulated using the source program [5]. Figure 1 and Figure 2 show the evolution
of the rainwater and flow, respectively. Out of the simulation result, the x component of the
wind velocity and the rainwater are assumed to be observations from a Doppler radar.

In order to estimate the initial condition used for the simulation, the modified L-BFGS-B
algorithm solves the large-scale optimization problem. Starting from the initial guess, the L-
BFGS-B algorithm repeats search until it reaches the optimal point. At each search, the gradient
of the cost function is computed using the adjoint program [8]. Figure 3 shows the rainwater
and flow fields of the starting point used in the optimization.

Figure 4 shows the convergence history of the optimization.
Figure 5 compares the rainwater field recovered by the optimization and the corresponding

one of the initial condition in the x− z cross section at y = 0. Figure 6 compares the flow field
recovered by optimization and the corresponding one of the initial condition in the x − z cross
section at y = 0.
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Figure 1: Evolution of the rainwater field after the downburst initiation.
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Figure 2: Evolution of the flow field after the downburst initiation.
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Figure 3: Starting point for the optimization; the rainwater (left) and flow (right) fields in the x − z cross section
at y = 0.

Figure 4: Convergence history of the optimizatiot.

6 CONCLUSIONS

• Meteorological data assimilation is formulated as a non-linear optimization problem.

• A source computer program that simulates the atmospheric flow is differentiated by auto-
matic differentiation tool TAPENADE.

• The adjoint program generated by TAPENADE is used to compute the gradient of a cost
function

• Numerical experiments are done for a three-dimensional downburst.
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Figure 5: The rainwater field recovered by the optimization (left) and the corresponding one of the initial condition
for the simulation (right) in the x − z cross section at y = 0.
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Figure 6: The flow field recovered by the optimization (left) and the corresponding one of the initial condition for
the simulation (right) in the x − z cross section at y = 0.
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• The recovered fields agree reasonably with the initial condition used for observation gen-
eration.
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Abstract. In solid mechanics, the topology optimization process involves two separate fields: 

displacement fields as well as density fields (material distribution). The level set topology op-

timization method is based on implicit functions whose iso-lines describe the respective ge-

ometry. The traditional level set method is performed by using the Hamilton-Jacobi transport 

equation, which implies the use of gradient optimization methods that are prone to getting 

stuck in local extremes. Furthermore, resulting optimal shapes are strongly dependent on the 

initial guess. 

In order to provide a robust topology optimization method insensitive to local optima, param-

eterized level set functions and evolutionary optimization methods (genetic algorithms) are 

used. Using B-spline parameterized level set functions enables the number of variables to be 

reduced and the use of genetic algorithms possible.  

The method is presented on a simple 2D cantilever plate. The objective function is minimum 

of compliance in one case and minimum of volume in the second case. Due the geometric 

change, the finite element method requires remeshing. To avoid remeshing, the “Ersatz mate-

rial” technique is applied. It changes the material properties by setting Young's module of 

elasticity to zero for elements of the FE mesh where the material should be removed.  

The proposed method of topology optimization using genetic algorithms is feasible, but a very 

time-consuming process. For more complex problems, the proposed procedure with a smaller 

number of generations can be used as a generator of the initial solutions for subsequent faster 

procedures. 
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1 INTRODUCTION 

 

The task of topology optimization is to distribute a material in order to optimize the respective 

response. In structural mechanics the response is usually displacements. Topology optimiza-

tion as the inverse process of synthesis is a very complex and creative process, which involves 

many aspects such as experience, ideas, rules, methods, analysis, interaction and other con-

ceptual elements.In literature several methods are developed for topology optimization : 

- Bubble method, where in order to optimize e.g. plate with holes, the optimizer is 

changing the size of the gaps in the observed domain [1], [2], [3], [4], [5] 

- Evolutionary structural optimization method (ESO) [6] and [7], where the material is 

removed (nibbling on) using a material property (modulus of elasticity) where the fi-

nite element method gives a smaller stress response. The main problem using this 

method for topology optimization is that after each optimization step, the geometry is 

irreversible. 

- Solid Isotropic Material with Penalization method (SIMP) [2], [3], [8], [9], [10] using 

the compliance minimization problem to determine the best material distribution that 

provides a better stiffness/weight ratio. The variable that describes the distribution of 

material is the material stiffness, which can have the value of solid material or zero 

(no material). 

- Level set methods [6], [11], [12], [13], [14], [15], [16], [17], [18], [19] based on im-

plicit functions whose iso-lines describe the geometry. Thus, the level set function is 

able to describe the topological changes of the geometry during optimization process.  

 

A topology description function method [20] was developed from the Level set method. Some 

researchers studied non gradient methods for topology optimization [21], but in that case the 

problem is time consuming. A possible solution lies in the parallelization of process [22]. 

 

Topology optimization problems that are discussed in the literature can include several areas: 

parameterization of geometry of the domain, interpolation methods, solving equilibrium and 

optimization algorithm to optimize shape and topology. 

Topology optimization is nearest to the abstract conceptual phase in design. In the phase of 

shape optimization, effective parameterization of shape becomes crucial for efficient optimi-

zation of geometry. Parameterization can be done using some of the functions: NURBS, B-

spline, Bezier surface, Radial basis function (RBF) [14], [16], [23], [24]. 

 

2 MATHEMATICAL FORMULATION 

 

Topology optimization is a complex process that involves a series of numerical procedures. In 

the next flowchart, the numerical procedure for topology optimization in structural mechanics 

is presented. 
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Definition of geometry and shape (using 

parameterization procedure) of model

Setting up loads and boundary 

conditions for FEM analysis

Calculate the objective function and 

constraints for numerical optimization method

FEM analysis to obtain stress 

and strain in model

Update geometry

Verification of stopping criteria of 

numerical optimization pocedure

 
Figure 1: Flowchart of topology optimization in structural mechanics 

 

2.1 Level set function (Shape definition) 

Level set is an implicit function that describes the geometry. The Level set function lies in 

n+1 dimension with respect to geometry that describes, and its iso-line defines the geometry.  

Where n is dimension of the observed domain. This feature of the level set function provides 

the description of the topological changes of the geometry during the optimization process 

(creating new holes in the domain), without requiring a new parameterization of the geometry. 

This feature is very important because otherwise the optimization process will have a variable 

number of unknowns (Figure 2). 

 

 
Figure 2: The general implicit function Φ which penetrates the domain D 

 

A rectangular domain D, shown in Figure 2, can be partitioned in the following way: 

- Material (inside) which is defined as Φ(x,t)<0  ∀x∈Ω\∂Ω, 

- Void (outside) which is defined as Φ(x,t)>0  ∀x∈D\Ω, and 

- Boundary Φ(x,t)=0   ∀x∈∂Ω∩D. 

where Ω is the area filled with the material, ∂Ω is the border of the area Ω, and D is the fixed 

domain within which the shape and topology of the observed area Ω are defined. 

The information whether the observed point lies inside or outside the area can be provided 

using the Heaviside step function H [12]- [20]:  

 
         

               

               
  

(1)  

At a time t, the contour function is: 

          (2)  

 ,x y







D



x

y

x

y
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2.2 Parametric shape B spline surface 

Polynomial expressions, such as the NURBS and B spline surfaces, can be used to describe 

more complex geometries. In this paper, level set functions are described using B-spline 

surfaces. In that case, a representive point of the B spline surface or approximation point 

      , , is defined in the following way [24]: 

 
               

          
    

 

    

 

    

      
 

(3)  

wherw 0≤ in≤ n and 0≤ im≤ m are rectangular patch. The polynomial components of        

are defined piecewise on the sets [xi , xi+1] [yi , yi+1]. The vector x ∈ [x0, xn] and y ∈ [y0, ym] is 

called a knot vector, and it is refined in x and y direction, and       are control points of 

surface. 

The shape function of zero order in x direction is: 

 
         

           

           
   

(4)  

and for other orders (       ),  
         

    

         
          

      

         
            

(5)  

The spline order is 1≤ jx≤ n and 1≤ jy≤ m, and for single node is presented uniformly as: 

 

   

 
 

 
       

   

     
        

            

  

 

(6)  

Analog are able to introduce the shape functions for second direction (y). 

B splines have the property of local control since basic functions have non zero values only 

locally for a few adjacent control points  . 

 

2.3 Objective function and constraints 

In structural mechanics, the objective function for topology optimization problems is usually 

represented as minimization of compliance with constraints related to displacements and 

available volume of material [2]: 

 

    
 ∈ 

 ∈   

       (7)  

                         

                                  
 

                 
  

 

 

 

(8)  

 

The Previous expression represents a weak variational form. The index B indicates that bi-

linear form aB depends on the design variables. U is respective virtual (kinematic admissible) 

displacement field, fv are the body forces, fs is boundary traction on the traction part Γ of the 

boundary, Ead is admissible stiffness, E is stiffness matrix, u is equilibrium displacement 

field, ν is virtual displacement field (kinematically permissible), a(u,ν) is virtual work of in-

ternal forces, l(ν, ) is virtual work of external load, X are design variables of shape and to-

pology (represented distribution of material), and      is partial derivation of the Heaviside 

function      (Dirac function). 
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The linear form of external loads is equal to the sum of the external load fv per unit volume Ω 

and external load fs per unit contour Γ. 

From the above follows that for steady state bilinear forms optimal allocation of material is 

seeking to provide a maximum stiffness [3]: 

    
 ∈   

    
     

                (9)  

In this case, the displacement field and allowable distribution of material are constraints. The 

function to be minimized is compliance, which provides the optimal distribution of material 

that will satisfy equilibrium (nested formulation).  

The topology optimization problem can be defined as the minimum of volume with respect to 

the stress constraints. If the domain is divided into finite elements (FE), the minimum volume 

formulation is: 

    
 

  

                ∈     

 

(10)  

with respect to the stress constraint: 

             

(11)  

where K is stiffness matrix which depends on the material properties, Ee represents the mate-

rial properties of elements. 
 

2.4 Level set method 

The objective function, using a Lagrange multiplier method, now looks like [14]: 

 

    
    

                   
 

 
       

 
           

 

          

 

      

 

(12)  

If the level set function (2) is dynamically changed in time, then a continuous  velocity field 

vn=dx/dt is introduced and time-dependent change of the level set surface is obtained 

(Hamilton-Jacobi partial differential equation H-J) [15], [16]:  

        

  
         

  

  
    

(13)  

where t is the virtual time step. 

The H-J partial differential equation can be solved using the “upwinding” procedure (finite 

differences method in the spatial domain and time stepping scheme), or using a 

parameterization function to describe level set surface Φ(x,t).  

The upwinding procedure in a domain that is optimized cannot create a new hole, which is its 

major disadvantage. 

The H-J equation can be parameterized using some of the parametric equations (e.g. B-spline) 

(3), so that separation of space and time variables is achieved. That procedure provides an un-

coupled system of ordinary differential equations [14], [15], from (3) and (13): 

 
     

     

  
           

 
        

(14)  

where      are B-spline approximation function. 

The velocity (  ) can be obtained by considering the minimum of the potential energy (impo-

sition of “external” velocity field). 

Using a permutation of boundaries of domain on the objective function (12), the velocity of 

all points of level set function [25] is obtained: 

           (15)  
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From previous equations can be seen that the level set method is based on a gradient optimi-

zation method. Therefore, the main disadvantage of the level set method as well as all gradi-

ent methods of topology optimization is dependence on the initial solution.  

A topology optimization method using B-spline parameterization of the level set surface is 

proposed. The optimization variables are control points of the B-spline. Moving the B-spline 

nodes causes a change of Level set function, as well as the observed domain (iso-line of level 

set function). Such a formulation allows a usage of genetic algorithms as optimization method. 

Genetic algorithms are global optimization methods, but numerically highly expensive. B-

spline parameterization methods are reducing the required number of variables, which allows 

application of genetic algorithm optimization in reasonable time.  

In the presented method, optimization variables are changing the geometry by using the level 

set function (2). The binary code of one individual, z coordinate of parameter   from equation 

(3) with resolution of 8 bits, is presented in Figure 3: 

 

0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0...

pz1 pz2 pzN

 
Figure 3 Optimization variables in binary code 

 

Using the operators of selection, crossover and mutation, the genetic algorithm changes the 

population (bits in binary code) of individuals in the next generations. Some of binary coded 

phenotypes are shown in Figure 4. 

 

 ,x y

x

y

pZi

pZfixed



 ,x y

x

y

pZi pZfixed



=>

 
Figure 4 Geometry change with B-spline parametrized Level set implicit function  

 

Such a description of the geometry also allows topological changes of the model. 

The objective function (12) in each time step is calculated utilizing FEM analysis and simple 

structurally active elements counter. 

Also, the finite element method requires considerable time for executing calculations, espe-

cially in situations when the change of geometry occurs in each step of the optimization pro-

cedure, which results in a high time-cost re-meshing method. To avoid re-meshing, each 

element of stiffness matrix is represented with appropriate value (1): 

- null – if level set function larger than zero, or 

- elasticity modulus of material (E) – if level set function equal or smaller than zero. 

This procedure is called „Ersatz material“, and it is not numerically expensive. 
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3 TEST CASE AND RESULTS 

As a test case for the proposed topology optimization procedure, a 2D cantilever plate is de-

fined as shown below: 
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Figure 5: The geometry, loads and boundary conditions of cantilever plate for topology optimization (a) and 

some of discrete solutions (b, c, d, e) 
 

Some of the expected potential discrete solutions are shown in Figure 5 b, c, d, e, f which can 

be found as optimal local extremes. 

 

For structural topology optimization of the cantilevered beam defined in Figure 5, a B-spline 

parameterized level set surface was used. Optimization variables are the z coordinates of B-

spline control points     in Eq. (3). Changing of the B-spline control points has the effect to 

change the geometry of model. As the geometry of the model is discretized by finite elements, 

each element of discrete domain has its own material properties, respecting the Heaviside 

function (1) of the FE geometric center point. If the coordinate of the center point of the ob-

served FE takes a negative value of the approximated level set function, the value of Young’s 

modulus of elasticity E= 70[GPa] is assigned to the element. Otherwise, if the coordinate of 

the center point of the observed FE takes a positive value of the approximated level set func-

tion, then zero value is assigned to the element material property ( E= 0, i.e. that element is 

non-load-bearing part of the structure). 

In this paper, a genetic algorithm for structural topology optimization is used. Genetic algo-

rithms (GA), as global search methods for nonlinear optimization, are not sensitive to local 

extremes of the objective function. 

All numerical procedures were performed using in-house MATLAB code, inspired by [8], [9]. 

The number of finite elements of the discretized 2D plate (Figure 5) is 3200. If the objective 

function is defined as the minimum of the volume with stress constraint, and 576 B-spline 

control points i.e. 576 optimization variables are chosen to describe a level set function the 

proposed procedure provides: 

 

 
Figure 6: Topology optimization of 2D cantilever plate with 576 variables of optimization for minimum volume 

problem 
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Figure 6 shows the solution of topology optimization 2D cantilever plate using a genetic algo-

rithm after 200 generations. The number of the population is 2304, and allowable stress is 70 

GPa. The time required for the represented numerical procedure was 35 hours on Intel 3.10 

GHz 4 core CPU. From Figure 6 it can be seen that convergence is not achieved due to large 

number of optimization variables. In order to achieve convergence, the number of generations 

should be increased, but in that case the numerical procedure might be too long. However, an 

expected solution is obtained. The reduction of volume is 20.3% (648 elements of the initial 

3200 elements). 

The numerical procedure can be accelerated by using parallelization of FE processes on a 

cluster [22], or by reducing the number of variables. If 144 B-spline control points, i.e. opti-

mization variables, are chosen to describe a level set function, the time required for repre-

sented numerical procedure was reduced to 14 hours (Figure 7): 

 

 
Figure 7 Topology optimization of 2D cantilever plate with 144 variables of optimization 

 

Number of population is 1296 over 200 generations, which was sufficient for the procedure to 

converge to the global optimum. The reduction of volume is 20% (640 elements). Better op-

timization results were achieved using a reduced numbers of variables (144) due to a lower 

search field. A better, final solution can be provided using numerical filters.  

The next example provides solution for a minimum compliance problem with volume con-

straint (ζ = 0.3, Eq. 11) –Figure 8: 

 

 
Figure 8: Topology optimization of 2D cantilever plate with 144 optimization variables for minimum compli-

ance problem 

 

Figure 8 shows that the parametrized level set function and the genetic algorithm are able to 

provide a good solution of topology optimization. The number of the population is 2304 with 

200 generations. The time required for represented numerical procedure was 14 hours on Intel 

3.10 GHz 4 core CPU.  
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The solutions presented in Figure 7 and Figure 8 are very similar to the structural type shown in 

Figure 5b. Simple structural analysis, considering four types of the truss or beam structures 

shown in Figure 5b-5f, can confirm that this structural type is optimal one with respect to the 

previously defined objectives and constraints. This conclusion can be used for justification of 

the quality of the solutions obtained by the method presented in this paper. Moreover, pro-

posed method may serve as a generator of initial solutions for the traditional gradient topol-

ogy optimization methods. 

4 CONCLUSIONS  

Topology optimization as a process of synthesis of shape and topology in structural me-

chanics is very complex and demanding numerical procedure. In this work a method for to-

pology optimization of a 2D structure (cantilever plate) using a paremetrized level set surface 

for geometric description was proposed. The optimization variables in the proposed procedure 

are z-coordinates of B-spline control points     defined in Eq. (3). The parameters of the B-

spline surface that describe the level set surface produce a change of 2D plate geometry. The 

procedure avoids the Hamilton-Jacobi transport equation and allows the application of non-

gradient and evolutionary optimization methods. Parametrization of level set surface using B-

spline results in reduced number of variables of optimization process, as well as good shape 

representation of model. Moreover, reducing the number of the optimization variables de-

creases the required numerical analysis time. A reduced number of variables allows applica-

tion of numerically demanding genetic algorithm method. The global optimization method 

(GA) gives a great advantage over conventional topology optimization methods mostly based 

on gradient methods. Also, the proposed method allows the application of the minimum vol-

ume as objective function, which is, due to the discrete character of the objective function and 

the complexity of the problem, impossible for gradient optimization methods without addi-

tional numerical procedures. Instead of remeshing FE during the geometry changes, the “Er-

satz material” techniques are used as computation ally cheaper procedures. 

The results show the applicability of the proposed topology optimization method by using 

a parameterized level set function and genetic algorithm. The main application of the pro-

posed method of topology optimization is to obtain good initial solutions for the traditional 

level set method, which has a large dependence on the selected initial solution. The accelera-

tion of the proposed procedure is possible by using a cluster of computers, or additional nu-

merical algorithms for parameterization and optimization. 
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Abstract. Gearboxes are mechanical transmission systems that consist of multiple gear wheels
and shafts. The transmission ratios of the gears are determined by the size and interconnection
of these components. Gearboxes have to adhere to very strict requirements regarding weight,
production costs, and available space. Moreover, the load cases as a result of motor-vehicle-
pairings are often not clear a priori. Therefore, automobile manufacturers are confronted with
a multicriteria design problem under uncertainty.

In this work, we present an approach on how to formulate the gearbox design problem as a
mixed-integer nonlinear program. This enables us to compute provably globally optimal gear-
box designs. We show how different degrees of freedom, input parameters and the numerical
accuracy influence the computation time and the quality of solutions.
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1 INTRODUCTION

Gearboxes are mechanical transmission systems that consist of multiple gear wheels and
shafts, see Figure 1. The transmission ratios of the gears are determined by the size and in-
terconnection of these components. As central element of the drive train, gearboxes are highly
relevant for the efficiency and durability of motor vehicles. They have to adhere to very strict re-
quirements regarding weight, production costs, and available space. Moreover, the load cases as
a result of motor-vehicle-pairings are often not clear a priori. Hence, automobile manufacturers
are confronted with a multicriteria design problem under uncertainty.

A traditional approach to system design problems is to manually identify and compare a
selection of promising proposals. However, the gearbox is a highly complex system. A com-
parative analysis of every imaginable gearbox topology is doomed to failure in view of the
combinatorial explosion. Engineers work around this problem through a bottom-up design ap-
proach: Individual components are optimized and combined to subsystems, which in turn are
optimized and combined to larger subsystems. This approach usually leads to good designs, but
one cannot make any statement about the objective quality of the resulting systems.

Optimization problems in engineering are often tackled with probabilistic methods, e.g.
swarm intelligence or genetic algorithms. They are easy to adapt to new problems and often
find good solutions in a short amount of time. However, it is unclear how long such heuristics
need to keep running. We do not know whether they will be able to find even better solutions or
not. In contrast, mathematical optimization methods are capable of finding provably globally
optimal solutions by quantifying how much potential for improvement remains at any time.

In this paper, we present a mixed-integer nonlinear program (MINLP) that generates gearbox
system designs which are provably globally optimal with respect to a given objective. As ex-
ample gearboxes, we focus on dual-clutch transmission systems. Technical details on the topic
of gearboxes can be found e.g. in [1] and [2].

Figure 1: Rendered image of a dual-clutch transmission (Source: Volkswagen AG).
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The paper is organized as follows: In Section 2, we introduce the principle of dual-clutch
transmissions. In Section 3, we present the mathematical model and discuss possible variations.
In Section 4, we show some computed gearboxes and compare runtimes of two MINLP solvers.

2 DUAL-CLUTCH TRANSMISSIONS

The abstract task of a gearbox is to transfer power (given by a torque and an angular velocity)
from the input shaft (which is driven by the motor) to the output shaft (which is connected to
the differential and moves the wheels). The power flow is established by engaging suitable
gear wheels. The transformation ratio of the gear can be adjusted by changing the ratio of the
gear wheel radii: an increase of torque causes a reduction of angular velocity and vice versa.
Large gear wheels (as a result of large demanded gear ratios) are avoided by introducing a
countershaft and realizing the gear as a series of two gear wheel pairs (pre-transmission and
post-transmission) with smaller gear wheel radii each. Two or three countershafts instead of
one can be used to reduce the axial expansion of the gearbox.

Many modern gearboxes are so-called dual-clutch transmission systems. That is, there are
two input shafts which can separately be rotated and clutched to the motor. Even numbered
gears are assigned to one input shaft and odd numbered gears are assigned to the other input
shaft. Thereby, changing gears becomes possible without interruption of traction. To save
space, the two input shafts are realized as a long full shaft fitted inside a shorter hollow shaft.

With respect to gear wear and noise impact, it is advantageous to let the gear wheels always
engage with each other. In that case, a design modification is required in order to prevent
blockage of the transmission: The gear wheels are pivot-mounted on the shafts, i.e., they can
rotate independently from each other. A power flow is established by coupling some gear wheels
to their respective shafts using synchronization systems. Due to their high complexity, using
as few of these systems as possible has a high priority. For instance, a sliding sleeve can be
placed between two gear wheels and synchronize either one of them, but not simultaneously.
Alternatively, selected gear wheels can be mounted fix onto a shaft to omit a synchronizer.

To simplify the placement and interaction of components, we can assume that gear wheels
and sliding sleeves need approximately the same axial space: In this way, we can infer a discrete
number of alignment planes in a gearbox of given expansion. A shaft and an plane together
determine a position where a component can be placed. Gears that are placed on the same plane
can potentially interact with each other.

The manual design procedure

The conventional design procedure of a gearbox is a multi-phase process chain. The planning
department is confronted with the task to design a new gearbox for a vehicle. There may be
early assessments of the available space and of the forces the gears will have to bear, but these
plans may change in later development stages. In an abstract view, the planner has to pass
through the following three planning stages:

Topology Some initial design choices like the number of shafts, the number of gears and the
desired gear transmission ratios can be based on experience, empirical values or quick
calculations. These decisions become more complex, if the same topology must be shared
by multiple vehicle models: While being economically favorable, this approach may force
the planner to make compromises on the performance of the gearbox in later development
stages. For instance, fixed shaft distances are a restriction on the gear wheel radii and
therefore on the possible transmission ratios.
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Transmission In this stage, the requested transmission ratios have to be realized by placing
gear wheels onto shafts. The planner has to choose gear wheel radii that not only lead
to the right transmission ratio for each gear, but that also fit well (i.e. in a space-saving
way) into the gearbox topology. An additional degree of freedom is the balance between
pre-transmission and post-transmission. The height of the gearbox is a consequence of
the gearbox topology as a whole. As a simplification for this stage, the gear wheels
are considered as toothless, i.e., the planner expects that the wheels can be geared in a
subsequent stage without too many issues.

Gearing, Efficiency and Misalignment After the topology has been fixed, a range of extended
feasibility criteria has to be checked. Firstly, the gear wheels have to be endowed with
teeth. The tooth number along the diameter of each wheel is an integer, so not all gear
wheel combinations engage equally well. Secondly, the gear realizations and the gearing
of the wheels influence the transmission efficiency of the gearbox. Thirdly, shafts bend
as a side effect of the power flow. If they bend to much, the teeth become misaligned and
cause increased wear and acustic noise.

In each stage, two things can happen: (a) the planner realizes that his decisions in earlier
stages are not compatible with the requirements of the next stage, or (b) the outer requirements
for the design are updated. In both cases, the planner has to go back to an earlier stage and
incorporate the new information into the current design proposal. This process is iterated until
the planner and the company can settle on a final design.

An automated design procedure

To improve the manual design process, we have to view the system as a whole. However, the
extended feasibility criteria in the third stage of the design procedure are highly complex and
cannot be modeled within the scope of this work. Therefore, we focus on the first two stages
of the design process: the topology and the transmission. Our aim is to find optimal gearbox
proposals in a short amount of time. On the one hand, this enables the planner to consider a
large number of possible requirement changes in advance. On the other hand, the planner can
focus on technical aspects in stage three instead of repeating the work in earlier stages.

3 A GEARBOX DESIGN MODEL

The aim of the following model is to find an optimal gearbox design within a given axial
space and for demanded total transmission ratios. In the following, capital letters denote sets
or parameters (i.e. the problem input), small letters denote indices or continuous decision vari-
ables, and greek letters denote binary variables. An overview of all decision variables is given
in Table 1. The full model is shown on the next page. The constraints will be explained in order
of appearance. Parameters are explained together with the constraints in which they occur.

Three sets characterize the topology of the gearbox. Let G = {−1, 1, 2, . . . } denote the set
of gears (including one reverse gear −1), let P = {1, 2, . . . } denote the set of planes that fit
into the axial space, and let D = {1, 2} denote the set of exactly two drive shafts. A plane and
a shaft together determine a position where a component can be placed.

The objective function combines three objective criteria: (i) minimize the height of the gear-
box, (ii) minimize the number of sliding sleeves, and (iii) minimize the number of gear wheels
on the input shaft, cf. Eq. (1).
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Table 1: Decision variables of the mixed-integer nonlinear program.

Var. Description Domain

ig pre-transmission of gear g [Imin, Imax]
jd post-transmission from drive shaft d to the output shaft [Jmin, Jmax]

rg gear wheel radius on the input shaft belonging to gear g [Rmin, Rmax]
sg gear wheel radius on the drive shaft belonging to gear g [Smin, Smax]

tp gear wheel radius on the input shaft in plane p [Rmin, Rmax]
up,d gear wheel radius on drive shaft d in plane p [Smin, Smax]
vd maximum gear wheel radius on drive shaft d [Smin, Smax]

yd gear wheel radius on drive shaft d of the final drive [Y min, Y max]
z gear wheel radius on the output shaft of the final drive [Zmin, Zmax]

ξg,p,d indicator whether gear g is realized on drive shaft d in plane p {0, 1}
γp,d indicator whether any gear is realized on drive shaft d in plane p {0, 1}
δg,p indicator whether gear g is realized on any drive shaft in plane p {0, 1}
ζp indicator whether any gear is realized on any drive shaft in plane p {0, 1}
σp,d indicator whether a sleeve is located on drive shaft d in plane p {0, 1}
φp indicator whether the input shaft is a full shaft in plane p {0, 1}

ad distance between input shaft and drive shaft d [Amin, Amax]
bd distance between drive shaft d and output shaft [Bmin, Bmax]
c distance between the drive shafts [Cmin, Cmax]
h pseudo-height of the gearbox [Hmin, Hmax]

The exact height along the vertical vehicle axis is quite difficult to express, because the two
drive shafts need not be horizontally aligned. Therefore, we use the pseudo-height h defined
by Eq. (24) as approximation of the real height. The weighing parameters W1 and W2 control
how the objective criteria are balanced. This decision is at the discretion of the planner. For our
benchmarks, we used W1 � 1 and W2 � 1, i.e., we tolerate a larger gearbox to save a sliding
sleeve, but not to save a gear wheel on the input shaft.

Eq. (2) determines the overall transmission ratio for each gear. Since these overall ratios
are empirical values, we allow for small deviations of 5% from the reference values in hope
of achieving a more compact design. The interval [Kmin

g , Kmax
g ] gives the range of acceptable

overall ratios of gear g. The sum expression identifies the matching post-transmission jd for
the pre-transmission ig of gear g. Eqs. (3) and (4) relate the gear wheel radii with the pre-
transmission and respectively post-transmission ratios. The sign function is needed to allow for
the negative pre-transmission ratio i−1 of the reverse gear. Note that we do not need to include
the radius sint of the intermediate wheel that engages with the input shaft gear wheel and the
reverse gear wheel, since i−1 = (s−1/sint) · (sint/r−1).

Eqs. (5) to (8) specify relations between various gear assignment indicators. The most gen-
eral indicator ξg,p,d becomes active (equal to one) if and only if the gear g is established along
the position given by plane p and drive shaft d. This position specifies the gear wheel that needs
to be synchronized to establish the power flow. The auxiliary variables γp,d, δg,p and ζp each
indicate if at least one ξg,p,d over some set is active. Additionally, Eq. (6) ensures that each gear
g is realized exactly once.
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minimize h+W1 ·
∑
p∈P

∑
d∈D

σp,d +W2 ·
∑
p∈P

ζp (1)

subject to

Kmin
g ≤ ig ·

∑
d∈D

jd ·
∑
p∈P

ξg,p,d ≤ Kmax
g ∀g ∈ G (2)

rg · ig = sg · sign(g) ∀g ∈ G (3)
yd · jd = z ∀d ∈ D (4)

δg,p =
∑
d∈D

ξg,p,d ∀g ∈ G, p ∈ P (5)

1 =
∑
p∈P

δg,p ∀g ∈ G (6)

γp,d =
∑
g∈G

ξg,p,d , ζp ≥ γp,d ∀p ∈ P, d ∈ D (7)

ζp ≤
∑
d∈D

γp,d ∀p ∈ P (8)

γp,d + σp,d ≤ 1 , γp,d ≤
∑
p′∈P
|p′−p|=1

σp′,d , ξ−1,p,d ≤ γp,3−d ∀p ∈ P, d ∈ D (9)

φp ≥ φp+1 ∀p ∈ P, p < |P | (10)

δg,p ≤

{
φg if g is odd
1− φg if g is even

∀p ∈ P, g ∈ G, g > 0 (11)

δ−1,p ≤ 1− φp ∀p ∈ P (12)

rg =
∑
p∈P

tp · δg,p , sg =
∑
p∈P

∑
d∈D

up,d · ξg,p,d ∀g ∈ G (13)

tp ≥ Rfull · φp +Rhollow · (1− φp) ∀p ∈ P (14)

tp ≤ Rfull · φp +Rhollow · (1− φp) +Rmax · ζp ∀p ∈ P (15)

up,d ≥ Smin · (1− σp,d − γp,d) + Ssync · σp,d + Smin · γp,d ∀p ∈ P, d ∈ D (16)

up,d ≤ Smin · (1− σp,d − γp,d) + Ssync · σp,d + Smax · γp,d ∀p ∈ P, d ∈ D (17)
vd ≥ up,d ∀p ∈ P, d ∈ D (18)

ad ≥ tp + up,d +Q · (1− γp,d) + 2 ·Q · ξ−1,p,d ∀p ∈ P, d ∈ D (19)
ad ≤ tp + up,d + Amax · (1− γp,d) ∀p ∈ P, d ∈ D (20)

ad ≥ Rhollow + yd +Q , bd = yd + z ∀d ∈ D (21)

c ≥
∑
d∈D

up,d +Q ·
(∑
d∈D

γp,d − δ−1,p
)

∀p ∈ P (22)

c ≤
∑
d∈D

up,d + Cmax · (1− δ−1,p) ∀p ∈ P (23)

h ≥ c+
∑
d∈D

vd , h ≥ 2 · z (24)
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Eq. (9) (left) demands that at most one component may be placed on a position and Eq. (9)
(middle) ensures that each gear can be synchronized by a neighbouring sleeve. If the reverse
gear wheel is placed on a position, another gear wheel must be placed on the other drive shaft
in the same plane, cf. Eq. (9) (right).

The input shaft is divided into a full shaft and a hollow shaft, signalled by the fullness
indicator φp for each plane p. There must only be one transition from full shaft to hollow
shaft, so these indicators need to have a monotoneous behaviour, cf. Eq. (10). Odd numbered
gears are established on full shaft planes and even numbered gears are established on hollow
shaft planes, cf. Eq. (11). The reverse gear is also placed on the hollow shaft, which allows for
quick shunting movements without interruption of traction, cf. Eq. (12).

The variables rg and sg represent the gear wheel radii from the point of view of the gears.
The variables tp and up,d represent the radii from the point of view of the positions inside the
gearbox. Eq. (13) identifies variables with the same meaning. If there is no gear wheel on plane
p, Eqs. (14) and (15) set the radius at this position to the input shaft radius (concretely, they
select the radius Rfull of the full shaft or the radius Rhollow of the hollow shaft).

Eqs. (16) and (17) determine the drive shaft radii up,d: If the synchronizer indicator σp,d is
active, the radius must equal the synchronizer radius Ssync (which we assume as fixed), and if no
indicator is active, the radius at this position must equal the radius Smin of the drive shaft. The
maximum radius vd of gear wheels on the drive shaft d in Eq. (18) is needed later for computing
the pseudo-height h.

Eqs. (19) to (23) determine the pairwise distances between shafts. The distance ad between
the input shaft and drive shaft d equates the sum of engaging gear wheel radii. When multiple
gears share the same drive shaft, all engaging gear wheel pairs have to agree on the same shaft
distance. If only one component is a gear wheel, there must be a gap of the tooth height Q
between the gear and the sleeve or shaft. Between the input shaft gear wheel and a not engaging
reverse gear, the gap must be at least two tooth heights. Finally, the distance ad must be large
enough to separate the final drive wheel from the hollow shaft, cf. Eq. (21) (left).

The distance bd between the drive shaft d and output shaft depends on the final drive radii
yd and z. Between the two drive shafts, no gears wheels are allowed to engage except for the
reverse gear wheel.

The pseudo-height h that enters the objective is the maximum of two values: Firstly, the
drive shaft distance c plus the respective maximum radii on both shafts. Secondly, the diameter
of the final drive gear wheel on the output shaft. The pseudo-height is a good approximation of
the gearbox height if the two drive shafts are horizontally not too far apart.

4 BENCHMARKS AND RESULTS

The mixed-integer nonlinear program (MINLP) has been implemented in the mathematical
modeling framework JuMP [3] (version 0.12.0) in the programming language Julia (version
0.4.3). We have chosen Couenne [4] (version 0.5.6), a free global solver for nonconvex MINLP
based on branch-and-bound and convex envelopes, and SCIP [5] (version 3.2.1), a commercial
open-source framework for Constraint Integer Programming, to solve the following instances.

As first example, we design a gearbox with four gears and one reverse gear. If we make only
four planes available, the solvers return with the status infeasible, i.e, there is no imaginable
gearbox design in four planes under the stated rule set. It turns out that there are possible
designs for five and six available planes. Couenne needed T couenne

4+1, 5 = 13 s and T couenne
4+1, 6 = 21 s to

prove optimality. SCIP was done in T scip
4+1, 5 = 5 s and T scip

4+1, 6 = 9 s.
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input shaft
output shaft

drive shaft 1

drive shaft 2

h = 289mm

drive 2 3 4 2 F

output

drive 1 1 R F

drive 2 3 4 2 F

input

drive 1 1 R F

(a) Minimum axial expansion: five planes.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 278mm

drive 2 4 2 F

output

drive 1 3 1 R F

drive 2 4 2 F

input

drive 1 3 1 R F

(b) Additional axial space: six planes.

Figure 2: Optimal gearboxes with four plus one gears.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 310mm

drive 2 1 R F

output

drive 1 3 5 2 4 F

drive 2 1 R F

input

drive 1 3 5 2 4 F

(a) Minimum axial expansion: six planes.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 310mm

drive 2 1 3 R 4 F

output

drive 1 5 2 F

drive 2 1 3 R 4 F

input

drive 1 5 2 F

(b) Additional axial space: seven planes.

Figure 3: Optimal gearboxes with five plus one gears.
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input shaft
output shaft

drive shaft 1

drive shaft 2

h = 293mm

drive 2 5 2 6 F

output

drive 1 3 1 R 4 F

drive 2 5 2 6 F

input

drive 1 3 1 R 4 F

(a) Minimum axial expansion: six planes.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 289mm

drive 2 5 2 6 F

output

drive 1 3 1 R 4 F

drive 2 5 2 6 F

input

drive 1 3 1 R 4 F

(b) Additional axial space: seven planes.

Figure 4: Optimal gearboxes with six plus one gears.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 290mm

drive 2 7 5 6 2 F

output

drive 1 1 3 4 R F

drive 2 7 5 6 2 F

input

drive 1 1 3 4 R F

(a) Minimum axial expansion: seven planes.

input shaft
output shaft

drive shaft 1

drive shaft 2

h = 289mm

drive 2 5 7 2 6 F

output

drive 1 1 3 R 4 F

drive 2 5 7 2 6 F

input

drive 1 1 3 R 4 F

(b) Additional axial space: eight planes.

Figure 5: Optimal gearboxes with seven plus one gears.
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Figure 2 shows a representation of the results. On the top, the gearbox is viewed in axial
direction – relating to the gearbox in Figure 1, the viewpoint is on the right. The black circles
depict the cross sections of the shafts and the gray lines represent distances that are given by
decision variables (a, b and c). The dashed circles indicate the maximum gear wheel radius on
each shaft. (They are allowed to overlap as long as these gear wheels do not share a plane.) On
the top right, the optimal pseudo-height h is given.

On the bottom of each figure, we see a folding pattern of the gearbox topology. It shows
the size and position of the gear wheels and sliding sleeves, the pairwise distances between
the shafts, and the gear wheel engagements. The final drive gear wheels coupling drive shafts
and output shaft are positioned on the far right and labeled with the letter F. The input shaft is
separated into the full shaft on the left and the hollow shaft on the right.

In the presented model, we have not considered power flows along arbitrary many gear wheel
pairs: Normal gears use two gear wheel pairs (pre-transmission and post-transmission) and the
reverse gear uses three gear wheel pairs (the pre-transmission of a normal gear, the transmission
to the reverse gear wheel and the post-transmission). Therefore, in these solutions the power
flow of each gear takes the shortest route from the input shaft over the accordingly labeled gear
wheel to the output shaft. In the folding pattern, the power flow appears to jumps from a drive
shaft engaging with the input shaft to its identical copy engaging with the output shaft.

Next, we design gearboxes with five gears and one reverse gear. There is no design with
only five planes available. The solutions for six and seven planes are depicted in Figure 3.
The runtimes were T couenne

5+1, 6 = 28 s and T coenne
5+1, 7 = 73 s for Coeunne, and T scip

5+1, 6 = 5 s and
T scip
5+1, 7 = 11 s for SCIP.

The effect of additional axial space is underwhelming: Both gearboxes have exactly the same
pseudo-height and the additional plane is not even used. The gear wheels of both solutions
are slightly permutated. This is a random effect from the solution procedure, because neither
topology is better regarding our objective function.

Optimal gearboxes with six plus one and seven plus one gears are shown in Figure 4 and
Figure 5. There is no design for a six plus one gearbox in five planes and neither a design for a
seven plus one gearbox in six planes. The computations with Couenne required T couenne

6+1, 6 = 35 s
and T couenne

6+1, 7 = 168 s for the six plus one gearboxes and T couenne
7+1, 7 = 436 s and T couenne

7+1, 8 = 803 s

for the seven plus one gearboxes. The computations with SCIP required T scip
6+1, 6 = 21 s and

T scip
6+1, 7 = 37 s for the six plus one gearboxes and T scip

7+1, 7 = 117 s and T scip
7+1, 8 = 116 s for the

seven plus one gearboxes.
Again, the additional plane does not help in achieving a more space-efficient design. The

difference of the millimeter values between the left and the right can be explained as numerical
artifact. In the case of Couenne, we needed to increase the allowable fractional gap and the
feasibility tolerance to compute the presented results. SCIP has stricter default tolerances than
Couenne but did warn of a constraint violation in the order of 10−6. These large instances seem
to be numerically challenging. Instead of increasing solver tolerances even further, we think it
would be more useful to search for improved model formulations.

Note that the gearboxes with five plus one gears (cf. Fig. 3) need more space than the
gearboxes with one additional gear (cf. Fig. 4). This is an intended effect of the objective
criteria weighing: Five plus one gears can be realized with only three sliding sleeves, but a
fourth sleeve would have allowed for a more efficient packing.
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5 CONCLUSIONS

• We presented a mixed-integer nonlinear program for the optimal design of gearboxes on
the example of a dual-clutch transmissions.

• Optimal designs for four plus one gearboxes and up to seven plus one gearboxes have
been presented. The computation times of both solvers in the range of seconds to minutes
are quite reasonable.

• This paper only shows a first step to a practically useful gearbox design framework. For
real-world use, we need to take further details, e.g. the gear teeth design and shaft bend-
ing, into account. We plan to integrate these factors into our model in further work.
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Abstract. Hydrodynamic shape optimization based on CFD calculations can dramatically 
improve the design of marine devices (i.e. propellers, rudders and appendages) by simultane-
ously considering opposite objectives and by modeling phenomena that well-established and 
still widely adopted design approaches (i.e. lifting line and lifting surface) cannot accurately 
deal with. Cavitation on propellers, for instance and among the others, is one of the most 
dangerous phenomena. It causes vibration, erosion and it is a source of radiated noise, con-
sequently resulting incompatible with modern propeller design, continuously aimed for higher 
efficiency, comfort and environmentally safe operations. An accurate selection, firstly, of the 
most appropriate blade sections is, consequently, of crucial importance at least to limit the 
side effects of cavitation. In the present work, therefore, a numerical framework for the design 
by optimization of marine hydrofoils under cavitating conditions is proposed. By combining a 
parametric description of the hydrofoil shape, the NSGA-II multi-objective genetic algorithm 
and appropriate flow solvers, new hydrofoil shapes are derived. Objectives of the design are 
blade sections with enlarged cavitation buckets to increase the cavitation inception speed and 
to reduce the cavity volume (under the constraint of unchanged delivered lift) with respect to 
widely accepted NACA66 profiles. Boundary element methods and RANSE solvers (a proprie-
tary Hess & Smith implementation and the open-source RANSE solver OpenFOAM) are ap-
plied in succession in order to verify the influence of the inviscid/viscous nature of the flow on 
the final optimal hydrofoil shape and of the additional maximum lift/drag ratio objective re-
quired in the case of viscous calculations.   
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1 INTRODUCTION 
In recent years, the design of marine propellers has consistently evolved. From Betz opti-

mum criteria to lifting line and lifting surface computer codes, the definition of the optimal 
(under certain constraints and objectives) blade geometry results as the massive application of 
numerical approaches the more sophisticated the more computational resources became avail-
able. 

Efforts have been made to optimize the propeller geometry increasing efficiency [1] or op-
timizing the cavitation behavior [2]. The final consequence of this trend was the completely 
numerical design by optimization approach proposed in [3] for both conventional and uncon-
ventional propellers [4][5]. The so-designed propellers showed superior performance with re-
spect to traditional design methodologies thanks to the application of computationally 
efficient and accurate potential flow solvers based on panel methods and global convergence 
optimization algorithms to deal with multi-objective and constrained designs, even in the case 
of high-demanding controllable pitch propellers [3][6]. Efficiency and cavitation, as a matter 
of fact, are contradictory demands. In order to fulfill the demand of high efficiency and stable 
sheet cavitation on the suction side of the blade the loading at tip (the pitch, consequently) 
cannot be too small: tip vortex cavitation, consequently, may occur and the “bursting” of the 
vortex in the propeller wake represents a source of broadband excitation to the ship structures. 
On the other hand, an excessive unloading of the tip may cause leading edge separating vor-
texes (or pressure side cavitation) which erosive action on the propeller tip can be substantial. 
The optimization of the main geometrical parameters of the propellers (radial distribution of 
pitch, camber and chord, for instance) based on accurate potential flow solver calculations 
allowed for a well-balanced choice of the optimal geometry. 

The application of potential panel methods, however, was bottlenecked by the inviscid as-
sumption for the flow. If the influence of viscosity can be partially accounted via simplified 
formulations when global parameters such pitch or chord were modified, instead, when local 
geometrical variations (blade leading edge radius or blade sectional thickness distribution, for 
instance) have to be investigated, it is mandatory to make use of more accurate approaches to 
avoid unphysical solutions. The designs by optimization already proposed [3][4], for instance, 
dealt only with global variations of the geometry, avoiding excessive modifications of the 
base profile shape in the light of limiting the influence (only partially controlled by panel 
methods and empirical formulations) of the viscosity on local flow phenomena. On the other 
hand, the reduction of cavitation induced pressure pulses and the prevention of cavitation ero-
sion can be efficiently achieved exactly by using better design of the blade sections instead of 
the simple geometries of B-Series or MAU series, making optimization also of blade sections 
worth of investigation. 

The use of thin and wide sections as the results of increased blade area ratio and reduced 
loading per unit area is, probably, the simpler way to improve the cavitation behavior of ma-
rine propellers. Thinner sections means larger margins against bubble cavitation on the suc-
tion side at a cost of a relatively narrow cavitation bucket that increase the risk of sheet 
cavitation on both blade sides and dramatically reduces the sheet cavitation inception speed 
when the propeller operates in a spatial non-uniform inflow. Moreover, larger blade area 
means higher friction losses and lower propulsive efficiency, opposite to the design objectives. 
The erosive nature of bubble and pressure side cavitation, in addition, influence the design of 
the propeller blade. A certain pitch and camber combination is always selected in order to al-
ways have an enough margin against pressure side cavitation under the worst unloaded condi-
tion. The consequence of this design philosophy is that the design operation point in the 
average ship wake field can no longer be placed at the angle of attack of shock-free entry of 
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the profile. The required average angle of attack is, thus, shifted towards the suction side cavi-
tation with an increased risk of large cavitation volumes and hull excitations. 

Hence, the development of robust tools to accurately deal also with a better design of blade 
sections is indispensable to pursue efficient designs with improved cavitation performance. 
Instead than designing propellers with higher values of blade area, the application of new 
blade sections, in fact, may overcome many of the critical points of the usual hydrofoil shapes 
adopted in the propeller design. By using sections with wider cavitation buckets the design 
point can be brought back close to the shock free angle of attack of the profile, preventing 
high suction peaks on the suction side leading edge of the blade and increasing the cavity in-
ception speed. NACA profiles [7], from this point of view, represent a substantial improve-
ment with respect to traditional section series and, despite they were designed for wing 
sections of airplanes, they are widely accepted in propeller design. The almost flat pressure 
distribution on the suction side, achieved with the design assumption of the largely adopted a 
= 0.80 camber distributions, allows for a relatively wide cavitation bucket, partially limited by 
the non-optimal response to negative (lower than the ideal) angles of attack.  Even better cavi-
tation performance could be achieved by employing different camber and thickness distribu-
tions for the evaluation of which, however, advanced design tools are required.  

The first attempts to wider the cavitation bucket of hydrofoils for marine propellers date 
back to the eighties when Shen [8] applied the Eppler’s method [9] for the design of improved 
hydrofoil shapes. Successful application were those by Kuiper [2] and Dang [10], both in the 
case of hydrofoils and propellers. A non-linear design of the so-called “new blade section” 
was achieved by Dang [11]. The newly designed hydrofoils were characterized by an unload-
ing of the leading edge to withstand large variations of the angle of attack together with a 
maximum thickness toward the leading edge as the application of a boundary element method 
coupled with a thin boundary layer solver. The importance of this design approach was to 
have pointed out the importance in the design process of the viscous phenomena, in particular 
the turbulent separation of the boundary layer, which should be accurately taken into account 
for reliable design and performance improvements. Further advances in wing sections design 
were those of Amoignon [12], which proposed a gradient-based optimization environment for 
the definition of optimal wing profiles aimed to the minimization of the drag at constant lift. 
The solution of the Euler equations with appropriate corrections to account for the laminar 
flow allowed for reliable designs while by using a RANS equations solver it was possible to 
consider in the optimization process the turbulent viscosity that may dominate the flow in the 
particular case of high-lift systems. Even if limited to lift/drag optimization, the application of 
fully viscous solvers to the design of aeronautical wing profiles showed the obvious ad-
vantages that could be expected by using a RANSE solver and that, reasonably, can be ex-
pected also in the more demanding case of hydrofoils subjected to the cavitation avoidance 
constraint. 

In the present work, as the first step towards the application of fully viscous approaches to 
the complete design of marine propellers, a design by optimization of marine hydrofoils is 
proposed. The design framework consists in a robust parametric description of the hydrofoil 
shape by using B-Spline curves, a multi-objective optimization based on the NSGA-II algo-
rithm and two different flow solvers, a Boundary element method and the OpenFOAM 
RANSE tool. Similarly to what proposed by Dang [11], the objectives of the optimization are 
the widening of the cavitation bucket of a parent hydrofoil (the NACA66 Mod, a=0.80 mean 
camber line, with a maximum camber/chord ratio equal to 0.02 and a maximum thick-
ness/chord ratio equal to 0.04) and the maximization of lift/drag ratio. If, of course for its in-
herent assumption, the prediction of the frictional drag is pointless when the Boundary 
element method is applied, with the OpenFOAM RANSE [13] solver it is possible to account 
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for the viscosity influence. Two different optimization, therefore, are proposed. The first con-
siders as objective only the widening of the bucket and it is carried out by employing only the 
Boundary element method. Results are finally checked with the RANSE in order to verify that 
the optimal solutions under the potential flow hypotheses are still valid when the viscosity is 
taken into account. The second one is directly based on viscous calculations and, as highlight-
ed above, in addition considers as objective the maximization of the lift/drag ratio at a given 
delivered lift. Besides, a preliminary validation of the flow solvers is carried out in order to 
highlight possible limitations and their influence on the predicted cavitation buckets of both 
the reference and the optimized hydrofoils. 

2 THE DESIGN BY OPTIMIZATION 
The design by optimization consists, essentially, in a reverse design process based on an 

automatic try-and-error procedure: the hydrofoil shape optimization problem can be formulat-
ed as the iterative finding of the set of real valued bounded free variables that control the ge-
ometry of the hydrofoil able to minimizes an objective function (cavitation) subject to a set of 
constraints (lift, for instance). By using any of the available flow solvers, the optimal shape is 
found by the iterative modification (based on predicted performance) of an initial set of ge-
ometries: the design is indirect, rising form the analysis of hundreds (or thousands) of differ-
ent possible configurations among which identify the better candidates against selected 
constraints and objectives. This design process, in principle, can be summarized in three steps: 
a. A parametric description of the geometry, able to automatically generate suitable varia-

tions of the reference design, 
b. A computationally efficient CFD method (the Boundary element method or the RANSE 

solver) for the hydrodynamic analysis of the effects of the shape variations of the thou-
sands of the different candidates under investigation, 

c. A reliable and robust derivative-free global convergence optimization algorithm able to 
find the path to the overall optimum by automatically changing (a) the hydrofoil shape 
and by computing (b) its performance. 

2.1 Parametric description of the hydrofoil geometry 
The parametric description of the hydrofoil geometry is one of the key point of the optimi-

zation process. It is necessary to define automatically each new shape whose hydrodynamic 
characteristics have to be evaluated in the design process, on the basis of a rather limited 
number of parameters that turn to be the free variables of the optimization, i.e. the set of val-
ues free to be changed in order to identify the optimal design. At the same time, this descrip-
tion has to comply with some “geometrical” constraints: the hydrofoil shape, at least in the 
case of partially cavitating applications, has to be “faired”, avoiding abrupt changes in curva-
ture and slope. A rather well-established way to achieve these results consists in the adoption 
of B-Spline curves. As proposed in [3][4][5], B-Splines were successfully adopted to model 
the main geometrical characteristics of conventional and unconventional propellers, providing 
a robust approach for the definition and the smooth modification, through their control points, 
of the blade shape. Similarly, also in the hydrofoil case, B-Spline curves were adopted. Rather 
than directly describing the suction and the pressure side curves, however, it was preferred to 
model the thickness and camber distributions, following a usually adopted convention in the 
design of marine propellers. An example of the B-Spline approximation of the parent 
NACA66Mod section is proposed in Figure 1. The fifteen free parameters considered in the 
optimization, together with their allowed range of variation expressed as a percentage of the 
reference NACA66Mod value, are summarized in Table 1. 
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Figure 1: B-Spline description of the reference NACA66Mod non-dimensional half thickness and non-

dimensional camber distribution and relative control polygons.  

 
Point  Δx/c Δy/c Point Δx/c Δy/c 
C1  ± 40% ± 10% T1 - + 50%/-20% 
C2  ± 40% ± 10% T2 + 50%/-20% + 50%/-20% 
C3  ± 40% ± 10% T3 + 50%/20% ± 30% 
C4  ± 40% ± 10% T4 ± 40% ± 20% 

 
Table 1: Ranges of variation of the free parameters adopted for the hydrofoil shape definition. The x/c position 

of point T1 was fixed equal to 0 (no variations allowed) to avoid cusps at the hydrofoil leading edge. 

2.2 Boundary Element Method and RANSE solvers for hydrofoils hydrodynamic analy-
sis 
For the solution of the flow around bi-dimensional hydrofoils, two different solvers were 

adopted. The first one is a potential Boundary element method for incompressible, inviscid 
and irrotational flows. The current implementation is based on the low-order Smith and Hess 
[14] approximations. The Laplace equation for the perturbation velocity potential  is solved 
by a superposition of piecewise constant sources and vortexes, distributed only over the hy-
drofoil surface discretized by using straight segments, which intensity is defined based on the 
kinematic and the Kutta boundary conditions: 

0
∙ 0⁄

∆ 0
 (1)
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The corresponding pressure distribution over the hydrofoil, from which forces are derived, 
is calculated with the Bernoulli’s theorem. The second solver is based on the solution of the 
RANSE equations for an incompressible fluid: 

∙ 0
1

∙  (2)

 where  is the tensor of Reynolds stresses (computed according to Boussinesq hypothe-
sis) and  is a tensor representative of additional momentum sources. In the present work, the 
set of equations (2) is solved, on an unstructured finite-volume mesh, by using OpenFOAM 
[13] and the SST  turbulence model to account for the additional stresses due to turbu-
lence. 

2.3 Validation analysis  
A preliminary validation of the both the flow solvers has been carried out in order to assess 

their accuracy and to highlight the possible limitations that could affect the design of optimal 
hydrofoils in the optimization process. A suitable test case is represented by the prediction of 
the pressure distribution around a NACA0012 hydrofoil for which accurate measurements are 
available in [15]. Boundary element method calculations are based on a surface mesh of 1000 
panels arranged in a cosinusoidal spacing at leading and trailing edge that is necessary to have 
a better description of the local high curvature surfaces. RANSE calculations were carried out 
on a hybrid unstructured mesh arranged with the open source meshing tools GMSH [16]. An 
example of the computational mesh, with a close-up view at the hydrofoil leading edge, is 
proposed in Figure 2. The hybrid mesh (about 35000 cells) consists in an inner, near-wall 
structured part, made up of prism cells to control the boundary layer phenomena, and an ex-
ternal part filled by triangular elements. An appropriate spacing of the cells was adopted in 
order to comply with non-dimensional wall distances compatible with the high- or low- 
Reynolds formulation of the turbulence model equations. The results of the analysis are sum-
marized in Figure 3, where the predicted pressure distributions, calculated with different sec-
ond-order accurate discretization schemes (the OpenFOAM limiteLinearV and linearUpwind) 
and turbulence modeling, are compared with measurements and with dedicated numerical cal-
culations carried out with the NASA CFL3D code [17] and available in [18].  

     

(a) Computational domain (b) Detail of the mesh at the hydrofoil leading edge 

Figure 2: Mesh arrangement for viscous flow calculations – NACA0012 hydrofoil. 

The agreement is satisfactory. Both the Boundary element method and the OpenFOAM 
RANSE solver predict pressure distributions on the suction side close to measurements. At 
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the leading edge some differences, however, can be appreciated and have to be considered in 
the optimization process. Except the NACA CFL3D calculations, that effectively were carried 
out on a rather different (fully structured, low-Reynolds assumption with y+<<1) mesh ar-
rangement, OpenFOAM results, regardless the wall bounded turbulence modeling and the 
spatial discretization schemes, slightly underestimate the suction pressure peak that, instead, 
is reasonably foreseen by the CFL3D code. On the contrary, the suction peak predicted by the 
Boundary element method is higher than both the measurements and the viscous calculations. 
The cavitation buckets predicted by the Boundary element method are expected, consequently, 
to be “narrow” (i.e. slightly anticipating, at a given angle, the occurrence of cavitation) than 
those predicted by viscous calculations.  

 

(a) Pressure distribution on the hydrofoil (b) Close-up view at hydrofoil leading edge. 

Figure 3: Predicted pressure distribution (-CP) on the NACA0012 hydrofoil at 10 deg. of angle of attack. Com-
parison between measurements and numerical calculations.  

However, what really matters and drives the convergence of the optimization algorithm is 
the relative merit and not the absolute value of the predicted performance: only the ability of 
the numerical approaches to rank correctly different hydrofoil shapes is necessary to perform 
a design by optimization. The results achieved with this numerical setup (mesh, turbulence 
assumption and numerical schemes), consequently, may be considered satisfactory, especially 
in the light of need of computationally fast (few seconds for Boundary element calculations, a 
couple of minutes for the OpenFOAM RANSE results) approaches to deal with the thousands 
of cases to be analysed.  

2.4 Optimization process with constraints and objectives 
The optimization process proposed for the design of hydrofoils has a multi-objective nature. 

Improving the cavitating performance of a hydrofoil presupposes the necessity to simultane-
ously monitor different and opposite phenomena: suction side sheet cavitation may be re-
duced by using high values of camber that, in turn, determine an increase of the risk of sheet 
cavitation on the pressure side with the change of the angle of attack. An increase of the 
thickness generally turns out to be an effective way to mitigate the suction peaks at leading 
edge at the cost, however, of an anticipated inception of the bubble cavitation at the hydrofoil 
mid-chord. In addition, a constraint on the delivered lift has to be forces in order to design hy-
drofoils which performance are in line with those provided by the reference geometry. A mul-
ti-objective optimization algorithm is, consequently, required. In the present calculation, the 
NSGA-II [19] – Nondominated Sorting Genetic Algorithm was selected.  
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Similarly to what proposed by Dang [10], the cavitation bucket represents a useful repre-
sentation of the cavitating performance for the optimization process. By simply assuming as 
the cavitation inception the condition in correspondence of which the minimum value of the 
pressure coefficient on the hydrofoil equals the cavitation number ( ), any cavitation 
bucket may be simply computed, regardless the flow solver, by collecting, in correspondence 
to a sufficient number of different angles of attack, the minimum value of the pressure coeffi-
cient. Exactly the same computational idea is under the devised optimization approach. As 
exemplified in the diagram of Figure 4, by simultaneously requiring the minimization of the 
value of the inception points for a set of angles of attack it is possible to drive the selection of 
any new hydrofoil shape towards the widening of the cavitation bucket, i.e. towards the post-
poning of the cavitation phenomena. 

 

Figure 4: Example of widening the hydrofoil cavitation bucket by simultaneously controlling the cavitation in-
ception at different angles of attack.  

The (minimum) number of angles of attack to be monitored in the design process, of 
course, has to be carefully selected. Having in mind the different type of cavitation a hydrofoil 
may be subjected to, angles have to be selected in order to let the algorithm monitoring suc-
tion and pressure side sheet as well as mid-chord cavitation on the back side. The cavitation 
bucket of the reference geometry serves as guideline for this selection. The proposed optimi-
zation algorithm, in the end, is structured to: 

 Minimize the inception value of pressure side sheet cavitation (  at ), 
 Minimize the inception value of mid-chord suction side bubble cavitation (  at 

), 
 Minimize the inception value of suction side sheet cavitation (  at ), 
 Deliver a Lift coefficient at a given angle of attack  equal to that of the refer-

ence hydrofoil (with a ±2% tolerance to speed-up the Pareto convergence), 
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 Minimize, only in the case when the OpenFOAM RANSE solver is adopted in the 
optimization process, the frictional drag. 

3 RESULTS 

3.1 Design of the optimal hydrofoil – inviscid approach 
The first design was obtained by the application of the Boundary element method as the 

flow solver in the optimization run. Thus, only a constraint on the lift computed by the 
Boundary element method itself in the case of the reference NACA66Mod hydrofoil (CL = 
0.26 ± 2% at  = 0°) was forced. Two different cases were addressed. The first one (case I-inv) 
was carried out considering as a geometrical constraint the maximum thickness of the hydro-
foil which was forced to be equal to the value of the reference NACA66Mod profile. The sec-
ond run (case II-inv) allows unconstrained variations of the free parameters, resulting in 
optimized hydrofoils with a maximum thickness and camber different from those of the refer-
ence geometry. 

The optimization process, as the consequence of the computational efficiency of the 
Boundary element method, solved 60 thousands different candidate geometries (a population 
of 100 and 600 generations) for case I-inv. Case II-inv, instead, solved only 10 thousands of 
different geometries as the combination of a population of 100 members and 100 generations. 
The performance of case I-inv are summarized in the Pareto diagram of Figure 5. Results are 
collected in terms of reduction of the inception point of sheet and back cavitation on the x- 
and y- axis while bubbles inception is monitored by the size of the markers. Green points de-
fine a subset of geometries having better performance (leading edge sheet cavitation only) 
with respect to the reference shape that is marked in blue.  

 

 

Figure 5: Pareto diagram of the inviscid optimization – case I-inv. 
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The improvements (Boundary element method results) achieved through the optimization 
are remarkable, in particular for what regards the reduction of the suction and pressure side 
sheet cavitation inception. Bubble cavitation is only slightly enhanced, as better highlighted 
by the bucket diagrams of Figure 6. Two are optimal hydrofoils extracted from the design by 
optimization: opt8S is, among the optimal back/face subset, the geometry with the highest 
improvement in terms bubble cavitation postponing while opt29S is a better-balanced geome-
try that achieve higher improvements for what regards back and face cavitation at the cost of 
negligible improvements for what regards mid-chord phenomena. 

 

 
Figure 6: Comparison between the case I-inv optimal (opt8S on the left, opt29S on the right) and the reference 

(NACA66Mod) cavitation buckets. Boundary element method (shpanel) and RANSE (simpleFoam) calculations.  

Essentially the improvements in bubble phenomena, monitored by the panel method, are 
almost negligible. In the case of the opt8S geometry the enhancement regards the entire range 
of angle of attack originally subjected (for the reference NACA66Mod) to bubble cavitation 
while in the case of the opt29S only in a narrow range around the 2 angle (that adopted in the 
optimization to monitor bubble cavitation) the optimized hydrofoil provides better perfor-
mance. The improvements in sheet cavitation inception, instead, are clearly evidenced by the 
comparison of the bucket diagrams. For the entire range of angle of attack under investigation 
the optimized geometries provide better performance that result particularly improved in the 
case of opt29S hydrofoil.  
 

      
Figure 7: Comparison between the optimal (opt8S and opt29S) and the reference (NACA66Mod) hydrofoil ge-

ometries. 
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Pressure side inception is significantly postponed, with an appreciable improvement in cor-
respondence of the sharp point that characterize the transition bubble/pressure side cavitation 
of the reference NACA66Mod shape. These results have been achieved, as expected, by the 
shift, towards the leading edge, of the maximum thickness, that is particularly evident in the 
case of the opt29S geometry (Figure 7). This optimized hydrofoil, indeed, effectively produc-
es the higher improvements in terms of leading edge cavitation that are obviously mitigated 
by locally thicker sections. The improvements evidenced by the optimization are furthermore 
important from two additional point of view. If the shift of the maximum thickness towards 
the leading edge is an obvious conclusion for the mitigation of the sheet cavitation, the result-
ing geometry, as the outcome of the constrained optimization, automatically provides the re-
quired performance (lift, for instance) without any worsening, related to the thickness 
distribution, in terms of bubble cavitation. In addition, the calculations carried out with the 
OpenFOAM RANSE solver confirm the trends and the ranking of the geometries under inves-
tigation evidenced by the panel method. Both the analyzed geometries are overall better than 
the reference hydrofoil, confirming the outcomes of the design by optimization carried out 
with the “low” fidelity Boundary element method. In addition, for both the opt8S and the 
opt29S hydrofoils, viscous calculations foresee a (very) slightly better performance for what 
regards bubble cavitation: opt8S, also when analyzed with OpenFOAM, shows a slightly 
higher increase of the mid-chord cavitation inception speed. Similarly, the cavitation bucket 
predicted by using viscous calculations in the case of opt29S is characterized by the substan-
tial improvement in terms of pressure side phenomena already foresee by the inviscid calcula-
tions. Even if the absolute values of the cavitation buckets calculated by using the Boundary 
element method or the RANSE solver are slightly different, the relative merits of one geome-
try with respect to another are very similar. The Boundary element method, consequently, can 
be considered a reliable and suitable approach to design hydrofoils under cavitating condi-
tions with the only limitation of the “efficiency” (i.e. the lift/drag ratio) of the newly designed 
hydrofoils due to the inherent limitations of the potential flow assumption (Table 2). 

The second optimization run with the inviscid approach, case II-inv, was carried out by un-
constraining the maximum of the thickness distribution. The reference profile under investiga-
tion, effectively, is relatively thin: bubble phenomena are naturally postponed (indeed the 
bubble inception cavitation index of about 0.30, as from Figure 6, is very low) at the cost of a 
leading edge sheet cavitation sensibly worsened. A released maximum thickness should fur-
ther improve the hydrofoil performance. 

The results of case II-inv optimization are summarized in the Pareto diagram of Figure 8 
by using the same convention (axis and markers size) adopted for case I-inv. Among the op-
timal suction and pressure side cavitation subset, two candidates, namely opt28 and opt469, 
were selected based on bubble cavitation improvements in order to assess the influence of the 
thickness distribution by analysing, through Boundary element method and RANSE calcula-
tions, their complete cavitation buckets. 

The complete cavitation buckets of opt28 and opt469 (Figure 9) are in line with the results 
of the optimization: both the hydrofoils provide, for what regards leading edge sheet cavita-
tion, better performance with respect to the reference NACA66Mod. Once again, the relative 
merits of on geometry with respect to another are identically foresee also by the RANSE cal-
culations, indirectly proving the reliability of the Boundary element method in the optimiza-
tion process. 
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Figure 8: Pareto diagram of the inviscid optimization – case II-inv. 

The improvements in terms of sheet cavitation (especially on the face side) of opt469, as it 
could be expected by comparing the thickness distributions of the hydrofoils shown in Figure 
10, are the higher among those of the analyzed geometries (opt8S, opt29S, opt28): opt469 has, 
indeed, a maximum thickness that is about the 20% higher than that of the NACA66Mod. 

 

 
Figure 9: Comparison between the case II-inv optimal (opt28 on the left, opt469 on the right) and the reference 

(NACA66Mod) cavitation buckets. Boundary element method (shpanel) and RANSE (simpleFoam) calculations.  

Moreover, the increased maximum thickness is shifted, as in case I-inv optimization, to-
wards the leading edge. The resulting worsening of the bubble phenomena is exactly evi-
denced by both the viscous and the inviscid calculations. On the contrary, hydrofoil opt28 was 
selected with stricter margin on bubble cavitation. The increase in maximum thickness, that 
positively acts to widen the cavitation bucket, is limited by the avoidance of bubble cavitation 
in excess to that of the reference geometry. As pointed out by the cavitation diagrams, the 
slight increase of thickness that characterize the opt28 geometry thanks to which its leading 
edge cavitating  performance  are improved,  is counterbalanced  by a  slightly  lower value of  
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Figure 10: Comparison between the optimal (opt28 and opt469) and the reference (NACA66Mod) hydrofoil ge-

ometries.  

maximum camber that allows a mid-chord cavitating behavior similar, by both the numerical 
predictions, to that of the reference profile. As for the case I-inv optimization run, the lift over 
drag ratios (Table 2), computed a posteriori by using the RANSE solver, for the selected op-
timal geometries is always lower than that of the reference hydrofoil. The direct application, 
in the next section, of the viscous solver into the optimization process may definitely guide 
the design towards even efficient configurations. 
 

Geometry  Lift / Drag 
NACA66Mod -  a = 0.80, tmax/c = 0.04, fmax/c = 0.02  28.060 
Opt8S 26.932 
Opt29S 26.457 
Opt28 27.268 
Opt469 27.910 

 
Table 2: Lift over drag ratios (OpenFOAM RANSE calculations) for the selected hydrofoils at the angle of at-

tack of 0°. 

3.2 Design of the optimal hydrofoil – viscous approach 

An even accurate design by optimization was obtained by the application, directly in the 
design and not only as a verification tool, of the OpenFOAM viscous RANSE solver. As ex-
tensively pointed out in Dang [10][11], viscosity may play an important role. If in the aero-
nautical field, of course, the main goal of any new designs mainly concerns with the control 
of the boundary layer and, in turn, of the frictional forces [12], for maritime applications it is 
important to account for viscosity even if the attention is focused on cavitation. At first, obvi-
ously, to have more efficient designs requiring, as an additional objective, the maximization 
of the lift/drag ratio, for instance. Secondly to have more accurate designs (on the basis, of 
course, of a high-fidelity flow solver) and account or even exploit any interaction with the 
boundary layer to widen the cavitation bucket. 
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Similarly to what already proposed in the case of the inviscid calculations, two different 
optimization runs have been proposed. Case I-visc was carried out with a constraint on the 
maximum hydrofoil thickness (equal to that of the reference NACA66Mod) for a total of 
3000 geometries selected by the optimization algorithm while in case II-visc, in analogy with 
case II-inv, this constraint was neglected and only 1500 geometries were tested. Even if re-
stricted to 2D calculations, the computational efficiency of the viscous solution is orders of 
magnitude lower than that of the Boundary element methods, forcing the solution only of a 
fraction of the geometries analyzed by the inviscid approach to comply with a reasonable de-
sign time. The amount of collected data is only sufficient to highlight some tendencies and 
some preliminary optimal results, as evidenced by the Pareto frontiers clearly identified in 
Figure 11 and 12. In addition to the objectives related to cavitation, monitored on the axes and 
by the size of the markers, the color scale evidences the lift/drag ratio. 

As it can be appreciated by the analysis of the Pareto diagrams and the cavitation buckets 
of two extracted geometries (opt33SV for case I-visc and opt8V for case II-visc) the inclusion 
of an additional objective (the lift over drag ratio) and the relatively limited number of 
evolved generations strongly condition the designs. Both the geometries were selected in the 
light of a balanced design (simultaneous improvement of the entire set of objectives) trying to 
limit as much as possible the mid-chord bubble cavitation, that is recognized to be one of the 
most dangerous cavitating phenomena. As in the case of inviscid calculations, the maximum 
thickness is shifted towards the leading edge, as shown in Figure 14. An evident difference 
between opt33SV and opt8V can be, however, appreciated: the latter is characterized by a 
slightly higher value of maximum thickness, allowed in the optimization process of case II-
visc, and a substantial tapering at the trailing edge.  

 

 

Figure 11: Pareto diagram of the viscous optimization – case I-visc. 

8318



Paolo Olivucci and Stefano Gaggero 

 

Figure 12: Pareto diagram of the viscous optimization – case II-visc. 

The improvements achieved by both the optimizations are highlighted by the bucket dia-
grams of Figure 13 and by the comparison of the lift over drag ratio of Table 3. All the cavi-
tating analyses were carried out also with the panel method in order to further verify the 
reliability of the panel method, eventually only from a comparative point of view, in a case 
where also viscous were considered for the design. 

Optimization of case I-visc (opt33SV), despite the constraint on the maximum thickness, 
provides slightly better cavitating performance (with respect to both the reference 
NACA66Mod and the unconstrained thickness optimal shape opt8V) on both the suction and 
the pressure sides with a negligible worsening, however, of the mid-chord phenomena.  

 

 
Figure 13: Comparison between the case I-visc optimal (opt33SV on the left), case II-visc optimal (opt8V) and 

the reference (NACA66Mod) cavitation buckets. Boundary element method (shpanel) and RANSE (simpleFoam) 
calculations.  
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Geometry  Lift / Drag 
NACA66Mod -  a = 0.80, tmax/c = 0.04, fmax/c = 0.02  28.060 
Opt33SV 28.150 
Opt8V 28.265 

Table 3: Lift over drag ratios (OpenFOAM RANSE calculations) for the selected hydrofoils at the angle of at-
tack of 0°. 

A single point in correspondence of which the mid-chord phenomena are monitored, as 
well as only one “positive” and one “negative” angles in correspondence of which the leading 
edge cavitation phenomena are controlled in the optimization process, may impair the design, 
producing geometries (i.e. opt8V) only “locally” better. Only the analysis of the entire cavita-
tion bucket may effectively shows the overall fitness of the design that, however, is verified in 
the case of the opt33SV hydrofoil. With the exception of the higher values of the angle of at-
tack subjected to bubble cavitation, evidenced by the panel method as well, both the suction 
and the pressure side cavitation performance and the bubble cavitation close to the monitored 
point are improved with respect to reference geometry. Differently from the inviscid optimi-
zations, that achieved optimal geometries with better cavitating performance but at the cost of 
a reduced lift/drag ratio (all the analyzed geometries from cases I-inv and II-inv), the opt33SV 
provides, in addition, a slightly reduced value of frictional resistance that results in a slightly 
improved lift/drag ratio. Opt8V, on the contrary, from the cavitation point of view is only neg-
ligibly improved. Back and face cavitation is postponed only locally while the overall perfor-
mance of the hydrofoil are exactly comparable with those of the reference NACA. For values 
of the angle of attack close to 0° the pressure side cavitation is even slightly worsened, as well 
as the mid-chord bubbles that are slightly anticipated with respect to the original geometry. 
This behavior, foreseen by the Boundary element method too, is balanced by the higher lift 
over drag ratio that can be achieved with this highly tapered geometry.  

 

 
Figure 14: Comparison between the optimal case I-visc (opt33SV on the left), case II-visc optimal (opt8V) and 

the reference (NACA66Mod) hydrofoil geometries. 
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4 CONCLUSIONS 
A computational framework for the design by optimization of marine hydrofoils under cav-

itating conditions has been proposed. The design approach relies on a robust parametric de-
scription of the hydrofoils geometry, to derive fair and smooth shapes appropriate for 
subcavitating operations, a multi-objective genetic algorithm and adequate flow solvers (a 
dedicated Boundary element method and the OpenFOAM RANSE solver) to obtain fast and 
reliable prediction of the hydrodynamic performance of the bi-dimensional sections under in-
vestigation. 

Preliminary designs by using the inviscid approach have been proposed, in order to inves-
tigate trends and the possible improvements achievable with a very fast computational ap-
proach. High fidelity RANSE analyses have been furthermore carried out for the shapes 
devised by the inviscid calculations in order to verify the robustness of the BEM predictions, 
also in the light of the validation analysis proposed for a NACA0012 profile. The optimized 
geometries shown an encouraging widening of the cavitation bucket of the reference 
NACA66Mod hydrofoil, not only limited to pressure and suction side cavitation. Despite the 
thinness, that naturally postpones mid-chord bubble phenomena, of the geometries under in-
vestigation, a certain improvement of the cavitating performances for angles of attack close to 
the ideal one has been achieved as well. These results were exactly confirmed by the RANSE 
calculations, which identically ranked the devised geometries and, consequently, validated the 
design procedure based on the relative merit of a geometry with respect to the others rather 
than on absolute values. Only a slightly worsening of the lift of drag ratio, verified a posteriori 
with the viscous calculations, was observed in the case of the newly designed geometries. 

The viscous optimization, further to provide even accurate predictions, was aimed to the 
definition of optimal hydrofoil shapes also from the “efficiency” point of view, by including 
as an additional objective of the optimization, the maximization of the lift over drag ratio. The 
designs by optimization obtained with the viscous flow solver, even if bottlenecked by the 
relatively small number of geometries analyzed, demonstrated, indeed, the possibility to de-
fine geometries that provide better lift/drag ratios. The Pareto diagrams obtained by using the 
OpenFOAM solver showed rather limited improvements in terms, for instance, of both back 
and face cavitation with respect to the remarkable improvements evidenced by pure Boundary 
element calculations. These outcomes are, however, in line with the improvements calculated 
by the viscous approach when applied to the designs devised by the inviscid solver. The opti-
mization of hydrofoils under cavitating conditions, consequently, results a challenging prob-
lem, especially if the parent geometry is an already well-designed hydrofoil. Only small 
improvements, once calculated with the high fidelity RANSE solver were achieved, but it was 
possible to obtain an almost overall geometry (opt33SV, for instance) able to postpone suction 
side and pressure side sheet cavitation and mid-chord bubble phenomena as well (at least for 
some angles), with an higher lift over drag ratio.  

Some points, however, are worth of further analyses and investigations. The relatively 
small number of geometries tested in the viscous optimization runs, of course, was not ade-
quate to accurately populate the Pareto diagram and clearly identify optimal candidates in a 
complex, and with contradictory objectives, design. In addition, wider variations of the free 
parameters should be allowed in order to explore, by using the accurate flow solver represent-
ed by the OpenFOAM RANSE tool, even very non-conventional designs, in principle gener-
ally avoided when Boundary element methods are applied: out of their range of applications, 
their inherent assumptions turn into unreliable predictions. Wider free parameters variations, 
in turn, mean the necessity of a robust finite volume meshing tools able to automatically han-
dle unconventional shapes, especially in present case, for what regards the structured, near-
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wall, part of the mesh. Finally, a more accurate monitoring of the cavitation bucket (by using 
more than the three angles considered in present calculations) may help in devising geome-
tries with globally (instead than locally) wider bucket diagrams. If the analysis, in the optimi-
zation process, of a further set of angles by using the Boundary element method is 
computationally insignificant, in the case of a viscous driven optimization it additionally re-
duces the computational efficiency of the design. At the end of the analyses and as the results 
of all the cross-checked calculations, thanks to comparative nature of the optimization process, 
the Boundary element method results an efficient tool for a preliminary design of hydrofoils 
with widened cavitation bucket, restricting viscous calculations only in the case of lift/drag 
optimizations. 

REFERENCES  
[1] S.V. Andersen, P. Andersen, 1986, Hydrodynamic Design of Propellers with Uncon-

ventional Geometry, Transaction of the Royal Institution of Naval Architects, 129, 201-
221, The Royal Institution of Naval Architects, London, 1986. 

[2] G. Kuiper, S.D. Jessup, A Propeller Design Method for Unsteady Conditions, Proceed-
ings of the SNAME, SNAME Centennial Meeting, New York, 1993 

[3] D. Bertetta, S. Brizzolara, S. Gaggero, M. Viviani, L. Savio, CPP propeller cavitation 
and noise optimization at different pitches with panel code and validation by cavitation 
tunnel measurements, Ocean Engineering, 53, 177-195, 2012. 

[4] S. Gaggero, J.G. Adalid, M. Perez-Sobrino, Design of contracted and tip loaded propel-
lers by using boundary element methods and optimization algorithms, Applied Ocean 
Research, 55, 102-129, 2016. 

[5] S. Gaggero, C.M. Rizzo, G. Tani, M. Viviani,  EFD and CFD design and analysis of a 
propeller in decelerating duct, International Journal of Rotating Machinery, 2012. 

[6] M. Martelli, M. Figari, M. Altosole, S. Vignolo, Controllable pitch propeller actuating 
mechanism, modelling and simulation, Proceedings of the Institution of Mechanical 
Engineers Part M: Journal of Engineering for the Maritime Environment, 228, 29-43, 
2014. 

[7] T. Brockett, Minimum pressure envelopes for Modified NACA-66 Sections with 
NACA a=0.8 camber and Buship Type I and Type II sections, David Taylor Model Ba-
sin, Report n. 1780, 1966. 

[8] Y.T. Shen, Wing Sections for Hydrofoils – Part 3: Experimental Verification, Journal 
of Ship Research, 29, 39-50, 1985. 

[9] R. Eppler, Direct Calculation of Airfoils from Pressure Distribution, NASA technical 
translation, NASA TT F-15 417, 1974. 

[10] J. Dang, New Blade Section Design and Its Application, Proceedings of the Third In-
ternational Symposium on Cavitation, Grenoble, France, pp. 301-308, April 1998. 

[11] J. Dang, Improving Cavitation Performance with New Blade Sections for Marine Pro-
pellers, International Shipbuilding Progress, 51, 353-376, 2004. 

[12] O. Amoignon, AESOP – A numerical platform for aerodynamic shape optimization, 
Journal of Optimization in Engineering, 11, 555-581, 2010.  

8322



Paolo Olivucci and Stefano Gaggero 

[13] The OpenFOAM Foundation. OpenFOAM 2.3.0 users guide, 2014. 
[14] J.L. Hess, The Problem of Three-Dimensional Lifting Potential Flow and Its Solution 

by Means of Surface Singularity Distributions, Computer Methods in Applied Mechan-
ics and Engineering, 4, 283-319, 1974. 

[15] N. Gregory, C.L. O'Reilly, Low-Speed Aerodynamic Characteristics of NACA 0012 
Aerofoil Sections, including the Effects of Upper-Surface Roughness Simulation Hoar 
Frost, NASA R&M 3726, 1970. 

[16] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator 
with built-in pre- and post-processing facilities, International Journal for Numerical 
Methods in Engineering, 79 (11), 1309-1331, 2009. 

[17] S.L. Krist, R.T. Biedron, C.L. Rumsey, CFL3D User’s Manual (Version 5.0), NASA 
Langley Research Center, NASA/TM-1998-208444, 1998. 

[18] C.L. Rumsey, Turbulence Modeling Resource, NASA Langley Research Center, 
http://turbmodels.larc.nasa.gov/index.html 

[19] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiobjective Genetic 
Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computational, 6, 2, 2002.  

8323



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

A COMPUTATIONAL STRATEGY FOR TRAJECTORY
OPTIMIZATION OF UNDERACTUATED MULTIBODY SYSTEMS

WITH CONTACTS

Silvia Manara1, Alessio Artoni1, and Marco Gabiccini1,2,3

1Dipartimento di Ingegneria Civile e Industriale
Largo Lucio Lazzarino 1, 56122 Pisa, Italy

e-mail: silvia.manara@for.unipi.it
{a.artoni,m.gabiccini}@ing.unipi.it

2 Research Center “E. Piaggio”, University of Pisa
Largo Lucio Lazzarino 1, 56122 Pisa, Italy

3 Department of Advanced Robotics, Istituto Italiano di Tecnologia
Via Morego 30, 16163 Genova, Italy

Keywords: Optimization, Trajectory Planning, Optimal Control, Computational Methods.

Abstract. In this paper we propose a strategy for improving the computational efficiency of
direct methods for trajectory optimization of multibody systems. We particularly focus on those
applications where the system necessarily has to interact with the surrounding environment
through intermittent contacts. The problem is hereby formulated such that just the initial and
final states of the system over a given time interval are prescribed, so as to let the solver auto-
matically synthesize the best contact sequence to accomplish the considered task. The proposed
computational strategy consists in: (i) solving a preliminary optimization problem that roughly
approximates the original one, but differs from it by one or more conveniently chosen parame-
ters and is faster to solve; (ii) using the obtained solution as an initial guess for the actual (full-
fledged) optimal control problem. The performance of the method is evaluated in a simulated
planar system, whose peculiarity is to be trivially underactuated. An extensive investigation is
presented which shows how a proper choice of the parameters in the preliminary optimization
can lead to a significant reduction in the computational effort required to solve the problem.
The results we present assess both the validity and the robustness of the proposed method.
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1 INTRODUCTION

The analysis of multibody systems interacting with the surrounding environment through
intermittent contacts gives rise to non-trivial issues, mainly caused by the discontinuities due
to friction and impulsive dynamics. However, in contexts such as robotic manipulation and
locomotion, interactions between the system and parts of the environment through unilateral
contact forces are essential in order to accomplish a given task.

The complexity of the trajectory planning problem in such contexts is due to the fact that,
over time, the system may be in an enormous number of possible configurations, separated by
collision events occurring when a new contact is established or a prior one is broken. However,
reducing the search space dimension by a priori scheduling the contact sequence to be followed
by the system may sometimes be difficult and, more notably, so restrictive to lead to the planning
of unnatural behaviors. On the other hand, the combinatorial explosion of possible configura-
tions caused by unspecified contacts can hardly be faced by sampling-based planners [1, 2].
Even the recently proposed multi-modal planners [3] can cope with just a limited number of
contact modes.

Although promising methods for reducing the search space have been recently proposed [4],
the robotics community is showing an increasing interest in optimization-based methods [5]. In
fact, such methods, also known as direct transcription methods, are not significantly affected
by the presence of a priori unknown interaction forces, since the formulation of the problem
as an optimal control one allows the contact forces to be simply embedded in the structure of
the problem itself, without altering it. Different approaches have been proposed to represent
unilateral contact forces. In [6], where the contact invariant optimization is presented, a penalty
term in the cost function accounts for the feasibility of the contact forces. In other works
[7, 8], contact forces were added to the problem variables and their constitutive equations were
listed among the constraints of the optimization problem. Since gradient-based methods can, in
general, very hardly handle discontinuities, special care must be devoted to modeling contact
forces. In [7], a complementarity formulation of contact (resulting in a Linear Complementarity
Problem, LCP) is employed, whereas in [8] two different contact models, respectively based on
complementarity and on a continuous penalty-based formulation, are evaluated. In [9], where
an optimization framework for trajectory planning is proposed and applied to a simplified biped
system performing a one-step walking motion, smoothing functions are introduced to relax the
complementarity conditions involving normal and tangential contact forces.

Other investigations about the potential of gradient-based methods have mainly focused on
trajectory planning of underactuated systems. The particular significance of this kind of systems
is that they are paradigmatic of locomotion problems, where at least the degrees of freedom
(DoF) of the floating base are not actuated. In [10], where a very complex humanoid model
is considered, the problem is approached by considering just the centroidal dynamics of the
system, as the resulting equations describe the effect of external wrenches (due to contact and
gravitational forces) on the underactuated degrees of freedom. Instead in [11], the full system
dynamics is considered. Here, a very detailed model of human lower limbs is used and contact
invariant optimization is employed to make it discover complex motions, including walking.
Different ways of ensuring dynamic feasibility have been proposed as well. In [11], consis-
tently with the contact invariant approach, the violation of the equations of motion is heavily
penalized in the cost function, whereas in other works the dynamics of the systems is added
as a set of nonlinear constraints to the optimal control problem. Among these last mentioned
works, an interesting contribution is given in [12], where an extremely simplified model of a
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floating base legged robot is employed and, without specifying the contact sequence, different
gaits are identified through direct trajectory optimization. Other assumptions are made, such as
periodicity, which make this work focus more on the optimization of the stride itself rather than
on finding more general walking behaviors.

Recent research efforts in robotics [13] have been devoted to provide further insight into the
performance of direct optimization methods. In this paper, we present a study that aims to assess
the performance through extensive numerical tests of different direct trajectory optimization
schemes in terms of computational time and sensitivity to parameters. Additionally, an original
strategy is devised that substantially reduces the computational time to convergence. Both the
validity and the robustness of the proposed method are evaluated through simulation of a 3-DoF
underactuated 2D system.

2 MODEL DESCRIPTION

2.1 System structure and task definition

The computational performance of different direct trajectory optimization schemes, which is
the main object of the present paper, was evaluated for planning the trajectory of a benchmark
system, represented in Fig. 1.

q2

q1

q3

α

C

g Joint limits:Link 2

Link 3

Link 1

30
2

q π
≤ ≤

22 2
qπ π

− ≤ ≤

d = 950 mm

d

Figure 1: PRR model.

Link 1 Link 2 Link 3
m1 = 5 kg m2 = 3 kg m3 = 3 kg

l2 = 500 mm l3 = 500 mm

Table 1: Geometric and inertial properties of the system.

This is a 3-DoF planar PRR system, consisting of three links connected together by two ac-
tuated revolute (R) joints and attached to a supporting frictionless track through a non-actuated
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prismatic (P) joint.
From a given initial state, the system has to reach a specified final position, which is 3 m away

along the direction of the track, within a fixed time horizon, and stop there. It is worth pointing
out that this problem is not as simple as it could appear, as the system under investigation
is trivially underactuated, and therefore it necessarily has to exploit the interaction with the
underlying floor in order to produce the thrust force required to climb up the slope until the
target final position is reached.

2.2 Formulation of the system dynamics

For the description of the system dynamics, we employ the Euler-Lagrange equations for
holonomic systems:

B(q)q̈ + C(q, q̇)q̇ +G(q) = Q(q, q̇, u) (1)

where q ∈ Rn and u ∈ Rm collect, respectively, the configuration variables and the input
torques at the revolute joints,B(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the matrix of
Coriolis and centrifugal terms and G(q) ∈ Rn is the vector of gravitational forces. Q(q, q̇, u) ∈
Rn is the vector of generalized forces, whose j-th component can be expressed as:

Qj(q, q̇, u) =

{
JvC (q)[:, j]>fC(q, q̇) if j ∈ Ā ,

JvC (q)[:, j]>fC(q, q̇) + uj if j ∈ A
(2)

where JvC is the linear velocity Jacobian of the contact point C, fC is a vector that represents
the force acting at C because of the contact with the ground, and uj is the input torque applied
to the j-th joint. A and Ā are, respectively, the set of actuated and non-actuated degrees of
freedom, having cardinalities |A | = m and

∣∣Ā
∣∣ = n−m.

2.3 Contact force model

The optimization of trajectories for systems with intermittent contacts requires a careful
modeling of contact forces. In this paper we employ a penalty-based model, as it provides
smoothness which conveniently fits with the Newton-type algorithms used to solve the opti-
mization problem.

We approximate the unilateral linear contact model by the following differentiable consti-
tutive relation (Fig. 2) between the normal component of the contact force fn and the normal
gap gn separating the candidate contact point C from the ground (it depends on the internal
configuration of the system, i.e. gn = gn(q))

fn(y) = f0 log2

(
1 + 2

− κ
f0
gn
)

(3)

where f0 is the force value at gn = 0, and −κ is the contact stiffness as gn → −∞.
The parameters f0 and κ provide a straightforward way to properly tune the model. For the
problem under investigation, we chose to set f0 = 20 N and κ = 104 N/m, as this tuning results
in a realistic modeling of contact actions, without exacerbating the numerical stiffness of the
problem. With these values, in fact, a very small penetration (gn = −5 mm) yields a value of
the normal force (fn ≈ 50 N) of the same order of magnitude as the forces actually required in
our problem. Also, with this choice of the parameters, the effect of contact forces acting at a
distance — which is one of the main drawbacks of the penalty-based formulation of contact —
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Figure 2: Normal contact force model.

is so small to be negligible: its value at gn = 10 mm is less than 1 N (fn ≈ 0.9 N) and rapidly
vanishes as the normal gap increases.

Also the tangential component of the contact model is approximated, according to a regular-
ization strategy of the stick-slip behavior, as in [14]. For a 2D problem, the relation between the
tangential component of the contact force ft and the tangential velocity Vt of the contact point
can be modeled as follows:

ft(gN , Vt) = µfn(gN)γ(Vt), with γ(Vt) = − tanh

(
Vt

V̂t

)
(4)

Here, µ is the coefficient of friction, γ is a smooth function that approximates the Coulomb
model (Fig. 3), and V̂t is a reference sliding velocity at which the tangential force ft is 76% of its
asymptotic value. This tangential force model requires tuning as well. We set V̂t = 5 · 10−3 m/s,

−V̂t 0 V̂t
Tangential velocity Vt
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Figure 3: Coulomb friction model and its smooth approximation.

as the corresponding model appears to be a fair balance between physical plausibility and nu-
merical tractability. The friction coefficient was fixed to µ = 1.
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3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM

3.1 Discretization

The solution of the optimal control problem through a direct transcription method requires
the parameterization of the continuous optimization problem into a finite dimensional one,
through discretization of the time horizon [0, T ] into N time intervals [tk, tk+1], so that t0 = 0,
tN = T and k ∈ {0, 1, . . . , N − 1}. It is worth emphasizing that problems involving inter-
mittent contacts require very small time steps, because of the typical stiffness of the associated
differential equations. For this reason, in our problem we chose to discretize the time horizon
T = 6 s into N = 200 uniform steps, each having duration h = T/N = 30 ms.

Hence, discrete time versions of both the dynamics of the system and the contact force
model are needed. We parameterize these equations by a collocation scheme based on a single
collocation point, chosen in the middle of each time interval. Over each discretization interval,
we assume the states (q, q̇) to vary linearly, and the controls (which include the torques at
the revolute joints u, together with the components of the contact force fC) to be constant.
According to this scheme, kinematic reconstruction and dynamic equations of the system can
be written as follows:

qk+1 − qk − h¯̇qk = 0 (5)
B̄k(q̇k+1 − q̇k) + h(C̄k ¯̇qk + Ḡk − Q̄k) = 0 (6)

where, for simplicity of notation, we denoted qk = q(tk), q̇k = q̇(tk), q̄k = (qk+1 + qk)/2
and ¯̇qk = (q̇k+1 + q̇k)/2. Moreover, B̄k = B(q̄k), C̄k = C(q̄k, ¯̇qk), Ḡk = G(q̄k), and
Q̄k = Q(q̄k, ¯̇qk, uk).

3.2 Optimization

Let us define a vector of decision variables w ∈ Rν , which collects the sequence of un-
knowns (q0, q̇0, u0, fC0 , . . . , qk, q̇k, uk, fCk , . . . , qN , q̇N). Since we have 2n(N + 1) discretized
state variables, mN discretized control actions, and N variables for each component of the
contact force, the total number of optimization variables is:

ν = 2n(N + 1) + (m+ 2)N (7)

The nonlinear program (NLP) we need to solve in order to obtain the optimal trajectory — and
the corresponding sequence of control actions to be taken — can be formalized as follows:

min
w

f(w)

subject to gmin ≤ g(w) ≤ gmax

wmin ≤ w ≤ wmax

(8)

g(w) is a set of nonlinear constraints, including Eqs. (5)–(6), together with the discretized ver-
sions of the normal and tangential contact force models (Eqs. (3)–(4)). In addition, by properly
enforcing wmin and wmax, we can assign the initial and final configurations and impose joint and
torque limits (torques are constrained in the range [−50, 50] Nm).
f : Rν → R is the objective function to be minimized. In our case, it is made up of five differ-
ent contributions, aimed at minimizing, respectively: input torques, accelerations, dissipation
due to sliding, input torque variations and contact force variations. The objective function was
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calibrated by properly scaling and weighting the different contributions, so as to obtain natural
and smooth behaviors.

Problem (8) results in a large-scale but very sparse NLP, which we solve through the interior-
point solver IPOPT [15]. For the calculation of derivatives, we benefit from the Algorithmic
Differentiation (AD) implemented in the CasADi framework [16].

4 COMPUTATIONAL STRATEGY: TWO-STAGE OPTIMIZATION

The computational strategy we propose in this paper aims to reduce the computational effort
required for the solution of the trajectory optimization problem. The NLP we consider as the
reference problem we want to solve is characterized by the following choice of the parameters:

Discretization N = 200

Normal contact f0 = 20 N
κ = 104 N/m

Tangential contact V̂t = 5 · 10−3 m/s

(9)

The computational strategy we devised is to solve this problem through a two-stage optimiza-
tion. The first stage consists in solving a preliminary optimization problem which roughly
approximates the original one, but is simplified by slight changes in some parameters, so as to
speed up the solution. In order to suitably choose the values to assign to these parameters, we
investigated the beneficial effects of:

• reducing the number of time steps N . This simplifies the problem by decreasing its
dimension, as clearly appears from (7). We will refer to the number of time steps used in
the first optimization as N ′;

• relaxing the contact parameters, as this reduces the numerical stiffness of the problem.
More in details, we smooth the tangential contact model by increasing the value of the
reference tangential velocity V̂t (see Eq. (4)) in the first stage. We will indicate this
value using the symbol V̂ ′t . Regarding the normal contact model, we chose to relax it
by reducing the value of the asymptotic stiffness κ to the value κ′ in the preliminary
optimization, while leaving the parameter f0 unchanged.

Once this preliminary optimization is solved, we proceed to the second stage, using the just
computed solution to warm-start the final optimization problem, whose parameters are sum-
marized in (9). The results we present show how this two-stage strategy, with a proper choice
of the parameters in the preliminary optimization, can lead to a significant reduction in the
computational time required to obtain the solution.

5 RESULTS

In this section, we present the results of our analysis. All of them were obtained on a note-
book computer with a 2.40 GHz Intel(R) Core(TM) i7-5500U processor and 8 GB of RAM.
The performance is evaluated here in terms of CPU time to convergence.

5.1 Reference solution

The reference solution was obtained in a single-stage optimization. Namely, this solution
was computed by solving the optimal control problem, characterized by the parameters detailed
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in (9), without exploiting the advantage of solving a preliminary optimization with a coarser
time grid, nor a relaxed contact model. The slope of both the track and the ground was set to
α = π/30.

The initial guess was selected so that all of the variables were zero except for the configu-
ration variables q: the internal configuration angles were set to their initial state values (equal
to those in the final state), whereas the prismatic coordinate q1, representing the position of
the PRR system along the track, was initialized using a cubic interpolation between the initial
and final conditions. This choice was made with the precise intention of providing the solver
with the minimum domain knowledge on how to accomplish the task, since we would like it to
discover the optimal gait by itself.

The solution was obtained after 300 s CPU time (671 iterations), and it is depicted in Fig. 4.
The corresponding values of some of the optimization variables over the time horizon are plotted
in Fig. 5.

Figure 4: In gray, frames of the reference optimal trajectory. In blue and red, respectively, the initial and final
configurations prescribed to the system.

5.2 Two-stage optimization strategy

Let us now compare the performance of the proposed two-stage optimization strategy against
the reference single-stage solution. The strategy described in Sec. 4 consists in solving a prelim-
inary approximated optimization, and using its solution to warm-start the full-fledged optimal
control problem. The preliminary optimization differs from the reference problem by one or
more parameters: in particular, we investigated the effect of enlarging the time steps and relax-
ing the parameters of the contact model. The first stage of optimization is initialized in the same
naive way as illustrated in Sec. 5.1. The obtained solution is then interpolated on a finer grid
and used to initialize the solver of the second optimization, whose parameters are the reference
ones listed in (9).

The results are presented in tables, which are organized as follows:

• each table refers to a specific value of κ′, that is the value adopted for the normal contact
stiffness in the preliminary optimization: Table 2 reports the results obtained when the
normal contact model is left unchanged through the two stages, whereas Tables 3 and 4
refer to results obtained by dividing the normal contact stiffness respectively by 2 and by
4 in the first stage;

• in each table, the results obtained for different levels of relaxation of the tangential con-
tact force model in the first optimization are organized in columns (labelled by the corre-
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Figure 5: Reference solution: configuration variables, input torques and contact force as functions of time.

sponding value of V̂ ′t );

• in each table, the results obtained for different numbers of time steps N ′ in the first opti-
mization are organized in rows;

• in each cell of the table, the performance of the corresponding two-step optimization in
terms of CPU time to convergence is reported (in seconds).
Specifically, the first (second) term stands for the computational time required to solve
the first (second) optimal control problem. The word FAILED indicates that the solver
was not able to find any solution to the preliminary optimization within the maximum
number of iterations imposed (5000).

All of these results refer to the case α = π/30.

5.3 Remarks

Let us now focus on what we can deduce from our analysis. First of all, we notice that in
most cases, compared to the reference solution (obtained after 300 s CPU time), the two-stage
strategy leads to a significant reduction in the computational time required to obtain a sensibly
similar solution: despite direct optimization methods suffer the risk of being trapped in local
minima, all of the optimal solutions found are comparable in terms of value of the objective
function. The mean computational time saving over all those cases in which the solver found a
solution to the first stage is of 163.5 s (54.5% of the reference CPU time). In the most favourable
case, which corresponds to adopting N ′ = 100, κ′ = κ/2 and V̂ ′t = 2V̂t in the preliminary
phase, this strategy led to an 85.3% reduction in the CPU time required to compute a solution,
as can be seen from Table 3.
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V̂ ′t = V̂t V̂ ′t = 2V̂t V̂ ′t = 4V̂t
N ′ = 75 32 + 110 = 142 34 + 33 = 67 20 + 125 = 145
N ′ = 100 97 + 82 = 179 87 + 21 = 108 19 + 51 = 70
N ′ = 125 63 + 27 = 90 74 + 50 = 124 76 + 74 = 120

Table 2: Results obtained for κ′ = κ (CPU time in seconds).

V̂ ′t = V̂t V̂ ′t = 2V̂t V̂ ′t = 4V̂t
N ′ = 75 37 + 372 = 409 19 + 57 = 76 16 + 51 = 67
N ′ = 100 230 + 60 = 290 28 + 16 = 44 15 + 68 = 83
N ′ = 125 FAILED 82 + 22 = 104 20 + 65 = 85

Table 3: Results obtained for κ′ = κ/2 (CPU time in seconds).

V̂ ′t = V̂t V̂ ′t = 2V̂t V̂ ′t = 4V̂t
N ′ = 75 55 + 41 = 96 73 + 28 = 101 11 + 71 = 82
N ′ = 100 194 + 35 = 229 35 + 120 = 155 46 + 60 = 106
N ′ = 125 FAILED 72 + 28 = 100 22 + 317 = 339

Table 4: Results obtained for κ′ = κ/4 (CPU time in seconds).

We could observe that in those cases in which the strategy was not effective — the solver
was not able to find a solution to the preliminary optimization or the total CPU time exceeded
300 s — this was plausibly due to an undesirable mix of a smoothed normal contact (κ′ =
κ/2 or κ′ = κ/4) with a stiff tangential contact (V̂ ′t = V̂t), see first column of Table 3 and
Table 4. In fact, in these conditions, because of both the layout of the system and the fact that
sliding behaviors are penalized in the objective function, the solver finds some difficulties in
computing solutions which satisfy the constraints while minimizing the objective function. In
fact, reducing the normal contact stiffness has the side effect of increasing the intensity of the
normal force acting at a distance. Without relaxing the tangential contact model, even small
values of the tangential velocity Vt at a distance from the surface of the ground result in a
sensible contribution in the term of the objective function which penalizes the dissipation due
to sliding. Even in the event that the solver succeeds, the solution could represent an unnatural
trajectory (the foot has to move very far from the ground), constituting an inadequate initial
guess for the second optimization, which may require a large amount of time to convergence
(see for example the case N ′ = 75, κ′ = κ/2, V̂ ′t = V̂t in Table 3).

Concerning the number of steps N ′ to be used in the first stage, we notice that in those cases
where the contact force model is accurate (first column in Table 2), the best choice is to use
a high number of steps in the first optimization: since the first problem to be solved, although
complex, is very similar to the actual one, its solution is a very good initial guess for the second
stage, and the solver requires a short time to find a solution to the second optimization. On the
other hand, the more the contact model is smoothed in the first stage, the more it is convenient
to use fewer integration steps: since the first problem is a very simplified version of the original
one, performing a consistent coarse discretization of it seems to be the best choice (last column
in Table 4).
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5.4 Robustness of the method

In order to test the validity and robustness of the proposed method, we picked the best per-
forming mix of parameters from our analysis and employed it in the two-stage optimization
strategy for a slightly different problem, where the system and the task to be accomplished
(move 3 m forward along the track in T = 6 s, then stop) are the same, but the slope angle α
is different. Without performing any analogous analysis for the modified problem, we exploit
the results from the study conducted for the reference problem to tune up a two-stage opti-
mization strategy and apply it in the new scenarios. In the first stage, we solved a preliminary
optimization where the parameters were modified as follows:

Discretization N ′ = N/2

Normal contact κ′ = κ/2

Tangential contact V̂ ′t = 2V̂t

(10)

as this combination of parameters led to the best performance for the reference problem, and
it seems to be a reasonable choice according to the outlined remarks. Of course, this may
not be the best choice for the modified problem, yet our aim is here to prove that, from a
computational perspective, solving the direct optimization problem in a two-stage fashion, with
a reasonable slackening of the parameters in the first stage, is convenient compared to a single-
stage optimization.

Also in these modified cases, the proposed strategy proved to be very efficient in improving
the computational performance of the trajectory optimization, therefore assessing the robustness
of the method. The results we present are arranged in tables, comparing the CPU time (in se-
conds) required to obtain the optimal solution for the single and two-stage optimization. Table 5
refers to a problem where the slope angle is half the reference value (α = π/60), whereas
Table 6 reports the results obtained in a problem where the slope angle is doubled (α = π/15).

Reference solution Two-stage optimization
(single-stage optimization) N ′ = N/2, κ′ = κ/2, V̂ ′t = 2V̂t

403 31 + 60 = 91

Table 5: Results obtained for α = π/60 (CPU time in seconds).

Reference solution Two-stage optimization
(single-stage optimization) N ′ = N/2, κ′ = κ/2, V̂ ′t = 2V̂t

494 32 + 43 = 75

Table 6: Results obtained for α = π/15 (CPU time in seconds).

6 CONCLUSIONS

In this paper, we have devised and numerically assessed a computational strategy to im-
prove the performance of direct trajectory optimization of systems interacting with the sur-
rounding environment through intermittent contacts. This computational strategy consists in
subsequently solving two optimal control problems of increasing complexity. A penalty-based
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formulation for modeling the contact forces is employed throughout the paper. A straightfor-
ward method for simplifying the problem in the preliminary optimization was proposed and
several tests were performed on a 2D underactuated multibody system. The results we pre-
sented prove the effectiveness and the robustness of the proposed strategy.

Our current research effort is focused on the application of similar strategies for Model Pre-
dictive Control of underactuated multibody systems with contacts, where computational effi-
ciency is essential in order to cope with the strict requirements of replanning the trajectory
online.

REFERENCES

[1] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[2] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The
International Journal of Robotics Research (IJRR), 30(7):846–894, 2011.

[3] K. Hauser and V. Ng-Thow-Hing. Randomized multi-modal motion planning for a hu-
manoid robot manipulation task. The International Journal of Robotics Research (IJRR),
30(6):678–698, 2011.

[4] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré. A reachability-
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Abstract. For both ships and offshore structures, load effects caused by a combination of 

wind, current and waves need to be accounted for during the design process. It will easily be-

come a very comprehensive task to consider all possible combinations of such load effects, 

and efficient methods to deal with this issue is generally in demand. The present paper deals 

with application of extended contour-line methods for this purpose. General methods for 

identification of load combinations in relation to continuous stochastic processes are first 

highlighted. The particular case of multiple FBC-processes with given amplitude distribution 

is subsequently addressed. (The FBC-process is named with reference to the work by Ferry-

Borges&Castanheta (1971)). The case where all process components have identical basic 

time intervals is first considered. The relationship between the FBC-process and the so-called 

environmental contour methods (based on Inverse FORM techniques) which are presently 

being applied for various design purposes is elaborated. FBC-processes with widely different 

basic time intervals are next investigated.The present paper illustrates how a FORM search 

can be applied along the limit state surface in order to identify the relevant “load combina-

tion point” for such cases. This requires that a particular linear or non-linear combination of 

the load effects is specified. Such a combination will typically be based on a particular me-

chanical limit state. 

The motivation for the present work is to highlight and extend the methodology related to 

load combination rules to be applied for engineering design of marine structures which are 

subjected to stochastic environmental processes with multiple components. 

Development of the relevant tools based on application of "translation processes" (which are 

transformed Gaussian processes) are outlined. Examples are given which represent cases 

with both two and three simultaneous loading components. For both examples, uniform as 

well as non-uniform time intervals for the process components are considered. 
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1 INTRODUCTION 

In the present paper, general methods for identification of load combinations in relation to 

continuous stochastic processes are first highlighted. The particular case of multiple FBC-

processes with known probability amplitude distribution is subsequently addressed. (The 

FBC-process is named with reference to the work by FerryBorges&Castanheta [1]). The case 

where all process components have identical basic time intervals is first considered. The rela-

tionship between the FBC-process and the so-called environmental contour methods which 

are presently applied for various design purposes is elaborated. 

FBC-processes with widely different basic time intervals are next investigated. A method-

ology is outlined which enables to establish the environmental design contour also for this 

case.  

Relationships between environmental parameters and structural load effects are frequently 

avail-able once the particular characteristics of a specific structure to be installed are defined. 

This is most straightforward for the static type of response, while dynamic response (e.g. due 

to stochastic loading) generally requires significantly more effort. In some cases, simplified 

dynamic response analyses (e.g. based on regular wave excitation models) can further be per-

formed in order to identify gross features of the dynamic response.  

The present paper illustrates how a FORM search can be applied along the limit state sur-

face  in order to identify the relevant “load combination point” for such cases. This requires 

that a particular type of linear or non-linear combination of the load effects is also specified. 

This combination will typically be based on a particular mechanical limit state function which 

is  relevant for the whole structure or one of its components.   

The motivation for the present work is to highlight and further extend the methodology be-

hind load combination rules which are to be applied for engineering design of structures 

which are subjected to stochastic environmental processes with multiple components. Exam-

ples of application to the combination of wind, wave and current loading are considered. Such 

load combinations are relevant e.g. for long-span marine bridges which are planned for cross-

ing of the widest Norwegian fjords as part of the so-called “Ferry-free E39 Project”. One of 

the existing bridges with floating pontoons, i.e. the Norhordaland Bridge, is shown in Figure 1. 

An example of a future bridge concept, i.e. the submerged floating tunnel is shown in Figure 

2. For the latter, first- and second-order wave loads as well as current loading (including the

possibility of Vortex-Induced-Vibrations) are the most relevant ones. 

Fig. 1. The Norhordaland Bridge with floating pontoons (located at the West Coast of 

Norway). 
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Fig. 2 Example of submerged tunnel concept (Source: Norwegian Public Road Authorities). 

2 LOAD COMINATIONS FOR CONTINUOUS PROCESSES 

A distinction should be made between combination of loads versus combination of load ef-

fects. Clearly, the combination of external loads with given magnitudes will in general imply  

different relative magnitudes between the associated load effects. In codified design, combi-

nation of different types of loading are typically specified in terms of return periods for the 

different environmental processes. As an example, for offshore structures the dominant load 

component is specified to have a return period of 100 years, while the secondary component 

is frequently specified to have a return period of 10 years (when the process components are 

assumed to be uncorrelated).  

A further distinction should be made between situations where the relationship between the 

load-effects and environmental parameters are known and cases where these relationships 

have not yet been obtained. Even if the load effects are known, a further differentiation can be 

made between whether the capacity surface (mechanical limit state function) which corre-

sponds to failure of a given structural component is available or not.   
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If a limit state function is specified, a load-effect combination needs to be analysed which 

frequently involve dynamic effects. In the present paper, focus is on continuous–time pro-

cesses. For cases where the process components are also continuous-valued and in addition 

the limit state function is known, the combined load effect is frequently analyzed by means of 

the so-called up-crossing rate (or more generally the out-crossing rate for multidimensional 

formulations). For linear combinations, upper bound expressions can be derived which in-

volve the up-crossing rate for each of the component processes, see e.g. Madsen et. al. [2] and 

Melchers [3].    

Simplified methods for definition of relevant “point values” which are assumed to cover 

the most critical load combinations have also been introduced. One of these is the celebrated 

Turkstra rule which selects the expected extreme value of one component, which is then com-

bined with the expected instantaneous values of the others, see Turkstra [4]. A sequence of 

such combinations (which is equal to the number of components) is then required. 

A second type of simplified method is the so-called “Square-root-of-sum-of-squares” rule 

(SRSS-rule). The expected extreme values for all the components are then squared and added 

together, and the square-root of the resulting sum is then computed. 

The simplified load combination methods do not explicitly take into account the particular 

distribu-tion functions which apply for the involved components (except for computation of 

the associated expected values). 

For process components which are discrete instead of continuous-valued the up-crossing 

rate can still be applied. However, for this case the analysis can be made somewhat simpler by 

utilization of the step-wise behavior of the sample functions. This is achieved by means of the 

FBC-process representation which was mentioned above. The particular type of distribution 

functions and the characteristic time interval for each process component can then be taken 

into account in a proper way.   

In general the time interval  will be different for the different process components. In some 

cases the lengths of the time scales are widely different as for example in connection with the 

joint representation of wind and snow parameters. 

 

3 CONTOUR METHODS FOR PROCESS COMPONENTS WITH IDENTICAL 

BASIC TIME INTERVALS  

3.1  General  

For cases where the limit state function is not specified, a range of environmental condi-

tions that are relevant for analysis can still be identified. This is based on consideration of the 

multi-dimensional joint probability density and distribution functions which define the long-

term statistical properties of the process components.  Iso-probability surfaces can then be 

computed which correspond to a specified exceedance probability (or equivalently a spec-

ified return period) for the components.   

In the following, a brief review of the much applied contour methods for identification of 

such relevant design events is first given. The connection with the FBC process is also high-

lighted. Subsequently, load effect combinations for cases with  known limit state functions are 

considered. Identification of the associated “load combination point” for such cases is ad-

dressed.  

Having obtained the design contour and the associated critical point, calculation of so-

called “long-term” load effects can be avoided. Such calculations would require that the load 

effect is evaluated for each combination of the environmental parameters. An integration (or 

more typically a weighted summation) across the entire variation range for each parameter is 
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then required. This can be quite laborious, especially for a large number of environmental pa-

rameters.     

3.2 Design contours    

Environmental processes such as wind and wave characteristics (e.g. mean wind velocity 

and significant wave height) are generally of a non-stationary character. A simplified repre-

sentation is typically applied where these processes are modeled according to the step-wise 

representation as mentioned above. The “step-levels” of the basic components are generally 

non-Gaussian distributed. However, they can still be represented as being transformations of 

processes which have Gaussian distributed step levels. Such transformed processes are fre-

quently referred to as “translation processes”. 

The transformation between these basic processes and the auxiliary normalized Gaussian 

processes is in that case provided by the Rosenblatt transformation, see e.g. Madsen et. al. [2], 

Melchers [3]. For two process components this transformation is expressed as:  

     

       
1

2 1

1 x 1

2 x |x 2 1

u t F x t

u t F x t | x t

 

 
(1)

  
where the second line involves the conditional distribution function of x2 given x1. 

    For the case of uncorrelated basic components only the diagonal terms will be non-zero, 

and the elements of the Jacobian matrix simplify into the following expressions: 

     ui/xi = Jij(xi) = fi(xi) /(ui(xi)) (2) 

In the case of correlated basic components more complex expression apply although they can 

in principle be evaluated in a straightforward way. 

     Other possible types of transformations also exist, somewhat depending on the type of sta-

tistical information which is available. As an example, the Nataf transformation can be ap-

plied if only the marginal distributions and the pairwise correlation coefficients are known, 

see Nataf [5], Der Kiureghian and Liu [6].   

     Having performed the transformation into normalized components, the corresponding cu-

mulative distribution for the distance from the origin to a specific point will be independent of 

the direction in the transformed space. This is due to the isotropic properties of the trans-

formed processes. Hence, only the length of the radius vector will be of significance. This im-

plies that the iso-probability levels correspond to concentric circles. The probability of 

exceeding a given value of the radius (R) in any direction is hence given by the following ex-

pression 

 pf (R)= 1-Φ(R) = Φ(-R)  (3) 

This probability of exceedance can also be interpreted in terms of a specific return period in 

the following manner: Designating the number of events (i.e. number of repetitions of the 

basic time interval) which corresponds to the given return period by N, the probability of ex-

ceeding the corresponding radius value is expressed as: 

pf (R)= Φ(-R) = 1 – (1/N) (4) 
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Examples of 2D and 3D contours corresponding to given return periods are given in Sections 

5 and 6 of the present paper. 

3.3   Load effects and identification of “Load Combination Point”                                   

For each point along the design contour (in the basic parameter space) the corresponding 

load effect can be computed once a sufficient number of structural properties are given. Static 

load effects can (at least in principle) be expressed directly as functions of the environmental 

parameters. For stochastic dynamic load effects such relationships can usually only be estab-

lished for the parameters of the probability distributions of the response processes. However, 

by specifying a given fractile of the response distribution, functional relationships which are 

similar to the static case can be obtained.  

Introducing a limit state function for a specific structural member, a linear or non-linear 

combination of the load effects will result. The associated limit state surface can also be trans-

formed into the space of the normalized Gaussian processes. The most critical combination of 

the associated load parameters will then correspond to the point on the limit state surface 

which has the minimum distance to the origin. This point can e.g. be identified based on 

FORM/SORM algorithms, see e.g. Madsen et. al. [2], Melchers [3]. 

 Having obtained the point on the limit state surface which is closest to the origin, a scaling 

can be performed in the direction of the origin. This scaling is performed such that the result-

ing new point is located on the environmental contour surface (i.e. the contour which corre-

sponds to the given return period). This scaled point then represents the relevant “load 

combination point”.  

Comparison of this load combination point can then be made with the points which corre-

spond to other procedures such as the Turkstra and SRSS rules which do not utilize the distri-

bution functions explicitly. 

 

4 ENVIRONMENTAL CONTOURS AND LOAD COMBINATIONS FOR 

PROCESSES WITH NON-UNIFORM BASIC TIME INTERVALS   

4.1   General 

Two main options for analysis of the case with non-uniform time intervals for the basic 

components are considered in the following:  

 

Option (i) Redefinition of the cumulative distribution functions for all the components ex-

cept the one with the longest time interval. Introducing the notation ni = ( T / iT ) for the 

ratio between the longest time interval and the interval length for component number i, the 

modified distribution function then reads: 

 

       i

iTi

n

iXX xFxF )(
,




           (5) 

 

where  iX xF
i

 is the cumulative distribution function for the short time interval, 

while  xF
TiX ,

 is the corresponding cumulative distribution corresponding to the longest 

time interval (which now becomes the common interval for all the components). The trans-

formation into the normalized components can be performed in the same way as before. 
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Option (ii) Direct transformation into normalized components and subsequently accounting 

for the differences in reference time intervals. This procedure is based on re-scaling of the 

components with the shortest time intervals. Some further details of the direct transformation 

approach are outlined below. 

4.2  Direct transformation         

Also for the case on non-uniform time intervals, the same type of transformation as for 

FBC processes with identical basic time intervals can clearly be applied for each component. 

The “radius value” of normalized component number i which corresponds to the given return 

period is denoted by Ri. This quantity is obtained by solving Equation (4) when inserting the 

number of load interval repetitions which corresponds to that particular component.  

To simplify the description, the two-dimensional case is considered as an example. Denot-

ing the direction angle in the normalized plane by  , the two components are now expressed 

by decomposing the respective component values to the U1 and U2 axis. This gives on com-

ponent form: 

 

    
   

   



sin

cos

22

11

Ru

Ru




          (6) 

This can also be expressed in terms of the equation for a corresponding ellipse as  

    1

2

2

2

2

1

1 

















R

u

R

u
          (7) 

Examples of such an extreme contour ellipse (ECE) in the “normalized” plane with N1=100 

and N2=10000 is shown in Figure 1(a). The corresponding result for N1=100 and N2=1000 is 

shown in Figure 1(b). As observed, there is a marked downwards shift of the maximum point 

along the vertical axis for case (b) as compared to case (a). The points which correspond to 

the Turkstra and SRSS rules are also shown in the figure. 

 

                 
(a) N1=100, N2=10000                            (b) N1=100, N2=1000 

 
 

Figure 1. Comparison of contours in the “normalized” plane. 

SRSS 

Turkstra 

SRSS 

Turkstra 

Turkstra Turkstra 
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4.3  Search for load combination point 

For option (1) the search for the “load combination point” is performed in the same manner 

as for the case with identical time intervals. For option (2), a re-scaling of the component axes 

corresponding to all but the longest basic time interval is performed in the normalized space. 

The scaling is expressed by: 

 

      











i

ii
R

R
uu mod,                     (8) 

 

where R is the “radius value” which corresponds to the given return period for the component 

with the longest time interval.  

       Having performed such a scaling, the search for the design point proceeds in the same 

way as for the first option. 

 

5 EXAMPLE OF A TWO-DIMENSIONAL  LOAD COMBINATION   

5.1  General Description 

   “Environmental parameter processes” which correspond to mean wind and significant wave 

height are first considered. Both the mean wind velocity and the significant wave height are 

assumed to be characterized by their respective Weibull distributions. Both processes are first 

assumed to have the same basic time interval which is taken to be 3 hours. For a return period 

of 100 years, the values of R1 and R2 will then both have values of 4.5. The effect of applying 

different basic time intervals for the two components is subsequently investigated. 

The two processes are presently assumed to be uncorrelated. Furthermore, normalized pro-

cesses are applied for the two environmental parameters, which means that both of them have 

scale factors which are equal to unity. This implies that in order to obtain the physical magni-

tudes of the environmental parameters, they need to be multiplied by the respective Weibull 

scale parameters for each specific case. 

The shape parameter of the distribution for the mean wind velocity is set to 2.2u , while 

for the significant wave height a value of 6.1w  is applied. This means that the cumulative 

distribution function for the process “step levels” in both cases is given by 

 

        xxFX  exp1          (9) 

 

where   is the particular shape parameter that applies for each component, i.e.  2.2 u  

or  6.1 w , respectively. As mentioned, the variable x represents the physical quantity 

divided by the corresponding Weibull scale parameter. 

For each of the independent load components which are Weibull distributed, the transfor-

mation into standard Gaussian variables is then expressed as follows: 

 

     
xxui   exp11                   (10) 

 

where  1  is the inverse of the standard Gaussian distribution function. 

Subsequently, the combined static load effect due to these two environmental processes is 

8344



B.J. Leira 

considered and a limiting capacity value for this combined load effect is introduced. The rele-

vant “load combination point” identified in the response plane by means of the FORM algo-

rithm is described in the next section.  

5.2  Contour and design point for identical basic time intervals   

The two-dimensional contour which corresponds to the (dimensionless) wind-wave envi-

ronmental processes with a return period of 100 years (i.e. N = 292 000) is shown in both 

Figure 2 and Figure 3 below. In Figure 3, the contour corresponding to non-uniform time 

scales is also included for the purpose of comparison. 

    Application of the present contour in connection with identification of the load combina-

tion “point” based on a particular limit state function is next considered. The static response 

of the structure due to the mean wind, rs,u is assumed to be given by an expression of the fol-

lowing type: 

                     rs,u= Cu · U
2                                                     (11) 

where Cu is a coefficient which depends on the geometry of the part of the structure which is 

subjected to the wind, in addition to the stiffness and material properties of the structure itself. 

U is the normalized wind velocity with a probability distribution function of the type given in 

Equation (10) with a shape factor of 2.2. In the present example the coefficient Cu has a value 

of (1/(3.6*3.6)). 

Similarly, the static response of the structure due to the (second order) action of the waves 

is represented by the following expression: 

 

                    2

wws, Cr W                              (12) 

 

where the proportionality factor for this load effect is equal to Cw=(1/(5.5*5.5)). The design 

limit now corresponds to the normalized stress being equal to 1.0 which gives 

    1rr ws,us,  1CUC 2

w

2

u  W                   (13) 

or  

       2
w

2
u WCUC-1W)g(U,                    (14) 

 

where g(U,W) designates the limit state function. The corresponding limit state corresponds 

to this function being equal to zero. This constitutes an ellipse in the (non-dimensional) wind-

wave-parameter plane.  

    The associated 100-year contour and the limit state surface are shown in Figure 2. The 

point with the minimum distance to the origin in the normalized plane is identified by the 

FORM algorithm which was referred to above. The point obtained by scaling this point to the 

design contour represents the “load combination point”.  

   In the standard Gaussian plane, the point on the failure surface has coordinates (4.5, 1.5) 

which corresponds to (4.9, 1.6) in the non-dimensional wave-wind plane. The corresponding 

point on the contour has the following coordinates: (4.6,1.5). The physical values will depend 

on the Weibull scale parameters. As an example, consider a case for which the scale parame-

ter for the wave height is 5 m and 10 m/s for the wind velocity which gives combination point 

coordinates of (23 m,15 m/s). 
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Figure 2. Contour and limit state surface for the case with uniform time intervals  for both wind and wave com-

ponents (N = 292 000). 

        

In the standard Gaussian plane, the load “combination point” has coordinates (4.3,1.4). By 

dividing these coordinates with the 100-year return value (i.e. R1=R2=R=4.5) for both com-

ponents, we obtain the following ratios (4.3/4.5,1.5/4.5) = (0.95, 0.3). The corresponding re-

turn periods for these down-scaled environmental parameters can then also be determined. 

5.3  Contour and design point for non-uniform time intervals   

The time interval for the wind process is next taken to correspond to 10 minutes, which is 

1/18 of the time interval for the wave process (which is 3 hours).   

 For the wind process, the transition between different time intervals can be performed by 

application of proper conversion factors for the mean wind velocities (corresponding to dif-

ferent averaging times). Particular expressions for such a conversion are summarized e.g. in 

Ghiocel and Lungu [7]. As an example, the conversion factor from the 10-minute average 

value to the 1-hour average value is (1/1.20) = 0.83 for city areas, while it is  (1/1.05) = 0.95 

for the seacoast. The corresponding values for conversion from 10-minutes to 3 hours are re-

spectively (1/1.35) = 0.74 and (1/1.07) = 0.93 for city areas and the seacoast. The latter value 

(i.e. (1/1.07) for the seacoast) is applied in the present study.   

For the wind velocity there will hence be a two-fold effect related to application of shorter 

basic time intervals: (i) The probability distribution for the average wind velocity is shifted to 

higher values and (ii) The number of basic time intervals (i.e. number of repetitions) is signif-

icantly increased which also serves to shift the probability distribution upwards.  

Clearly, the assumption of independence between the 18 repeated 10-minute average se-

quences is in general highly questionable. The presence of correlation would imply that in-

stead of 18 independent repetitions a reduced “equivalent” number could be applied.   

The contours which correspond to a 3hr versus 10 minute time interval for the wind pro-

cess are compared in Figure 3. There is a very strong difference between the contour shapes 

for the two cases. 

The design point in the non-dimensional wave wind plane now has coordinates (2.2, 3.3). 

The corresponding point in the transformed Gaussian plane has coordinates (1.9,3.7). Scaling 

this to the environmental contour, the load combination point in the wave-wind plane has co-

ordinates (2.2,3.2) and (1.9,3.5) in the Gaussian plane. By dividing these values with the cor-

responding 100-year return values we obtain (1.9/4.5, 3.5/5.08) = (0.4, 0.7) for the present 

case. This implies that the relative influence of the wind load has increased significantly as 

compared to the uniform case. 

G-function 

ECE 
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Figure 3. Comparison of contours for the case with (a) uniform time intervals (N1 = N2= 292 000) (b) non-

uniform time intervals for the wave-wind process. (N1 = 292 000, N2 = 5 256 000). 

 

6 EXAMPLE OF A THREE-DIMENSIONAL  LOAD COMBINATION  

6.1 General 

   An example with three different environmental components is next considered. The two 

first components are the same as in the previous example, while the third component corre-

sponds to the water current velocity.  

   Until now it has been common practice to use averaging periods of 10 minutes and longer 

(e.g. 30 minutes) when recording the current flow directly. However, much shorter intervals 

have also been considered as relevant, Yttervik [8].  

It seems that studies on conversion factors between velocities for different averaging times 

are not available and will probably be very site dependent. In the present analysis a basic time 

interval length of 10 minutes is applied. 

The cumulative probability distribution of the (dimensionless) mean current velocity is also 

assumed to be given by a Weibull distribution. The current velocity is normalized such that 

the scale factor is equal to unity. The corresponding shape factor is 2.1c . 

The static load effect due to the current is given by an expression which is similar to those 

for the static wind and wave loads: 

            2

ccs, Cr C             (15) 

The values of the three constants for the three-dimensional case are now set equal to Cu = 

1/(10.*10.), Cw = 1/(5.5*5.5) and Cc = (1/(6*6)). The total static load effect is expressed as 

the sum of all the three contributions, and the resulting limit state function then becomes: 

 

 22

w

2

u CUC-1C)W,g(U, CCW c        (16) 

 

which represents the surface of an ellipsoid in the three-dimensional wave-wind-current space 

(when the limit state function is equal to zero).  
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6.2 Contour and design point for identical basic time intervals 

   The contour surface which corresponds to non-dimensional wave, wind and current values 

is shown in Figure 4 for the case with N1=N2=N3=N= 292 000 (which corresponds to a return 

period of 100 years). 
 

                                           
Figure 4. Contour and failure surface in the non-dimensional “wave-wind-current” space for the case with iden-

tical time intervals (N1=N2=N3=N=292 000, corresponding to a return period of 100 years). 

 

    The point on the failure surface which is identified to be closest to the origin based on ap-

plication of the FORM algorithm is found to have coordinates (4.0, 1.0, 4.5) in the normal-

ized wave-wind-current space. The physical values can subsequently be obtained by 

multiplying with the respective scale parameters. It is seen that the wave and the current are 

the dominant load parameters for the present combination. 

 

6.3 Contour and design point for identical basic time intervals 

   As the next step, a different FBC-model is applied where the basic time interval for both the 

average wind and current velocity are 10 minutes, while that for the significant wave height is 

3 hours. The contour surface for this case is shown in Figure 5. It is observed that it is widely 

different from the contour surface in Figure 4.  
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Figure 5. Contour and failure surface in the non-dimensional wind-wave-current space with 

non-uniform basic time intervals. (N1= 292 000,  N2= 5 256 000, N3=5 256 000) 

 

    The coordinates of the “load combination point” in the normalized wave-wind-current 

space are now computed as (2.5, 3.4, 5.7). This implies that the current is the dominating load 

parameter also for this case, while the wind now is the second most parameter as opposed to 

the wave for the previous case. 

7 CONCLUDING REMARKS  

The role of contours in relation to calculation of design load effects and the associated 

proper load combinations was highlighted. Application examples were given, both for the 

case with identical basic time intervals and for the case with non-uniform intervals. A non-

linear combination of load effects was applied to illustrate the implications of the analysis 

procedure.  

    For the mean wind velocity (and also for the mean current velocity) the issue of averaging 

period seems to have a strong influence on the resulting contour shape. Accordingly, relevant 

conversion formulas between different averaging periods for the environmental processes that 

are involved should be readily available for user of design codes in order to achieve a 

transparent formulation. The assumption of independence between values for reduced 

averaging periods also needs further clarification. 
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Abstract. Adjoint methods are nowadays widely used to efficiently perform optimization for
problems with a large number of design variables. However, in reality, the problem at hand
might be subjected to uncertainties in the operational conditions or, in case of optimizing ge-
ometries, the design variables itself might be uncertain due to manufacturing tolerances. For
such applications, the optimum obtained using deterministic methods might be very sensitive to
small variations in the uncertainties, i.e. it lacks robustness. In a robust optimization, the un-
certainties are taken directly into account during the optimization process by introducing, next
to the mean objective, its variance as a second objective. This implies that, when using gra-
dient based optimization methods, the gradients of both objectives (mean and variance) must
be known. In this work the Polynomial Chaos Expansion (PCE) is used in combination with
adjoint methods to efficiently obtain both gradients. A non intrusive, regression based PCE is
used, requiring a new adjoint solution for each sampling point in order to build the PCE of
the gradient. A PCE for the objective is also built (at no extra cost) in order to compute the
gradient of the variance.

A weighted average of both gradients is then used to find an optimum. By changing the
weighting factors the solution can be found favouring either of the two objectives. The devel-
oped approach is applied to relevant engineering problems, such as geometrical optimization
of pipe flows and flow over airfoils. The design variables are the shape coordinates and no
parameterization is used. In this work, the design variables were considered deterministic with
the uncertainties coming from operational conditions.
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1 INTRODUCTION

With the increase in available computational power, CFD has evolved from an analysis tool
towards a design tool, see [1]. In the design process, CFD simulations are used in order to
find the value of the objective(s) for a given set of design variables. In order to find the best
design configuration, an optimization algorithm is then used to drive the design variables to
their optimal value, minimizing the objective(s), or, in case of conflicting objectives, leading to
a Pareto front.

The optimization techniques can be classified as gradient free or gradient based. Gradient
based approaches make use of the gradient (with respect to the design variables) of the objective
function, which provides the optimal search direction in the design space, see [2] and [3]. The
gradient free methods, essentially sample the design space and try to find the optimum solely
based on the value of the objective(s), see [4].

Depending on the parameterization, optimization problems often have a large number of
design variables, see [5] and [6], especially in the case of shape optimization. This makes
traditional techniques for gradient calculation, such as finite differences, which require an extra
flow simulation for every design variable, too expensive. An adjoint method offers a cheap
alternative as it allows to calculate the gradient, at roughly the cost of an extra CFD simulation,
independently of the number of design variables, see [7]. Adjoint solvers can be classified as
discrete or continuous, depending on how the adjoint equations are derived, see [8] and [9].
Both approaches have their positive and negative aspects and the choice of one or the other
method is usually related to a personal preference.

While advances in computational capabilities and numerical techniques lead to a widespread
use of optimization algorithms to design engineering components, these are mainly employed
on deterministic problems. This means that all the design conditions are well defined, im-
mutable and are assumed to be an exact representation of the reality. However, in real world
applications this is seldom the case as the operational conditions may significantly differ from
the design conditions. Moreover, due to manufacturing tolerances, the finished component may
be slightly different than the optimal design. Due to the high number of uncertainties in the
manufacture and operating life of any engineering component, a deterministic optimization ap-
proach may result in an optimum that is very sensitive to all those small uncertainties, leading
to a lower performance than desired. Consequently, an optimization methodology that takes
into account the robustness of the design is of special interest for real world engineering appli-
cations.

In a robust optimization setting the objective is to reduce both the value of the mean objective
and its sensitivity to operating and manufacture uncertainties. To this end, when using a gradient
based optimization method, the gradients of both mean objective and of its variance must be
known. These gradients are then combined, using weighted averaging, to find the best solution
for each problem. In the case of conflicting objectives, e.g. the design corresponding to the
minimum objective is not robust (has high variance), a Pareto front, or part of it, can be built by
varying the weights given to each gradient. In such a case is the design engineer responsibility
to chose a suitable compromise.

The success of the robust optimization algorithms is intrinsically connected to the perfor-
mance of the chosen uncertainty quantification (UQ) method. In intrusive PC approaches, the
PC expansion is directly embedded in the code leading to a less expensive methodology than the
non-intrusive approaches. However, their implementation is cumbersome and prone to errors
and involves deep knowledge of the CFD code. An example of an intrusive approach can be
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found in [10]. On the other hand, non-intrusive methods such as Monte-Carlo and Non-Intrusive
Polynomial Chaos (NIPC) have the need for an higher number of function evaluations, but the
implementation is straightforward and independent of the problem being studied, see [11].
However, the number of required samples will increase exponentially with the number of un-
certainties and the order of the polynomials. This is known as the curse of dimensionality.

In order to calculate the gradient of the mean objective and of its variance, PCEs of the
objective and of its gradient are required. To this end, both the primal and adjoint solutions
are needed in each sample point. As the samples are independent of each other they can be
evaluated in parallel reducing the overall simulation time.

In order to compute the gradient of the variance, a PCE is also built for the objective. This is
done at no extra cost since the objective samples are calculated form the primal solution at each
sample.

In this work the uncertainties are restricted to finite physical quantities. A uniform distri-
bution for the stochastic variables is chosen. Consequently the polynomials, used for building
the PCE expansion, are the Legendre polynomials, see [12]. In order to find the polynomial
coefficients an overdetermined system is solved using regression.

2 GRADIENT BASED ROBUST OPTIMIZATION

A general minimization problem can be written as:

minimize J(U, α)

subject to R(U, α) = 0
(1)

where J is a cost function to be minimized, R is the set of governing equations, U the state
variables of the primal problem and α the design variables. In a gradient based optimization, the
gradient of the cost function with respect to the design variables, i.e. dJ

dα
, has to be calculated.

dJ

dα
=
∂J

∂α
+
∂J

∂U

∂U

∂α
(2)

Where the term ∂U/∂α depends on the primal solution, and so it is expensive to find. Taking
into account that

dN

dα
=
∂R

∂U

∂U

∂α
+
∂R

∂α
= 0 (3)

eq. 2 becomes:

dJ

dα
=
∂J

∂α
− ∂J

∂U

(
∂R

∂U

)−1
∂R

∂α
(4)

Introducing λ, the vector of the adjoint variables:(
∂R

∂U

)T
λ =

(
∂J

∂U

)T
(5)

eq. 4 can be rewritten as:

G =
dJ

dα
=
∂J

∂α
− λT ∂R

∂α
(6)

Eq. 6 does not depend on the primal solution. Hence the calculation of the gradient with
respect to any design variable α is reduced to the calculation of simple partial derivatives.
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2.1 Stochastic Adjoint Based Gradient

The stochastic gradient G(ξ) can be written as PCE of order p for n random non-design
variables ξ ≡ {ξi}ni=1 as:

G(ξ) =
P∑
i=0

Ĝiψi(ξ) (7)

where the total number of terms on the expansion is given by P+1 = (p+n)!
p!n!

andGi represents
the ith random mode of G(ξ).

In order to find the components of the PCE (Gi), a regression approach is chosen. An overde-
termined system is built:

ψ0 (ξ1) ψ1 (ξ1) · · · ψP (ξ1)
ψ0 (ξ2) ψ1 (ξ2) · · · ψP (ξ2)

...
... . . . ...

ψ0 (ξns) ψ1 (ξns) · · · ψP (ξns)



Ĝ0

Ĝ1)
...
ĜP

 =


G (ξ1)
G (ξ2)

...
G (ξns)

 (8)

where G (ξ1) , ...G (ξns) are the gradients calculated at each sample, Ĝ0, ...ĜP are the com-
ponents of the polynomial of order p and ξ0, ...ξns are the ns samples mapped in the chosen
polynomial domain.

When using regression to find the PCE components, the advised number of samples is two
times the total number of terms in the PC expansion, ns = 2 ∗ (P + 1), [13].

2.2 Gradient of the Variance

Although both the mean (Ĝ0) and variance (σG) of the gradient can directly be calculated
from eq.(7), in order to do robust optimization the gradient of the variance of the objective
(∇σJ ) is also required.

From Eq. 6 and eq.(7) it comes directly:

G(ξ) =
dJ

dα
(ξ) =

P∑
i=0

Ĝiψi(ξ) (9)

On the other hand, a PCE of the objective functional gives:

J(ξ) =
P∑
i=0

Ĵiψi(ξ) (10)

Taking the gradient one can write:

dJ (ξ)

dα
=

P∑
i=0

dĴi
dα

ψi (ξ) (11)

Comparison with equation 9 gives:

Ĝi =
dĴi
dα

(12)
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The first term in the PCE of eq.(10), Ĵ0, is the mean objective. According to eq.(12), the
gradient of the mean objective, follows from the PCE of the gradient:

Ĝ0 =
dĴ0

dα
. (13)

Furthermore:

Ĝi =
dĴi
dα

(14)

For uniform distribution the variance of the objective can be written as:

σ2
J =

Ĵ2
1

3
+
Ĵ2

2

5
+ · · · (15)

Taking the gradient:

∇σ2
J =

d

dα

(
Ĵ2

1

3
+
Ĵ2

2

5
+ ...

)
=

(
1

3

dĴ1

dα
Ĵ1 +

1

5

dĴ2

dα
Ĵ2 + ...

)
= 2

(
1

3
Ĝ1Ĵ1 +

1

5
Ĝ2Ĵ2 + ...

)
(16)

As an example, for a second order polynomial one obtains:

∇σ2
J = 2

(
1

3
Ĝ1Ĵ1 +

1

5
Ĝ2Ĵ2

)
(17)

2.3 Optimization

For the optimization process, a weighted combination of the two gradients is used as:

Gt = ωĜ0 + (1− ω)∇σ2
J (18)

Where, Gt is the effective gradient to be used during the optimization and ω is a weighting
coefficient to be chosen by the user.

αn+1 = αn − β ∗ dJ

dαn
(19)

where α is a vector containing the design variables and αn+1, αn are respectively the updated
and the original values. β is a scalar that is chosen iteratively, i.e. it can change at each iteration,
in order to guarantee a smooth optimization process.

As no parameterization is used, every mesh point on the surfaces to optimize is a design
variable. This gives a lot of freedom in the shape modifications which can lead to unrealistic
oscillatory shapes. An implicit smoothing algorithm is employed to make sure the optimized
surface remains smooth. In order to maintain the quality of the mesh in the laminar test cases
the mesh is smoothed by solving a Laplacian equation, see [14]. For the turbulent test cases, in
order to maintain a proper boundary layer resolution, the problem is remeshed.

A optimization problem with deterministic design variables and using a steepest descent
optimization is described in algorithm 1.
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Algorithm 1 Non-Design Stochastic Variables
1: Set tol, Uinitial
2: while 〈G0〉 > tol do
3: {
4: Sample ξ1, ξ2...ξns

5: for i = 1→ ns do
6: {
7: Solve primal problem, U(α, ξi)
8: Compute Objective J(α, ξi)
9: Solve adjoint problem, λ(α, ξi)

10: Compute gradient G(α, ξi))
11: }
12: end for
13: Use regression to find Ĝ0, ..., ĜP and Ĵ0, ..., ĴP
14: Compute gradient of the variance ∇σ2

J

15: Compute Gt using Eq. 18
16: α = α− βGt

17: }
18: end while
19: End

3 NUMERICAL IMPLEMENTATION

Both the primal and adjoint problems are solved using the the SIMPLE algorithm in Open-
FOAM. The steady state solution is achieved using an Euler implicit time scheme. Bounded
central schemes are used for the numerical discretization of both the primal and the adjoint
problems, see [15]. In the turbulent test cases, the turbulence in the primal problem is mod-
eled using a RANS approach. The Spalart-allmaras model is chosen and the boundary layer is
modeled by means of wall functions. For the adjoint solver, a frozen turbulence approach is
used.

The sampling needed for the Latin Hypercube scheme, ensuring a good spread of the samples
in the stochastic space. The random number generator is connected to the time and date of
the machine in order to guarantee randomness. The samples are all obtained in [0, 1]n and
then mapped into the stochastic variable distribution. For a uniform distribution U [xa, xb], the
mapping is simply a projection, [0, 1] → [xa, xb]. The PCE terms are found by solving the
overdetermined problem by using a regression approach.

4 TEST CASES

4.1 2D U-bend

A common fluid mechanics problem found in engineering applications is the minimization
of total pressure loss in flows through piping systems.

For an arbitrary pipe shape, the total pressure loss (the objective to minimize) can be written
as:

J =

∫
∂Ω

Ptdṁ (20)

where, Pt is the total pressure, ∂Ω the domain’s boundary, and dṁ the elementary mass flux
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through the boundary.
In this test case we consider the robust optimization of a U-bend under operating uncertain-

ties. This type of bend is commonly found as part of a larger serpentine in applications such
as heat exchangers. For serpentines with a high number of U-bends, the accumulated pressure
drop through all the U-bends may severely impair the total efficiency of the system. As a result
it is crucial to the reduce the pressure drop at each bend.

In a robust optimization setting the problem can be written as:

minimize : µ(J), σ(J) (21)

Figure 1: U-bend pipe.

The initial shape and dimensions of the U-bend are shown in Figure 1. For this test case
D = 0.075m and the deterministic Reynolds number is Re = 400. The laminar Navier-
Stokes equations are therefore considered for the primal and the adjoint. In this test case the
optimization is restricted to the outer wall of the U-Bend. The inlet velocity is considered
as uncertain with a uniform distribution Uinlet = [0.066, 0.084]m/s. A 2nd order polynomial
chaos method is used in J , requiring six samples at each optimization step to get the PCEs of
the objective and its gradient.

Figure 2: Mesh independence test.

Figure 2 shows the error in the calculated total pressure drop on meshes of different size.
The solution on a very fine mesh of 36000 cells is considered as a reference solution. It is
observed that for a mesh with ≈ 9000 cells, the error on the pressure drop is less than 1%. This
mesh is therefore considered as a realistic mesh for the problem at hand, suitable for use in the
optimization process.
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Figure 3: µ(J) and σ2 evolution during optimization using ω = 1.

In Figure 3 the evolution of the mean objective and the variance during the optimization are
shown for ω = 1. Both the variance and the mean objective are nondimensionalized by their
values at the beginning of the optimization process (µ(Jinitial), σ2

initial). It can be observed that
the optimization of the mean objective also leads to a lower variance, hence the optimal solution
(lowest pressure drop) is additionally a robust one. This conclusion is further supported by
observing that σ

J
is almost constant through the optimization process.
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Figure 4: Deterministic and Robust optimization using ω = 1, 0.5 and 0.

Figure 4 shows the evolution of the variance and the mean objective for different values of ω.
Taking into account that the optimal is a robust one, optimizing the mean objective, ω = 1, or
the variance, ω = 0, will lead to very similar results. However, it can be observed that there are
small differences between the different cases. For ω = 1, the optimal mean objective reaches
its lowest value and the variance is the highest. On the other hand, for ω = 0, the variance
reaches its lowest value whereas the objective is at its highest. Furthermore, for ω = 1 the mean
objective presents a smooth optimization but the variance is oscillating, which indicates that a
minimum has not been reached for the latest. The opposite happens for ω = 0.

It can be observed that for an intermediate value of ω = 0.5, both the mean objective and
the variance take intermediate values. This shows that combining both gradients can be used to
obtain a mix between optimal and robust results.
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Table 1: Deterministic operational conditions.

U 102m/s
Re 6× 106

AoA 1◦

Table 2: Lift and Drag coefficients for NACA 0012 at AoA = 1◦ and Re 6× 106.

Cl Cd L/D
Numerical 0.109 0.0089 12.25
Reference NASA-SA 0.110 0.0085 12.94
error [%] 0.9 4.7 5.3

Finally it is important to notice that the optimization of the mean objective, ω = 1, shows an
almost perfect correspondence with the deterministic optimization.

Figure 5: Initial(Pink) and optimal shapes. Deterministic(Blue), ω = 1(Black), 0.5(Red) and 0(Green) .

Figure 5 depicts the optimal shapes obtained with the different approaches. As expected
from the previous results analysis, all the obtained optimal shapes are similar. In all cases,
there is an asymmetrical swelling of the U-bend more pronounced on the side where the flow
exits the U-bend. Furthermore, the optimal shape obtained using ω = 1 is the closest to the
one obtained in the deterministic problem whereas the shape obtained using ω = 0 shows the
largest differences.

4.2 2D Airfoil

In this section the robust optimization of a subsonic airfoil with uncertainties in the operating
conditions is considered. The deterministic objective is to maximize the Lift-to-Drag ratio
(L/D). The robust optimization problem is the defined as:

minimize : µ(−L/D), σ(−L/D) (22)

The initial airfoil is a NACA 0012 and the deterministic operational conditions are given in
Table 1.

The chosen turbulence model is the Spalart-Almaras with wall functions. A C-type mesh
of 80000 cells is used. The numerical results are compared to the reference results of [16] in
Table 2. A good comparison is observed confirming that the size and the quality of the mesh is
appropriate.
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Table 3: Random variable distributions.

Random Variable Probability distribution
AoA ◦ Uniform [0.5,1.5]
U [m/s] Uniform [98.84,105.2]

The random variables for this test case are the freestream velocity and the angle of attack
with uniform distributions as listed in Table 3.

The number of samples required to find the PCE coefficients dramatically increases with the
order of the PCE expansion. As each sample involves a primal and an adjoint CFD solutions,
the methodology becomes prohibitively costly for high order PCEs.

Figure 6: Response surface for −L/D.

Figure 6 shows the response surface for−L/D in relation to the stochastic variables (mapped
to [-1 1]). It can be observed that all the samples lie in a plane. This indicates that a first order
PCE is sufficient to accurately capture the response.

Figure 7: Sensitivities of the mean objective (µ(J)) and variance (σ2). u and l refer respectively to the upper and
lower surfaces of the airfoil.

In Figure 7 the initial surface sensitivities for the mean objective and variance are shown.
It can be noted that for the upper surface both sensitivities are positive corresponding to an
outward movement of the nodes. On the lower surface, the variance sensitivities are also positive
but the mean objective sensitivities change sign, meaning that towards the trailing edge the
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Table 4: Optimal Cl and Cd at AoA = 1◦.

Cl Cd µ(L/D) σ2 µ(L/D)− σ µ(L/D) + σ
Initial 0.109 0.0089 12.25 12 8.79 15.71
ω = 1 0.204 0.0094 21.17 9.19 18.14 24.20
ω = 0 0.099 0.0109 9.34 7.72 6.59 12.12

nodes will move inwards leading to slightly cambered airfoil. It is also to be mentioned that the
leading and trailing edges are fixed.

(a) ω = 1 (b) ω = 0

Figure 8: Evolution of µ(−L/D) and σ2 during the optimization.

The evolution of the variance and the mean objective during the optimization using ω = 1
and ω = 0 are shown on Figure 8 and the final results are summarized in Table 4. For ω = 1
the evolution of the µ(J) and σ2 are similar, indicating that the airfoil corresponding to the
optimal mean value is also more robust than the initial airfoil. On the other hand, when ω = 1,
µ(J) and σ2 have opposite behaviors indicating that a very robust airfoil will have a poor mean
performance. It can also be observed that although the variance is reduced in both cases, the
lowest value is obtained when the gradient of the variance is used. Moreover, the evolution
of the variance during optimization with ω = 0 is much smoother than when optimizing with
ω = 1. Finally, it is interesting to notice that even in a pessimistic scenario, L/D = µ(L/D)−σ
on the airfoil obtained when optimizing the mean of the objective, is still better than the L/D
of original airfoil or µ(L/D) of the airfoil obtained using ω = 0.

Figure 9: Initial(Green) and optimal shapes: ω = 1(Red) and 0(Blue) .

The optimal airfoil shapes are shown in Figure 9. For the airfoil obtained using ω = 1,
the most noticeable differences can be observed on the upper surface and the leading edge.
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The increase in thickness on the leading edge results in a higher acceleration of the flow over
the airfoil creating a region of low pressure and increasing lift. Moreover, the upper surface
experiences a much larger deformation than the lower surface, thus, the resulting airfoil will
have a small curvature which additionally contributes to the increase of lift.

On the other hand, for the case with ω = 0, the optimal airfoil is overall much thicker than
the initial configuration. This explains the increase in drag and suggests a lower sensitivity to
the angle of attack explaining the smaller variance. It is important notice that no constraints
where imposed in the optimization.

(a) (b)

Figure 10: Initial (a) and final (b) pressure distribution for ω = 1.

Figure 10 depicts the pressure contours for the initial and optimal airfoil using ω = 1. It
can be observed that the low pressure region in upper surface on the optimized airfoil is much
more intense than on the initial one. This explains the large increase in the lift on the optimized
airfoil when compared to the initial configuration.

As a last comment, given the relativity small change of the airfoil shape, especially if ω = 1,
it seems that the current solution is only a local optimum. Other shapes might be found starting
from another initial airfoil. In order to retrieve the Pareto front it seems advisable to combine
the gradient based approach with an evolutionary algorithm.

5 CONCLUSIONS

A robust gradient based shape optimization using PCE has been developed. The gradient
used in the steepest descent is a weighted average of the gradient of the mean objective and the
gradient of its variance. by changing the weights, solutions favoring either mean or variance
can be found.

Two test cases are presented.
In the first test case, a U-bend, the optimal solution obtained using the gradient of mean

objective was found to be also a very robust one. Therefore, and as expected, the optimization
of the variance led to a similar optimal solution. The small differences found on the optimal
solutions agreed with the chosen value for ω.

In the second test case, a 2D airfoil under turbulent subsonic flow, the optimization of the
mean objective and the variance led to two very distinct configurations with somewhat con-
flicting objectives. The observed changes in the airfoil shape are rather small, especially if a
high weight was given to to optimizing the mean objective. This suggests a local optimum,
and a dependency on the initial airfoil configuration. In order to retrieve a global optimum and
the Pareto front, a combination with evolutionary algorithms seems indicated. This will be the
subject of future research.
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Abstract. In practice of experiment, one had to be faced with the distortions caused by measuring 

equipment, especially on a limit of its resolution. Sometimes not the equipment but the investigated 

process itself gives the grounds for distortion of the registered data, for example, at photography of 

quickly moving objects. Other examples of distortion of data are measurements of temperature and 

forces in wind tunnels. Problems of elimination of instrument function (or response function) of the 

device are most often reduced to the solution of the integral equations, usually, with convolution 

kernels. The solution of these equations is called problem of deconvolution. In present paper, meth-

ods and algorithms of the solution of some tasks, which appear at processing the signals obtained 

in aerodynamic experimental researches, are presented. The regularization algorithm of the solu-

tion of deconvolution problem, adapted to the level of experimental noise, is described. Results of 

numerical simulation of a task of temperature correction of thermocouples (temperature gages) lag 

at restrictions of temporary resolution of the thermocouples and short-term process are given. 

The numerical solution of a non-stationary problem of heat conductivity in two-dimensional 

statement for determination of average temperature of the thermocouples at three values of their 

diameter (d=50, 100, 200 microns) was performed. Within numerical modeling, the two-

dimensional equations of heat conductivity by the relaxation method were solved. Experimental def-

inition of instrument function of the thermocouples was carried in experiment with constant step 

thermal loading. The same type of thermal loading was used at numerical simulation. Direct com-

parison of the calculated and experimental data for the thermocouple with diameter of 50 microns 

shows that by means of calculation it is possible to receive the temperature step function close to 

the experimental one. Therefore, it is possible to estimate theoretical impulse response function of 

the thermocouple by differentiation of the calculated response function of the thermocouple to the 

step loading. 

The calculation results agree well with the temperature measurements by the thermocouple of 

the same size obtained by its immersion in molten aluminum. Instrument function, defined from the 

real experiment with immersion of thermocouples in aluminum melt, appeared to be close to the 

function obtained theoretically. 
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1   INTRODUCTION 

Ground-based and flight researches play an important role in creating new hypersonic vehicles. 

At hypersonic speeds, aerodynamic heating leads to extremely high heat flow and temperature on 

the outer surface of the machine and in the channel of the hypersonic propulsion air-jet engine [1]. 

A well-designed thermal protection system must maintain the integrity of the aircraft, preventing 

the thermal loads. Aerodynamic heating and aerodynamic resistance determine the choice of struc-

tural materials in the design of devices for hypersonic flight. Security, viability and stability are key 

considerations in achieving the goals of the flight. For their achievement, the knowledge of temper-

atures and heat flows for creation of effective thermal protection system [1, 2] is required. 

Over the past decade, numerous experimental and numerical study of temperature and heat flow 

on aircraft elements were conducted to estimate and improve methods and models which are used 

for a prediction of operating conditions of the hypersonic vehicle [3-5].  

Temperature measurement is important and therefore quite well studied direction in metrology. 

The application of traditional contact methods (thermocouples, resistance thermometers) [6, 7] and 

optical techniques [8] (Rayleigh scattering, pyrometers, laser-induced fluorescence, etc.) provides 

the acceptable accuracy of measurements. These methods have their advantages, disadvantages and 

limitations, and therefore are applied selectively in various conditions. Application of the contact 

methods for the measurement of high temperatures (more than 2000К) is limited to temperatures of 

melting and a high inertia of sensitive elements, resulting in a thermocouple condition to be far 

away from the stationary state. Optical methods, which allow to measure high temperatures, have 

limited access of optical diagnostics to the system [8, 9].  

Implementation of optical temperature measurement in channel often becomes impossible for 

this reason. Research in high-speed wind tunnels with short operating time from 5 to 100 msec ap-

pears difficult solvable problem because of measuring system inertia [10]. The problem becomes 

especially actual when determining temperature fields inside the models channel [11].  

Heat flow sensors and thermocouples based on them is one of the most widely used devices for 

temperature measurement in view of their simplicity, low price, simplicity of production and relia-

bility and broad application. However, their applicability is not always possible due to the relatively 

low melting point and limited bandwidth of the sensor [6]. Therefore, in many applications, meth-

ods of compensation signal needed to establish the true temperature in small or extremely short 

measuring times. In this case, definition of the thermocouple time constant, which characterizes its 

inertia [10, 12], is required.  

In [12] a method based on the technique of the two thermocouples to evaluate the average time 

constants has been proposed. The method is based on mutual power spectra of temperature fluctua-

tions. However, this method is very sensitive to measurement noise and does not allow receiving 

high accuracy that at determining of a time constant was approximately 25 %. 

Measurement of pulsating temperatures in the combustion chambers and the propulsion is neces-

sary to determine the entropy and noise in these systems. It is known that most of the thermocouples, 

suitable for use in such an unfavorable flow have response times considerably more than required in 

the working frequency range. The main problem of compensation is a measurement of the thermo-

couple response time, as the response depends on the environmental conditions in which thermo-

couples are located, and is defined by the convective and radiating components [13]. 

Previously developed methods for measuring the time constant are usually based on a quick im-

mersion of thermocouple into the hot medium or switching of a gas flow from cold to hot. Mechan-

ical methods are suitable only for time constants from 100 msec or more. However, for ‘fast’ 

thermocouple with a response of less than 10 msec mechanical methods of switching cannot usually 

be applied. Electrical heating methods also are not satisfactory, especially if the thermocouple is 

working near the limit of its working capacity.  Therefore methods to determine the thermocouple 
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time constant based on mutual power spectra processing [13] or solution of inverse problems [14] 

are developed. 

Among several approaches to assessing the relationship of the time constants two basic assump-

tions were used: (1) the time constant is a function of the size of thermocouple based on empirical 

equations for the heat transfer coefficient of thin wires [15]; (2) the ratio of the time constants is de-

fined as the ratio of the temperature derivatives, which is valid at equal temperatures of both ther-

mocouples [16, 17]. The validity of such approaches in high-enthalpy flow and combustion remains 

uncertain, as the thermophysical properties can be changed in accordance with the conditions in the 

high-temperature region. 

Serious problems in the process of temperature measurements arise in the study of fast processes 

in a short duration measurements, since in such cases it is necessary to take into account the inertia 

of the of time measurements. Such account inevitably leads to the necessity of solving inverse heat 

conduction problems [18], as well as to the problems of eliminating (correction) the impact of 

measuring system instrumental function. It should be noted that methods of inverse problems solu-

tion for processing signals of the dynamic weight and pressure measurements are used for a long 

time and more often than in the interpretation of thermocouple signals. For example, in [19, 20] the 

recovery of the temporal aerodynamic characteristics (pressure and forces) by solution of the con-

volution integral equation (deconvolution method) are described, usually by reducing the problem 

to a system of linear algebraic equations, or by solution of the problem in Fourier space [21]. 

In this regard a new modification of the method of two thermocouples was developed [13, 22], 

and the methods of deconvolution with parametric specification of the thermocouples instrumental 

functions in the space of the Laplace transform domain [23-25]. The resulting final integral equa-

tion containing the measured and actual flow temperature is solved using the original regularization 

parameter related to the grid in time [26]. This approach is further developed to take into account 

the dependence of the thermophysical properties of materials on the temperature, which leads to the 

nonlinear inverse problems of heat conduction, which are reduced by linearization to the known lin-

ear problems [27]. 

The analysis of known researches show that when interpreting the signals of temperature sensors 

and heat flow there is a trend towards more complex mathematical models, the transition from the 

time constant to the variable function of time.  

The purpose of this paper is the following.  

Study of the possibilities for improving the accuracy of temperature measurements over short 

time intervals, characteristic of fast running processes, particularly when tested in pulse wind tun-

nels. 

Development of mathematical methods, algorithms and programs for improving the accuracy of 

temperatures and heat flows in the framework of modern methods for solving ill-posed inverse 

problems of gas dynamics. 

Verification of methods and models for temperature and heat flow measurement, based on appli-

cation of the method of two thermocouples and the method of a deconvolution.   

2   FACILITY AND MEASUREMENTS 

Experiments were performed at the hot-shot wind tunnel IT-302M [28] with arc heating in direct 

connect supersonic test mode. Such mode of investigation allows an effective use of the advantages 

of the hot-shot wind tunnel prechamber as a source of a high-enthalpy test gas (air).  

The choice of the initial values of air pressure in the discharge chamber and the voltage of capac-

itors allowed obtaining the required flow temperature. This approach ensures not only the necessary 

Mach number but also the required pressure and temperature before the model entrance. High pa-

rameters may be reached due to the absence of technological problems related to the temperature 
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strength of the sharp edges of the model and instrumentation. In addition, the setup has large quartz 

windows for flow visualization and optical measurements. 

The experiments were carried out at the following conditions at the duct entrance: Mach num-

bers Men=5-8, total temperature Tt=2000-3000K, static pressure Pen=8-50 kPa. Operation time of 

wind tunnel at these conditions was 80-120ms. Peculiarity of this wind tunnel is a decrease of flow 

parameter during operation time. Character of change of total pressure and total temperature are 

presented in Fig. 1 and 2. One can see that total pressure is drops more than in four times and total 

temperature decreases approximately by 40% during the wind tunnel operation. 

 

Figure 1: Time history of total temperature in free stream flow at Mach number 7. 

Therefore some numbers of runs were carried out with the pressure multiplicator for mainte-

nance of constant value of pressure and temperature as it can be seen in Figs. 1, 2 (point lines). This 

allows carrying out a measurement at fixed temperature (heat flux) of external flow. At the same 

time presented data demonstrate that real time of measurements does not exceed 50-60 ms even at 

Mach number of 7. At a decrease of Mach number, this time drops up to 20-25 ms. 

 

Figure 2: Time history of total pressure in free stream flow at Mach number 7. 

The total temperature in the channel exit was measured by means of the rake consisting of 5 gas-

flow hromel-alumel thermocouples with the sizes of measuring junction of 0.05, 0.1, 0.2 and 0.3 

mm. The minimum sizes of thermo-junction are chosen for decrease of the response time at meas-

urement under the conditions of short-time operation of wind tunnel. Thermocouples were installed 

in tubes made of stainless steel with external diameter 2.5 mm which functions as heat shield. The 
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device construction (Fig. 3) was manufactured so that identical dynamic and thermal conditions 

were provided before the entrance in the each thermocouple channel. 

During the tests, next parameters were measured: the total flow parameters in first and second 

prechambers; distributions of static pressure and heat flux in the model channel; Pitot pressure and 

temperature before model by different technique. This allows obtaining flow condition in the meas-

uring region. 

 

Figure 3: Device for installation of thermocouple sensors. 

The typical form of a response of thermocouples with the various size thermojunction is present-

ed in Figure 4 together with change of total temperature in free stream of a wind tunnel. It can be 

seen that the achievable maximum of temperature depends on the size of junction of thermocouple 

and lies in the range from 40 to 100 ms while the real maximum of temperature in wind tunnel op-

eration section was reached approximately at 10th ms. In all cases, this maximum essentially was 

lower than total temperature in a free stream. Its value and time of achievement substantially de-

pends on initial temperature in a free stream and rate of its reduction.   

 

Figure 4: Measurement of total temperature in operation section of wind tunnel. 

This data shows that all used thermocouples have a time delay of different duration. This data 

demonstrates also that measurement by thermocouples of the identical size, but they, nevertheless, 

does not always coincide owing to a deviation of the thermocouple junction size from the nominal 

value. 

3   DECONVOLUTION METHOD 

For processing the received experimental data and restoration of actual temperature, a deconvo-

lution approach has been used. This procedure of stagnation temperature restoration is based on the 

usage of convolution integral equation solution. Such procedure is called deconvolution [29]. This 

T, K 

 

t, ms 
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approach implies the need for information on the transfer function, which should be obtained based 

on calibration measurements of temperature step for thermocouples with the various size of junction. 

Often in diagnostic experimental practice one can face with distortions caused by the measuring 

apparatus, especially working at the limit of its resolution. For example, the resolution of flow im-

ages are limited by so-called point spread function (PSF), arising due to diffraction effects on the 

receiving aperture, as well as various types of aberrations. Sometimes it is not the equipment, but 

the process under study itself gives rise to distortion of the recorded data, for example, when photo-

graphing fast-moving particles with insufficient temporal resolution. Another example of a data cor-

ruption is temperature and balance measurements in wind tunnels. Problems of the apparatus 

functions corrections are usually reduced to the solution of integral equations, most often of convo-

lution type. Treatment of these equations and their solution are called deconvolution problem.  

In general, the integral equation for linear distortions can be written as: 

                                                𝑓(𝑥) = ∫𝑔(𝑥′)𝐾(𝑥, 𝑥′)𝑑𝑥 ′                                 (1) 

Here, the vector x may include spatial variables as well as others - time, radiation frequency,  etc.; 

f (x) is the measured signal, g(x) - unknown function, 𝐾(𝑥, 𝑥′) - known kernel of the integral equa-

tion describing the instrumental response to the impulse action (δ-function). In the case of time in-

variant distortion equation (1) simplifies to 

                                                 𝑓(𝑥) = ∫𝑔(𝑥′)𝐾(𝑥 − 𝑥′)𝑑𝑥 ′                (2) 

the kernel of which now depends only on the difference of the arguments. Equation (6) is called the 

convolution equation. This equation describes the optical image blur due to subject movement (or 

recording device) as well as the problem of reconstruction of signals from sensors that have lag time 

[19]. Solution of integral equations of the first kind of the form (1), (2) refers to the number of ill-

posed problems and requires the development of special regularization methods [8, 30-32]. 

The standard approach to the solution of convolution is to use the known relationship between 

Fourier transforms of three functions in equation (2): 

                               𝑓(𝜈) = �̃�(𝜈)�̃�(𝜈),                            (3) 

where the Fourier transform of the unknown function �̃�(𝜈) is obtained by a simple algebraic trans-

formation However, this approach is strongly susceptible to the random experimental noise and its 

regularization requires special procedures, to suppress high frequency noise components. Formula 

for the Tikhonov regularization of convolution equation is as follows: 

𝑔𝛼(𝑥) = 𝐹−1 (𝑓(𝜈)
�̃�∗(𝜈)

�̃�(𝜈)�̃�∗(𝜈)+𝛼𝜈2
).                                     (4) 

Here F-1 – operator of inverse Fourier transform, symbol * is complex conjugation, regularization 

parameter α is restored from the equality of the residual norm to the norm of noise η2 (residual crite-

rion): 

‖𝑓(𝜈) − �̃�𝛼(𝜈)�̃�(𝜈)‖
2
= 𝜂2. 

Particular attention is paid to the so-called algebraic reconstruction technique (ART), allowing to 

find the solution of large systems of linear algebraic equations (SLAE) by iterations, including a 

highly underdetermined SLAE, using a priori information at each iteration step. The system of line-

ar algebraic equations corresponding to the integral equation (1) is obtained by its discretization: 

     𝑓 = 𝐾𝑔,                       (5) 

where f and g are vectors, and K is matrix. 
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The algorithm ART is based on an additive correction of the solution at each step, using the solu-

tion in the previous step by the following formula [33]: 

                                  𝑔𝑗
𝑘+1 = 𝑔𝑗

𝑘 + 𝜆
𝑓𝑖(𝑘)−∑ 𝑎𝑖(𝑘)𝑗𝑔𝑗𝑗

∑ 𝑎𝑖(𝑘)𝑗
2

𝑗
, 𝑖(𝑘) = 𝑘 ∙ 𝑚𝑜𝑑(𝑀) + 1.       (6) 

Here k is the iteration number, λ – relaxation parameter, g - restored signal from the measured sig-

nal f, aij – an element of the matrix K, approximating the PSF function (kernel of the convolution 

equation), M – number of the matrix K rows, j=1,..., N, i=1,…, M. Iterative process is stopped by 

the residual criterion [30] or by achieving a minimum residual norm. 

Since inverse problems are very sensitive to the measurement noise, the measured signals f are 

filtered by smoothing splines. 

4   NUMERICAL SIMULATIONS 

For calibration, we used the method of rapid drop of thermocouple in the melt aluminum to make 

a temperature step in the signal of the thermocouple.  

 

Figure 5: Reconstruction of the thermocouple PSF from the temperature step. 

Figure 5 shows the smoothed experimental curve of the thermocouple (green line (2), noise esti-

mation - 2%), and its transfer function, PSF (brown (4)), obtained by differentiating. In this section, 

N is a number of the time grid point. Use this function as a kernel of the integral equation allows to 

solve this equation for the true values of the temperature (red curve (1)). Technical features of the 

introduction of the thermocouple into the melt led to some transition process when jumping from 

room temperature to melt temperature. To improve initial part of the curve, it was partly approxi-

mated by a straight line with a continuation to zero. Consequently, the reconstruction before the 

start of the real temperature jump is not enough reliable, the step itself is restored with good accura-

cy. 

Figures 6-7 demonstrate developed algorithm properties in numerical simulations of temperature 

step reconstruction. Here we investigate influence of the experimental noise on resulting reconstruc-

tion and spline smoothing of the noise. PSF of the thermocouple was taken from the real experiment 

(Figure 5). In Figures 6-8 black curves (3) are exact model temperature functions, green curves (2) 

present ‘measured’ temperatures, red ones (1) are reconstructed solutions of the equation (6). Also 

blue curves (4) show which ‘measured’ temperature would be like with reconstructed temperature 

(results of direct problem solutions) and brown curves (5) represent model PSF close to the experi-

mental one. 

The initial portion of the reconstructed step contains a small splash, similar to the Gibbs phe-

nomenon, often displayed in problems of signal processing. In our numerical simulation, it was ver-
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ified that this effect does arise for the stepwise model temperature distribution using real thermo-

couple transfer function. Figure 6 shows the ‘measured’ model temperature curve (arbitrary units, 

green curve) to which was added a random Gaussian noise of 2%, and the resulted reconstruction 

without smoothing (red curve). In reconstruction noticeable strong fluctuations around the exact 

model step (blue curve) aroused, errors level RMS=10.7%.  

 

Figure 6: Temperature step reconstruction with experimental PSF, without smoothing, RMS=10.7%. 

Figure 7 shows recovery of the model temperature step with the experimental noise (2%) in the 

thermocouple signal, when it is smoothed by regularized splines. Total step reconstruction error 

(RMS) was 4.65%.  

 

Figure 7: Temperature step reconstruction with experimental PSF; noisy data (2%), with spline smoothing, 

RMS=4.65%. 

Qualitatively another case is presented in Figure 8. Here there is decreasing temperature function 

with noise level 2%. Here data with noise gave RMS=2.64% (a) after 140 iterations, while signal 

smoothing gives error much less, RMS=0.3% (b).  
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Figure 8: Temperature splash reconstruction with experimental PSF; noisy data (2%); a) without noise smoothing, 

RMS=2.64%; b) with spline smoothing, RMS=0.3%. 

We can see good quality of the reconstruction observed in the initial part of the decreasing signal, 

but in the wings of the distribution reconstruction quality is not so good.  

5    EXPERIMENTAL RESULTS 

To perform comparative measurements from a variety of sources, it is necessary to estimate the 

error for each type of sensor. Usually two main sources of errors for the thermocouples are identi-

fied. Firstly, it is an error of a signal conversion (voltage) to the temperature because of use stand-

ard translation tables which errors may reach 1.7% change in temperature, which correspond 

directly to errors in the heat flow for the same 1.7%. Secondly, the accuracy of the thermophysical 

properties of the materials of the thermocouple junction can cause errors up to 8% of the heat flux 

[23, 34]. Since the same type of sensors is used, the physical error sources are the same, but the val-

ues are different. For the evaluation of measurement errors calibration of all of sensors was carried 

out in all estimated range of measurements. The weighted average difference between the calibra-

tion point and the calibration curve was used as an error in the temperature measurement. The error 

from the voltage conversion in the temperature is found to be no more than 0.2% and an error of 

thermophysical properties reached 5.7%.  

One of  the method of stagnation temperature restoration is based on the results of the solution 

convolution integral equation (deconvolution). This requires information on the transfer function, 

which can be obtained on the basis of determination of the temperature calibration step (Figure 9).  

 

Figure 9: Thermocouples response at fast immersion in molten aluminium. 

a b 

To, C 
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In this case, the transfer function is obtained by differentiating the response of the measuring 

system on the step. To get a step signal thermocouple was immersed fast in the molten aluminum 

(99%). The special device for simultaneous input of three thermocouples was for this purpose used. 

Figure 9 shows the step responses for the thermocouples of different size, which depends on the 

size of the thermocouple junction. The temperature of molten aluminum (643oC) was measured 

with an average error of no more than 1.54% for the entire time span, which is typical within the 

range of preliminary calibration of thermocouples. 

For processing of the obtained experimental data and to implement reconstruction of real 

temperature of flow in impulse wind tunnel, two different approaches, described above, have been 

employed. The first method of signal processing is based on use of readings of two thermocouples 

with diameters of 0.1 mm and 0.2 mm, and the data on change of Reynolds number during an  mode 

of operation of a impulse wind tunnel. The results obtained have shown in Figure 10.  

One can see that initial temperature (without correction) was lower than theoretical value and 

maximum was reached at 55 ms and 90 ms. These moments are close to finish of operation of wind 

tunnel.  

Application of developed technique of two thermocouples allows with sufficient accuracy to 

define total temperature in wind tunnel at short-duration action. Results of reconstruction of total 

temperature by means of this technique are presented in Figure 10 (red line). Maximal temperature 

is reached approximately at 27 ms and it is close to theoretical value. At the same time, one should 

notice that restored temperature remains a little bit lower than theoretical value. Nevertheless, re-

sults obtained confirmed possibility of determination of maximal temperature and applicability of 

such approach for a wide class of the tasks in view of simplicity and accessibility. 

 

Figure 10: Total temperature reconstruction: method of two thermocouples 

Second method of reconstruction allows to exclude errors denoted above. This method is based 

on deconvolution of integral equation. Kernel of this equation can be restored by differentiation of 

the experimental output response of thermocouple to the temperature step of input signal. For this 

purpose the information about the transfer function is necessary. This function has been obtained 

from results of measurements of a temperature step for two different diameters (Figure 11). In both 

cases, the same signals of thermocouples were used, which were used at the processing by means of 

technique of two thermocouples. Before deconvolution, experimental signal was smoothed by 

splines. Convolution kernels were chosen as decreasing exponents with a single unknown  

parameter, namely, half-width. During deconvolution the regularization procedure in the Fourier 

domain was employd. Half-width parameter searching was done by minimization of residual norm, 

and resulted in the next values: the first half-width was approximately 20 ms and the second one 

was 40 ms. 
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Curves of “ThCoup 0.1mm” and  of “ThCoup 0.2mm” in Figure 11 coincide with temperature 

measurements by two thin thermocouples with diameters 0.1 and 0.2 mm, and curves of  “Reconstr 

0.1mm” and “Reconstr 0.2mm” are result of solution (deconvolution) of integral equation for 

curves 1 and 2. As opposed to previous method here were obtained two values of maximal tempera-

tures, which correspond well to each other in magnitude but have different position depending on 

time.  

 

Figure 11: Total temperature reconstruction: deconvolution approach 

One can see that application of deconvolution method allows determining the temperature, con-

formable to temperature of flow in wind tunnel better than method of two thermocouples. Apparent-

ly, best result was obtained at the use of thermocouple with smaller size (0.1 mm). 

Error estimation of restoration procedure using the suggested approaches has shown that 

temperature can be recovered with the accuracy not worse than 8%. 

6    CONCLUSIONS 

The estimation of an error of definition of total temperature by means of the offered approaches 

has demonstrated that the temperature can be reconstructed with accuracy not worse than 8%. 

An iterative reconstruction technique ART gives some promising results for the deconvolution 

problem, which take into account noise estimation for adaptive regularized cubic splines. The im-

portant effect is found. Results of true temperature reconstruction at solution of the integral equa-

tion strongly depend on noise level in a signal and quality of its smoothing. In addition, noise in 

point spread function, which in these numerical experiments has reached 10%, influences results 

weakly.  
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Abstract. In this study we present an overview of the inversion methods based on the Kalman
filtering technique, which was implemented for the identification of geological structure ahead
of the underground tunnel. The methodology is particularly aimed at solving for model param-
eters even in the presence of noisy environment (measurements). One of the main goals of this
investigation is related to the advance of the tunnel boring machine (TBM) during excavation
in unknown environment in order to mitigate the excavation risks due to unpredicted obstacles
and reduce costs caused by the TBM stoppage during tunneling under uncertain soil conditions.
The inversion methods are implemented for the purpose of the reconnaissance in mechanized
tunneling.

Several inversion methods are investigated and implemented. The Kalman filter as parame-
ter estimator, already having been successfully implemented in control systems, has been intro-
duced here also for the purpose of geotechnical parameters estimation. Since the Kalman filter
was originally developed for linear systems primarily represented in the state space form, the
implementation with the geotechnical soil models was limited by the nonlinearities. Therefore
modifications of the Kalman filter have been introduced and implemented, such as extended
Kalman filter (EKF), sigma-point Kalman filter (SPKF) and unscented Kalman filter (UKF).
The extended Kalman filter local iteration procedure incorporated with finite element analysis
software has been used for identification of the soil parameters using tunneling induced defor-
mations under assumptions of existing surface pressure load and an obstacle ahead of the tunnel
face. The identification is performed based on the numerically generated noisy measurements.
The inherent linearization in the extended Kalman filter makes it difficult to implement and it
is reliable only for slightly nonlinear system models. Therefore the further improvement of the
inversion method has been done by combining the EKF with the derivativeless deterministic
sampling-based approximation where a set of deterministically sampled points, called sigma
points, can be used to represent the mean and covariance of the estimated quantities. The up-
date mechanisms are inherited from the linear Kalman filter. For the purpose of the full seismic
waves inversion for predicting ahead of the underground tunnel a new hybridized global opti-
mization method that combines the simulated annealing global search with unscented Kalman
filter minimization has been proposed. The implementation of the inversion methods has been
shown on several numerical examples.
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1 INTRODUCTION

From the optimization point of view, inverse methods can generally be considered as a so-
lution of the optimization problem, mainly through minimization of certain objective function.
Implementation of the inversion methods in different fields of research and engineering plays
an important role. One demanding implementation field is the reconnaissance in mechanized
tunneling. Identification of the soil parameters ahead of the tunnel front, in order to predict pos-
sible obstacles, layer changes or similar anomalies can contribute to considerable savings by
avoiding the damages or unplanned stoppage of the tunnel boring machine (TBM). Inversion
methods for parameter estimation based on Kalman filters represent a promising tool for such
applications.

The Kalman filter method was developed by Rudolf E. Kalman in early 1960s [1] and was
originally aimed at implementations in control of dynamics systems and signal processing.
In recent years, some applications of the Kalman filter method have also arisen in the field
of geotechnical engineering for estimation of material parameters [2, 3, 4, 5]. Originally the
Kalman filter was developed as dynamic least square states estimator for systems represented
by linear models in the state space form. A modification of the approach with application in
geotechnical engineering uses quasi-static models since the geotechnical parameters are static
over the considered estimation time frame. Thus, a stationary transition of state estimates is suit-
able for this purpose [2].The procedure starts from a priori estimates and utilizes a set of mea-
surement data to calculate a posteriori estimates. Means and covariances of the quantities being
estimated are repeatedly updated so that the variance of the estimation error is reduced until
convergence of the estimated quantities to unbiased true state and model parameters is reached
[1, 6]. In this paper several techniques relying on modifications of Kalman filter are presented
and implemented for the estimation of parameters in geotechnical models. The methodology is
documented by several numerical examples.

2 KALMAN FILTER BASED METHODS

Quasi-stationary representation of a geotechnical model can be generally expressed in the
form of a nonlinear state space matrix equation

d = h(x,m, f) (1)

where d stores modeling outputs obtained from the model h(·) (usually a finite element – FE
model), x is the current physical state of the model, m contains the model parameters (for ex-
ample material parameters), and f represents external loads including the boundary conditions.
When it is assumed that the applied loads and the initial and boundary conditions are properly
determined, the identification problem consists of determining the actual model parameters m.
A frequent problem is the model calibration by inverse analysis in order to match the model
outputs d to the in-situ measurement or laboratory tests measurement data dobs. This matching
can be expressed in terms of optimization of a certain objective function, i.e. minimization of
the required misfit. Arising problems such as high nonlinearity of the geotechnical models,
time consuming forward calculations of the models and uncertainty of the measurement data
require special treatment and adaptation of the identification methods to these requirements.
The Kalman filter based methods which meet those requirements are presented in the following
sections.
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2.1 Extended Kalman Filter

The quasi-stationary model of Eq. 1 can be represented in terms of the state transition 2a and
the output 2b equations:

mk = mk−1 + wk−1, (2a)
dk = h (mk) + vk, (2b)

where vector mk contains the model parameters and xk is the physical state of the model at
recursive step tk. Vector d extracts modeling outputs at predefined positions in the model from
the modeling observation Eq. 2b. In Eq. 2a, the stationary process transition is added by a mod-
est amount of pseudo-noise wk to act like parameter updating from one iterative step to the next.
Inexactness of the modeling observation function h(·) in Eq. 2b is characterized by an amount
of uncertainty vk. Additive uncertainties wk and vk are assumed to be uncorrelated and white
Gaussian having zero-mean and time-invariant covariance matrices Q and Rm respectively.

In the Kalman filter algorithm the mean and error covariance of the state are propagated
through time. These mean and error covariance of the state are updated every time new mea-
surements arise [7]. The time update equations of the mean and covariance of the state are
calculated in the following way:

m̂−k = m̂+
k−1;P

−
k = P+

k−1 +Q, (3)

where m̂k = E(mk) represents the mean (mathematical expectation) of the state and Pk =
E
[
(mk − m̂k)(mk − m̂k)

T
]

is the covariance matrix at k-th iteration. The superscript ’–’ de-
notes a priori estimate, i.e. the estimate before measurement is available, whereas the super-
script ’+’ denotes a posteriori estimate after the measurement is taken into account. At the time
tk in the local iterative loop i of the extended Kalman filter, the Kalman gain Kk,i, the measure-
ment updates of the state estimate m̂+

k,i+1 and the estimation error covariance matrix P+
k,i+1 are

iterated according to the following equations.

Hk,i =
∂h

∂m

∣∣∣∣
m̂+

k,i

Kg
k,i = P−k H

T
k,i(Hk,iP

−
k H

T
k,i +R)−1

P+
k,i+1 = (I −Kg

k,i)P
−
k

m̂+
k,i+1 = m̂−k +Kg

k,i

[
dexp − h(m̂+

k,i, 0)−Hk,i(m̂
−
k − m̂

+
k,i)
]

(4)

Here H represents the sensitivity matrix (observation derivative matrix with respect to the state
estimate), Kg is the Kalman gain and dexp is expected measurement. The sensitivity matrix is
calculated for each global iteration k and local iteration i as

Hm,n =
∂hm
∂mn

=
hm(m + ∆mnen)− hm(m)

∆mn

(5)

where hm is the m-th element of observation vector, mn is the n-th element of the parameter
vector and ∆mn is a small increment of the n-th element of parameter vector. The unit vector en
has value one in n-th element and zeros elsewhere. The estimation algorithm is coupled with the
finite element analysis (FEA) software. An independent treatment of FEA program represents
a significant advantage of the proposed method, in the sense that any FEA program can be
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incorporated into the process when the communicative interface between the main algorithm
flow and the FEA program has been created. In order to begin the filter process, an initial value
for state vector x0 and its corresponding estimation error covariance matrix P0 are assigned.
Usually, initial state vector contains the most likely values of parameters of the system that
can be inferred from prior knowledge or preliminary geomechanical tests. The estimation error
covariance matrix gives information about the confidence of the initial parameter values. The
procedure is to locally iterate the filtering process on the first set of data in order to assess the
information inherent to the data. Then, the second set of data is processed to filtering and is
similarly iterated, and so on. The iterative process will continue until a stop criterion is met,
which may be i) convergence of the cost function to he predefined minimal values, ii) absolute
value of the two successive estimates is less than a predefined tolerance or iii) the specified
number of iterations. In this method, the error covariance matrix of estimation Pk is enlarged
with a modification weight in every global iteration to obtain fast convergence.

2.2 Sigma-Point Kalman Filter

Due to inherent linearization the EKF is related with implementation difficulties, and in addi-
tion this state estimation method has limitations in implementation with highly nonlinear mod-
els. Therefore alternative types of the Kalman filter for nonlinear models have been developed,
which obviate the need for linearization of the state-space model, like the unscented Kalman
filter [8]. Later, [9] has combined and systematized this new filter together with some other
independent works that derived the derivativeless deterministic sampling based approximation
of the Gaussian statistics to belong to the family of SPKF. This family of the Kalman filter is
based on the principle that a set of deterministically sampled points, called sigma-points, can
be used to represent the mean and covariance of the estimated quantities. Update mechanisms
are inherited from the linear Kalman filter [1].

The sigma-points consist of 2n + 1 discretely distributed points around the current estimate
on the n-dimension space. The distribution of these sigma-points around the current estimate is
determined by square-root decomposition of the prior covariance and the spread of them can be
assigned by setting a scaling parameter ζ as follows.

σ = ζ
√

Pk−1, (6)
(Mk−1)0 = m̂k−1, (7)
(Mk−1)i = m̂k−1 + (σ)i, for i = 1:n (8)

(Mk−1)i+n = m̂k−1 − (σ)i, for i = 1:n (9)

where the scaling parameter is calculated as ζ =
√
n+ λ. The parameter λ remains free to

tune. It is suggested to select n + λ = 3 when m is assumed Gaussian [8]. The notation (·)i
denotes the i-column of the matrix within parentheses.

Each sigma-point is associated with a weight. The weights are defined as in Eq. 16 such that
the sum of weights is unity.

W0 =
λ

n+ λ
,Wi = Wi+n =

1

2(n+ λ)
, for i = 1:n (10)

Direct nonlinear transfer of the sigma-points through the nonlinear state-space functions helps
reserve second order accuracy of the Gaussian approximate estimated quantities as opposed to
first order truncation of the Taylor series employed by the EKF. In addition, the minimization
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of the objective misfit function Eq. 11 should be provided.

S(mk) =
1

2

(
(h(mk)− dobs)tR−1(h(mk)− dobs) + (mk − m̂k|k−1)

tP−1k|k−1(mk − m̂k|k−1)
)

(11)
The recursive prediction step and correction step of the SPKF are summarized in Algo-

rithm 1.

Algorithm 1: The SPKF algorithm for parameter identification
Initialization:

m̂0 = mprior

Pm
0 = Pprior

k ← 1
while S (Eq. 11) < TOLERANCE do

Prediction step:

Generate the sigma-points Eq. 6-9:(Mk−1)i

(Mk|k−1)i = (Mk−1)i

m̂k|k−1 =
2n∑
i=0

Wi(Mk|k−1)i

Pm
k|k−1 =

2n∑
i=0

Wi

(
(Mk|k−1)i − m̂k|k−1

) (
(Mk|k−1)i − m̂k|k−1

)t
+ Q

(Dk|k−1)i = h
(
(Mk|k−1)i

)
d̂k|k−1 =

2n∑
i=0

Wi(Dk|k−1)i

Pd
k|k−1 =

2n∑
i=0

Wi

(
(Dk|k−1)i − d̂k|k−1

)(
(Dk|k−1)i − d̂k|k−1

)t
+ R

Pmd
k|k−1 =

2n∑
i=0

Wi

(
(Mk|k−1)i − m̂k|k−1

) (
(Dk|k−1)i − d̂k|k−1

)t

Correction step:

Kk = Pmd
k|k−1(P

d
k|k−1)

−1

m̂k = m̂k|k−1 + Kk

(
dobs − d̂k|k−1

)
Pm
k = Pm

k|k−1 −KkP
d
k|k−1K

t
k

k ← k + 1

end
In this Algorithm, the means of predicted parameters and model outputs are calculated as

weighted summation over the sigma-points and the corresponding predicted model outputs.
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The predicted model outputs Dk|k−1 are the results of direct nonlinear transfers of the rep-
resentative sigma-points Mk|k−1 through the nonlinear model function h(·). The predicted
estimation error covariances of the estimated parameters Pm, of the model outputs Pd, and of
the cross-covariance between them Pmd are calculated as weighted summation of the squares
of distances between each sigma-point and respective model output to the corresponding mean
estimates. The correction equations for the SPKF take into account the means and covariances
approximated using the sigma-points and the nonlinear model outputs in the prediction step
without need for calculation of the Jacobians.

For application in calibration of FE model in geomechanics, value for each parameter can be
limited to a certain range depending on initial categorization of geomaterial samples. Therefore,
it is advantageous to apply a feasible range for each parameter in the identification process. The
advantage of giving constraints to the parameter space is threefold: i) it helps to exclude the
unreasonable convergence points, which are local minima, of the objective function, ii) it allows
the FE code to run uninterruptedly during the iterative estimation process as the parameters are
clipped in the reasonable regions, and iii) it may help to accelerate the estimation process by
filtering algorithms since the estimation bias is not allowed to explode. Here, the ’clipping’
constraints handling for both the EKF and the SPKF described in [10] is applied.

2.3 Unscented Kalman Filter

The UKF is a very successful state and parameter estimator for nonlinear dynamic models
in which the posterior estimates are inferred from noisy observation data. It aims to overcome
the inherent limitations of the traditional extended Kalman filter that works only for slightly
nonlinear models and requires linearization of the nonlinear models. This filter belongs to the
sigma-point Kalman filter family, and represents a derivative-free estimator for nonlinear state-
space models that can be efficiently adapted for solving parameter identification of static and
dynamic models [9].

The forward model is described in a similar form as in Eq. 2b. In this case d stores the model
outputs at r observation points resulting from the nonlinear model h. For time-dependent prob-
lem such as wave propagation, the model h(·) is solved in time steps for the simulation period;
and the resulting batch data are stored in d. The modeling error v is caused by assumptions
made in building the mathematical model and numerical approximations. This error can be as-
sumed to be zero-mean Guassian distribution with covariance R. The misfit s to be minimized
is constructed for each output measurement j by squares of differences between the measured
data dobs(t) and the modeled outputs d(t) in the time window of interest [0, τ ]:

sj =
1

2

τ∫
0

‖dobsj (t)− dj(m, t)‖2dt, j ∈ {1, 2, .., r}. (12)

The predicted mean and covariance before measurement update are denoted as m̂ and Pm

respectively. If n model parameters are to be estimated, 2n + 1 sigma-points are defined as
follows for the unscented transformation to approximate a Gaussian distribution of the predicted
estimate centered at m̂ with covariance Pm:

M0 = m̂, (13)

Mi = m̂+
(√

(n+ λ)Pm
)
i
, for i = 1 : n (14)

Mn+i = m̂−
(√

(n+ λ)Pm
)
i
, for i = 1 : n. (15)
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The parameter λ remains free for tuning in order to adjust the spread of the sigma-points about
the predicted mean estimate in directions of principle variances. It is suggested to select n+λ =
3 ifm is Gaussian [8]. The notation (·)i denotes the i-column of the matrix within parentheses.
Each sigma-point is associated with a weight defined as in Eq. 16.

W0 =
λ

n+ λ
,Wi = Wi+n =

1

2(n+ λ)
, for i = 1 : n. (16)

The misfit measures for all r output measurements are obtained by mapping the sigma-points
through the misfit functional of Eq. 12. The mapping for rmultiple receivers s = (s1, s2, . . . , sr),
s : Rn 7→ Rr, is done for each sigma-point as written in Eq. 17.

Si = s (Mi) , for i = 0 : 2n. (17)

After the nonlinear mapping of the sigma-points through the nonlinear model, the mean of the
predicted misfit ŝ, covariance of the predicted parameters Pm, covariance of the misfit at the
predicted model P s, and cross-covariance between them Pms are approximated by weighted
summation rule as follows:

ŝ =
2n∑
i=0

WiSi, (18)

Pm =
2n∑
i=0

Wi (Mi − m̂) (Mi − m̂)t +Q, (19)

P s =
2n∑
i=0

Wi (Si − ŝ) (Si − ŝ)t +R, (20)

Pms =
2n∑
i=0

Wi (Mi − m̂) (Si − ŝ)t . (21)

Posterior mean m̂+ and covariance Pm
+ of the estimated model parameters are updated follow-

ing the Kalman filter’s measurement update step:

m̂+ = m̂+K (0− ŝ) (22)
Pm

+ = Pm −KP sKt (23)

with the Kalman gainK calculated as

K = Pms (P s)−1 . (24)

To initialize the UKF procedure, some prior knowledge about the model is provided in form
of Gaussian distribution ρ0(m) ∼ N (m0,P0). In the first iteration of the UKF, this prior
information is assigned to the predicted mean and covariance: m̂ = m0, and P = P0. In the
successive iterations, the predicted estimated mean and covariance are updated by taking the
respective values from the posterior estimate, i.e. m̂ = m+ and P = P+.

Described UKF procedure for minimizing the misfit functional locally has been successfully
implemented within the hybrid algorithm combined with simulated annealing in the global op-
timization procedure with implementation in full waves inversion [11].
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a) b)

Figure 1: a) 3D tunnel excavation with a fault zone ahead of tunnel face [12] and b) FE model

Host rock Fault zone
E[kN/m2] 2× 108 5× 107

ν 0.2 0.35
ρ[kg/m3] 2500 2200

Table 1: Material parameters

3 IMPLEMENTATION OF KALMAN FILTERS

Following numeric examples demonstrate efficient implementation of the inversion methods
based on Kalman filtering techniques for the parmeter estimation in geotechnical and tunneling
problems.

3.1 3D tunnel excavation: EKF identification of geometrical and elastic material param-
eters

In this numeric example the EKF is used for estimation of both material and geometrical
parameters of a 3D tunnel excavation model [12] depicted in Figure 1 a). The model represents
a mountain cut-out with overburden height of 500 meters. Dimensions of the model are 100m×
100m× 200m. A fault zone is located at L meters from the model frontal face measured from
its top edge having a thickness of D meters. The fault dip direction and the angle of 66◦ of
inclination are supposedly known from an engineering-geology investigation.

The material parameters are given in Table 1. The initial geostatic stresses are imposed with
prescribed horizontal stress to vertical stress ratio equal to 1, i.e. σh = σv. To account for
this model feature, a surface pressure of 1.23 × 104 kN/m2 is applied on the top side of the
model. This value is calculated assuming the overburden rock mass to be homogeneous, with
a density of 2500 kg/m3. The displacement history data are collected during the simulation of
10 tunnel excavations, each of 10 meters length. Observation points are located at the tunnel
crown, bottom and at the side walls. A 3D finite element tunnel excavation model built with
ABAQUS is presented in Figure 1 b). The elements in the tunnel are 6-node triangular prism
elements (5-sided), and rest of the soil body elements are 8-node brick elements (6-sided). The
state vector contains three components: one material parameter – Young’s modulus E and two
geometrical parameters – L and D as depicted in Figure 1.

x =
[
L[m] D[m] E[kN/m2]

]
Convergence of the algorithm was investigated for different initial state estimate vectors and it
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was shown that the convergence rate varies with the initial guess. Results for two cases of initial
state vectors are presented in Tables 2 and 3.

Parameter Initial state Estimated state Deviation from true state
L[m] 130 119.70 0.30
D[m] 10 6.01 0.01
E[kN/m2] 4.0× 107 5.03× 107 0.03× 107

Table 2: Converged result after 15 iterations - Case 1

Parameter Initial state Estimated state Deviation from true state
L[m] 115 120.32 0.32
D[m] 4 5.99 0.01
E[kN/m2] 4.0× 107 4.96× 107 0.04× 107

Table 3: Converged result after 20 iterations - Case 2

Graphical results of the progressing Kalman filter for Case 1 are shown in Figure 2.

3.2 Implementation of SPKF for model calibration of soil parameters in mechanized
tunneling

Geomechanical analysis of tunnel excavation in this example can be considered as a quasi-
static non-Markov process, i.e. the state of the model is about equilibrium along the analysis
and the current state depends not only on the previous state but also on the history of analysis
steps. The model of a shield tunnel boring machine (TBM) advancing in homogeneous soil,
Fig. 3, obtained using the FEA software PLAXIS 3D was provided by the C2-subproject within
the Collaborative Research Center SFB 837 at the Ruhr University Bochum [14]. The model
domain is 60 m long, 40 m wide, and 45 m deep. The tunnel of diameter D = 8.5 m and
under an overburden depth equal to 1D. Except that the ground surface is stress-free, all other
boundaries of the FE model are constrained by zero displacements. Only a half of the model
is analyzed because of the symmetric geometrical, loading and material conditions about the
vertical plane along the tunnel axis. The homogeneous soil behaves according to the Hardening
Soil constitutive model in [13].

The set of parameters chosen for identification, with their assumed ’true’ values for the for-
ward simulation includes stiffness for un-/reloading Gur = 41600[kN/m2], secant stiffness in
standard drained triaxial test E50 = 35000[kN/m2], and friction angle φ = 35[°]. Observation
positions and orientations at observation surface at 39 m from beginning position of the tunnel
head (before excavation) and perpendicular to the tunnel axis are depicted in Fig. 3. The model
is calculated for 30 excavation steps, each step advances the TBM 1.5 m forward. Calculated
outputs obtained from the FE model are registered at every excavation step. Synthetic mea-
surement data are assumed with additive Gaussian noise with standard deviations of 3% and
5% the mean value of the noise-free FE calculated outputs for each measurement point. The
feasible ranges for the considered soil parameters are defined such that the lower bounds and
upper bounds are considerably distant from true parameters: 20833 ≤ Gur[kN/m2] ≤ 62499,
17500 ≤ E50[kN/m2] ≤ 52500 and 32 ≤ φ[°] ≤ 52.5. Taking into account the assumption
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Figure 2: Graphical result convergence of the estimated parameters - initial case 1

that the parameters are uncorrelated, the initial state error covariance matrix for the param-
eters m = [Gur;φ;E50] is set: P(0|0) = diag (40002, 52, 50002) . The authors’ practice for
setting the covariance matrix of the process noise Q is that it can be set in such a way that its
square roots are ranging from five percent to ten percent the values of initial estimation error
standard deviations. In this work, it is chosen to be around seven percent, i.e. the covariance
matrix of the process noise can be set as Q = 0.005P0. For setting up the nonlinear Kalman
filters in this study, every measurement datum is assigned to have the same covariance, i.e.
R = 0.012 ∗ I(m,m), with I(m,m) the identity matrix having dimension equal to the size of
the measurement data, m.

Selected comparison results of the EKF and SPKF with initial parameters chosen at the
extremes of feasible ranges are presented in Table 4 and Table 5 for cases of 3% and 5% mea-
surement noise, respectively.

Graphical plots of the converging soil parameters in Fig. 4 demonstrate fast and robust
convergence. The investigation has shown, that depending on the initially selected parameter
values, the convergence of the SPKF can require less itteration steps than for the EKF.
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a) b)

Figure 3: a) FE model of the 3D tunnel excavation and b) Measurement points at observation section

Parameter Initial EKF SPKF

Mean SD Mean SD Mean SD
Gur[kN/m2] 20833 4000 41588.02 552.30 41476.61 296.64
E50[kN/m2] 17500 5000 34856.67 958.45 34643.40 387.50
φ[°] 32 5 34.96 0.25 34.91 0.35

Table 4: Identified soil parameters with 3% measurement noise

Parameter Initial EKF SPKF

Mean SD Mean SD Mean SD
Gur[kN/m2] 20833 4000 42483.47 6317.98 42288.64 392.62
E50[kN/m2] 17500 5000 37036.86 1130.50 36646.55 600.89
φ[°] 32 5 35.52 2.82 35.42 0.37

Table 5: Identified soil parameters with 5% measurement noise
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Figure 4: Iterative development of soil parameters with a) 3% and b) 5% measurement noise SPKF

8388
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4 Conclusions

Good convergence of the parameter estimation shown through examples of geotechnical
problems presented in this work has proven that the Kalman filtering techniques have prospects
to be a reliable method for parameter identification in geotechnical engineering. An important
advantage of the Kalman filters, utilization of the measurement uncertainties, which cannot be
avoided in large scale geotechnical structures, makes it a very attractive and powerful estimation
method, which performs well even in the environment corrupted by noise. Another prominent
advantage is that the choice of initial model parameters must not be very close to the true
parameter set as for other gradient-based optimization methods. Implementation of the Kalman
filters, relating the implementation effort in comparison with the resulting outcome, represents
relatively simple, but still a very powerful tool, since using modern programming languages the
Kalman filter algorithm can be realized within several code lines including vector and matrix
manipulations. However, the tuning and adjusting the filter’s configurations plays a decisive
role regarding its successful implementation and therefore requires a special attention. Good
understanding of the model and the influence of each parameter on the model is crucial for the
configuration of the Kalman filter in order to achieve its successful convergence.

Acknowledgements

The authors gratefully acknowledge the funding by the German Research Foundation (DFG)
within Collaborative Research Center under grant SFB-837/A2.

REFERENCES

[1] R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Trans. ASME,
Ser. D: J. Basic Eng. 82, 35-45, 1960.

[2] M. Hoshiya, A. Suto, Kalman Filter - Finite Element Method in Identification, Journal of
Engineering Mechanics 119:2, 197-210, 1993.

[3] A. Murakami, Studies on the Application of Kalman Filtering to some Geomechanical
Problems Related to Safety Assessment, doctoral dissertation, Kyoto University, 1991.

[4] Wang Yang, Extended Kalman Filter Method for Parameter Identification and its Appli-
cation in Tunneling, doctoral dissertation, Universität Innsbruck, 2004.
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Abstract. Pumps and pumping systems consume about 12 % of the annual electricity produc-

tion in Europe. A parallel arrangement of two or more pumps is called “booster station”. 

Booster stations meet a varying pressure demand with high energy-efficiency by deactivating 

individual pumps at smaller loads. Hence, one major difference from single pump units to 

booster stations is the diversity of control options. Due to the non-linear characteristics of the 

machines and physical laws we are facing a Mixed-Integer Nonlinear Problem (MINLP). The 

global optimization of a MINLP requires a specialized solver and a huge amount of time. To 

reduce the complexity of the problem, we evaluate two possible ways: i) We apply piecewise 

linearization techniques to the problem in order to gain a Mixed Integer Linear Problem 

(MILP). The advantage is the vast variety of available solvers and a significant reduction of 

calculation time. The disadvantage of this method is being less accurate. ii) The enumeration 

of the integer decisions and the fitting of the characteristic curves by algebraic functions ena-

ble us to reduce the complexity of the problem to a simple Nonlinear Problem (NLP). This 

technique allows us to keep the accuracy of the physical laws, but has the big drawback of the 

enumeration time. The consecutive use of two global optimization solvers combines the ad-

vantages of the formerly mentioned approaches, but we lose the guarantee for global optimal-

ity. 
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1 INTRODUCTION 

Pumps and pumping systems consume about 10 % of the annual electricity production in 

Europe [1]. The European Union aims for the usage of energy efficient machines to gain en-

ergy savings. These energy efficient machines are the first step towards reducing the energy 

consumption of pumping systems. Various eco-design directives have been and will be car-

ried out in order to ban machines with low efficiency from the market [2]. 

The second step must be the efficient use of these excellent machines. A parallel arrange-

ment of two or more pumps is called “booster station”. Booster stations meet a varying pres-

sure demand with high energy-efficiency by deactivating individual pumps at smaller loads. 

They cover a wide performance map and are flexible machines with widespread possibilities 

of usage in industrial and residential applications, e.g. chemical processing plants or water 

supply in skyscrapers. 

The design and control of a booster station offer manifold degrees of freedom. The power 

input of a booster station in one point of duty depends on more than one design or control var-

iable. Global optimization programs offer help for tuning the mixture of continuous and dis-

crete variables, so that the power input of the booster station becomes minimal. 

The aim of our research is to make optimization programs available for engineering use. A 

modeling framework and exchangeable input data enable us to quickly gain a control strategy 

and design information from measured characteristics. 

2 TECHNICAL SPECIFICATIONS 

2.1 Working Principle of a Booster Station 

The technical task of a booster station is to promote water in a piping network. Therefore 

the pressure is increased to overcome geodesic differences or pressure loss by dissipation. 

Figure 1 shows the connection scheme of the booster station. Multiple pumps, in most appli-

cations of the same type, are connected in parallel. The incoming water flows from the suction 

pipe, through the single pump units, into the pressure pipe. The pressure at the outlet is al-

ways higher than at the inlet. The load of the booster station is given by the total volume flow 

𝑄𝑡𝑜𝑡 and the pressure head Δ𝐻. To avoid reverse flow, a check valve is installed behind each 

pump. 

 

PRESSURE PIPE

SUCTION PIPE

 

Figure 1: Connection scheme of a booster station. 
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The parallel arrangement has two major reasons: Firstly, one is able to avoid heavy part 

load in the pumps by deactivating single pumps. Secondly, if one pump fails, it is still possi-

ble to use the others for promoting water. Other topologies, especially the direct connection of 

pumps in series, are generally possible and useful [3], but the application of a control strategy 

in between the considered points of duty is very difficult. Thus, we do not consider this topo-

logical option in our paper. 

2.2 Pump Characteristics 

To describe a pump's field of operation, four parameters are relevant: The volume flow 𝑄, 

the pressure head ∆𝐻, the rotational speed 𝑛 and the power input 𝑃. The actual point of duty 

is determined exactly by any two of these parameters for strictly monotonic characteristics. 

This condition is fulfilled for the relevant operating range for any pump and in this paper for 

the whole operating range. Figure 2 shows the characteristics of a single pump. 

The manufacturer describes the characteristics in his catalogue based on measurement data. 

For the reference rotational speed 𝑛𝑟𝑒𝑓 the pressure head and volume flow of the pump are 

varied in a test rig and the values as well as the corresponding power input are measured. Fol-

lowing industrial standards the unit to measure the pressure head is meter water column 

(𝑚𝑊𝐶). Table 1 gives the measurement points for the pump type A considered in this paper. 

 

a)

𝑛𝑟𝑒𝑓

𝑛  𝑛𝑟𝑒𝑓

𝑛  𝑛𝑟𝑒𝑓

𝑛𝑟𝑒𝑓

b)

 

Figure 2: Characteristics of pump type A. 
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Flow Rate in 

m3 h-1 

Pressure head 

in mWC 

Power Input 

in kW 

0.0000 124.87 0.5981 

1.3421 120.31 1.0031 

2.7176 114.00 1.4878 

3.2971 109.33 1.6588 

3.9364 102.76 1.8072 

4.6499 92.78 1.9402 

5.0308 86.19 1.9832 

5.7083 72.11 2.0403 

6.0010 64.99 2.0567 

6.5000 51.49 2.0649 

Table 1: Measurement points for pump type A. 

Many market available pumps are able to alter their rotational speed in the interval 𝑛𝑚𝑖𝑛 ≤
𝑛 ≤ 𝑛𝑚𝑎𝑥. To calculate the characteristics for altering rotational speed, the scaling laws hold: 

𝑄(𝑛) = (
𝑛

𝑛𝑟𝑒𝑓
)𝑄𝑟𝑒𝑓 , (1) 

Δ𝐻(𝑛) = (
𝑛

𝑛𝑟𝑒𝑓
)

2

Δ𝐻𝑟𝑒𝑓, (2) 

𝑃(𝑛) = (
𝑛

𝑛𝑟𝑒𝑓
)

3

𝑃𝑟𝑒𝑓

1 − (1 − 𝜂𝑜𝑝𝑡) (
𝑛
𝑛𝑟𝑒𝑓

)
−0.1

𝜂𝑜𝑝𝑡
. 

(3) 

The scaling law for the power characteristics is expanded by an empirical correction term 

in order to account for the efficiency decrease due to decreasing rotational speed, wherein 

𝜂𝑜𝑝𝑡 stands for the maximum hydraulic efficiency at reference speed. Usually, but not neces-

sarily, the maximal rotational speed of a pump is used as reference value. 

2.3 Operational Mode 

The control variable for the operation of the booster station is the pressure in the pressure 

pipe. The controller adjusts the rotational speed of the pumps and switches pumps on and off. 

While the rotational speed is a continuous variable which could be controlled, e.g. by a PID 

controller, the operational status is a discrete variable that causes a discontinuous transition. 

To react on this discontinuity the designer implements a control strategy. 

This strategy may be devised by many different approaches and with various objectives. A 

simple approach takes the maximum rotational speed of a pump into account. All active 

pumps are running at the same rotational speed. Whenever the active pumps cannot fulfil the 

load at maximum rotational speed the controller turns on an additional pump and adjusts the 

rotational speed of all pumps. This simple approach guarantees the functionality of the system, 

but does not consider the power input. 

Another option considers the power input. A pump’s efficiency is not constant over the 

volume flow. The degrees of freedom for the control of the booster station are the number of 

active pumps and the rotational speed of any active pump. The pressure difference over all 

active pumps must be equal. The total volume flow is distributed between the pumps depend-
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ing on the pump type and the rotational speeds. We will optimize the setting of the control 

variables, so that the total power input 𝑃𝑡𝑜𝑡 of the system becomes minimal. 

3 MATHEMATICAL MODEL 

We present different approaches for calculating a design as well as a control strategy for 

booster stations from the characteristics of the machines. While the rotational speed of a pump 

is controlled continuously within the technical available range, the topological layout and 

number of activated pumps are discrete decisions. Due to the non-linear characteristics of the 

machines and physical laws we are facing a Mixed-Integer Nonlinear Problem (MINLP). 

To simplify the MINLP in order to gain a quicker solution we examine two different ap-

proaches: We apply piecewise linearization techniques to the problem in order to gain a 

Mixed-Integer-Linear-Problem (MILP). In the second approach the fixation of the integer de-

cisions and the fitting of the characteristic curves by algebraic functions enable us to reduce 

the complexity of the problem to a simple Nonlinear Problem (NLP). 

3.1 Pump Characteristics 

Appropriate modelling of pump characteristics is very important for the optimization pro-

gram. From the characteristics measurement we gain several discrete data points for the oper-

ation of the pump at one specific rotational speed. Thus, we have to estimate values in 

between these points and to expand the data to create the field of operation. In general we 

have two different possibilities for this estimation: (i) A fitting function or (ii) piecewise line-

ar interpolation. Both options are described in detail in the following: 

(i) We use a polynomial function 2nd to 5th degree to fit the reference curve of the pump. 

The higher the degree of the polynomial function, the better the measured points and the 

shape of the curve is met. The lower the degree of the polynomial function, the simpler be-

comes the resulting optimization program. For the pump in our study, we decided for a 3rd 

degree polynomial to model the pressure characteristics and a 4th degree polynomial to model 

the power characteristics. The polynomial coefficients are given in Table 2: 

Δ𝐻𝑟𝑒𝑓(𝑄𝑟𝑒𝑓) = 𝑎𝐻𝑄𝑟𝑒𝑓
3 + 𝑏𝐻𝑄𝑟𝑒𝑓

2 + 𝑐𝐻𝑄𝑟𝑒𝑓 + 𝑑𝐻, (4) 

𝑃𝑟𝑒𝑓(𝑄𝑟𝑒𝑓) = 𝑎𝑃𝑄𝑟𝑒𝑓
4 + 𝑏𝑃𝑄𝑟𝑒𝑓

3 + 𝑐𝑃𝑄𝑟𝑒𝑓
2 + 𝑑𝑃𝑄𝑟𝑒𝑓 + 𝑒𝑃. (5) 

 

Coefficient Value Coefficient Value 

𝑎𝐻 in mWC h3 m-9 -0.2448 𝑎𝑃 in kW h4 m-12 0.001357 

𝑏𝐻 in mWC h2 m-6 0.3421 𝑏𝑃 in kW h3 m-9 -0.02259 

𝑐𝐻 in mWC h m-3 -3.197 𝑐𝑃 in kW h2 m-6 0.09047 

𝑑𝐻 in mWC 124.9 𝑑𝑃 in kW h1 m-3 0.2196 

   𝑒𝑃 in kW 0.59811 

Table 2: Polynomial coefficients for pump type A. 

For altering the rotational speed the scaling laws (equations (2) and (3)) hold. By using ad-

ditionally equation (1) we derive: 

Δ𝐻(𝑄, 𝑛) = (
𝑛𝑟𝑒𝑓

𝑛
)𝑎𝐻𝑄

3 + 𝑏𝐻𝑄
2 + (

𝑛

𝑛𝑟𝑒𝑓
) 𝑐𝐻𝑄 + (

𝑛

𝑛𝑟𝑒𝑓
)

2

𝑑𝐻, (6) 
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𝑃(𝑄, 𝑛) = 

[(
𝑛𝑟𝑒𝑓

𝑛
)𝑎𝑃𝑄

4 + 𝑏𝑃𝑄
3 + (

𝑛

𝑛𝑟𝑒𝑓
) 𝑐𝑃𝑄

2 + (
𝑛

𝑛𝑟𝑒𝑓
)

2

𝑑𝑃𝑄 + (
𝑛

𝑛𝑟𝑒𝑓
)

3

𝑒𝑃] 

1 − (1 − 𝜂𝑜𝑝𝑡) (
𝑛
𝑛𝑟𝑒𝑓

)
−0.1

𝜂𝑜𝑝𝑡
. 

(7) 

Due to the shape of the characteristic curves of a pump (cf. Figure 2) and the nonlinear 

scaling laws this technique necessarily leads to a nonlinear model (MINLP or NLP). 

(ii) The reference measurements for the pump are given as triples (𝑄𝑟𝑒𝑓, Δ𝐻𝑟𝑒𝑓, 𝑃𝑟𝑒𝑓) for 

the reference rotational speed. For altering the rotational speed the scaling laws hold once 

again. But in this case we discretize the rotational speed on the permitted interval and explicit-

ly scale the triples of measurement points for these discrete values. As stated in Chapter 2.2, 

only two of the four values for volume flow, pressure head, power input and rotational speed 

are independent from each other. If the point of duty is fixed in the 𝑄-Δ𝐻-plane, the values 

for rotational speed and power input are directly dependent.  

To interpolate between the points we use the aggregated convex combination (ACC) de-

scribed by Vielma et al. [4]. The closer the intervals between the discrete values for the rota-

tional speed are, the smaller is the possible linearization error, but the larger becomes the 

optimization problem. 

The choice for a pump model directly influences the possible options for the final optimi-

zation program: Linear interpolation in an optimization program requires the use of binary or 

integer variables. Hence the resulting problem will include discrete variables (MINLP or 

MILP). 

3.2 Flow Model 

We model fluid systems as a mathematical flow graph 𝐺(𝑉, 𝐸). The edges 𝐸 of the graph 

represent technical components, in this particular case the pumps 𝐾, or simple connections. 

The vertices 𝑉 are used to connect the edges [5]. Each edge transfers a volume flow 𝑄. In 

each vertex the pressure 𝐻 is calculated. For every pump edge a power input 𝑃 and the rota-

tional speed 𝑛 is calculated additionally. 

Depending on the optimization scope and the program type, two different formulations for 

the load case are applicable: (i) each pump type is represented as one edge of the graph or (ii) 

each pump is represented by an edge of the graph. 

(i) If one edge of the flow graph represents a number of pumps of the same type, one fur-

ther premise applies: The rotational speed for all pumps of this type is the same. We introduce 

an integer variable 𝑥 for each pump type that represents the number of active pumps for this 

pump type and modify the requirement for the load case:  

𝑄𝑡𝑜𝑡 = ∑ 𝑥𝑖𝑄𝑖
{𝑖 𝑖𝑛 𝐾}

. (8) 

Due to the parallel arrangement the volume flow for all pumps of one type equals the vol-

ume flow for a single pump multiplied by 𝑥. The required pressure head of the booster fol-

lowing from the given input and output pressure is not influenced by the variable 𝑥 and still 

accounts for all pumps. Parallel pumps must have the same pressure head. 
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∀𝑖 ∈ 𝐾:𝐻𝑖,𝑖𝑛𝑝𝑢𝑡 + Δ𝐻𝑖 = 𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 (9) 

If the range of 𝑥 includes 0, the pump type can be deactivated. The pressure head and the 

rotational speed, following from the pump characteristics model, will still be calculated, but 

the energy consumption of the pump vanishes. 

The correlation of the power input for multiple pumps is the same as of the volume flow 

and also uses variable 𝑥. 

𝑃𝑡𝑜𝑡 = ∑ 𝑥𝑖𝑃𝑖
{𝑖 𝑖𝑛 𝐾}

 (10) 

For purely nonlinear problem formulations without integer variables (NLP) the variable 𝑥 

may be transformed into a parameter. Enumeration is a possible approach to find the optimal 

number of active pumps. In this case only the rotational speeds for the different pump types 

are the remaining degrees of freedom. For booster stations with only one pump type the opti-

mization problem becomes a feasibility problem. 

(ii) The booster station has to promote the total volume flow 𝑄𝑡𝑜𝑡, which is given as input 

parameter, as the sum of the single volume flows in each pump: 

𝑄𝑡𝑜𝑡 = ∑ 𝑄𝑖
{𝑖 𝑖𝑛 𝐾}

 (11) 

Further input parameters for the point of duty are the input pressure and the required pres-

sure head for the booster station. The pressure head (equation (9)) for the booster station ac-

counts for any active pump. To deactivate a specific pump, we introduce a binary activity 

variable 𝑦 and use a Big-M-Formulation to modify equation (9) and decouple the pressure at 

the inlet and outlet of the pump. 

𝐻𝑖,𝑖𝑛𝑝𝑢𝑡 + Δ𝐻𝑖 ≤ 𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 +𝑀(1 − 𝑦)   ∀𝑖 ∈ 𝐾  

𝐻𝑖,𝑖𝑛𝑝𝑢𝑡 + Δ𝐻𝑖 ≥ 𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 −𝑀(1 − 𝑦)   ∀𝑖 ∈ 𝐾 
(12) 

A deactivated pump (𝑦𝑖 = 0) has no volume flow or power input. This is realized by forc-

ing all weights 𝜆 of the linearization (compare [4]) to be zero. Thus the total energy input 

reads 

𝑃𝑡𝑜𝑡 = ∑ 𝑃𝑖 .
{𝑖 𝑖𝑛 𝐾}

 (13) 

Due to the use of the binary variable, the application of a Big-M-Formulation is only pos-

sible in an approach which allows discontinuous variables (MINLP or MILP).  

Please note: In the MINLP case, the deactivation model for single pumps is also possible in 

a manner similar to the approach described in (i): Instead of the integer variable 𝑥 the binary 

activity variable 𝑦𝑀 is used to modify the flow and the power equation of each pump. Pres-

sure rise and rotational speed will be calculated also for the deactivation in this case, but do 

not influence the optimization program and result. The rotational speed and the power input 

for all pumps follow from model for the pump characteristics. 

If binary variables must be avoided to use the NLP approach, the remaining degrees of 

freedom for the optimization are the continuous variables for the rotational speed. To find the 

optimal number of active pumps for this case, an enumeration is a possible approach. 
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3.3 Objective 

The objective for the optimization program is to minimize the total power input of all 

pumps for the given point of duty. 

𝑚𝑖𝑛 𝑃𝑡𝑜𝑡 (14) 

3.4 Optimization Framework 

In order to quickly gain solutions for optimization problems of booster related tasks, we 

created an optimization framework within the AIMMS software system. The parameters for 

the optimization, such as different pump types as well as their characteristics or maximum 

number of pumps, are given as user input, but remain the same for any optimization program. 

From the user input the flow graph is generated. Furthermore, the framework includes the 

constraints and variables for all different modelling options. The user chooses which type of 

optimization program he would like to use and the computer compiles only the relevant part 

of the model for the user’s choice. Afterwards the resulting optimization program is passed to 

a matching solver. This framework enables us to compare the results for the different model-

ling approaches and compare them to each other. 

The described optimization program finds an optimal control solution for one point of duty. 

In order to find control guidelines for the whole field of operation, we have to run the optimi-

zation model many times with varying load cases. We discretize the pressure and the volume 

flow and run the program for every point of duty. 

4 RESULTS 

4.1 Control Strategy for Booster Stations with one Pump Type 

We compare three different approaches to optimize the control strategy of a booster station 

consisting of three pumps of type A. The first approach is a MILP: We model the pump char-

acteristics by an ACC linearization with 20 intervals for the rotational speed and create one 

edge for each pump. The second model is an NLP approach, which uses a fitted pump model 

and one edge for each pump type. The discrete decision for the optimal number of pumps fol-

lows from an enumeration and comparison of the results. The third model is a MINLP with 

the same model as the NLP. Instead of the enumeration the Solver additionally makes a dis-

crete decision for the number of active pumps. 

The result for the discrete decision for the number of pumps is the same with all three ap-

proaches. Figure 3 shows the optimal control strategy for the booster station. We can identify 

two reasons for the switch of a pump: (1) For high constant pressure and increasing volume 

flow the controller increases the rotational speed of the active pumps. Once the maximum is 

reached, an additional pump is switched on. The decreasing gray lines show the maximum 

volume flow for fixed pressure head for one, two or three pumps. (2) For low constant pres-

sure and increasing volume flow we find an efficiency argument: An additional pump is 

switched on, because it reduces the total power input, even though more pumps are working. 
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Figure 3: Optimization result for a booster station of three pumps of type A. 

All calculations were made on an AMD Phenom™ II X6 1100T Processor with 3.3 GHz 

and 16 GB RAM. The applied solvers were CPLEX 12.6.2 for the linear model and BARON 

15 for the nonlinear model. The sum of the run times for the different approaches is: 

 

 MILP:    13.5 s 

 MINLP:   25.2 s 

 NLP + Enumeration:  51.6 s 

 

The MILP is clearly the fastest, while, as expected, the NLP takes the most time. Even 

though the discrete decision of all the approaches remains the same, the solutions are slightly 

different: In the MILP results the rotational speed of the active pumps is not always exactly 

the same. For Δ𝐻 = 75 𝑚𝑊𝐶  and 𝑄 = 12 𝑚3/ℎ the rotational speeds for the three active 

pumps are 𝑛1 = 2607 𝑚𝑖𝑛
−1, 𝑛2 = 2521 𝑚𝑖𝑛

−1, 𝑛3 = 2607 𝑚𝑖𝑛
−1. Even though it’s proven, 

that all these pumps should run at the same rotational speed [6], the optimality gap is small 

enough to stop the solver. Highest settings for the numerical precision of the solver can’t 

change this. Additionally, the linearization error can only be calculated and reduced [7] but 

not avoided for the optimization. A nonlinear correction would be necessary to use the results 

from this approach. The necessary correction is a feasibility problem (see 3.2). 

4.2 Control Strategy for Booster Stations with two Pump Types 

The next considered optimization problem is a booster station with three pumps of type A 

and one pump of different type. Table 3 shows the measurement points for pump type B. 

Once again we use the MILP and the MINLP approach as described in 4.1. The NLP ap-

proach is not tested anymore, due to the bad performance for the first test case and the in-

creased number of decisions. 
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Flow Rate in 

m3 h-1 

Pressure head 

in mWC 

Power Input 

in kW 

0.0000 123.86 0.4597 

0.6000 120.80 0.6289 

1.2215 114.09 0.7930 

1.6223 107.30 0.9069 

1.8152 103.55 0.9673 

1.9219 101.30 0.9887 

2.0529 86.11 1.0242 

2.4428 72.11 1.1013 

2.6902 75.95 1.1334 

3.0266 59.32 1.1545 

Table 3: Measurement points for pump type B. 

The computer and the solvers stay the same. The summed solver times for the solution of 

the new problem are:  

 

 MILP:     20.0 s 

 MINLP:  654.0 s 

 

One can see that the MILP is much faster than the MINLP. Figure 4 shows the results for 

the number of active pumps as given by both solvers. The solutions of the solvers differ in six 

of the 90 feasible cases. The objectives in these points are nearly equal. The reasons for theses 

slight differences are related to our given reasons for the different rotational speeds in Chapter 

4.1. Due to the different model types we gain different solutions.  
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Figure 4: Optimization result for a booster station of three pumps of type A and one pump of type B.  

a) MILP, b) MINLP 
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Also in this case, we notice different rotational speeds for the active pumps of type A. The 

inevitable correction of the rotational speeds is not necessarily a feasibility problem anymore. 

Pumps of different types may but do not have to run at the same rotational speed to minimize 

the energy input. Thus this might become an optimization problem if pumps of both types are 

active. 

As a next step we combine both methods: We use the MILP to make discrete decision for 

the active pumps. Afterwards, we use the discrete result as input for the NLP-Solver to gain 

an optimal and non-linear feasible solution for the original problem. The summed computa-

tion time for this approach is 223.6 s, so this approach is much quicker than the MINLP due 

to the excellent performance of the MILP solver. 

5 CONCLUSIONS 

 Pumping systems and booster stations use a significant amount of the produced electrical 

energy and thus need to be considered for optimization. 

 We presented the technical requirements for the optimization of booster stations. 

 Different approaches are suitable for the optimization of the control and layout of a 

booster station. 

 We implemented a framework, which allows us to compare the different approaches and 

calculate appropriate solutions quickly. 

 The effort of building a MILP is the highest, but the solvers work very quickly and deliv-

er good results. 

 Finding a nonlinear feasible solution corresponding to a MILP solution is a good alterna-

tive for the use of a MINLP solver. 
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Abstract. Information visualization have been performed for researching and developing a
single-stage sounding launch vehicle with hybrid rocket engine by using design informatics;
it has three points of view: problem definition, optimization, and data mining. The primary
objective of this study is to reveal extinction-reignition ascendancy, which is one of the beneficial
points of hybrid rocket, for expanding downrange and duration in the lower thermosphere.
Swirling-flow oxidizer is furnished with solid fuel; we adopt polypropylene for solid fuel and
liquid oxygen for oxidizer. A multidisciplinary design optimization was implemented by using a
hybrid evolutionary computation; data mining was carried out by using a scatter plot matrix to
efficiently perceive the entire design space. It is consequently revealed that extinction-reignition
extends duration although it does not provide any effect on expanding downrange. Scatter
plot matrix results express physical mechanisms of design-variable behaviors for the objective
functions and also the roles of the design variables via bird’s-eye visualization of the entire
design-space constitution.
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1 INTRODUCTION

Single-stage rockets have been researched and developed for scientific observations and ex-
periments of high-altitude zero-gravity condition, whereas multi-stage rockets have been for or-
bit injections of payloads. Institute of Space and Astronautical Science (ISAS)/Japan Aerospace
Exploration Agency (JAXA) has been operating Kappa, Lambda, and Mu series rockets as the
representatives of solid rocket to contribute to space science researches. Although Epsilon se-
ries began to be operated from September 2013, a next-generation rocket is necessary to fulfill
higher-frequent and lower-cost space transportations.

Hybrid rocket engines (HREs) using different phases between fuel and oxidizer (solid fuel
and liquid/gas oxidizer is generally used) have been researched and developed as an innovative
technology in mainly the E.U.[1] and the U.S.[2] Each country has plans to adopt an HRE to
a main engine of space transports because of several advantages: lower cost, higher safety1,
and pollution free flight due to no gunpowder use. In contrast, disadvantages of HREs proceed
from their combustion. Since HREs have low regression rate of solid fuel due to turbulent
boundary layer combustion, the thrust of HREs is less than that of pure-solid/liquid engines
which premixed combustion[3] is implemented. Moreover, since the mixture ratio between
solid fuel and liquid/gas oxidizer (O/F ) is temporally fluctuated, thrust changes with time.
Research topics of HREs are improving those performances via experiments.

Now in Japan, ISAS/JAXA recently researches HREs to develop a next-generation space
transportation. Research topics are viporization of liquid oxygen, advancement of exhaust ve-
locity c∗ efficiency, progress of regression rate, stable ignition, and numerical simulations of
turbulent boundary layer combustion. In contrast, we will investigate hybrid-rocket ascendancy
via conceptual design as a part of ISAS/JAXA’s hybrid rocket project. The objective of this con-
ceptual design is to quantitatively indicate hybrid-rocket advantage compared with the current
rockets via conceptual design; multidisciplinary design requirements: chemical equilibrium,
thrust, structural, aerodynamics, and trajectory analyses are driven. Furthermore, exhaustive
design information will be obtained to additionally consider manufacturing, productive, and
market factors for practical problems2.

Design informatics (DI) has essential for not only an operating system itself but also its ap-
plications to practical problems so that science contributes toward the real world. Results them-
selves do not possess versatility in application problems due to their particularity; system ver-
satility is indeed critical in application problems because it is revealed that application range is
expanded. Furthermore, the application results indicate the guidance for system improvements.
In this study, we conceptually explore a conceptual design of a single-stage sounding hybrid
rocket using DI approach. The objective is that extinction-reignition advantage in the science
mission for aurora observation on hybrid rocket will be quantitatively revealed. Since HREs
are comparatively easy to perform multi-time ignition[4], extinction-reignition supremacy is
especially predicted by using design informatics approach.

We researched step by step in the previous studies. As a first step, an optimization prob-
lem on single-time ignition, which is the identical condition of the current solid rocket, was
defined to obtain the design information[5]. As a second step, the implication of solid fuels in
the performance of hybrid rocket was revealed because the regression rate is one of the key ele-
ments for hybrid-rocket performance[6]. Finally, this study investigates an extinction-reignition
sequence to reveal a hybrid-rocket ascendancy as multi-time ignition.

1this is especially important for manned mission.
2optimization is difficult to deal with them due to the difficulty of quantitative definition.
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Table 1: Upper/lower limits of each design variable.

serial number design variable unit design space
dv1 initial mass flow of oxidizer [kg/sec] 1.0 ≤ ṁox(0) ≤ 30.0
dv2 fuel length [m] 1.0 ≤ Lfuel ≤ 10.0
dv3 initial radius of port [m] 0.01 ≤ rport(0) ≤ 0.30
dv4 total combustion time [sec] 20.0 ≤ t

(total)
burn ≤ 60.0

dv5 1st combustion time [sec] 10.0 ≤ t
(1st)
burn ≤ 40.0

dv6 extinction time [sec] 1.0 ≤ text ≤ 300.0
dv7 initial pressure in combustion chamber [MPa] 3.0 ≤ Pcc(0) ≤ 6.0
dv8 aperture ratio of nozzle [-] 5.0 ≤ ϵ ≤ 8.0
dv9 elevation at launch time [deg] 60.0 ≤ ϕ(0) ≤ 90.0

The constitution of this paper is as follows. The optimization and data-mining techniques
used in DI are explained in Chapter II. The problem definition for designing a hybrid rocket are
shown in Chapter III. Otimization and data-mining results are revealed; the knowledge is also
discussed in Chapter IV.

2 PROBLEM DEFINITION

We consider a conceptual design for a single-stage sounding hybrid rocket, simply com-
posed of a payload chamber, an oxidizer tank, a combustion chamber, and a nozzle[7] shown in
Fig. 1. A launch vehicle for aurora scientific observation will be focused because more efficient
sounding rockets are desired due to successful obtaining new scientific knowledge on the aurora
observation by ISAS/JAXA in 2009. In addition, a single-stage hybrid rocket problem fits for
resolving fundamental physics regarding HREs and for improving the problem definition.

2.1 Objective functions

Three objective functions are defined. First objective is maximizing the downrange in the
lower thermosphere (altitude of 90 to 150 [km]) Rd [km] (obj1). Second is maximizing the
duration in the lower thermosphere Td [sec] (obj2). It recently turns out that atmosphere has
furious and intricate motion in the lower thermosphere due to energy injection, from which
derives aurora, from high altitude. The view of these objective functions is to secure the hor-

Figure 1: Conceptual illustrations of hybrid rocket.
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izontal distance and time for competently observing atmospheric temperature and the wind so
that thermal energy balance is elucidated on atmospheric dynamics. Third objective is minimiz-
ing the initial gross weight of launch vehicle Mtot(0) [kg] (obj3), which is generally the primary
proposition for space transportations.

2.2 Design variables

We use nine design variables: initial mass flow of oxidizer ṁox(0) [kg/sec] (dv1), fuel length
Lfuel [m] (dv2), initial radius of port rport(0) [m] (dv3), total combustion time t(total)burn [sec] (dv4),
first combustion time t

(1st)
burn [sec] (dv5), extinction time from the end of first combustion to the

beginning of second combustion text [sec] (dv6), initial pressure in combustion chamber Pcc(0)
[MPa] (dv7), aperture ratio of nozzle ϵ [-] (dv8), and elevation at launch time ϕ(0) [deg] (dv9).
The design variables regarding rocket geometry are visualized in Fig. 2.

Note that since this problem assumes

ṁox(t) = ṁox(0) = const., (1)

Figure 2: Design variables regarding rocket geometry. ϵ is described by using the radius at nozzle exit rex and the
radius at nozzle throat rth.

0 50 100 150 200
0.0

2.0x104

4.0x104

6.0x104

8.0x104

dv4-dv5dv6

 

 

 Thrust
 Down range

Time [sec]

Th
ru

st
 [N

]

dv5

0.0

4.0x104

8.0x104

1.2x105

1.6x105

D
ow

n 
ra

ng
e 

[m
]

Figure 3: Conceptual graph of extinction-reignition. Two-time combustions generate two thrust pulses. Second
thrust pulse increases dRd/dt.
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mass flow of oxidizer is equal between 1st and 2nd combustions. The relationship among dv4,
dv5, and dv6 regarding extimction-reignition operation is conceptually shown in Fig. 3. We set
two combustion times as follows:

t
(1st)
burn =

{
t
(total)
burn (t(total)

burn < t(1st)
burn)

t
(1st)
burn (t(total)

burn ≥ t(1st)
burn)

,

t
(2nd)
burn =

{
0 (t(total)

burn < t(1st)
burn)

t
(total)
burn − t

(1st)
burn (t(total)

burn ≥ t(1st)
burn)

.

(2)

Under t(total)
burn < t(1st)

burn condition, it is defined that t(1st)
burn is set to be t(total)

burn and second-time combus-
tion is not performed. Note that there is no constraint except upper/lower limits of each design
variable summarized in Table 1. These upper/lower values are exhaustively covering the region
of the design space which is physically admitted. When there is a sweet spot3 in the objective-
function space, the exploration space would intentionally become narrow due to the operation
of range adaptation on the evolutionary computation.

2.3 Evaluation method of hybrid rocket

First of all, O/F (t) is computed by the following equation.

O/F (t) =
ṁox(t)

ṁfuel(t)
, (3)

where, ṁox(t) is set from eq. (1) and

ṁfuel(t) = 2πrport(t)Lfuelρfuelṙport(t),

rport(t) = rport(0) +

∫
ṙport(t)dt.

(4)

ṁox(t) and ṁfuel(t) are the mass flow of oxidizer/fuel [kg/sec] at time t, respectively. rport(t)
is port radius [m] at t, Lfuel describes fuel length, and ρfuel is fuel density [kg/m3]. ṙport(t)
describes the regression rate. Note that since HREs perform no premixed combustion which
conventional rocket engine implements but turbulent boundary layer combustion, O/F (t) is
not constant but timely fluctuated. After that, an analysis of chemical equilibrium is performed
by using NASA-CEA (chemical equilibrium with applications) [8], then trajectory, thrust, aero-
dynamic, and structural analyses are respectively implemented. A body is assumed as rigidness.
As the time step is set to be 0.5 [sec], it takes roughly 10 [sec] for an individual evaluation on a
general desktop computer.

A combustion chamber is filled with solid fuel with a single port at the center to supply ox-
idizer. As the regression rate to the radial direction ṙport(t) [m/sec] generally governs thrust
power of HREs, it is a significant parameter. This study uses the following experimental
model[9, 10];

ṙport(t) = afuel ×Gnfuel
ox (t)

= afuel ×
(

ṁox(t)

πr2port(t)

)nfuel

,
(5)

3the region that all objective functions proceed optimum directions.
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where, Gox(t) is oxidizer mass flux [kg/m2/sec]. afuel [m/sec] and nfuel [-] are the constant values
experimentally determined by fuels. Swirling oxidizer flow is carried out; we adopt liquid
oxygen for oxidizer and polypropylene as thermoplastic resin for solid fuel. Experiments[9, 10]
respectively indicate afuel = 8.26× 10−5 [m/sec] and nfuel = 0.5500 [-] for polypropylene.

We assume a body to be rigid[11]. Figure 4 shows a three-degree-of-freedom (3DoF) flight
simulation kinematic model. T (t) is estimated; a flight path is computed by using the following
3DoF equations of motion: 

ẍ =
T (t) cos θ1 −D(t) cos θ2

Mtot(t)
,

ÿ =
T (t) sin θ1 −D(t) sin θ2

Mtot(t)
− g,

θ̈1 =
N(t)|Xc.p. −Xc.g.|

I(t)
,

(6)

where, N(t) is the normal component of aerodynamic force. N(t) is approximately evaluated
as follows:

N(t) =
1

2
ρ(t)V 2(t)Sref sin(|θ1 − θ2|). (7)

ρ(t) and V (t) respectively denote the air density and rocket velocity at elapsed time t. θ1
and θ2 respectively describe vehicle attitude angle and flight path angle. Eq. 6 assumes that
thrust vector corresponds to attitude direction, i.e., body axis. Therefore, thrust angle does not
generally correspond to flight direction. I(t) denotes the moment of inertia, which is estimated
by using the coordinate of the center of gravity for an entire body Xc.g.(t) and that for the

Figure 4: Illustration of a kinematic model of single-stage rocket for 3DoF flight simulation. Note that c.g. and
c.p. respectively denote the center of gravity and the center of pressure.
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components of body X
(n comp)
c.g. (t) shown in Fig. 5; I(t) is described as follows:

I(t) =
5∑

n comp=1

mn comp(t)× (X(n comp)
c.g. (t)−Xc.g.(t))

2. (8)

Xc.g. is computed by the following equation, which considers the variance of fuel and oxidizer
masses.

Xc.g.(t) =
5∑

n comp=1

mn comp(t)×X
(n comp)
c.g. (t)

Mtot(t)
. (9)

X
(n comp)
c.g. (t) describes the distance between nozzle exit and the center of gravity of each com-

ponent. n comp denotes the serial number of each component; we consider five components.
n comp of 1, 2, 3, 4, and 5 respectively correspond to nozzle, combustion chamber, oxidizer
tank, payload bay, and nose cone. Note that mn comp(t) for nozzle, payload bay, and nose cone
merely depends on the structures of these components; mn comp(t) can be assumed to be con-
stant. In contrast, mn comp(t) for combustion chamber and oxidizer tank depends on not only
the structure but also change in the amount of fuel and oxidizer over time. That is, X(2)

c.g.(t) and
X

(3)
c.g.(t) are time-dependent functions. Mtot(t) denotes the total mass for a whole rocket body.

3 DESIGN INFORMATICS

DI is essential for practical design problems. Although solving design optimization prob-
lems is important under many-discipline consideration on engineering[12], the most significant
part of the process is the extraction of useful knowledge of the design space from results of op-
timization runs[13, 14]. The results produced by multiobjective optimization (MOO) are not an
individual optimal solution but rather an entire set of optimal solutions due to tradeoffs. That is,
MOO results are not sufficient from the practical point of view as designers need a conclusive
shape and not the entire selection of possible optimal shapes. But optimal-solution set produced
by an MOO can be considered a hypothetical design database for design space. Thereupon, data
mining techniques can be applied to a hypothetical database to acquire not only useful design
knowledge but also structurizing and visualizing design space for conception support. This
approach was suggested as DI[15].

Figure 5: Definition of positions for the five-components’ center of gravity.
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The goal of this approach is the conception support for designers to materialize innovation.
This methodology is constructed by three essences: problem definition, efficient optimization,
and data mining for structurization and visualization of design space. A design problem in-
cluding objective functions, design variables, and constraints, is strictly defined in view of the
background physics for several months Note that problem definitions are the most important
process because it directly gives effects on design space qualities. If we garrulously define a
problem, unnecessary evolutionary exploration should be performed; needless mining will be
also carried out because it is conceived to be low-quality design space. Then, optimization is
implemented to acquire nondominated solutions4 to become hypothetical database. Finally, data
mining is implemented for this database to obtain design information. Mining has a postprocess
role for optimization. Mining results might include significant knowledge for next design phase
and also becomes the material to redefine a design problem.

3.1 Optimization method

DI second phase is optimization; we use evolutionary computations (ECs). Although we can
employ a surrogate models[16]: the radial basis function and the Kriging model[17], which is a
response surface model developed in the field of spatial statistics and geostatistics, we will not
select them because they are generally difficult to deal with a large number of design variables.
In addition, we would like to generate a hypothesis database using exact solutions. We also
employ ECs so that plural individuals are parallel conducted. We use a hybrid EC between the
differential evolution (DE) and the genetic algorithm (GA)[18].

First, multiple individuals are generated randomly as an initial population. Then, objective
functions are evaluated for each individual. The population size is equally divided into sub-
populations between DE and GA5. New individual candidates generated via DE and GA are
combined. The nondominated solutions in the combined population are archived in common.
Note that only the archive data is in common between DE and GA. The respective optimization
methods are independently performed in the hybrid EC.

The hybrid EC is a real-coded optimizer[19]. Although GA is based on the real-coded
NSGA-II (the elitist nondominated sorting genetic algorithm)[20], it is made several improve-
ments on to be progressed with the diversity of solutions. Fonseca’s Pareto ranking[21] and
the crowding distance[20] are used for fitness values. The stochastic universal sampling[22]
is employed for parents selection. Crossover rate is 100%; the principal component analy-
sis blended crossover-α (PCABLX)[23] and the confidence interval based crossover using L2

norm (CIX)[24] are used because of the high performance for convergence and diversity as
well as the strength for noise[18]. The subpopulation size served by GA is equally divided for
these two crossovers. Mutation rate is set to be constant as the reciprocal of the number of de-
sign variables. For alternation of generations, we employ a cross-generational elitist selection
model, which uses the crowding distance for clustering; it selects N solutions from all parents
and offspring. Thereupon, candidates of the next generation are 2N . The fitness of the region
that individuals congregate because of falling into local optimum and s on is estimated to be low
for diversity maintaining. DE is used as the revised scheme[25] for multiobjective optimization
from DE/rand/1/bin scheme. The scaling factor F is set to be 0.5. The hybrid EC has a range-
adaptation function[26], which changes the search region according to the statistics of better

4quasi-Pareto solutions.
5although sub-population size can be changed at every generations on the optimizer, the determined initial

sub-populations are fixed at all generations.
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solutions, for all design variables. Range adaptations are implemented at every 20 generations.

3.2 Data mining

DI third phase is data mining. Scatterplot matrix (SPM)[27] or be simply named scatterplots
remains one of the general visual descriptions for multidimensional data due to its simplicity.
SPM is available to simultaneously visualize multidimensional data constructed by all of ob-
jective functions and design variables like as a bird’s-eye view. Other data-mining techniques
which have flexibility and effective visual expressiveness exist. However, we merely select
SPM so that we will obtain first-step design information via observing design-space overview.

4 RESULTS

4.1 Optimization results

The population size is set to be 18 in one generation; the EC is performed until 4,000 gen-
erations. Population size of 18 is determined as a small number of the order of 101 because the
generation number will be earned as much in evolution. The generation number is decided by
evolution convergence. Plots of acquired nondominated solutions are shown in Fig. 6(a); two
discontinuous connecting and convex nondominated surfaces except several isolated individuals
are generated.

The tradeoffs are identical to the previous study [6]; the difference whether extinction-
reignition is considered will be explained here. The essential difference between the previous
and the present results is to break the upper limit of Td and to expand it approximately 14%.
This result indicates that extinction-reignition fulfills the hovering in the lower thermosphere.
Extension of Td accompanies the increase of Mtot(0). Rd is not, however, improved due to
extinction-reignition. This fact suggests that the significant design variable might not be t

(2nd)
burn

but text. When t
(2nd)
burn will serve functions, vehicles move away from the lower thermosphere;

both of Rd and Td are not increased.
If thrust direction can be horizontally controlled, t(2nd)burn is expected to give an effect on raising

Rd and Td simultaneously. Since thrust direction corresponds to body axis shown in Fig. 4 due
to considering 3DoF equations of motion , t(2nd)burn is not performed functions; only text gives an
effect on Td. However, since detailed functions of design variables are not indicated from the
optimization, data mining has essential role in DI.

4.2 Data mining results

Figure 7 shows the generated SPM so that data mining is implemented. The objective is to
reveal design-variable roles in the design space via observing their behaviors. SPM does not
indicate the tradeoff relations among more than the optimization results shown in Fig. 6 due to
identical information.

4.2.1 Knowledge for Rd

First, we will investigate design-variable roles for Rd. The optimization results shown in
Fig. 6 indicate that Rd is not improved despite extinction-reignition implementation; we will
trace the physical mechanism of it. SPM shown in Fig. 7 indicates effective design variables:
ṁox(0), Lfuel, and ϕ(0).

Rd-ṁox(0) plot in Fig. 7 reveals a nonlinear and positive correlation between them; ṁox(0)
gives an effect on Rd increase. ṁox(0) rise gives an effect on ṙport(t) growth and thrust gain;
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Figure 6: Plots of nondominated solutions derived by optimization, (a) plotted in the three-dimensional objective-
function space (red) and their plots projected onto two dimensions, (b) plots projected onto two dimension between
Rd (obj1) and Td (obj2) (light green), (c) plots projected onto two dimension between Td (obj2) and Mtot(0) (obj3)
(light blue), and (d) plots projected onto two dimension between Rd (obj1) and Mtot(0) (obj3) (blue). Note that
gray-colored plots represent the results of previous work[6] in view of no extinction-reignition.

this correlation is reasonable. However, this plot also indicates that ṁox(0) reaches the upper
limit shown in Table 1. Since this upper value descends from technical limit, ṁox(0) is the
bottleneck to realize the strategy to grow Rd as horizontal flight path in the lower thermosphere
using low ϕ(0).

Rd-Lfuel plot in Fig. 7 similarly shows a nonlinear and positive correlation between them;
Lfuel also gives an effect on Rd swell. However, Lfuel does not attain the upper limit of the
design-variable space; the region to be close to Lfuel upper limit (from roughly 8 to 10 [m])
has no nondominated solution. If Lfuel increases, fuel mass rises; long-time combustion can be
performed. But

• Rd-t(1st)burn plot in Fig. 7 indicates that t(1st)burn is not set to be close to upper limit.
• Rd-t(total)burn plot in Fig. 7 reveals that t(total)burn merely uses the lower half region.

That is, if t(1st)burn is set over the maximum value in t
(1st)
burn plots in Fig. 7, long combustion does not

give an effect on Rd growth. Furthermore, if t(total)burn < t
(1st)
burn, we define Eq. (2); 2nd combustion
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is not implemented. Thereupon, the absolute behavior of

t(2nd)
burn = t(total)

burn − t(1st)
burn > 0 (10)

signifies that the hybrid EC evolves to strictly perform 2nd combustion. Thrust direction corre-
sponds to body axis shown in Fig. 4. Body axis is diagonally downward although it depends on
elevation. Therefore, if t(2nd)burn is long, a vehicle might deviate from the lower thermosphere. We
consider two ways to fulfill a horizontal slide because of expanding Rd and Td.

• We have a way to employ vectored thrust. But since there is an upper limit of deflection
angle, we cannot drastically implement it. Moreover, we are difficult to control deflection
angle.

• We can consider several manners not to use vectored thrust; thrust direction keeps corre-
sponding to body axis.

1. ϕ(0) is set to be as low as possible so that horizontal launch is realized, i.e., hori-
zontal component of thrust augments. However, since ṁox(0) reach the upper limit,
a vehicle might not attain the lower thermosphere shown in Rd-ϕ(0) plot in Fig. 7.

2. We control thrust so that it balances with vertical component due to rocket weight.
If we control ṁox(t) for 2nd combustion, this manner might be fulfilled because
present ṁox(0) is defined as constant shown in Eq. (1).

3. Reignitions are discontinuously and repeatedly implemented for short time. But
many-time ignition might be technically difficult.

Feasibility studies regarding above 2nd manner should be quickly investigated.

Rd-ϕ(0) plot in Fig. 7 indicates a linear and negative correlation between them; ϕ(0) decrease
gives an effect on Rd augmentation. If ϕ(0) is low, flight path becomes horizontal; Rd increases.
However, ϕ(0) does not reach lower limit. This is because a vehicle might not attain the lower
thermosphere when ϕ(0) is set to be under the minimum value: roughly 63 [deg].

If we consider knowledge for setting design variables summarized hereinbefore, an effective
strategy to expand Rd is that nearly vertical ϕ(0) is set so that a vehicle injection is implemented
to the lower thermosphere; appropriate thrust is generated for 2nd combustion to horizontally
move a body. If strictly vertical elevation: ϕ(0)=90 [deg] is set, horizontal component of body
velocity becomes zero, a rocket cannot have horizontal slide because thrust direction corre-
sponds to body axis.

4.2.2 Knowledge for Td

Second, we will consider design-variable roles for Td. Since the optimization results shown
in Fig. 6 already indicates that we can extend Td, physical mechanisms of it will be revealed via
SPM. Figure 7 indicates the effective design variables: ṁox(0), Lfuel, t

(total)
burn , t(1st)burn, text, and ϕ(0).

Since ṁox(0) and Lfuel have similar effects for Rd, we will consider the roles of t(total)burn , t(1st)burn, text,
and ϕ(0) hereinafter. We especially focus extended feasible region due to extinction-reignition.

Td-t(1st)
burn plot in Fig. 7 describes positive correlation between them. Summit altitude becomes

near 150 [km] as t(1st)
burn is larger. ϕ(0) is also close to be vertical to efficiently implement. But

if t(1st)
burn is set to be roughly full time, a hull might go over altitude of 150 [km]; we observe

maximum t(1st)
burn on this plot. If ϕ(0) is close to the lower limit: 60 [deg], summit altitude does

not reach 150 [km]; Td is not longer than that under vertical launch condition. Rd is not also
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expanded. Thereupon, ϕ(0) is set to be vertically so that fuel mass is restrained; Mtot(0) (obj3)
will be reduced on the hybrid EC.

Furthermore, if t(2nd)
burn is set to be long, a vehicle also goes over altitude of 150 [km] because

t(2nd)
burn (denoted as dv* in Fig. 7) is merely set to be low value on Td-t(2nd)

burn plot in Fig. 7. That
is, t(1st)

burn is appropriately determined first to reach the lower thermosphere; t(total)
burn is decided not

to go beyond 150 [km]. Indeed we obtain infeasible region in upper area where no individual
exists on t(total)

burn plots in Fig. 7 although we observe strongly positive correlation between t(total)
burn

and t(1st)
burn shown in Fig. 7.

Physical mechanisms regarding combustion-time behaviors mentioned above will be con-
sidered. The range of dv* is from 0 to 20 [sec], i.e., Td-t(2nd)

burn plot in Fig. 7 indicates that t(2nd)
burn

absolutely fulfills Eq. 10 condition to become a nondominated solution. This problem likes to
actively employ 2nd combustion. However, t(2nd)

burn does not like to set to be long because a hull
might go over altitude of 150 [km]. If t(2nd)burn is increased, Td linearly extends. However, there
is the maximum t

(2nd)
burn : roughly 5 [sec]. This result indicates that properties of 1st and 2nd

combustions are absolutely different.

• 1st needs powerful combustion to launch a body to the lower thermosphere.
• 2nd requires feeble combustion to merely sustain vehicle gross weight.

We should define ṁox for 2nd combustion to simulate different properties and to realize a feeble
2nd combustion.

Td-text plot in Fig. 7 has the roughly linear and positive correlation. Since a vehicle draws
roughly parabolic flight path, it is an efficiently operation that reignition is implemented after
passing summit altitude and at the timing immediately before going down altitude of 90 [km];
this correlation is reasonable.

Td-ϕ(0) plot in Fig. 7 expresses that Td becomes large as ϕ(0) is close to 90 [deg]. If ϕ(0)
becomes the vertical condition, a rocket can use entire region of the lower thermosphere from
90 to 150 [km] taking advantage of 2nd combustion; Td is inevitably extended.

4.2.3 Knowledge for Mtot(0)

ṁox(0) has a peculiarity for Mtot(0) on their plot in Fig. 7; Mtot(0)-ṁox(0) plot shows two
belts with different inclination dṁox(0)/dMtot(0). SPM indicates that high dṁox(0)/dMtot(0)

is the cluster to perform long text and short t(2nd)burn (condition I); low dṁox(0)/dMtot(0) is the
cluster to implement short text and long t

(2nd)
burn (condition II). Note that entire nondominated

solutions in both clusters do not exist in the novel feasible region where extinction-reignition
generates. If Mtot(0) is identical, we need more ṁox(0) for a long text sequence than for a short
text one. Because we require extra-thrust for extinction to convey fuel and oxidizer masses
which burn down if we operate under no extinction-reignition condition. Thereupon, the differ-
ence of sensitivity

dṁox(0)

dMtot(0)

∣∣∣∣
condition I

>
dṁox(0)

dMtot(0)

∣∣∣∣
condition II

(11)

is strictly emerged. The fact indicates that vehicle gross weight with extinction-reignition swells
rather than that with single-time ignition so that we actively adopt extinction-reignition to in-
crease Rd and Td.

Although Mtot(0)-Lfuel plot in Fig. 7 shows curved surface on the plots, these are divided into
two clusters that we mentioned the above; each cluster has linear correlation between Mtot(0)
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and Lfuel. If Lfuel shortens, fuel mass decreases; since weight for reduced fuel mass lightens,
this is physically reasonable result.

4.2.4 Other knowledge

Figure 7 also indicates design variable behaviors. Especially note that there is a strong
positive correlation between ṁox(0) and Lfuel. This result suggests that since ṁox(0) arrives the
upper limit 30 [kg/sec] shown in Table 1, Lfuel cannot reach the upper limit 10 [m] due to the
strong correlation; accordingly this is one of the reason not to increase t(total)burn . The shortcoming
of HREs is low ṙport(t). ṙport(t) is the function described by ṁox(t). The improvement of ṁox(0)
is essential work to effectively use extinction-reignition and to develop impressive hybrid rocket
system.

Lowest value of Lfuel is observed to set to be 1.0 [m] on, e.g., Mtot(0)-Lfuel plot in Fig. 7. If
Lfuel = 1.0 [m], Mtot(0)) minimization is fulfilled whereas Rd = 0 and Td = 0; an individual
with Lfuel = 1.0 [m] belongs to a nondominated solution. The lower limit of Lfuel to realize
Rd ̸= 0 and Td ̸= 0 is confirmed to be roughly 2.8 [m], which is the absolute minimum length
to reach the lower thermosphere.

Figure 7 indicates that rport(0) is not flexible; it has roughly constant. If we set a small
rport(0), we cannot implement sufficient oxidizer mass flow to fulfill appropriate thrust. In
contrast, if we set a large rport(0), fuel mass becomes insufficient. Being proportionate to a
large rport(0) cannot basically achieve ṁox(0).

Pcc(0) is observed as an independent design variable on Fig. 7 because it is used to decide
tanks’ thicknesses. In addition, Fig. 7 shows the maximum Pcc(0) is approximately 4.9 [MPa];
upper design space for Pcc(0) is not completely used. Since tanks’ thickness is huge as Pcc(0)
is large, vehicles might not be existable for physical reasons: heavy Mtot(0) and large drag due
to small aspect ratio of body.

There is a tendency that ϵ becomes large to gain thrust. Although ϵ likes to set to be the upper
limit 8.0 [-] shown in Table 1, ϵ does not directly give effects on all objective functions: Rd, Td,
and Mtot(0).

5 CONCLUSIONS

Visualizing design space has been implemented for research and development of a single-
stage sounding launch vehicle with hybrid rocket engine via design informatics, which manages
a hybrid evolutionary computation for multidisciplinary design optimization and a scatter plot
matrix for data mining. Especial objective of this study is to reveal extinction-reignition ascen-
dancy in a hybrid rocket engine. The optimization result consequently indicates that extinction-
reignition expands duration despite no improvement of downrange in the lower thermosphere.
Furthermore, data-mining result reveals the intimate knowledge regarding physical mechanisms
of the objective-function behavior and of design-variable roles in design space.
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Figure 7: Scatterplots of the optimization results and their correlation coefficients. The upper/lower values of the
axes of the design variables on graphs are set to be the upper/lower limits of each design variables shown in Table
1. Plots are colored by Rd as obj1; each block is colored by the absolute value of their correlation coefficients.
“dv*” denotes dv4−dv5, i.e., t(2nd)burn ; dv* range is from 0 to 20 [sec].
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Abstract. Customers expect a modern automobile to be comfortable and safe. The spring
damper system in the wheel suspension is the most important component to ensure both. During
the design process of the spring damping a physically based conflict between these two main
functions arises. For passive systems improving the driving comfort will always worsen the
driving safety and vice versa. We developed an active air spring damper system (AASD) which
enables us to increase the driving comfort while keeping driving safety constant. Since auxiliary
power is necessary for the adaptive control a new challenge is to handle the limited energy
supply. In this paper we present a primal heuristic for the determination of an operating strategy
for the AASD for a given route and a given limited energy supply. We appraise feasible solutions
and present runtime benchmarks.
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1 INTRODUCTION

Automobiles are equipped with spring damper systems to ensure the safety and to allow a
comfortable ride. Currently, most spring damper systems work passively. When designing a
passive spring damper system one is always confronted by the conflict between driving safety
and driving comfort. At a certain point it is not possible to improve the safety without simulta-
neously worsening the comfort and vice versa [1]. To further increase the driving comfort for
a constant driving safety, active spring damper systems have to be used. Within the Collabora-
tive Research Centre 805 “Control of Uncertainty in Load-Carrying Structures in Mechanical
Engineering” an active air spring damper (AASD) was developed at the Chair of Fluid Systems
at Technische Universität Darmstadt. The working principle is based on the adaptive control
of the axial force by changing the effective area of the AASD dynamically [2]. Since auxiliary
power is necessary for the adaptive control of the axial force, another challenge is to handle
limited energy supply. In this paper we present a primal heuristic for the determination of an
operating strategy for the AASD for a given route and a given energy supply. The route consists
of sections distinguished by the corresponding uncertain road condition. The uncertain road
condition is represented by an uncertainty set with scenarios. The working principle and the
input data of the optimization are described in Section 2 of this paper.

The goal is to find an operating strategy with maximal comfort, while keeping a level of
safeness. Solving the problem in a reasonable timespan requires an efficient algorithm. The
specific structure allows the usage of a dynamic program (DP), which is presented in the second
part of the paper. The dynamic program, decides how much energy is allowed to be used on a
single route section. The steps of the DP are the sections of the route and the considered states
are the remaining energy supplies before entering the section. The DP finds the optimal solution
for a given class of problems. Applying DP to solve this problem requires discretization of the
energy supply. In order to relate an increase of demanded energy to an increase of comfort
we modify the DP: Increasing the number of considered initial steps and reusing the calculated
interim results enables us to compute operating strategies for a large number of energy supplies
simultaneously.

Furthermore we give runtime benchmarks for the modified version of the DP. We increase
the number of route sections and the number of considered states in every step of the DP. We
present solution quality benchmarks and analyse a solution.

2 TECHNICAL DESCRIPTION

The requirements of an spring damper system are among others to guide the wheel safely to
reach a good driving comfort and driving safety. When investigating a passive spring damper
system in a quarter-car vehicle (cf. Fig.1a) we deal with a two degree-of-freedom-system,
whose operating point is predefined by the spring stiffness and the damper constant. The oper-
ating point is fix if the spring damper system is not adjustable. When designing such systems
a trade-off between driving comfort and driving safety has to be made. The standard devia-
tion of the body-acceleration is used to rate the driving comfort and the standard deviation of
wheel load fluctuation is equivalent to the driving safety [1]. A small value of the the standard
deviation of the body-acceleration implies high driving comfort. The conflict between driving
comfort and driving safety is illustrated in the conflict diagram in Figure 1b. The Pareto-front
shows the limitation of a passive spring damper system.

In order to overstep the limitation of the passive system an active system which applies forces
during usage is used. Within the Collaborative Research Centre 805 - “Control of Uncertainty

8420



Marlene Utz, Phillipp Hedrich, and Peter F. Pelz

𝑘b 𝑑b 

𝑘w 

𝑚w 

𝑚b 

𝑧0 

𝑧w 

𝑧b 

(a)

GOOD  DRIVING SAFETY  POOR 

G
O

O
D

 
 D

R
IV

IN
G

 C
O

M
FO

R
T 


 P
O

O
R

 

PARETO FRONT 

𝑘b = const. 

𝑑b = const. 

(b)

Figure 1: Conventional topology of a vehicle suspension (a) and its limitation for vertical dy-
namics by a pareto front (b) [2].

in Load-Carrying Structures in Mechanical Engineering” an active air spring damper (AASD)
was developed (cf. Fig 2) [2], which combines the advantages of an air spring damper system
and an active system [3] . By changing the load carrying area of the air spring during the usage
the axial force

F (t) = A(t)[p(t)− pa)], with A(t) = A1(t)− A2(t) (1)

can be alerted.

Figure 2: Schematic diagram of the double bellows active air spring. The axial force is F (t) =
A(t)[p(t)− pa)], with the load-carrying area A(t) = A1(t)− A2(t)[2].

The AADS allows to improve the driving comfort at almost the same level of safety. For this
reason the driving comfort is the objective of the optimization while keeping the safety level
constant.

Without taking the random uneveness of the road into account the road excitation can be
treated as a stochastic excitation [4]. The power spectral density (psd) of the road profile con-
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tains informations about the unevenness of the road and is given by

Φh(Ω) = lim
X→∞

4π

X

[
ĥ(Ω)

]2
, (2)

with ĥ(Ω) is the amplitude spectrum of the road profile and X the period length. The psd is
approximated by

Φh(Ω) = Φh(Ω0)

[
Ω0

Ω

]−ω
, (3)

where Ω = 2π/L denotes the angular wavenumber and Φ0 = Φh(Ω0) describes the value of
the psd at the reference angular wavenumber Ω0 = 1 m−1. The road condition is characterized
by Φ0 and ω = vΩ where v is the driving velocity. Often the condition of the roads and the
driving velocity are uncertain. In order to take this fact into account sets Sc of all occurring
triples (Φ0, ω, v) are used. The given route is divided into route sections i = 1 . . . N with ho-
mogeneous road conditions. A road with the homogeneous condition can be divided into more
than one route section. One calls these triple a section-scenario sci and a sequence sc1, . . . , scN
of section-scenarios corresponding with the sections of the consider route route-scenario scr.
For every section-scenario a probability is given. We assume that the road condition get deter-
ministic in the moment the vehicle enters the route section. One can generate information by a
pre-scan of the road.

To use an active system it is necessary to implement a controller, which process signals
provided by sensors of the vehicle to calculate the required active force. The optimization
chooses from a set of controllers. A possible control strategy is a Skyhook control which is
based on the assumption that the driving comfort is optimal when the oscillating body of the
vehicle is damped with respect to the horizon. This strategy simulates the responses that would
occur if a damper was installed between the vehicles body and the horizon [3]. The required
active force between wheel and body is given by [5]

Freq(t) = dżb(t). (4)

The optimization chooses from a set of damping constants d ∈ D.
Given a model of the AADS, a route section with a triple sc = (Φ0, ω, v) that characterizes

the road condition and a Skyhook controller with damping constant d one calculates the cor-
responding values of the standard deviation of the body-acceleration σ(z̈b(d, sc)), the standard
deviation of the wheel load fluctuation σ(Fw(d, sc)) and the mean power input P̄ (d, sc). In
order to ensure a certain level of safety only those damping constants d ∈ D are chosen for a
section with certain road conditions whose σ(Fw(d, sc)) is lower than a given bound.

If the length li of the route section is given one calculates the total energy consumption
ei(d, sc) for the section i via

ei(d, sc) = P̄ (d, sc)
v

li
. (5)

3 DYNAMIC PROGRAMMING

The optimization problem is to find a partition of the available energy er to the route section
such that the resulting comfort is maximal and a minimum level of driving safety is guaranteed.
Since the selection of the controller determines the energy usage for given section-scenarios one
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has to find a sequence of controllers for every road-scenario which respects the energy partition.
Due to the complexity of the problem and the vast amount of controller-sequences which need to
be calculated, it is necessary to employ a efficient algorithm to solve the problem in reasonable
time. The structure of the problem allows one to formulate a Dynamic Program (DP). DPs are
used to solve problems which consist of a sequence of depending sub-problems. The DP starts
with solving the smallest sub-problems and proceeds to solve the next bigger sub-problems by
reusing the solution of the smaller sub-problems. This strategy leads to an optimal solution
of the original problem [6]. It is possible to formulate a optimization problem containing a
sequence of depending sub-problems as a DP if the optimal solution of a sub-problem contains
the optimal solution of the next smaller sub-problem.

If a problem is represented by the following it can be solved with DP resp. algorithm 1 [6].

min F (x1, · · · , xn) =
n∑

k=1

fk(zk−1, xk) (6)

s.t. zk = trk(zk−1, zk) ∀k = 1...n

z0 = a

zn = b

zk ∈ Zk ∀k = 1...n

xk ∈ Xk(zk−1) ∀k = 1...n

whereby the terms are defined as follows:

n number of decision steps, specifies how many decisions have to be taken.
zk state variable, specifies the state of the system after decision step k.
Zk state set: set of all possible states of the system after decision step k.
z0 = a given initial state of the system.
zn = b given end state of the system.
xk decision variable, specifies the decision which is made in step k
Xk(zk−1) decision set: set of all possible decisions which can be made in step k, if

the system is in state zk−1.
trk(zk−1, zk) transfer function, specifies the state zk of the system after taking decision

zk starting from state zk−1.
fk(zk−1, xk) evaluation function of the step, which specifies the effect of decision xk of

the objective function starting from state zk−1. It is necessary that fk is only
depending on zk−1 and xk.

One calls a sequence of decisions (xh, xh+1, ..., xl) which transfer the system from state
zh−1 into zl a policy. A policy (x∗h, x

∗
h+1, ..., x

∗
l ) which minimizes

∑l
i=h fi(zi−1, xi) is called

optimal policy. Let Pk(zk) be the problem of finding the optimal policy which transfers the
system from state zk into zn and F ∗k (zk) the objective function of this problem. The fact that the
evaluation function fk(zk−1, xk) only depends on zk−1 and xk leads to the optimality principle
of Bellman which says that if (x∗h, ..., x

∗
l ) is an optimal policy to transfer the system from zh−1

into zl and the policy leads to a state z∗j (h − 1 ≤ j ≤ l), (x∗h, ..., x
∗
j+1) and (x∗j+1, ..., x

∗
l ) are
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optimal policies to transfer the system from zh−1 into z∗j resp. z∗j into zl. Using this principle
leads to:

F ∗k−1(zk−1) = min
xk∈Xk(zk−1)

{
fk(zk−1, xk) + F ∗k (zk = tk(zk−1, xk))

}
. (7)

Algorithmus 1 DP via backward recursion

1: Solve Pn−1(zn−1) for all zn−1 ∈ Zn−1.
2: Set x∗n(zn−1) equals to the solution of Pn−1(zn−1).
3: for k = n− 1 to 1 do
4: Solve Pk−1(zk−1) for all zk−1 ∈ Zk−1 by solving the equations:

F ∗k−1(zk−1) = min
xk∈Xk(zk−1)

{fk(zk−1, xk) + F ∗(zk = trk(zk−1, xk))}

5: set x∗k(zk−1) = arg min
xk∈Xk(zk−1)

{fk(zk−1, xk) + F ∗(zk = trk(zk−1, xk))}

6: end for
7: Be x∗1 the decision with minimize F ∗0 (a) and z∗1 = tr1(a, x∗1)
8: for k = 2 to n do
9: set x∗k = xt(z

∗
k−1) and z∗k = trk(z∗k−1, x

∗
k).

10: end for
11: x∗ = (x∗1, ..., x

∗
n) is the solution of P0(a).

In the developed DP the sections i = 1 · · ·N of the routes are the decision steps and the
decision xi which is taken is how much energy is maximally consumed on the section. In case
of a Skyhook controller one calculates the best damping constant d for a given xi and occurring
sci by solving

di(xi, sci) = max {d ∈ D : ei(d, sci) ≤ xi} ∀i = 1 . . . N. (8)

The states zi of the DP are the remaining energy supply after section si. Thus, the initial state
z0 = er is the energy supply for the entire route. There is no requirement for the energy supply
at the end of the route. As you can exchange energy for comfort it is advisable to set zN = 0.
There is always one controller which causes the highest power input on a route section. It is
impossible to use more energy on this route section. Let ei,max be this energy and

êi,max =
N∑
l=i

el,max ∀ i = 1 . . . N (9)

be the maximum amount of energy which can be consumed starting from section i till the end
of the route.

To get the state sets Zi we choose an energy-step E and generate states zi = nE (starting
with n = 0) by increasing n by one as long as nE ≤ z0. We insert this states zi into Zi. This
leads to

Zi = {zi = nE : nE ≤ z0, n ∈ N} ∀i = 0 . . . N. (10)

In order to relate an increase of demanded energy to an increase of comfort we modify our
DP. The initial state z0 is substituted by a set of Z0 initial states. To get the state sets Zi we
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choose an energy-step E and generate states zi = nE (starting with n = 0) by increasing n by
one as long as En ≤ êi,max. We insert this states zi into Zi. This procedure leads to

Zi = {zi = nE : nE ≤ êi,max, n ∈ N} ∀ i = 0 . . . N. (11)

The transfer function is given by

tri(zi−1, xi) = zi−1 − xi ∀ i = 1 . . . N. (12)

To formulate a DP it is furthermore needed to define an evaluation function for every decision
which can be made. Since the objective is the driving comfort and the comfort is measured
by the standard deivation of the body acceleration σ(z̈b), this value is consulted. The body
acceleration depends on the road conditions and the chosen controller. But it is independent of
the energy supply before entering the section. Further we must remember that the sections of
the route differs in their length li. This considerations lead to the following evaluation function
for a route with deterministic road conditions:

fi(xi) = σ
(
z̈b
(
di(xi, sci), sci

)) li
N∑
j=1

lj

∀ i = 1 . . . N. (13)

We minimize the objective function because a small value of fi connotes a high driving comfort.
Since the road conditions are uncertain we consider the three following evaluation functions –
average-case, worst-case, best-case:

fAC
i (xi) = E

[
σ
(
z̈b
(
di(xi, sci), sci

))] li
N∑
j=1

lj

∀ i = 1 . . . N, (14)

fBC
i (xi) = min

xi∈Xi(zi−1)

{
σ
(
z̈b
(
di(xi, sci), sci

))} li
N∑
j=1

lj

∀ i = 1 . . . N, (15)

fWC
i (xi) = max

xi∈Xi(zi−1)

{
σ
(
z̈b
(
di(xi, sci), sci

))} li
N∑
j=1

lj

∀ i = 1 . . . N. (16)

The runtime of the DP is mainly determined by the number of considered states and the
evaluation of di(xi, sci) and fi(xi). Since di and fi are independent of zi−1 and zi they have
only be evaluated ones for every possible xi. In the modified version of the DP the number M
of evaluations is given by:

M =
N∑
i=1

êi−1,max

E
(
êi−1,max

E
+ 1)

2
+
êi,max

E
(
êi−1,max

E
− êi,max

E
) (17)

=
N∑
i=1

ê2i−1,max

2E2
+
êi−1,max

2E
+
êi−1,maxêi,max

E2
−
ê2i,max

2E2

The calculated solution is robust against all considered road-scenarios. In case a section-
scenario (Φ0, ω, v) occurs which was not taken into account in the DP the energy consumption
on the section will differ from the one in the solution. This leads to a different state respectively
remaining energy supply after this section. Due to the optimality principle of Bellman one can
change to the solution which is optimal based on the arising state.
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4 BENCHMARKS AND EXAMPLES

The benchmarks where computed on a computer with 16 GB RAM and an AMD Phenon
II X6 1100T processor. We used a linearised model of the AADS [7] with a Skyhook control.
The used damping constants are 5000 N s m−1, 4500 N s m−1, 4000 N s m−1, 3500 N s m−1,
3000 N s m−1, 2500 N s m−1, 2000 N s m−1, 1500 N s m−1, 1000 N s m−1, 500 N s m−1 and 0
N s m−1. The routes are given by a sequence of roads with road conditions. For every road
we use deviations ∆Φ0, ∆ω and ∆v to generate the section-scenarios so that one gets three
possible value for Φ0, ω and v. For every section one has 27 section-scenarios and for a route
with N sections one has 27N route-scenarios. We consider 6 different routes. For detailed
information about sections and road conditions see appendix.

• route A contains just autobahn sections and the velocity is 130 km/h.

• route B contains just federal road sections and the velocity varies between 95 km/h and
110 km/h.

• route C is a route from Darmstadt to Ulm (Germany).

• route D is a route with good road conditions and a high velocity.

• route E is a route from Frankfurt to Darmstadt (Germany).

• route F is the route of a commuter which contains only federal roads.

In order to investigate the runtime of the implemented DP we vary the number of road sec-
tions N and the energy-step size E. This leads to a variation of the steps of the DP and the
number of the states in every single step.

Figure 3 shows the runtime over the energy steps. We used the energy-step 5 J, 10 J, 50
J, 100 J, 500 J, 1000 J, 5000 J, 10000 J. As we expected the runtime behaves like f(E) =
1/E2 + 1/E (cf. Fig. 3) for small values of E. For small values of E respectively a large
number of sub-problems the runtime is asymptotically like f(E).
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Figure 3: Runtime and function value over the energy steps for all considered routes with axes
in a logarithmic scale.
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Figure 4 shows the runtime over the number of route sections for E = 10 J. We generate
routes with different numbers of sections, by dividing the section of the considered routes into
subsections. As expected the runtime increases linearly with the number of route sections.
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Figure 4: Runtime over the number of route section for all considered routes.

After investigating the runtime we want to have a look at the solution for the route E for E =
10 J. Figure 5 shows the objective values for all initial states and three evaluation functions.
For the total energy supply for the route of 2.1 kJ the objective values are BC = 0.275 m/s2,
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Figure 5: Objective values over the energy supply for route E and an energy step of 10 J.

AC = 0.278 m/s2 and WC = 0.281 m/s2 . It is possible to halve the energy supply with a lose
of 3.3%, 3.9 % and 4.2 % of comfort in the best-, average- and worst-case.

5 CONCLUSIONS

• To resolve the conflict between driving safety and driving comfort active spring damper
systems are developed. Since auxiliary power is used for the adaptive control another
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challenge is to handle a limited energy supply while the road conditions are uncertain.

• We compute a operating strategy for the AADS which is robust for all road-scenarios and
leads to maximal comfort.

• Discretizeing the energy supply enables us to use DP to solve the problem in reasonable
time.

• To relate an increase of demanded energy we use a set of initial energy supplies instead
of one.

• The runtime of the DP mainly depends on the calculation of the evaluation function and
the section-scenario depending controller. Since di and fi are independent of zi−1 and zi
they only need to be evaluated once for every possible xi.

• The employed damping constant depends on the occurring section-scenario and the en-
ergy supply before entering the section

• In a next step we wave the condition that the road condition get deterministic when enter-
ing the section. We will develop a DP which calculates one single damping constant for
every section.
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APPENDIX

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 5.00 0.50 0.02 2.30 0.10 36.11 0.06
1 2.00 1.00 0.07 1.50 0.06 36.11 0.11
2 2.35 1.10 0.05 1.90 0.11 36.11 0.30
3 1.60 2.00 0.10 2.00 0.30 36.11 0.07
4 3.20 0.90 0.06 2.60 0.07 36.11 0.09
5 2.80 1.00 0.11 2.30 0.05 36.11 0.10
6 4.00 1.90 0.30 2.20 0.03 36.11 0.04

Table 2: route A contains just autobahn sections an the velocity is km/h.

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 2.00 1.30 0.02 2.10 0.10 27.78 0.06
1 2.00 2.00 0.07 1.70 0.06 30.56 0.11
2 2.35 2.10 0.05 2.90 0.11 27.78 0.30
3 1.60 2.00 0.10 2.00 0.30 27.78 0.07
4 3.20 1.90 0.06 2.60 0.07 29.17 0.09
5 2.80 4.00 0.11 2.30 0.05 26.39 0.10
6 2.00 6.00 0.30 2.60 0.03 27.78 0.04

Table 3: route B contains just autobahn sections an the velocity varies between 95 km/h and
110 km/h.

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 0.42 12.50 0.02 2.50 0.10 8.33 0.06
1 2.58 9.00 0.07 2.30 0.06 13.89 0.11
2 1.95 2.30 0.05 2.40 0.11 27.78 0.30
3 67.91 3.00 0.10 2.00 0.30 33.33 0.07
4 186.00 1.00 0.06 2.20 0.07 36.11 0.09
5 4.43 3.40 0.11 2.10 0.05 22.22 0.10
6 0.28 8.00 0.30 2.60 0.03 8.33 0.04

Table 4: route C is a route from Darmstad to Ulm (Germany).

8429



Marlene Utz, Phillipp Hedrich, and Peter F. Pelz

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 2.00 3.00 0.02 2.60 0.10 33.33 0.06
1 2.00 1.00 0.07 1.50 0.06 36.11 0.11
2 2.35 1.10 0.05 1.90 0.11 41.67 0.30
3 1.60 2.00 0.10 2.00 0.30 36.11 0.07
4 3.20 0.90 0.06 2.60 0.07 41.67 0.09
5 2.80 1.00 0.11 2.30 0.05 36.11 0.10
6 2.00 12.00 0.30 2.40 0.03 22.22 0.04

Table 5: route D is a route with good road conditions and a high velocity.

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 0.28 12.20 0.02 2.40 0.10 8.33 0.06
1 5.90 8.00 0.07 2.30 0.06 13.89 0.11
2 1.35 2.10 0.05 2.30 0.11 27.78 0.30
3 20.60 1.00 0.10 2.00 0.30 36.11 0.07
4 3.20 2.30 0.06 2.20 0.07 27.78 0.09
5 1.75 9.00 0.11 2.40 0.05 13.89 0.10
6 0.70 10.00 0.30 2.30 0.03 8.33 0.04

Table 6: route E is a route from Frankfurt to Darmstadt (Germany).

i li in km Φ0 in 1 ∆Φ0 in 1 ω in cm3 ∆ω in cm3 v in m s−1 ∆v in m s−1

0 1.00 1.70 0.02 2.10 0.10 8.33 0.06
1 2.00 2.00 0.07 1.80 0.06 13.89 0.11
2 12.35 4.90 0.05 2.30 0.11 22.22 0.30
3 5.80 5.30 0.10 2.40 0.30 25.00 0.07
4 4.20 2.90 0.06 2.60 0.07 13.89 0.09
5 0.75 4.00 0.11 2.30 0.05 8.33 0.10
6 2.00 2.00 0.30 2.60 0.03 8.33 0.04

Table 7: route F is the daily route of a commuter which contains only federal roads.
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Abstract. The paper deals with the seismic reliability of base-isolated structural systems 

equipped with friction pendulum isolators (FPS) in order to provide useful design recommen-

dations. A two-degree-of-freedom model is adopted by accounting for the superstructure flex-

ibility, whereas the FPS isolator behaviour is described by adopting a widespread model 

which considers the variation of the friction coefficient with the velocity. The spectral dis-

placement corresponding to the isolated period has been chosen as intensity measure (IM). 

The uncertainty in the seismic inputs as well as the friction coefficient at large velocity are 

considered as random variables modeled through appropriate probability density functions. 

Monte Carlo simulations are developed in order to evaluate the probabilities exceeding dif-

ferent limit states related to both superstructure and isolation level defining the seismic fra-

gility curves. Finally, considering the seismic hazard curve related to an Italian site, closed-

form expressions are derived with the aim to design the radius in plan of the friction pendu-

lum isolators in function of the expected reliability level.  
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1 INTRODUCTION 

In the last decades, isolation systems have emerged as a very effective technique for the 

seismic protection of building frames [1], which, even if designed according to the most ad-

vanced codes, could suffer severe damages under strong earthquake events [2]. Among the 

base isolation devices currently employed for seismic isolation, friction pendulum system 

(FPS) isolators present some advantages, mainly related to their capability of providing an 

isolation period independent of the mass of the supported structure, their high dissipation and 

recentering capacity, and their longevity and durability characteristics [3]-[4]. 

Over the years, within the issue of the passive control, many works have developed new 

design strategies and methodologies [5]-[14], as well as other works have been focused on 

probabilistic analyses in structural dynamics, structural reliability methods, and reliability-

based analysis [15]-[17]. Reliability evaluation of base-isolated systems has been presented 

by Chen et al. [18], as well as Monte Carlo simulations have been performed by Fan and Ah-

madi [19] to analyze the stochastic response of sliding isolation systems under random earth-

quake excitations. In Barroso and Winterstein [20], the seismic performance of steel buildings 

isolated with FPS bearings was evaluated by taking into account the variability of both the 

seismic intensity and the record characteristics. Seismic reliability analyses of a 3D system 

isolated by FPS bearings have been carried out in [21]-[22] by accounting for the randomness 

of both the isolator properties (i.e., coefficient of friction) and of the earthquake main charac-

teristics. Performance curves for the isolators and the superstructure have been estimated by 

considering both the vertical and horizontal components of each seismic excitation. This way, 

a reliability criterion has been defined to assist the design of the isolator dimensions in plan 

by considering the effects of the uncertainties relevant to the problem. In [23], the influence of 

FPS bearing properties and of the structural parameters on the seismic performance of base-

isolated structures through the nondimentionalitation of the motion of equations is analyzed 

by providing useful results for seismic reliability analyses. 

This paper deals with the seismic reliability of structural systems equipped with friction 

pendulum isolators (FPS) by presenting the fragility curves related to an extensive parametric 

study encompassing a wide range of building properties, seismic intensity levels and consi-

dering both the friction coefficient and soil characteristics as random variables. The isolated 

system is described by a two-degree-of-freedom (2dof) system in order to take account of the 

superstructure flexibility, and the FPS behavior is described by employing the model devel-

oped by Mokha et al. [4] for which the friction coefficient varies with the velocity. The uncer-

tainty in the seismic inputs is taken into account by considering a set of artificial records [24], 

obtained through the power spectral density method [25], with different characteristics de-

pending on soil dynamic parameters [26]-[27], and scaled to increasing intensity levels. In-

cremental dynamic analyses are developed in order to evaluate the probabilities exceeding 

different limit states related to both superstructure and isolation level through an extensive 

parametric study carried out for different structural properties. The estimates of the response 

statistics obtained are used for deriving seismic fragility curves of both the superstructure and 

isolation level assuming different values of the corresponding limit states. The seismic fragili-

ty curves are useful to evaluate the seismic reliability of base-isolated systems equipped with 

FPS, within the PEER-like modular approach [28]. In fact, in the final part of the work, con-

sidering the seismic hazard curve related to L’Aquila site (Italy), as provided by NTC08 [29], 

regarding a structural system isolated by FP bearings with a design life of 50 years, reliability-

based abacuses are derived with the aim to design the radius in plan of the FP isolators in 

function of the structural properties and reliability level expected.  
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2 SYSTEM DESCRIPTION AND EQUATION OF MOTION 

The equation of motion governing the response of a single-degree-of-freedom (SDOF) sys-

tem on single concave FPS isolation devices to the seismic input  gu t  is:      

   

 

         

     

     

s s s s s s s g b

b b b b b

s s s s b g

m u t c u t k u t m u t u t

m u t f t c u t

c u t k u t m u t

        

   

     

+ +

+

=
  (1) 

where su  denotes the displacement of the superstructure relative to isolation bearing, bu  the 

isolator displacement relative to the ground, sm  and bm  respectively the mass of the super-

structure and of the basement, sk  and sc  respectively the superstructure stiffness and inherent 

viscous damping constant, bc  the bearing viscous damping constant,  gu t  the ground mo-

tion input, the dot differentiation over time, and where  bf t  denotes the FPS bearing resist-

ing force. This latter can be expressed as: 

         b b b b bf t k u t u m m gZ t  +   (2) 

where 
  /b s bk m m g R 

, g  is the gravity constant, R is the radius of curvature of the FPS, 

  bu t  the coefficient of sliding friction, which depends on the bearing slip velocity  bu t , 

and    sgn bZ t u , where sgn(∙) is the sign function. 

 

Base mass 

Superstructure  mass 

FPS isolator 

mb 

ms 

us 

ub 

ks/2 ks/2 

 

Figure 1: 2dof model of building isolated with FPS. 

Experimental results [4],[30]-[31], suggest that the coefficient of sliding friction of Teflon-

steel interfaces obeys to the following equation: 

    max expb bu f Df u       (3) 

in which maxf  represents the maximum value of friction coefficient attained at large velocities 

of sliding, min maxf f Df   represents the value at zero velocity.  

In order to generalize the problem and unveil the characteristic parameters controlling the 

seismic behaviour of the system, the equation of motion can be reduced to a non-dimensional 

form. By dividing Eqn.(1a) by sm , and Eqn.(1b) by bm , Eqn.(1) can be rewritten as: 
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where the parameters s  and s  denote the superstructure circular frequency and damping 

factor, whereas the parameters 
 

b
b

s b

k g

m m R
  


 and b  denote the fundamental circu-

lar frequency and damping factor for a rigid mass  s bm m  on a linear frictionless isolator of 

stiffness bk  and viscous damping constant bc . The fundamental period of vibration of the 

base-isolated system, 2 /b bT   , corresponding to the pendulum component, results to be 

independent of the superstructure mass and related only to the radius of curvature of the 

spherical surface R. After introducing the mass ratio 
 

s

s b

m

m m
 


 [32], Eqn.(4) can be re-

written as: 
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  (5)    

3 SEISMIC RELIABILITY OF STRUCTURES WITH FPS: RANDOM 

VARIABLES 

Seismic reliability assessment of a building structure, according to the structural perfor-

mance (SP) evaluation method [21],[33], is based on the coupling between structural perfor-

mance levels [34] and associated exceeding probabilities during its design life [35]. 

Coherently with the PEER-like modular approach [28] and performance-based earthquake 

engineering (PBEE) approach [36], the uncertainties related to the seismic input intensity are 

separated from those related to the characteristics of the record (record-to-record variability) 

by introducing a scale factor, i.e., an intensity measure (IM). The approach is based on calcu-

lating the probabilities of exceeding different limit state thresholds, properly defined, given 

different values of the intensity measure with the aim to define the fragility curves of the sys-

tems. Afterward, the abovementioned fragility curves integrated with the seismic hazard 

curve, expressed in terms of the same IM, related to a reference site, lead to the mean annual 

rates of exceeding the limit states. Using a Poisson distribution, it is possible to transform the 

mean annual rates of exceeding the limit states into probabilities of exceedance in the time 

frame of interest (e.g., 50 years).  

The aim of this work consists of evaluating the seismic reliability of structural systems 

equipped with friction pendulum isolators (FPS) through an extensive parametric study en-

compassing a wide range of building properties, different seismic intensity levels and consi-
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dering both the friction coefficient and earthquake characteristics as random variables. With 

reference to the uncertainty in the seismic inputs, it is taken into account by considering a set 

of artificial records, obtained through the power spectral density (PSD) method [25]. Regard-

ing the uncertainty of the friction coefficient at large velocity of the FP devices, another ap-

propriate uniform probability density functions (PDF) is employed. 

3.1   Non-Stationary stochastic processes: Power Spectral Density (PSD) method  

In order to evaluate the record-to-record variability of the structural system response, sev-

eral artificial earthquake excitations have been considered. In particular, if the evolution of the 

frequency with the time can be neglected, each earthquake excitation can be modeled as a 

Gaussian stationary process with mean value equal to zero and two-sided power spectral den-

sity (PSD) function ( )ffS  . It follows that the stochastic process ( )f t  can be simulated by the 

following series as N : 

 

1

0

( ) 2 cos( )
N

n n n

n

f t A t




    (6) 

where 1/2(2 ( ) )n ff nA S    ,   nn  for 10  Nn  , Nu /  , having assumed 

0 2 / =31.25sT     (NTC08) and sradu /50 , 1210 ,......,,,  N  are independent 

random phase angles distributed uniformly over the interval [0,2]. A sample function )()( tf i  

of the simulated stochastic process )(tf  can be obtained by replacing the sequence of random 

phase angles 1210 ,......,,,  N  with their respective i-th realizations 
i

N

iii

1210 ,.....,,,  , sampled through Monte Carlo simulations: 
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In this study, 100 sequence of random phase angles are sampled through Monte Carlo si-

mulations in order to generate 100 input accelorometric signals. The power spectral density 

function (PSD) of the embedded stationary process is described by the widely-used Kanai and 

Tajimi [37]-[38], modified according to Clough and Penzien [39], which applies: 

 

4 2 2 2 4

02 2 2 2 2 2 2 2 2 2

4
( )

( ) 4 ( ) 4

g g g

f

g g g f f f

S S
    


         


 

   
  (8) 

 

0 5 10 15 20 25 30 35 40 45 50 10 
-4 

10 
-3 

10 
-2 

10 
-1 

10 
0 

10 
1 

 [rad/s] 

S
f 
(

)[
m

2
/s

3
]  

 
Figure 2: PSD function corresponding to Medium Soil condition. 
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In the following parametric study, with the aim to assume the uncertainty related to earth-

quake characteristics in terms of soil dynamics parameters corresponding to Medium Soil 

condition according to EC8 [40], g  and g  are modeled as random variables uniformly dis-

tributed, respectively, in the intervals [3,5] (rad/sec) and [40%,60%] [26]-[27], and sam-

pled through Monte Carlo simulations. In Figure 2, the PSD function related to medium Soil 

with the sampled values of g  and g  equal respectively to 3 and 40% is represented. In 

order to obtain non-stationary stochastic processes, a time-modulating function proposed by 

[41], as shown in Figure 3, is adopted.  
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Figure 3: Time-modulating function [41]. 

3.2   Uncertainty of the friction coefficient  

As regard to the friction coefficient, the experimental data, developed by [4],[30]-[31] on 

sheet type Teflon bearings, have pointed out that friction is a complex phenomenon, not com-

plying with the Coulomb friction law and that several mechanisms contribute to its variability. 

In this study, a uniform density probability function (PDF), ranging from 3% to 12%, has 

been assumed to model the sliding friction at large velocity as random variable fmax. For the 

generation of the sampled values of the friction coefficient fmax, within the stratified sampling 

techniques to develop Monte Carlo simulations, the Latin Hypercube Sampling (LHS) method 

[42]-[43] has been used. In particular, in the following parametric study, 20 sampled values (j 

= 20) of the random variable fmax are employed and assuming a ratio fmax/fmin equal to3, based 

on regression of experimental results, whereas the exponent of Eqn.(3) equal to 30 [4],[30]-

[31]. 

4 PARAMETRIC STUDY:INCREMENTAL DINAMIC ANALYSIS RESULTS  

Seismic reliability assessment of the equivalent base-isolated systems is based on develop-

ing incremental dynamic analyses (IDA) [44]. 

4.1   Intensity measure (IM): spectral displacement 

In general, the IM's choice should be driven by criteria of efficiency, sufficiency, and ha-

zard computability [45]. In this study, the spectral displacement, ),( bbD TS  , at the isolated 

period of the system, 2 /b bT   , and for the damping ratio b , is assumed as intensity 

measure. In the analyses carried out in this study, the damping ratio b  is taken equal to zero, 
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consistently with [46]. The corresponding IM, hereinafter denoted as  D bS T , in the IDA is 

assumed ranging from 0m to 0.5m. 

4.2   Structural parameters and incremental dynamic analysis (IDA) results  

The incremental dynamic analysis (IDA) is developed through an extensive parametric 

study encompassing a wide range of base-isolated building properties according to Eqn.(5). 

The parameters b and s are assumed respectively equal to 0% and 2%,  equal to 0.7, the 

radius R of the FPS equal to 1m and 4m, the fixed-base system period sT  is considered vary-

ing between 0.3s and 1.5s. It follows that the isolation degree [47], ranges from 1.3 (flexible 

superstructure) to 13.3 (rigid superstructure).  

The response parameters su  and bu  are adopted as the engineering demand parameters 

(EDP). It follows that a set of samples is obtained for each output variable (EDP) representing 

the response variability. In this paper, the response parameters are assumed to follow a log-

normal distribution according to [21]-[46]. A lognormal distribution can be fitted to the both 

response parameters (i.e., the extreme values of the EDPs), by estimating the sample lognor-

mal mean,  ln EDP , and the sample lognormal standard deviation  ln EDP , through the 

maximum likelihood estimation method.  

In the hypothesis of regular buildings, the Eqn. (9), according to [29], is assumed as rela-

tionship between the fixed-base building period and its height H, and is employed to estimate 

the height H as the integer multiple of the inter-storey height assumed equal to h=3m and, so, 

the corresponding total number of floors Nf.  

 

3

40.075sT H   (9) 

For each 2 /s sT   , assuming the building floor mass equal to ms,i = 1000 kNs
2
/m, for 

i=1…Nf, it is possible to determinate the floor stiffness and vector 1Φ  containing the floor 

displacements of the first mode of the fixed-base structure normalized to the top floor dis-

placement. The base mass mb is assigned in order to respect the mass ratio   [32]: 
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1 1

,

1

f

s

N

s i b

i

M

m m










  (10) 

where 1  and 1sM  represent respectively the participation factor and modal mass of the fun-

damental mode of the fixed-base structure. It follows that the maximum absolute inter-story 

drift of the 1
st
 floor can be evaluated as ,1,max 1 11 ,maxs su u  , and this response parameter, di-

vided by the inter-storey height assumed equal to h=3m, corresponds to the overall maximum 

interstorey drift index (IDI) experienced over the different stories that controls the perfor-

mance of the superstructure and can be assumed as EDP. 

Fig.s 4-5 illustrate the IDA results regarding both the superstructure response in terms of 

IDI and the isolation level response bu  obtained for different values of the system parameters 

varying in the range of interest. Each figure contains several surface plots, corresponding to 

different values of percentile (50
th

, 84
th

 and 16
th

).  Fig. 4 shows the IDA results regarding the 

superstructure response. The lognormal mean and dispersion decrease for higher values of Tb 

and lower values of Ts (high value of the isolation degree). Fig. 5 shows the IDA results re-
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garding the isolation level response bu . The lognormal mean and dispersion also decrease for 

higher values of Tb (high value of the isolation degree) and for lower values of Ts.  
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Figure 4: IDA curves of the superstructure 1st floor with =0.7, for R=1m (a) and R=4m(b). 
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Figure 5: IDA curves of the isolation level with =0.7, for R=1m (a) and R=4m (b). 

5 SEISMIC FRAGILITY OF STRUCTURES WITH FP DEVICES  

This section describes the evaluation of the probabilities pf exceeding different limit states 

related to both the superstructure and the isolation level at each value of the IM defining the 

corresponding seismic fragility curves. 

With reference to performance levels of the superstructure, four discrete performance le-

vels or limit states (LS1,LS2,LS3,LS4), corresponding respectively to “fully operational”, “op-

erational”, “life safety” and “collapse prevention” are provided from [34]. The performance 

limit states for base-isolated buildings, in accordance to provisions [48], have been defined by 

limiting the response of the lateral-load-resisting superstructure system, IDI limits, to a frac-

tion of the limits provided for designing comparable fixed-base buildings [33].  

 

 LS1 fully operational LS2 operational 

Inter-story drift (ISD) index 0.1% 0.2% 

pf (50 years) 5.0·10
-1

 1.6·10
-1

 

Table 1: Limit state thresholds for the superstructure [33]-[48]. 
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In Table 1, the LS1 and LS2 thresholds assumed for the seismic fragility of the superstruc-

ture as well as the corresponding failure probabilities in a design life of 50 years are reported 

depending on the limit state. At each value of the intensity measure IM, the probabilities pf 

exceeding different limit states related to the superstructure have been numerically computed 

for each considered combination of the superstructure/isolation level properties, as shown in 

Fig.s 6-7.  
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Figure 6: Seismic fragility curves of the superstructure 1st floor related to LS1, for R=1m (a), R=4m (b). 
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Figure 7: Seismic fragility curves of the superstructure 1st floor related to LS2, for R=1m (a), R=4m (b). 

 

With reference to the performance levels of the isolation system, several different values 

for the plan dimension of the isolator (i.e. radius in plan of the concave surface), are consi-

dered. In Table 2, the limit state thresholds assumed for the seismic fragility of the FPS isola-

tion level are reported.  

 

 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 LS9 

Maximum relative displacement [m] 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Table 2: Limit state thresholds for the isolation level. 

Similarly, at each value of the IM, the probabilities pf exceeding different limit states re-

lated to the isolation level have been numerically computed for each combination of the struc-

tural properties. Afterward, the abovementioned exceeding probabilities pf have been fitted by 

a lognormal distribution. Fig.s 8-9 show the fragility curves regarding the isolation level for 

three values of Ts (0.3s, 0.9s and 1.5s) and two different values of the limit state thresholds: 

LS5-LS9. The seismic fragility of the isolation level increases for higher values of Ts. 
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Figure 8: Seismic fragility curves of the isolation level related to LS5, for R=1m (a), R=4m (b). 
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Figure 9: Seismic fragility curves of the isolation level related to LS9, for R=1m (a), R=4m (b). 

6 SEISMIC RELIABILITY OF STRUCTURES WITH FP DEVICES  

Considering L’Aquila site as the reference site, in Figure 10 the seismic hazard curves, ex-

pressed in terms of the same IM=  D bS T , related to the different isolated periods analyzed in 

the parametric study are plotted according to NTC08. Each curve represents the average val-

ues of the annual rate  of exceeding the IM=  D bS T  level. 
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Figure 10:  Seismic hazard curves related to the different isolated periods Tb for a site near L’Aquila (Italy). 

Integrating the fragility curves related to the superstructure with the seismic hazard curves 

and using a Poisson distribution, it is possible to evaluate the seismic reliability of the super-

structure in the time frame of interest (50 years) for different values of the superstructure 

properties and having assumed the friction coefficient and soil dynamic parameters as random 

8440



Paolo Castaldo, Guglielmo Amendola and Bruno Palazzo 

 

variables. The seismic reliability of the superstructure increases for low values of Ts (high 

values of the isolation degree), as shown in Figure 11. The results are consistent with those 

discussed by [21]. 
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Figure 11:  Seismic reliability curves  of the superstructure 1st floor for R=1m (a), R=4m (b). 

The seismic reliability of the isolation level decreases as R increases and slightly depends 

on the values of Ts (Fig. 12).  Since the isolation level is not strongly influenced by the higher 

modes of the superstructure, the derived reliability-based abacuses are useful to design FP 

bearing devices depending on the properties of the superstructure and the expected reliability 

level in an area with a seismic hazard similar to that considered. In fact, an exceeding proba-

bility of pf=1.5∙10
-3

 (related to collapse limit state,  =3 in 50 years) is achieved through a ra-

dius in plan r ranging from about 0.2 m to about 0.4 m depending on system properties. The 

results are consistent with the monovariate structural performance curves in [21]. 
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Figure 12:  Seismic reliability curves of the isolation level for R=1m (a), R=4m (b). 

7 CONCLUSIONS 

This paper deals with the seismic reliability of structural systems equipped with friction 

pendulum isolators (FPS) by presenting the fragility curves related to an extensive parametric 

study encompassing a wide range of building properties, different seismic intensity levels and 

considering both the friction coefficient and earthquake characteristics as random variables. 

The uncertainty in the seismic inputs is taken into account by considering a set of artificial 

records, obtained through the power spectral density method, with different characteristics 

depending on soil dynamic parameters. IDA are developed to evaluate the probabilities ex-

ceeding different limit states related to both superstructure and isolation level for different 

structural system properties. The estimates of the response statistics are used for deriving 
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seismic fragility curves for the superstructure and the isolation level assuming different values 

of the corresponding limit states. In the final part, considering the seismic hazard curve re-

lated to a site near to L’Aquila (Italy), according to NTC08, and regarding a structure isolated 

by FPS with a design life of 50 years, reliability-based abacuses are derived with the aim to 

design the radius in plan of the friction pendulum isolators.     
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Abstract. A new replaceable hysteretic damper to better control seismic building damage, 
consisting of two or more adjacent steel vertical elements (columns) connected to each other 
with continuous mild/low strength steel shear links, is investigated in this study. New Damp-
ers, called Dissipative Columns (DC), are continuously linked with X-shaped steel plates and 
provide additional stiffness and damping to a lateral system. The Dissipative Column has 
been conceived as a device installed within a frame or as an external damper to provide mac-
ro-dissipation. In fact, considering different configurations, a parametric analysis is devel-
oped, through non-linear pushover and cyclic analyses carried out in ABAQUS, in order both 
to evaluate the effect of the main geometrical and structural parameters and provide the de-
sign capacity curves of this new damper. Moreover, non linear dynamic analyses of an exist-
ing building without and with the Dissipative Columns have been performed in SAP2000 in 
order to evaluate the supplemental damping provided by the new damper. The DC can be 
considered a new damping device, easy to install in new as well as existing buildings in order 
to protect them from seismic damage.  
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1 INTRODUCTION 

Strong earthquakes have shown that a large percentage of buildings in the affected areas, 
even if properly built and designed according to the most advanced codes, suffer such severe 
damages [1] that they need to be demolished after the quake, since they would be expensive to 
repair. As is known, the acceptance of such level of damage due to severe earthquakes is re-
lated to the ductility-based design criteria that assume design seismic actions decrease by re-
duction factors. This approach may lead to high social and economic costs to the affected 
communities, and to a long recovery time for essential services and production activities. In-
spired by new performance criteria, there is a growing belief that code design criteria are not 
sustainable for the high level of accepted damage, are impossible to repair, and that common 
buildings should be designed with a higher performance level. At the beginning of this centu-
ry, Performance Based Engineering [2] introduced new principles with the scope to select 
more articulated targets better corresponding to different building roles and use, defining a 
variety and complex subdivision of performance objectives for seismic events with different 
intensities and frequencies of occurrence. The “Direct Displacement Based Design” philoso-
phy [3] relates the specified performance level to the strain or drift limits for a specified seis-
mic intensity. With the scope of minimizing structural damage, several frictional isolation 
devices [4]-[6] and dampers [7]-[8], new replaceable hybrid composite or steel devices [9]-
[14] have been recently proposed as well as integrated design approaches [15]-[16] and new 
strategies, i.e., based on the collapse mechanism control [17]-[30] or energy balance [31], 
have been developed in order to dissipate seismic input energy outside of the primary struc-
ture. Dampers should absorb a significant portion of the input energy reducing the hysteretic 
energy demand to the primary structural elements. Another damper employed to dissipate en-
ergy dynamic energy through stable hysteretic behavior [32] consists in the buckling-
restrained braces (BRBs). In [33], Low Yielding Strength (LYS) steel is investigated for im-
proving the ductility capacity of box-shaped steel bridge piers and experimental work is car-
ried out for four specimens having different thickness and sectional configurations for cyclic 
loading test. The test results reveal that the LYS steel portion with longitudinal stiffeners 
greatly improves the strength and ductility capacity of box columns and it is observed that 
LYS steel has a great cyclic strain-hardening characteristic. The advantage of use of LYS 
steel is that it can effectively use large plastic deformation in component plates and the failure 
of column is concentrated at the LYS steel segment and the energy dissipation occurs far be-
yond the yield point. 

The aim of this paper is to investigate a new replaceable hysteretic damper having a basic 
form of the art of building, minimally architecturally invasive, consisting of two or more dis-
sipative steel columns directly connected to two floors linked to each other with X-shaped 
low/mild steel plates. It will be shown that the new element is able to add significant stiffness 
and damping to the structural system to reduce seismic response and damage in primary struc-
tural members under severe earthquakes. A similar concept is used when Reduced Beam Sec-
tions (RBS) are realized at beam ends of a steel moment resisting frames. In fact, in this case 
the beam section resistance reduction is obtained by trimming the flanges, realizing the so 
called “dog-bone” [34]-[35]. The Dissipative Columns (DC) element will be investigated 
through non-linear pushover and cyclic analyses in ABAQUS [36]-[37] in order to character-
ize the local and global behaviour of the device considering different steel grades. These anal-
yses are useful to design the yielding properties of the proposed damper depending both on 
the characteristics of the primary structure and the expected performance as discussed by [38]. 
The efficiency of the proposed damper applied on the benchmark system is investigated 
through time history analyses in SAP2000 [39]. 
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2 MECHANICAL PRINCIPLES OF THE DISSIPATIVE COLUMN  

The Dissipative Column model, as shown in Figure 1, can be considered as a sort of framed 
bi-pendulum with height equal to H, connected in parallel to the primary structure, able to re-
act to the story drift  with a lateral force QD adding stiffness, strength and damping [12]-[13]. 
The design concept of the DC element aims to obtain a lever mechanism by which a small 
inter-story drift provides an amplified vertical drift between the X-plate ends (Figure 1) react-
ing with shear forces. The X-shaped steel plates made of mild or Low Yielding Strength steel, 
having length a, thickness t, width at the ends b and vertical distance i, are also used as shear 
links between coupled elements.  

 
Figure 1: Eccentric Dissipative Column (a), structural model (b) and dissipative amplified mechanism (c)-(d). 

Each lever arm is characterized by an eccentricity e, while, r is the rigid element represent-
ing half section of each column (Figure 1). The top ends of the model are linked to the upper 
floor through slotted bolted connections to allow large vertical displacements. By yielding a 
large volume of steel, the shear devices are able to dissipate substantial input energy during 
earthquakes, while also increasing damping in the entire system with the aim to reduce the 
damage in the primary system. With reference to reinforced concrete structures, the limit val-
ues of Inter-Story Drift Angle (ISDA) corresponding to different structural performance levels 
are suggested by Ghobarah [40]. The great advantages of the DC, if compared with classical 
steel dissipative braces [32], are the reduced architectural invasiveness, so that it is able to be 
integrated in any building, the ease of installation everywhere, replacement after earthquakes 
and the stable behavior in cyclic reversal deformation. To the scope to this study, two steel are 
considered to model the ADAS mechanical properties. In particular, S235 and LYP100 (Low 
Yield Point) are implemented, while the DC are totally conceived in S355. 
3 SIMPLIFIED MECHANICAL BEHAVIOUR OF THE DC  

As extensively discussed in [13], the vertical drift δ between the ends of a generic shear 
link in the elastic range, being the curvature  constant along each half plate, is related to 
shear force Vd developed by each X-shaped plate, as: 
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where a, t, b are, respectively, the X-plate length, thickness, width at the ends and E is 
Young’s modulus of the steel plates. The axis x represents the barycentric axis of a generic 
steel plate. Hence, the single X-plate vertical stiffness is equal to: 

 
3

3
2

δ 3
dd

V EbtK a    (2) 
In the case of small eccentricity, a simplified analysis of the DC behavior subjected to rela-

tive displacements can be easily carried out assuming that the column flexural deformation is 
negligible respect to the case of flexible inextensible links. An inter-story drift produces a 
shear drift angle  and vertical drifts  along the X-shaped steel plate. Under such simplified 
assumptions, for the equilibrium, the top-base relative displacement  of a DC element with 
height H is related to the drift angle  as: 
 γ H     (3) 

Therefore, each X-plate undergoes a vertical drift equal to: 
 δ ( )l a H    (4) 
where l represents pin axes distance (Figure 1). Therefore, the uniform distributed vertical 
load, along the vertical axis having origin in the hinge (Figure 1), due to the shear drift angle  
applies: 

 
3

3
2 ( )3

Ebtp l a Ha i     (5) 
where i represents the plates vertical distance. The term (l − a)/2 = r represents a small lever 
arm that can be amplified using eccentricity e between the vertical axis and the supports as 
will be shown in the following. The axial force at the base of each column is equal to: 

 
3

3
2 ( )3c

EbtN l a H Ha i     (6) 
According to the experimental tests [41]-[42], the load-deformation curve of the X-shaped 

mild steel plates can be idealized as a bilinear curve with a ratio of post yielding stiffness to 
the initial one equal to 0.03 and available displacement ductility ratio =/y varying in the 
range between 3 and 5 [43]. Since yielding strength fy is reached almost uniformly along the 
device, the yielding vertical load py can also be expressed as: 

 
2,2

2
d y

y y
M btp fia ia    (9) 

while, the relative yielding displacement of each link can be written as: 

 
2, 3δ 4

d y
y y

d

V afK Et 
  (10) 

Therefore, the lateral yield strength of the doubly hinged DC element can be evaluated as: 
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and the yielding displacement applies: 
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Moreover, in presence of a significant eccentricity the column flexural deformation should 
not be neglected, therefore, as extensively described in [13], the top-base relative displace-
ment  and lateral force of the DC element can respectively be expressed as:  

 
3 2 2γ 3 2D
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            (14)  
where KD represents the lateral stiffness of the Dissipative Column is given by: 

 
3

3
2 ( )3D

Ebt lK l aa i H    (15) 
Therefore, the stiffness ratio between the lateral stiffness of the Dissipative Column and 

the single X-plate vertical stiffness is equal to: 
 ( 2( ))2 ( )D

d

K a e r e rK H
    (16) 

4 NON LINEAR ANALYSIS OF THE X-SHAPE STEEL PLATES 
Non-linear analyses in ABAQUS [36]-[37] are performed in order to characterize the non-

linear behavior of the X-shape steel plates. In Table 1, the geometric and mechanical proper-
ties are reported with reference to two different steel grades: S235 [44] and LYP100 [33],[45].  
 

Plate Length 
 a [mm] 

Plate Thickness 
 t [mm] 

Plate Width 
 b [mm] 

Plate Yield Stress 
 fy [N/mm2] 

150 15  120 132 
150 15  120 235 

Table 1: Geometrical and structural properties of the X-shaped steel plates. 
Figure 2 shows the geometric shape as well as the deformed shape of the steel plates. A FE 

model has been defined in ABAQUS [36]-[37] with means of 3D elements with nonlinear 
stress-strain behaviour. The geometric model proposed by [46] has been adopted for the X-
shape steel plates. 

The displacement-controlled pushover analyses of the X plates have been performed until 
to reach 50 mm in terms of relative displacement and the corresponding curves related to the 
two different steel grades are plotted in Figure 3. 
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The results clearly show that in the case of LYP100 steel grade the yielding point has been 
firstly reached against to the case of S235 steel grade, but it is also evident that, in this case, 
the stiffness is larger with the effect that larger is, in the global model, as detailing described 
in the following, the additional shear forces on the steel vertical elements of the DC. 

 
Figure 2: Geometric shape (a) and deformed shape (b) of a X-shaped steel plate. 

 
Figure 3: Pushover curves of the X plates: (a) LYP100 steel grade [33],[45]; (b) S235 steel grade [44]. 

5 NON LINEAR ANALYSIS OF THE DISSIPATIVE COLUMN 
Defined the non-linear behavior of the X-shape steel plates, non-linear static and dynamic 

analyses of the Dissipative Column have been performed in ABAQUS [36]-[37]. In Table 2, 
the main geometric and mechanical properties of the DC are reported. 

 
Height 

H 
Column 
Distance  

l  
Plate 

Length 
a  

Plate 
Thickness  

t  
Plate  

Distance  
i  

Plate 
Width 

b  

LYP 100 
X-shape 

Yield 
Stress  fy  

S235  
X-shape 

Yield 
Stress  fy  

Eccentricity  
e 

Column 
Profile 

[mm] [mm] [mm] [mm] [mm] [mm] [N/mm2] [N/mm2] [mm]  
10500 1650 150 15  125 120 132 235 400 ISE700 

Table 2: Geometrical and structural properties of the Dissipative Column (DC). 
A FE model has been defined in ABAQUS with means of 3D elements with nonlinear 

stress-strain behaviour [36]-[37]. As shown in Figure 4, in ABAQUS [36]-[37] it has been 
possible to carefully model the restrains at the base and the top of DC as well as the contact 
between the pin and the slotted holes. In particular, the hinge at the top of the DC (Figure 4a) 
has been modeled implementing an appropriate slotted hole in the superior plate in order to 
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simulate the sliding due to the applied displacement to the pin causing translation of the base 
system. In Figure 4(b) it is also shown the connection at the base of the DC. The FE points 
belonging to the internal surface of the inferior hinges have rigidly been connected to the ref-
erence point located in the center of the pin with the aim to simulate the free rotation in the 
plane. 

 

a)  b)  
Figure 4: (a) Connection pin-hinge at the top of the DC; (b) Fix hinge at the base of the DC modeled in 

ABAQUS [36]-[37]. 

 
Figure 5: Pushover curve of the DC, using LYP100 X-plate, and deformed shape in ABAQUS [36]-[37]. 
Within nonlinear static analyses, in order to simulate the mechanical properties of the steel 

elements, a quadrilinear constitutive law [47] for S235 steel (X-shape plates) and S355 steel 
(vertical elements DC), while, a trilinear constitutive law regarding the LYP100 steel (X-
shape plates) have been implemented in ABAQUS [36]-[37]. Figure 5 illustrates the geomet-
ric shape as well as the deformed shape of the DC. The displacement-controlled pushover 
analyses of the DC using LYP100 X-shape has been carried out until to reach 180 mm in 
terms of relative displacement as plotted in Figure 5, showing a yielding point at about 20 mm 
(0.17%). Figure 6 shows the comparison between the push-over curves of DC using LYP100 
and S235 X-shape plates. The results demonstrate that in the case of LYP100 X-shape plates 

8451



Paolo Castaldo, Bruno Palazzo, Francesco Perri, Ivana Marino and Marco Maria Faraco 
 
the yielding point has been firstly reached against to the case of S235 X-shape plates, and the 
shear forces are lower although the lateral global stiffness remains the same.   

 

 

 
Figure 6: Pushover curve of the DC, using LYP100 and S235 X-shape plates, and deformed shape in ABAQUS 

[36]-[37]. 
In order to also simulate the behavior under seismic loads, the nonlinear behaviour of the 

X-shape plates has been described by a nonlinear kinematic hardening model in the case of 
nonlinear cyclic analyses. In particular, the nonlinear cyclic analyses has been performed until 
to reach a value of ductility equal to 10 in plastic range. As previously discussed, all the anal-
yses of the DC are performed considering LYP100 and S235 X-shape plates. Figure 7 shows 
the results of displacement-controlled nonlinear cyclic analyses of the DC equipped with 
LYP100 X-shape plates. In particular, the hysteretic behaviour of the DC has been modeled 
considering the Bouc&Wen model [48]-[49] with an elastic stiffness Kel and a ratio between 
the elastic and plastic stiffness k = Kel / Kpl. In Figure 7, the parameters of the Bouc&Wen 
model [48]-[49] are also reported for the DC with both LYP100 and S235 X-shape plates. 

 

 (a) 

 
 
 

  
(b)  

  
(c) 

Figure 7: (a) Hysteretic behaviour of the DC using LYP100; Parameters of the Bouc&Wen [48]-[49] model for 
LYP100 (b) and S235 (c). 
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6 BUILDING MODEL EQUIPPED WITH THE DISSIPATIVE COLUMNS 

As mentioned before, hysteretic dampers should be generally designed to yield before the 
primary structure, therefore their mechanical properties change along the building height. As-
suming to have already established the shear strength of the primary system QiFy, mechanical 
properties of the i-th story may be summarized as follows [38],[50]: 
 DyiFyisi QQQ   (17) 
where QiS, QiFy, and QiDy represent the yield shear strength of the entire system, primary struc-
ture and damping system respectively at the i-th story. QiS and QiFy correspond to the relative 
displacement iFy, as well as QiDy corresponds to iDy. Defining max as the maximum story 
drift, D and F are, respectively, the story-drift ductility of the main frame and the story-drift 
ductility of the damper system. The lateral stiffness both of the primary structure and Dissipa-
tive Column system at the i-th story result being: 

 Fyi
Fyi

Fyi Qk 
 (18) 

 Dyi
Dyi

Dyi Qk 
 (19) 

Defining the strength ratio  as the ratio of the yield strength of the damper system QiDy to 
that of the entire system QiFy, QiDy can be expressed as: 
 siDyi QQ   (20) 
 )1(  siFyi QQ  (21) 

Moreover, the yield drift ratio can be defined as a ratio of damper yield drift to the one of 
the main structure, so, that the stiffness ratio   is defined as:  

 
 )1( 

 iFy
Fyi

Dyi
Dyi

Fyi
Dyi

Q
Q

K
K

 (22) 
The damper strength ratio  and the yield story drift ratio  are the main parameters useful 

to design the damping system. Passive control is achieved by yielding the dampers prior to the 
yield in the R/C frame, in other words, by setting the value of  smaller than unity. The value 
of the drift ratio  is defined from 0 to 1.0, and it is intended to be constant for all stories and 
strength ratios, according to “Constant yield story-drift ratio” scheme [38],[50]. The value =1.0 means that both the damper system and the main frame yield at the same story-drift 
level, and it can be assumed as the lowest protection to the main frame since the damper sys-
tem will have the smallest stiffness and require larger story drifts to start to dissipate energy. 
To the scope to observe the influence of the DC on the seismic performance of an entire sys-
tem, the nonlinear static and time history analyses, in SAP2000 [39], have been performed on 
the benchmark plane 10-story model [38],[50]. The benchmark plane model (Frame C) is rep-
resented in Figure 9 and the geometric and mechanical properties are described in [38],[50]. 
By means of the building regularity, the vertical distribution of lateral loads used for the eval-
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uation of the pushover curve useful to design the DCs has been assumed proportional to the 
first mode shape [3]. 

  (a)     (b) 
Figure 9: Typical plane (a) and elevation (b) benchmark model (modified from [38],[50]).  

(a) (b) 
Figure 10: (a) Schematic installation of two DCs linked to the building; (b) Structural detail of the connection. 

In the present study, two DCs have been applied between the third level and the ground. 
Figure 10 shows a schematic example of the connection between two DCs and the building 
and the structural detail of the link between the primary structure and damping system real-
ized with two DCs so that both ones present the same deformation. Nonlinear analyses have 
been performed on the benchmark model with and without the DCs. The DCs have been 
modeled through nonlinear link element ruled by Bouc&Wen model, as described above, con-
sidering both LYP100 and S235 X-shape plates. The comparison between the bilinear pusho-
ver curve representative of the seismic response of the main frame in correspondence of the 
third level and the bilinear pushover curve descriptive of the seismic performance of the DCs 
with LYP100 and S235 X shape plates have allowed to determine the β and ν values for the 
considered system. As shown in Figure 11, the damper strength ratio β and the yield story 
drift ratio ν values are in accordance with the limit established by [38],[50] to obtain a good 
efficiency of the damper system. Considering the benchmark building located in L’Aquila site, 
within the “Direct Displacement Based Design” philosophy [3], the both DCs have been de-
signed to increase the equivalent damping until to about 10% in addition to the inherent 
damping (5%) of the primary structure in order to achieve a target displacement between the 
roof and the ground equal about to 0.18 m. In particular, seven spectrum compatible input 
ground motions have been selected from the European database compatible in average with 
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the elastic spectrum (with viscous damping  = 5 %) relative to the ultimate limit state ULS, 
life safe, provided by the new Italian seismic code NTC08 [51] and considering an ordinary 
structure with a nominal life of 50 years located in L’Aquila (Italy), soil type C and topogra-
phy class T2, to perform nonlinear time history analyses. 

 

 (a) 

 

 (b) 

 (c) 

Figure 11: (a) Comparison between main frame pushover curve and DC pushover curves; Yielding displace-
ments (b) and parameters [38],[50] (c) of the two DCs with LYP110 and S235 X-shape plates.  

Waveform ID Earthquake ID Earthquake Name Mw Fault Mechnism Epicentral Ditance [km] PGA [m/s2] 
74 43 Gazli 6.7 thrust 11 6.0382 

197 93 Montenegro 6.9 thrust 24 2.8797 
290 146 Campano Lucano 6.9 normal 32 3.1662 
535 250 Erzincan 6.6 strike slip 13 5.0275 

1560 497 Duzce 1 7.2 oblique 39 7.3108 
4673 1635 South Iceland 6.5 strike slip 15 4.6775 
7329 2343 Faial 6.1 strike slip 11 4.1204 

Table 3. Input ground motions. 

 
Figure 12: Response spectra of the selected ground motions and target spectrum ( = 5 %). 

The values of the magnitude ranging from 6 to 8, and of the epicentral distance between 10 
and 40 km are reported in Table 3. In Figure 12, the target spectrum as well as corresponding 
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elastic pseudo acceleration response spectra are shown. The time history analyses with and 
without the two DCs with LYP100 and S235 X shape plates linked to the main frame have 
been performed to evaluate the seismic performance in terms of relative displacements at each 
story. The effect of the damper system provided by the two DCs is significant until to 5-story 
and it is evident that the installation of two DCs to the 3rd story successfully affects the global 
seismic performance avoiding any soft stories and plastic hinges in the primary elements of 
the main frame. 

(a) (b) 
Figure 13: (a) Deformed Frame at the ultimate step (b) Normalized average maximum interstory drif ratio. 

7 CONCLUDING REMARKS  
The aim of this paper is to propose and investigate a new replaceable hysteretic damper 

consisting of two or more dissipative steel columns directly connected to two floors linked to 
each other with X-shaped low/mild steel plates. This element is able to add significant stiff-
ness and damping to the structural system as well as to reduce seismic response and damage 
in primary structural members under severe earthquakes. The Dissipative Columns (DC) ele-
ment equipped with both LYP100 and S235 X shape plates has been investigated through 
non-linear pushover and cyclic analyses. The efficiency of the proposed damper applied on a 
benchmark system has been investigated through time history analyses demonstrating suc-
cessfully the benefits on the global seismic performance avoiding any soft stories and plastic 
hinges in the primary elements of the main frame. 
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Abstract. The proposed work has the aim to show a practical application of the Theory of 
Plastic Mechanism Control applied to Moment Resisting Frames with pin-jointed base con-
nections whose traditional dissipative zones, i.e. beam ends, in the framework of supplemen-
tary energy dissipation strategies, are substituted by frictional devices. The control of devices 
activation and, as a consequence, the optimization of energy dissipation capacity is obtained 
by a rigorous design procedure assuring that only the dissipative zones are involved in plastic 
range while non dissipative ones remain elastic. It means that a mechanism of global type has 
to be assured by applying the Theory of Plastic Mechanism Control. In addition, being tradi-
tional dissipative zones substituted by frictional devices, column bases pin jointed and column 
sections designed in order to remain in elastic range by a properly design procedure, the 
structure can be considered as free from damage. In fact after a destructive seismic event all 
the damaged devices can be replaced by new ones. The accuracy of the design approach has 
been investigated by means push-over and non-linear dynamic analyses by applying a proper-
ly chosen set of earthquake ground motions.  
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1 INTRODUCTION 
The optimization of seismic energy dissipation has ever been one of the main purposes that 

has to be fulfilled in order to design structures able to withstand severe earthquake event. For 
this reason modern seismic codes have introduced simplified rules, such as the beam-column 
hierarchy criterion having the scope to promote the developing of plastic hinges at the beam 
ends constituting the dissipative zone, while non dissipative ones, i.e. columns, remain in 
elastic range [1]. However, this criterion that is reported also in the European seismic code 
(Eurocode 8 (EC8)) [2] is only able to assure that structures do not collapse with a soft-storey 
mechanism but it is not able to assure a determinate collapse mode and also a dissipation op-
timization of the seismic response of the structure. In fact, the seismic response of the struc-
ture, and in this case of steel Moment Resisting Frames (MRFs), happens when all the beam 
ends are engaged in yielding as well as the column bases at first storey. This mode of collapse 
is called global type. 

The development of a collapse mechanism of global type is assured only by a revolution-
ary design procedure based on the Theory of Plastic Mechanism Control (TPMC) [3] that, dif-
ferently by the rules proposed by EC8 allows designing structure always showing at the 
collapse a mechanism of global type. This result is assured thanks both to the strong back-
ground of the theory, that is based on the kinematic theorem of plastic collapse, than to the 
successive improvements of the design procedure that have led to a recent version that is easy 
to be carried out by means of hand calculation. This last form of the design procedure is the so 
called “closed form solution of TPMC” that has been satisfactorily applied to design both 
MRFs [4] than EBF-MRFs dual systems [5]. However, this procedure, in the previous but as 
the same efficient form as the improved one, has been applied to design all the structural steel 
typology [6] - [21] and also reinforced concrete MRFs [22]-[23]. 

Even though, this procedure is able to assure a collapse mechanism of global type, the 
seismic optimization has to be pursued by assuring that all the dissipative zones engage in 
yielding as possible as the same time. For this reason, in this structural example, with the 
scope to have a supplementary and substitutive dissipation [24]-[28], traditional dissipative 
zones, such as the beam ends, have been substituted by innovative frictional devices [29] de-
veloped in the framework of the European Research Project “FREEDAM”. As a consequence, 
the design procedure based on TPMC has improved to promote the contemporary activation 
of all dissipative devices by additionally considering the column bases at the first storey 
pinned. In this way, being only the device activated, column bases pin jointed and column 
sections designed in order to remain in elastic range by a properly design procedure, the struc-
ture can be considered as free from damage [30]-[31]. In fact after a destructive seismic event 
all the damaged devices can be replaced by new ones. The accuracy of the design approach 
has been investigated by means push-over and non-linear dynamic analyses by applying a 
properly chosen set of earthquake ground motions.  

2 DESIGN APPROACH 
The “Theory of Plastic Mechanism Control” design approach has the aim to provide struc-

tures able to fail with a collapse mechanism of global type. Global mechanism represents the 
optimum in term of structural dissipation capacity being all the dissipative zones involved in 
the pattern of yielding while the non dissipative ones remain in elastic range. Dissipative 
zones of traditional MR-Frame are the beam ends and the bases of the column at the first sto-
rey. However, in this particular case, beam ends are substituted by special dissipative devices 
and column bases at the bottom of the first storey by means of pin connections. In this way 
MRFs plastic hinges cannot develop at the bottom of the first storey columns, so that, only the 
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beam ends are involved in plastic range. In order to design members to fulfil this design goal 
both devices at the beam ends and column sections have to be designed in order to assure on 
one hand the optimization of the seismic response and from the other hand a collapse mecha-
nism of global type. Both dissipative zone and non-dissipative ones have been designed ac-
cording to TPMC. The first design unknown having to be provided are the devices at the 
beam-to-column connections for which, the whole sum of design slip moment has to be pro-
vided by assuring that, according with the kinematic theorem of plastic collapse extended to 
the concept of mechanism equilibrium curve, the collapse multiplier 𝛼𝛼 of the seismic storey 
forces 𝐹𝐹𝑘𝑘 has to be at least equal to 1 at a design displacement 𝛿𝛿𝑢𝑢 compatible with the ductili-
ty supply of dissipative zone: 

𝛼𝛼 = 𝛼𝛼0
(𝑔𝑔) − 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≥ 1  ⇒   

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−  𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≥ 1   (1) 

where  𝛼𝛼0
(𝑔𝑔)is the first order collapse multiplier: 

𝛼𝛼0
(g) =

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

  (2) 

and γ(g) is the slope of mechanism equilibrium curve accounting for second order effects: 

𝛾𝛾(𝑔𝑔) =

1
ℎ𝑛𝑛𝑛𝑛

∑ 𝑉𝑉𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

 (3) 

In particular, Vk and hk are the sum of all the vertical loads acting at each storey and the 
storey height, respectively. By designing dissipative zones proportionally to the storey shear 
they are assured to be engaged in yielding as contemporary as possible, benefit optimization 
of the seismic response. In addition, Eq. (1) is quite conservative because it assures that also 
at the collapse the structure is able to support the storey forces distribution. In addition, the 
design ultimate displacement has to be dependent on the device stroke, i.e. the ultimate dis-
tance the dissipative device is able to tread by slippage. By solving as an equality Eq. (1) it is 
possible to provide the sum of design slip moments at the last storey , 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 �𝛽𝛽𝑘𝑘  
𝑛𝑛𝑠𝑠

𝑘𝑘=1

= �𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 + 1��𝐹𝐹𝑘𝑘ℎ𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=1

 (4) 

that shared by the term 𝛽𝛽𝑘𝑘 = ∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑖𝑖𝑚𝑚=𝑘𝑘 /𝐹𝐹𝑛𝑛𝑠𝑠, [32]-[33] provides the sum of design slip moment 

at each storey optimized to promote the contemporary engagement in slippage, 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 = 𝛽𝛽𝑘𝑘𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠  (5) 

Finally, 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 has to be shared between all the bay in function of the loads 𝑞𝑞𝑗𝑗 and the bay 
length 𝐿𝐿𝑗𝑗: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑗𝑗𝑘𝑘 = 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘
𝑞𝑞𝑗𝑗𝐿𝐿𝑗𝑗2

2∑ 𝑞𝑞𝑗𝑗𝐿𝐿𝑗𝑗2
𝑛𝑛𝑏𝑏
𝑗𝑗=1

 (6) 

The design slip moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑗𝑗𝑘𝑘 is used to design frictional devices whose resistance is expressed by 
means of the following term 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘. 
Beams, in this case, have to be considered as non dissipative zones and to be designed by 
means as the maximum among the design moment belonging to the vertical load distribution 
and, according to the second capacity design principle, those provided by a local hierarchy 
criterion where 𝛾𝛾𝑅𝑅𝐸𝐸 is an overstrength factor. 
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𝑀𝑀𝑓𝑓.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘 = max �
𝑞𝑞𝑣𝑣.𝑗𝑗𝐿𝐿𝑗𝑗2

8
; 𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘� (7) 

As regards the column design, all the possible mechanism typology which can affect a 
seismic resistant frame should be considered. In particular, it is possible to observe that MRFs 
under seismic horizontal forces should fail according to three main collapse typologies called 
type-1, type-2 and type-3, as reported in  
Figure 1 for the specific case of pin-jointed column bases where the rectangles represents the 
dissipative devices involved while the solid circles the plastic hinges developing at the top or 
bottom end of columns for undesired mechanisms. Every one of these can involve each storey 
and, for this reason, being the number of storey equal to 𝑛𝑛𝑛𝑛 the number of possible mecha-
nisms involving a structure can be easily computed as 3𝑛𝑛𝑛𝑛. Only one of these mechanisms is 
the desired one, i.e. the global one, and it is a particular case of type-2 mechanism extended to 
all the 𝑛𝑛𝑛𝑛 storeys. It means that all the other 3𝑛𝑛𝑛𝑛 − 1 mechanisms are undesired and must be 
avoid by applying TPMC.  

The design conditions also found their theoretical bases in the kinematic theorem of plastic 
collapse extended to the concept of collapse mechanism equilibrium curve which is  repre-
sentative of a straight line whose intercept with the vertical axis in a Cartesian diagram is the 
collapse mechanism multiplier of the first order, 𝛼𝛼𝑖𝑖𝑚𝑚

(𝑡𝑡), while 𝛾𝛾𝑖𝑖𝑚𝑚
(𝑡𝑡)is the slope where 𝑖𝑖𝑚𝑚 and 𝑡𝑡 

are the mechanism index and the mechanism typology code respectively. 

GLOBAL MECHANISM TYPE 1 - MECHANISM TYPE 2 - MECHANISM TYPE 3 - MECHANISM  (SOFT STORY)

imimim

F1

F2

Fk

Fns

h1

h2

him

hns

PIN-JOINTED COLUMN BASES
 

Figure 1: Collapse mechanism of pin-jointed column bases resistant frame 
 

 
Figure 2: Design condition for the failure mode control 

 

𝛼𝛼 

𝛿𝛿 
𝛿𝛿𝑢𝑢 

𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) 

𝛼𝛼⬚
(𝑔𝑔) 

𝛾𝛾𝑖𝑖𝑚𝑚
(𝑡𝑡) 

𝛾𝛾⬚
(𝑔𝑔) 

Generic mechanism 

Global mechanism 
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TPMC states that the global mechanism equilibrium curve has to be located below those 
corresponding to all the other mechanisms within a displacement range compatible with the 
plastic deformation capacity of members, δu (Figure 2). Consequently, the design conditions 
are provided by the following equations: 

𝛼𝛼(𝑔𝑔) − 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤ 𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) − 𝛾𝛾𝑖𝑖𝑚𝑚

(𝑡𝑡)𝛿𝛿𝑢𝑢          𝑖𝑖𝑚𝑚 = 1,2,3, … ,𝑛𝑛𝑛𝑛       𝑡𝑡 = 1,2,3 (8) 

The computation of the quantities 𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) and 𝛾𝛾𝑖𝑖𝑚𝑚

(𝑡𝑡) exploits the virtual work principle and it is 
amply detailed and discussed in a previous work [3]-[4]. In particular, the expressions of 𝛼𝛼𝑖𝑖𝑚𝑚

(𝑡𝑡) 
and 𝛾𝛾𝑖𝑖𝑚𝑚

(𝑡𝑡) are reported in Table 1. In particular, according to the second capacity design princi-
ple, non dissipative zones have to be designed according to the maximum actions that dissipa-
tive zones, i.e. dissipative devices, are able to transmit in their ultimate conditions. For this 
reason, frictional device overstrength have to be considered by introducing the overstrength 
factor 𝛾𝛾𝑅𝑅𝐸𝐸.  

Type-1 Type-2 Type-3 

𝛼𝛼0.𝑖𝑖𝑚𝑚
(1) = 𝛾𝛾𝑅𝑅𝐸𝐸

𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1
𝑘𝑘=1 + ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(1)𝑛𝑛𝑐𝑐
𝑖𝑖=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

 𝛼𝛼0.𝑖𝑖𝑚𝑚
(2) =

∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(2)𝑛𝑛𝑐𝑐

𝑖𝑖=1 + 𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
 𝛼𝛼0.𝑖𝑖𝑚𝑚

(3) =
2∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

 

𝛾𝛾𝑖𝑖𝑚𝑚
(1) =

∑ 𝑉𝑉𝑘𝑘ℎ𝑘𝑘 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝑉𝑉𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

𝑖𝑖𝑚𝑚
𝑘𝑘=1

ℎ𝑖𝑖𝑚𝑚 �∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

�
 𝛾𝛾𝑖𝑖𝑚𝑚

(2) =
∑ 𝑉𝑉𝑘𝑘�ℎ𝑘𝑘 − ℎ𝑖𝑖𝑚𝑚−1�
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

�ℎ𝑛𝑛𝑠𝑠 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
 𝛾𝛾𝑖𝑖𝑚𝑚

(3) =
∑ 𝑉𝑉𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

 

Table 1. First order and second order collapse mechanism multiplier at the generic im − th storey 

Therfore, by substituting terms reported in Table 1 in Eq. (8), the following design rela-
tionship are obtained for type-1 mechanism: 

𝛾𝛾𝑅𝑅𝐸𝐸
𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1

𝑘𝑘=1 +∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(1)𝑛𝑛𝑐𝑐

𝑖𝑖=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

− 𝛾𝛾𝑖𝑖𝑚𝑚
(1)𝛿𝛿𝑢𝑢 (9) 

for type-2 mechanism: 

𝛾𝛾𝑅𝑅𝐸𝐸
𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(2)𝑛𝑛𝑐𝑐
𝑖𝑖=1 + 𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚
∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
− 𝛾𝛾𝑖𝑖𝑚𝑚

(2)𝛿𝛿𝑢𝑢 (10) 

and for type-3 mechanism : 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚 = 1          𝛾𝛾𝑅𝑅𝐸𝐸
𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
∑ 𝑀𝑀𝑐𝑐.𝑖𝑖1

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

ℎ1 ∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾1
(3)𝛿𝛿𝑢𝑢 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚 > 1         𝛾𝛾𝑅𝑅𝐸𝐸  
𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
2∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− 𝛾𝛾𝑖𝑖𝑚𝑚
(3)𝛿𝛿𝑢𝑢 

(11) 

 That rearranged to provide the unknown of the design procedure, i.e. the sum of column 
plastic moment at each storey 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(𝑡𝑡)  reported in the following. 
In particular, at the first storey the condition reported in Eq. (8) provide only one design re-

lationship being easily demonstrable that mechanism type-1 and type-3 at the first storey are 
coincident and mechanism type-2 is coincident with the global one: 
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�𝑀𝑀𝑐𝑐.𝑖𝑖1
(1𝑜𝑜𝑜𝑜3)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝑅𝑅
𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

+ �𝛾𝛾1
(3) − 𝛾𝛾(𝑔𝑔)� 𝛿𝛿𝑢𝑢� �ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1� � 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚

 (12) 

At the 𝑖𝑖𝑚𝑚 > 1  storeys, design conditions have to be make explicit for all the undesired 
mechanism typologies: 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(1)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 �
∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−
∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

�

+ �𝛾𝛾𝑖𝑖𝑚𝑚
(1) − 𝛾𝛾(𝑔𝑔)� 𝛿𝛿𝑢𝑢���𝐹𝐹𝑘𝑘ℎ𝑘𝑘

𝑖𝑖𝑚𝑚

𝑘𝑘=1

+ ℎ𝑖𝑖𝑚𝑚 � 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚+1

� 

(13) 

for type-1 mechanism; 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(2.1)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 �
∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−
∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
� + �𝛾𝛾𝑖𝑖𝑚𝑚

(2) − 𝛾𝛾(𝑔𝑔)� 𝛿𝛿𝑢𝑢��𝐹𝐹𝑘𝑘(ℎ𝑘𝑘

𝑖𝑖𝑚𝑚

𝑘𝑘=1

− ℎ𝑖𝑖𝑚𝑚−1) (14) 

for type-2 mechanism; 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(3)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠
∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

+ �𝛾𝛾1
(3) − 𝛾𝛾(𝑔𝑔)�𝛿𝛿𝑢𝑢�

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�
2

� 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚

 (15) 

for type-3 mechanism. 
While for the 𝑖𝑖𝑚𝑚 = 1 storey the design condition is only one Eq. (13) for the 𝑖𝑖𝑚𝑚>1 storeys, 

the sum of the reduced plastic moments of columns has to be calculated as the maximum 
among the three mechanism typologies, according to the following relation: 

�𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

𝒏𝒏𝒄𝒄

𝒊𝒊=𝟏𝟏

= 𝒎𝒎𝒎𝒎𝒎𝒎��𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎
(𝟏𝟏)

𝒏𝒏𝒄𝒄

𝒊𝒊=𝟏𝟏

,�𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎
(𝟐𝟐)

𝒏𝒏𝒄𝒄

𝒊𝒊=𝟏𝟏

,�𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎
(𝟑𝟑)

𝒏𝒏𝒄𝒄

𝒊𝒊=𝟏𝟏

 � (16) 

The knowledge of these plastic moments, coupled with the estimated axial force at the col-
lapse state, allows the evaluation of the required sections of columns. 

The sum provided by Eq. (16) has to be distributed between all the columns at each storey 
according to two possible strategies [4]: 

1) the sum are subdivided equally between each column 
2) the sum are subdivided according to the axial load acting on the columns in the col-

lapse condition.  
However, in both the cases column sections need to verify the combination of the compe-

tent axial load at collapse and bending moment. 
The axial load acting on the columns at collapse state can be easily provided in agreement 

with the global mechanism where axial forces in the columns at collapse state depend both on 
distributed loads acting on the beams and on the shear action coming from the development of 
plastic hinges at the beam ends, as depicted in Figure 3. So that, the total load transmitted by 
the beams to the columns is the sum of two contributions. The first one, Nq, is related to the 
vertical loads acting in the seismic load combination (i.e. the sum of qLj/2 type contributions). 
The second one, Nf, is related to the shear actions due to the engagement in plastic range of 
the dissipative devices located at the beam ends (i.e. the sum of 2γRdMfb.Cd.ns Lj⁄  contribu-
tions) (Figure 3).  Also in this case, devices overstrength has to be taken in account according 
to the second capacity design principle. However, seismic actions can be acting either in the 
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positive direction or in the negative direction, so that the maximum axial forces has to be con-
sidered.  

 

Direction of
seismic action

L

q

q l
2

NE

Nq

L

Mfb.Cd(j)

2Mfb.Cd(                       j)

q l
2

q l
2

q l
2

L
Mfb.Cd(j+1)Mfb.Cd(j)

Mfb.Cd(j+1)

L
2Mfb.Cd(                         j)

L
2Mfb.Cd(                      j+1) 2Mfb.Cd(                    j+1)

γRd γRd

γRd γRd

γRd
γRd L

γRdγRd

 
 Figure 3: Loads transmitted by the beams to the columns at collapse state  

including the overstrength of the device 
 

3 WORKED EXAMPLE 
Aiming to practically show how to apply the proposed design procedure a 3 bays 4 storeys 

pin-jointed column bases structure whose structural scheme is depicted in Figure 4 has been 
designed. The bay span is 5 m while the interstorey height is equal to 3.0 m. The characteris-
tic values of the vertical loads acting on beams are equal to 6,68 𝑘𝑘𝑘𝑘/𝑚𝑚2 and 5,01 𝑘𝑘𝑘𝑘/𝑚𝑚2 for 
permanent and live loads, respectively, while on columns concentrated loads belonging to the 
secondary warping of floor are applied (Figure 4). With reference to the seismic load combi-
nation (Gk + ψ2Qk + Ed), the vertical loads acting on the beams of the analysed structure are 
8,183 𝑘𝑘𝑘𝑘/𝑚𝑚. The structural material adopted for all the structural members is an S275. The 
design horizontal forces have been determined according to EC8, assuming a peak ground 
acceleration equal to 0.20g, a seismic response factor equal to 2.5, a behaviour factor equal to 
6. The design horizontal forces distribution is in accord to the first vibration mode as reported 
in Figure 4. 
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00

3.
00

3.
00

40,53 kN

30,40 kN

10,13 kN

3.
00

qd=8,183 kN/m
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Figure 4: Worked example structural scheme 

8466



Elide Nastri and Annabella Paciello 

Beam-to-column devices (Figure 5) are bolted double split tee beam-to-column connec-
tions equipped with friction dampers designed to slip before the yielding of the beam [34] 
where the energy is dissipated through the slippage between the stem of bolted tee stubs and 
the beam flange with an interposed friction pad. Adopted bolts are high resistance class 8.8 
while the friction material adopted (FREEDAM project) is sprayed aluminum that is able to 
exhibit a friction coefficient of about 0.5 [35]. 

 
Figure 5: Beam to column connections equipped with friction dampers 

3.1 Design of dissipative zones 
The first quantity needed for the design of the structure is the design slip moment of devic-

es at the last storey (storey 𝑛𝑛𝑛𝑛) provided by Eq. (4), being preliminarily compute the term 
∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠
𝑘𝑘=1 = 7,5. Successively, the sum of the design slip moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 has to be shared be-

tween all the storeys by means of the term 𝛽𝛽𝑘𝑘 to design the dissipative device preliminarily 
described, according to the following relation: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 = 𝑛𝑛𝑛𝑛 𝑛𝑛𝑓𝑓 𝑘𝑘𝑓𝑓 𝜇𝜇 ℎ𝑓𝑓 → 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠  (17) 
 

where, 𝑛𝑛𝑛𝑛 is the number of frictional surfaces that in this case is equal to 2,  𝑛𝑛𝑓𝑓 is number 
of bolts,  𝑘𝑘𝑓𝑓 is the preloading force equal to: 

𝑘𝑘𝑓𝑓 = 0.7 𝑓𝑓𝑢𝑢𝑓𝑓𝐴𝐴𝑛𝑛 (18) 

𝑓𝑓𝑢𝑢𝑓𝑓 is the design bolt resistance, 𝐴𝐴𝑛𝑛 is the bolt area, 𝜇𝜇 is the dynamic frictional coefficient 
assumed in this case equal to 0.5 and ℎ𝑓𝑓 is the beam height preliminarily assumed equal to the 
height of the beam designed by means of vertical load combination. In this case, beams are 
preliminarily selected from the standard shapes to withstand the vertical load combination 
(1.3𝐺𝐺𝑘𝑘 + 1.5𝑄𝑄𝑘𝑘) according to a design moment computed as in Eq. (7) and are IPE200. In 
addition, in Table 2 the sum of the design slip moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 shared at all the storey by 
means of the term 𝛽𝛽𝑘𝑘, the slip resistant moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘, belonging to the device design, the 
number of bolts  𝑛𝑛𝑓𝑓 , the beam height, the preloading force 𝑘𝑘𝑓𝑓 are reported. 

Finally, beam sections designed to withstand vertical loads have to fulfil also the local hi-
erarchy criterion reported in the second term of Eq. (7). 
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Storey 
(-) 

𝛽𝛽𝑘𝑘 
(-) 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

𝑛𝑛𝑓𝑓 
(-) 

ℎ𝑓𝑓 
(-) 

Bolts 
(-) 

𝑘𝑘𝑓𝑓  
𝑘𝑘𝑘𝑘 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘 
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘 
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

1 2.5 451.00 4 200 ϕ18 120.00 460.80 552.96 
2 2.25 405.90 4 200 ϕ18 110.00 422.40 506.88 
3 1.75 315.70 4 200 ϕ18 850.00 326.40 391.68 
4 1 180.40 4 200 ϕ18 500.00 192.00 230.40 

Table 2: Parameters for the design of beam-to-column connections 

3.2 Design of non-dissipative zones 
Being designed dissipative zones, also non-dissipative one have to be provided by means 

of TPMC. The ultimate design displacement governing the procedure has been computed in 
the following way: 

𝛿𝛿𝑢𝑢 = 0.04 ℎ𝑛𝑛𝑠𝑠 = 0.04 ∙ 12 = 0.48 𝑚𝑚 (19) 
being assumed an ultimate device rotation equal to 0.04. In addition, in Table 3 the slopes 

of mechanism equilibrium curves are reported being computed according to the relationships 
reported in Table 1. 

 
STOREY 𝒊𝒊𝒎𝒎 𝜸𝜸𝒊𝒊𝒎𝒎

(𝟏𝟏) (1/cm) 𝜸𝜸𝒊𝒊𝒎𝒎
(𝟐𝟐) (1/cm) 𝜸𝜸𝒊𝒊𝒎𝒎

(𝟑𝟑) (1/cm) 

1 0.0484 0.0101 0.0484 
2 0.0223 0.0121 0.0403 
3 0.0139 0.0165 0.0345 
4 0.0101 0.0302 0.0302 

Table 3. Slopes of the mechanism equilibrium curves 
 

It is possible to observe that the slope of the global mechanism equilibrium curve (under-
signed in Table 3) is the minimum among all the slope of mechanism equilibrium curves cor-
responding to the undesired mechanism. In addition, in Table 4 the design bending moment of 
columns at each storey are reported.  

 
STOREY 𝒊𝒊𝒎𝒎 ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟏𝟏)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏  (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟐𝟐)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟑𝟑)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) 

1 1119.24 [-] 1119.24 1119.24 
2 850.36 51.12 450.74 850.36 
3 544.82 97.52 321.17 544.82 
4 230.40 111.46 170.93 230.40 

Table 4. Value of the paramters ∑ Mc.iim
(t)nc

i=1  

In this worked example the approach that have been used to subdivide the reduced sum of 
plastic moments between the columns exploits the axial load acting on the columns at col-
lapse state. In fact, the maximum value of 𝑀𝑀𝑐𝑐,𝑖𝑖𝑚𝑚is subdivided between columns on the basis 
of axial force acting on each column at each storey. 

The reduced sum of plastic moments of columns at each storey,∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
𝑛𝑛𝑐𝑐
𝑖𝑖=1 , has been sub-

divided proportionally to the axial load at the collapse state according to the following equa-
tion: 

8468



Elide Nastri and Annabella Paciello 

𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 =
𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

𝑛𝑛𝑐𝑐
𝑖𝑖=1

∑ 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚
𝑛𝑛𝑐𝑐
𝑖𝑖=1

 (20) 

where 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 is the design moment of column sections. 
 

Finally, in Table 5 the axial load acting at the collapse state, the design moment of column 
sections and the column sections selected from standard shapes are reported with reference to 
external and internal columns. Finally the collapse mechanism multiplier of global type 𝛼𝛼 =
1,84). 

STOREY 𝑖𝑖𝑚𝑚 External columns Internal columns 
 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 (𝑘𝑘𝑘𝑘) 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 (kN m) PROFILES 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 (𝑘𝑘𝑘𝑘) 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 (kN m) PROFILES 

1 357.12 292.20 HE 240 B 490.00 278.64 HE 260 B 
2 259.01 289.30 HE 200 B 367.50 275.88 HE 240 B 
3 163.97 249.63 HE 180 B 245.00 238.05 HE 200 B 
4 76.61 154.81 HE 140 B 122.50 147.63 HE 160 B 

Table 5. Axial force at collapse state, design moment of column sections and column sections selected from 
standard shapes at each storey 

4 VALIDATION OF PROCEDURE 
In order to validate the design procedure static non linear analysis (push-over) has been 

carried out for the designed frame by means of SAP 2000 computer program [36]. This analy-
sis has the primary aim to predict the collapse mechanism typology, testing the accuracy of 
the proposed design methodology. 

In SAP2000 ambiance all members have been modeled by means of beam-column ele-
ments, whose non-linearities have been concentrated in plastic hinges at their ends. In particu-
lar, plastic hinges accounting for the interaction between axial force and bending moment 
have been defined for columns while dissipative devices at beam ends have been modelled in 
pure bending. All hinges have been represented with a rigid plastic curve. The elastic behav-
iour is not considered in plastic hinge definition because it is directly taken into account by 
the beam-column element. The analysis has been led under displacement control taking into 
account both geometrical and mechanical non-linearities. In addition out of plan stability 
check of compressed members have been performed at each step of the non-linear analysis. 
The results of the push-over are mainly constituted by the frame capacity curve. In Figure 6 
the push-over curve is provided with reference to two different structural models, the first one  
corresponding to the use of a Young modulus (E) equal to 210000 MPa the second one (dot-
ted line) corresponding to a structural model with a ten times increased Young modulus value. 
This second one is proposed to more accurately point out that the softening branch of push-
over curve is perfectly parallel to the global mechanism equilibrium curve. This condition 
shows this evidence once the structural model is more close to the hypothesis of rigid perfect 
plastic behavior that is herein obtained by increasing the Young Moduls.   

In addition, the designed structure has been checked also for serviceability requirements 
under seismic action evaluated with a first period of vibration equal to 2,53 s. Beam to col-
umn connections have also been checked to be inactive under vertical load combination at the 
ultimate limit state. 
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Figure 6: Push-over curves for E=210000 and 10xE 

 
In addition, in order to provide a more robust validation of the design methodology, non-

linear Incremental Dynamic Analyses (IDA) have been carried out with reference to the same 
structural model used for push-over analyses. In addition, 5% damping according to Rayleigh 
modelling has been assumed. 

Record-to-record variability has been accounted for considering 10 recorded accelero-
grams selected from PEER [37] data base whose main characteristics (name, date, magnitude, 
ratio between PGA and gravity acceleration, length and step recording) are reported in Table 
6. These earthquake records have been selected to approximately match the linear elastic de-
sign response spectrum of Eurocode 8 [2], for type A soil. Moreover, in order to perform IDA 
analyses, each ground motion has been scaled to obtain the same value of the spectral acceler-
ation Sa (T1) corresponding to the fundamental period of vibration T1 of the structure 
(T1=2,53 s). This is the seismic intensity measure (IM) adopted for IDA analyses where Sa(T1) 
values have been progressively increased until the occurrence of structural collapse, corre-
sponding to anyone of the following ultimate limit states: column buckling, complete devel-
opment of a collapse mechanism, attainment of the limit value of plastic rotation of frictional 
devices or columns. 

Earhquake (record) Component Date PGA/g Length (s) Step recording (s) 
Coalinga (Slack Canyon) H-SCN045 1985/05/02 0.166 29.99 0.01 

Friuli, Italy (Buia) B-BUI000 1976/09/15 0.110 26.385 0.005 
Imperial Valley (Agrarias) H-AGR003 1979/10/15 0.370 28.35 0.01 

Kobe (Kakogawa) KAK000 1995/01/16 0.251 40.95 0.01 
Northridge (Stone Canyon) SCR000 1994/01/17 0.252 39.99 0.01 
Santa Barbara (Courthouse) SBA132 1978/08/13 0.102 12.57 0.01 
Spitak Armenia (Gaukasian) GKS000 1998/12/07 0.199 19.89 0.01 

Friuli, Italy (Tolmezzo) TMZ000 1976/05/06 0.351 36.345 0.005 
Irpinia (Calitri) A-CTR000 1980/11/23 0.132 35.79 0.0024 

Victoria, Mexico (Chihuahua) CHI102 1980/06/09 0.150 26.91 0.01 

Table 6: Accelerogram characteristics 
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Figure 7: Response spectra (soil type A, ζ=5%) scale at the same value of Sa for T1=2,53 

 

 
Figure 8: Maximum Interstorey Drift Ratio (MIDR) vs Spectral Acceleration (Sa/g) 

In Figure 8 the Maximum Interstorey Drift Ratio (MIDR) vs Spectral Acceleration is re-
ported. MIDR curves appears regular and always increasing reaching on average a spectral 
acceleration of  0.23 g corresponding to the achievement of the target drift equal to 0.04 rad. 
In addition, for each accelerogram, the obtained pattern of yielding has been monitored as far 
as the spectral acceleration increases confirming the development of a global mechanism.  
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Figure 9: Maximum Device Rotation vs Spectral Acceleration (Sa/g) 

In Figure 9 the Maximum Device Rotation vs Spectral Acceleration is reported. In addition, 
in this case, curves appear regular and increasing.  

 MIDR=0.04 rad Collapse 
Earhquake (record) Sa/g PGAc/g Sa/g PGAc/g 

Coalinga (Slack Canyon) 0.30 0.832 0.32 0.888 
Friuli, Italy (Buia) 0.25 0.796 0.24 0.860 

Imperial Valley (Agrarias) 0.25 0.617 0.32 0.790 
Kobe (Kakogawa) 0.30 0.804 0.32 0.991 

Northridge (Stone Canyon) 0.23 1.036 0.23 1.036 
Santa Barbara (Courthouse) 0.30 0.900 0.20 0.600 
Spitak Armenia (Gaukasian) 0.20 0.736 0.20 0.736 

Friuli, Italy (Tolmezzo) 0.20 1.500 0.23 1.725 
Irpinia (Calitri) 0.125 0.228 0.17 0.307 

Victoria, Mexico (Chihuahua) 0.20 0.288 0.25 0.360 
Mean value 0.23 0.774 0.248 0.829 

Table 7: Sa(T1) and PGA values corresponding to the attainment of the structural collapse 

Finally, for reason of clarity, the spectral acceleration values leading to collapse are given 
in Table 7 both in term of spectral acceleration (Sa) than PGA. In particular, the average value 
of Sa(T1) leading to collapse is about 0.248 g while the average PGA is about 0.859 g. How-
ever, target drift (0.04 rad) is achieved for lower values of spectral acceleration and PGA be-
cause of the high elastic displacement exhibited by the structure due to the pin-joint 
connection at the bottom of the first storey columns. Anyway, the collapse PGA is very high 
if compared with the design one (0,2 g) and it is considered always achieved when dissipative 
devices reach the target rotation equal to 0.04 rad being not observed unsatisfactory failure 
mechanism such as out of plane buckling of columns or the development of undesired mecha-
nism of collapse. Finally, it important to observe that, although the structure exhibit low val-
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ues of the spectral acceleration at the collapse, dissipative devices have only achieved the de-
vice stroke and are even able to resort to other ductility resources such as the yielding of bolt 
in shear.  

5 CONCLUSIONS  

• In this work reference is made to pin-jointed MR-Frames with beam-to-column connec-
tions equipped with frictional devices. 

• The control of devices activation and, as a consequence, the optimization of energy dis-
sipation capacity is obtained by a rigorous design procedure assuring that only the dissi-
pative zones are involved in plastic range while non dissipative ones remain elastic called 
Theory of Plastic Mechanism Control (TPMC) 

• Thanks to the TPMC and being traditional dissipative zones substituted by frictional de-
vices, column bases pin jointed and column sections designed in order to remain in elas-
tic range, the structure can be considered as free from damage. 

• By designing dissipative zones proportionally to the storey shear, they are assured to be 
engaged in yielding as contemporary as possible, benefit optimization of the seismic re-
sponse. 

• The accuracy of the design approach has been investigated by means push-over and non-
linear dynamic analyses by applying a properly chosen set of earthquake ground motions. 

• The global mechanism is confirmed to be achieved by both push-over than IDA analyses. 

• The designed structure show quite high performances that are, anyhow, compromised by 
the high structural displacement due to the pin-jointed column bases. 
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Abstract. The work herein presented has the main purpose to show a practical application of 
a proper design procedure able to dimension Eccentrically Braced Frames with Inverted Y-
scheme equipped with removable dissipative devices substituting the link member. Column 
bases are conceived with pin-jointed base connections in order to assure that the global 
mechanism is achieved only when link members results activated in plastic range. The control 
of devices activation and the optimization of energy dissipation capacity is obtained by apply-
ing a rigorous design procedure assuring that only the dissipative zones are involved in plas-
tic range while non dissipative ones remain in elastic range. Dissipative devices are designed 
in order to bear the whole storey seismic shear without a strength and stiffness degradation. 
In addition, being the link members substituted by dissipative devices, column bases pin joint-
ed and column sections designed in order to remain in elastic range by a properly design 
procedure, the structure can be considered as free from damage. In fact after a destructive 
seismic event all the damaged devices can be replaced by new ones. The accuracy of the de-
sign approach has been investigated by means push-over and non-linear dynamic analyses by 
applying a properly chosen set of earthquake ground motions.  
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1 INTRODUCTION 
In the framework of seismic resistant structure, Eccentrically Braced Frames (EBFs) con-

stitute a quite recent structural typology. They gained prominence thanks to the study of Po-
pov and Kasai [1]-[3]. This structural typology is well suited for tall buildings located in areas 
of high seismic intensity. For this reason, EBFs are especially widespread in USA and New 
Zealand where the recent Christchurch earthquake of the February 11th 2011 put to the test a 
great number of structures. In particular, this unfortunate event allowed testing on real scale 
the damage a high intensity earthquake is able to bring on EBF steel frames. As regards their 
working under seismic actions, EBFs constitute a suitable compromise between seismic re-
sistant MR-frames and concentrically braced frames because they exhibit both adequate lat-
eral stiffness, due to the high contribution coming from the diagonal braces, and ductile 
behaviour, due to the ability of the links, constituting the dissipative zones of this structural 
typology, in developing wide and stable hysteresis loops. Therefore, the optimization of dissi-
pative behaviour of this structural typology is obtained when all the links are involved in plas-
tic range. In this paper, reference is made to Inverted Y-scheme EBFs, that are a particular 
configuration of EBFs reported in Eurocode 8 [4] still not sufficiently investigated and not 
largely widespread despite having many advantages both in term of performance and con-
struction. Its main characteristic is that the link, i.e. the dissipative zone, does not belong to 
the beam member. In fact, one of the primary benefits in using such structural typology re-
gards the chance to substitute easily the damaged link after a destructive seismic event, and, in 
addition, the possibility to conceive the scheme within the framework of supplementary ener-
gy dissipation [5]-[10], by substituting the vertical link member with a dissipative device, 
such as a friction damper [11] or hysteretic damper, which is able to exhibit a highly dissipa-
tive behaviour if compared with traditional link members. As damaged links can be easily re-
moved and substituted after earthquake, such structural scheme exhibits the greatest 
advantages provided that the other structural members as beams, diagonals and columns, have 
been not damaged during the seismic event, i.e. have remained in elastic range. This is pre-
cisely why a proper design is of paramount importance. In fact, only with collapse mechanism 
of global type it is possible to assure that damage is concentrated only in dissipative zones 
while the other non-dissipative ones remain in elastic range. This important scope is, out of 
doubts, the strength of the Theory of Plastic Mechanism Control.  

The Theory of Plastic Mechanism Control (TPMC) [12], differently from the rules pro-
posed by EC8 allows designing structure always showing at the collapse a mechanism of 
global type. This result is assured thanks both to the strong background of the theory, that is 
based on the kinematic theorem of plastic collapse, than to the successive improvements of 
the design procedure that have led to a recent version that is easy to be carried out by means 
of hand calculation. This last form of the design procedure is the so called “closed form solu-
tion of TPMC” that has been satisfactorily applied to design both MRFs [13] than EBF-MRFs 
dual systems [14]. However, this procedure in the previous but as the same efficient form as 
the improved one has been applied to design all the structural steel typology [15] - [30] and 
also reinforced concrete MRFs [31]-[32]. 

Even though, this procedure is able to assure a collapse mechanism of global type, the 
seismic optimization has to be pursued by assuring that all the dissipative zones engage in 
yielding as possible as the same time [33]. For this reason, in this structural example, link 
members, have been substituted by innovative devices [34] inspired to frictional devices in-
vestigated in the framework of the European Research Project “FREEDAM”. As a conse-
quence the design procedure based on TPMC has improved to promote the contemporary 
activation of all dissipative devices by additionally considering the column bases at the first 
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storey, beam and diagonal ends has simply pinned. In this way, being only the device activat-
ed, beams, diagonals and column bases pin jointed and column sections designed in order to 
remain in elastic range by a properly design procedure, the structure can be considered as free 
from damage [11], [35]. The accuracy of the design approach has been investigated by means 
push-over and non-linear dynamic analyses by applying a properly chosen set of earthquake 
ground motions.  

2 DESIGN APPROACH 
The “Theory of Plastic Mechanism Control” design approach has the aim to provide struc-

tures able to fail with a collapse mechanism of global type. Global mechanism represents the 
optimum in term of structural dissipation capacity being all the dissipative zones involved in 
the pattern of yielding while the non dissipative ones remain in elastic range. Dissipative 
zones of traditional EBFs are the links and the bases of the column at the first storey. Howev-
er, in this particular case, links are substituted by special dissipative devices and column bases 
at the bottom of the first storey by means of pin connections. In this way plastic hinges cannot 
develop at the bottom of the first storey columns, so that, only the link ends are involved in 
plastic range being beam equally hinged at their ends. In order to design members to fulfil this 
design goal devices and column sections have to be designed in order to assure on one hand 
the optimization of the seismic response and from the other hand a collapse mechanism of 
global type. The first design unknown having to be provided are the devices substituting link 
members for which, the whole sum of design slip moment has to be provided by assuring that, 
according with the kinematic theorem of plastic collapse extended to the concept of mecha-
nism equilibrium curve, the collapse multiplier 𝛼𝛼 of the seismic storey forces 𝐹𝐹𝑘𝑘 has to be at 
least equal to 1 at a design displacement 𝛿𝛿𝑢𝑢 compatible with the ductility supply of dissipative 
zone: 

𝛼𝛼 = 𝛼𝛼0
(𝑔𝑔) − 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≥ 1  ⇒   

2𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−  𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≥ 1   (1) 

where  𝛼𝛼0
(𝑔𝑔)is the first order collapse multiplier: 

𝛼𝛼0
(g) =

2𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

  (2) 

and γ(g) is the slope of mechanism equilibrium curve accounting for second order effects: 

𝛾𝛾(𝑔𝑔) =

1
ℎ𝑛𝑛𝑛𝑛

∑ 𝑉𝑉𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

 (3) 

In particular, Vk and hk are the sum of all the vertical loads acting at each storey and the 
storey height, respectively. By designing dissipative zones proportionally to the storey shear 
they are assured to be engaged in yielding as contemporary as possible, benefit optimization 
of the seismic response. In addition, the design ultimate displacement has to be dependent on 
the device stroke, i.e. the ultimate distance the dissipative device is able to tread by slippage. 
By solving as an equality Eq. (1) it is possible to provide the sum of design slip moments of 
devices at the last storey , 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 �𝛽𝛽𝑘𝑘  
𝑛𝑛𝑠𝑠

𝑘𝑘=1

=
�𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 + 1�

2
�𝐹𝐹𝑘𝑘ℎ𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=1

 (4) 

that shared by the term 𝛽𝛽𝑘𝑘 = ∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑖𝑖𝑚𝑚=𝑘𝑘 /𝐹𝐹𝑛𝑛𝑠𝑠, [36]-[37] provides the sum of design slip moment 

at each storey optimized to promote the contemporary engagement in slippage, 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘: 
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𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 = 𝛽𝛽𝑘𝑘𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠  (5) 

In addition, if the same frame has more braced bays the quantity provided by Eq. (5) need 
to be shared between all the devices belonging to the braced bay.  

The design slip moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑗𝑗𝑘𝑘 is used to design frictional devices whose resistance is 
expressed by means of the following term 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘. 

Beams are non dissipative zones and to be designed by means as the maximum among the 
design moment belonging to the vertical load distribution and, according to the second capaci-
ty design principle, those provided by a local hierarchy criterion where 𝛾𝛾𝑅𝑅𝐸𝐸 is an overstrength 
factor [26]. 

𝑀𝑀𝑏𝑏.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘 = max �
𝑞𝑞𝑣𝑣.𝑗𝑗𝐿𝐿𝑗𝑗2

8
; 𝛾𝛾𝑅𝑅𝐸𝐸

𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑗𝑗𝑘𝑘

2
� (6) 

As regards the column design, all the possible mechanism typology which can affect a seismic 
resistant frame should be considered. In particular, it is possible to observe that EBFs under 
seismic horizontal forces should fail according to three main collapse typologies called type-1, 
type-2 and type-3, as reported in Figure 1 for the specific case of pin-jointed column bases 
where the rectangles represents the dissipative devices involved while the solid circles the 
plastic hinges developing at the top or bottom end of columns for undesired mechanisms. 
Every one of these can involve each storey and, for this reason, being the number of storey 
equal to 𝑛𝑛𝑛𝑛 the number of possible mechanisms involving a structure can be easily computed 
as 3𝑛𝑛𝑛𝑛. Only one of these mechanisms is the desired one, i.e. the global one, and it is a partic-
ular case of type-2 mechanism extended to all the 𝑛𝑛𝑛𝑛 storeys. It means that all the other 3𝑛𝑛𝑛𝑛 −
1 mechanisms are undesired and must be avoid by applying TPMC.  

The design conditions also found their theoretical bases in the kinematic theorem of plastic 
collapse extended to the concept of collapse mechanism equilibrium curve which is  repre-
sentative of a straight line whose intercept with the vertical axis in a Cartesian diagram is the 
collapse mechanism multiplier of the first order, 𝛼𝛼𝑖𝑖𝑚𝑚

(𝑡𝑡), while 𝛾𝛾𝑖𝑖𝑚𝑚
(𝑡𝑡)is the slope where 𝑖𝑖𝑚𝑚 and 𝑡𝑡 

are the mechanism index and the mechanism typology code respectively. 
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Figure 1: Collapse mechanism of Inverted Y EBFs equipped with dissipative devices 
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Figure 2: Design condition for the failure mode control 

 
TPMC states that the global mechanism equilibrium curve has to be located below those 

corresponding to all the other mechanisms within a displacement range compatible with the 
plastic deformation capacity of dissipative zones, δu  (Figure 2). Consequently, the design 
conditions are provided by the following equations: 

𝛼𝛼(𝑔𝑔) − 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤ 𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) − 𝛾𝛾𝑖𝑖𝑚𝑚

(𝑡𝑡)𝛿𝛿𝑢𝑢          𝑖𝑖𝑚𝑚 = 1,2,3, … ,𝑛𝑛𝑛𝑛       𝑡𝑡 = 1,2,3 (7) 

The computation of the quantities 𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) and 𝛾𝛾𝑖𝑖𝑚𝑚

(𝑡𝑡) exploits the virtual work principle and it is 
amply detailed and discussed in a previous work [5]-[13]. In particular, the expressions of 
𝛼𝛼𝑖𝑖𝑚𝑚

(𝑡𝑡) and 𝛾𝛾𝑖𝑖𝑚𝑚
(𝑡𝑡) are reported in Table 1. In particular, according to the second capacity design 

principle, non dissipative zones have to be designed according to the maximum actions that 
dissipative zones, i.e. dissipative devices, are able to transmit in their ultimate conditions. For 
this reason, frictional device overstrength have to be considered by introducing the over-
strength factor 𝛾𝛾𝑅𝑅𝐸𝐸.  

Type-1 Type-2 Type-3 

𝛼𝛼0.𝑖𝑖𝑚𝑚
(1) =

𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1
𝑘𝑘=1 + ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(1)𝑛𝑛𝑐𝑐
𝑖𝑖=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

 𝛼𝛼0.𝑖𝑖𝑚𝑚
(2) =

∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(2)𝑛𝑛𝑐𝑐

𝑖𝑖=1 + 𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
 𝛼𝛼0.𝑖𝑖𝑚𝑚

(3) =
2∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

 

𝛾𝛾𝑖𝑖𝑚𝑚
(1) =

∑ 𝑉𝑉𝑘𝑘ℎ𝑘𝑘 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝑉𝑉𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

𝑖𝑖𝑚𝑚
𝑘𝑘=1

ℎ𝑖𝑖𝑚𝑚 �∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

�
 𝛾𝛾𝑖𝑖𝑚𝑚

(2) =
∑ 𝑉𝑉𝑘𝑘�ℎ𝑘𝑘 − ℎ𝑖𝑖𝑚𝑚−1�
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

�ℎ𝑛𝑛𝑠𝑠 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
 𝛾𝛾𝑖𝑖𝑚𝑚

(3) =
∑ 𝑉𝑉𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

 

Table 1. First order and second order collapse mechanism multiplier at the generic im − th storey 

Therfore, by substituting terms reported in Table 1 in Eq. (7), the following design rela-
tionship are obtained for type-1 mechanism: 

𝛾𝛾𝑅𝑅𝐸𝐸
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1

𝑘𝑘=1 + ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(1)𝑛𝑛𝑐𝑐

𝑖𝑖=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

− 𝛾𝛾𝑖𝑖𝑚𝑚
(1)𝛿𝛿𝑢𝑢 (8) 

for type-2 mechanism: 

𝛾𝛾𝑅𝑅𝐸𝐸
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(2)𝑛𝑛𝑐𝑐
𝑖𝑖=1 + 𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚
∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
− 𝛾𝛾𝑖𝑖𝑚𝑚

(2)𝛿𝛿𝑢𝑢 (9) 

𝛼𝛼 

𝛿𝛿 
𝛿𝛿𝑢𝑢 

𝛼𝛼𝑖𝑖𝑚𝑚
(𝑡𝑡) 

𝛼𝛼⬚
(𝑔𝑔) 

𝛾𝛾𝑖𝑖𝑚𝑚
(𝑡𝑡) 

𝛾𝛾⬚
(𝑔𝑔) 

Generic mechanism 

Global mechanism 
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and for type-3 mechanism : 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚 = 1          𝛾𝛾𝑅𝑅𝐸𝐸
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
∑ 𝑀𝑀𝑐𝑐.𝑖𝑖1

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

ℎ1 ∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾1
(3)𝛿𝛿𝑢𝑢 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚 > 1         𝛾𝛾𝑅𝑅𝐸𝐸  
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

− 𝛾𝛾(𝑔𝑔)𝛿𝛿𝑢𝑢 ≤
2∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(3)𝑛𝑛𝑐𝑐
𝑖𝑖=1

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�∑ 𝐹𝐹𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− 𝛾𝛾𝑖𝑖𝑚𝑚
(3)𝛿𝛿𝑢𝑢 

(10) 

 That rearranged to provide the unknown of the design procedure, i.e. the sum of column 
plastic moment at each storey 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

(𝑡𝑡)  reported in the following. 
In particular, at the first storey the condition reported in Eq. (8) provide only one design re-

lationship being easily demonstrable that mechanism type-1 and type-3 at the first storey are 
coincident and mechanism type-2 is coincident with the global one: 

�𝑀𝑀𝑐𝑐.𝑖𝑖1
(1𝑜𝑜𝑜𝑜3)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝑅𝑅
2𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 ∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠

𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

+ �𝛾𝛾1
(3) − 𝛾𝛾(𝑔𝑔)� 𝛿𝛿𝑢𝑢� �ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1� � 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚

 (11) 

At the 𝑖𝑖𝑚𝑚 > 1  storeys, design conditions have to be make explicit for all the undesired 
mechanism typologies: 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(1)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 �
∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−
∑ 𝛽𝛽𝑘𝑘  𝑖𝑖𝑚𝑚−1
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑖𝑖𝑚𝑚
𝑘𝑘=1 + ℎ𝑖𝑖𝑚𝑚 ∑ 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚+1

�

+ �𝛾𝛾𝑖𝑖𝑚𝑚
(1) − 𝛾𝛾(𝑔𝑔)� 𝛿𝛿𝑢𝑢���𝐹𝐹𝑘𝑘ℎ𝑘𝑘

𝑖𝑖𝑚𝑚

𝑘𝑘=1

+ ℎ𝑖𝑖𝑚𝑚 � 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚+1

� 

(12) 

for type-1 mechanism; 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(2.1)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠 �
∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

−
∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

∑ 𝐹𝐹𝑘𝑘(ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=𝑖𝑖𝑚𝑚

− ℎ𝑖𝑖𝑚𝑚−1)
� + �𝛾𝛾𝑖𝑖𝑚𝑚

(2) − 𝛾𝛾(𝑔𝑔)�𝛿𝛿𝑢𝑢��𝐹𝐹𝑘𝑘(ℎ𝑘𝑘

𝑖𝑖𝑚𝑚

𝑘𝑘=1

− ℎ𝑖𝑖𝑚𝑚−1) (13) 

for type-2 mechanism; 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(3)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≥ �𝛾𝛾𝑅𝑅𝐸𝐸2𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠
∑ 𝛽𝛽𝑘𝑘  𝑛𝑛𝑠𝑠
𝑘𝑘=1

∑ 𝐹𝐹𝑘𝑘ℎ𝑘𝑘
𝑛𝑛𝑠𝑠
𝑘𝑘=1

+ �𝛾𝛾1
(3) − 𝛾𝛾(𝑔𝑔)�𝛿𝛿𝑢𝑢�

�ℎ𝑖𝑖𝑚𝑚 − ℎ𝑖𝑖𝑚𝑚−1�
2

� 𝐹𝐹𝑘𝑘

𝑛𝑛𝑠𝑠

𝑘𝑘=𝑖𝑖𝑚𝑚

 (14) 

for type-3 mechanism. 
While for the 𝑖𝑖𝑚𝑚 = 1 storey the design condition is only one Eq. (12) for the 𝑖𝑖𝑚𝑚>1 storeys, 

the sum of the reduced plastic moments of columns has to be calculated as the maximum 
among the three mechanism typologies, according to the following relation: 

�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

𝑛𝑛𝑐𝑐

𝑖𝑖=1

= 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(1)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

,�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(2)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

,�𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
(3)

𝑛𝑛𝑐𝑐

𝑖𝑖=1

 � (15) 

The knowledge of these plastic moments, coupled with the estimated axial force at the col-
lapse state, allows the evaluation of the required sections of columns. 

The sum provided by Eq. (15) has to be distributed between all the columns at each storey 
according to two possible strategies [13]: 

1) the sum are subdivided equally between each column 
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2) the sum are subdivided according to the axial load acting on the columns in the col-
lapse condition.  

However, in both the cases column sections need to verify the combination of the compe-
tent axial load at collapse and bending moment. 

The axial load acting on the columns at collapse state can be easily provided in agreement 
with the global mechanism where axial forces in the columns at collapse state depend both on 
distributed loads acting on the beams and on the maximum axial load belonging to diagonal 
members  [14], [27]. Also in this case, devices overstrength has to be taken in account accord-
ing to the second capacity design principle. However, seismic actions can be acting either in 
the positive direction or in the negative direction, so that the maximum axial forces has to be 
considered.  

3 WORKED EXAMPLE 
Aiming to practically show how to apply the proposed design procedure a 3 bays 4 storeys 

pin-jointed column bases EBF whose structural scheme is depicted in Figure 3 has been de-
signed. The bay span is 5 m while the interstorey height is equal to 3.0 m. The characteristic 
values of the vertical loads acting on beams are equal to 3,34𝑘𝑘𝑘𝑘/𝑚𝑚2 and 2,50 𝑘𝑘𝑘𝑘/𝑚𝑚2 for 
permanent and live loads, respectively, while on columns concentrated loads belonging to the 
secondary warping of floor are applied (Figure 3). With reference to the seismic load combi-
nation (Gk + ψ2Qk + Ed), the vertical loads acting on the beams of the analysed structure are 
4,067 𝑘𝑘𝑘𝑘/𝑚𝑚. The structural material adopted for all the structural members is an S275. The 
design horizontal forces have been determined according to EC8, assuming a peak ground 
acceleration equal to 0.35g, a seismic response factor equal to 2.5, a behaviour factor equal to 
6. The design horizontal forces distribution is in accord to the first vibration mode as reported 
in Figure 3. In addition, vertical loads acting on the inner pendular structure are accounted for 
by means of a leaning column. 
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00
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Figure 3: Worked example structural scheme 

 
Frictional devices are made of a layer of friction material, placed between two bolted steel 

plates which accommodate an inner plate containing slotted holes that allow the slippage of 
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the device. In addition, external plates have slotted holes also in vertical direction to allow 
vertical displacement due to vertical loads (Figure 4). Adopted bolts are high resistance class 
8.8 while the friction material adopted (FREEDAM project) is sprayed aluminum that is able 
to exhibit a friction coefficient of about 0.5 [38]-[39]. 

 
Figure 4: Scheme of dissipative device 

3.1 Design of dissipative zones 
The first quantity needed for the design of the structure is the design slip moment of devic-

es at the last storey (storey 𝑛𝑛𝑛𝑛) provided by Eq. (4), being preliminarily compute the term 
∑ 𝛽𝛽𝑘𝑘 𝑛𝑛𝑠𝑠
𝑘𝑘=1 = 7,5. Successively, the sum of the design slip moment 𝑀𝑀𝑓𝑓𝑏𝑏.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 has to be shared be-

tween all the storeys by means of the term 𝛽𝛽𝑘𝑘 to design the dissipative device preliminarily 
described, according to the following relation: 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑛𝑛𝑠𝑠 = 𝑛𝑛𝑛𝑛 𝑛𝑛𝑏𝑏 𝑘𝑘𝑏𝑏 𝜇𝜇 𝑒𝑒/2 → 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑛𝑛𝑠𝑠  (16) 
 

where, 𝑛𝑛𝑛𝑛 is the number of frictional surfaces that in this case is equal to 2,  𝑛𝑛𝑏𝑏 is number 
of bolts,  𝑘𝑘𝑏𝑏 is the preloading force equal to: 

𝑘𝑘𝑏𝑏 = 0.7 𝑓𝑓𝑢𝑢𝑏𝑏𝐴𝐴𝑛𝑛 (17) 

𝑓𝑓𝑢𝑢𝑏𝑏 is the design bolt resistance, 𝐴𝐴𝑛𝑛 is the bolt area, 𝜇𝜇 is the dynamic frictional coefficient 
assumed in this case equal to 0.5 and 𝑒𝑒 is the distance between the median axis of the beam 
and the intersection of brace axes assumed, in this case, equal to 0,5 m. In addition, beams are 
preliminarily selected from the standard shapes to withstand the vertical load combination 
(1.3Gk + 1.5𝑄𝑄𝑘𝑘) according to a design moment computed as in Eq. (6) and are IPE200. In 
Table 2 the sum of the design slip moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸𝐸𝐸.𝑘𝑘 shared at all the storey by means of the 
term 𝛽𝛽𝑘𝑘, the slip resistant moment 𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘, belonging to the device design, the number of 
bolts  𝑛𝑛𝑏𝑏 ,  the distance 𝑒𝑒, the preloading force 𝑘𝑘𝑏𝑏 are reported. 
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Storey 
(-) 

𝛽𝛽𝑘𝑘 
(-) 

𝑀𝑀𝑓𝑓𝑏𝑏.𝐸𝐸𝐸𝐸.𝑘𝑘 
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

𝑛𝑛𝑏𝑏 
(-) 

𝑒𝑒 
(m) 

Bolts 
(-) 

𝑘𝑘𝑏𝑏  
𝑘𝑘𝑘𝑘 

𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘 
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

𝛾𝛾𝑅𝑅𝐸𝐸𝑀𝑀𝑓𝑓𝑓𝑓.𝐶𝐶𝐸𝐸.𝑘𝑘  
(𝑘𝑘𝑘𝑘 𝑚𝑚) 

 2.5 66.50 4 0.5 ϕ16 84.00 67.20 80.64 
2 2.25 59.85 4 0.5 ϕ16 75.00 60.00 72.00 
3 1.75 46.55 4 0.5 ϕ16 59.00 47.20 56.64 
4 1 26.60 4 0.5 ϕ16 35.00 28.00 33.60 

Table 2: Parameters for the design of beam-to-column connections 
 
Finally, beam sections designed to withstand vertical loads have also to fulfil also the local 

hierarchy criterion reported in the second term of Eq. (6). Diagonal braces, designed to sup-
port in and out of plane buckling are D244,5 s12,5 tubes.  

3.2 Design of non-dissipative zones 
Being designed dissipative zones, also non-dissipative one have to be provided by means 

of TPMC. The ultimate design displacement governing the procedure has been computed in 
the following way: 

𝛿𝛿𝑢𝑢 = 0.04 ℎ𝑛𝑛𝑠𝑠 = 0.04 ∙ 12 = 0.48 𝑚𝑚 (18) 
being assumed an ultimate device rotation equal to 0.04 and as a consequence a maximum 

device stroke of 0,12 m. In addition, in Table 3 the slopes of mechanism equilibrium curves 
are reported being computed according to the relationships reported in Table 1. 

 
STOREY 𝒊𝒊𝒎𝒎 𝜸𝜸𝒊𝒊𝒎𝒎

(𝟏𝟏) (1/m) 𝜸𝜸𝒊𝒊𝒎𝒎
(𝟐𝟐) (1/m) 𝜸𝜸𝒊𝒊𝒎𝒎

(𝟑𝟑) (1/m) 

1 0.308 0.064 0.308 
2 0.142 0.077 0.256 
3 0.089 0.105 0.220 
4 0.064 0.192 0.192 

Table 3. Slopes of the mechanism equilibrium curves 

It is possible to observe that the slope of the global mechanism equilibrium curve (under-
signed in Table 3) is the minimum among all the slope of mechanism equilibrium curves cor-
responding to the undesired mechanism. In addition, in Table 4 the design bending moment of 
columns at each storey are reported.  

 
STOREY 𝒊𝒊𝒎𝒎 ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟏𝟏)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏  (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟐𝟐)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

(𝟑𝟑)𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) ∑ 𝑴𝑴𝒄𝒄.𝒊𝒊𝒊𝒊𝒎𝒎

𝒏𝒏𝒄𝒄
𝒊𝒊=𝟏𝟏 (kN m) 

1 841.741 [-] 841.741 841.741 
2 521.3593 84.3591 302.8592 521.3593 
3 235.0923 140.1408 187.6165 235.0923 
4 [-] 161.8078 80.9039 161.8078 

Table 4. Value of the paramters ∑ Mc.iim
(t)nc

i=1  

In this worked example the approach that have been used to subdivide the reduced sum of 
plastic moments between the columns exploits the axial load acting on the columns at col-
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lapse state. In fact, the maximum value of 𝑀𝑀𝑐𝑐,𝑖𝑖𝑚𝑚is subdivided between columns on the basis 
of axial force acting on each column at each storey. 

The reduced sum of plastic moments of columns at each storey, ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚
𝑛𝑛𝑐𝑐
𝑖𝑖=1 , has been sub-

divided proportionally to the axial load at the collapse state according to the following equa-
tion: 

𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 =
𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 ∑ 𝑀𝑀𝑐𝑐.𝑖𝑖𝑖𝑖𝑚𝑚

𝑛𝑛𝑐𝑐
𝑖𝑖=1

∑ 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚
𝑛𝑛𝑐𝑐
𝑖𝑖=1

 (19) 

where 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 is the design moment of column sections. 
Finally, in Table 5 the axial load acting at the collapse state, the design moment of column 

sections and the column sections selected from standard shapes are reported with reference to 
external and internal columns. The collapse mechanism multiplier of global mechanism 𝛼𝛼 is 
equal to 1.2175. 

STOREY 𝑖𝑖𝑚𝑚 External columns Internal columns 
 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 (𝑘𝑘𝑘𝑘) 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 (kN m) PROFILES 𝑘𝑘𝑡𝑡𝑜𝑜𝑡𝑡.𝑖𝑖𝑖𝑖𝑚𝑚 (𝑘𝑘𝑘𝑘) 𝑀𝑀𝑐𝑐.𝑖𝑖𝑘𝑘 (kN m) PROFILES 

1 122.50 74.50 HE 160 B 569.48 346.36 HE 280 B 
2 91.87 52.51 HE 140 B 364.23 208.17 HE 220 B 
3 61.25 28.70 HE 120 B 189.70 88.86 HE 160 B 
4 30.62 26.97 HE 100 B 61.25 53.93 HE 140 B 

Table 5. Axial force at collapse state, design moment of column sections and column sections selected from 
standard shapes at each storey 

4 VALIDATION OF PROCEDURE 
In order to validate the design procedure static non linear analysis (push-over) has been 

carried out for the designed EBF frame by means of SAP 2000 computer program [44]. This 
analysis has the primary aim to predict the collapse mechanism typology, testing the accuracy 
of the proposed design methodology. 

In SAP2000 ambiance all members have been modeled by means of beam-column ele-
ments, whose non-linearities have been concentrated in plastic hinges at their ends. In particu-
lar, plastic hinges accounting for the interaction between axial force and bending moment 
have been defined for, columns while dissipative devices have been modelled in shear-
elongation such as short links [40]-[43]. Beams and diagonals have been modelled with pure 
bending plastic hinges and force bending, respectively. The elastic behaviour is not consid-
ered in plastic hinge definition because it is directly taken into account by the beam-column 
element. The analysis has been led under displacement control taking into account both geo-
metrical and mechanical non-linearities. In addition out of plan stability check of compressed 
members have been performed at each step of the non-linear analysis. The results of the push-
over are mainly constituted by the frame capacity curve (Figure 4) whose softening branch is 
perfectly coincident to the global mechanism equilibrium curve. In addition, push-over curve 
show a very pronounced elbow that is symptomatic of a contemporary activation of all the 
dissipative devices and of a consequent seismic energy optimization in terms of dissipative 
capacity of the structure.  
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Figure 5: Push-over curve of the analyzed structure 

 
In addition, in order to provide a more robust validation of the design methodology, non-

linear incremental dynamic analyses have been carried out with reference to the same struc-
tural model used for push-over analyses. In addition, 5% damping according to Rayleigh 
modelling has been assumed. 

Record-to-record variability has been accounted for considering 10 recorded accelero-
grams selected from PEER [45] data base whose main characteristics (name, date, magnitude, 
ratio between PGA and gravity acceleration, length and step recording) are reported in Table 
6. These earthquake records have been selected to approximately match the linear elastic de-
sign response spectrum of Eurocode 8 [4], for type A soil (Figure 6). Moreover, in order to 
perform IDA analyses, each ground motion has been scaled to obtain the same value of the 
spectral acceleration Sa (T1) corresponding to the fundamental period of vibration T1 of the 
structure (T1=0,785 s). This is the seismic intensity measure (IM) adopted for IDA analyses 
where Sa(T1) values have been progressively increased until the occurrence of structural col-
lapse, corresponding to anyone of the following ultimate limit states: column buckling, com-
plete development of a collapse mechanism, attainment of the limit value of the devices stroke. 

Earhquake (record) Component Date PGA/g Length (s) Step recording (s) 
Coalinga (Slack Canyon) H-SCN045 1985/05/02 0.166 29.99 0.01 
Helena (Carroll College) A-HMC180 1976/09/15 0.150 39.99 0.01 

Imperial Valley (Agrarias) H-AGR003 1979/10/15 0.370 28.35 0.01 
Kobe (Kakogawa) KAK000 1995/01/16 0.251 40.95 0.01 

Northridge (Stone Canyon) SCR000 1994/01/17 0.252 39.99 0.01 
Santa Barbara (Courthouse) SBA132 1978/08/13 0.102 12.57 0.01 
Spitak Armenia (Gaukasian) GKS000 1998/12/07 0.199 19.89 0.01 

Friuli, Italy (Tolmezzo) TMZ000 1976/05/06 0.351 36.345 0.005 
Irpinia (Calitri) A-CTR000 1980/11/23 0.132 35.79 0.0024 

Victoria, Mexico (Chihuahua) CHI102 1980/06/09 0.150 26.91 0.01 

Table 6: Accelerogram characteristics 
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Figure 6: Response spectra (soil type A, ζ=5%) scale at the same value of Sa for T1=0,785 

 
Figure 7: Maximum Interstorey Drift Ratio (MIDR) vs Spectral Acceleration (Sa/g) 

 
In Figure 6 the Maximum Interstorey Drift Ratio vs Spectral Acceleration is reported. 

MIDR curves appears regular and quite always increasing reaching on average a spectral ac-
celeration of  1,30 g corresponding to the achievement of the target drift equal to 0.04 rad. In 
addition, for each accelerogram, the obtained pattern of yielding has been monitored as far as 
the spectral acceleration increases confirming the development of a global mechanism.  
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Figure 8: Maximum Device Stroke vs Spectral Acceleration (Sa/g) 

Finally, in Figure 7 the maximum device stroke versus the spectral acceleration is reported. 
In particular, a spectral acceleration of 1.23g is achieved on average also for a target stroke of 
0,12 m. This result is in perfect agreement with those deduced by the MIDR graph. This high 
values of spectral acceleration are very satisfactory and confirms the high dissipative perfor-
mances of EBFs especially if equipped with dissipative friction devices.  

5 CONCLUSIONS  

• In this work EBFs equipped with frictional devices have been analyzed.  

• The control of devices activation and, as a consequence, the optimization of energy dis-
sipation capacity is obtained by a rigorous design procedure assuring that only the dissi-
pative zones are involved in plastic range while non dissipative ones remain elastic called 
theory of Plastic Mechanism Control. 

• Being all the non dissipative zones in elastic range and only frictional devices activated 
in plastic range the structure can be considered as free from damage. In fact, after a de-
structive seismic event all the damaged devices can be replaced by new ones. 

• In addition, by designing dissipative zones proportionally to the storey shear they are as-
sured to be engaged in yielding as contemporary as possible, benefit optimization of the 
seismic response. 

• The accuracy of the design approach has been investigated by means push-over and non-
linear dynamic analyses by applying a properly chosen set of earthquake ground motions. 

• The global mechanism is confirmed to be achieved by both push-over than IDA Analyses. 

• The designed structure show very high performances due both to the accuracy of the de-
sign procedure than to the exploitation of dissipative capacity of devices.  
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Abstract. In this paper an example of column design optimization for the control of collapse 
mechanism for RC-frames is presented.  The applied theory has already been developed, by 
the authors, in previous work.  
The procedure is based on the application of the kinematic theorem of the plastic collapse 
(TPMC: Theory of Plastic Mechanism Control). In particular, the outcome of the theory is the 
evaluation of the sum of the plastic moments of the columns required, at each storey, to 
prevent undesired failure modes such as soft-storey mechanism. In the proposed method the 
second-order effects, due to vertical loads, can play an important role in the seismic design of 
reinforced concrete frames; they can be taken into account by mean the mechanism 
equilibrium curve of the considered collapse mechanism. 
In this work the authors show how the classical design methodology based on the beam-
column hierarchy criterion does not allow to obtain a global mechanism.  
Beam-column hierarchy criterion, commonly suggested by seismic codes, appears only as a 
very rough approximation when compared to TPMC and its theoretical background. 
By applying this classic methodology, if a global mechanism is obtained, than the design of 
the column section and its reinforcement are not optimized. In fact, only with the theory 
already recalled we can obtain the minimum of section columns able to provide the 
development of a global mechanism. 
In addition, in the presented design approach, also the role played by joists can be accounted 
for. In fact, if their contribution is neglected the collapse mechanism can be very worse that 
the desired one. 
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1 INTRODUCTION 
One of the most important requirement in the seismic design consists in avoiding collapse 

mechanism characterized by the development of the minimum energy dissipation capacity of 

the structure, such as “soft-storey” mechanism. In fact the development of a collapse 

mechanism of global type, characterized by the location of plastic hinges at all the beam ends 

and at the base sections of first storey columns is always preferred.  

Relatively to the moment resisting frames, the maximum number of plastic hinges is 

obtained when two plastic hinges develops in each bay and they are usually located at beam 

ends. At the aim of avoiding undesired collapse mechanisms, hierarchy criterion reported in 

all the modern seismic codes, suggests that at any joint, the sum of the flexural strength of the 

columns is greater than the sum of the flexural strength of the beams converging in the same 

joint [1, 2]. Notwithstanding, the beam-column hierarchy criterion, being based on simple 

joint equilibrium, is generally able to prevent “soft-storey” mechanisms, but it does not assure 

the development of a collapse mechanism of global type; in fact it is a non-rigorous 

application of capacity design principles. In addition, several research are devote in recent 

years to the understand of seismic collapse mode of reinforced concrete frames, the induced 

loss and the retrofitting technics to be adopted in order to obtain a better and more dissipative 

collapse mechanism both in case of existing structures [3-9] and in case of new structures 

[10-16]. In order to overcame this problem, a more sophisticated design procedure, based on 

the kinematic theorem of plastic collapse and on second order plastic analysis (i.e. the concept 

of mechanism equilibrium curve) has been presented. “Theory of Plastic Mechanism Control” 

(TPMC) has been obtained as a powerful tool for the seismic design. In particular, it consists 

on the extension of the kinematic theorem of plastic collapse to the concept of mechanism 

equilibrium curve. In fact, for any given structural typology, the design conditions to be 

applied in order to prevent undesired collapse mechanisms can be derived by imposing that 

the mechanism equilibrium curve, corresponding to the global mechanism, has to be located 

below those corresponding to all the other undesired mechanisms up to a displacement level 

compatible with the local ductility supply of dissipative zones. This design approach has been 

applied to different steel structural typologies such as MRFs with RBS connections, EB-

Frames, dissipative truss-moment frames, MRF-CBF dual systems and MRFs equipped with 

friction dampers [17-39]. Starting from the above background, the TPMC is developed also 

with reference to the reinforced concrete frames. In the present paper, a worked example and 

a validation of the proposed design procedure are presented in [40]. 

2 THEORY OF PLASTIC MECHANISM CONTROL 
In general, three main collapse mechanism typologies that the structure is able to exhibit 

can be recognized: these mechanisms, depicted in Figure 1, are to be considered undesired 

because they do not involve all the dissipative zones. In order to apply the TPMC it is of 

paramount importance the introduction of the concept of linearized mechanism equilibrium 

curve for each considered mechanism. The mathematical expression of this curve can be 

written as: 

훼 = 훼 − 훾훿 (1) 
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Figure 1: Collapse mechanism typologies 

where 훼  is the kinematically admissible multiplier of horizontal forces, 훾 is the slope of 

the mechanism equilibrium curve and 훿 is the top-sway displacement. Both parameters can be 

derived, according to rigid-plastic theory, using the principle of virtual work. Within the 

framework of a kinematic approach, for any given collapse mechanism, the mechanism 

equilibrium curve can be easily derived by equalling the external work to the internal work. In 

addition, in order to account for second-order effects, the external second-order work due to 

vertical load is also evaluated. For what concerns the theory herein considered and applied, 

reference is to be made to [40] where the design algorithm and the presentation of the 

developed theory is reported. In is useful to remember that in the proposed method the beam 

section properties are assumed to be known quantities because they are designed to resist 

vertical loads. As a consequence, the unknowns of the design problem are the column 

sections. They could be determined by means of design conditions expressing that the 

kinematically admissible multiplier corresponding to the global mechanism is the minimum 

among all kinematically admissible multipliers corresponding to all other mechanisms (Figure 

1). Obviously, this design condition is able to assure the desired collapse mechanism only in 

case of rigid-plastic behaviour, while actual structures are characterized by elastic 

displacements before the development of a plastic mechanism. Due to these elastic 

displacements, second-order effects of vertical loads cannot be neglected. For the better 

comprehension of the following, the adopted notation is reported to Table 1. 
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푛  number of columns e index of beam ends 
(e=L=left end, e=R=right end) 

푛  number of bays 푀 , ,  
plastic moment of the i-th column 

at 푖 -th storey 

푛  number of storeys 푀 , = 푀 , ,  
sum of column  plastic moments at 

푖 -th storey 

푖  index of mechanism 푀 = 푉 ℎ  
second-order work due to vertical 

loads in global mechanism 

퐻  

sum of the interstorey heights 

of the storeys involved by the 

generic mechanism 
푀 = 퐹 ℎ  

external work due to horizontal 

forces in the global mechanism 

ℎ  
height of the k-th storey 

(with k=1, 2, .., 푛 ) 
퐹 = 퐹  sum of the horizontal forces 

퐹  horizontal force applied to the 

k-th storey 
푀 .  

plastic design resistance of beam at 

j-th bay of the k-th storey 

푉  sum of all the vertical loads 

acting at k-th storey 
푀 , , = 푀 .  

sum of the plastic design 
resistances of beam ends (for e 

end) in the global mechanism 

Table 1: Notation 

These effects can be taken into account by imposing that the mechanism equilibrium curve 

corresponding to the global mechanism has to lie below those corresponding to all other 

mechanisms i.e. the upper bound theorem of plastic design is to be satisfied for each value of 

the displacements 훿 (Figure 2). However, the fulfilment of this requirement is necessary only 

up to a selected ultimate displacement 훿 , which has to be compatible with the ductility 

supply of structural members. 


im

(t)

 (g)0

(g)

(g)

 im

(t)

 u 



Global mechanism

Generic mechanism

Figure 2: Design condition 
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This corresponds to impose the following conditions, for LR earthquake: 

훼( ) = 훼 ,
( ) − 훾( ) 훿  ≤  훼 , ,

( ) − 훾( ) 훿 = 훼 ,
( )

  (2) 

and for RL earthquake: 

훼( ) = 훼 ,
( ) − 훾( ) 훿  ≤  훼 , ,

( ) − 훾( ) 훿 = 훼 ,
( )

  (3) 

for  푖 = 1, 2 3, … , 푛   and     푡 = 1, 2, 3. 

Therefore, there are 6푛  design conditions to be satisfied for a structural scheme 

having 푛  storeys. With reference to 푖 -th mechanism of type-1, the kinematically 

admissible multiplier of seismic horizontal forces is given, for LR earthquake, by: 

훼 , ,

( ) =
푀 , + ∑ ∑ 푀 . , + ∑ ∑ 푀 . , + 푀 ,

∑ 퐹 ℎ + ℎ ∑ 퐹
 (4) 

and for RL earthquake by: 

훼 , ,

( ) =
푀 , + ∑ ∑ 푀 . , + ∑ ∑ 푀 . , + 푀 ,

∑ 퐹 ℎ + ℎ ∑ 퐹
 (5) 

while the slope of the mechanism equilibrium curve, which is the same for both directions, is: 

훾( ) =
1
ℎ

∑ 푉 ℎ + ℎ ∑ 푉

∑ 퐹 ℎ + ℎ ∑ 퐹
(6) 

With reference to 푖 -th mechanism of type-2 the kinematically admissible multiplier of 

seismic horizontal forces is given, for LR earthquake, by: 

훼 , ,

( ) =
푀푐,푖푚 + ∑ ∑ 푀푏.푗푘,퐿

+ + ∑ ∑ 푀푏.푗푘,푅
−

∑ 퐹 (ℎ − ℎ )
 (7) 

and for RL earthquake by: 

훼 , ,

( ) =
푀푐,푖푚 + ∑ ∑ 푀푏.푗푘,퐿

− + ∑ ∑ 푀푏.푗푘,푅
+

∑ 퐹 (ℎ − ℎ )
 (8) 

while the slope of the mechanism equilibrium curve is: 

훾( ) =
1

ℎ − ℎ
∑ 푉 ℎ − ℎ
∑ 퐹 (ℎ − ℎ )

(9) 

Finally, with reference to 푖 -th mechanism of type-3, the kinematically admissible 

multiplier of horizontal forces, is given by: 

훼 ,
( ) =

2푀 ,

ℎ − ℎ ∑ 퐹 (10) 

In this case the expression is the same for both directions of earthquake because the beams are 

not involved in this collapse mechanism. In addition, the corresponding slope of the 

mechanism equilibrium curve is given by: 

γ( ) =
∑ V

h − h ∑ F
 (11)

It is important to underline that, for any given geometry of the structural system, the slope 

of mechanism equilibrium curve attains its minimum value when the global type mechanism 
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is developed. In fact, it is easy to check that 훾( ), which is equal to 훾( )
, is always the minimum

value among all the 훾( )
. This issue assumes a paramount importance in TPMC allowing the 

extension of the kinematic theorem of plastic collapse to the concept of mechanism 

equilibrium curve by simply checking relations (2) and (3) for the value 훿 = 훿 , as depicted 

in Figure 2. 

3 STUDY CASE 
In order to show the practical application of the proposed design procedure, the seismic 

design of a four-bay six-storey moment resisting frame is presented in this section.  

The inelastic behaviour of the designed structure is successively examined by means of a 

push-over static, confirming the fulfilment of the design goal, i.e. the location of the yielding 

zones at the beam ends with the only exception of the base section of first-storey columns. 

The structural scheme of the frame to be designed is shown in Figure 3. The interstorey height 

is equal to 3m. The characteristic values of the vertical loads acting on the beams are equal to 

21.89 kN/m and 8 kN/m for permanent (퐺 ) and live (푄 ) actions, respectively. The structural 

materials adopted are concrete C25/30 and reinforcement of steel grade B450C. 

21.76 kN

43.52 kN

65.29 kN

87.05 kN

3 m 5 m 4 m 5 m
A B C D E

3 m

108.82 kN

130.58 kN

17 m

3 m

3 m

3 m

3 m

3 m

18 m

Figure 3: Structural scheme of the designed frame 

According to Eurocode 8, the value of the period of vibration to be used for preliminary 

design is: 

푇 = 0.075 퐻 / = 0.075 ∙ 18 / ≈ 0.65 푠 (12) 

where 퐻 is the total height of the frame. With reference to the design spectrum for stiff soil 

conditions (soil class A of Eurocode 8) and by assuming a behaviour factor q equal to 3.9, the 

horizontal seismic forces are those depicted in Figure 3. In the following, the numerical 

development of the design steps for the structural scheme described above is provided. 
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a) Selection of the design top sway displacement
The selection of the maximum top sway displacement up to which the global mechanism 

has to be assured is a very important design issue, because the value of this displacement 

governs the magnitude of second order effects accounted for in the design procedure. A good 

criterion to choose the design ultimate displacement 훿  is to relate it to the plastic rotation 

supply of beams or beam-to-column connections by assuming 훿 = 휃 ∙ ℎ  (where 휃  can be 

assumed equal to 0.01 rad). As a consequence, the design value of the top sway displacement 

has been assumed equal to: 

훿 = 0.01 ∙ ℎ = 0.01 ∙ 18 = 0.18 푚 (13) 

b) Design of beam sections to withstand vertical loads.
The load acting on the frame in the vertical load combination is: 

푄 = 1.3 퐺 + 1.5 푄 = 40.46 푘푁/푚 (14) 

For the design of the beams has been considered a bending moment equal to: 

푀 =
푄 ∙ 퐿

8  (15) 

Therefore, by imposing the base of the section equal to b=30 cm, is possible to calculate 

the height of the beam through the following design relation: 

푑 = 푟
푀
푏

(16) 

Assuming 휉 = 0.25 and 휌 = 0.25 a value of 푟 = 0.19 is obtained. As a consequence the 

amount of reinforcement is given by: 

퐴 =
푀

0.85 ∙ ℎ ∙ 푓 (17) 

Obviously the number of steel bars in the beam is such that: 

푀 > 푀  (18) 

where 푀  is the design value of the resistant moment and 푀  is the design value of the 

applied internal bending moment. The reinforcement at the beam ends are reported in Table 2. 

PART OF SECTION LAB = 3m LBC = 5m LCD = 4m LDE = 5m 
e = L e = R e = L e = R e = L e = R e = L e = R 

Top 3F20 3F20 4F20 4F20 4F20 4F20 4F20 4F20 
Bottom 3F20 3F20 4F20 4F20 3F20 3F20 4F20 4F20 

Table 2: Reinforcement at the beam ends (L = left and R = right) for the first storey 

c) Computation of the slopes of mechanism equilibrium curve 훾( ). 
By means of Eqs. (6), (9) and (11) the slopes of mechanism equilibrium curves are 

computed. These values are reported in Table 3 and they are the same for both directions of 

seismic input. 

STOREY 푖  훾( ) 훾( ) 훾( )

1 0.0181 0.0024 0.0181 

2 0.0085 0.0027 0.0158 

3 0.0054 0.0032 0.0141 
4 0.0038 0.0040 0.0127 

5 0.0030 0.0056 0.0116 

6 0.0024 0.0150 0.0105 
Table 3: Slopes of mechanism equilibrium curves (cm-1) 

8498



Roberta Muscati 

In particular it is important to underline that the slope value corresponding to the global 

mechanism 훾( ) = 훾( )
, is the minimum among all the 훾( )

 values: 

훾( ) = 0.002433 푐푚  (19) 

d) Computation of the required sum of plastic moments of columns at first storey 푀 , .
The required sums of plastic moments of columns at first storey for LR and RL earthquake 

are equal to M , , = 1177.99 kNm and M , , = 1177.99 kNm, respectively. 

e) Distribution among the columns proportionally to their number.
According to the global mechanism, axial forces in the columns at collapse state depend 

both from the distributed loads acting on the beams and from the shear action due to the 

development of plastic hinges at the beam ends, as depicted in Figure 4 (with reference to the 

earthquake from Left to Right). So that, the total load transmitted by the beams to the columns 

is the sum of two contributions. The first one, 푁 , is related to the vertical loads acting in the 

seismic load combination (i.e. the sum of 푞푙 2⁄  type contributions). 

Direction of
seismic action

l

q

q l
2

NM,LR

Nq

l

Mb,jk,L
+

Mb,jk,R
-

(Mb,jk,L + Mb,jk,R)
+ -

l
(Mb,jk,L + Mb,jk,R)

+ -

l
(Mb,jk,L + Mb,jk,R)

+ -

l
(Mb,jk,L + Mb,jk,R)

+ -

q l
2

q l
2

q l
2

l

Mb,jk,L
+

Mb,jk,R
-

Figure 4: Loads transmitted by the beams to the columns at collapse state for LR earthquake 

In Table 4 the axial forces due to vertical loads, for both directions of earthquake, are 

reported for each storey and for each column. 

Storey Column A Column B Column C Column D Column E 

im 푁  

(kN) 

푁  

(kN) 

푁  

(kN) 

푁  

(kN) 

푁  

(kN) 

1 218.70 583.20 656.10 656.10 364.50 

2 182.25 486.00 546.75 546.75 303.75 

3 145.80 388.80 437.40 437.40 243.00 

4 109.35 291.60 328.05 328.05 182.25 

5 72.90 194.40 218.70 218.70 121.50 

6 36.45 97.20 109.35 109.35 60.75 

Table 4: Axial forces acting in the columns related to the vertical loads for both directions of earthquake 

The second one, 푁 ,  (or 푁 , ), is related to the shear actions due to the plastic hinges 

developed at the beam ends i.e. the sum of (푀 . , + 푀 . , ) 푙⁄  for earthquake from left to 

right (or the sum of (푀 . , + 푀 . , ) 푙⁄  for earthquake from right to left). In Table 5 these 

contributions are reported. 
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Storey Column A Column B Column C Column D Column E 

im 푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

푁 ,  

(kN) 

1 -508.96 508.96 103.42 -103.42 -38.47 38.47 38.47 -38.47 405.53 -405.53 

2 -424.13 424.13 86.18 -86.18 -32.06 32.06 32.06 -32.06 337.94 -337.94 

3 -339.30 339.30 68.95 -68.95 -25.65 25.65 25.65 -25.65 270.36 -270.36 

4 -254.48 254.48 51.71 -51.71 -19.24 19.24 19.24 -19.24 202.77 -202.77 

5 -169.65 169.65 34.47 -34.47 -12.82 12.82 12.82 -12.82 135.18 -135.18 

6 -84.83 84.83 17.24 -17.24 -6.41 6.41 6.41 -6.41 67.59 -67.59 
 

Table 5: Axial forces acting in the columns related to the shear actions for both directions of earthquake 

Therefore the required bending moment for each column M , , , the section, the upper and 

lower reinforcement and the axial force, for both directions of the earthquake are reported in 

Table 6. 

STOREY Column M , , ,   [kNm] M , , ,   [kNm] b x h A = A  N   [kN] N   [kN] 

1° 

A 

235.59 235.59 

30x40 7 Φ 20 -290.26 727.66 

B 30x50 5 Φ 16 686.62 479.78 

C 30x60 5 Φ 16 617.63 694.57 

D 30x60 5 Φ 16 694.57 617.63 

E 30x40 6 Φ 20 770.03 -41.03 

Table 6: Final design of the column sections at first storey 

The sums of obtained column plastic moments at first storey are: 푀 , , , =
1585.19 푘푁푚 for LR earthquake and 푀 , , , = 1603.24 푘푁푚for RL earthquake which 

are greater than the required one. As a consequence the value of α( )
 for LR and RL 

earthquake are equal to 훼 ,
( ) = 1.5179 and 훼 ,

( ) = 1.5227, respectively. 

f) Computation of the required sum of plastic moments of columns 푀 ,
( )  at any storey to 

avoid undesired mechanism. 
The sum of the plastic moments of columns governing the column design at each storey is 

given in Table 7 and Table 8 by the underlined values. It can be recognized that, in the 

examined case, the need to avoid type-1 mechanism always governs the design of columns. 
So for earthquake from Left to Right: 

STOREY  푖  푀 , ;
( )   [kNm]  푀 , ,

( )   [kNm] 푀 , ,
( )   [kNm] 

1 1585.19 - 1585.19 

2 1509.60 770.57 1140.09 

3 1963.60 51.38 1007.49 

4 2131.34 -476.97 827.18 

5 1917.40 -719.07 599.16 

6 1226.37 -579.49 323.43 

Table 7: Sum of plastic moments of column required at each storey to avoid undesired mechanism 
And for earthquake from Right to Left: 

STOREY  푖  푀 , ,
( )   [kNm]   푀 , ,

( )   [kNm] 푀 , ,
( )   [kNm] 

1 1603.24 - 1603.24 

2 1499.68 784.46 1142.07 

3 1957.25 61.29 1009.27 

4 2127.97 -470.62 828.67 

5 1916.21 -715.70 600.25 

6 1226.37 -578.30 324.03 

Table 8: Sum of plastic moments of column required at each storey to avoid undesired mechanism 
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g) Design of column sections at each storey.
The required sum of column plastic moments 푀 , , , the section, the upper and lower 

reinforcement, the axial force for both directions of the earthquake are reported in Table 9. 

STOREY Column M , ,  [kNm] M , ,  [kNm] b x h  A = A   N   [kN]  N  [kN] 

2° 

A 

301.92 299.93 

30x50 7 Φ 20 -241.88 606.38 

B 30x40 6 Φ 20 572.18 399.82 

C 30x50 6 Φ 16 514.69 578.81 

D 30x50 6 Φ 16 578.81 514.69 

E 30x50 6 Φ 20 641.69 -34.19 

3° 

A 

392.72 391.45 

30x50 6 Φ 24 -193.50 485.10 

B 30x50 6 Φ 20 457.75 319.85 

C 30x50 6 Φ 20 411.75 463.05 

D 30x50 6 Φ 20 463.05 411.75 

E 30x50 6 Φ 24 513.36 -27.36 

4° 

A 

426.26 425.59 

30x50 6 Φ 24 -145.13 363.83 

B 30x50 7 Φ 20 343.31 239.89 

C 30x50 7 Φ 20 308.81 347.29 

D 30x50 7 Φ 20 347.29 308.81 

E 30x50 6 Φ 24 385.02 -20.52 

5° 

A 

383.48 383.24 

30x50 6 Φ 24 -96.75 242.55 

B 30x50 7 Φ 20 228.87 159.93 

C 30x50 7 Φ 20 205.88 231.52 

D 30x50 7 Φ 20 231.52 205.88 

E 30x50 5 Φ 24 256.68 -13.68 

6° 

A 

245.27 245.27 

30x40 7 Φ 20 -48.38 121.28 

B 30x40 6 Φ 20 114.44 79.96 

C 30x40 6 Φ 20 102.94 115.76 

D 30x40 6 Φ 20 115.76 102.94 

E 30x40 6 Φ 20 128.34 -6.84 

Table 9: Design of column sections at each storey 
h) Checking of technological condition
By observing Table 6 and Table 9 it can be noted that there are some column sections at 

the first storey which are smaller than the corresponding ones required at the second storey, 

therefore, a technological condition at the first storey is not satisfied. As a consequence, the 

values of 푀 , , ,  and 푀 , , ,  need to be updated and the procedure needs to be repeated 

from the step e). In Table 10 and Table 11 the new value of required sum of plastic moments 

of columns 푀 ,
( )

 at any storey are reported for both directions of earthquake. 

4 VALIDATION OF THE DESIGN PROCEDURE 

In order to validate the design procedure, a static non-linear analysis (push-over) has been 

carried out to investigate the actual seismic response of the designed frame by means 

SAP2000 computer program [41]. This analysis has the primary aim to confirm the 

development of the desired collapse mechanism typology and to evaluate the obtained energy 

dissipation capacity, testing the accuracy of the proposed design methodology. Regarding the 

structural modelling, the mechanical non-linearities, have been concentrated at beam and 

column ends by means of plastic hinge elements. 
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STOREY 푖  푀 ,  
( )  [kNm] 푀 ,

( )  [kNm]  푀 ,
( )  [kNm] 

1 1660.80 - 1660.80 
2 1468.05 828.74 1148.39 

3 1937.01 92.92 1014.96 

4 2117.21 -450.38 833.41 

5 1912.42 -704.95 603.73 

6 1226.37 -574.51 325.93 
Table 10: Sum of plastic moments of column required at each storey for LR earthquake 

and for the other direction of earthquake: 

STOREY  푖  푀 ,  
( )  [kNm] 푀 ,

( )  [kNm]  푀 ,
( )  [kNm] 

1 1689.21 - 1689.21 

2 1452.45 850.59 1151.52 
3 1927.02 108.53 1017.77 

4 2111.91 -440.39 835.75 

5 1910.54 -699.64 605.45 

6 1226.37 -572.63 326.86 

Table 11: Sum of plastic moments of column required at each storey for RL earthquake 

In Table 12 are reported the final value of the columns. 

STOREY Column M , ,  [kNm] M , ,  [kNm] b x h  A = A   N   [kN]  N  [kN]  

1° 

A 

235.59 

 30x50 6 Φ 20 -290.26 727.66 

B 30x50 5 Φ 16 686.62 479.78 

C 235.59 30x60 5 Φ 16 617.63 694.57 

D 30x60 5 Φ 16 694.57 617.63 

E 30x50 5 Φ 20 770.03 -41.03 

2° 

A 

293.61 290.49 

30x50 7 Φ 20 -241.88 606.38 

B 30x50 7 Φ 16 572.18 399.82 

C 30x50 6 Φ 16 514.69 578.81 

D 30x50 6 Φ 16 578.81 514.69 

E 30x50 6 Φ 20 641.69 -34.19 

3° 

A 

387.40 385.40 

30x50 6 Φ 24 -193.50 485.10 

B 30x50 6 Φ 20 457.75 319.85 

C 30x50 6 Φ 20 411.75 463.05 

D 30x50 6 Φ 20 463.05 411.75 

E 30x50 6 Φ 24 513.36 -27.36 

4° 

A 

423.44 422.38 

30x50 6 Φ 24 -145.13 363.83 

B 30x50 7 Φ 20 343.31 239.89 

C 30x50 7 Φ 20 308.81 347.29 

D 30x50 7 Φ 20 347.29 308.81 

E 30x50 6 Φ 24 385.02 -20.52 

5° 

A 

382.48 382.10 

30x50 6 Φ 24 -96.75 242.55 

B 30x50 7 Φ 20 228.87 159.93 

C 30x50 7 Φ 20 205.88 231.52 

D 30x50 7 Φ 20 231.52 205.88 

E 30x50 5 Φ 24 256.68 -13.68 

6° 

A 

245.27 245.27 

30x40 7 Φ 20 -48.38 121.28 

B 30x40 6 Φ 20 114.44 79.96 

C 30x40 6 Φ 20 102.94 115.76 

D 30x40 6 Φ 20 115.76 102.94 

E 30x40 6 Φ 20 128.34 -6.84 

Table 12: Design of column sections at each storey for earthquake 

8502



Roberta Muscati 

The constitutive law of such plastic hinge elements is provided by a rigid plastic moment-

rotation curve. The type of hinge depends on the element considered i.e. by its internal action. 

In fact, for the beams and the columns M3 and P-M3 hinge type have been considered, 

respectively. In case of P-M3 hinge type, the interaction domain P-M has been evaluated for 

each column and used in SAP2000 computer program. The results of the push-over analysis 

are mainly constituted by base shear – top sway displacement curve which is depicted in 

Figure 5. In the same figure also a straight line is given, i.e. the one corresponding to the 

linearized mechanism equilibrium curve of global mechanism whose expression, for the 

designed frame and for earthquake from Left to Right, is: 

훼( ) = 1.5179− 0.002433 δ (20) 

For earthquake to Right to Left, the expression is: 

훼( ) = 1.5227− 0.002433 δ (21) 

As already underlined there is a mechanism equilibrium curve for both direction of 

earthquake. The two mechanism equilibrium curves are different but only for  what concern 

the 훼  value while the slope is the same as reported in Figure 5. 

As it was expected, also the LR push-over curve is different from RL one. This difference 

can be easily understood if we consider that the axial forces in the columns are different in the 

two considered push-over and, as a consequence, also the plastic moment is different. 

Notwithstanding, in this case, the two curves are very close one each other but there is no 

proof of the fact that this represent a general result. So that both curves should be always 

considered when a non-symmetric moment-resisting frame is analized. Obviously, the base 

shear is, in this case, obtained by multiplying the value of 훼, given by Eq. (20) and Eq. (21), 

for the design base shear corresponding to 훼 = 1. The comparison between the push-over 

curve and the global mechanism equilibrium curve provides a first confirmation of the 

accuracy of the proposed design procedure. In fact, the last branches of push-over curves 

parallel to global mechanism equilibrium curves as showed in Figure 5.  

Figure 5: Overlap of the push-over curve with the global mechanism equilibrium curve 
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A further confirmation, even the most important, of the fulfilment of the design objective is 

represented by the pattern of yielding developed at the occurrence of the design ultimate 

displacement. In fact, developed plastic hinges are shown in Figure 6 and their pattern is in 

perfect agreement with the global mechanism. In order to fulfill the serviceability 

requirements the interstorey drift have been checked with reference to the limit reported in the 

Eurocode 8. 

Figure 6: Pattern of yielding of the designed frame at 훿 = 훿 for LR and RL earthquake direction 

In particular the considered limit refers to buildings having non structural elements of 

brittle materials attached to the structure: 

푑  휈 ≤ 0.005 h 
(22) 

where dr is the the maximum relative displacement between two consecutive storeys and h 

is the correspondinbg stprey height. If this serviceability requirement is not verified the 

structural stiffness can be improved by increasing the beam sections or the ultimate design 

displacement. In fact, in both cases the final results will be a more rigid structure with respect 

to the one obtained in the worked example herein presented. In Table 13 the final results are 

reported. 

STOREY 푑  [cm] 푑  [cm] 휐 푑  휐 0.005 h 

6° 1.7687 0.7173 

0.5 

0.3586 1.5 

5° 1.5848 1.0963 0.5481 1.5 

4° 1.3037 1.4030 0.7015 1.5 

3° 0.9439 1.5538 0.7769 1.5 

2° 0.5455 1.4072 0.7036 1.5 

1° 0.1847 0.7203 0.3601 1.5 

Table 13: Limitation of interstorey drift 

5 CONCLUSIONS 

In this work a methodology able to control the failure mechanism of reinforced concrete 

moment resisting frames has been applied. On the base of the extension of the kinematic 

theorem of plastic collapse to the concept of mechanism equilibrium curve, the Theory of 

Plastic Mechanism Control allows to evaluate the sum of plastic moments of the columns 

required at each storey in order to develope a collapse mechanism of global type.   
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The closed form solution of the design conditions makes the design procedure very easy to be 

applied. In fact, in the author opinion it could also be suggested for code purpose by definitely 

solving the problem of collapse mechanism control whose importance in seismic design is 

universally recognised. Beam-column hierarchy criterion, commonly suggested by seismic 

codes, appears only as a very rough approximation when compared to TPMC and its 

theoretical background. The reliability of the proposed design procedure has been also 

demonstrated through its application to a four-bays, six-storeys frame, leading to the 

fulfilment of the design objective, i.e. the development of a collapse mechanism of global 

type, as it has been confirmed by the results of both push-over analysis.  

The proposed methodology can be considered as belonging to the Performance Based Seismic 

Design philosophy [42]. In fact, in order to satisfy the limit states of “Life Safe” or “Near 

Collapse” the designer has to promote a dissipative collapse mechanism avoiding the so 

called “soft storey mechanism”. In addition, it is useful to underline that the proposed 

procedure constitutes a rigorous application of the capacity design principles. In fact, beams 

are designed in order to bear external loads, while columns are designed according to the 

maximum internal actions transmitted by the dissipative zones. It is important to underline 

that the proposed procedure can be applied for MRFs characterized by a non-symmetric 

scheme and a non-symmetric reinforcement in each beam section. In the future development, 

the procedure should account also for the joists influence. In fact resistance of the joists is 

always neglected, but, as shown in [43] it can be really significative. 
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Abstract. Finding a good system topology with more than a handful of components is a
highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the
same time the components should interact in an energy-efficient way. An example for a system
design problem is the layout of the drinking water supply of a residential building. It may be
reasonable to choose a design of spatially distributed pumps which are connected by pipes in at
least two dimensions. This leads to a large variety of possible system topologies. To solve such
problems in a reasonable time frame, the nonlinear technical characteristics must be modelled
as simple as possible, while still achieving a sufficiently good representation of reality. The
aim of this paper is to compare the speed and reliability of a selection of leading mathematical
programming solvers on a set of varying model formulations. This gives us empirical evidence
on what combinations of model formulations and solver packages are the means of choice with
the current state of the art.
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1 INTRODUCTION

This paper will focus on the run-time comparison of different mathematical optimisation
solvers, complementarity constraint methods and approximation methods applied to an exem-
plary model of the drinking water supply system in a residential building. For a more com-
prehensive coverage of this comparison, we vary the number of floors and the inlay pressure,
whereas the overall method of modelling the pump system will remain the same. Depending
on the chosen solver, complementarity constraint and approximation method, the problem will
be modelled as a mixed-integer linear problem (MILP) or a mixed-integer nonlinear problem
(MINLP).

Key decision for the topology problem is to find the optimal placement of pumps and pipes.
Pumps can be positioned between the floors and pipes have to be laid out to connect the main
water connection in the basement with the pumps and the consumers. In addition, the opera-
tional parameters for pumps are calculated, e.g. flow rate, power input and rotational speed.

To analyse the solver behaviour for different model sizes and formulations, different varia-
tions of the number of floors and the inlay pressure were created. Each combination of a number
of floors and inlay pressure specifies a load setting of the pump network model. In this paper 40
different load settings were solved for all feasible combinations of solvers, constraint methods
and approximation methods. This led to a total of 400 solved problems. Following solvers and
methods were used and will be introduced in more detail in Section 3:

• Solvers: MINLP: Couenne, Scip MILP: Gurobi, GLPK

• Complementarity Constraint Methods: bigM (linear) and product (nonlinear) con-
straint

• Approximation Methods for Characteristic Curves:

Linear: piecewise linear approximation by aggregated convex combination (ACC),

Nonlinear: cubic, blending-function (Coons) and quadratic approximation

1.1 Estimation of Input Parameters

The following values, which are required to model the pump system, are calculated upfront.

1.1.1 Expected Load for Individual Floors

The minimal pressure headHmin, flow rateQ, and maximal flow velocity vmax for an individ-
ual floor are estimated by assuming a standard consumption for a flat following the European
industrial standard guideline (DIN EN) [1]. The DIN EN guideline defines a standard flat with
a dishwasher, kitchen sink, washbasin, shower, washing machine, and toilette. Information on
the flow rates, minimal pressure, resistance coefficients, and maximal flow velocity are given.
By applying the foundations of hydraulic systems [2] and assuming the hydraulic case with the
highest volume flow and pressure head, the total pressure loss due to friction can be calculated.
Including the minimal flow pressure from the DIN EN guideline leads to the estimated load of
an individual floor given in Table1.
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Parameter Symbol Value
minimal pressure head Hmin 13 m
flow rate Q 1.50 m3 h−1

maximal flow velocity vmax 2.0 m s−1

Table 1: Summary of parameter estimation for individual floor.

1.1.2 Selection of Pipe Diameters

A selection rule for the pipe diameters depending on the flow rate Q is determined. The pipe
diameters given in the DIN EN guideline [1] are listed in Table 2. The guideline also specifies
the flow velocity v to to be within specific bounds in order to avoid microbial load and noise.
We consider 0 m3 h−1 ≤ Q ≤ 60 m3 h−1 and 1 m s−1 ≤ v ≤ 2 m s−1.

Pipe diameter in mm
10 13 16 19.6 25.6 32 39 51 60 72.1 84.9 104

Table 2: Possible diameters for pipes.

This leads to the selcetion of pipe diameters depending on the flow rate which is shown in
Figure 1.
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Figure 1: Pipe diameter as function depending on
the flow rate.
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Figure 2: Linear approximation of the specific pres-
sure head loss.

1.1.3 Approximation of Pipe Characteristics

Pressure loss due to pipe friction can be represented by the Darcy-Weisbach equation [2]

∆HR =
∆pR
ρ g

= R · L = λ
1

2 di g
v2L , (1)
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with pipe diameter di, pipe length L, gravitational constant g, average flow velocity v in pipe,
friction factor λ and specific pressure loss R. Using the flow rate representation [2]

Q = vA = v
1

4
πd2i (2)

the specific pressure loss can be transformed to

R(Q, di) = λ
1

d5i

8

π2

Q2

g
. (3)

The friction factor λ can be calculated iteratively for a fixed pipe diameter di and fixed flow rate
Q with Newton’s method. Figure 2 shows that the specific pressure loss R depends strongly on
the pipe diameter and less on the volume flow. For simplification, we use the maximal specific
pressure loss Rmax for each pipe diameter as an approximation.

1.2 Pump models

In this paper, we consider three exemplary pumps from the KSB pump series Hya-Solo: EV
1/0206B, EV 1/0406B, and EV 1/0605B. The characteristics of these pumps can be found in [3].
The pump curves describe the pressure head increase and the power consumption as functions
of the flow rate and rotational speed. These pump curves will be approximated with different
methods which are introduced in Section 3.3.

2 MODEL

In this section, the optimisation model is presented. We do not yet focus on constraints that
can be modelled in different ways: For complementarity constraints, only the formulation as
disjunction is given – the explicit formulations are introduced in Section 3.2. The approxima-
tion methods of he pump characteristics are discussed in Section 3.3. The main variables and
parameteres which are used in this model can be found in Table 4.

2.1 Objective Function

The model aims to minimise the sum of investment costsC of the components and the energy
costs for operating the pumps:

min Cpipes + Cpumps + cenergy · T · Ptotal .

The operational costs cenergy are estimated with 0.2951e/kWh for an operating time of T = 5
years. The costs for the pipe purchase are estimated with cpipe = 50e/m. For the pumps the
investment costs are stated in the Table 3.

Pump Model Price in e
10206/B 2344.55
10406/B 2409.35
10605/B 2484.75

Table 3: Investment costs for the different pump models.
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Type Name Description Value Range Dimension
parameters nfloors number of floors

H0 inlet pressure head L
npipes number of possible pipes {1,2,3,...,∞}
npumps number of pumps {3}
T expected operating time of the system [0,∞] T
D ingoing and outgoing flow on each floor L3T−1

hSŜ height offset between floor S and Ŝ L
Qmax maximal flow for pipe diameter [0, 100] L3T−1

variables lpipe pipe length [0,∞] L
P power consumption of each pump [0, 1800] ML2T−3

Q flow rate in each pipe [0, 100] L3T−1

Qsquare quadratic flow rate in each pipe [0, 3600] L6T−2

n̂ normalised pump rotational speed [0.6,1]
∆H pressure head increase for each pump [0,100] L
H pressure head in each floor [0,100] L
kpipe indicator for pipe selection {0,1}
kpump indicator for pump placement on a pipe {0,1}
Rpipe specific pressure loss due to pipe friction [0,∞]
dpipe selected pipe diameter [9,105] L
kQ non-zero flow indicator {0,1}

Table 4: Main input parameters and decision variables of the optimisation model.

Expressed in decision variables, the objective is

min

npipes∑
i=1

npumps∑
j=1

kpump(i, j) · cpump(j) (4)

+

npipes∑
i=1

kpipe(i) · cpipe · lpipe(i)

+cenergy · T ·
npipes∑
i=1

npumps∑
j=1

P (i, j) .

2.2 Constraints

Pipe indicators model the interconnection of floors. The correspondence of pipes and floors
can be encoded by a matrixAwhere aij is equal to the index k ∈ {1, ..., npipes} of the pipe which
connects floor i with floor j. Pipes can only be placed from a lower floor to one above, i.e.
aij = 0 ∀j ≤ i. Hence, the number of pipes in the model is given by npipes = 1

2
nfloors(nfloors−1).

Only one pipe can be chosen to reach one floor:

nfloors∑
i=1

kpipe(aij) ≤ 1, ∀j ∈ {2, ..., nfloors} . (5)
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In addition, a bigM or product constraint for the following complementarity expression (c.f.
Section 3.2) is required to allow a flow rate only if the pipe is selected:

expr = Q(k, j) depending on kpipe(k) ∀ k ∈ {1, 2, ..., npipes} . (6)

The pipe diameters need to be selected as described in Section 1.1.2. Let the parameters dvalues(i)
be the possible pipe diameters and Qjd(i) the flow rates at the jump discontinuities in Figure 1.

Q(j) ≤ Qmax ∀j ∈ {1, 2, ..., npipes} , (7)
Q(j) ≥ Qjd(i) · kQ(j, i) ∀j ∈ {1, 2, ..., npipes} ,

∀i ∈ {1, 2, ..., 12}
Q(j) ≤ Qjd(i+ 1) · kQ(j, i) +Qmax · (1− kQ(j, i)) ∀j ∈ {1, 2, ..., npipes} ,

∀i ∈ {1, 2, ..., 12} ,

dpipe =
12∑
i=1

kQ(j, i) · dvalues(i) ∀j ∈ {1, 2, ..., npipes} .

To model the flow requirements, let I be the (npipes ×m) incidence matrix and D the input
(positive value) and output (negative value) flows of the floors. The continuity equation [4] on
networks can be implemented by the following constraints:

m∑
k=1

I(i, k) Q(k) = D(i) ∀i ∈ {1, ..., npipes} . (8)

The pipe friction is included based on the estimation in Section 1.1.3 and can be modelled by
a bigM or product constraint for the following complementarity expression which is active in a
pipe if the flow rate is higher than 0, i.e., if kQ(i, k) = 1:

expr = R(i)−Rmax(k) depending on kQ(i, k) ∀ i ∈ {1, 2, ..., npipes}, (9)
∀ k ∈ {2, ..., 12} .

The pressure requirement for each floor from Table 1 gives the minimal pressure head Hmin:

H(1) = H0 , (10)
H(k) ≥ Hmin ∀ k ∈ {2, ..., nfloors} .

In addition, a bigM or product constraint for the following complementarity expression is
required to model the differences of the pressure head between the floors S and Ŝ for each
selected pipe:

expr = H(Ŝ)−∆H(i, 1)−∆H(i, 2)−∆H(i, 3) + hSŜ +R(i) · hSŜ −H(S) (11)
depending on kpipe(k) ∀ k ∈ {1, 2, ..., npipes} .

The network dependencies are given by:

kpump(k, i) ≤ kpipe(k) ∀ i ∈ {1, 2, 3} , (12)
∀ k ∈ {1, 2, ..., npipes} .

To include the relationship of flow rate Q, rotational speed n̂, power P and pressure head ∆H
as given by the pump curves, the general constraints are shown here. The exact formulas for P̃
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and H̃ depend on the selected approximation method of the pump curves which are described
in Section 3.3:

P (i, j) = kpump(i, j) · P̃ (Q(i), n̂(i, j)) ∀ i ∈ {1, .., npipes} , (13)
∀ j ∈ {1, .., npumps} ,

∆H(i, j) = kpump(i, j) · H̃(Q(i), n̂(i, j)) ∀ i ∈ {1, .., npipes} , (14)
∀ j ∈ {1, .., npumps} .

In addition, the variables Q and n̂ need to be restricted to the value range which is included in
the pump curves.

3 SELECTED SOLVERS AND METHODS

This section gives a short introduction of all compared solvers, constraint methods and ap-
proximation methods including a quality analysis of the approximation methods.

3.1 Solvers

The presented comparison includes four different solvers. Two solvers, Gurobi and GLPK,
for linear problems and two for nonlinear problems, Couenne and Scip. Except of Gurobi
all solvers are open source. A short general description of the used solver can be found below.
Gurobi is a commercial solver for mixed-integer linear problems (MILP), as well as linear prob-
lems (LP). A new version of Gurobi can also include quadratic aspects but is not used in this
paper. The solver is provided by the company Gurobi [5]. GLPK (GNU Linear Programming
Kit) includes an open source solver for mixed-integer linear problems (MILP), as well as linear
problems (LP). GLPK works with the GNU MathProg modelling language, which is a sup-
ported by the Free Software Foundation [6]. Couenne (Convex Over and Under ENvelopes for
Nonlinear Estimation) is an open source solver for mixed-integer nonlinear problems (MINLP).
The solver is provided by the Computational Infrastructure For Operations Research Founda-
tion (COIN-OR) [7]. Scip (Solving Constraint Integer Programs) is a commercial open source
solver for mixed-integer nonlinear problems (MINLP) as well as for mixed-integer linear prob-
lems (MILP). Scip is directed towards meeting the needs of Mathematical Programming experts
who are interested in a high level of control and detailed information of the solution process.
The solver is provided by the Zuse Institute Berlin (ZIB) [8].

3.2 Methods to Model Complementarity Constraints

In general, complementarity constraints describe the following relation:

expr1 = 0 ∨ expr2 = 0 . (15)

We will compare two different methods to model complementarity constraints, which are
used to activate and deactivate equality constraints depending on the value of an auxiliary de-
cision variable. The linear bigM method and the nonlinear product method. As the product
complementarity constraint is nonlinear, it can not be used with the linear solvers Gurobi and
GLPK.

For both methods assume expr = 0 is a linear constraint for a number of decision variables
which only needs to be met if the auxiliary binary decision variable k ∈ {0, 1} is active, i.e.
k = 0. This requirement can be modelled with the following constraints.
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3.2.1 bigM Method

Let bigM ∈ R+ be a sufficiently big positive constant. Then the above described requirement
can be modelled with the constraint (16).

expr ≤ + k bigM , (16)
expr ≥ − k bigM .

The choice of bigM needs to guarantee −bigM ≤ expr ≤ bigM for any feasible combinations
of the decision variables in expr. Nevertheless, bigM should be estimated as small as possible,
as a big value for bigM increases the risk of numerical errors.

3.2.2 Product Method

To reduce numerical errors caused by the bigM method, one can use the standard comple-
mentarity constraint in product form (17) for nonlinear solvers instead.

(expr) (1− k) = 0 . (17)

3.3 Approximation Method

Pump curves are used to represent the key pump characteristics and show the pressure head
increase ∆H(n̂, Q) as a function over the rotational speed and flow rate as well as the required
power input P (n̂, Q). These pump curves need to be approximated for the MI(N)LPs. For this
comparison one linear and three nonlinear approximation methods are used and the quality of
all four methods is analysed by validating the affinity laws, c.f. Section 3.3.5.

3.3.1 Piecewise Linearization by Aggregated Convex Combination

An aggregated convex combination formulation based on a Freudenthal triangulation [9] is
used as piecewise linear approximation method. The surfaces which describe the pump curves
∆H(n̂, Q) and P (n̂, Q) are cut into triangles. In each triangle the curve is approximated by
a linear triangle spanned by the grid points of the pump curve. Hence, in each grid point the
approximation equals the actual pump curve. In every other point, the approximation is a linear
combination of the three surrounding grid points. In this paper a 7x7 triangulation is used which
leads to 49 grid points.

3.3.2 Cubic Approximation

For the cubic method the pump curves are approximated with the cubic functions (18) where
the coefficients a, b, c, α, β, γ and δ are determined by a regression analysis. In the regression
analysis the rotational speed is scaled to the maximal pump rotational speed nref, i.e. n̂ = n

nref
.

∆H(n̂, Q) = aQ2 + bQn̂+ cn̂2 , (18)
P (n̂, Q) = αQ3 + βQ2n̂+ γQn̂2 + δn̂3 .

The results of the regression analysis for the three different pump models pumps Hya-Solo
EV 1/0206B, Hya-Solo EV 1/0406B and Hya-Solo EV 1/0605B are shown in Table 5 for the
pressure head increase ∆H and for the power consumption P . In this table one can also find the
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Figure 3: Cubic approximation of pressure head increase in pump curve for the pump model Hya-Solo EV
1/0206B.

standard error εβ(j) for each coefficient of the approximation which is calculated with the MSE

(mean squares of errors) σ2
r =

∑m
i=1 ε

2

m−p−1
leading to the standard error εβ(j) = σr

√
(XTX)−1

jj , c.f.
[10].

Figure 3 shows the cubic approximation of the pump curve for the pressure increase ∆H(n̂, Q).

3.3.3 Bending-Function (Coons) Approximation

The Coons approximation method [11] is not physically motivated but based on graphical
data processing. It interpolates the pump curve with an auxiliary variable s with 0 ≤ s ≤ 1.
The pump curve is approximated as a linear function of s and a quadratic function of the second
variable Q:

∆H(s,Q) = (a1Q
2 + b1Q+ c1)s+ (a2Q

2 + b2Q+ c2)(1− s) , (19)
P (s,Q) = (α1Q

2 + β1Q+ γ1)s+ (α2Q
2 + β2Q+ γ2)(1− s) .

For all pump models the results of the regression analysis can be found in the appendix in Table
7 and 8.

3.3.4 Quadratic Approximation

A further nonlinear approximation method is a complete quadratic approximation [12] for
0.6 ≤ n̂ ≤ 1. This approximation is not physically motivated and does not adhere to the affinity
laws. However, due to its lower polynomial degree, it might speed up the computation without
too much of a deviation from the cubic approximation.

∆H(n̂, Q) = aQ2 + bQn̂+ cn̂2 , (20)
P (n̂, Q) = αQ2 + βn̂2 + γQn̂+ δQ+ εn̂+ ζ .

The approximation for the pressure head increase is the same as for the cubic approximation
3.3.2. Therefore, the coefficients a, b and c can be taken from the cubic regression analysis in
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Coefficient Value Error
a206 −3.415 0.25
b206 2.760 0.87
c206 45.193 0.63

a406 −0.921 0.085
b406 1.177 0.55
c406 52.296 0.75

a605 −0.345 0.04
b605 0.373 0.35
c605 47.973 0.65

Coefficient Value Error
α206 −11.142 2.52
β206 41.522 13.29
γ206 54.318 19.61
δ206 191.211 7.75
α406 −1.774 0.79
β406 5.902 7.59
γ406 135.815 19.57
δ406 245.276 12.86
α605 −0.664 0.12
β605 1.154 1.59
γ605 125.728 5.84
δ605 276.781 5.81

Table 5: Coefficients for the cubic approximation of the pressure head ∆H (right) and the power consumption P
(left) for each of the three pump models 10206/B, 10406/B, 10605/B. The coefficients of the other approximation
methods can be found in the appendix.

Table 5. The coefficients α, β, γ, δ, ε and ζ need to be determined in an additional regression
analysis. The results for the power consumption P for the three different pump models can be
found in the appendix in Table 9.

3.3.5 Quality Analysis of Approximation Methods

For comparison, four approximation methods are applied. We want to analyse how well they
match reality. The functional correlation of pump rotational speed n̂, flow rate Q and pressure
head ∆H are described by affinity laws [13]. They imply the following proportionality:

Q ∼ n̂, ∆H ∼ n̂2, and P ∼ n̂3 . (21)

These proportionality relations can be transformed to the following quality measure (22) for
the approximation methods. The error value E indicates the adherence to the affinity law and
therefore the fit quality of the approximation method:

EQ =
Q1

Q2

− n̂1

n̂2

≈ 0, EH =
∆H1

∆H2

−
( n̂1

n̂2

)2
≈ 0 and EP =

P1

P2

−
( n̂1

n̂2

)3
≈ 0 . (22)

To measure the quality of the approximation method, a set of 1000 grid points were inserted in
the approximation of the pump curve and the results used to calculate the errors in (22). The
results are listed in Table 6 in the appendix. The error analysis shows that all used approximation
methods have a similar and low error level. The only exception is the bending-function (Coons)
approximation method which causes a higher average error for the pressure head EH for all
tested pump models.

4 OPTIMISATION RESULTS FOR A SELECTED EXAMPLE

In most cases, the topology results of different solver and method combinations for one load
setting are the same or vary only slightly, c.f. Section 5.4.

We chose an example with a residential building with three floors. In the optimised topology
in Figure 4 one pump of type Hya-Solo EV 1/0206B is used between the second and third floor.
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Pipe 1

Diameter 

in mm 32

Flow rate 

in m�/h 3

Pipe 2

Diameter in mm 19.6

Flow rate in m�/h 3

Pump 1

Model EV 1/0206B

Power in 

Watt 89.085

Pressure 

increase 

in m 11.069

Total Cost: 3320.28€

Floor 1

Pressure 

head in m 18

Floor 2

Pressure 

head in m 13.701

Floor 3

Pressure 

head in m 20.106

Figure 4: Example of optimal topology with 16% savings
compared to standard approach.

Total Cost:

3969.99€

Floor 1

Pressure 

head in m 18

Pipe 2

Diameter 

in mm 19.6

Flow rate 

in m�/h 3

Pump 1

Model EV 1/0406B

Power in 

Watt 179.59

Pressure 

increase 

in m 12.351

Floor 2

Pressure 

head in m 26.053

Floor 3

Pressure 

head in m 21.387

Pipe 1

Diameter 

in mm 32

Flow rate 

in m�/h 3

Figure 5: Example topology with pumps only on the first
floor.

Compared to the basic approach to place all pumps in the first floor, the optimal solution for this
example reduces the sum of investment costs of the components and energy costs for operating
the pumps by 16%. Following the basic approach it is necessary to use the more expensive
pump Hya-Solo EV 1/0406B to gain the relevant flow rate and pressure head from the pump in
the first floor to the third floor, see Figure 5.

5 EMPIRICAL RESULTS

All methods show the expected result of the commercial solver Gurobi excelling clearly in
run-time performance, especially for a growing model size.

When comparing the geometric mean of run-times over all problems for the best method per
solver, it is necessary to focus on lower number of floors, e.g. 7 or 8 floors. The reason is that
the problems with a high number of floors could not be solved to optimality with all solvers and
all methods within the time limit of six hours (details see Section 5.2).

For 7 floors the best method combination for Counne and Scip is far closer to Gurobi than for
the geometric mean over all methods. This shows the relevance of the right method choice: Scip
takes about 9 times the geometric mean time of Gurobi over all problems. When comparing
the best suitable method combination for Scip (bigM constraints and quadratic pump curve
approximation), it takes only 4 times the geometric mean time of Gurobi. For Counne the
difference of the geometric mean run times to Gurobi drops from factor 135 to 28 for the best
suitable combination (product complementarity constraints with quadratic approximation).

5.1 Number of Constraints and Variables

For all pump characteristic approximations and complementarity constraint methods, the
number of constraints as well as the number of variables grow quadratically in the number of
floors. The linear approximation has by far the highest numbers with around 4,500 constraints
and 8,300 variables for 7 floors compared to the nonlinear approximation methods which all
have about 1,500 constraints and 1,000 variables. For 10 floors the linear approach leads to
9,700 constraints and 18,000 variables, whereas the nonlinear methods have 2,500 constraints
and 1,600 variables.
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Figure 6: All solvers with geometric mean of run-times over all approximation and constraint methods as well as
all inlet pressures for each number of floors.
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Figure 7: All solvers with geometric mean over all problems solved with the best combination of methods for teach
solver over all inlet pressures for each number of floors.

5.2 Method Analysis for Individual Solvers

For the nonlinear solvers, we used a total of six different combinations of pump characteristic
approximations and complementarity constraint methods. In this section, we show how they
influence the run-time of the individual solvers.

8520



Lea Rausch, Philipp Leise, Thorsten Ederer, Lena C. Altherr and Peter F. Pelz

5.2.1 Couenne

The highest influence on the run-time of the Couennne solver is caused by the method
to model the complementarity constraints, as each approximation method combined with the
bigM method has a higher run-time than any approximation method combined with the product
method for complementarity constraints. There is also a strong increase of the differences in
run-time between the complementary methods starting with seven floors.

Comparing the approximation methods one can see that for bigM complementarity con-
straints the cubic approximation methods outperforms the quadratic approximation, whereas
for complementarity constraints it is the other way around and the quadratic approximation out-
performs the cubic approximation, especially for a high number of floors. Even though Coons
is a simplification of the cubic equations, it has the highest run time for both complementary
methods for a high number of floors; for the product method starting with 7 floors, for bigM
starting with 5 floors.

5.2.2 Scip

Contrary to Couenne, for the Scip solver the approximation method for the pump curves has
the highest influence on run time. This is shown as every method to model the complementar-
ity constraints combined with the Coons approximation is worse than every complementarity
constraints method combined with the other two approximation methods.

Comparing the two other approximation methods, one can see that for bigM complemen-
tarity constraints the quadratic approximation method outperforms the cubic approximation.
Whereas, for product complementarity constraints it is the other way around, especially for a
high number of floors. BigM is the better complementarity constraint method for Scip since for
each approximation method the bigM method has a shorter geometric mean run-time than the
same approximation method combined with product complementarity constraints.

5.3 Comparison of Scip and Couenne

In Figure 5 one can see that Scip with its best combination (bigM complementarity constraint
and quadratic approximation) outperforms compared to Couenne’s best combination (product
complementarity constraint and quadratic approximation), as well as in the overall comparison
with the geometric mean run-time of all combinations.

As already discussed in the individual solver analysis, the product complementarity con-
straint methods works better for Couenne as for Scip. In Figure 5.4 one can see that for 10
floors this difference is so severe that the in average slower solver Couenne outperforms Scip
when using the product complementarity constraint method.

5.4 Objective Values and Boundaries of the Presented Methods

In most cases, all solvers, approximation methods and constraint types result in similar topol-
ogy decisions for the same load setting with only a small deviation in the objective function
value due to numerical differences. Only for 4% of all solved problems the objective value
deviates more than 5% (but no more than 26%) from the average objective value of all problems
belonging to this load setting. In these cases, a small deviation of the topology is possible.

An exception with a different topology decision and objective value deviation of 88% occurs
when using the solver Scip with cubic approximation method for one load setting with a high
inlet pressure (H0 = 17 m) with a low number of floors (nfloors = 3). For this load setting,
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Figure 8: Couenne solver with geometric mean of run-times over all inlet pressures for each number of floors for
each combination of approximation and complementary methods.
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Figure 9: Solver Scip with geometric mean of run-times over all inlet pressures for each number of floors for each
combination of approximation and complementary methods.

the topological solution using Scip with cubic approximation method with bigM as well as with
product complementarity constraint method differs strongly from all other solutions of the same
load setting. With the cubic approximation method no pump is selected in the whole system
whereas one pump is selected in all other solutions of this load setting. We assume it is caused
by the high numerical complexity of the cubic approximation method, as the inlet pressure is
relatively high for the number of floors. This hypothesis is supported by the solutions for a
different load setting with an even higher inlet pressure of (H0 = 23 m) with the same number
of floors (nfloors = 3). For this second load setting, all solutions (with all combinations of
solvers, constraint and approximation method) contain the topology decision to use no pump,
as the inlet pressure is sufficient to supply all floors.
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Figure 10: Geometric mean of run time over all inlet pressures and all approximation methods for each number of
floors for each complementary method for Couenne and Scip.

6 CONCLUSIONS

• A model to design spacially distributed fluid systems has been developed and verified.

• Savings of energy and investment costs by applying the developed model could be de-
tected for an example load setting.

• Solver runtime was compared depending on various combinations of solvers, comple-
mentarity constraint methods and approximation methods for pump characteristics.

• Optimal solutions from different solvers and methods vary only slightly, but the run-times
deviate severely.

• Approximation methods with simpler equations can lead to higher run-times.
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8 APPENDIX

Pump Model Approximation Error Type Average Standard Deviation
EV 1/0206B cubic EQ −7.11× 10−19 3.74× 10−33

EH −4.27× 10−18 1.36× 10−16

EP −3.69× 10−19 1.52× 10−32

coons EQ 5.55× 10−19 3.79× 10−33

EH −3.50× 10−2 6.94× 10−3

EP −1.83× 10−2 3.76× 10−3

quadratic EQ −9.44× 10−19 3.61× 10−33

EH −4.35× 10−18 1.40× 10−16

EP 6.26× 10−4 4.35× 10−5

linear EQ 4.00× 10−19 3.70× 10−33

EH −1.16× 10−3 3.12× 10−3

EP −3.54× 10−4 1.29× 10−5

EV 1/0406B cubic EQ −3.33× 10−20 3.70× 10−33

EH −8.30× 10−18 1.40× 10−16

EP 1.72× 10−19 1.56× 10−32

coons EQ −8.55× 10−19 3.52× 10−33

EH 2.60× 10−1 1.95× 10−1

EP 2.24× 10−1 1.22× 10−1

quadratic EQ 6.66× 10−19 3.78× 10−33

EH −9.92× 10−18 1.38× 10−16

EP −2.22× 10−4 2.66× 10−6

linear EQ −4.33× 10−19 3.70× 10−33

EH −1.45× 10−3 3.96× 10−3

EP −1.42× 10−3 2.78× 10−5

EV 1/0605B cubic EQ 5.55× 10−19 3.91× 10−33

EH −5.42× 10−18 1.34× 10−16

EP 2.03× 10−18 1.66× 10−32

coons EQ −5.33× 10−19 3.49× 10−33

EH 2.61× 10−1 1.78× 10−1

EP 2.38× 10−1 1.40× 10−1

quadratic EQ −3.00× 10−19 3.86× 10−33

EH −5.91× 10−18 1.34× 10−16

EP −1.75× 10−4 6.67× 10−5

linear EQ 6.88× 10−19 4.05× 10−33

EH 9.33× 10−4 2.57× 10−3

EP −1.51× 10−3 2.42× 10−5

Table 6: Error in affinity laws for the pump characteristic approximation methods.
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Coefficient Value Error
a206(1) −3.415 0.25
a206(2) −2.761 0.23
b206(1) 2.760 0.87
b206(2) 0.397 0.42
c206(1) 45.193 0.63
c206(2) 15.940 0.15
a406(1) −0.921 0.08
a406(2) −0.902 0.08
b406(1) 1.177 0.55
b406(2) 0.601 0.32
c406(1) 52.296 0.75
c406(2) 17.991 0.25
a605(1) −0.345 0.04
a605(2) −0.329 0.03
b605(1) 0.373 0.35
b605(2) 0.129 0.14
c605(1) 47.973 0.65
c605(2) 16.257 0.15

Table 7: Coefficients for the bending-function (Coons) approximation of the pressure head characteristic for each
of the three pump models 10206/B, 10406/B, 10605/B.

Coefficient Value Error
α206(1) −16.441 3.97
α206(2) −14.684 3.23
β206(1) 134.804 14.42
β206(2) 51.325 6.34
γ206(1) 165.890 10.51
γ206(2) 39.560 2.38
α406(1) −10.958 1.68
α406(2) −3.328 2.42
β406(1) 175.426 11.20
β406(2) 44.981 10.05
γ406(1) 231.090 14.55
γ406(2) 72.840 9.05
α606(1) −7.667 0.78
α605(2) −3.125 1.34
β605(1) 154.842 7.27
β605(2) 42.054 6.96
γ605(1) 260.489 13.48
γ605(2) 72.679 7.40

Table 8: Coefficients for the bending-function (Coons) approximation of the power characteristic for each of the
three pump models 10206/B, 10406/B, 10605/B.
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Coefficient Value Error
α206 −10.509 0.09
β206 554.656 0.34
γ206 177.974 0.62
δ206 −57.797 0.46
ε206 −552.849 5.40
ζ206 169.975 2.13
α406 −9.462 0.03
β406 888.804 4.60
γ406 241.806 0.45
δ406 −72.719 0.33
ε406 −963.466 7.29
ζ406 304.907 2.89
α605 −6.729 0.02
β605 1034.160 5.54
γ605 208.700 0.38
δ605 −60.132 0.28
ε605 −1125.230 8.73
ζ605 354.673 3.43

Table 9: Coefficients for quadratic approximation of power characteristic for each of the three pump models
10206/B, 10406/B, 10605/B. The coefficients for the pressure head characteristic are given by the cubic coefficients
in Table 5 (left).
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Abstract.  The development process of weapon system usually composes of multiple test stag-

es.  Especially for expensive weapon system which test is destructive, engineers often apply 

In-Time corrective strategy to analyze and modify failures exposed during development.  That 

is to say once failure is observed at each stage, test is then stopped and a design modification 

is introduced to remove the cause of the observed failure, and thus release improved system to 

new test stage until the system reliability level satisfy the predefined development requirement.  

In this paper, we present a Bayesian statistical decision method to judge whether system reli-

ability level meet development requirement or not, based on multiple stages test data during 

development of exponential life system and taking In-Time corrective strategy into account.  

Firstly, the reliability growth model, derived from non-homogeneous Poisson process, under 

the condition of In-Time corrective strategy is presented.  Then prior distribution of system 

reliability index is introduced by applying reliability growth model to incorporate various test 

data from development process, and the Bayesian hypothesis testing method is given.  Finally, 

the numerical example validates effectivity of the method compared with traditional methods.  
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INTRODUCTION 

For most complex repairable system, the first prototype usually contains design and/or en-

gineering flaws, thus the system has to experience an iterative process of TAAF to eliminate 

the observed failure modes and then achieve the reliability growth.  Reliability growth model 

is an effective means to analyze the growth trend of product reliability, and many scholars has 

made lots of research.  Fries [1], [2] presented a discrete reliability growth model, derived 

from the learning-curve property, to describe reliability growth.  Xing [3] presented a discrete 

reliability growth model base on In-Time correction strategy.  Hall & Mosleh [4] introduced a 

framework for the evaluation of reliability growth for one-shot systems.  Pulcini [5], [6], [7] 

proposed an exponential reliability growth model where several identical copies of equipment 

are put on test, once a failure is observed, design modification for all copies of equipment is 

introduced.  In addition, Bayesian reliability growth models are very popular in describing the 

reliability growth trend of product [8], [9], [10], [11].  However, those reliability growth 

models are usually used to evaluate or predict product reliability index, little effort focused on 

hypothesis testing for whether the product reliability index has reached the predefined re-

quirement during development.  

As for weapon equipment, development process generally consist of multiple test stages.  

Especially for expensive system which test is destructive, test is stopped and design modifica-

tions are made immediately once failure is observed at each stage, such a corrective strategy 

for failure mode is often referred to as In-Time corrective strategy.  While under the condition 

of In-Time corrective strategy, how to describe the reliability growth trend of system and how 

to judge whether the system has achieved the predefined reliability goal are prominent prob-

lems that reliability researchers concern about.  So we make following four assumptions: 

(i) System development process composes of multiple test stages, test data from various 

stages are independent.  

(ii) In-Time corrective strategy is adopted to fix observed system failure at each test stage.  

(iii) Test data at the ith ( )1, 2, ,i m= ⋯  stage is ( )1, iτ .  Where 1 is the number of failure at 

the ith stage. iτ  denotes the time on test, and it is r. v.  .  

(iv) System reliability level at the ith stage is changeless, and system life t  conform to ex-

ponential distribution with parameter iλ , i. e.   

( ) , , 0, 1, 2,it

i i if t e t i
λλ λ λ−= > = ⋯                                    (1) 

Where iλ  is the system failure rate at the ith stage.  

The paper is organized as follows.  A reliability growth model under the condition of In-

Time corrective strategy is presented In Section 1.  The Bayesian hypothesis testing method is 

introduced in Section 2.  A numerical example is given in Section3.  Section 4 summarizes 

the paper.  

1111 RELIABILITY GROWTH MODEL UNDER THE CONDITION OF IN-TIME 

CORRECTIVE STRATEGY 

Crow proposed AMSAA model which thought the cumulative number of observed failures 

( )K t  of a repairable system in the development duration ( ]0, t  follows the non-homogeneous 

Poisson process (NHPP) with the expectation of ( )K t  as ( ) dE K t ct=    and the probability 

is  
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                  ( ){ } ( )
, 0,1,2,

!

d

n
d

ct
ct

P K t n e n
n

−= = = ⋯                                     (2) 

Where parameters ,c d  denote shape parameter and scale parameter respectively.  When 

0 1d< < , system reliability is increased. 1 d−  denotes growth rate.  

In practice, people are more concerned with analysis on time on test ( )T n  when n  failures 

happen, especially for analysis on the expectation of time on test ( )E T n   .  It is obvious that  

n  failures happen before moment t  equals if and only if the number of failures until t  is 

more than n，namely， 

                  ( ) ( )K t n T n t≥ ⇔ ≤                                                     (3) 

So the distribution function  ( ) ( )T n
F t  of ( )T n  is 

( ) ( ) ( ){ } ( ){ } ( )
!

d

j
d

ct

T n
j n

ct
F t P T n t P K t n e

j

∞
−

=

= ≤ = ≥ =∑                         (4) 

Thus the probability density function ( ) ( )T n
f t  of ( )T n  is obtained by computing the deriv-

ative of t  from (4) as 

                        ( ) ( )
( )
( )

1

1

1 !

d

n
d

ct d

T n

ct
f t e cdt

n

−

− −=
−

                                                 (5) 

So the expectation of time on test ( )E T n    when n  failures happen is 

             ( ) ( ) ( )
( ) ( )

0 01 !

dn
d ct

T n

d
E T n tf t dt ct e dt

n

∞ ∞ −= =   −∫ ∫                          (6) 

Let dy ct= , we have 

1

dy
t

c

 =  
 

, hence 
1

1

1

1
d

d

dt y dy

c b

−
= , (6) can be transformed into  

                            ( )
( )

1

1

d

n
d

E T n

c n

 Γ + 
 =  
Γ

                                                   (7) 

Where ( ) ( )1

0
1 !n xn x e dx n

∞ − −Γ = = −∫ 。 

That is to say the expectation of time on test when n  failures happen in the NHPP is 

                          ( )
( )

1

1

d

n
d

E T n

c n

 Γ + 
 =  
Γ

                                                       (8) 

As above mentioned that development process of system consists of several stages with re-

spective tests, and modification of design is introduced once failure is observed at each stage, 

so the reliability growth model should reflect the growth character of step-wise jump.   

From (8), the relationship between the cumulative time on test  ( )iT n  and the cumulative 

number of failures in  until the ith stage can be expressed as 
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                     ( )
( )

1

1
i

i

d
i

n
d

E T n

c n

 Γ + 
 =  
Γ

                                                     (9)  

    According to the assumption (iii), the cumulative number of observed failure in  till the 

ith stage is 

                       in i=                                                                    (10) 

From (9) and (10), the expectation of time on test till the ith stage is 

                ( )
( )

1

1

d

i
d

E T i

c i

 Γ + 
 =  
Γ

                                                     (11) 

Let 
1

da c= , 
1

b
d

= , then (11) can be rewritten as 

                  ( ) ( )
( )

i b
E T i

a i

Γ +
=   Γ

                                                  (12) 

Similarly, we have 

                   ( ) ( )
( )

1
1

1

i b
E T i

a i

Γ − +
− =   Γ −

                                              (13) 

By referring to (12) and (13), the expectation of time on test at the ith stage can be ob-

tained by 

        ( ) ( ) ( )
( )

( )
( )

1
1

1
1

i

i b i b
E T i E T i a

i i
τ −  Γ + Γ − +

= − − = −         Γ Γ − 
                    (14) 

From (14), the reliability growth model under the condition of In-Time corrective strategy 

is formulated as 

     
( )
( )

( )
( )

1

1

i

a

i b i b

i i

λ =
Γ + Γ − +

−
Γ Γ −

                                                 (15) 

Where iλ  denotes system failure rate at the ith stage. 1b >  is required to guarantee the re-

liability growth, and 0a > . 

The point estimation â  and b̂  are obtained by maximum likelihood (ML) procedures, the 

ML function is 

      ( )
1

, i i

m

i

i

L a b e
λτλ −

=

=∏                                                    (16) 

Where m  denotes the number of test stages, iτ  denotes the cumulative time on test at the 

ith stage, and ( )1,2, ,i i mλ = ⋯  is given in model (15).  

2222 BAYESIAN HYPOTHESIS TESTING METHOD 

The objective of this paper is to construct a Bayesian hypothesis testing method to judge 

whether system reliability index has achieved the predefined requirement by applying reliabil-

ity growth model introduced in Section 1 to incorporate test data from diverse development 

stages.  The prior distribution is the premise to perform Bayesian statistical analysis.  
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2.1 The prior distribution of  iλ  

Let ( ) ( ) ( )1 2 11, , 1, , , 1, iτ τ τ −⋯  denote test data from 1i −  test stages respectively, according 

to reliability growth model (15), we can obtained point estimation ˆˆ,a b  by calculating (16).  

Then the prediction estimation of failure rate iλ  is  

( )
( )

( )
( )

,0

ˆˆ
ˆ ˆ1

1

i

a

i b i b

i i

λ =
Γ + Γ − +

−
Γ Γ −

                                                 (17) 

Let ,0
ˆ
iλ  be the prior mean of the failure rate iλ  at ith stage, i. e.  

      ( ) ,0
ˆ

i iE λ λ=                                                           (18) 

According to the maximum entropy method, the prior distribution ( )iπ λ  can de expressed 

as 

( )
0

i

i

i

i

e

e d

µλ

µλ
π λ

λ
+∞=

∫
                                                     (19) 

Where µ  is a parameter to be determined.  

By referring to (18) and (19), the value of µ  can be acquired by solving the following 

equation 

   ( ) 0
,0

0

ˆ
i

i

i i

i i

i

e d
E

e d

µλ

µλ

λ λ
λ λ

λ

+∞

+∞= =∫
∫

                                               (20) 

After the unique parameter µ  is determined, we can obtain the prior distribution ( )iπ λ  of 

iλ .  Hence the prior second moment of iλ  can be obtained by  

  ( )
2

2 0

0

i

i

i i

i

i

e d
E

e d

µλ

µλ

λ λ
λ

λ

+∞

+∞= ∫
∫

                                                  (21) 

As conjugate prior distribution has the advantages of tractability in mathematical computa-

tion and practical meanings for its parameters, we use Gamma distribution ( ),0 ,0,i iGa a b  as the 

approximate distribution to fit the prior distribution ( )iπ λ .  Thus both ( ),0 ,0,i iGa a b  and 

( )iπ λ  must have the same prior first and second moments.  Hence 

( )

( ) ( )

,0

,0

,0 ,0 2

2

,0

1

i

i

i

i i

i

i

a
E

b

a a
E

b

λ

λ


=




+ =


                                            (22) 

By solving above equations, we get  
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( )
( ) ( )

( )
( ) ( )

2

,0 22

,0 22

i

i

i i

i

i

i i

E
a

E E

E
b

E E

λ

λ λ

λ

λ λ

    =
 −    



=
−    

                                                (23) 

Thus, the prior distribution ( ),0 ,0,i iGa a b  of iλ  at ith stage is obtained by applying the reli-

ability growth model (15) to incorporate test data from 1i −  development stages, where 

,0 ,0,i ia b  are given by (23).  

2.2 Bayesian hypothesis testing method  

Let θ  denotes system MTBF. Uθ  is the upper limit (if θ  surrounds upper limit closely, 

products will be accepted by high probability), Lθ  is the lower limit (if θ  surrounds lower 

limit closely, products will be rejected by high probability), Uθ  and Lθ  are given in develop-

ment contract, and U Lθ θ> . 
0πα  denotes producer risk, 

1πβ  denotes consumer risk.  The hy-

pothesis testing problem need to be researched is to judge that iθ  satisfies Uθ  or Lθ  when de-

velopment process has come to the ith stage and takes In-Time corrective strategy into ac-

count, by utilizing test data from i  stages under the condition of given 
0 1
, , ,U Lπ πα β θ θ .  So the 

hypotheses can be formulated as 

0 1: , :i U i LH Hθ θ θ θ= =                                                 (24) 

Where iθ  denotes system MTBF at the ith stage.  

To convenient calculation, the hypothesis testing about MTBF can be transformed into hy-

pothesis testing about failure rate.  So (24) is equivalent to 

0 1: , :i L i UH Hλ λ λ λ= =                                                 (25) 

Where iλ  denotes system failure rate at the ith stage, 1L Uλ θ= , 1U Lλ θ= , L Uλ λ< .  

According to the Bayesian principle, the prior probability of null hypothesis 0H  from (25) 

is 

  ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

,0 ,0

0 0 ,0 ,0

,0 ,0 ,0 ,0

,
,

, ,

L i i L

L i i

L i i L U i i U

P P a b
P H P a b

P P a b P P a b

λ λ
π λ

λ λ λ λ
= =

+
≜      (26) 

Where ( ) ( ),L UP Pλ λ  donote prior probability of ,L Uλ λ  respectively.  

   Here let ( ) ( ) 0.5L UP Pλ λ= = , thus the above prior probability of 0H  is  
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( ){ }
( ){ } ( ){ }

( )

( ) ( )

( )

,0 ,0

,0 ,0,0 ,0

,0
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,0 ,0

0

,0 ,0 ,0 ,0
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,0

,0 ,0

,0 ,0

,

, ,

1
e

!

1 1
e e

! !

1

1 e

i L i

i iL i U i

i

L U i

i i L
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a b
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a ab b

L i U i

i i
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bU
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P a b
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λ

λ λ

λ λ

λ
π

λ λ

λ

λ λ

λ
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−

− −

−

=
+

=
+

=
 

+  
 

                            (27) 

So the prior probability of alternative hypothesis 1H  is 

   ( )1 1 01P H π π= −≜                                                      (28) 

From the assumption (iii), the likelihood function of test data from i  stages is 

    ( ){ }1, i i

i i iL e
λττ λ λ −=                                                  (29) 

So the posterior probability ratio of hypothesis testing (25) is 

( ){ }
( ){ }

( ) ( ){ }
( ) ( ){ }

( )

1 1

00

1 1

0 0

1 , 1,

1,1 ,

exp
U i

L i

i i i U

i

i Li i

U U
i L U

L L

P H P H L
O

P H LP H

e

e

λ τ

λ τ

τ τ λ

τ λτ

λ λπ π
τ λ λ

π λ π λ

−

−

= =

= = −  

                                 (30) 

To perform the hypothesis testing, a decision threshold iA  is introduced here, and the deci-

sion criteria are as follows: 

(i) If i iO A≤  accept null hypothesis 0H ; 

(ii) If i iO A> , accept alternative hypothesis 1H .  

The successive question we have to solve is to calculate iA .  It is appropriate to consider 

computation of the two types of risks for statistical testing according to the above decision 

criteria before determining iA .  The type I risk, namely producer risk 
0πα  is 

( ) ( )
0 0i i i LP O A P Hπα λ λ= > =                                          (31) 

As for ( )i i i LP O A λ λ> = , we have 

 

( )

( )

( )

( )

1

0

0

1

0

1

exp

exp

ln ln ln

i i i L

U
i L U i i L

L

L
i L U i i L

U

L
i L U i i L

U

P O A

P A

P A

P A

λ λ

λπ
τ λ λ λ λ

π λ

π λ
τ λ λ λ λ

π λ

π λ
τ λ λ λ λ

π λ

> =

 
= − > =   

 

 
= − > =   

 

 
= − > + + = 

 

                         (32) 

Because L Uλ λ< , so (32) can be transformed into  
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( )

0

1

1
ln ln ln

i i i L

L
i i i L

L U U

P O A

P A

λ λ

π λ
τ λ λ

λ λ π λ

> =

   
= < + + =  −   

                            (33) 

According to the assumption (iv), we know time on test iτ  conforms to Gamma distribu-

tion ( )1 ,i iGa λ , so we have  

( )
0

1

1
ln ln ln

0

L
i

LL U U

A
x

i i i L LP O A e dx
π λ

λλ λ π λλ λ λ
 

+ +  −−  > = = ∫                            (34) 

From (31) and (34), the producer risk can be obtained as 

0

1

0

1
ln ln ln

0
0

L
i

LL U U

A
x

L e dx
π λ

λλ λ π λ
πα π λ

 
+ +  −−  = ∫                                         (35) 

Similarly, type II risk, namely consumer risk is 

  

( ) ( )

( )
1

0

1

1

1

1
ln ln ln

1 1
0

1

L
i

UL U U

i i i U

i i i U

A
x

U

P O A P H

P O A

e dx

π

π λ
λλ λ π λ

β λ λ

π λ λ

π π λ
 

+ +  −−  

= ≤ =

 = − > = 

= − ∫

                               (36) 

From (35) and (36), we can find that 
0 1
,π πα β  are both functions on iA , and 

0πα  is the non-

increasing function on iA , while 
1πβ  is the non-decreasing function on iA . Therefore, given 

0πα , there exists ,0i
A  that satisfies ( )

0 0,0iAπ πα α= . At the same time, for any iA  within the 

interval ),0 ,iA ∞ , ( )
0 0iAπ πα α≤  holds, where ( )

0 iAπα  denotes the probability of type I risk 

when the decision threshold is iA .  Similarly, there is iA  which satisfies ( )
1 1,1iAπ πβ β=  when  

1πβ  is given, and for any iA  within the interval ( ,10, iA  , ( )
1 1iAπ πβ β≤  holds.  Where ( )

1 iAπβ  

denotes the probability of type II risk when the decision threshold is iA . Given the probabili-

ties of the two types of risks，the decision threshold iA  will be determined by the following 

procedure: 

(i) if ,0 ,1i iA A≤ , any ,0 ,1,i i iA A A ∈    can be chosen as the decision threshold. The real 

probabilities of the two types of risks are ( ) ( )
0 1

,i iA Aπ πα β′ ′  respectively.  

(ii) if ,0 ,1i iA A> , iA  can be determined by consulting the producer and consumer. When 

we choose iA  that meets the requirement of (35), it should also minimize the value of (36), so 

the decision threshold can be chosen as ,0i iA A= . In the same manner, when we choose iA  

which meets the requirement of (36), it should also minimize the value of (35), so the decision 

threshold can be chosen as ,1i iA A= .  

To sum up, the Bayesian hypothesis testing procedure for system failure rate iλ  at the ith 

stage when system development process takes In-Time corrective strategy into account is 

shown as the following steps: 

Step1  Obtain prior distribution of iλ  by applying reliability growth model (15) to incorpo-

rate test data from previous 1i −  test stages.  

Step2  Calculate the posterior probability ratio iO  and decision threshold iA .  
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Step3  Make a decision according to the criteria: 

(i) If i iO A≤ , terminate the development process and accept null hypothesis 0H .  

(ii) If i iO A> , accept alternative hypothesis 1H , improve system design and release im-

proved system into new test stage until system failure rate has reached upper limit.  

3333 NUMERICAL EXAMPLE  

A system experiences a series of test stages during development and its lifetime follows 

exponential distribution. The upper limit of system MTBF is 40 hours, the lower limit of sys-

tem MTBF is 32 hours, and the producer risk and consumer risk are both set to be 0. 2. The 

problem is to judge which requirement the system MTBF has reached.  

The test data is in Table 1 which lists the simulated test data derived by sampling from the 

NHPP when the truth values of the MTBF are known.  

Table 1 test data 

stage 1 2 3 4 5 

Truth value of 

MTBF 
8. 9551 16. 2524 22. 8743 29. 0875 35. 0133 

Time on test(h) 8. 3278 15. 7918 21. 4445 34. 8337 35. 9414 

 

To simplify the computation, the question of above hypothesis testing for the MTBF can 

be transformed into the testing for the failure rate, namely, we will accept system by high 

probability when failure rate approaches to 0.025Lλ = ; otherwise we will reject system by 

high probability when failure rate approaches to 0.0313Uλ = . According to test data from 

previous 4 stages, by referring to (16), we can obtain the ML estimate of reliability growth 

model parameters ˆˆ 0.1892, 1.8125a b= = , and the prediction estimate of the failure rate 5λ  is 

5,0
ˆ 0.0287λ =  through (17).  So the prior probability of null hypothesis is 0 0.4456π =  by re-

ferring to (18)-(27), and the posterior probability ratio is 5 1.2420O =  by referring to (30). The 

corresponding decision threshold are 5,0 5,11.1461, 1.0765A A= =  respectively when two types 

of risks are both 0. 2.  As 5,0 5,1A A> , we choose the decision threshold as 5 1.1461A =  after 

consulting between consumer and producer, and the truth probabilities of the two types of 

risks are 
0 1

0.2, 0.2814π πα β′ ′= =  ,respectively. Since 5 5O A> , we reject system and demand 

design modification before starting the next test stage. After improving the system design and 

performing the sixth stage test, the observed test data is shown in Table2. Now we continue to 

determine which requirment the improved system MTBF has achieved.  

Table2 test data at the 6th stage 

stage 
Truth value of 

MTBF 
Time on test(h) 

The number of fail-

ure 

6 40. 7196 42. 0064 1 

 

Same with above calculation procedure, the ML estimate of reliability growth model pa-

rameters are ˆˆ 0.2311, 1.8868a b= =  according to test data from previous 5 stages, and the pre-

diction estimate of the failure rate 6λ  is 6,0
ˆ 0.0252λ = .  So the prior probability of null hy-

pothesis is 0 0.5063π = , and the posterior probability ratio is 6 0.9370O = . The corresponding 

decision threshold are 6,0 6,11.1549, 0.9468A A= =  respectively when the probabilities of the 
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two types of risks are both 0. 2. As 6,0 6,1A A> , we choose the decision threshold as 

6 1.1549A = , and the truth probabilities of the two types of risks are 
0 1

0.2, 0.2814π πα β′ ′= = , 

respectively. Since 6 6O A< , the system can be accepted and the development process can be 

terminated.  Actually, the truth value of MTBF (40. 7196) at the 6th test stage indeed more 

approached to upper limit, so the decision results concluded from our methods coincide with 

the real condition.  

4444 CONCLUSION  

• A reliability growth model to describe reliability growth trend of system under the condi-

tion of In-Time corrective strategy is proposed, which well describes the features of 

stepwise trend of system reliability growth. 

• A reliability test demonstration method is presented, which especially adapts to expen-

sive system with destructive test when development process takes In-Time corrective 

strategy to modify failure.  The method makes use of test data from development stages, 

offsets the absence of information, and effectively enhances the credibility of statistical 

decision.  
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Abstract. Computer aided simulation is an important part of development of modern tech-
nical products. Many modern technical systems operate at high speeds and include light-
weight components. These conditions usually lead to appearance of deformation effects that 
must be taken into account in processes of system modeling and simulation.  

In this contribution the dynamics of elastic multibody systems is formulated using the floating 
frame approach and the finite element method. In many applications a large number of elastic 
coordinates have to be employed to properly describe body deformations. This results in large 
simulation costs and memory deficiency problems. The problem can be solved using model 
order reduction techniques, which approximate a large number of equations by a much 
smaller number of equations that keep important dynamic properties of the original system.  

This work is focused on the evaluation of the line-fitting method that is a linear structure pre-
serving method of model order reduction for elastic multibody simulations. The method is 
based on the approximation of transfer functions and enables tuning of a reduced order mod-
el for certain transfer functions and certain frequency ranges. Line-fitting reduced order 
models possess such desirable properties as high accuracy, preservation of stability, low or-
der and stiffness. 

We apply the line-fitting method to a model of elastic bar, analyze properties of a reduced or-
der model, and compare the results with results of the powerful SEREP reduction approach.  
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1 INTRODUCTION 

1.1 Research field  
The subject of this research relates to simulation of elastic multibody systems (EMBS). 

The term EMBS denotes a system of rigid and elastic bodies interconnected by joints or cou-
pling elements, where the bodies may undergo large rigid body motions and elastic defor-
mations. Under elastic deformations a body returns to its initial state after applied loads are 
removed. In particular, in this article we focus on linear elastic deformations. It means that we 
assume small deformations and linear relationship between deformations and applied forces. 
EMBS appear in applications of many engineering fields: robotics, biomechanics, and vehicle 
and aircraft dynamics. 

Modeling of EMBS is based on methods of multibody system dynamics and the theory of 
elasticity. The most efficient way to describe the dynamics of EMBS undergoing linear de-
formations is a floating frame formulation [1]. According to this method the total motion of 
elastic body is divided into two parts: rigid body motion represented by the motion of body 
reference frame and deformations with respect to this frame. 

Linear elastic deformations are usually modeled by the finite element method which results 
in a system of ODEs. The problem is that in many cases, the system of equations is extremely 
high dimensional, and its solution on standard computers is either not feasible or it suffers 
from vast computational time and memory deficiency problems. The problem can be solved 
by model order reduction methods. These methods approximate the large set of equations by a 
small set of equations that keep important dynamic properties of the original system. 

1.2 Past studies   
Over the last decades a variety of reduction techniques have been developed. The set of 

classical reduction approaches applied in elastic multibody dynamics consists of the methods 
based on modal truncation, condensation [2, 3], and component mode synthesis [4, 5, 6].  The 
traditional reduction methods also include a System Equivalent Reduction Expansion Process 
(SEREP), which was introduced in [7] and extensively used in structural and multibody me-
chanics. The classical approaches are implemented in many simulation software and remain 
state of the art techniques for model order reduction. 

More recently, a few alternative reduction methods have come from the field of control 
theory, namely, techniques based on the singular value decomposition (SVD) using Gramian 
matrices and moment matching via Krylov subspaces [8, 9, 10, 11]. The methods are aimed at 
the approximation of input-output behavior of dynamical systems. Nowadays, the application 
of these techniques in the context of EMBS is on the focus of intensive research. 

The comprehensive description of basic model order reduction methods can be found in 
the books [8, 12]. Relative advantages and disadvantages of widespread reduction approaches 
are presented in [13, 14].  

1.3 Problem statement  
In this article we examine a recently developed line-fitting method of model order reduc-

tion. The approach was originally proposed in [15]. In addition, the method was tested on ac-
ademic and industrial application examples and compared with the widely used Craig-
Bampton method in [16, 17]. The line-fitting approach is based on an approximation of trans-
fer functions of original finite element model and it enables tuning of a reduced order model 
for certain transfer functions and certain frequency ranges. In [16, 17] line-fitting reduced or-
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der models showed better results in comparison with Craig-Bampton models in the accuracy, 
order, and stiffness. 

The limitation of past studies of the line-fitting method consists in the fact that they focus 
primarily on the comparison with the Craig-Bampton method. The aim of this contribution is 
to evaluate the line-fitting method relative to the powerful SEREP approach. Despite the 
SEREP method is not a typical approach for the approximation of input-output behavior of a 
system, it can be applied for such applications and provide high quality reduced order models.   

The relative comparison of promising reduction approaches is an important task because 
this contributes to further improvements of methods and to an appropriate choice of methods 
for certain applications examples.  

1.4 Main steps and outline  
In order to evaluate reduction approaches, it is necessary to define evaluation parameters, 

methods, and criteria. Application examples often make the following demands on the reduc-
tion approaches:  

• high accuracy of reduced model,  
• fast simulation of reduced model, 
• simple tuning of reduced model for certain transfer functions and certain frequency 

ranges,  
• preservation of model stability, 
• preservation of second order structure of equations of motion, 
• computational efficiency of reduction method. 

We evaluate accuracy of reduced order models using a relative error of natural frequencies, 
correlation of eigenvectors, and a relative error for system transfer functions. In order to as-
sess simulation speed, we compare an order of reduced models and the largest stiffness. The 
difficulty of tuning of reduced order model can be assessed using the time needed for the 
achievement of predefined accuracy demands. Preservation of stability and preservation of 
second order structure of equations of motion follow from theoretical descriptions of the 
methods. Finally, we determine computational efficiency of the reduction approaches by ana-
lyzing their computational complexity. 

Theoretical description of methods allows partial evaluating of their properties. Complete 
assessment requires application of methods to numerical examples with subsequent analysis 
of reduced order models.  

 The structure of this article is as follows. We begin with a peace of theoretical information 
about equations of motion for EMBS and about the model order reduction. After that we de-
scribe SEREP and line-fitting approaches and identify their strength and weaknesses from the 
theoretical point of view. Next, we apply both methods to a model of elastic bar, validate re-
duced order models, and compare the results. Finally, we summarize and generalize the ob-
tained results and discuss further work on the subject. 

2 FUNDAMENTALS OF ELASTIC MULTIBODY DYNAMICS 

2.1 Modeling of multibody dynamics 
The equations of motion of a single unconstrained body can be derived using Jordain’s 

principle. This leads to the following representation: 

 .
i i i i
r re r r

i i i ii i i i
e e e eer e e e

      
+ =       ⋅ + ⋅      




0M M q h
K q D qM M q h

 (1) 
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Here the superscript i  refers to a number of body. The vector of coordinates consists of the 
rigid body coordinates rq and the elastic coordinates eq . The vector rq  includes 3 translation-
al and 3 rotational coordinates; the term eq  has a length N equal to a number of degrees of 
freedom of the finite element model. The mass matrix includes a rigid body part 6 6

r
×∈M  , 

an elastic part N N
e

×∈M  , and coupling parts T
re er=M M . The matrices eK  and eD  represent 

stiffness and damping matrices of the elastic body. The Coriolis, centrifugal, as well as exter-
nal forces are summarized in the force vector h . 

The equation of motion of the whole EMBS can be written as 

 ( ) ( , , ),t⋅ + ⋅ + ⋅ =  M q q D q K q g q q  (2) 

where q  is a vector of generalized coordinates of the whole system, g  includes the vector h  
and the vector of constraint forces. More detailed description of EMBS dynamics can be 
found in [18, 19]. 

2.2 Modeling of elastic bodies 
In this subsection we focus on the concept of model order reduction. Let u(t) and y(t) be an 

input distribution and an output measurement arrays, respectively. The elastic part of the 
equation of motion (1) is transformed into a linear time invariant second order multi-input and 
multi-output (MIMO) system 

 
( ) ( ) ( ) ( )

( ) ( )
e e e e e e e

e e

t t t t
t t
⋅ + ⋅ + ⋅ = ⋅
= ⋅

 M q D q K q B u
y C q

 (3) 

with the input matrix N p
e

×∈B  and the output matrix r N
e

×∈C  , where p  and r are numbers 
of input and output coordinates, respectively. 

Due to the representation of elastic multibody systems using the floating frame approach, 
the elastic degrees of freedom can be reduced by means of methods of linear model order re-
duction. The basic idea of model reduction is to approximate the original set of ODEs by a 
low-dimensional set of equations that preserves significant characteristics of the full model. 
The large vector of elastic coordinates N

e ∈q  is approximated using a vector n
e ∈q  of a 

smaller dimension n N as 

 ( ) ( ),e et t≈ ⋅ q V q  (4) 

with N n×∈V   being a projection matrix. 
The transformation (4) leads to the following equations of motion: 

 
( ) ( ) ( ) ( )

( ) ( )
e e e e e e e

e e

t t t t

t t

⋅ + ⋅ + ⋅ = ⋅

= ⋅

      
 

M q D q K q B u

y C q
 (5) 

with the reduced matrices , ,T T T n n
e e e e e e

×= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ ∈M V M V D V D V K V K V    , and  
T n p

e e
×= ⋅ ∈B V B  , r n

e e
×= ⋅ ∈C C V  . 

The difference of model order reduction methods lies in the way they generate the trans-
formation matrix V . 
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3 MODEL ORDER REDUCTION METHODS 

The task of model reduction methods is to find a coordinate transformation matrix V in the 
relation (4). This section shows the constuction of V according to the line-fitting method and 
the SEREP approach. We also point out advantages and disadvantages of both methods 
relative to the requiremets stated in the introduction section.  

3.1 SEREP  

The idea of SEREP method is to include to a reduced order model only c  modes and r  
degrees of freedom that are necessary to the model. Here c  is defined using a bandwidth of 
excitation loads and r  is defined based on the number of degrees of freedom where external 
loads are applied or model output coordinates are defined.  

According to the SEREP method, all degrees of freedom of finite element model are divid-
ed into two sets: retained and truncated. These degrees of freedom are denoted with the in-
dexes r  and t , respectively. The elastic part of equations of motion from (1) with no damping 
can be written as  

 e e e e e⋅ + ⋅ =M q K q h  (6) 

For the sake of simplicity we omit the index e  for the subsequent equations in this section. 
Partition of (6) into retained and truncated coordinates yields: 

 rr rt r rr rt r r

rt tt t rt tt t t

         
⋅ + ⋅ =         

         




M M q K K q h
M M q K K q h

 (7) 

The coordinate transformation from physical coordinates to modal coordinates is defined as 

 = ⋅q U x  (8) 

where U and x are a modal matrix and modal coordinates. According to the SEREP method, 
the physical coordinates are approximated by a subset of modal vectors and corresponding 
modal coordinates as follows 

 c c= ⋅q U x  (9) 

Next, the approximation of physical coordinates is partitioned as  

 r cr
c

t ct

   
= ⋅   

   

q U
x

q U
 (10) 

Solving of r cr c= ⋅q U x  for cx gives   

 c cr r
+= ⋅x U q  (11) 

where 1( )T T
cr cr cr cr
+ −= ⋅ ⋅U U U U  defines a pseudo inverse matrix of crU . Substituting (11) into 

(9) yields  

 c cr r
+= ⋅ ⋅q U U q  (12) 

It follows that the coordinate transformation matrix takes the form  

 1( ) .T T
c cr cr cr

−= ⋅ ⋅ ⋅V U U U U  (13) 
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The accuracy of eigenfrequencies and eigenvectors retained in SEREP reduced order mod-
el is exact [13]. The modes may be arbitrarily selected from the modes in the original model. 
In addition, the accuracy of the eigensolution of the reduced model does not depend on the 
location of interface degrees of freedom. The quality of predefined transfer functions in the 
reduced model is determined by the eigenvectors chosen in the SEREP procedure. The 
opened questions are what and how many modes to include into the model to meet accuracy 
demands on the transfer functions of interest.  

The order and stiffness of reduced model are defined by the number of chosen interface 
coordinates and the highest eigenfrequency of retained modes. 

The tuning of reduced model for certain transfer functions and certain frequency ranges 
can be a not trivial task because of the difficult choice of important eingevectors.   

The non-proper definition of number of interface coordinates and retained modes can result 
in the generation of rank-deficient mass and stiffness matrices. In this case, stability of full 
model is not preserved in the reduced model.  

The transformation (13) preserves the second order structure of equations of motion for the 
reduced system.  

Computation of eigensolution takes in general 3( )O N  arithmetical operations. In some ap-
plications the eigenvalues can be known in advance, e.g., from experimental tests. The com-
putational cost of pseudo inverse using SVD is 3( )O N  operations. 

3.2 Line-fitting method 
The line-fitting method approximates the dynamical behavior of mechanical systems by 

fitting transfer functions  

 2 1( ) ( )e e e e es s s −= ⋅ + + ⋅H C M D K B  (14) 

that are determined from the system of  equations (3) by using the Laplace transformation 
with a complex frequency s iω= .  

In order to obtain the projection matrix V without rigid body modes, we exclude the con-
tribution of rigid body motion form (14). The translational and rotational rigid modes can be 
written as follows: 

 [ ] [ ] [ ]0 0 0 , 1,.., .k k
t r k N

    
    

= = − =    
    
     

 


 

V V V I r  (15) 

Here the matrix I is a 3 × 3 identity matrix, the term [ ]kr gives an undeformed position of k-th 

node of the FE model and consequently [ ]kr annotates an associated skew symmetric matrix. 
The given calculation of 0V  is valid for finite element nodes that exhibit three translational 
degrees of freedom.  

The part of transfer matrix that corresponds to rigid body motion can be found as 

 2 1
0 0 0 0 0 0( ) ( )s s s −= ⋅ + + ⋅H C M D K B  (16) 

with 6 6
0 0 0 0 0 0 0 0 0, ,T T T

e e e
×= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ ∈M V M V D V D V K V K V  , and transformed input 

and output matrices  6
0

T p
e

×= ⋅ ∈B V B  ,  6
0 0

r
e

×= ⋅ ∈C C V  . The component of transfer ma-
trix (14) corresponding to elastic deformations is defined as 
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 1 0( ) ( ) ( )s s s= −H H H  (17) 

Further, we are looking for the transformation matrix V. We want to retain the output co-
ordinates in the reduced order model, therefore the upper part of the coordinate transformation 
matrix V is an r × r identity matrix: 

  
=  
 

I
V

W
 (18) 

The matrix W can be found from the relation of non-output coordinates and output coordi-
nates in terms of their transfer functions as 

 1 1( ) ( )s s⊥ ≈ ⋅H W H  (19) 

We construct the matrix W as a trade-off between frequency points of inter-
est 2 , 1..k ks i f k zπ= ⋅ = . The equation (19) is turned into 

 1 1 1 1 1 1( ) ( ) ( ) ( )z zs s s s⊥ ⊥   = ⋅    H H W H H  (20) 

The decomposition of (20)  into real and imaginary parts yields: 

 
1 1 1 1 1 1

1 1 1 1 1 1

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) )

z z

z z

s s s s

s s s s

⊥ ⊥ ⊥ ⊥    ℜ ℑ =    
    ⋅ ℜ ℑ    

 

 

H H H H

W H H H H
 (21) 

that can be rewritten as  

 n o= ⋅T W T   

 T T
o n⋅ =T W T  (22) 

The matrices 2T pz r
o

×∈T  and 2 ( )T pz N r
n

× −∈T  , where , ,p r z  are the number of inputs, outputs, 
and reference frequency points, respectively. The order of reduced model n  is equal to the 
number of outputs r . The matrix W can be found as a least-squares solution of (22). After the 
projection matrix V is obtained, the reduced order model is constructed using (5).  

The main positions of reference frequency points have to be points of resonances and anti-
resonances. Besides, additional reference frequency points can be used to enhance quality of 
reduced model in special frequency ranges or points. 

The error of predefined transfer functions in the line-fitting method depends on a residuum 
in equation (22). The error can be influenced by a number of interface coordinates, position of 
interface coordinates, and a choice of reference frequency points. As for the majority of other 
reduction methods, the error in this approach is unknown before the reduction, but it can be 
calculated after the reduction. Recommendations on the achievement of highly precise results 
are given in [15]. 

Simulation speed depends in addition to other factors on the number of coordinates of re-
duced order model and stiffness of the system. According to the results presented in [16, 17], 
line-fitting models require relative low number of coordinates to achieve desired accuracy 
demands. The stiffness is defined by the highest eigenfrequency of the system. The line-fitting 
method can influence the accuracy of eigenfrequencies contained in the predefined frequency 
range, but the spectrum of model beyond this range is uncontrolled. For this reason, no state-
ments about the limits of the spectrum can be made. However, numeric examples in [16, 17] 
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show that the stiffness of line-fitting models is significantly lower than the stiffness of Craig-
Bampton models.  

The tuning of reduced model for certain transfer functions and certain frequency ranges is 
a straight forward process. The local accuracy of transfer functions can be improved by addi-
tional reference frequency points, whereas the accuracy over a whole frequency range of in-
terest is enhanced by increasing the order of the reduced model. 

The preservation of stability is an important property of reduction approaches because this 
ensures that a reduced model does not cause any type of failure to elastic multibody systems. 
It was proven in [15] that the line-fitting technique meets this essential requirement. 

The systems reduced by the line-fitting method preserve the second order structure of 
equations of motion. This enables integration of reduced order models into a multibody sys-
tem of second order type. 

The main computational burdens of this reduction approach consist in the calculation of 
transfer function matrices for several frequency points and the solution of large least-squares 
problem. In applications, where the input-output behavior of a system is under consideration, 
the most of reduction approaches require calculation of transfer function matrices for all 
points in a predefined frequency range to evaluate accuracy of reduced order model. There-
fore the values of transfer function matrices at several frequency points are considered as giv-
en information. In the case where the values of transfer function matrices are unknown, the 
complexity of their computation has a cubic dependency of N . The computational cost of 
least squares solution of equation (22) is 2( )O zn N . As before, z is the number of reference 
frequency points, n  is the number of interface coordinates, and N  is the number of coordi-
nates for the original finite element model. The total computational cost of the line-fitting 
method is larger in comparison with the Craig-Bampton approach, but it remains acceptable 
for moderately dimensional finite element models. 

4 NUMERICAL EXAMPLE 
In this section we reduce a finite element model of unconstrained elastic bar illustrated in 

Figure 1. The SEREP and line-fitting methods are applied and results are compared.  

 
Figure 1: Finite element model of elastic bar. 

4.1 Model description   
The model of the bar has the following characteristics: size 6×8×300 mm, mass 0,1 kg, 
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Young’s modulus 102 10⋅ Pa, damping factor beta 510− , number of degrees of freedom 1656. 
As a frequency range of interest we define an interval [0, 1000] Hz. The interval contains 6 
zero eigenfrequencies and 6 deformation eigenfrequencies of the model. The set of input and 
output degrees of freedom for the bar is demonstrated in Figure 2. Here input and output co-
ordinates coincide with each other.  

 
Figure 2: Input and output coordinates of the model. 

4.2 Initialization of reduction methods 
For the line-fitting method the frequency range of interest, input and output coordinates are 

considered as given information. The task of the engineer is to choose an appropriate order of 
reduced model, to define interface degrees of freedom, and to allocate reference frequency 
points. The order of reduced model depends on a number of transfer functions that need to be 
tuned and a number of eigenfrequencies contained in a frequency range of interest. According 
to [15], the order equal to a double number of eigenfrequencies in the frequency range of in-
terest is usually enough to achieve proper accuracy of reduced model. In the case of the bar 
model, we define the order of reduced model to be 14. After that the same number of interface 
degrees of freedom must be chosen. Nine interface degrees of freedom are assigned to nine 
user defined input and output coordinates, while the remaining coordinates are uniformly dis-
tributed throughout the model. The interface coordinates are located as it is shown in Figure 3.  

 
Figure 3: Interface coordinates for the reduced order model. 

In order to choose reference frequency points, we compute transfer functions specified by 
the interface DoFs. The set of reference frequency points is common for all interface transfer 
functions; therefore it is possible to obtain a complete set of frequency points analyzing only a 
few of them. The reference points are defined at resonance, antiresonance, and some interme-
diate frequencies of the interval [0,1000] Hz, see Figure 4. For this model 20 frequency points 
of interest are assigned.  

 
Figure 4: Choice of reference frequency points. 
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In order to initialize the SEREP method, it is necessary to choose interface coordinates and 
modes retained in the reduced model. We defined nine interface coordinates shown in Figure 
2 as degrees of freedom of reduced order model. In order to avoid rank-deficiency problems 
in the SEREP method, we assigned the same amount of modes as the number of retained co-
ordinates. Thus, the set of chosen modes consists of nine deformation modes with lowest fre-
quencies. It also follows that the number of retained modes is larger than the amount of modes 
in the frequency range of interest.  

4.3 Evaluation of reduced order models 
For the comparison of the reduction methods we employ three criteria: normalized relative 

eigenfrequencies difference, modal assurance criterion, and a relative error of transfer func-
tions. Figure 5 represents the result of the former test for the eigenfrequencies in the range of 
interest [0, 1000] Hz. 

 
Figure 5: Relative error of non-zero eigenfrequencies for reduced models. 

The diagram shows that the eigenfrequencies in the predefined frequency range are accurately 
approximated by both methods, but the precision is considerably better for the line-fitting 
model. 

 
Figure 5: Correlation of deformation modes. 

The results of MAC test are illustrated in Figure 6. The diagram shows that MAC values 
for all modes in the predefined frequency range are higher than 0.8. This implies a high corre-
lation of deformation forms of the reduced and full models and, as a result, a qualitatively 
successful approximation. 
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Further we evaluate dynamics properties of reduced order models using transfer functions. 
For multi-input multi-output systems it is problematically to analyze errors of transfer func-
tions separately, therefore the error of reduction is usually evaluated using the formula:  

 
( ) ( )

( )
( )

F

F

i i

i

ω ω
ε ω

ω

−
=

H H

H
 (23) 

where H  and H  are transfer matrices of original and reduced systems, and 
F

⋅ denotes the 
Frobenius norm. The function ( )ε ω  shows a total error introduced by a model reduction ap-
proach in a certain frequency range. Figure 6 represents a relative error of transfer functions 
for both the reduced order models and interface degrees of freedom shown in Figure 2.  

 
Figure 6: Relative error of frequency response. 

The plot shows that the line-fitting method approximated the relevant transfer functions over 
the whole interval considerably more accurately than the SEREP approach. The error of line-
fitting model does not exceed 3%. The SEREP method provides results with errors up to 7%. 
Increasing of order of SEREP model and the amount of modes to 14 improves the accuracy of 
transfer functions, but the line-fitting model is still superior, see Figure 7. 

 
Figure 7: Relative error of frequency response with the enhanced SEREP model. 
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5 SUMMARY AND FURTHER RESEARCH 
In this paper we evaluated the line-fitting method relative to the demands defined by appli-

cation examples. The demands included a high accuracy of reduced order model, fast simula-
tion, simple tuning of reduced model for certain transfer functions and certain frequency 
ranges, preservation of model stability, preservation of second order structure of equations of 
motion, and computational efficiency of reduction method. The evaluation was made based 
on the theoretical description and results of the numerical example. The analysis showed that 
the line-fitting method satisfies all the requirements for moderately dimensional finite element 
models.  

In addition, the line-fitting method was compared with the widely used SEREP approach.  
We found that the line-fitting approach outperforms the SEREP method in accuracy, possibil-
ity to tune reduced order models for certain transfer functions and certain frequency ranges, 
and preservation of stability. Both methods preserve the second order structure of equations of 
motion. The relative drawback of the line-fitting method is the higher computational cost of a 
coordinate transformation matrix. Besides, the stiffness of the line-fitting model was higher 
relative to the stiffness of SEREP model.  

Further we intend to improve computational efficiency of the line-fitting method and to 
compare the approach with reduction techniques from the control theory.  
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Abstract. Since earthquake dynamic response analysis of large and complex structures are
computationally time demanding, efficient methods that can reduce the system order are of high
interest. In this sense, there are different methods available, which try to provide a proper equiv-
alent model. However, in the presence of nonlinearities in the structural elements, most of those
methods are ruled out due to their linear assumptions. Therefore, this contribution aims at pro-
viding an efficient strategy, which can reduce the order of the nonlinear structural model while
retaining important structural characteristics for further earthquake dynamic response analy-
sis. The model order reduction (MOR) strategy is developed based on the proper orthogonal
decomposition (POD) method to derive a set of nonlinear deterministic POD modes according
to the information of the response history (snapshots) of the full order structure under one or a
set of representative earthquake excitations. Subsequently, the POD modes are utilized to create
the reduced-order models of the structure subjected to different earthquake excitations. Then,
the reduced order models need substantially less amount of computational time in compari-
son to the full order models. This study presents the application results of the introduced new
strategy to a realistic building structure, which is base-isolated by means of frictional bearing
elements for better seismic performance. The results demonstrate accurate approximations of
the physical (full) responses by means of this new MOR strategy if the probable behavior of the
structure has already been captured in the POD snapshots.
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1 INTRODUCTION

The evaluation of the response history of a structure in the time domain is one of the main
topics in earthquake engineering and structural dynamics. Often it is common practice to create
simple structural models, e.g. multistory shear frames, which should be able to describe the
structural behavior and peculiarities of the real structure. This approach leads to useful results
for the investigation of rather simple and uniform structures in order to draw meaningful engi-
neering decisions regarding structural resistance. On the contrary, the analysis of complicated
systems can require the application of nonlinear high-order systems, as a characterization by
a low dimensional structural model could lead to an oversimplification, i.e. important motion
patterns could be ignored. Therefore, an effective strategy is to obtain a set of a low number of
“important” equations of motion that approximates the high-dimensional nonlinear dynamical
system as accurately as possible, that is, model order reduction (MOR).

The solution of the nonlinear set of equations of motion in the time domain is realized by
numerical algorithms, which require computational effort if the number of DOF is high. Even
the response calculation of linear systems can be expensive, as a factorization of the stiffness
matrix is necessary to solve the eigenvalue problem and calculate the natural modes of vibration.

An alternative is to replace a high-dimensional nonlinear set of equations of motion by a
reduced set, providing the main dynamic behavior of the system to reach the required level of
accuracy. MOR methods are used in many fields of research, where high-dimensional systems
are dealt. Some review papers of MOR, especially for structural dynamic applications, are
presented by Rega and Troga [3] and Koutsovasilis and Beitelschmidt [4] as well as the books
of Qu [2] and Schilders et al. [5]. The classical but also effective method of modal truncation
is well-known in the field of earthquake engineering, which is however mainly applicable to
linear systems.

This paper concentrates on a new MOR strategy based on the proper orthogonal decompo-
sition (POD) method. The POD provides a low dimensional uncorrelated description (basis
vectors), by which a high-dimensional correlated process, e.g. structural response, is spanned.
Firstly, it was used as a statistical formulation in the papers of Kosambi [6], Karhunen [7] and
Loeve [8]. Following this mathematical basis of the POD, which is also known as Karhunen-
Loeve Decomposition and Principal Component Analysis, was applied in many fields of re-
search, including turbulence and coherent structures, wind engineering, image processing and
structural dynamics.

The first paper regarding the field of structural dynamics was written by Cusumano et al.
[9] in the early 1990’s, who presented an experimental study of dimensionality in an elastic
impact oscillator. In the papers [10] and [11] of Feeny and Kappagantu a relation of the proper
orthogonal modes to normal modes of vibration is investigated. Then they used the POD as
they so call optimal modal reduction and exploit the benefits of the application of these modes
in comparison to the linear natural modes. Furthermore, Kappagantu and Feeny investigated
in [12] and [13] the dynamics of an experimental frictionally excited beam and they verified
that the proper orthogonal modes are efficient in capturing the dynamics of the system. Liang
et. al. [14] discuss the realizations of the POD, i.e. Karhunen-Loeve Decomposition, principal
component analysis and singular value decomposition and compare these three methods. Ker-
schen and Golivani [15] analyze the physical interpretation of the POD modes and its relation to
the singular value decomposition and in [16] they investigated POD based on auto-associative
neural networks.

The necessity to describe a high dimensional set by a small set of equations of motion, i.e.
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MOR, has aroused interests mainly in the last two decades in the field of earthquake engineer-
ing, some papers related to this issue are e.g. [27] and [28]. More specified to the related issue
Tubino et. al. [17] investigated the seismic ground motion of the support points of a structure
and denominate the POD as a very efficient tool to simulate multi-variate processes. Bucher
[32] examined the stabilization of explicit time integration methods for analysis of nonlinear
structural dynamics by modal reduction. Gutierrez and Zaldivar investigated in [30] how to
handle the stability problem of explicit time integration by modal truncation methods more re-
lated to problems in earthquake engineering and structural dynamics and following in [29], they
applied the Karhunen-Loeve Decomposition, which is formally identical to the POD analysis,
to capture the essential characteristics of nonlinear systems and provide experimental examples
conducted on a shaker table. Bamer and Bucher [18] developed a MOR strategy applying the
POD method for transient excited structures resting on one-dimensional friction elements. This
study presented a powerful combination of the POD and explicit time integration schemes.

The current work investigates the extension of the POD-based MOR strategy, which is ap-
plicable to nonlinear systems in contrast to the method of modal truncation. The new strategy
pursues the following objective: a low number of deterministic nonlinear modes (i.e. set of
POD modes) is determined that defines a representative characterization of the structural be-
havior. Therefore, due to the information content of the full or a part of the time response of
the structure to one representative excitation a set of deterministic modes, i.e. POD modes, is
evaluated. Subsequently, this set of modes is utilized to project the equations of motion of a
structure under different earthquake excitations onto POD coordinates and following an order
truncation is performed in a similar manner as the application of modal truncation to linear
systems.

It is attached importance to demonstrate this new strategy and its advantages on a practical
application. The method is applied to the dynamic model of a realistic building structure. The
building is erected on friction pendulum bearings for the sake of seismic isolation to minimize
the transferred acceleration to the building during an earthquake. A three-dimensional dynamic
model of the base isolated structure is derived by implementing the finite element model of the
structure and the bi-directional friction pendulum systems. The subsequent section deals with
the nonlinear dynamic model of the base-isolated structure. Following, the new POD-based
MOR strategy and the example of its practical application is provided. Finally, the discussion
on the results and conclusions are given.

2 Nonlinear model order reduction

The n-dimensional set of equations of motion of a structure with nonlinear material behavior
excited by horizontal components of ground acceleration is expressed as (cf. Chopra [20])

Mẍ + Cẋ + R(x) = −M (fxẍg + fyÿg) , (1)

where M and C are mass- and damping square matrices of order n and R(x) is the nonlinear
internal restoring force vector dependent on the displacement x with the dimension n × 1.
The right hand side of the set of equations of motion describes the earthquake excitation term,
while ẍg and ÿg denote the ground acceleration in x- and y-direction and fj, (j = x, y) are the
influence vectors in the corresponding direction. It is

fx(xi) = 1 , fy(yi) = 1 , i = 1...n , (2)

at the global x and y degrees of freedom of all nodes, whereas the other components of fx and
fy are zero. Thus, i describes the number of nodes of the FE discretized structure. This general
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approach indicates that in this paper the ground acceleration in the corresponding direction, i.e.
x-, y- or z-direction, is equal in all structural support points. In the following equations the term
on the right hand side of the set of equations of motion (1) is denominated by F(t), which has
the unit of a force.

Nonlinear systems, as they are depicted in Equation (1), have generally to be solved by the
application of a numerical algorithm, that is, a step by step procedure in the time domain in
order to obtain the response of the structure as a function of time. The necessity of application
of a numerical method inevitably leads to the existence of computational effort if n is a large
number. Therefore, the approximation by a low, dimensional description of the system seems
to be useful, i.e. the application of MOR.

The main goal of MOR techniques is primarily to define a transformation matrix T ∈
Rn×m, m � n to approximate the displacement vector x ∈ Rn through a reduced coordi-
nate vector qr ∈ Rm by the relation (cf. Koutsovasilis and Beitelschmidt [19])

x = Tqr , (3)

such that the dynamic properties of the system are preserved and the error is small. The notation
of the variable m ∈ N is the dimension of the reduced subspace.

The projection of the nonlinear system defined by Equation (1) onto that subspace leads to
another second-order ordinary differential equation (cf. Koutsovasilis and Beitelschmidt [19])

mrq̈r + crq̇r + r = fr , (4)

where mr = TTMT, cr = TTCT ∈ Rm×m are mass- and damping matrix and fr =
TTF(t) ∈ Rm×1 is the force vector in the reduced subspace. It should be noted that the re-
duced system matrices mr and cr are generally not diagonal. The vector of the restoring forces
in the reduced subspace is

r = TTR(x) = TTR(Tqr) . (5)

Consequently, one necessity of nonlinear MOR is the evaluation of the vector of the restoring
forces in the physical (full) coordinate at every time step.

3 The proper orthogonal decomposition and nonlinear modes

Modal truncation is a widely-used tool and an effective method for order reduction of linear
systems in the field of earthquake engineering. An accurate approximation of the response
history is achieved by applying a small number of lower structural modes proportional to the
number of degrees of freedom. In this work, the objective is to find a new strategy that is
applicable to nonlinear systems in a similar manner to modal truncation. The approach is to
define a set of deterministic modes that can be evaluated from the information of an existing
response history of the structure. Consequently, this set of modes contains nonlinear motion
patterns if the structure shows nonlinear response behavior to the excitation.

The proposed strategy is established based on the theory of the POD method. Generally, the
POD ([2], , [14], [21], [22], [23], [24]) is a straightforward approach to obtain a low-dimensional
uncorrelated process from a correlated high dimensional or even infinite-dimensional process.
Holmes et al. [24] examined the theoretical background of the POD and its properties pro-
foundly. In the following, the mathematical basics of the POD are discussed shortly, but as the
paper is more targeted to the strategic approach in earthquake engineering, the dealing of the
mathematical background and the numerical problems are limited to an essential minimum.
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The aim of the POD is to find a set of ordered orthonormal basis vectors in a subspace so
that samples in a sample space are expanded in terms of l basis vectors in an optimal form. This
means that the POD is able to find an orthonormal basis, which describes an observation vector
in a subspace better than any other orthonormal basis can do. A measure for this problem is the
mean square error (cf. Qu [2])

E
{
‖x− x(l)‖2

}
≤ E

{
‖x− x̂(l)‖2

}
, (6)

where x ∈ Rn×1 is the random vector, x(l) is the approximation of this random vector in an
l-dimensional POD subspace and x̂(l) is the approximation of the random vector by any other
possible orthonormal basis. Therefore, the random vector can be expressed as (cf. Qu [2])

x = Φpqp , Φp = [ϕp,1, ϕp,2, ..., ϕp,s] and qp = [qp,1, qp,2, ..., qp,s] , (7)

where ϕp,i are the POD modes and qp,i denote the coordinates in the POD subspace and s
is the number of realizations of the random vector (also called snapshots). This leads to an
optimization problem with the following objective function (cf. Qu [2])

ε2(l, t) = E
{
‖x− x(l)‖2

}
→ min (8)

subject to the orthonormality condition (cf. Qu [2])

ϕT
p,iϕp,j = δij (i, j = 1, 2, ..., s) . (9)

The transformation into the l-dimensional POD subspace is a truncation of the first l lower POD
modes (cf. Qu [2])

x(l) ≈ Φpqp , Φp = [ϕp,1, ϕp,2, ..., ϕp,l] , l < s� n . (10)

In structural dynamics, systems are discretized in space and time and the random vector is
realized by s observations at different time instances (cf. Han and Feeny [25])

Xs = [xt1 ,xt2 , ...,xts ] =

 x1(t1) · · · x1(ts)
· · · · · · · · ·
xn(t1) · · · xn(ts)

 . (11)

These observation vectors xti are called snapshots and, therefore, in the literature often the
observation matrix Xs is called snapshot matrix containing s snapshots (observations). xti can
be measurements or solution vectors of a dynamical system at different time instances ([21]).
If µ is the expectation of all observations, then the sample covariance matrix Σs of this random
vector, which is realized by the observation matrix, is defined by (cf. Kerschen et. al. [26])

Σs = E{(x− µ)T (x− µ)} . (12)

The POD modes and the POD values are defined by the eigensolution of the sample covariance
matrix. If the data have zero mean, the covariance matrix is (cf. Kerschen et al. [26])

Σs =
1

s
Xs

TXs (13)

and the POD is realized by the singular value deStructurescomposition (SVD) of the observation
matrix Xs. The POD modes ϕp,i are equal to the left singular vectors and the POD values λp,i to
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mode 1 mode 2 deformation state

Figure 1: Appropriate mode superposition

mode 1 mode 2 deformation state

Figure 2: Inappropriate mode superposition

the singular values of Xs, which are all real and positive and arranged in a rectangular diagonal
matrix in descending order. The energy, which is contained by the snapshot matrix, is defined
by the summation of the POD values, i.e. V =

∑s
i=0 λp,i. As a consequence, the energy ratio

of the ith POD mode is (cf. Kerschen et al. [26])

Vi =
λp,i∑s
i=0 λp,i

. (14)

In structural dynamics applications the sum of only a few POD values often captures 99.99
percent of the total energy included in the observation matrix, which reflects the big advantage
of the POD, i.e. the property of optimality with respect to energy in a least square sense.

Practically, nonlinear effects must be sufficiently captured in the snapshot matrix (11) de-
rived from the representative earthquake exciStructurestation. This is in order to create the
capability of providing the possible nonlinear responses that can appear in the response history
of the structure excited by another earthquake event. Consequently, nonlinear effects that are
not contained in the snapshot matrix, such as plastic hinges or nonlinear sliding of a friction iso-
lator cannot be displayed in the system response. This issue is depicted qualitatively in Figures
1 and 2. Two fictitious deformation states of a simple surrogate model are shown. Obviously,
the two deterministic modes in Figure 1 are sufficient in order to represent the deformation state
of the model. On the contrary, the set of deterministic modes is insufficient to represent the
deformation state in Figure 2 and, consequently, the existing set of modes must be expanded by
an additional mode in order to ensure a representation of the correct deformation state. Related
to this paper, the conclusion is to capture nonlinear structural reactions in the snapshot ma-
trix in order to provide accurate approximations of the structural response excited by different
earthquake events.

Structures

4 The new strategy

In this strategy, a snapshot matrix, which contains information about the response of the
structure including nonlinear actions, must be found. Therefore, the set of full-order equations
of motion of a structure is integrated numerically over the time history of the whole or a part
of a representative earthquake excitation and the snapshots are selected from a chosen amount
of response vectors, i.e. the displacement vectors at different time instances. Evaluation of the
snapshot matrix comprises the time-consuming part of this MOR approach, therefore, the most
customary and time-saving approach is to integrate over a small time window in the beginning
of a representative earthquake excitation. Nevertheless, in order to increase the probability of
recording sufficient linear and nonlinear response patterns, it seems to be reasonable to spread
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Figure 3: Approach of the new strategy

the snapshot records in equidistant time instances over the whole time history of the earthquake
response. Additionally, it is of highest advantage to evaluate the full solutions to more than one
earthquake event and spread the snapshots over all of the response histories. This procedure
increases the probability of capturing all necessary motion patterns in order to provide an accu-
rate representation by the reduced set of equations. Different earthquake excitations can affect
nonlinearities, such as plastic hinges, at different parts of the structure. However, the goal is to
define as much nonlinear effects as possible in order to be prepared to assemble an adequate
reduced order model of Structuresthe structure excited by new earthquake excitations.

The transformation matrix Φp, containing the POD modes is calculated from the snapshot
matrix by applying the SVD algorithm. Afterwards the transformation into the reduced sub-
space is performed in the same manner, if the classical method of modal truncation would be
applied to a linear system. The low-order set of equations of motion is then

M̃q̈P + C̃q̇P + R̃ = F̃ , (15)

where M̃ = ΦT
PMΦP and C̃ = ΦT

PCΦP are mass- and stiffness matrices and F̃ = ΦPF is
the excitation vector in the POD reduced subspace. The reduced vector of the inner restoring
forces R̃ is still dependent on the displacement in the physical coordinate x,

R̃ = ΦT
PR(ΦPqP) = ΦT

PR(x) . (16)

Consequently, the vector of the inner restoring forces R(x) has to be evaluated from the physical
model in the full-order coordinates in every calculation time step. Furthermore, the equations
of motion in the reduced-order set are not decoupled and have to be solved numerically. Finally,
after the time integration procedure is conducted, the solution vector qP dependent on time is
transformed back into the physical coordinate x. A visualization of this approach is depicted in
Figure 3.

The first remarkable advantage of this procedure is not only, as the matter of fact, the low-
dimensional matrix operations, but more importantly is the substantial numerical benefit when
applying an explicit time integration scheme such as the central difference method. The critical
time step ∆tcr, which is 2π

ωn
, is inversely proportional to the highest eigenfrequency ωn. Con-

sequently, for finely meshed structures a large number of loops has to be executed in order to
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perform the full time integration procedure to solve the equation of motion (1). On the contrary,
the critical time step of the POD reduced system described in equation (15) is much larger and,
therefore, the number of calculation time steps is much smaller, which requires a fraction of
computational effort compared to full-order system. These numerical issues are discussed in
a similar manner by Gutierrez and Zaldivar [30] applied to modal truncation. For the numeri-
cal benefit of the combination of the POD with explicit numeric time integration, the reader is
referred to Bamer and Bucher [18]. The second big advantage of the new strategy is that the
actual time consuming process, which is the evaluation of the snapshot matrix, is only executed
once at the beginning of the whole calculation procedure. This a priori assumption of nonlinear
mode patterns makes sense if the excitations show physical “similarities”, which is the case in
earthquake analysis, where a considerably small number of lower modes is mainly affected.

5 Practical application

In addition to dealing with the development of the introduced POD-based MOR approach,
it is within this section to represent the application of the new proposed MOR strategy on a
realistic example. For this purpose, a dynamic structural model of a medical complex, according
to its constructional plan, was derived. A schematic three-dimensional sketch of the building is
depicted in Figure 4.

Figure 4: Three-dimensional visualization of the building construction

As shown in Figure 4, the building structure exhibits complex geometries. As a result, it
seems to make sense to discretize the geometry by a finite element model in order to capture
the main dynamic specifications.
If such a structure with medical function is located in an earthquake prone region, one way to
improve its seismic performance can be realized through base isolation by means of frictional
pendulum bearings. Consequently, the analytical simulations demand large computational time
and storage due to the presence of nonlinearity imposed by those frictional isolators. In the
following, firstly, the structural system specifications and implementation of frictional bearings
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are presented. Then, the displacement responses to a set of six earthquake events are evaluated.
The numerical evaluations compare the new introduced strategy, as an alternative means, with
the iterative Newmark integration scheme, which is known as an efficient and exact method.

5.1 Structural system and model specifications

The building structure consists of three wings, referred to as wing I, II and III. Figure 5
shows a schematic sketch of the ground plan of the building containing the basic dimensions.
The floor slabs of each wing are separate from the others except for the basement slab, which
is indiscrete over all three wings. This means that all three wings are coupled through this slab
and they work all together during earthquake excitations. However, the distance between the
wings, which are connected by the basement slab, is about 1.5 meters, consequently, contact
problems induced by ground motion are not considered in the computations.
The grid indicates the location of the columns and the binding beams, and the red lines indicate
the location of the shear walls, which are responsible for the lateral reinforcement. The regular
distance between the columns is 6.5 [m]. The building structure has three stories below the
ground level, while the highest parts of the building above ground level have 13 stories and
the remaining parts have eight stories including the basement levels. Therefore, the plan of the
structure is irregular along its height along with the irregularities in the horizontal area. The
dashed lines define the area, where the building is only located below the ground. The height of
one story is three meters; this leads to a total construction height of 42 meters.

Below the three stories at the basement level, there is the indiscrete slab on the top of the
isolators at level of −9.00 [m]. Below this slab, along each of the columns, a single friction
pendulum (FP) bearing system is attached. Figure 6 depicts a part of the cross section A-A of
the basement level shown in Figure 5. The horizontal diameter of the FP system is 2.00 meter.
Thus, the dimension of the quadratic cross section of the columns in the basement and FP story
is 2.00× 2.00 [m2], while in the remaining stories the columns are modeled as quadratic cross
sections with the dimensions 0.40 × 0.40 [m2]. All FP bearings have the same radius of the
concave surface, which is equal to 3.00 meters.

A representative full-scale finite element model of the building structure was created in the
software package slangTNG [39]. The shear walls and slabs were modeled by shell/plate ele-
ments and the columns and beams by beam elements. A linear elastic material was considered
for the modeling purpose (Young’s modulus E = 3.5 · 1010 [ N

m2 ], Poisson’s ratio ν = 0.3 [−],
density ρ = 2500 [ kg

m3 ]). Nonlinear FP elements, whose implementation in slangTNG is pre-
sented in section 5.2, are assigned below the lowest basement plate of the structure. The total
number of degrees of freedom is 33000.

5.2 Dynamic model of the frictional pendulum element

This is to present how the frictional pendulum (FP) element in the finite element model
of the structure behaves. The geometrical diagram of the FP element, which is realized as
a spherical shell, is defined in Figure 7. As depicted, R denotes the radius of the concave
spherical surface and the origin of the local coordinate system is chosen to be in the center
of the sphere. The position vector of the slider is described by U = [u, v, w]T . Since the
desired behavior of the FP element is an in-plane elasto-plastic bidirectional action, the change
of the vertical position w can be neglected. Accordingly, the displacement of the FP element is
reduced to an in-plane motion defined only by the components u and v, i.e. U = [u, v]T . This
simplification makes sense as the radiusR is much larger relative to the horizontal displacement
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Figure 5: Schematic ground plan, building construction (units in meters), output node 1 [19.5, 0.0,−9.5]T [m]

Figure 6: A schematic cutout of the vertical section A-A of the basement levels presented in Figure 5 (units in
meters)
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|U| ≈
√
u2 + v2. The equivalent representation of such an element together with the acting

forces on it is represented in Figure 8.
The horizontal force equilibrium of the dynamical system is

FFr + Fk = Fex , (17)

where FFr and Fk are the elasto-plastic frictional- and centring force and Fex = [Fx, Fy]
T ac-

counts for the interacting horizontal force, which couples the FP element to the super structure.
Following, the force equilibrium is split into two parts as two dynamic situations can occur:
situation stick and situation slide. The force equilibrium during the situation stick yields to

Fex = k1

{
u
v

}
︸ ︷︷ ︸

Fk

+ k2

{
∆u
∆v

}
︸ ︷︷ ︸

FFr

if |Fex − Fk| < µN . (18)

This relation renders a linearly-elastic system, where the friction coefficient µ must be a value
between 0 and 1 (about 0.04 for a realistic implementation of the friction bearing) and the nor-
mal contact force N acts orthogonal to the contact area of the slider and the concave surface.
The vector ∆U = [∆u,∆v]T defines the radial distance with respect to the current sticking
point of the slider if the sticking condition is true.
During the situation slide the FP element is described by the following horizontal force equilib-
rium

Fex = k1

{
u
v

}
︸ ︷︷ ︸

Fk

+
µN

|U̇|

{
u̇
v̇

}
︸ ︷︷ ︸

FFr

if |Fex − Fk| ≥ µN , (19)

where U̇ = [u̇, v̇]T is the velocity vector.
In both relations, i.e. Eq. (18) and Eq. (19), the centring force |Fk| = k1r = k1

√
u2 + v2 acts

linearly orthogonal to the vertical axis through the deepest point of the surface and the center of
the sphere. The fact that the centring force is linear indicates that the spherical shell of the real
system is approximated by the paraboloid, whose potential energy increases with W

R
r in radial

distance from the deepest point, i.e. the stiffness is inversely proportional to the radius of the
sphere k1 = W

R
.

The frictional force FFr is modeled either linearly elastic or elastic-perfectly plastic as pre-
sented in Eqs. (18) and (19), respectively. Note that the force corresponding to ∆U accounts
for the elastic behavior of the bearing coating material, in a small elastic range (situation stick,
Eq. (18)) and acts towards the current location of the slider (not the center of the concave
sphere). Generally, the implementation of a realistic model requires k2 to be much larger than
k1, i.e. k2 � k1. During the situation slide, the frictional force acts in opposite direction to
the velocity with the magnitude (perfectly plastic) µN . This is discussed in Eq. (19). Another
point regarding Eq. (18) is that the reacting force N is assumed to be constant throughout the
calculation procedure. This is justified by the following reasons: Firstly, just x and y compo-
nents of the exciting ground motion are taken into account for the computations. Secondly, the
motion has already been simplified to be planar and therefore no additional force component
due to vertical motion is generated. Finally, in our preliminary analysis, the uplift force on the
isolator slap was observed to be extremely small in comparison with the downward force due
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U = (u,v ,w )x
y

z
R

Figure 7: Geometric definitions of the FP element

Fk

FFr

slider (contact unit)W

Fx

Fy

Figure 8: Internal specifications of the FP element; Fx,
Fy , N , recentering force Fk, friction force FFr

Event year location nt T d M PGA
Bam 2003 Iran 1995 19.95 - 6.6 7.16

Imperial Valley 1979 California / Huston Road 3905 39.05 10 6.5 4.79
Landers 1992 California / Barstow 4932 49.32 36 7.3 4.13

Loma Prieta 1989 California / Gilroy 2507 25.07 12 7.0 9.51
North Palm Springs 1986 California / Palm Springs 6009 60.09 6.7 6.0 9.99
Northridge Rinaldi 1994 California / Newhall 1200 12.00 6.7 6.7 5.23

Table 1: Earthquake excitation list; nt [−] number of time steps, T [s] duration of the record, d [km] distance from
epicenter, M moment magnitude, PGA [m/s2] peak ground acceleration

to the weight of the structure. Considering the above-mentioned fact together with the force
diagram given in in Figure 8, follows that the normal contact force N is approximately constant
and equal to the weight induced force of the super structure, W , i.e, N = W in Eq. (19).

The FP bearing element governed by Eqs. (17) to (19) has been implemented in the software
package slangTNG [39]. For a comparable study on this implemented friction pendulum sys-
tem, the experimental work of Mosqueda et al. [40] is suggested. For additional information
about friction pendulum systems the reader is referred to the relevant literature (e.g. [33], [34],
[35], [36], [37] and [38]). More detailed examination of this topic would lead beyond the scope
of this paper, which should focus more on the methodical extension of the new MOR strategy
as well as the application on a complex realistic system.

5.3 Numerical evaluation

The evaluation of the introduced MOR strategy is dealt with displacement response cal-
culations of the building structure to six different earthquake excitations. The earthquake
records are applied in fault-parallel and fault-normal directions. The excitation set includes the
Bam earthquake (2003) in Iran and the following five representative events in California, US:
Northridge Rinaldi (1994), Imperial Valley (1979), Landers (1992), Loma Prieta (1989), North
Palm Springs (1986). Table 1 presents a list of the events taken from the Pacific Earthquake
Engineering Research Center (PEER) [31]. Fault-parallel is defined in x- and fault-normal in y-
direction. Concerning the Bam event only a one-dimensional record was accessible, therefore,
an excitation angle of 30 degrees with respect to the x-axis was chosen. Calculation outputs are
presented including the displacement translational response, namely the degree of freedom x of
the red marked node in Figure 5. This is the horizontal component of response in x-direction of
the slider of the FP element. Additionally, the response regarding in-plane motion of the slider
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in x- and y-direction are provided. The output node is called “node 1” and has the coordinates
[19.5, 0.0,−9.5]T [m], this is depicted in Figure 5. This node defines the location of a moving
friction pendulum, it therefore shows directly the nonlinear response behavior of the system.

The method, according to Section 4, begins with the earthquake dynamic analysis of the
structure under representative excitation. Therefore, the response XBam = [x1,x2, ...,xm] of
the full system to the Bam earthquake is evaluated. This full system response is evaluated
applying the Newmark method. The response history in x-direction of node 1 (output node) is
depicted in the left subplot of Figure 9. The motion of the slider is shown in the right subplot of
Figure 9.

0 20
-0.25

0

0.25

time [s]

x
1
[m

]

-0.4 0 0.4
-0.4

0

0.4

x1 [m]
y 1

[m
]

Figure 9: Response functions to the Bam earthquake excitation, full Newmark response and reduced POD re-
sponse; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, displace-
ment x and y of node 1

The snapshot matrix XS is assembled by taking into account 400 snapshots in equidistant
time intervals spread over the whole displacement response history to the Bam earthquake ex-
citation. It is essential to capture the main deformation behavior of the system in this stage,
otherwise certain deformation states cannot be constituted by the set of linearly independent
vectors (c.f. Figure 2), i.e. the sliding process, as can be seen in Figure 9, has to be recorded
in the snapshot matrix. Afterwards, the evaluation of the left singular vectors of the snapshot
matrix leads to the POD modes and its singular values to the POD values in descending order.
The sum of all POD values define the total energy content of the snapshot matrix. Hence, the
number of POD modes that have to be taken into account in order to capture 99, 99 percent of
the total energy was evaluated to be 31. A plot of the first 31 singular values (POD values)
dependent on the corresponding energy content is shown in Figure 10.

The physical equation of motion is now transformed into the 31-dimensional POD subspace
and integrated over the whole time history by application of the explicit central difference
scheme. Transformation back into the physical coordinate x produces the POD-based response
of the structure. The integration time step for the reduced time integration is 5 · 10−3 seconds,
which is equivalent to the time step of the Newmark integration scheme, which is applied for the
calculation of the exact response. In the response analysis of the reduced order system via cen-
tral difference no iteration is needed and only a fractional amount of storage compared to the full
Newmark method is required. Note that the critical time step of the central difference scheme
for the full system is 10−7 seconds. Therefore, concerning the basic central difference method,
an immense speed-up factor of 104 is achieved. Within the presented examples generally a min-
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Figure 10: Number of POD values (singular values)

imum speed up factor of about 2 compared to the Newmark algorithm is achieved. However, it
has to be added that for this type of nonlinearity, the Newmark integration scheme appears to
have a relative slow convergence rate. As a consequence, the computational time by applying
the Newmark method can exceed to a period of time, which is comparable if the full central
difference integration scheme is applied or even to infinite period of time, if there is no conver-
gence. Following, the new integration strategy gains the benefit of both of the two algorithms,
i.e. central difference and Newmark, which is stability without requiring iteration algorithms.
The red dashed line in Figure 9 (response to the Bam excitation) shows the response obtained
by the new POD strategy, which approximates the full Newmark response accurately. This is
not surprising as the snapshots are taken in equidistant time intervals spread over this whole
response history. The derived POD transformation matrix, which is the set of POD modes, is
now applied to reduce the order of the set of equations for the structure excited by the rest of the
presented earthquake events presented in Table 1. It means that the time integration in the full
(physical) space no longer has to be performed. As for the next transformations into the POD
space only one transformation matrix is applied. This strategy is here called universal POD
method. Now this approach unveils its similarities to the method of modal truncation, which is
mainly applicable to linear systems. Figures 11, 12, 13, 14 and 15 compare the displacement
responses applying the new MOR strategy and the Newmark scheme.

Accurate approximations are achieved by means of the proposed MOR strategy. The re-
sponse to the Imperial Valley earthquake (Figure 11), the Landers earthquake (Figure 12) and
the North Palm Springs earthquake (Figure 14) were highly accurate, when the proposed MOR
strategy was applied. Concerning the response functions of the Loma Prieta (Figure 13) and the
North Palm Springs excitation (Figure 15) small variations concerning the full and the reduced
solutions can be observed. This is because the responses to those excitations include deforma-
tion states that are not captured in the snapshot matrix and, hence, not in the universal POD
modes (POD transformation matrix) and thus cannot assemble the exact response history.

6 Conclusions

In this paper, a model order reduction (MOR) strategy, which is applicable to the dynamic
response analysis of linear and nonlinear structural systems was presented. Usually, the analysis
of building structures with complex geometries makes the engineer to create a finite element
model with a large number of degrees of freedom, which is associated with computational
effort in the response analysis. Therefore, the goal of this paper is to provide a new practical
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Figure 11: Response functions to the Imperial Valley excitation, full Newmark response and universal reduced
POD response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider,
displacement x and y of node 1
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Figure 12: Response functions to the Landers excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1
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Figure 13: Response functions to the Loma Prieta excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1
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Figure 14: Response functions to the North Palm Springs excitation, full Newmark response and universal reduced
POD response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider,
displacement x and y of node 1
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Figure 15: Response functions to the Northridge excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1

model order reduction strategy that is simple in application, but also very effective even in the
presence of nonlinearities for problems in the field of earthquake engineering and structural
dynamics. This strategy is extended based on the proper orthogonal decomposition (POD)
method to derive a proper transformation matrix in order to transform the nonlinear systems
into another low-dimensional subspace, which demands considerably less computational effort
for the response calculation. Once the transformation matrix is derived, the approach of the
strategy is similar to the method of modal truncation for linear systems.

In addition to the development of the MOR strategy, its application for the response cal-
culation of a realistic numerical nonlinear example is demonstrated. The example is the dis-
placement response calculation of a building structure serving as a medical complex, which is
base-isolated by friction pendulum bearing systems excited by six earthquake excitations. In
order to evaluate the accuracy of the introduced approach, the exact structural responses were
also calculated by the iterative Newmark method in the full order (physical) coordinates. Nu-
merical evaluations show that accurate approximations can be achieved if nonlinear response
patterns of the structure are already captured in the POD snapshots to extract the transformation
matrix. The advantage of this strategy is that obviously the transformation matrix is derived
just once and it can be used for response calculation of the structure under different earthquake
excitations.

Another substantial advantage of the introduced MOR concerns the speed of the response
calculations. Firstly, compared to the basic central difference algorithm, the new introduced
strategy has a much larger critical time step. Secondly, compared to the Newmark method,
which allows usually larger time steps, no iteration procedure is required.
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Abstract. The fluid dynamic preliminary design of unconventional turbomachinery is custom-
ary done with meanline design procedures coupled with gradient-free optimizers. This method
features various drawbacks, since it might become computationally expensive, and it does not
provide design insights or guidelines to the designer. This work proposes a strategy to abate
this disadvantages, namely, the construction of a reduced-order model by means of active sub-
spaces, and the use of the surrogate combined with a gradient-based optimizer. The case study
is the design optimization of a Organic Rankine Cycle radial inflow turbine. The results show
that active subspaces exist for this application, and that it is possible to construct a surrogate
with an approximate error of ±1% for the total-to-static efficiency. Additionally, the optimiza-
tion using the surrogate leads to accurate results and a computational cost at least four times
faster. Furthermore, the results reveal that the models for unconventional turbomachinery fea-
ture multiple regions containing constrained optima. Active subspace methods thus prove to be
a promising alternative for optimization of unconventional turbomachinery.
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1 Introduction

The realization of high-efficiency unconventional turbomachinery (e.g., supercritical CO2
compressors, or Organic Rankine Cycle (ORC) expanders) demands for sound optimization
strategies to tackle the preliminary design phase. Meanline methods based on empirical loss
correlations (e.g., see Ref. [1]) are typically adopted to execute this stage. The mathematical
nature of these correlations yields a highly non-linear system of equations, which is somehow
discontinuous and noisy. As a result, in order to solve this challenging design problem, the
meanline method is frequently coupled with a gradient-free optimizer (e.g., genetic algorithms,
see Ref. [2, 3]).

Although the combination of a meanline code and a gradient-free optimizer proved to be
succesful, it features several drawbacks: i) particularly for ORC machines, the computational
cost might become an issue, for the optimization must consider different working fluids, turbine
architectures, and a wide range of operating conditions [4]. ii) A genetic algorithm is a heuristic,
hence it likely yields sufficiently good solutions, though it does not guarantee an optimum.
iii) Valuable information regarding the physical response of the system is lost in gradient-free
methods (e.g., sensitivity of the objective to individual design inputs).

This work aims to to investigate the capability of a new technique to construct reduced-order
models to circumvent the aforementioned disadvantages. Active subspace methods (AS) reveal
the dominant directions of the gradient of a scalar function. By using these directions, it is
possible to transform a multidimensional input space to a lower-dimension version formed by
the so-called active variables [5]. If applicable to turbomachinery design problems, this method
holds great advantages: i) the computations with surrogates might require lower computational
time. ii) Reduced-order models can be used to build response surfaces, thus permitting the de-
signer to perform a visual inspection of the optimum solution and to switch to a gradient-based
optimizer. iii) Finally, the response surface can be used to derive relevant physical insights.

This work presents the results of the application of the active subspaces to the design of a
single-stage Organic Rankine Cycle (ORC) turbine. A meanline code for the fluid dynamic pre-
liminary design of turbomachinery is used to demonstrate the existence of active subspaces, and
to build surrogate models of the total-to-static efficiency and the machine geometry. Further-
more, a genetic algorithm optimization is compared against a gradient-based method using the
surrogates. Ultimately, the surrogate model is exploited to gain physical insight on the design
problem.

This document is structured as follows: Section 2 presents the methods used to construct
the surrogate models and to perform the constrained optimization. Section 3 discusses the
application of the methods to the design/optimization of a mini ORC radial inflow turbine. The
document ends with some concluding remarks in Section 4.

2 Methods

This section describes the standard procedure conceived to provide the preliminary fluid dy-
namic design of non-conventional turbomachinery, i.e., a meanline code coupled with a genetic
algorithm. It also reports the description of the process to construct the surrogate via AS, and
the corresponding definition of the gradient-based optimization. The method has been imple-
mented in a engineering programming environment [6], which is coupled with a computational
library for the calculation of the fluid thermophysical properties [7].
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2.1 Software for the turbine preliminary design

zTurbo is a meanline code for the fluid dynamic preliminary design of turbomachinery. It
uses empirical loss correlations for the estimation of the turbine performance (see Ref. [1]), and
it has been implemented in Fortran. More details about this tool can be found in the paper of
Pini et al. [8]

Mathematically, zTurbo can be expressed as a vector function,

Ψ = Ψ(x), x ∈ [−1, 1]m, (1)

where x is a normalized and centered input space of size m. The input space might include
variables like (per stage) rotational speed, inlet diameter, blade height, etc. Function Ψ yields
an array output, so that

Ψ = [ηts, φi], i ∈ {1, ..., N}, (2)

where ηts is the turbine total-to-static efficiency, and φi are outputs that will be compared against
N number of constraints. zTurbo is imported to the programming environment as a function.

2.1.1 Turbine design optimization by means of genetic algorithms

As a design tool, zTurbo delivers the full geometry of the turbine after the calculation is
done, which precludes the possibility of constraining the optimization from the input space.
As a consequence, the function is defined such that the solutions violating the constraints are
discarded, i.e.,

ηts(x) =


−∞, if φi(x) < ψmin,i, i ∈ {1, ..., N},
or,
−∞, if φi(x) > ψmax,i,
else,
ηts,

(3)

where ψi is the ith constraint defined by a minimum and a maximum value. Due to the definition
of the objective function from Eq. 3, the optimization problem reads

Maximize ηts(x). (4)

The built-in genetic algorithm provided by the host software is then used to solve the optimiza-
tion problem [9].

2.2 Surrogate modeling by means of Active Subspace methods

This section discusses briefly the construction of the surrogate model based on the Active
Subspace method. For an extense description, the reader is directed the work of Constantine [5].

Consider the scalar function

f = f(x), x ∈ [−1, 1]m, (5)

where x is an array withm number of continuous, centered and normalized inputs. Additionally,
f has has to be smooth and differentiable. The objective of the active subspace method is to
approximate f to a new function f̂ , which features a lower dimensional input space, i.e.,

f(x) ≈ f̂(xac), xac ∈ Rn, n < m. (6)

8574



Sebastian Bahamonde, Matteo Pini and Piero Colonna

Note the hat accent, which indicates f̂ is an approximation of the exact function. The new input
space (xac) is constituted by the so-called “active variables”, which are a linear combination of
the original inputs. For instance, assuming that the input space is reduced to a single dimension
(n = 1):

f(x) ≈ f̂(xac), xac = a1x1 + a2x2 + a3x3 + ...+ amxm. (7)

Infinite number of linear combinations are available. The active subspace method provides
a strategy to discard the trivial linear combinations, and select the important ones. A short
explanation on this procedure follows.

The gradient of f is defined here as the column vector of partial derivatives,

Ofx =

[
∂f

∂x1

,
∂f

∂xi

, ...,
∂f

∂xm

]T
. (8)

This method relies on the analysis of matrix C,

C = E
[
(Ofx)(Ofx)T

]
, (9)

where E is the expectancy of the function inside the square brackets. C might be considered as
the uncentered covariance of the gradient vector. Therefore, it contains the information of the
directions on which f changes the most (in average).

The exact evaluation of C requires multidimensional integration. Nonetheless, it is possible
to approximate C by sampling throughout the input space, namely

Ĉ =
1

M

M∑
j=1

(Ofx)(Ofx)T , (10)

where M is the number of samples. Note again the hat accent, which indicates that Ĉ is an
approximation of the exact covariance matrix. It is important to mention that much of the active
subspaces research aims to estimate the accuracy of Ĉ, and to study the corresponding strategies
to improve this approximation [5].

Ĉ is real and symmetric, and therefore a real eigenvalue decomposition is feasible, as in

Ĉ = Ŵ Λ̂Ŵ T . (11)

Large gaps between the eigenvalues indicate that there are directions where the function changes
the most. Λ̂ and Ŵ can be accordingly split in two families, so that

Ŵ =
[
Ŵac Ŵic

]
, Λ̂ =

[
Λ̂ac Λ̂ic

]
. (12)

The subscripts ac and ic correspond to active and inactive, hence the “ac” matrices contain the
largest eigenvalues (separated by a gap) and the corresponding eigenvectors. The input space is
then rotated according the Ŵac, in order to “hide” the directions where the function variability
is lower, namely

xac = Ŵ T
ac

x1

...
xm

 , (13)

Notice that the number of dimensions of xac equals the number of selected active eigenvectors.
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Due to the sampling required to construct Ĉ, there areM sets of transformations in the active
subspace (f̂ : xac → f). Ultimately, f is approximated to a reduced-order function, i.e.,

f(x) ≈ f̂
(
Ŵ T

ac xT
)
, (14)

The reduced order model can take any algebraic structure, e.g.,

f̂(xac) = a1x
2
ac + a2xac + a3. (15)

Note that in this example that the original f has been transformed to a new function with a one
dimensional input or active variable.

2.2.1 Surrogate model of zTurbo

The nature of the turbomachinery loss correlations makes zTurbo inherently unstable, namely,
the function outputs might present discontinuities or non-smooth intervals. As a consequence,
the design space for the test case (see Fig.1) is selected such that it guarantees a well-behaved f .

The objective of this work is performing a constrained optimization, hence surrogate models
of additional quantities of interest are also created. Ultimately, zTurbo is transformed in a
system of equations, as in,

Surrogate model
{
η̂ts = η̂ts(xη),
φ̂i = φ̂i(xφ,i), i ∈ {1, ..., N}, (16)

where η̂ts(xη) is the surrogate model of the objective function, and φ̂i(xφ,i) is the ith surrogate
model corresponding to a zTurbo output to be compared against a constraint.

2.2.2 Optimization based on gradient-search methods

Once the surrogates are constructed, it is possible to formulate a constrained optimization
problem using gradient-based search methods, i.e.,

Maximize η̂ts(xη),

subject to ψmin,i ≤ φ̂i(xφ,i) ≤ ψmax,i, i ∈ {1, ..., N}.

Since the active variables are a result of a matrix multiplication, it is possible to set the opti-
mization using the original variables, so that the problem reads

Maximize η̂ts

(
Ŵ T

η xT
)
,

subject to ψmin,i ≤ φ̂i

(
Ŵ T

φ,i xT
)
≤ ψmax,i, i ∈ {1, ..., N},

where Ŵ T
η and Ŵ T

φ,i are matrices containing the approximated active eigenvectors for the ob-
jective function and the ith constraint, respectively. As in the genetic algorithm case, the built-in
optimization toolbox provided by the host software is used [9].
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3 Application and results

The test case consists on the optimization of a single-stage mini (m)ORC expander. Figure 1
shows the specifications of the selected machine, namely, a radial inflow turbine with its cor-
responding constant parameters, design space, and constraints. This test case has been adapted
from the work of Lang et.al. [10].

Notice that Figure 1 shows a non-normalized design space with m = 7. Moreover, as
discussed in Section 2.2.1, this input space has been selected such that a continuous, smooth
solution, is mostly guaranteed. The computations were run on a quad-core 3.60GHz processors
machine. No parallelization is used in this study.

Constant parameters

P3 1.0 bar r1/r2 1.02 -
b0 2.4 mm Fluid D4 -
r0/r1 1.3 -

Design space (model inputs, m = 7)

min max min max

r2/r3 1.9 2.3 - β3 50.1 61.3 ◦

D0 181.4 221.7 mm Ω 23.0 28.1 krpm
P0 3.5 4.3 bar R 0.3 0.4 -
ṁ 0.24 0.30 kg/s

Constraints (N = 4)

min max min max

M2,rl - 0.8 - γ2 - 75.0 ◦

r3,s/r2 - 0.7 - r3,h/r3,s 0.4 - -

Optimization objective

ηts

Figure 1: Constant parameters, design variables and constraints used for the optimization of the
radial inflow turbine. This test case has been adapted from to the work of Lang et.al. [10].

3.1 Construction of the surrogate model

In order to test the feasibility of the method, a primary attempt to reveal active subspaces is
done with the current test case and an oversampling factor of α = 12, so that

M = αm. (17)

Several sampling methods are available, and they are compared later in Section 3.2. For the
moment, a sparse grid combined with a latin hypercube strategy suffices. Note also that the
zTurbo gradients are obtained by forward finite differences.

Figure 2 presents the results of the eigenvalue decomposition of matrix Ĉ computed for
the turbine total-to-static efficiency. Figure 2a displays the eigenvalues in a logarithmic scale,
in order to ease the detection of active subspaces. The dashed lines correspond to a boostrap
confidence interval of 95% (see Ref. [5] for information on bootstrapping). Notice that, in-
dependently of the boostrap interval, the largest gap is located between eigenvalues 2 and 3,
thus suggesting the presence of two active variables. The smallest eigenvalue is not reported in
Figure 2, for its value is insignificant (compared to the finite difference ∆x) to draw any valid
conclusion from it [5].
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Figure 2: a) Eigenvalues corresponding to the decomposition of Ĉ. b) Eigenvector correspond-
ing to the first eigenvalue. c) Eigenvector corresponding to the second eigenvalue. The dashed
lines correspond to a bootstrap confidence interval of 95%.

Figures 2b and 2c present the coordinates of the eigenvectors corresponding to the 2 largest
eigenvalues from Figure 2a. Differently from the eigenvalue computation, the boostrap intervals
are large for various coordinates. Nonetheless, the mean value is always close to a confidence
bound, thus suggesting that only few samples feature considerable deviation from the mean.

Following the analysis done on Ĉ, it is possible to build a surface response for the turbine
efficiency as a function of two active variables. No information exists regarding the potential
structure of the surface response, yet polynomial functions lead to satisfactory results in this
work. It is well-known that, due to Runge’s phenomenon, high-order polynomials (third or
higher) might lead to incorrect predictions at the edges of the input space. It is then important
to inspect the surrogates, and even visualize them if possible.

Figure 3a presents the results of this process, namely, the surrogate-based surface and the
samples for the turbine efficiency. Although being a third order polynomial, the figure presents
a smooth, well-behaved, response. Additionally, Figure 3b presents the percentage distribution
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Figure 3: Results of the surrogate construction with an oversampling factor of 12 for the turbine
total-to-static efficiency. a) Surface response based on the surrogate, and zTurbo samples ( ).
b) Percentage distribution of the relative error between the polynomial fit and the samples.

of the related relative error between the polynomial fit and the samples. Note that the error
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prominently surrounds −0.1%, thus confirming a satisfactory approximation for the scope of
this work.

A similar analysis for the other quantities of interest is performed, also leading to satisfactory
results. It is possible now to perform a gradient-based optimization, by means of the procedure
exposed in Section 2.2.2. Moreover, it is of interest to evaluate the optimization results as
a function of several sampling techniques and number of samples. This is the matter of the
following section.

3.2 Sensitivity analysis of the optimization

In order to analyze the robustness of the optimization problem described in Section 2.2.2,
several sampling strategies are tested: i) random sampling with replacement, ii) random sam-
pling with replacement in a sparse grid, iii) latin hypercube in a sparse grid. Various oversam-
pling factors are also used. The sensitivity analysis follows the next steps:

a. for a specific sampling strategy, and oversampling factor, an optimization using the reduce-
order model is performed following the procedure discussed in Section 2.2.2.

b. The solution drawn by the optimizer is recalculated with the original model (zTurbo).

c. The relative error of the objective and the constraints are calculated.

Figure 4a and Figure 4b present the results of these computations: the relative error of the
optimization goal (εη,rel) and the constraints (averaged of absolute values, |ε̄|φ,rel), as a function
of the sampling technique and the oversampling factor (α). Although εη,rel is small for the
optimizations done with α = 4, |ε̄|φ,rel is comparatively large, thus invalidating any conclusions
drawn from these cases. On the other hand, independently of the sampling technique, εη,rel

somehow stabilizes for α ≥ 8, and it seems to reach convergence as the sampling population
increases. However, notice that the estimation of the constraints is poor when using random and
sparse grid-random sampling strategies. Conversely, the sue of a sparse grid-latin hypercube
guarantees accurate estimation of the constraints, hence making this sampling strategy the most
reliable.
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Figure 4: Sensitivity analysis of the optimization. a) Objective relative error as a function of
the sampling strategy and the oversampling factor. b) Constraints average relative error as a
function of the sampling strategy and the oversampling factor.

As previously discussed, the analysis on the eigendecomposition of Ĉ indicated that the
original model might be reduced to a surrogate function of two independent variables. This
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means that, in average, perturbations in the selected two active variables change ηts more than
perturbations in the five residuary (inactive) variables [5]. It follows that the surrogate model
inherently features an error, for not all the directions where the function is varying are taken in
account. Such characteristic manifests in Figures 4a and 4b, which illustrate that, independently
of the number of samples, the surrogate will always present an offset respect to the original
model value.

Worthy highlights can be extracted from Section 3.1 and the last paragraphs: i) this design
problem can be transformed into a surrogate with two active variables, ii) sampling by means
of a sparse grid-latin hypercube strategy yields the best results. These conclusions are used
now to perform a comparison between a genetic algorithm optimization and a gradient based
optimization using the active subspace models.

3.3 Comparison between optimization strategies

This section contains the results of the comparison between two optimization strategies: i)
the original procedure conceived to perform the preliminary fluid dynamic design of turbo-
machinery, i.e., zTurbo combined with a genetic algorithm (see Sec. 2.1.1); ii) the new ap-
proach, which relies the surrogate model combined with a gradient-based search method (see
Sec. 2.2.2). In order to make a fair comparison, the population number and sample size of both
methods are expressed as a function of the oversampling factor, so that

P = M = αm, (18)

where P is the genetic algorithm population size, m is the number of design inputs, and M is
the number of samples used to build the active subspace model. Figure 5a presents the optimum
as a function of the oversampling factor, and obtained by the two optimization methods.
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Figure 5: Comparison between optimization strategies: i) genetic algorithm (G.A.), and ii) latin
hypercube combined with an active subspace transformation and a gradient based optimization
(L.H. + A.S. + grad.) a) Objective (ηts) as a function of the oversampling factor. b) Optimization
time (including the construction of the surrogate) as a function of the oversampling factor.

In genetic algorithms, larger P increases the likelihood of finding a global optimum at a cost
of increasing the computational time. This response features an asymptotic response, hence,
at a certain point, increasing P will not improve the solution considerably, yet it will consume
more resources. This is the response observed in Figure 5a, where it seems that α = 12 is a
compromise between solution optimality and population size. On the other hand, the optimum
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obtained by the gradient base method combined with the surrogate converges after α = 8, since,
as presented in Figure 4a, εη,rel stabilizes for α ≥ 8. Note that eventually both solution methods
coincide, for the difference between their optima lays within the expected error of approxi-
mately ±1% (see Fig. 3b). Finally, although the surrogate corresponding to α = 4 apparently
yields a better optimum, recall that this solution presents a comparatively large deviation in the
constraints (see Fig. 4b), hence disqualifying these results.

Figure 5b presents the computational time required by both optimization procedures as a
function of the oversampling factor. The chart includes the time required to build the surrogate,
in order to make a proper comparison. Note that the optimization by means of active subspaces
presents a lower computational burden, almost independently from the population size (at least
four times faster). That is, even comparing a genetic algorithm with α = 4 with a surrogate
optimization with α = 20, it is observed that the latter is computationally lighter.

3.4 Physical insight given by the surrogate

Relevant knowledge is gained by comparing the optimum design solutions obtained by both
methods. The genetic algorithm presents the best results when using α = 12 (see Fig. 5a),
hence this solution is selected. Although the optimum and the constraints given by the surro-
gate converge for α ≥ 8 (see Fig. 4), a closer look reveals that the error slightly decreases as α
increases. For this reason, the comparison is done with the surrogate built with α = 20. Fig-
ure 6a presents the error in the constraints corresponding to this solution. The deviation does
not exceed ±1%, hence demonstrating again the robustness of the optimization.
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Figure 6: a) Constraint relative error for the optimum drawn by the surrogate model (α = 20).
b) Optimal design inputs drawn by the genetic algorithm (G.A), and the surrogate model (L.H.
+ A.S. + grad.).

The optimum design inputs are presented in Figure 6b. Although the turbine efficiency prac-
tically coincides (see Fig. 5a), the values of the design variables are mostly different. This sug-
gests that, for turbomachinery design problems, there might be more than one (m-dimension)
region containing constrained optima. Nonetheless, by virtue of the active subspace transfor-
mation, it is possible to gather these optima in a single region in the reduced-order response
surface.

To prove this point, the seven dimension input of both optima are transformed according
to the active subspace computed with α = 20. The results of this procedure are presented in
Figure 7. To derive physical conclusions, it is necessary to recall some theory. The eigenvalue
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decomposition of Ĉ reveals the directions where the function variability is the largest. This
decomposition is sorted in order of influence, meaning that the first active variable (correspond-
ing to the largest eigenvalue) affects more ηts. Due to this fact, it is likely that both optimizers
converge to constrained solutions in the region surrounding the first gradient dominant direc-
tion, i.e., the first optimum active variable should concur. This is confirmed in Figure 7a, which
shows the optimum design inputs in the active subspace.
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Figure 7: Coordinates of the genetic algorithm optimum (G.A) and the surrogate model opti-
mum (L.H. + A.S. + grad.) in the active subspace. b) Contour plot of the surrogate response
surface (α = 20), and solutions drawn by the genetic algorithm ( ) and the surrogate model
( ).

Figure 7b depicts the contour plot of the ηts reduced-order surface response (α = 20). It
also presents the coordinates of the solutions drawn by both optimizers. Notice that there are a
small regions where the effect of xη,2 is negligible. As a matter of fact, the optima reside in one
of them, thus featuring different xη,2, and proving that this region contains multidimensional
solutions that respect the constraints.
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Figure 8: Reduced-order response surface (see Fig. 7b) for the turbine efficiency observed from
an orthogonal point of view.

Figure 7b exposes the existence of a parabolic shape for ηts, which converges to a peak as
both active variables approach 1.5. In an attempt to understand this response, Figure 8 presents
the ηts surface from an orthogonal point of view. It is clear how the efficiency lines present a
convex shape with an (non-constrained) optimum that is mainly a function of xη,1. The second
active variable xη,2 scales the effects of xη,1.
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In order to determine the origin of the efficiency convex shape, the contributions of the loss
mechanisms from various samples following the ηts line (xη,2 = 0.2) are presented in Figure 9.
Observe in Figure 9a that the kinetic energy, the rotor profile, and secondary losses shape the
efficiency curve, while the other contributions remain relatively constant. In particular, the
convex shape observed in Figure 8 is induced by the kinetic energy loss.

The reasons for the losses variation can be deducted from Figure 9b, which presents the rotor
profiles and the velocity triangles for the selected samples. Observe that, as xη,1 increases, the
flow deviation decreases, hence abating the rotor profile and secondary losses. Moreover, as
xη,1 increases, the component of the velocity normal to the outlet area decreases, thus requiring
larger blade heights. Likewise, notice that larger xη,1 decreases the absolute velocity at the
outlet of the machine, hence increasing the efficiency until a maximum is reached (xη,1 ≈ 0.7),
after which the outlet kinetic energy again increases.
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Figure 9: a) Loss contributions relative to the eulerian work for selected samples along xη,2 =
0.2. b) Velocity triangles and rotor meridional channel for the selected samples. The solid lines
(-) in the velocity triangles correspond to the rotor inlet, the dashed lines to the rotor outlet (- -).

4 Concluding remarks

This work investigates the use of active subspaces to perform the fluid dynamic preliminary
design of turbomachinery. The case study consists on the design of an ORC single-stage radial
inflow turbine. Active subspaces are used to construct a reduced-order model of the machine
total-to-static efficiency and the meridional channel geometry. The surrogate is then tested
in a constrained optimization, and the results are compared against the original optimization
procedure (genetic algorithms combined with the original model). Ultimately, the response
surface is analyzed to gain physical knowledge on the design problem. The main results are
summarized as follows:

i) active subspaces exist in a (limited) design space. It is therefore possible to construct
reduced-order models for the turbine optimization objective, and the constraints. The
surrogates present an accuracy considered satisfactory for the objectives of this work
(±1%for the total-to-static efficency).
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ii) By means of the surrogate models, it is possible to switch to gradient-based search meth-
ods. The optimization results show that, compared with the original method, using the
surrogates is computationally less demanding (at least four times faster) and compara-
tively accurate.

iii) The design optimization of ORC turbomachinery likely feature multiple regions contain-
ing constrained optima. The active subspace transformation gathers this optima in a single
region in the reduced-order response surface.

Although the work has been done in a limited design space, the active subspace methods have
proved to be a valuable tool for turbomachinery design. Future work will deal with other ex-
pander configurations and a larger design space.
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Nomenclature Subscripts
α oversampling factor 0, 1, 2, 3 stage position
β3 rotor outlet blade angle ac active
Ĉ uncentered covariance matrix ic inactive
D mean diameter min minimum
ηts turbine total-to-static efficiency max maximum
γ2 stator outlet blade angle h hub
Λ̂ eigenvalue matrix s shroud
λ̂ eigenvalue η related to efficiency
M number of samples φ related to zTurbo output
M2,rl relative Mach number at rotor inlet ls loss
m dimension of design inputs vector Abbreviations
ṁ mass flow rate A.S. active subspace methods
N number of constraints G.A. genetic algorithm
n dim. of reduced-order inputs vector L.H. latin hypercube
Ω rotational speed grad. gradient
P turbine inlet pressure
ψ constraint
φ zturbo output
R degree of reaction
r mean radius
Ŵ eigenvector
x design input vector
x design input value
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Abstract. This paper aims at extending a markov chain based reduced order model to discrete
gust load prediction in an aeroelastic simulation. An method for the incorporation of the distur-
bance velocity approach is presented and evaluated for the AGARD445 wing based on different
training strategies. The reduced order model trained under elastic and gust load conditions
can successfully predict the gust response in a rigid and in an elastic setup. Thus the presented
ROM approach can serve as one single CFD surrogate model to predict aerodynamic forces
under multiple loading conditions.
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1 Introduction

Efficient gust response analysis is crutial in aircraft design. Compared to linear aerody-
namic models, URANS-solver can capture nonlinear effects in the transonic flow regime such
as separation and shock movement at the cost of high computing times. Reduced order models
(ROM) can reduce this computational cost significantly which is very important for coupled
fluid-structure interaction simulations of large aircraft structures [16, 9].

ROMs for gust load caluations have been established using a linear aerodynamic model
[4] or by a correction of doublet-lattice results [2]. [17] applied a disturbance velocities ap-
proach(DVA) in a linear aerodynamic state space formulation for the construction of a ROM
that is capable of predicting generalized aerodynamic coefficients.

Recently [8] presented a reduced order model, that combines proper orthogonal decompo-
sition (POD) and a discrete Markov chain with nonlinear mapping functions for the prediction
of aerodynamic loads in the time domain. This paper presents an approach for the direct in-
corporation of the DVA [6] into this markov chain based ROM and an application to the 3D
AGARD445.6 benchmark configuration under a discrete gust.

Using a predefined displacement sweep function to superimpose the first structural eigen-
modes the ROM is trained with the computed nonlinear aerodynamic response of a forced
motion analysis in TAU. Limit cycle oscillations (LCO) can be sufficiently predicted even for
complex 3D configurations in the transsonic flow regime [9]. Extending the ansatz for the input
displacements of the ROM with the discrete disturbance velocities, gust loads can be predicted.

AGARD model The well known benchmark case of the AGARD445 wing, experimentally
studied by Yates [15], is choosen as a 3D example of the presented methods. The aerodynamic
and structural model are depicted in Fig. 1. The corresponding structural eigenmodes are shown
in Fig. 2 and listed in Table 1.

(a) (b)

Figure 1: AGARD445.6 model surface grids: (a) structural (b) aerodynamic

2 Numerical methods

The following paragraphs summarize the overall methodology including the solution of the
fluid-structure problem, the training and creation process of the reduced order models, for fur-
ther information consult [7].

2.1 Fluid-structure interaction

For the solution of the coupled fluid-structure interaction(FSI) problem a partitioned implicit
coupling scheme is applied to solve the Dirichlet-Neumann iteration. The data transfer and in-
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(a) (b)

(c) (d)

Figure 2: First four eigenmodes of the AGARD445.6-wing [7]: (a) first bending mode Φ1; (b) first torsion mode
Φ2; (c) second bending mode Φ3; (d) second torsion mode Φ4

Mode fs/Hz fs,Unger/Hz fs,Y ates/Hz
1 9, 813 9, 813 9, 60
2 38, 795 38, 800 38, 10
3 50, 514 - 50, 70
4 94, 119 - 98, 50

Table 1: Comparison of the eigenfrequencies of the employed structural mesh using the reference values from
fs,Unger Unger [13] and the experimental detemined values of Yates [15]

terpolation of the displacements and forces between the nonconforming grids is established with
ifls, see [5]. Using the computational fluid mechanics(CFD) solver TAU [11] for the solution
of the Euler equation (Dirichlet boundary conditions) the unknown aerodynamic forces of the
fluid surface mesh can be computed. The structural problem with Neumann boundary condi-
tions is solved for the unknown structural displacements using a second order implicit newmark
algorithm. The mass M and stiffness matrix K are exported from an ANSYS model.

CFD Gust calculation In contrast to a stochastic nature of atmospheric turbulence, a gust is
considered in an idealized form as a discrete gust profile of disturbance velocities, see [14]. The
CFD solver TAU provides a disturbance velocity approach (DVA) for the generation of discrete
gust profiles. The DVA assumes that the disturbance velocities can be superimposed to the flow
field by altering the flux balance, as described in [6], neglecting the mutual influence between
the aircraft and the gust. One common gust profile for design purposes is the 1-cos gust (see
FAR25.341 [3]) where the disturbance velocities can be expressed as a function of time and
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space

wg(xg) =

{
wg0

2

(
1− cos 2πxg

λg

)
0 ≤ xg ≤ λg

0 xg < 0 || xg > λg
(1)

with the gust wave length λg, the relative gust moving velocityUg and the maximum disturbance
velocity wg0.

2.2 Training process

The training process consists of two steps and is summarized in the follwing paragraphs, for
further information consult [7, 8, 9]:

1. Generation of training data by collecting forced displacements uf (t) and aerodynamic
forces Ff (t) using TAU

2. Model identification, construction of the ROM

In the first step the CFD data are calculated using an forced motion unsteady analysis in order
to collect fluid displacements uf (t) and corresponding force coefficients cF (t) =

F f (t)
1
2
ρ∞U2

∞Aref

values for each node of the aerodynamic surface mesh in every timestep t. The forced motion is
defined by a superposition of the utilized modes in Eq. (2) and a sweep function in Eq. (3). The
sweep function incorporates several features that can be tuned by parameters: The maximum
amplitude of each mode is controlled by the maximum value of the generalised coordinate
qs,max, the exponential amplitude increase over time is controlled by kAmp and the frequency
modulation can be tuned with kω.

uf (t) =
3∑
s=1

qs(t)Φs (2)

qs(t) = qs,max (1− e−kAmpt)︸ ︷︷ ︸
exp. amplitude increase

sin(ωst(1−0, 1 sin

(
ωs
kω
t

)
︸ ︷︷ ︸

frequency modulation

)) (3)

In the second step the ROM is build based on the training data. The elements of the ROM
are depicted in Fig. 3:

Using the truncated singular value decomposition(SVD) as a proper orthogonal decompo-
sition(POD) technique both the uf (t) and cF (t) can be mapped into an subspace and can be
described with their corresponding POD coefficients ûf (t), ĉf (t) (input/ouput POD, cp. Fig.
3 ). The mode truncation is established using a user-defined threshold value vred and a partial
sum criterion regarding the singular values σi of each mode, see e.g [12].

v =

∑M
i σi∑q
j σj

≥ vred mit 0.0 ≤ vred ≤ 1.0 (4)

Combining a NARMA(Nonlinear Autoregressive Moving Average) Markov chain model
[10] and a single layer RBF neuronal network[1] as the nonlinear mapping function G(x),
a surrogate function ĉF (t) can be defined Eq. (5). The surrogate function only depends on the
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Figure 3: Modular process chain of the reduced order model

current static displacement input ûf (t) and some discrete values for time history of unsteady
velocities ˆ̇uf .

ĉF (t) = G

 ûf (t)︸ ︷︷ ︸
steady part

,
ˆ̇uf (t)

U∞
,

ˆ̇uf (t− fsp∆t)
U∞

,
ˆ̇uf (t− 2fsp∆t)

U∞
, . . . ,

ˆ̇uf (t− lu̇∆t)
U∞︸ ︷︷ ︸

unsteady part

 (5)

where fsp ∈ N is defined as a sparse factor that reduces the number of input parameters by
considering only each fspth time step in the history of velocities.
For all simulations a time window number of lu̇ = 50, an unsteady physical time step size of
∆t = 0.001 and a sparse factor of fsp = 5 are employed.

Handling of gusts in ROM approach The main idea for the incorporation gust disturbance
velocities - as published in [7] - is to superimpose the disturbance velocities wg(t) with the
structural displacements velocities u̇f (t) to form a modified velocity distribution u̇f+g(t) =
u̇f (t) + wg(t). Consequently the surrogate function Eq. (5) is modified to

ĉF (t) = G

(
ûf (t),

ˆ̇uf+g(t)

U∞
,

ˆ̇uf+g(t− fsp∆t)
U∞

, . . . ,
ˆ̇uf+g(t− lu̇∆t)

U∞

)
(6)

2.2.1 Elastic modes trained ROM E

In the training data generation step only the first three elastic eigenmodes (Table 1) of the
AGARD wing are choosen in the forced motion process using Eq. (2). Two analyses with
the maximum values of the generalized coordinates as listed in Table 2 are performed and the
resulting matrices uf,E(t) and cF,E(t) serve as input for the training process.

Under the flow conditions listed in Table 3, 1000 time steps are calculated using empirical
parameters of kAmp = 5 and kω = 25, compare Eq. (3).
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Analyse q1,max q2,max q3,max
I 0.02 0.005 0.004
II 0.04 0.01 0.008

Table 2: Maximum values of the generalized coordinates of the forced motion analysis

parameter value parameter value
Ma 0, 901 ρ∞ 1, 29251 kg

m3

p∞ 101325, 0 Pa U∞ 298, 49 m
s

T∞ 273, 15 K α 0◦

Table 3: Flow conditions

Using the truncation criterion of Eq. (4) with vred = 0.99 results in 3 input POD modes
(accoring to the three exited eigenmodes) and 254 output POD modes.

2.2.2 Gust trained ROM G

In order to generate a gust training set a gust analysis over the rigid wing is performed using
the already mentioned flow conditions (Table 3) and the following gust parameters:

The relative gust moving velocity ug is set to U∞ and the gust wave length λg is calculated
as follows in order to exite the first structural eigenmode fs,1.

λg =
Uinf

fs,1
= 30.4179m (7)

In every timestep the disturbance velocities wg(t) as well as the force coefficients cF,G(t) are
collected from three analyses with varying maximum disturbance velocities, see Table 4.

Gust analysis wg0
I 4 m

s

II 8 m
s

III 20 m
s

Table 4: maximum gust disturbance velocities for all three gust analyses for the rigid wing

For the ROM identification process virtual deformations uf,G(t) = wg(t) ·∆t are calculated
and serve as the only input for the ROM training process. The reduced order model G is thus
trained with uf (t) = uf,G(t) and cF (t) = cF,G(t) of all three gust analyses. Consequently using
Eq. (4) with a reduction threshold value of vred = 0.999 overall 2 input modes and 21 output
modes are identified.

2.2.3 Gust trained ROM GE

For the reduced order model GE that should predict the elastic as well as the gust CFD
response no new data has to be generated. It is trained with forced motion data of 2.2.1 and
2.2.2 and thus with uf (t) = uf,E(t)∪uf,G(t) and cf (t) = cF,E(t)∪cF,G(t). Consequently using
Eq. (4) with a reduction threshold value of vred = 0.999 overall 4 input POD modes and 246

8592



C. Strobach, K. Lindhorst, M. C. Haupt, P. Horst

output POD modes are identified which means that one additional input POD mode is identified
compared to ROM E.

3 Results

In the following section the results for the CFD and ROM calculation are compared. In
the first sections the results for a gust over the rigid AGARD wing are compared for the flow
conditions depicted in Table 3. Finally the gust trained ROMs are employed in an aerostructural
coupling environment.

3.1 Rigid - ROM E

Fig. 4 shows the comparative results for the rigid setup, i.e. no deformations of the stru-
cutural model are considered. The reduced order model E can predict the the time response
accurately but the amplitude of the gust is underestimated, due to the improper training set. The
exited strutural modes in the training set do not include displacements at the wing root and thus
disturbance velocities in the root of the wing cannot be taken into account, as alreay argued in
[7]. Thus an improved training set should at least include modes with displacements/velocities
at the wing root.

(a) (b)

Figure 4: CFD versus ROM E results: (a) global lift coefficient cL (b) global moment coefficient cM

3.2 Rigid - gust trained ROMs

Comparing the global lift cL and moment cM coefficient both the gust trained models can
predict the gust response of the CFD analysis for the rigid setup, see Fig. 5.

3.3 CFD-CSM and ROM-CSM coupling results

In Fig. 6 the results for the aeroelastic AGARD wing being exposed to a 1-cos gust with a
maximum disturbance velocity of wg0 = 2m

s
are depicted. Due to the zero angle of attack the

wing is initially in rest and reacts to the gust induced change in angle of attack with an increase
in lift and hence it deflects. After the gust has completly passed the wing at t = 0.107 the wing
exibits flutter, as reported by [15] for these flow conditions (see Table 3).
As expected the ROM G - only trained with pseudo disturbance velocities - isn’t capable of
predicting the aerodynamic response of the elastically deforming wing.

8593



C. Strobach, K. Lindhorst, M. C. Haupt, P. Horst

(a) (b)

Figure 5: Results for ROM G and GE compared to CFD: (a) global lift coefficient cL (b) global moment coefficient
cM

The ROM GE - incorporation both gust and elastic modes - can predict the reaction of the wing
quite well showing only slight deviations in cL and uz,T ip. The maximum disturbance velocity
is limited here to wg0 = 2m

s
because at higher values the maximum displacement would exceed

the maximum trained value, see Table 2. In order to capture higher disturbance velocities the
training with elastic modes should be set up with increased maximum generalised coordinates
qi,max.

(a) (b)

Figure 6: FSI results for model GE with gust amplitude wg0 = 2m
s : (a) global lift coefficient cL (b) structural

displacement of tip node uz,T ip

4 CONCLUSIONS

Three different reduced order models have been compared for a gust over a rigid AGARD
model. The first ROM trained only with the structural elastic eigenmodes cannot sufficiently
capture the gust response, due to missing training modes including displacements and velocities
at the wing root.
Both gust trained models without elastic modes (ROM G) and including elastic modes (ROM
GE) can accurately predict the gust response in the rigid setup.
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In the FSI simulation only the gust and elastic modes trained ROM GE can successfully
predict the aerostructural behaviour of the AGARD wing in the transonic flight regime. In
addition the enhanced ROM GE can still be used to predict the flutter boundary and thus can
serves as a surrogate model for multiple flow conditions.

Future studies should include parameter variations for different gust shapes and amplitudes.
In addition the presented method could be applied to different configurations, e.g. more realistic
3D configurations including viscous effects. It could also be coupled with flight mechanical
simulations in order to resolve the dynamic response of the aircraft.
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lastik. PhD thesis, 2015. Forschungsbericht 2015-01.

[8] K. Lindhorst, M. Haupt, and P. Horst. Efficient surrogate modelling of nonlinear aerody-
namics in aerostructural coupling schemes. AIAA Journal, 52(9):1952–1966, 2014.

[9] K. Lindhorst, M. Haupt, and P. Horst. Aeroelastic Analyses of the High-Reynolds-
Number-Aerostructural-Dynamics Configuration Using a Nonlinear Surrogate Model Ap-
proach. AIAA Journal, 53(9):2784–2796, 2015.

[10] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer London
Ltd., London, 1993.

[11] D. Schwamborn, T. Gerhold, and V. Hannemann. On the Validation of the DLR-TAU
Code. In New Results in Numerical and Experimental Fluid Mechanics II, pages 426–
433. Springer, 1999.

[12] H. Spiess. Reduction methods in finite element analysis of nonlinear structural dynamics.
PhD thesis, 2006.

8595



C. Strobach, K. Lindhorst, M. C. Haupt, P. Horst

[13] R. Unger, M. C. Haupt, and P. Horst. Coupling techniques for computational non-linear
transient aeroelasticity. Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, 222(4):435–447, 2008.

[14] J. R. Wright and J. E. Cooper. Introduction to aircraft aeroelasticity and loads. John
Wiley & Sons, Ltd., 2007.

[15] E. C. Yates. AGARD standard aeroelastic configuration for dynamic response, candidate
configuration I. Wing 445.6, NASA TM-100462, Langley Research Center, Hampton, VA,
1987.

[16] W. Zhang, B. Wang, Z. Ye, and J. Quan. Efficient method for limit cycle flutter analysis
based on nonlinear aerodynamic reduced-order models. AIAA journal, 50(5):1019–1028,
2012.

[17] W. Zhang, Z. Ye, Q. Yang, and A. Shi. Gust response analysis using CFD-based reduced
order models. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons
Forum and Aerospace Exposition, AIAA Paper, volume 895, 2009.

8596



 ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10 June 2016 

RESEARCH ON HYSTERETIC BEHAVIORS OF A SAPARATED 

SHOCK ABSORBER APPLIED IN RAILWAY BRIDGE  

Aili Li1, Ri Gao1, Mingde Sun1 and Jilei Zhang1  

1 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China  

E-mail:liaili2016@outlook.com, rigao@bjtu.edu.cn, mingdesun@163.com, lei1024747@sina.com 

 

Keywords: separated shock absorber, hysteretic tests, mechanical model, energy dissipation, damping 

ratio. 

Abstract. Shock absorbers are installed between piers and superstructures in railway bridges. 

They can act as bridge members which bear the longitudinal force and displacement of the 

bridges in the serviceability state. When large earthquake occurs, the shock absorbers dissi-

pate energies to reduce the seismic responses of bridges and protect the other bridge mem-

bers. Based on the single cantilever shock absorber, a new structural type of shock absorber 

is proposed in this paper. To investigate the hysteretic behaviors of the improved shock ab-

sorber, quasi-static cyclic tests using displacement-controlled cyclic loading, including two 

separated shock absorbers, were carried out. Besides, the hysteresis behavior parameters of 

the separated shock absorbers, such as hysteretic curves, skeleton curves and damping ratio 

etc., were analyzed. The test results indicate that the hysteresis curve of this kind of separated 

shock absorbers is plump and stable. The maximum displacement and force could reach 

160mm and 220kN, respectively. And bilinear model could be adopted to describe mechanical 

model for the separated shock absorber. The initial stiffness is high so that the shock absorbs 

can meet the demand of stiffness in train operation process. Besides, the equivalent viscous 

damping ratios can reach 0.46. In addition, this type of shock absorber exhibits sufficient de-

formation capacity and energy dissipation capacity. Therefore, this new separated shock ab-

sorber could be an ideal energy dissipator used in the high speed railway bridges.  

1 INTRODUCTION 

The construction of high-speed railway is developing rapidly in China and the use of 

bridges takes a great proportion in the high-speed railway. In recent destructive earthquakes, 

many bridges sustained serious damage, leading to a great number of casualties and enormous 

economic loss [1-2]. So, improving the seismic behavior of high-speed railway bridges is one 

of the key problems that must be solved [3]. In the past 20 years, the passive energy dissipa-

tion technology has attracted high attention and it has been widely used in the practical struc-

tural engineering [4]. The passive energy dissipation technology used in the bridges mainly 

includes the seismic isolation technology, energy dissipation technology and tuning damping 

technology [5] . 

Dampers which is belong to the energy dissipation technology are able to provide addi-

tional damping effects to reduce the seismic responses of the structures. According to the en-

ergy dissipation materials, commonly available dampers mainly include viscous dampers, 

viscous elastic dampers, steel dampers, etc [6]. Many steel dampers dissipate the energy by 

elastic-plastic deformation. Compared with other dampers, steel dampers offer significant ad-

vantages in terms of durability and economic efficiency [7]. However, most of steel dampers, 
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such as X-shaped ADAS, HADAS device [8-9], buckling restrained brace [10] and so on, 

were developed for building structures, which may not be able to satisfy the large deformation 

demands in bridge engineering [11]. 

Based on the idea of “separate bearing function”, a new type of steel dampers named shock 

absorber was proposed by Professor Li Chenggen and Gao Ri in China [12]. So a new bearing 

system (Fig.1) is formed by combining the shock absorber and sliding bearing. The design 

concept is to change the fixed bearing into the sliding bearing so that the vertical and 

horizontal function can be separated in railway simply supported beam bridge [13]. Meng Xi 

and Gao Ri investigated the effects of the single cantilever shock absorber on a bridge, the test 

and numerical simulation results indicated that the single cantilever shock absorber could 

provided large energy consumption capacity, and protected the bridge structure effectively 

[14-15]. However, there are some disadvantages of the single cantilever shock absorber, for 

example, the high cost and inconvenient installation.  

Therefore, a novel type of shock absorber called separated shock absorber is proposed in 

this paper to solve the problems above. The structure of the shock absorber is first presented. 

So the first part in this paper introduces the designed details of the shock absorber. In order to 

investigate the mechanical performance of the separated shock absorber, two specimens were 

tested by using quasi-static cyclic loading schemes in the second part. The third part presents 

and analyses the test results.  

 

Figure 1: Shock absorber-sliding bearing system [15]. 

2 STRUCTURE OF THE SEPARATED SHOCK ABSORBER 

The separated shock absorbers made of mild steel are commonly installed with the sliding 

bearing between the upper structures and lower piers. And The separated shock absorbers are 

distributed uniformly around the sliding bearing. The longitudinal stiffness and force of 

bridge determine the number of the separated shock absorbers.  

As shown in Fig.2, the mild steel separated shock absorber mainly consists of two shock 

absorber bodies, sleeve and two connection plates. The shock absorber body and connection 

plate are made of the same steel and they process model together. The two connection plates, 

which are respectively designated as the upper connection plate and lower connection plate, 

are bolted to the upper girder and lower pier by using high strength bolts. The sleeve has a 

function that combines the upper shock absorber body and lower shock absorber body by us-

ing limit steel pin. Another function of the sleeve is to transfer horizontal force between the 

two shock absorber bodies. The transverse section shape of shock absorber body is round and 

the body can be divided into two parts, i.e. load transfer part and deformed part. When a large 

earthquake happens, the relative displacement will be produced in horizontal direction be-

tween the upper connection plate and lower connection plate. Then the shock absorber bodies 
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occur yielded plastic deformation to dissipate energies, thus reducing the responses of the 

bridge. 

 

 

Figure 2: Schematic diagram of separated shock absorber. 

At the stage of design, the shock absorber body can be seen as cantilever beam.  According 

to the material mechanics, for more sections of the deformed part along the same shock ab-

sorber body to become plastic, the relationship between diameter d and distance x (Fig.3) is 

presented as follows: 

 
1 1

1 3

1

d (0 )

d =
(Δ + ) ( )

x L

L
x L x L

L

 

 
  


 (1) 

Where x is the distance from the top of the shock absorber body to cross section and 1d  is the 

diameter of the force transfer part, which is fixed constant only in connection with the height 

of the separated shock absorber.   represents the section coefficient and it is fixed value. 1L  

and L are the height of force transfer part and shock absorber body, respectively.   is the ver-

tical deformation of the shock absorber body when the shock absorber occurs the designed 

maximal horizontal displacement.  

 

 

Figure 3: Theoretical calculation model. 
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The height of deformed part largely determines deformation capacity of the separated 

shock absorber. Hence the deformation capacity of the shock absorber can be enlarged by in-

creasing the height of the shock absorber body. In addition, such design can significantly im-

prove the low cycle fatigue behavior of the separated shock absorber because it avoids the 

concentration of plasticity at one cross section. 

Compared with the single cantilever shock absorber, the structural form of separated shock 

absorber is simpler. And the shock absorber body can be more easily installed and replaced if 

damaged. 

3 EXPERIMENTAL PROCESS  

3.1 Specimen design 

There were two specimens designed for this experiment and they were named A1 and A2. 

The dimensions of two specimens were the same. The major parameters of specimens are giv-

en in the table 1.  

The designed maximal horizontal displacement was 160 mm in this experiment. As men-

tioned before, the value of   was 18.8 mm through finite element analysis with  the maximal 

horizontal displacement. The length and inner diameter of the sleeve with a thickness of 40 

mm were 250 mm and 120 mm, respectively. Specimen adopt the connection plate with a 

height of 30 mm and its diameter was 250 mm. The number and diameter of the high strength 

bolts were 6 and 32 mm, respectively. 

The shock absorber body and connection plate for the two specimens are all made of one 

specially made mild steel in China. Uniaxial tensile test for the mild steel was carried out. The 

results indicated that the yield strength and ultimate tensile strength were 250 Mpa and 420 

Mpa, respectively. In order to limit the vertical displacement of the shock absorber body, the 

strength of sleeve must be higher than the strength of the specially made mild steel. So we 

choose 45 steel (in Chinese rule) as the base metal of sleeve. 

 

Parameter L  (mm) 1L (mm) 1d (mm)   

Value 430 75 120 15.472 

 

Table 1: The major parameters of specimens. 

3.2 Test setup and loading scheme 

The test was conducted in the structural laboratory of Beijing Jiaotong University. Fig.4 

gives a photograph of the loading frame, which mainly includes one truss and an electro-

hydraulic loading system. The loading system mainly consists of three subsystems: the con-

trolling system, oil hydraulic and measurement system. 

A1 and A2 are to investigate the hysteretic behaviors subjected to cyclic loading. And the 

experiment was all conducted using a displacement controlled cyclic loading. The loading 

scheme follows a triangular loading pattern with increasing amplitudes. The first cycle ampli-

tude was 2 mm, and increased by 2 mm for the succeeding cycles until it reached 20 mm. Af-

ter 20 mm, the amplitude was increased by 10 mm until it reached 80mm. Then the amplitude 

was increased by 20 mm until it reached 160 mm. When the amplitude was smaller than 20 

mm, the loading speed was 2 mm/s. While the amplitude was larger than 20mm, the loading 

speed was 8 mm/s. And the loading test was repeated for 5 cycles at every amplitude. 
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Figure 4: Test setup. 

4 EXPERIMENTAL RESULTS 

4.1 Experimental phenomena and analysis 

The experimental phenomena of A1 and A2 was turned out to be similar. When the ampli-

tude was smaller than 30 mm, the center line of separated shock absorber was approximately 

a straight line which was perpendicular to the horizontal ground at the equilibrium position. 

When the amplitude was from 30 mm to 140 mm, there were no cracking on the mild steel 

separated shock absorber. However, we found that the deformed parts of the shock absorber 

bodies were buckled. At the amplitude of 140 mm, the first micro-crack was observed at the 

junction site of shock absorber body and connection plate. Finally, as the amplitude increased 

to 160 mm, the crack was not expanding. The photographs of two specimens’ crack at the 

fifth cycle for amplitude of 160 mm were shown in Figs.5(a), 5(b). It is found that the two 

specimens sustained large deformation without fracture for the designed maximal horizontal 

displacement.  

 

            
 

       Fig.5(a): The crack state of A1                               Fig.5(b): The crack state of A2  

Figure 5: The crack states of A1 and A2 at the amplitude of 160mm. 

After that, the loading test was still conducted at the amplitude of 180 mm. Finally, loading 

at the amplitude of 180mm for A1 was repeated for six cycles. while A2 got fractured at the 
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fifth cycle 180 mm loading amplitude. The conjunction crack of the shock absorber body and 

connection plate failed suddenly. This was because that the thickness of connection plate was 

too thin to resist pulling force of the high strength bolts. And another reason is that the con-

junction is stress concentration area. It is recommended to increase the thickness of the con-

nection plate to add the pulling force and enhance the conjunction of the shock absorber body 

and connection plate. 

4.2 Hysteretic behavior 

4.2.1 Hysteretic curve and skeleton curve 

The loading-displacement hysteretic loops of two specimens at the third cycle for every 

amplitude were plotted in Figs.6(a), 6(b). From the Fig.6, we can see that the two hysteretic 

curves are plumper and the shape of the hysteretic loops are spindle. The elastic stiffness of 

two specimens is high in the condition of small displacement. When the displacement reaches 

about 20 mm, the separated shock absorbers sustain significant plasticity. Besides, degrada-

tions of stiffness and strength are not obvious. The low cycle fatigue behaviors of A1 and A2 

are not obviously produced at the amplitude of 160 mm. 

As presented in Fig.6(a) and Fig.6(b), the hysteresis loops of A1 and A2 are similar. It in-

dicates that the properties of separated shock absorber are stable. 

 

             
       Fig.6(a): A1                                                                   Fig.6(b): A2 

Figure 6: Hysteresis curve for the specimens:(a) A1 and (b) A2. 

4.2.2 Skeleton curve 

Fig.7 shows the skeleton curves for A1 and A2 from envelope diagram of the hysteresis 

loops. It could be seen from the figure that the skeleton curves are approximately bilinear. 

Therefore, the mechanical model for the separated shock absorber could be described by bi-

linear mode. The bearing capacity of both A1 and A2 could reach 220 kN when loading am-

plitude reached 160 mm. And it is not decreased of the bearing capacity for A1 and A2 with 

increasing of displacement. So it exhibits sufficient deformation capacity of the mild steel 

separated shock absorber. 

From the Fig.7, the skeleton curve for A1 was almost coincided with that of A2. The me-

chanical behaviors of the mild steel shock absorber are stable. 

4.3 Energy dissipation capacity 

As mentioned above, the primary function of the mild steel shock absorber is to dissipate 

energy and protect the bridge structure under large earthquake occurs. In this paper, the 
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equivalent viscous damping ratio   is taken to evaluate the energy dissipation capacity of the 

mild steel separated shock absorber. The calculating formula is as follow [16]. 

 
2

DS

S

E

E



=  (2) 

Where 
DSE  is the damping energy dissipation and it equals to the area of hysteresis loop in 

one cycle. 
SE  is the maximal strain energy. 

The comparison of equivalent viscous damping ratio between A1 and A2 is shown in the 

Fig.8. It is found that the equivalent viscous damping ratio increases with the increase of dis-

placement. The growth becomes slowly after the displacement is larger than 80 mm. And the 

maximum damping ration could be reach 0.46. 

 In addition, the equivalent viscous damping ratios of A1 and A2 are almost at the same. 

Hence the energy consumption of mild steel separated shock absorber is excellent, and the 

aseismic performance is stable. 

             

Figure 7: Skeleton cure for A1 and A2.                        Figure 8: The damping ratio for A1 and A2. 

5 CONCLUSIONS 

New type of shock absorber for railway bridges has been proposed in this paper. The qua-

si-static tests of two specimens were conducted to investigate hysteretic performances. The 

major findings obtained are as follows: 

 The separated shock absorber consists of two shock absorber bodies, sleeve and two con-

nection plates. The shock absorber body is the main energy dissipation region through 

plastic deformation. 

 Experimental results show that this shock absorber has good strength and deformation 

capacity. The hysteresis curve is stable and plump. The mechanical model for the sepa-

rated shock absorber could be described by bilinear mode. 

 The initial stiffness is high so that the shock absorbs can meet the demand of stiffness in 

train operation process. Besides, the energy consumption of mild steel separated shock 

absorber is excellent the aseismic performance is stable.  

 The structural type of separated shock absorber is reasonable except that the thickness of 

the connection plate must increase. And it provides a theoretical basis for its future de-

sign.  
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Abstract. The work was focused on modelling of cracks and simulations of their propagation 
in timber beams. The aim was to find out the influence of flaws on load-carrying capacity. In 
beam design and beam inspection, it is necessary to determine the load-carrying capacity of a 
beam with flaws. There is not much information in literature about the influence of flaws on 
bending and shear strength of timber beams. Standards for fracture mechanics design ap-
proach for timber structures are not easily available. 
The results from simulations of loaded timber beams with flaws are discussed in this paper. 
Two different types of timber beams were analysed. First type was a sawn timber beam and 
for that four different models were analysed: first model was a beam without flaw; second 
model was a beam with a straight central flaw; next was a beam with an oblique crack and 
fourth beam had a round hole in the middle of the span. Second type of beam was a glued 
laminated timber beam (glulam). For this type, five different models were analysed. First four 
variants were the same as for the solid timber beam and the fifth variant had an initial crack 
along a glue line. We analysed these types of flaws, since they are the most common flaws in 
wood. 
Simulations were conducted in ABAQUS. Material properties of wood used in the models 
were retrieved from standards; C24 for solid timber and GL24c for glulam timber beams. 
Dimensions of beams were the same for all variants and beams were considered simply sup-
ported. For an analysis of crack propagation, linear elastic fracture mechanics was consid-
ered. Modelling fracture was conducted using the extended finite element method (XFEM). 
The energy approach was used for the analysis of crack propagation. Comparing results for 
solid and glulam beams with and without cracks gave us an overview how different flaws in-
fluence load-carrying capacity of the beams and under which loading failure occurs. Simulat-
ing timber beams is more complicated compering to steel or plastic. By understanding how to 
simulate flaws in wood material it is possible to obtain reliable results with finite element 
analysis. 
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1 INTRODUCTION 

Sawn timber and glued laminated beams (glulam) are used as bearing structure members of 
building constructions. Flaws which occur in beams due to different causes can have an effect 
on their load-carrying capacity. These imperfections can, in the worst case scenario, cause an 
ultimate failure of the constructions.  

This study is focused on simulating different types of flaws in beams and analysing their 
effect on fracture behaviour and load- carrying capacity of beams. Energy criterion approach 
was assumed for fracture analysis. This approach states that a crack will grow when the 
energy required for the crack growth overcome the resistence of the material. G is the energy 
release rate and the critical value of G is the resistence of the material Gc. A crack occures at 
the moment when G=Gc and will grow when G>Gc. This fracture parameter describes fracture 
behaviour of solids taking into account stress-strain state, and deflections in the area near the 
crack [1]. 

Fracture toughness is the ability to withstand flaws that initiate failure. This parameter can 
be defined for three ways of loading a crack (mode I, II, and III) (Fig.1). The crack or failure 
occurs when crack is loaded in one of these modes or by their combination. 

   

(a)  (b)  (c) 

Figure 1: Modes of loading of a crack: (a) mode I, (b) mode II, (c) mode III 

In an orthotropic material such as wood we need to consider not only the mode of loading 
but also in which plane the crack lies and in which direction it may propagate [2]. A crack can 
lie in six planes and propagate in one or two direction. Considering 6 planes and 3 modes of 
loading, 18 basic fracture situations can be identified (Fig.2) [3].  

 
Figure 2: Possible crack propagation situation in wood 

Fracture toughness is determined from values of stress intensity factors (SIFs) in modes I, 
II, III. Stress intensity factors have usually a subscript to denote the mode of loading i.e., KI, 
KII and KIII. Some closed form solutions for stress intensity factors can be found in fracture 
mechanics handbooks. These solutions differs for case of loading, stress fields ahead of a 
crack tip, mode of loading, shape of a crack,… There is a relationship between fracture 
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toughness and critical values of energy release rates. When we consider this relationship, we 
obtain three different values which again depend on the mode of loading; i.e. GI, GII; GIII. 

Simulating wood fracture behaviour is a challenging task. Especially, when we consider 
orthotropic wood models (sawn beams) or transverse isotropic wood models (glulam). Simu-
lations are always three-dimensional (3D). However, investigating fracture behaviour of wood 
can help us to understand how wood will behave in certain circumstances and how flaws in-
fluence its characteristics.  

This study is focused on modelling and simulating beams with flaws which can occur on 
timber beams in practical applications. The effect of the flaws on shear and bending capacity 
of the timber beams is studied.  

2 MATERIAL AND METHODS 

For this study, two types of beams: sawn timber, labelled N, and glued laminated beams, 
LN, and five different flaws models were considered. First four models were same for N 
beams and LN beams. Fifth model was created only for LN beam. First model was beam with 
no crack (Fig.3 (a)); second model had a central vertical crack (Fig.3 (b)); third beam had an 
incline crack (Fig.3 (c)); fourth variant was a model with a circular hole (Fig.3 (d)); and last 
model was a beam with an initial horizontal crack (Fig.3 (e)).  

Simulations have been conducted in ABAQUS 6.14-4. Material for sawn timber beam was 
considered orthotropic linear elastic, which means we used 9 independent elastic constants for 
describing material response. Material property for glulam beams was considered transverse 
isotropic. Therefore, 4 independent constants were taken into account. Constants used for ma-
terial modelling are shown in (Tab.1).  

Global coordinate system LRT was used where L=1=X, R=2=Y, T=3=Z and also local co-
ordinate systems were assigned for lamellas in glulam beams describing material orientation. 
In our simulations, we considered the crack in TR plane and loaded by mode I for first four 
models. For fifth model, the crack was in RL plane and was loaded by a mixed mode (mode I 
+ mode II).  

 

    
 

N1, LN1  N2, LN2  N3, LN3  N4, LN4  LN5 
(a)  (b)  (c)  (d)  (e) 

Figure 3: Variants of beams 

Loading control was used for loading of N1, LN1 beams and deflection control for other 
types of beams. Therefore, N1 and LN1 beams were loaded by two equally concentrated forc-
es (Fig. 3). Values of loading forces were the ultimate maximum bending and shear forces. 
Loading forces were: bending force was 20.48kN for N1 and LN1 (characteristic value of 
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maximum bending force), shear force 49.23kN and 44.8kN for N1 and LN1, respectively (de-
sign value of maximum shear force). Forces were analytically obtained considering maximal 
bending moment; bending strength and maximal shear force; shear strength of a timber simp-
ly supported beam with a rectangular cross section loaded by two equal concentrated forces. 
Beams N2 - N4 have been loaded by 13.32mm and LN2 - LN5 by 14.9mm which are deflec-
tions obtained from a conditional finite element analysis of N1 and LN1. 

Resulting ultimate forces were obtained by analysing dissipation energy and load-
deflections diagrams. Ultimate force was force where a considerable jump in dissipation ener-
gy comes into view. This is the force under which beams fail. Also we observed the crack ini-
tiation force. It is the force for which a crack starts to propagate; however, jump in dissipation 
energy is not so significant. In some cases ultimate force is equal to crack initiation force. 

Label 
Density Modulus of Elasticity Poisson’s ratio Shear modulus 

ρ 
[kg/m3] 

[MPa] [-] [MPa] 
ELL ERR ETT νLR νLT νRT GLR GLT GRT 

N C24 350 10700 710 430 0,38 0,51 0,31 500 620 23 
LN GL24c 385 11000 300 300 0* 0* 0* 650 650 23 
*Poisson ratio may be zero value according EC5 [4] 

Table 1: Engineering constants 

The XFEM-based LEFM [5] approach was used for simulating crack propagation along an 
arbitrary, solution-dependent path. Two crack initial criterions were used: the maximum prin-
cipal stress criterion (MAXPS), and the maximum nominal stress criterion (MAXS). The val-
ues for criterions were obtained analytically by considering fundamental laws of elasticity of 
materials. These criterions were user defined. Value of MAXSP criterion was 24MPa. For 
defining MAXS criterion it was necessary to define normal-only, first direction and second 
direction mode. Therefore, for normal-only and first direction mode 24MPa load was assumed 
for both types of beams (N, LN). For second direction mode, the criterion was 4.6MPa and 
4.2MPa for N and LN beams respectively.  

The virtual crack closure technique (VCCT) fracture criterion was defined. For computing 
the equivalent fracture energy release rate, the Benzeggagh and Kenane (BK) law was used. 
The BK law model was described by [6,7,8]. Critical values of the energy release which were 
needed for describing the fracture criterion were: GIC=176N/m, GIIC=734N/m [9]. Value of 
GIIIC=10000N/m was considered in order to avoid mode III loading for a crack. C3D8 element 
type for enrichment areas and C3D8R element type for other parts were used in simulations. 
Enrichment areas were placed where the crack should occur and propagate. In these areas it 
was needed to consider enrichment functions for the purpose of fracture analysis [5]. Problem 
size is shown in Tab.3. Interaction between a glue line and lamella was created using surface 
to surface hard contact. 

Number N1 LN1 N2 LN2 N3 LN3 N4 LN4 LN5 
Elements 51676 63224 60692 51746 117260 51746 60884 54496 52768 
Variables 265314 372087 142188 247021 428196 197988 316158 178665 271398 

Table 3: Problem size 
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3 RESULTS 

The values of maximum forces together with the values of crack initiation forces for all 
beams are shown in Tab. 4. These values were obtained by analysing damage dissipation en-
ergy and load-deflection curves. The load-deflection diagram for all beams is shown in Fig. 4. 
In these diagrams is shown relationship between deflections vs. maximal load. Deflection was 
7.83mm for N1, 8.13mm for LN1, 5.18mm for N2, 7.28mm for LN2, 3.9mm for N3, 9.85mm 
for LN3, 4.42mm for N4, 6.99mm for LN4, and 15.86mm for LN5. 

For N type beams we obtained following results: N1 (referential) beam failed under 
21.35kN force. Comparing to the referential flaw-free beam, N1, the load-carrying capacity 
decreased about 54% for N2, 39% for N3 and 23% for N4. 

Force [kN] 
Beam 

N1 LN1 N2 LN2 N3 LN3 N4 LN4 LN5 
Max. force 21.35 23.21 9.73 10.66 13.02 21.37 16.41 19.40 45.55 

Initial crack force 21.08 23.21 7.89 8.07 13.02 10.33 16.41 12.59 no 

Table 4: Resulting values for beams obtained by XFEM analysis 

LN1 beam failed under 23.21kN loading force. Load-carrying capacity decreased about 
54%, 8%, and 16% for LN2, LN3, LN4 beams respectively. Different results were obtained 
for LN1 and LN5 beams. In this case, the load - carrying capacity increased about 96%.  

 

Figure 4: Load-deflection diagrams 

4 DISSCUSION 

Analysing results we can state that the worst influence on load-carrying capacity within the 
studied models has a vertical initial crack in the middle of a beam’s span, for N2 and LN2 
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beams. In this case, beams will fail under much lower force compared to the flaw-free beam. 
N2 and LN2 beams can carry only 46% of the referential load. Load - carrying capacity de-
creased significantly also for the N3 type beam. This beam could carry only 61% of the refer-
ence beam loading. For the LN3 beams decreasing of load-carrying capacity is not so 
significant. Glulam beam with the oblique crack can carry 92% of the referential loading. 
Significant influence on load-carrying capacity had the circular hole in the middle of the 
beam’s span. The N4 and LN4 beams can withstand 77% and 84% of the referential force, 
respectively. Interesting increase in load-carrying capacity was observed for the LN5 beam. In 
this case capacity of beam increased about 96% for 14.9 mm deflection. No jump in dissipa-
tion energy occurred in this case. This significant increase of capacity might be caused by 
stress concentration near this crack and the position of the initial crack. However, it might be 
also due to numerical errors in FEA analysis. It is needed to study more models and to look at 
the influence of user-defined parameters. In order to understand why this significant increase 
of load-carrying capacity occurred, it is necessary to compare the simulation results with ex-
perimental ones. 

Generally, we can say that flaws have negative influence on load-carrying capacity of 
beams. Influence of flaws on load-carrying capacity is worse on sawn beams than on glulam 
beams. It validates our hypothesis that glulam beams are able to bear a higher loading. Posi-
tive effect on load-carrying capacity of beams had the horizontal crack on glulam beam. Fu-
ture work will be focused on studying the effect of this crack type on load-carrying capacity.  
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Abstract. The purpose of this paper is the nonlinear calculation of the forced response of a vane-

segment (a sector of a row of stator blades) for aeronautical applications in the presence of multiple 

joints using a coupled static/dynamic method to calculate the contact forces between assembled 

components. The solution of the static/dynamic equilibrium equations is calculated using the Multi 

Harmonic Balance Method (MHBM) that is a technique widely accepted as an effective approach to 

calculate the steady-state forced response in the frequency domain in spite of the Direct Time 

Integration (DTI).The MHBM technique allows, in fact, a strong reduction of the computation in 

particular when non-linearities are introduced as in this case for a more realistic modeling of the 

physical behavior of the joints and system response in general.  

The non-linearity is introduced by means of contact elements that produce additional stiffening and 

damping in the system due the introduction of contact stiffness and friction forces based on Coulomb’s 

law. Since the periodical nonlinear contact forces may depend on the history of the motion of the 

vibrating system, the MHBM steady-state solution may lead to a poor correlation with the DTI 

solution. To consider this dependence, in this paper, it is presented a coupled method which permits to 

solve together the static balance equations and the dynamic balance equations to have a better 

approximation of the real behavior of the system. 

A sensitivity analysis is performed to investigate the effect of numerical, geometrical and contact 

parameters to optimize the design of the system. Calculated responses are finally compared with the 

uncoupled approach where the static equilibrium is calculated independently from the vibratory 

response calculation as usually done to investigate the difference of the two methods. 
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1. INTRODUCTION 
 

The forced vibrations in resonance conditions shorten the life and reliability of aircraft engines and 

turbo-machinery in general. Although the sources of dynamic excitation producing oscillations of the 

whole structure are many, the time-varying forces loading gas turbines of aeronautic engines are caused 

by the considerable non-uniformity of the flow of the hot gases that pass through the turbine blades [1]. 

In a regular operating condition, the aerodynamic excitation pattern loading the blade array can be 

represented as a combination of multiple excitations having a harmonic pattern in space along the 

circumferential direction that travel with respect to the bladed disk. The circumference is divided into 

an integer number (called Engine Order EO [2]) of wavelengths for each travelling harmonic force. The 

single blade is therefore subjected to a wide excitation spectrum and multiple excitations at resonance 

condition may occur for a given rotating speed of the rotor. The same issue occurs for stator vane 

segments as well where travelling forces are generated by the wakes of front and aft-rotating disks. For 

this reason the designers of aircraft engines are called to introduce damping systems to reduce peak 

stress values during the vibratory phenomenon. Friction dampers are often used to dissipate energy in 

the system through friction, i.e. the amplitudes of oscillation are reduced increasing the fatigue life of 

the blade arrays. The major sources of friction damping in the bladed disk turbine are attributable to the 

blade-disc interfaces (blade root joint) [3,4], the contact between adjacent blades connected by 

interference at the tip (shrouds) or mid-span airfoil (snubber, [5]) and the presence of underplatform 

dampers [6, 7]. Typical joints for vane segments are the so-called interlocking joints [8] located at the 

inner radius of the sector connecting adjacent sectors.  

In this paper, a particular excitation is considered to study the forced response of a stator vane 

segment subjected to Engine Order 1 travelling force. It is verified, in fact, that a mechanical excitation 

due to the unbalance of the rotor shaft in the engine may excite the vane segment according to the 1 per 

rev excitation frequency at not negligible levels. For this reason it is interesting to verify at what extent 

the interlocking contacts are able to limit the vibration amplitudes. Moreover, the study is extended 

assuming that also the joint connecting the vane segment to the casing (hook contacts) may act as a 

friction damper that is added to the interlocking contact. In the first part of the paper the vane segment 

is described and the  rationale of the study is specifically introduced; in the second part of the paper the 

modelling of the vane segment and of the contact model are illustrated; in the third part the 

methodology to solve the equation of motions are explained; in the fourth part the sensitivity analysis 

and the comparison with the uncoupled method is shown. The uncoupled method provides the normal 

loads acting on the contacts before the vibratory response is calculated. Usually a nonlinear static 

calculation of the equilibrium is performed to achieve the set of normal loads that are applied on the 

contact and these values are kept constant through the forced response calculation. In this sense the 

normal load are a sort of contact pre-load in the system that is acceptable to simulate the assembly  

phase when stator vanes are mounted but not the operative phase. It was proven that in the presence of 

vibrations, when slip occurs, the normal pre-load may vary for a single contact when the tangential and 

normal direction of the contact are both involved in the vibrations. Furthermore, in case of  multiple 

contacts in the vibrating system as in this case, if one of the contact is in slip state during vibrations, it 

may change the normal pre-load of other contacts in the system. These are the main reasons to adopt a 

coupled approach instead of the uncoupled approach. The conclusions are drawn in the final part of the 

paper. 

 

2. TEST ARTICLE AND EXPERIMENTAL EVIDENCE 
 

The problem studied in this paper is to evaluate the forced response of a stator vane segment shown 

in Figure 1 in the presence of a predominant radial excitation due to the unbalance of the rotor shaft. 

The excitation is transferred from the unbalanced rotating shaft to the bearing outer race and then to the 
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struts connecting the engine casing and finally to the vane segment that is connected to the casing by 

means of the hook joints (Figure 2). For this reason the load can be described as a radial force applied 

to the casing with unitary engine order (EO1, Figure 3) since the excitation frequency of a single vane 

segment can be directly connected to the 1 x rev excitation. 

 

   
 

Figure 1: Vane-segment 

 

Figure 2: Hook joints 

 

Figure 3: EO1 travelling excitation 

 

It is important to study this phenomenon because it is predominant with respect to the aerodynamic 

forces due to the low engine order excitation.  

For reason of confidentiality, in Figure 4 is presented a sketch of an experimental Campbell 

diagram. Usually the values reported in the Campbell diagram are calculated after the measurement of 

strains obtained by means of a strain gauge placed on an airfoil of the vane segment. When vibrations 

are synchronous, i.e., when the vibration frequency is an integer number of times the rotation frequency 

of the rotor, the values of stress associated to the measured strain is produced by an engine order EO 

excitation, where EO is the integer number. A particular value of rotation speed exists where the 

natural frequency of a given mode shape matches the EO excitation. In this case, the second mode 

shape of the vane segment at Nodal Diameter ND = 1 is excited by an EO=1 excitation. 

 

 
 

Figure 4: Campbell diagram 

 

3. COMPONENT MODELING 
 

The damping of vibrations through friction is a non-linear problem that is solved with iterative 

numerical methods. These methods require considerable computation time. Both the vane-segment and 

the casing have been modeled by FEM using a number of nodes so large that the resolution of the 

equations of motion in the time domain and in a direct form is not generally obtainable in an acceptable 

time. A reduction of the degrees of freedom (dofs) to solve is necessary in order to obtain a Reduced 

Order Model (ROM) without losing the critical information for the analysis. The reductions of the vane 

ρ 

Z ϑ 
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segment and casing stiffness and mass matrices have been done using three methods: for the vane 

segment only the Craig-Bampton Component Mode Synthesis (CB-CMS) [9] was used, while for the 

casing the CB-CMS technique, the Cyclic Symmetry (CS) technique [9], and the Tran technique [10] 

were sequentially used in the aforementioned order. The ROM techniques are applied to only one vane-

segment of the stator and to a fundamental sector of the casing associated with the vane segment by 

means of the hook joints. 

 

3.1. Craig Bampton - Component Mode Synthesis (CB-CMS) 
 

The CB-CMS reduction technique is implemented in most FE softwares (Ansys, Nastran) and it is 

based on the definition of a set of master {  } and slave {  } degrees of freedom (dofs) of the physical 

model plus an additional set of slave modal dofs {  }. The first set is the set that remains explicit in the 

ROM while the remaining part of dofs is omitted as a function of the first set according to the Guyan 

static reduction technique formulation [11] where the static deflection shapes of the slave dofs are 

written by imposing a unitary displacement of each master dofs one by one. With this process the slave 

nodes are forced to move according to the deformation of the master nodes. Since the Guyan reduction 

technique is not sufficiently representative of the dynamics of the system, a number of slave modal 

shapes is added to the static deflection base obtained from a modal analysis where all the master dofs 

are constrained simultaneously. 

Both the casing fundamental sectors and the vane-segment are first reduced according to the 

following transformation for each component: 
 

{    }  {
  

  
}  [

  
   

] {
  

  
}  [    ] {

  

  
} 

 

where I is the identity matrix, G is the Guyan matrix,    is a subset of the slave modal matrix and    is 

the vector of the modal slave coordinate. 

 

For the vane-segment the master dofs are those belonging to the following nodes: 

 60 nodes on the hooks: 30 nodes on the front hook and 30 nodes on the rear hook arranged 

according to two bands of 15 nodes each; 

 20 nodes on the interlocking: 10 on the left interlocking and 10 on the right interlocking 

arranged according to two bands of 5 nodes each; 

 3 accessory nodes placed on one blade of the vane-segment.  

 10 Modal slave dofs 

For the casing the master dofs are those belonging to the following nodes: 

 326 nodes for both the left and right interfaces. The interfaces are the cross sections obtained by 

selecting only the fundamental sector from the full casing;  

 60 nodes for the hooks mating the 60 nodes of the hooks of the vane; 

 16 nodes where the external force is applied along the circumferential direction of the casing 

simulating the EO1 unbalance mechanical force; 

 3 accessory nodes on the external face of the casing. 

 10 Modal slave dofs 

 

Figure 5 and Errore. L'origine riferimento non è stata trovata. show the position of the master dofs for 

both components. 
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Figure 5: Master nodes on the vane      Figure 6: Master nodes on the casing 
 

3.2. Cyclic symmetry 
 

The casing is a cyclic symmetric component, therefore it shows the typical dynamic behavior and 

mode shapes of drums and rotors [9], in particular if a mode shape is excited by a travelling rotating 

force, each sector vibrates as the adjacent ones but with a phase lag given by the Inter Sector Phase 

Angle (ISPA)          with ND=Nodal Diameter and N=number of sector. The Nodal Diameter 

is a line passing from the center of the cyclic symmetric component where the modal displacements are 

null and its value is a characteristic of every mode shapes. A ND mode shape can be excited by an EO 

travelling force only if this relationship is verified: 
 

                       
 

In this case we are interested in the response of the second resonance of the ND1 mode family 

excited by an EO1 travelling force (z=0). 

Since the displacement of each sector is the same of the adjacent but with a phase lag, the full 

component can be reduced to a single sector by applying cyclic symmetry constraints to the left and 

right interfaces.  The right interfaces dofs are written in function of the left interfaces dofs or vice-versa 

depending if the travelling force is clockwise or counterclockwise with respect to a defined cylindrical 

reference system. In this case for the casing: 
 

{  }  {  } 
   

 

Where xl are the dofs of the left interface while xr are the dofs of the right interface of the casing. 

The set of dofs of the casing becomes then: 
 

{
  

  
}  

{
 
 

 
 
  

  

  

  
  }

 
 

 
 

 

[
 
 
 
 
      
    
    
    
    ]

 
 
 
 

{

  

  

  
  

}  [   ] {

  

  

  
  

} . 

 

where xf is the sub-vector of the dofs where the external force is applied and xi are the inner dofs 

(accessory and contact dofs). 

 

3.3. Tran reduction technique 
 

The Tran reduction technique [10] is applied on the dofs of the right interface because its number of 

dofs is still too large and consists in: 
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- Build an auxiliary ROM of the casing according to a Guyan static reduction technique where 

the master dofs are only the left and right interface dofs; 

- Apply the cyclic symmetry reduction technique in order to write the left dofs with respect to the 

right dofs; 

- Compute the right interface mode shape by means of a modal analysis. 

- Of all the calculated mode shapes, substitute only few of them to the right dofs of the primary 

ROM model. in particular we considered 10 interface modal shape for the casing. 

The array of the explicit dofs of the nodes becomes: 
 

{

  

  

  
  

}  [

      
    
    
    

] {

   

  

  
  

}  [     ] {

   

  

  
  

}. 

 

The whole transformation for the ROM of the casing is then: 
 

{    }  [    ][   ][     ] {

   

  

  
  

}  [    ] {

   

  

  
  

} 

 

The stiffness and mass matrix of the two components can be obtained by pre-multiplication and 

post-multiplication of the transformation matrices: 
 

[ ]  [    ]
 [ ][    ] 

[ ]  [    ]
 [ ][    ] 

 

The vane segment is kept in its position by means of a key/keyseat system close to the hooks that 

connect the vane segment to the casing. In order to model this kind of constraint, four contact nodes on 

the vane segment hooks close to the key are linked to the mating nodes of the casing hooks. 

 

4. SOLUTION STRATEGY 
 

In order to compute the forced response of a vane-segment with friction contacts the commercial 

finite element codes are not suitable since they are based on the time integration method of the non-

linear differential balance equations which require very large calculations times. For this reason, ad hoc 

numerical codes must be developed in order to compute the forced response in the frequency domain. 

These codes are based on the Harmonic Balance Method (HBM) [12]. The periodic variables 

(displacements and forces) are written as a sum of harmonic terms by Fourier analysis and then the 

balance of each harmonic is imposed, turning the original nonlinear differential equations in a set of 

nonlinear algebraic equations. 

The starting point in the forced response calculation of a mechanical system with friction contacts is 

writing  the equations of motion in matrix form:  
 

                                                   [ ] ̈  [ ] ̇  [ ]        ,                                                 (6) 
 

where M, C and K are the mass, damping and stiffness matrices of the system, Q is the displacements 

array of degrees of freedom (dofs), Fe is the periodical external forces array acting on the system and 

Fnl is the non-linear array generated by friction contacts. 

In order to reduce the calculation time of a numerical integration, the harmonic balance method 

(HBM) can be used to solve the equations of motion of the system [5,12,13, 14]. This is possible due to 

the periodicity of the external excitation that involves also the periodicity of the displacements Q and 
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the non-linear forces Fnl. This property of periodicity permits to express the displacements (Q) and the 

forces (Fe and Fnl) in a truncated Fourier series of H orders, where H is the maximum number of 

harmonics considered. Consequently displacements and forces become: 
 

        (∑           
   )                                                   (2) 

     
   

  (∑   
   

      
   )                                                   (3) 

       
   

  (∑    
   

      
   )                                                  (4) 

 

where ω is the fundamental frequency of the excitation forces acting on the system, the 0
th

 order 

represents the static components and the coefficients     ,   
   

 e    
   

 are complex quantities. The 

Equations (2)-(4) are replaced into the equations of motion (1) obtaining two sets of algebraic 

equations, a set of static algebraic equations and a set of algebraic complex dynamic equations [14]: 
 

[     ] 
      

   
    

   
                                                               (5) 

[    ]       
   

    
   

                                               (6) 
 

where [    ]        [ ]     [ ]  [ ] is the h
th 

dynamic stiffness matrix of the system. The 

equations (5) and (6) are non-linear because contact forces    
   

 and    
   

 depend on the relative 

static/dynamic displacements of the contact dofs that are a part of the total dofs  .  

In the classical approach, the static balance equations (5) are uncoupled from the dynamic balance 

equations, i.e. these equations are solved separately and then the 0th order coefficients of the 

displacements      are used as inputs for the solution of the dynamic equations. As a consequence, the 

value of the static contact forces, computed in the static balance equations is no more updated when the 

dynamic balance is imposed. In a more general approach, the static (5) and the dynamic (6) balance 

equations formulated by the HBM are solved together, i.e. the overall balance conditions (static and 

dynamic) are computed together. 

This procedure will be referred as the ‘coupled’ calculation of the forced response, where the term 

coupled means that the static and the dynamic quantities involved in the dynamic response of the 

vibrating system are updated at each iteration and may change for different excitation frequencies [14]. 

In order to separate the solution of the non-linear part of the system from its linear part it is convenient 

to rearrange the balance equations (5) and (6): 
 

     [    ]  
   

 [    ]   
   

                       (7) 
 

where [    ] is the receptance matrix (inverse of static or dynamic matrices: respectively [     ] or 

[    ]), [    ]  
   

   
   

 is the linear response due to external excitation that does not change once 

the excitation frequency is fixed and [    ]   
   

 is the non-linear response due to the contact forces that 

changes with the state of the contacts. Because the non-linear forces act only on the contact dofs, the 

vector of total displacements      can be split in two part: non-linear dofs    
   

 and linear dofs   
   

; in 

this way the equation (7) becomes: 
 

{
   

   

  
   

}    
   

 [
      

   
     

   

     
   

    
   

] {   
   

 
} 
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where only the first equation    
   

   
   

 [      
   

]   
   

 must be solved iteratively with a non-linear 

solver. Once the non-linear forces    
   

 are known it is possible to easily solve the second part of the 

equilibrium equations. 

It must be observed that the h sets of equations    
   

    
   

 [      
   

]   
   

 are coupled to each 

other, because the number of harmonics that compose the nonlinear contact forces    
   

 depends on all 

the harmonics components of the displacements of the nonlinear dofs Qnl(t). 

 

5. CONTACT MODEL 
 

In order to solve the non-linear equations, described in the previous paragraph, it is necessary to 

introduce a contact model that computes the harmonic nodal contact force components    
   

 from a 

given set of harmonics contact displacements    
   

 and    
   

. 

The contact model is based on the Coulomb friction law where the generic friction force ft(t) is equal 

to a normal preload n(t) multiplied by the friction coefficient μ when sliding occurs: 
 

                           (8) 
 

In this case the Coulomb friction law is implemented in a contact model [15] with a tangential kt and 

normal kn stiffness (Figure 7) in order to take into account a stick state of the contact that allows a 

relative motion between the two bodies in contact without sliding: 
 

                                               (9.a) 
 

                                      (9.b) 
 

(where    and    are respectively the value of the tangential force and tangential relative displacement 

at the end of the contact state preceeding the stick state) and the separation of the two parts in contact 

when             is less than zero, in that case: 
 

{
       
       

                      (10) 

 

The couple static/dynamic approach, introduced to solve the balance equations of the system, 

involves that the tangential and normal relative displacements of the contact model include the 

correspondent static displacements, i.e.: 
 

          ̅    

          ̅    
 

In this way the normal pre-load n0=knv0 of the contact model is no not more a design datum, but an 

information that comes by the iterative solution of the static and dynamic balance equation and it may 

change for different excitation frequencies. For this reason the normal relative static displacement v0 

(interference) is the necessary value to calculate the normal load of the contact model. 

 

8619



M. Lassalle, C.M. Firrone 

 
 

Figure 7: Contact model 

 

The hysteresis loop can assume different shapes according to the relative phase lag of the relative 

tangential and normal displacements. In the Figure a, Figure b, Figure c three types of hysteresis 

loops are shown: the first when u(t) and v(t) are in-phase, the second when partial lift off occurs, the 

third when u(t) and v(t) do not vibrate in-phase.  

 

 
 

Figure 8: Hysteresis loops 

 

The contact model is a 2-D model but it can be used to describe a 3-D behavior of the contact by using 

two orthogonal 2-D models that share the same normal relative static displacement v0. 

 

Since the equations of motion are formulated in the frequency domain the inputs of the contact 

model are the Fourier coefficients of the relative displacements      and      (with h=0,1,2,…,H) while 

the contact model operates in the time domain. For this reason for each iteration an Alternating 

Frequency Time (AFT) [15,16] also known as Hybrid Frequency Time (HFT) method [17] should be 

used in order to pass from the frequency domain to the time domain to calculate the hysteresis loop and 

then again to go back to the frequency domain by the Fourier series:  

 

 
 

Figure 9: AFT/HFT method 

 

The calculation procedure follows the following steps: 
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1. Periodical relative displacements u(t) and v(t) are computed from Fourier coefficients      and 

     (with h=0,1,2,…,H) by Inverse Fast Fourier Transform (IFFT); 

2. Contact forces n(t) and ft(t) are computed by means of equations (9) and (10);  

3. Fourier coefficients      and   
   

 (with h=0,1,2,…,H) are computed from n(t) and ft(t) 

respectively by Fast Fourier Transform (FFT). 

With the Fourier coefficient of the contact forces it is possible to assemble the contact force vector Fnl 

that will be used in the resolution of the non-linear equations    
   

    
   

 [      
   

]   
   

 (with 

h=0,1,2,…,H). 

 

6. SENSITIVITY ANALYSIS, TEST SIMULATION AND COMPARISON WITH 

MEASUREMENTS  
 

The ROM assembly is used to compute the nonlinear forced response of a vane-segment. A 

sensitivity analysis has been performed changing the values of some parameters in the calculation code, 

in details: 

- Number of joints (presence and absence of the interlocking contact);  

- Contact parameters (friction coefficient and interlocking interference); 

- Number of harmonics retained in the MHBM calculation. 

These analysis have been then compared with the corresponding analyses made with the uncoupled 

code to show the difference between the two methods.  

 

6.1. Variation of number of joints 
 

The first analyses are performed by varying the number of joints in contact: (i) only the hook joints 

working and (ii) both hook and interlocking joints in contact. For these two types of analyses, the joints 

have been first considered in fully stick condition because the analyses, in this way, are linear (the 

contact points are linked together through the contact stiffness) and the two obtained forced responses 

are the limit linear ‘free’ and ‘stick’ interlocking conditions that the system can encounter. 

The Figure 10 shows the forced response with the hook joints working in the fully stick condition 

while the interlocking joints is free. Curves are normalized according to the resonant frequency and 

peak amplitude of the second mode that is the mode of interest. The dynamic load given by the 

unbalance is a traveling force characterized by EO=1 and fixed to the value assigned by industry data 

recovery as well as the interference at the hook contacts. In this conditions the response of the system 

obtained from the non-linear analysis should be coincident with the free linear response obtained 

linking together vane and casing through the contact stiffness of the hook joints. This happens because 

the major contribution to the damping of the system is given by the interlocking joints, while the hook 

joints give a very low contribution (see [18]). In fact, the nonlinear calculation is actually linear 

because slip does not occur and this is the case where the static equilibrium of the system is 

independent from the dynamic equilibrium.  

The forced response with both hook and interlocking joints working in the stick condition is 

presented in Figure 11. Curves are obtained by decreasing the value of the excitation amplitude at the 

casing in order to have no slip at the contacts. In this condition, it is possible to see the increase of the 

resonance frequency of interest due to the full sticking of all the joints (the structure is more rigid). On 

the same figure, it is shown the forced response obtained from the uncoupled method setting the same 

parameters used in the coupled code (value of contact stiffness, value of forcing and same frequency 

range) and the value of the pre-load on the interlocking contacts corresponding to the interlocking 

interference. The value of pre-load is obtained from a static non-linear analysis of the vane in which the 

equation (7) is solved at the zero-order to obtain the static displacements of the interlocking. These 

8621



M. Lassalle, C.M. Firrone 

values are then multiplied for the normal contact stiffness to get the pre-load on the interlocking. This 

process is necessary to compare the coupled method with the uncoupled method in order to verify 

differences in the results obtained from the coupled method. In Figure 11 the two forced responses, 

couple and uncouple, are coincident and this is right because in the fully stick condition the static and 

dynamic calculations are not coupled. 

 

 
 

Figure 4: FR with hook joints in stick condition 

 

 
 

Figure 5: FR with hook & Ilock in stick condition 

 

Figure 12 shows the comparison between different nonlinear responses by varying the friction 

coefficient µ. These preliminary analyses have been made using only the first harmonic of the Fourier 

series fixing the design value of interference in the interlocking contact. It is possible to see that the 

nonlinear responses amplitudes are lower than the fully stick response of Figure 11, moreover the 

amplitude decreases if the friction coefficient increases. This effect is described in [8], basically when 

the friction coefficient value is low, friction forces are low as well and the dissipated energy is not 

effective to limit the vibration amplitudes because the contact tends to a ‘frictionless’ contact.  
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Figure 6: Variation of µ 
 

 
 

Figure 7: Variation of harmonics 

 

We now take as a reference the value of friction coefficient of the response 3 (the value is not given 

for reasons of confidentiality). With this value, we have evaluated the effect of the variation of the 

number of harmonic taken into account during the resolution of the equations of motion. It is possible 

to see (Figure 13) a slight increase of the forced response when the number of harmonic is increased to 

three but no further increase is found if the number of harmonics is five. However, the increase of the 

number of harmonic do not produce a significant improvement of the approximation of the response. 

This means that  is not necessary to add harmonics higher than one for a good approximation of the 

nonlinearities using the HBM produced by the friction contacts. 

Figure 14 shows the comparison between different nonlinear response by varying the value of the 

interlocking interference. Also these analyses have been made using only the first harmonic of the 

Fourier series (to contain the calculation time which increases fast with the number of harmonics taken 

into account) fixing the highest value of friction coefficient. Similarly to what happened in the case of 

variation of friction coefficient, the nonlinear responses amplitudes are lower than the fully stick 

response of Figure 11, moreover there is a decrease of the amplitude of resonance when the value of 

interference increases.  

The variation of interlocking interference plays a similar role to the variation of friction coefficient, 

i.e. small interferences produce low friction forces and, as a consequence, the dissipated energy is not 

effective to limit the vibration amplitudes because the contact tends to a ‘frictionless’ contact.  
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Figure 8: Variation of interference 

 

6.2. Couple/uncouple comparison 
 

In this section the difference between the two types of approaches are investigated. For this reason two 

conditions are analyzed: forced responses varying the friction coefficient (Figure 15) and forced 

responses varying the interlocking interference (Figure 16). The way to realize this comparison is 

explained in the section 6.1 where the response in the fully stick condition is shown for the two 

methods.  

Figure 15 shows the comparison of the forced response varying the friction coefficient between the 

coupled methods (continuous lines) and the uncoupled method (dashed lines). It is possible to see how 

the qualitative response of the two approaches is similar, i.e. the response has a similar form in the two 

methods varying the frequency of the exciting force. However, the uncoupled responses, fixed the 

contact parameters, show a shift of the resonance peak to higher frequency than the frequency found 

using the uncoupled method with a stronger decrease of the amplitude. This behavior is due to the fact 

that, in the uncouple method, the pre-load acting on the contact elements of the interlocking is set to a 

fixed value for the whole simulation and it is independent from the dynamic behavior of the system 

while in the coupled approach the static behavior is influenced by the dynamic one and vice-versa. 

Figure 16 shows a similar result as the Figure 15 and this is correct because the effect of the variation 

of the interference is the same of the variation of the friction coefficients (see Figure 14). 

 

 
 

Figure 15: Couple/uncouple comparison varying µ 
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Figure 16: Couple/uncouple comparison varying interference 

 

7. CONCLUSION  
 

The calculation code for the study of the nonlinear dynamics of a vane-segment in the presence of 

friction damping is very complex because it introduces many numerical methods that try to reduce and 

simplify the system without reducing the level of quality of the approximation.  

A new approach has been implemented to increase the level of approximation in the numerical 

simulations. To validate this new approach the simulated responses of the model have been compared 

with the responses obtained from an uncoupled method based on MHBM that is widely used to 

calculate the forced responses of the rotor and static blades in the aeronautic engines. 

The comparison between the coupled and the uncoupled approaches shows that the coupled method 

results more conservative than the uncouple one, at the same time an increase of the calculation time 

has to be expected. However, if the velocity of calculation is not a priority, it would be better to use a 

more accurate model as the one that is realized with the coupled method.  
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Abstract. The technique of analytical determination of internal loads in links of planar rod 

mechanisms and manipulators with static definable structures taking into account the 

distributed dynamic stress, a self weight and the operating external loads is designed in this 

paper. The programs using the MAPLE are made on the given algorithm and animations of 

the motion of mechanisms with construction on links the intensity of cross and longitudinal 

distributed inertia loads, the bending moments, cross and longitudinal stress, depending on 

kinematic characteristics of links are obtained. 
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1 INTRODUCTION 

There are a variety of graph-analytical and numerical calculation methods on durability 

and rigidity of rod robotic systems and mechanisms, in which the distributed inertia forces of 

difficult character aren't considered [1-4]. The groups of Assur, that form the designed 

scheme of mechanism, can be statically definable, and also statically indefinable in concept of 

determination of internal stress. In this paper a new analytical approach of solution of 

problems of dynamic calculation on durability and rigidity taking into account the distributed 

dynamic stress in links of robotic systems and mechanisms with statically definable structures 

is proposed. 

The distributed inertia forces of difficult character appear in links of rod mechanisms 

within the motion process. The intensity of distribution of inertia forces along the link 

depends on the mass distribution along the link and the kinematic characteristics of the 

mechanism changing rapidly. Rise of that sort of loads causes a set of problems, namely, 

breaking problems, which are specified by large-scale inertia forces; significance of elastic 

deformation of mechanism, that puts the mechanism out of action; because of deformation of 

links the mechanism can’t meet kinematic claims. 

Therefore, relations between the intensity of distributed inertia forces and a self weight of 

links with geometrical, physical and kinematic characteristics are determined in our work. 

The laws of distribution of inertia forces and self weight allow to output laws of distribution 

of internal forces on the axis of link in each position of links, where there is a force attached 

to any point of a link. Their maximum values allow to optimize the design data of a link, 

which provides durability and rigidity of links and, entirely, of robotic systems and 

mechanisms. 

As internal loads of each continual link are defined unambiguously by a set of internal 

loads in its separate cross-sections and by the matrixes of approximations, so the task is to 

calculate the internal loads in finite number of cross-sections of elements. 

As a result, we refer to discrete model of elastic calculation of links of rod mechanisms. 

For elastic calculation of rod mechanisms based on Dalamber's principle, mechanisms are 

casted to structures which degree of freedom is equal to zero. For definition of internal loads 

in links of designed scheme of mechanism, the structure is divided into elements, both the 

hinged and rigid joints. The elements are divided into three types of beams for the first time. 

Discrete models of these three types of the beams with constant cross-sections which are 

under the action of cross and the longitudinal distributed loads of a trapezoidal view are 

constructed. The constructed discrete models for these three types of beams with constant 

cross sections along the axis allow to determine quantity of the independent dynamic 

equations of balance, components of a vector of forces in calculated cross-sections and to 

construct discrete model of all structure. 

The dynamic equations of balance for discrete model of an element of the link with 

constant cross-sections which is under the influence of cross and longitudinal inertial loads of 

a trapezoidal look are also received in this work as well as the equations of balance of hinged 

and rigid knots expressed through required parameters of internal forces.  

If we unite the equations of dynamic balance of elements and knots in one system, we will 

receive the equations of dynamic balance of all discrete model of system. A sort of systems of 

equations is sufficient for definition of internal forces in links of mechanisms, which structure 

is a static definable. The vector of forces and vector of loads in calculated cross-sections of 

discrete models of mechanisms are formed from vectors of forces and vectors of loads in 

calculated cross-sections of their separate elements. On the given algorithm  the programs in 

the MAPLE system are made and animations of the motion of mechanisms with construction 

8628



Zh.Zh. Baigunchekov, M.U. Utenov, N.M. Utenov, S.K. Zhilkibayeva 
 

on links the intensity of cross and longitudinal distributed inertia loads, the bending moments, 

cross and longitudinal forces, depending on kinematic characteristics of links are obtained. 

 

2. INERTIA FORCES AND MATRIX OF APPROXIMATIONS 

 

Considering the plane-parallel motion of an kth link of mechanism with constant cross-

sections comparatively fixed system of coordinates OXY, the following laws of distribution of 

the cross and longitudinal inertia forces along a link, that arise from self mass of a link are 

defined [5]: 
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  - an angle, which determines the position of the kth link comparatively fixed 

system of coordinates OXY, respectively, kk  , - angular velocity and angular acceleration of 

the kth link, respectively, 
'
kx

kpw  и 
'
ky

kpw - components of kP (pole) point acceleration of the kth 

link put on the axis of link and perpendicular to it, respectively,  k - specific weight of 

material of  the kth link, kA - square of cross-section of  the kth link, g - acceleration of 

gravity. 

The obtained expressions show that the distribution of cross and longitudinal inertia forces 

along the axis of link with constant cross-sections is characterized by trapezoidal law. 

For the kth link, which is under the influence of longitudinal trapezoidal distributed stress, 

Fig. 1, the bending moments along the length of element are distributed by the law of 

polynomial of third-degree. 

 

                                               
     '

3
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2

'

10

'

kkkkk xaxaxaaxM                                          (2) 

 

 
 

Figure 1: Longitudinal trapezoidal distributed load acting on the element 

 

Now, let express the bending moments in '

kx  cross-section through the sought bending 

moments 4321 ,,, kkkk MMMM  in the cross-sections demonstrated in Fig. 1, respectively.  

For this purpose it is enough to express coefficients 3210 ,,, aaaa  through 4321 ,,, kkkk MMMM . 

As a result we have [6]: 
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Differentiating  '

kk xM  to '

kx  gives the equation of shear force: 
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Let the element be affected by the longitudinal trapezoidal distributed load, except the 

distributed shear force. In that case, the longitudinal force in arbitrary cross-section of an 

element can be expressed analogously to previous by means of longitudinal forces in 

calculated cross-sections as follows: 
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Thus, for the element which is acted by cross and the longitudinal trapezoidal distributed 

loads, the approximation matrix connecting internal loads in arbitrary cross-section of the 

element with values of internal loads in cross-sections has an appearance: 
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Elements of the first line of this matrix can be seen from the Eq. (3), elements of the second 

line can be seen from the Eq. (4), and elements of the third line can be seen from the Eq. (5), 

respectively. 

 The given expression of a matrix of approximation of loads defines dependence between a 

vector of forces   '

kk xS
 
in arbitrary section of an '

kx
 
element and a vector of forces  kS

 
in 

the appointed cross-sections. For an element of rod system the matrix of approximation is 

obtained accurately as it is solved on the basis of known laws of distribution of sought forces. 

Note, the equations of the bending moment, the cross and longitudinal forces (3,4,5) 

respectively, which are expressed by the same values in calculated cross-sections, show that 

for definition of internal loads of each element of the mechanism it is enough to know values 

of these loads in final number of cross-sections of each of these elements. Number of sections 

in which it is necessary to know values of internal loads, are defined by polynomial degrees of 

external actions. Thus, internal loads of each continual link are determined unambiguously by 

a set of internal loads in its separate cross-sections and by the matrixes of approximations, 

therefore, the task is reduced to calculation of internal forces in final number of cross-sections 

of elements. Hence, we come to a discrete model of elastic calculation of links of rod 

mechanisms.  
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3. DISCRETE MODELS OF ELASTIC CALCULATION OF ELEMENTS AND 

MECHANISMS IN GENERAL 
 

For elastic calculation of rod mechanisms based on Dalamber's principle, all inertial, 

external forces, gravity of links are attached and the unknown driving moments (forces) are 

applied to support assigned laws of their motion. If the ground hinges connecting drive link 

with rigid fixed-end are replaced, then the frames which joint is equal to zero are received. 

For definition of internal stress in links (in elements) of calculated scheme of mechanism, 

the frame is divided into elements and joints. The link or its part can act as the elements, 

whereas the joints are ground hinges connecting links and cross-sections in the middle part, 

where concentrated external stress is occurred. 

The process of frame sectioning consists of giving function and signs for element calculated 

section. While dividing the elements of calculated scheme of frame into calculated cross-

sections and joints, it is necessary to set what internal relations between elements are 

remained or removed. If we reject any internal relations or their combinations in the element, 

so the element breaks up to two elements which can turn, move or be removed relatively each 

other. With the purpose to prevent it, internal forces-loads have to be applied at the joint 

rejecting places. Thereafter, these loads are regarded as primary unknowns. 

Let’s decompose an element of planar rod mechanisms on three types of beams, for 

convenience of working up the solving equations to determine the internal loads in the 

appointed cross-sections of elements of the mechanism [7]. 

Such beams can be the rods of basic linkage, if they are connected among themselves 

rigidly. 

 

 

 
 

 

Figure 2: Beam’s both ends are fixed rigidly (first type of a beam) 

 

For determination of coefficients of expressions of the bending moment, it is necessary to 

know values of the bending moments in four cross-sections, and for determination of 

coefficients of expressions of longitudinal force, it is necessary to know values in three 

sections of an element. Therefore, we will choose four sections with unknown bending 

moments and three sections with unknown longitudinal forces in this beam. Then, by means 

of conditional schemes with the corresponding unknown, we will construct discrete model of 

the considered beam, Fig. 3. 

 

 

 

 

 

 

 
 

 

Figure 3: Discrete model of the first type beam under the action 

 of the distributed trapezoidal load 

 

Then the vector of forces in calculated cross-sections of the beam’s discrete model is 

expressed by the following vector: 
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   T

kkkkkkkk NNNMMMMS 3214321 ,,,,,,                             (7) 
 

There is dependence between degree of freedom of discrete model m , number of the 

attached external loads n  and degree of redundancy of calculated scheme k  [8]: 
  

knm                                                          (8) 
 

The matter is that total number of loads n  of calculated cross-sections is counted easily, and 

degree of  redundancy of calculated scheme is obtained by formula ,3 ШKk   where K - 

number of the closed contours, Ш - number of simple (single) joints, k - degree of  

redundancy of calculated scheme of mechanism. 

Degree of freedom of discrete model m  determines the quantity of necessary independent 

equations of statics. 

Let’s define the degree of freedom of discrete model of this beam. For this discrete model of 

beam the number of unknowns 7n , the redundancy of beam 3k , so the degree of freedom 

of discrete model .4m  In other words, it is possible to work out four independent 

equilibrium equations for this discrete model of beam. 

 

 
 

Figure 4: Discrete model of the four-link mechanism 

        with constant cross-sections of links 

 

The second type of an element is this beam, which one end is fixed rigidly and other end – 

joint-fixed. As an example, it can be drive links of planar rod mechanisms. The elements of 

the third type are beams of interlinks. They can be considered as the beams joint-fixed on the 

ends. The discrete models for beams of the second and third type are constructed similarly to 

the first type of beams. 

The discrete model of the four-bar mechanism is constructed on Fig. 4; all sought values are 

shown here, these help to define all internal forces in any cross-section of rods of the 

mechanism. 

For the first link (the second type of a beam) of this mechanism the vector of forces in cross- 

sections  1S  has the following components: 
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   T
NNNMMMS 1312111312111 ,,,,,                                        (9) 

 

For the second and third links (the third beam type) regard to this mechanism, the vector of 

forces in calculated cross-sections have the following components, respectively: 
 

       TT
NNNMMSNNNMMS 3332313332323222123222 ,,,,;,,,, 

 
           (10) 

 

For all discrete model of the mechanism the vector of forces in calculated cross-sections has 

an appearance: 
 

        

 T

T
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4. DYNAMIC EQUATIONS OF EQUILIBRIUM OF DISCRETE MODELS OF 

ELEMENTS AND JOINTS 
 

Let’s remove the equations of dynamic equilibrium of an element. From the attached 

concentrated external loads  11, kk MQ  and from the cross trapezoidal distributed loads on the 

axis of element, in arbitrary cross-section of '

kx  element there is a bending moment 

determined by Eq. (2). On the other hand, the bending moment in cross-section of '

kx  

element, which is expressed through the sought moments in calculated cross-sections, is 

solved by Eq. (3). 

If the Eq. (2) and Eq. (3) will be differentiated three times on '

kx , then they will be equated 

and substituted to value
kqb , respectively, then the primary equation of dynamic equilibrium of 

element will be: 
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Relation between the values of the unknown quantities of bending moments in the calculated 

cross-sections and geometric, physical and kinematic characteristics of kth element of 

mechanism is found. Thus, the second equation is expressed through relation of the sum of 

moments of all the acting forces on k - element to center of gravity of 4k  cross-section, Fig. 

1: 
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Substituting the values 1kQ and kqkq ba ,  into Eq. (10), respectively,  and summing the 

coefficients of unknowns of the same name, and also known quantities in the right end of the 

equation, the second equilibrium equation can be written as: 
 

62
cos

2

9
9

2

9
32

1321

'
k

k
kkky

k
kk

kkkkkk

l

g

Al
w

g

A
AMMM k 


 








            (14) 

 

8633



Zh.Zh. Baigunchekov, M.U. Utenov, N.M. Utenov, S.K. Zhilkibayeva 
 

From the longitudinal trapezoidal distributed loads acting on the element, as well as from the 

force 1kN  of the 1k  cross-section, in the '

kx  cross-section of element the longitudinal force is 

occurred, which can be solved by equation: 
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On the other hand, the longitudinal force in the '

kx  cross-section of the element, expressed 

by means of longitudinal forces in the calculated cross-section, has the form (5). 

Differentiating twice on '

kx  the Eq. (12 and 5), respectively, equating them and substituting 

the value knb , the third equation of equilibrium can be expressed as: 
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Projecting all forces acting on the kth element on the '

kx axis and substituting the values

knkn ba ,  the third equation of equilibrium is found. Thus 
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Obtained system of equation, which consist of Eq. (9), (11), (13) and (21) are assembled in a 

matrix form as: 
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Then, in the section of the element adjacent to the site (for kinematic pair) there are internal 

forces, as shown in Figure 5. For these units have two equilibrium conditions: 

Let the two elements j  and k  of mechanism form a rotational kinematic pair, i.e. permit 

rotational motion relative to each other. Also let the length of these elements has a constant 

cross-section. Cut out of the mechanism a kinematic pair with surrounding cross-sections of 

the elements constituting this pair. Then, in the cross-section of the element adjacent to the 
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joint (to kinematic pair) there are internal loads, as shown in Fig. 5. There are two equilibrium 

conditions for these joints: 

 

 
 

Figure 5: The hinge joint mechanism with constant cross-section elements 

 

The equation of equilibrium for this joint can be described as: 
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Further, the values will be expressed by means of sought moments in the calculated cross-

sections of discrete model of the element, for this purpose we use the Eq. (4), substituting 
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Now, substituting the values 1kQ  and 
4jQ  in the Eq. (19), the following equilibrium 

equations for joint have an appearance: 
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The linkage cross-sections can be as rigid joints, the concentrated external loads are attached 

here. For example, the concentrated forces '
kkx

P , '
kky

P  and the concentrated moment kM
 
are 

occurred in the G  cross-section of kth link, Fig.5. 

Then the k  link is divided into two elements, for k th and i th. If the cross-sections of 

elements are constant along the length of the link, then by means of cutting the G joint out of 

mechanism, the scheme of G joint with adjacent internal loads in cross-sections is displayed 

below. For this joint it is possible to write the three equilibrium equations that are expressed 

through sought parameters of elements. 
 

 
 

Figure 6: Rigid joints of a link with a constant cross-section of elements, 

where the external concentrated forces are attached 

 

5. RESOLVING EQUATIONS OF DETERMINATION OF INTERNAL FORCES 
 

By combining the equilibrium equations of elements and joints into a single system, the 

equilibrium equations of the discrete model of entire mechanism is obtained. They can be 

written in general form: 
 

    FSA                                                            (21) 
 

Such systems of equations are sufficient to determine the internal forces in the links of the 

mechanism, which frame includes a statically definable group of Assur. 

The matrix of equilibrium equations for the discrete model of mechanisms consists of 

matrices of equilibrium equations of their individual elements, as well as the equilibrium 

equations of their joints. The matrix of dynamic equilibrium equations of discrete models of 

mechanisms is as follows: 
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 The vector of force and the vector of load in calculated cross-sections for discrete models of 

mechanisms is formed by vector of forces and loads in calculated cross-sections of their 

separate elements. These vectors in vector form, respectively, have the following species: 
 

               T

n

T

n SSSSFFFF .,.,.,;.,..,, 2121 
 

 

Now, for determination of internal loads in links, we give an example of six-bar second class 

mechanism with single drive linkage as shown in Fig. 7. The computer programs for 
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determination and construction of the inertia forces and internal loads on the links by means 

of using the MAPLE system are made. Therefore, the results of obtained inertia forces and 

internal loads for some positions of the mechanism are shown in Figs. 7-12. 
 

 

 
 

Figure 7: A six-bar second class mechanism with single drive linkage 

 

 
 

Figure 8: The investigating mechanism, 

on which links the diagrams of cross inertia forces are constructed 

 

 
 

Figure 9: The investigating mechanism, 

on which links the diagrams of longitudinal inertia forces are constructed 
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Figure 10: The investigating mechanism, 

on which links the diagrams of bending moments are constructed 

 

 

 
 

Figure 11: The investigating mechanism, 

on which links the diagrams of shearing forces are constructed 

 

 

 
 

 
 

Figure 12: The investigating mechanism, 

on which links the diagrams of longitudinal forces are constructed 
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6. CONCLUSIONS 
 

The developed technique can be applied in the study of stress-strain state of the projected 

and existing mobile and fixed beam systems with statically definable structures (planar rod 

mechanisms, manipulators, frames, etc.).  
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Abstract. The present work aims at investigating the structural behaviour of steel-fibre-

reinforced concrete (SFRC) beams under high-rate loading conditions mainly associated with 

impact problems. A simple, yet practical non-linear finite-element analysis (NLFEA) model 

was used in the study. The model is mainly focused on realistically describing the fully brittle 

tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-

cracking response. The constitutive relations were incorporated into ABAQUS software brit-

tle-cracking concrete model in order to adjust the latter to allow for the effects of fibres. 

Comparisons of the numerical predictions with their experimental counterparts demonstrated 

that the model employed herein, despite its simplicity, was capable of providing realistic pre-

dictions concerning the structural responses up to failure for different SFRC structural con-

figurations. In the present study, the previous work is extended in order to numerically 

investigate the structural responses of simply-supported SFRC beams under impact loading. 

Data obtained from drop-weight tests on RC beams (without fibres) indicates that the re-

sponse under impact loading differs significantly from that established during equivalent stat-

ic testing. Essentially, there is (i) an increase in the maximum sustained load and (ii) a 

reduction in the portion of the beam span reacting to the impact load. However, there is con-

siderable scatter making it difficult to ascertain the effect of loading rate on various aspects 

of RC structural response. To achieve this dynamic NLFEA is employed which is capable of 

realistically accounting for the characteristics of the problem at hand, a wave propagation 

problem within a highly non-linear medium. Following validation, a further study was con-

ducted to assess the effect of steel fibers (provided at a dosage of Vf = 1%) on key aspects of 

structural response such as maximum sustained load, load-deflection curves, deformation 

profiles and ductility) under different rates and intensities of impact loading. The predictions 

reveal that steel fibers can potentially increase the maximum sustained load, ductility, tough-

ness exhibited by SFRC members under impact loading compared to their RC counterparts. 
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1 INTRODUCTION 

The increasing demands for a variety of services and activities (i.e. faster transportation, 

higher energy production, safety, housing, etc.) has led to the increase in complex structural 

systems such as high-rise buildings, tunnels, bridges, slab-track for high-speed railways, off-

shore and marine structures, storage and industrial facilities and nuclear power plants. Such 

structures are fully or partially constructed form Reinforced Concrete (RC) and their behav-

iour is required to be characterised by an elevated level of resilience in order to safely with-

stand loads imposed at higher rates and intensities than those considered in current design 

codes. This has also resulted in – and highlighted the need for – the development of new ad-

vanced construction materials, such as steel fibres. 

It has been established numerically [1-4] and experimentally [5-6] that the dynamic struc-

tural responses of RC elements differ to those observed under corresponding static loading 

once certain thresholds of applied loading rate are surpassed. The shift in structural response 

with increasing loading rates is considered to be associated with (a) structural arrangements 

(such as geometry, reinforcement and boundary details), (b) the brittle nature and triaxiality 

characterising concrete material behavior, (c) the nature of the problem at hand (i.e. a wave 

propagation problem within a highly nonlinear material) and (d) the development of high 

strain rates within concrete and steel which is widely considered to affect material behaviour 

(i.e. strain-rate sensitivity) [7]. The current work aim was to examine the potential benefits of 

introducing steel fibres to the concrete mix in order to enhance the responses of (the otherwise 

RC) structural elements under high rate loading due to impact. The work is based on dynamic 

Nonlinear Finite Element Analysis (NLFEA), which was initially validated using exiting ex-

perimental data to ascertain its accuracy before the subsequent parametric studies were carried 

out. The work builds on previous NLFEA-based studies on various SFRC structural configu-

rations subjected to both static monotonic and cyclic loading (the specimens covered a wide 

practical range from simply-supported beams to more complex structural systems character-

ised by a certain degree of static indeterminacy, such as continuous columns and beam-

column sub-assemblages) [8-11]. Both previous and current studies utilize a material model 

for SFRC that is focused on realistically describing the fully brittle tensile behaviour of plain 

concrete as well as the contribution of steel fibres to the post-cracking response. The constitu-

tive relations were incorporated into ABAQUS software brittle-cracking concrete model [12] 

in order to allow for the effects of fibres. The previous work (particularly under seismic load-

ing) is extended herein in order to realistically describe the response – up to failure – of SFRC 

structural simply-supported beams under high-rate (i.e. impact) loading. The ultimate aim is 

to form the basis of a new practical assessment and design method for SFRC under impact. 

The history of fibre-reinforced materials started in ancient Egypt over 2000 years ago with 

mud bricks reinforced with straw fibres. In more recent times, alternative fibres were intro-

duced in the 1960s, such as steel, glass, and synthetic fibres such as polypropylene fibres etc. 

Early investigation into the application of steel fibre-reinforced concrete (SFRC) was carried 

out by Romualdi and Batson [13] resulted in its application in the pavement construction. 
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Since then, fibres have become widely adopted in different structural applications, for in-

stance in concrete pipes, pavement slabs and more recently, it has been used in suspended 

slabs [14]. The introduction of steel fibres into the concrete mix can also lead to a reduction of 

transverse (i.e. shear) reinforcement such as beams, walls, joint regions [8-11, 15] without 

compromising design codes [16, 17] performance requirements for strength and ductility. The 

main benefit of such reduction is to alleviate reinforcement congestion due to dense arrange-

ment and spacing of shear links in the critical regions of RC structures, as dictated in design 

codes such as the Eurrocode 8 for seismic-resistant design [17] in order to avoid brittle failure 

modes. The present research work focuses on the behaviour of steel fibres and other types are 

outside the scope of this study. 

2 METHOD  

2.1 Background of SFRC impact tests 

To date, a number of drop weight tests have been conducted on SFRC specimens [18-20]. 

The majority of these studies employ drop weight testing, in which a steel striker is allowed to 

fall from a pre-defined height onto a specific (usually the mid-span) region of the structural 

element considered such as beams and slabs. A wide range of SFRC specimens have been 

tested to date under impact loading in order to assess the effect of various parameters associ-

ated with the fibres used (e.g. shape, aspect ratio, content) on the exhibited behaviour. The 

data obtained reveals that fibres capable of developing more adhesive and frictional bond as 

well as more effective anchorage at their ends can increase the maximum sustained load, duc-

tility, toughness and crack controllability exhibited by SFRC members under impact loading 

compared to their counterparts exhibited by conventionally reinforced RC members [19]. 

However, it should be noted that the data is characterized by considerable scatter severely re-

ducing its usefulness in accurately quantifying the above effects. The scatter predominantly 

reflects the difficulty in correlating the measured response to the actual physical state of the 

specimens. In fact, the measured maximum value of imposed load frequently corresponds to a 

specimen physical-state characterized by high concrete disintegration as well as low residual 

load-bearing capacity and stiffness [2, 21].This stage of structural response has little practical 

significance as it depends heavily on post-failure mechanisms for transferring the applied 

loads to the specimen supports. In view of the above, the available test data cannot provide 

detailed insight into the mechanisms underlying structural response. It can, however, provide 

a qualitative description of the effect of loading-rate on specimen behaviour. 

2.2 Limitations of existing NLFEA software packages 

NLFEA can be used in a safer and more cost-efficient manner for investigating a wider 

range of problems than those studied experimentally. It is capable of providing realistic pre-

dictions and more detailed insight into the mechanisms underlying SFRC structural responses 

under high-rate loading. However, as it usually employs dense three-dimensional (3D) finite 

element meshes combined with complex constitutive material laws implemented through the 
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use of iterative solution strategies, the required computational resources are high. As a result, 

its use is generally limited for the analysis of relatively simple structural forms. Moreover, its 

ability for providing realistic predictions of structural behaviour is, in most cases, linked with 

the use of case-study dependent constitutive models [22] often incorporating empirical ampli-

fication factors to account for the effect of strain-rate sensitivity on concrete material behav-

iour. This apparent lack of generality is the main drawback of NLFEA for RC structures, the 

results of which are often treated with some doubt regarding the validity of the predictions 

obtained. 

2.3 General aspects of the FE model adopted 

A finite-element (FE) model is generally considered capable of yielding realistic predic-

tions of the nonlinear response of concrete structures when the deviation of the predicted val-

ues from their experimentally-measured counterparts (of structural characteristics considered) 

does not exceed a value in the order of 20% [22, 23]. Such structural characteristics usually 

include the load-bearing capacity, the relation between applied load and corresponding dis-

placements, reactions and first-order deformation derivatives, i.e. rotations. 

The present work is based on the use of the well-known commercial FE analysis software 

ABAQUS [12], which is capable of carrying out 3D static and dynamic NLFEA which incor-

porates a simple brittle model (termed “brittle cracking model”) in order to describe concrete 

material behaviour. It is purpose-built for materials the behaviour of which is dominated by 

tensile cracking [12]. This is largely true in the case of RC flexural structural elements where 

cracks form due to the development of tensile strains within the concrete medium. Such 

cracks gradually extend with increasing levels of applied loading, ultimately leading to struc-

tural failure and collapse. This is particularly useful for the present study on SFRC perfor-

mance as it allows for modelling the effect of steel fibers on the concrete behaviour in tension, 

especially after the onset of cracking. It is interesting to note that in the “brittle cracking mod-

el”, the behaviour of concrete in compression is modelled as being linear elastic which safe-

guards the numerical stability of the solution process. By adopting this simplification, 

emphasis is focused on realistically describing the all-important tensile response. Furthermore, 

as the present NLFEA is carried out using 3D modelling, at least one principal stress is re-

quired to be tensile to trigger cracking (this is the salient feature of concrete behaviour which 

is predominantly brittle) and this is well captured by the brittle cracking model. So although 

the model assumes elastic behaviour in compression for efficiency purposes, this does not af-

fect the accuracy as the predictions are in good agreement with experimental data (as dis-

cussed in the present study). So in summary, the brittle cracking model focuses on the 

important fundamental parameters affecting concrete behaviour (i.e. brittleness and cracking). 

This basic yet profound and focused approach allows one to develop a more fundamental un-

derstanding of aspects affecting the structural response of SFRC.  
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2.4 Material modelling  

The introduction of fibres into the concrete mix can enhance both the concrete material be-

haviour (predominantly in tension) and RC structural response. More specifically fibres at-

tribute ductile characteristics to concrete material behaviour resulting in an increase in 

strength, toughness and ductility. To date, many experimental investigations have been con-

ducted on the effect of fibers on structural concrete material behaviour. The vast majority of 

these tests have been carried out on prisms and cylinders subjected to compression, direct and 

indirect tension and flexure. Such studies aim at assessing the effect of fibers on:  

 important aspects of concrete material behaviour such as compressive strength fc, 

tensile strength ft, the elasticity modulus Ec, and the stress-strain curve under uniax-

ial compression or tension after cracking, and 

 the cracking process that fibrous concrete undergoes, which is dependent on the fi-

bre content, the strength and pull out behaviour of fibres bridging a crack as the 

crack becomes wider with increasing levels of applied loading.  

The performance of SFRC is influenced by a number of parameters associated with the fi-

bres such as shape, length, aspect ratio, and volume fraction [24, 25] and the concrete mix. 

The effect of fibres on concrete material behaviour in tension can be mainly observed after the 

onset of cracking as they attribute ductile characteristics to the post cracking behaviour of 

SFRC compared to the fully brittle behaviour exhibited by plain concrete [23, 26, 27]. De-

pending on the type and amount of fibres used, the post cracking behaviour may be described 

as strain-softening or strain-hardening. The residual strength of SFRC is the result of steel fi-

bers bridging the cracks and the bond between the fiber and the surrounding concrete. The 

small use of fibers concrete mix results in softening post-cracking response and failure is 

caused by breaking fibers as they bridge the cracks. Using higher values of fiber-content re-

sults in a softening post-cracking behaviour, but exhibiting more ductile characteristic and in 

some cases with using higher fiber content, a strain-hardening response is observed as the fi-

bers undertake the tensile forces which are acting normal to the plane of crack and will cause 

the increase in tensile strength.  

2.5 Nonlinear solution strategy  

During each time step the equation of motion governing the nonlinear dynamic impact 

problem considered is solved as a sequence of equivalent static problems through the use of 

the Newmark family of approximation methods. At the beginning of each iteration and based 

on the values of displacement, velocity and acceleration obtained from the previous iteration, 

the effective stiffness and load matrix are calculated and an equivalent static problem is for-

mulated [27]. The equivalent static problem is solved through an iterative procedure based on 

a modified Newton-Raphson method [23]. During the solution process of the equivalent static 

problem every Gauss point is checked to determine whether loading or unloading takes place 

and to establish whether any cracks close or form. Depending on the results of the previous 
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checks, changes are introduced to the stress-strain matrices of the individual FE’s and to the 

stiffness matrix of the structure. Convergence is checked locally at each Gauss point; this in-

volves the use of the constitutive relations for the calculation of the stresses increments which 

correspond to the estimated values of the strain increments. Once the values of the strain and 

the corresponding stress increments become less than a small predefined value (i.e. conver-

gence criterion) then convergence is accomplished. When this is not achieved, the residual 

forces are calculated and are then re-imposed onto the FE model of the RC form investigated 

until convergence is finally achieved.  

2.6 Modelling of cracking 

The cracking process that concrete undergoes is modelled through the use of the smeared 

crack approach [23, 27, 28]. A crack is considered to form when the predicted stress in a giv-

en part of the structure corresponds to a point in the principal stress space that lies outside the 

surface defining the failure criterion for concrete, thus resulting in localised failure of the ma-

terial. The plane of the crack is assumed normal to the direction in which the smallest princi-

pal stress acts (smallest compressive or largest tensile stress). A simple Rankine failure 

criterion is used to detect crack initiation (i.e. a crack forms when the maximum principal ten-

sile stress exceeds the specified tensile strength of concrete). Constitutive calculations are per-

formed independently at each integration point of the finite element model. The presence of 

cracks enters into these calculations by the way in which the cracks affect the stress and mate-

rial stiffness associated with the integration point. After crack formation the residual shear 

stiffness along the plane of the crack is determined through the use of a shear retention factor. 

Its value is affected by the presence of the fibres bridging the two sides of the crack. The 

shear stiffness is considered to decrease as cracks widen. Therefore, in order to allow for deg-

radation in shear stiffness due to crack propagation, the shear modulus is reduced linearly 

form full shear retention (i.e. no degradation) at the cracking strain to 50% of that at the ulti-

mate tensile strain. It is worth noting that the shear retention does not diminish altogether due 

to the presence of the fibres which enhance dowel action as well as aggregate interlock by re-

ducing crack opening. Crucially, the fibres contribute to shear resistance by providing tensile 

resistance (across the crack) to the shear induced diagonal tension stresses.   

2.7 Structural forms investigated 

The behaviour of the RC beam specimens considered herein has been experimentally in-

vestigated by Hughes and Spiers [29] under static and impact loading. The design details of 

the specimens (C2) investigated numerically in the present study are depicted in Figure1. The 

modulus of elasticity ES, the yield stress fy and the ultimate strength fu of both the longitudinal 

and transverse reinforcement bars are 206 GPa, 460 MPa and 560 MPa, respectively. The uni-

axial compressive strength fc of concrete is 45 MPa. The beams were subjected to drop weight 

testing at their mid-spans. Mild steel, rubber or ply pads were placed on the top face of the 

specimen in order to prevent or moderate local damage in the impact area and to some extent 

control the rate of loading. 
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Beam type Length Tensile Steel            Compression Steel 

 

Stirrups 

C2 3m 2x12 2x6 14x6 

Figure 1: Arrangements of RC beam investigated, adopted from Hughes and Spiers [29] 

 

Figure 2: FE mesh adopted 

3 RESULTS AND DISCUSSION 

3.1 Numerical predictions 

Initially, the case of RC beam specimen (C2) tested by Hughes and Spiers [29] was mod-

elled using NLFEA under both static and dynamic (i.e. high-rate/impact) loading and subse-

quently a further study was carried out by adding fibres to this specimen in order to study 

SFRC under impact. Different loading rates were considered in the numerical study ranging 

from 10 to 1000 kN/msec, which were applied once monotonically and then in the form of a 

pulse load. The pulse load was applied in different stages, initially using the value of the max-

imum load sustained monotonically and consequently that load was reduced every time by 

10% (of the maximum monotonic load sustained). The reduction continued in this manner to 

the point that the beam can bear the applied load, as shown in Figure 3(a). The aim was to es-

tablish the actual load-carrying capacity as the load applied during the experimental testing 

led to the complete destruction of the specimen and hence was not useful in determining the 

load-carrying capacity of the specimen. This is a common shortcoming of experimental test-

ing under high rates of loading and limit its usefulness in terms of design, where a contain-

ment is needed up to a certain load threshold. To address this, the NLFEA-based study 

considered applying in the reduced pulse manner described in order to help pinpoint the actual 

failure point and establish the all-important load-carrying capacity value.  
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The variation of the dynamic increase factor (DIF) was considered as depicted in Figure 

3(b), i.e. the maximum load sustained by the RC beams under high rate loading normalised 

with respect to its counterpart under static loading maxPd/maxPs, which shows a good correla-

tion between the experimental and numerical results. Another indicator of the DIF was also 

considered, namely the ratio between the maximum displacement at mid-span under the dy-

namic load and the displacement under static load 𝑀𝑎𝑥𝛿𝑑/𝑀𝑎𝑥𝛿𝑠. Both NLFEA-based 

maxPd/maxPs and 𝑀𝑎𝑥𝛿𝑑/𝑀𝑎𝑥𝛿𝑠 values at different loading rates as depicted in Figure 4(a,b), 

which shows that an increase in the loading rate leads to an increase in stiffness and load-

carrying capacity combined with a decrease of the maximum deflection at mid-span. As re-

gards the cracking and deformation profiles, Figures 5 and 6 indicate that, as the rate of load-

ing increases, the length portion (Leff) of the beam mostly affected by the applied load reduces. 

For relatively high rates of loading, this effective length is confined in the region of the beam 

mid-span extending on either side of the mid-span cross section to a distance marked by the 

formation of vertical flexural cracking initiating at the upper face and extending downwards, 

whereas the remainder of the beam (i.e. the portions extending between the supports and the 

aforementioned cracking) remains practically unaffected by the applied load. Therefore, under 

high rates of loading, the beam behaviour is essentially characterized by Leff.   

  

(a)                                                                               (b) 

Figure 3: (a) Applied load time history for monotonic and pulse load for RC and (b) comparison of experimental 

and numerical results for maxPd/maxPs for different monotonic and pulse loading rates  

 

 

  

 

 

 

 

 

 

(a)                                                                               (b) 

Figure 4: Comparison of NLFEA-based (a) maxPd/maxPs and (b) 𝑀𝑎𝑥𝛿𝑑/𝑀𝑎𝑥𝛿𝑠 for different monotonic and 

pulse loading rates for RC beam  
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(a) 

 

  
 

(b) 

Figure 5: Strain distribution along the RC beam for loading rate 100kN/msec at (a) 75% and (b) 100% of load 

 

 
(a) 

 
(b) 

Figure 6: Strain distribution along the RC beam for loading rate 1000kN/msec at (a) 75% and (b) 100% of load 

3.2 SFRC beam 

Following the study of the RC beam (specimen C2), which also served to validate the FE 

model and strategy used, steel fibres were added with a volume fraction (Vf) value of 1%. The 

aim of this NLFEA-based study is to enhance understanding of the effect of steel fibers on 

structural behavior of RC elements under low and high rates of loading. The material constitu-

tive model proposed by Lok and Xiao [30] was adopted in order to define the post-cracking 

tensile stress-strain relationship for SFRC. The load-deflection results under static loading are 

presented alongside the ones for RC beams (i.e. without fibres) in Figure 7. The curves are 

obtained based on incremental displacement acting on the mid-span of the beam. As it is 

shown, by adding 1% steel fibers to the concrete matrix, both the load carrying capacity and 

displacement in the mid-span of the beam increase. A comparison between the ratios of max-

imum dynamic to static load carrying capacity for different rates of loading (maxPd/maxPs) 

and maximum dynamic to static displacement (𝑀𝑎𝑥D𝑑/𝑀𝑎𝑥D𝑠), for both RC and SFRC are 
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shown in Figures 8(a,b), respectively. An increase in load carrying capacity and maximum 

deflection in the mid span of the beam is observed for SFRC compared to RC counterparts. 

Similar trends were found when the loading was applied as a pulse as can be seen in Figure 

9(a,b) indicating the potential benefits of fibres in design terms as the load-bearing capacity 

increases. Figures 10(a,b) and 11(a,b) indicate that the fibres help widen the localised zone 

affected by the load (Leff), albeit this still decreasing as the loading rate increases.   

 

Figure 7: Comparison of static load-deflection in the middle of the beam for SFRC and RC 

 

 

 

 

 

  

 

 

 

 
(a)                                                                                 (b) 

 

(a)                                                                               (b) 

Figure 8: (a) Comparison of MaxPd/MaxPs for RC and SFRC, and (b) Comparison of 𝑀𝑎𝑥𝛿𝑑/𝑀𝑎𝑥𝛿𝑠 for RC 

and SFRC under monotonic load at different loading rates 

 

 
(a)                                                                      (b) 

Figure 9: (a) Comparison of MaxPd/MaxP for RC and SFRC, and (b) Comparison of 𝑀𝑎𝑥𝛿𝑑/𝑀𝑎𝑥𝛿𝑠 for RC 

and SFRC under pulse load at different loading rates 
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(a) 

 
(b) 

Figure 10: Strain distribution along SFRC beam for loading rate 100kN/msec at (a) 75% and (b) 100% of load 

 
(a) 

 
(b) 

Figure 11: Strain distribution along SFRC beam for loading rate 1000kN/msec at (a) 75% and (b) 100% of load 

4 CONCLUSIONS  

A simplified, yet practical, brittle constitutive model was used by the NLFEA program 

adopted in the present study to analyse the behaviour of RC beams under impact loading ap-

plied at the mid span. For the beam case considered, the comparative study between numeri-

cal and experimental data revealed that such constitutive models are capable of providing 

realistic predictions of the experimentally established behaviour of RC beams under increas-

ing rates of loading. The numerical results obtained using ABAQUS NLFEA software on RC 

beams under different loading rates show good agreement with previous numerical and exper-

imental studies. A comparison of the load-deflection curves under static and impact loads 

shows that under high-rate loading conditions, the response of both RC and SFRC beams be-

comes stiffer and allows the beam to attain higher levels of loading. This change in structural 

response is essentially linked to the deformation profile exhibit by the beams with increasing 

loading rates which becomes more localised and confined to the mid-span loading region (i.e. 

the area at which the load is exerted) as the loading rate increases. This is likely to be due to 

the influence of inertia loads and the nature of stress waves invariably associated with impact 

which reduce the length of the beam that responds to the applied load. This leads to an in-
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crease of the beam’s stiffness and load-carrying capacity as well as to a reduction of its max-

imum vertical displacement under the load point as the loading rates increase. The study of 

RC and SFRC beam specimens shows that the use of fibers, at the dosage of Vf = 1% studied, 

results in significant increase of load carrying capacity and energy absorption of the structural 

elements under impact. The deflection at the beam mid-span also increases compared to the 

RC case indicating the ductility provided by the steel fibres. The extent of the effective length 

around the point of application of the impact load seems to also improve (albeit still decreas-

ing as the loading rate increases) due to the addition of fibres.  
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Abstract. This paper deals with the problem of dynamic behavior of thin geometrically im-

perfect shell structures made of functionally gradient material (FGM) with time dependent 

parameters. Hybrid asymptotic approach is used to obtain an approximate analytical solution 

of the problem. The material properties are graded in the thickness direction according to the 

given law distribution and initial conditions. The non-linear strain-displacement relationships 

based upon the von Karman theory for moderately large normal deflections. Discussed prob-

lem leads to a singular non-linear second order non homogeneous differential equation with 

variable in time coefficients. An analytical solution by hybrid perturbation-WKB-Galerkin (P-

WKB-G) method in some parameters of structure is compared with direct numerical integra-

tion results of initial equation of the problem.  

8654



V. Z. Gristchak, Yu. A. Fatieieva 

 

1 INTRODUCTION 

Thin walled structures made of functionally graded materials (FGM) with metal inner sur-

face and ceramic in outer surface widely used, for example, in modern air-space systems. In 

recent years important studies have been researched about vibration and stability FGM plates 

and shells with using mostly by numerical approaches [1-4, 12].  

The present research devoted to an approximate analytical solution of nonlinear dynamic 

problem of FGM imperfect shallow shells with time dependent parameters (for example, with 

thickness depending on time) on the basis of hybrid (P-WKB-G) asymptotic method, which 

was successfully applied in some mechanical problems [5-11,15]. 

2 BASIC CONCEPT OF THE HYBRID APPROACH TO SOLUTION OF 

NONLINEAR PROBLEMS 

To solve the non-linear differential equations with variable coefficients the approach is 

applied in three stages. On the first step the solution is determined using perturbation method 

by forming an expansion in parameter near the non-linear term of initial equation and we ob-

tain the related system of linear non-homogeneous equations with variable coefficients. On 

the second step the solutions of linear system are determined using the (one or two-term) 

WKB-approximation by forming an expansion in parameter. On the third step the correction 

functions are obtained by classical Galerkin procedure.  

In this paper an approximate analytical solution of nonlinear dynamic behavior of shallow 

shells with time-dependent thickness, which is described by singular nonlinear non homoge-

neous equation with variable coefficients was found. 

3 THE NONLINEAR DYNAMIC BEHAVIOR OF IMPERFECT SHALLOW 

SHELLS WITH VARIABLE IN TIME THICKNESS 

An approximate analytical non-linear analysis is given on the basic system of equations in 

terms of the stress and deflection following to the paper [1]. Suppose the FGM shallow shell 

is simply supported at its edges and subjected to a transverse load  0q t  and compressive edge 

loads  0r t ,  0p t . We assume that modulus of elasticity and the mass density changes in the 

thickness direction, while the Poisson ratio is assumed to be constant and thickness of shell is 

function of time. 

Appling Bubnov-Galerkin procedure with assumption that initial imperfection of middle 

surface of shell has the form: 

  1 2
0 1 2 0, sin sin

m x n x
w x x f

a b


 
     (1) 

where 0f  is given amplitude, the non-linear second – order ordinary differential equation 

for function  f t  with deflection function  1 2, ,w x x t : 

        1 2
1 2, , sin sin

m x n x
w x x t f t

a b


 
    (2) 
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that are correspond to simply support boundary conditions, is given in the form [1]: 

 

               
2

2 2 2 3 2
0 2 3 0 1 2 3 0 0 0 2 02

1 2 3
d f

f f A t A t f A t f A t f A t Q A t f A t f
dt

             (3) 
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c m
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E E
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,  1

1

c m
m h t

k

 
  

 

 
   

1k ,  2k – curvatures of middle surface shell in 1x  and 2x  directions. 

Initial differential equation (3) we rewrite in the form: 

        
2

2 2 3
1 2 3 02

d f
B t f B t f B t f Q t

dt
         (5) 

where 

       2
1 0 2 3 0 11 2B t f A t A t f A t     

   2 2

3
B t A t





 

          3 3

1
B t A t


      (6) 

      2
0 0 0 0 2 0Q t Q A t f A t f     

 ,   are parameters. 

According to perturbation method with respect to parameter of nonlinearity  , solution of 

differential equation (5) we obtain in the form of two terms approximation: 

     0 1f t t t        (7) 
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Substituting (7) into equation (5) and acquainted the terms with the same order of nonline-

ar parameter we obtain the system equations for unknown functions  0 t  and  1 t : 

 
0 :    2

0 1 0 0t B t Q             (8) 

1 :        2 2 3
1 1 1 2 0 3 0t B t B t B t           (9) 

Ordinary singular differential equation with variable in time coefficient 1B is solved by 

two terms WKB-approximation [5]: 

        0.250
0 1 1 21 sin cost B t с K t c K t      (10) 

where 

   1 0.25
1K t B t dt      (11) 

Particular solution of equation (9) can be present in the form: 

                                   
0.25

1 1 20 1 sin cos
p

t B t c t K t c t K t     (12) 

where 

 
   

 
0

1 0.25
1

cosQ t K t
с t dt

B t
   

(13) 

 
   

 
0

2 0.25
1

sinQ t K t
с t dt

B t
    

The solution of equation (5) in the first approximation is: 

                0 0.25
0 0 1 1 1 2 20 sin cos

p
t t t B K t c c t K t c c t            (14) 

Second term in (9) for ordinary equation is obtained from: 

    2
1 1 1 0t B t      (15) 

where 

    1 0.25
1K t B t dt   (16) 

Particular solution of equation (5) can be present in the form: 
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0.25

1 1 20 1 sin cos
p

t B t c t K t c t K t      (17) 

where 

 
   

 
0

1 0.25
1

cosQ t K t
с t dt

B t
   

(18) 

 
   

 
0

2 0.25
1

sinQ t K t
с t dt

B t
    

The solution of equation (5) in the first approximation is: 

                                              0 0.25
0 0 1 1 1 2 20 sin cos

p
t t t B K t c c t K t c c t            (18) 

Second term in (9) for ordinary equation is obtained from: 

                                                               2
1 1 1 0t B t      (19) 

in the form: 

                                                     0.250
1 1 1 21 sin cost B t d K t d K t       (20) 

Corresponding particular solution of equation (9) is 

                                                       
0.25

1 1 21 1 sin cos
p

t B t d t K t d t K t         (21) 

where  

            
        

 

2 3
2 0 3 0 0

1 0.25

cosB t B t Q t K t
d t dt

B t

 




 
   

 (22) 

           
        

 

2 3
2 0 3 0 0

2 0.25

1

sinB t B t Q t K t
d t dt

B t

 




 
    

 Finally, we have obtained the solution of nonlinear problem on the basis of perturba-

tion – (two-term) WKB method: 
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0 1 1 1 2 2

1 1 2 2

0.25

1 1 1 1 2 2 2

sin cos

sin cos

f t t t K t c c t K t c c t

K t d d t K t d d t

B t sinK t c c t d t cosK t c c t d t

 



 

      

    

           

 (23) 

 The initial conditions are: 

                                                                  
 

 

0 1

0 0







 
 (24) 

 In order to obtain hybrid asymptotic solution of initial nonlinear equation we rewrite 

equation (3) as 

                                       
2

2 2 3
1 0 2 3 02

d f
B t f Q t B t f B t f Q t N t

dt
         (25) 

 Approximate analytical (P-WKB-G) solutions of equation (3) are given in the follow-

ing forms (26) - (29). 

3.1 Hybrid asymptotic solution of linear homogeneous problem 

                                 0
0 ( ) ( ) 0.5973 ( ) 0.8508f t exp t cos K t sin K t     (26) 

where according to [5]: 

 
   

 

 
0.51 1

11
1.5

1

0

0 1

4

B B
t B t dt

B t dt




 


 

(27) 

     
   

 

 
0.51 1

12 1
1.5

1

0

1 01

4

B B
K t B t dt

B t dt



 



 

Some numerical calculations for the shell with variable in time parameters and compari-

son of approximate analytical solutions with direct numerical integration of initial nonlinear 

nonhomogeneous equation with variable coefficients are given on Figures 1-7.  
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Figure 1.Comparison of hybrid asymptotic and numerical solutions for homogeneous linear problem 

3.2 Hybrid asymptotic solution of linear nonhomogeneous problem 

                               0
0 0 1 1 2 20 ( ) ( ) ( )

p
f t f t f t exp t cos K t c c t sin K t c c t       (28) 

1 0.5522c    

2 0.8826c    

 
 

Figure 2.Comparison of hybrid asymptotic and numerical solutions for nonhomogeneous linear problem 

(one - term WKB-approximation) 

 

 
Figure 3. Comparison of analytical and numerical solutions for nonhomogeneous linear problem (two - 

terms WKB-approximation) 
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Figure 4. Comparison of analytical and numerical solutions 

3.3 Hybrid asymptotic solution of nonlinear nonhomogeneous problem 

                                 1 1 1 2 2 2( ) ( ) ( )f t exp t cos K t c c t d t sin K t c c t d t         (29) 

 
541.01 c  

2 0.8566c    

where 

                                         
1.5

0.03872 1 0.1t t    ,    
1.5

16.6644 1 0.1K t t   (30) 
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2 3
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1 0.5
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 (32) 
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Figure5. Comparison of analytical and numerical solutions 

 

Figure 6. Influence of nonlinear parameter . (Comparison of analytical and numerical solutions at  

 = 0.1) 

 

Figure7. Comparison of analytical and numerical solutions for nonhomogeneous linear and nonlinear 

 problems (one-step and two-step WKB-approximations)  
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4 CONCLUSIONS  

 An approximate analytical solution for forced oscillations of geometrically non-linear 

FGM imperfect shallow cylindrical shells with time dependent parameters on the basis of 

hybrid perturbation-two-terms WKB approximation method are obtained. For some particu-

lar parameters of structure an analytical solutions are in a good enough correlations with di-

rect numerical solutions of initial singular nonlinear differential equations with variable 

coefficients. In some cases one-term WKB-approximation gives good enough results for 

the practical purpose. 

Researches will be devoted in future to study of the values of perturbation  and singular 

  parameters influence on dynamics of FGM shell behavior according to three – step (P-

WKB-G) approach, different thickness function in time and functions of external forces as 

well. 
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Abstract. In this paper, we address the problem of vibrations of intelligent structures. Stimuli 

may come from external perturbations of the system, disturbances or excitation that may 

cause structural vibrations, such as wind loading or earthquake. First, an accurate model of 

a piezocomposite intelligent structure with special boundary conditions is derived by using of 

FEM analysis. Then the robustness of the uncertain closed-loop model performances has 

been investigated. Obtained results show the higher performance of Hinfinity design approach 

in rejection of disturbances. 
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1   INTRODUCTION 

 The study of algorithms for active vibrations control in intelligent structures became an area 

of enormous interest, mainly due to the countless demands of an optimal performance of me-

chanical systems. Many researchers are investigated in the field of intelligent structures [1, 2, 

3, 4, 5, 6 ].  A smart structure in one that monitors itself and its environment in order to re-

spond to changes in its conditions. [7,8] Smart structures, formed by a structure base, coupled 

with piezoelectric actuators and sensor are capable to guarantee the conditions demanded 

through the application of several types of controllers. This article shows some steps that 

should be followed in the design of a smart structure. In our paper a cantilever slender beam 

with rectangular cross-sections is considered. Thirty six pairs of piezoelectric patches are em-

bedded symmetrically at the top and the bottom surfaces of the beam. The beam is from 

graphite- epoxy T300 − 976 and the piezoelectric patches are PZT G1195N. The top patches 

act like sensors and the bottom like actuators. The resulting composite beam is modelled by 

means of the classical laminated technical theory of bending. Let us assume that the mechani-

cal properties of both the piezoelectric material and the host beam are independent in time. 

The thermal effects are considered to be negligible as well [8, 9]. 

The beam has length L, width W and thickness h. The sensors and the actuators have 

width bS and bA and thickness hS and hA, respectively. The electromechanical parameters of 

the beam of interest are given in the table 1. 

Parameters Values 

Beam length, L 0.7m 

Beam width, W 0.07m 

Beam thickness, h 0.0096m 

Beam density, ρ 1800kg/m
3

Young s modulus of the beam, E 1.5 Χ 10
11

 N/m
2

Piezoelectric constant, d31 254 Χ 10
−12

 m/V

Electric constant, ξ33 11.5 Χ 10
−3

 V m/N

Young’s modulus of the piezoelectric element 1.5 Χ 10
11

 N/m
2

Width of the piezoelectric element bS= ba= 0.07m 

Thickness of the piezoelectric element hS= ha= 0.0002m 

Table 1:  Parameters of the composite beam. 

In order to derive the basic equations for piezoelectric sensors and actuators [1, 2], 

we assume that: 

 The piezoelectric sensors actuators (S/A) are bonded perfectly on the host beam;
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 The piezoelectric layers are much thinner then the host beam;

 The piezoelectric material is homogeneous, transversely isotropic and linearly elastic;

 The piezoelectric S/A are transversely polarized [1, 2, 7].

2   SYSTEM MODELLING 

This classical finite element procedure leads to the approximate discretized variation problem. 

For a finite element the discrete differential equations are obtained by substituting the discre-

tized expressions into the first variation of the kinetic energy and strain energy [8, 10]. Inte-

grating over spatial domains and using the Hamiltons principle [8], the equation of motion for 

a beam element are expressed in terms of nodal variable q as   follows, 

          ( ) ( ) ( ) ( ) ( )m eMq t Dq t Kq t f t f t                                         (1) 

where M is the generalized mass matrix, D the viscous damping matrix, K the generalized 

stiffness matrix, mf  the external loading vector and ef the generalized control force vector 

produced by electromechanical coupling effects. The independent variable q(t) is composed of 

transversal deflections 1 and rotations 1 , i.e., [10, 12] 

Furthermore n is the number of nodes used in analysis and vectors ω and mf  are positive up-

wards. To transform to state-space control representation, let (in the usual manner), 

( )
( )

( )

q t
x t

q t

 
  
 

(2) 

Furthermore to express ( )ef t  as ( )Bu t  we write it as *

ef u where *

ef the piezoelectric force is 

for a unit applied on the corresponding actuator, and u represents the voltages on the actuators. 

Furthermore, ( ) ( )md t f t  is the disturbance vector [10]. 

Then, 

2 22 2 2 2 2 2

1 *1 1 1
( ) ( ) ( )

n nn n n n n n

e

OO I O
x t x t u t

M fM K M D M

  

  

    
      

     
(3) 

 
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

u t
Ax t Bu t Gd t Ax t B G Ax t Bu t

d t

 
       

 
    (4) 

The previous description of the dynamical system will be augmented with the output equation 

(displacements only measured) [5,11], 

 1 3 1( ) ( ) ( ) ( ) ( )
T

ny t x t x t x t Cx t            (5) 

The units used are compatible for instance m, rad, sec and N. [7,8] 
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3   DESIGN OBJECTIVES AND SYSTEM SPECIFICATION 

The structured singular value of a transfer function matrix is defined as, 











exists structuredsuch  no if,0

}1)Δ(,0)Δ{det(min

1

)(  MkIM m
km

(6) 

In words it defines the smallest structured Δ (measured in terms of )Δ( ) which makes 

det(I−MΔ)=0: then )Δ(/1)(   .  It follows that values of μ smaller than 1 are desired 

(the smaller the better: a larger variation is allowed) [13, 14]. 

4  SYSTEM UNCERTAINTY 

The main sources of uncertainty are: 

* Nonlinearity and/or dynamic aspects of the system that are ignored at the modeling phase.

The error introduced in modal analysis by using only a few significant eigenmodes leads to an 

uncertainty of the type discussed here. [15, 16] 

* Incomplete knowledge of model values and parameters and/or natural fluctuation of those

values during system operation. 

* Influence of the system's environment, in the form of disturbances.

Assume uncertainty in the M  and K matrices of the form, 

     K=K0(I+kpI2n×2nδK)                (7) 

M=M0(I+mpI2n×2nδM) (8) 

Also, since, D=0.0005(K+M), an appropriate form for D is, 

D=0.0005[K0(I+kpI2n×2nδK)+M0(I+mpI2n×2nδM)]= 

D0+0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM]           (9) 

Alternatively, by adopting the well-known Rayleigh damping assumption, 

D=αK+βM      (10) 

D could be expressed similarly to K, M, as, 

D=D0(I+dpI2n×2nδD)      (11) 

In this way we introduce uncertainty in the form of percentage variation in the relevant matri-

ces.  Uncertainty is most likely to arise from terms outside the main matrices (since length can 

be adequately measured). 

Here it will be assumed, 

8668



Amalia J. Moutsopoulou, Georgios E. Stavroulakis, Anastasios D. Pouliezos 

║Δ║∞
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hence mp, kp are used to scale the percentage value and the zero subscript denotes nominal 

values. 

(it is reminded that for matrix Αn×m the norm is calculated through ║A║∞= 
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ij
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With these definitions Eq. 3 becomes, 

M0(I+mpI2n×2nδM) )(tq + K0(I+kpI2n×2nδK)q(t)+

 +[D0+0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM]] )(tq =fm(t)+fe(t)         (13) 

M0 )(tq +D0 )(tq +K0q(t)=

     −[M0mpI2n×2nδM )(tq +0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM] )(tq

 +K0kpI2n×2nδKq(t)]+fm(t)+fe(t)   (14) 

     M0 )(tq +D0 )(tq +K0q(t)= )(
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Writing  in state space form, gives, 
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In this way we treat uncertainty in the original matrices as an extra uncertainty term. 

To express our system consider in the frequency domain Fig. 6 
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Fig. 6   Uncertainty block diagram 

This diagram is the weighted block diagram in the frequency domain. Wd, We, Wu, Wn are 

the weight of the disturbances, errors, control, noise. H(s) is our system, K(s), is the controller 

and Δ define the uncertainties. [16, 17]  

The matrices E1, E2 are used to extract, 
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appropriate choices for E1, E2 are, 
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The idea is to find an N such that, 
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or in the notation of Fig. 6,  
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We’ll use a methodology known as “pulling out the Δ’s”.  To this end, break the loop at 

points pu, qu (which will be used as additional inputs/outputs respectively) and use the auxilia-

ry signals α, β and γ. [18,19] 

To get the transfer function 
uwqd

N (from dw to qu): 

  qu= G2(E2β+Ε1γ)= G2(E2
s

1
+Ε1)γ         (24) 

γ=GWddw+Bu+A
s

1
γ=GWddw+BKC

s

1
γ+A

s

1
γ 

γ=(Ι−BKC
s

1
−A
s

1
)
-1

GWddw (25) 

Hence, 

uwqd
N = G2(E2

s

1
+Ε1)(Ι−BKC

s

1
−A
s

1
)
−1

GWd

Now, 
uuqp

N , 
wuep

N , 
wuup

N ,  are similar to 
uwqd

N , 
wwed

N ,
wwud

N  with GWd replaced by Gu, i.e., 

uuqp
N = G2(E2

s

1
+Ε1)(Ι−BKC

s

1
−A
s

1
)
−1

Gu


wuep

N WyJH[I+B[K(I−CHBK)
-1

CH]Gu (26) 


wuup

M WuK(I−CHBK)
-1

CHGu

Finally to find 
uwqnN ,

qu= G2(E2β+Ε1γ)= G2(E2
s

1
+Ε1)γ    (27) 

γ=Bu+A
s

1
γ =BK(Wnnw+y) +A

s

1
γ =BKWnnw+BKC

s

1
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Hence, 
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Collecting all the above yields N: 
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Having obtained N for the beam problem, all proposed controllers K(s) can be compared using 

the structured singular value relations. [18, 19] 

5    INPUTS 

A typical wind load (Fig. 7) acting on the side of the structure. The wind load is a real life 

wind speed measurements in relevance with time that took place in Estavromenos of Heraklion 

Crete. We transform the wind speed in wind pressure with, 

 Loading corresponds to the wind excitation. The function fm(t) has been obtained from the 

wind velocity record, through the relation 

21
( ) ( )

2
m uf t C V t       (31) 

 where V=velocity, ρ=density and Cu=1.2. 

Fig.7 External load 

Moreover, in all simulations, random noise has been introduced to measurements at system 

output locations within a probability interval of ±1%.  Due to small displacements of system 

nodal points, noise amplitude is taken to be small, of the order of 5 × 10
–5

. On the other hand,

the signal is introduced at each node of the beam by a different percentage, that percentage 

being lower at the first node due to the fact that the beam end point is clamped. The controller 

obtained by applying H∞ control has an order equal to 36. For this controller, γ = 0.074<1. 

6   RESULTS 

Robust analysis is carried out through the relations: 
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  1)j(sup 11Δ 





N


for  robust stability, and, 

  1)j(sup Δ 





N
a



for robust performance 

For the H∞ found, robust analysis was performed for the following values of mp,kp. 

1. mp = 0, kp = 0.9. This corresponds to a ±90% variation from the nominal value of the stiff-

ness matrix K.  In Fig.8  are shown the bounds on the μ values. As seen the system remains 

stable and exhibits robust performance, since the upper bounds of both values remain below 1 

for all frequencies of interest. This result is validated in Fig.9, where the displacement of the 

free end and the voltage applied are shown at the extreme uncertainty. Comparison with the 

open loop response for the same plant shows the good performance of the H∞ controller. Re-

sults are very good, and the beam remains in equilibrium even under realistic wind conditions. 

Reduction of vibrations is observed, while piezoelectric add-ons produce voltage within their 

tolerance limits (±500volt) 

Fig. 8 μ-bounds o H∞ the controller for mp=0, kp=0.9 
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Fig.9   Displacement and control at free end for the H∞ controller with mp = 0, kp =0.9 

2. mp = 0.9, kp = 0. This corresponds to a ±90% variation from the nominal value

of the mass matrix M. 

In Fig. 10  are shown the bounds on the μ values. As seen the system remains stable and ex-

hibits robust performance, since the upper bounds of both values remain below 1 for all fre-

quencies of interest. This result is validated in Fig. 11, where the displacement of the free end 

and the voltage applied are shown. 

Comparison with the open loop response for the same plant shows the good performance 

of the controller. By employing the H∞ control, vibration reduction is achieved, while the 

voltage applied is significantly lower that 500 V. 

. 

Fig. 10 μ-bounds of the H∞ controller for mp =0.9, kp =0. 
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Fig. 11   Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 

3. mp = 0.9, kp = 0.9. This corresponds to a ±90% variation from the nominal values of both

the mass and stiffness matrices M, K. 

In Fig. 12 are shown the bounds on the μ values. As seen the system remains stable and exhib-

its robust performance, since the upper bounds of both values remain below 1 for all frequen-

cies of interest. This result is validated in Fig. 13, where the displacement of the free end and 

the voltage applied are shown. 

Comparison with the open loop response for the same plant shows the good performance of 

the controller. Results are very good, and the beam remains in equilibrium even under realis-

tic wind conditions. Reduction of vibrations is observed, while piezoelectric add-ons produce 

voltage within their tolerance limits. 

Fig. 12  Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 
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Fig.13   Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 

Furthermore, we control the structure with variations of the nominal values of the 

mass matrix M, stiffness matrix K and matrices A and B. We take into consideration nonline-

arities and system dynamics neglected in modeling, incomplete knowledge of disturbances, 

environment influence in the form of disturbances, and unreliability of system sensor meas-

urements.  

7 CONCLUSIONS 

This paper describes an integrated approach to design and implement robust controllers for 

intelligent structures. The mathematical model derived using robust control is compared with 

models obtained by more conventional and well known methods. Using this model, a Hinfinity 

(H∞ ) controller is designed for vibration suppression purposes. This robust controller accom-

modates the limited control effort produced by actuators. These designs are all then realized 

as digital controllers and their closed-loop performances have been compared. In particular, 

the robustness properties of the controller have been verified for variations in the mass of the 

test article and the sampling time of the controller. Complete vibration reduction was 

achieved even for variations of beam mass and stiffness up to 90%. H∞ controller results were 

very satisfactory and prove that H∞ control can reduce smart structures vibrations and deal 

with modeling uncertainty, external disturbances, and noise in measurements. 
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Abstract. The application of cold-formed steel structural members in steel construction, and 
in particular building construction, has a number of advantages that includes its high structural 
efficiency compared to the member weight. In recent years the increasing safety requirements 
reflected in the different design standards, boosted the behaviour of materials under extreme 
conditions, in particular in conditions of high temperatures such as those arising from fires. 

This work presents a study of the behaviour of cold-formed thin steel sheeting screwed connec-
tions at room temperature and elevated temperatures. The shear and bearing failure modes are 
analysed experimentally by means of a parametric analysis, considering: (i) different elevated 
temperature values; (ii) cold-formed steel grades; (iii) board effect of the screw position; (iv) 
and different steel sheet thicknesses. The set of experimental results are used for calibration 
and verification of the numerical model developed by the finite element method in the software 
Ansys. 

The experimental tests presented allowed to determine the load resistance of self-drilling 
screwed connections of thin steel sheets and the influence of the sheet thickness, edge distance 
(e1) and the connection temperature. The results show that for the same connection, keeping 
the sheet thickness and edge distance e1, a change on the failure mode with the temperature 
increase occur. The finite element numerical model presented allow to study the behaviour of 
self-drilling screwed connections and determine the collapse load. The cases analysed give 
results close to the characteristic resistance of the screws manufacturer. 
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1 INTRODUCTION 

The application of cold-formed steel structural members in steel construction, and in partic-
ular building construction, has a number of advantages that includes its high structural effi-
ciency compared to the member weight. These sections are usually obtained by thin cold-
formed sheets and have slender cross-sections. Although the member resistance is affected by 
local and distortional buckling instability phenomena, one can reduce these effects by local 
restraints to the partition walls panels or the building envelop panels, by means of self-drilling 
or self-tapping screws. Additionally the building erection phase is faster due to the ease steel-
to-steel connection between structural members by means of self-drilling screws. 

In recent years the increasing safety requirements reflected in the different design standards, 
boosted the behaviour of materials under extreme conditions, in particular in conditions of high 
temperatures such as those arising from fires. 

The design of cold-formed sections and their connection elements must be performed at 
room temperature and also in an accidental fire situation, for which the connection strength 
design value must be determined at elevated temperatures. At room temperature, bolted shear 
connections from bearing type category must be verified against shear and bearing failure 
modes. This methodology differs from that presented in EN1993-1- 3, which provides the de-
sign resistances of connections for cold-formed members and sheeting. At elevated tempera-
tures the Annex D from EN 1993-1-2 specifies the fire design resistance of bolts loaded in shear 
as a function of its ambient temperature resistance (from EN1993-1-8) and a reduction factor 
determined for the appropriate bolt temperature. 

In the case of thin steel sheets with thicknesses that typically vary between 0.5 and 3 [mm] 
screwed connections of these elements are carried out with self-drilling screws without the need 
of opening a hole, as is shown in Figure 1. 

Figure 1 - Self-drilling screws in cold formed profiles. 

These screwed connections behave differently than the conventional bolted connections. In 
the case of self-drilling screwed connections of thin steel sheets, the joint collapse load is usu-
ally determined by the bearing resistance of the plates, and only in thicker plates by the screw 
shear resistance. This distinction is even more noticeable in the case of structures under fire 
conditions. The heating rate of the thin sheets is higher than the heating rated of the screws, due 
to their higher thermal capacitance. Therefore, with the increase of temperature, the decrease 
of the bearing resistance is higher than the screw shear resistance, and may lead to a change of 
the collapse mode at ambient temperature. 

This behaviour has already been studied by some researchers, through experimental tests 
and numerical simulations at ambient and elevated temperatures. Yan and Young conducted 
tests on bolted connections of thin sheet steels at elevated temperatures in steady state heating 
conditions, [1], in which the mechanical load is applied after temperature equilibrium, and also 
in transient state, [2], in which the connection is subject to a mechanical load and subsequent 
increase of temperature at constant rate. The authors analysed the effect of the bolt position and 
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the influence of the bolt diameter. In addition to the test temperature and the sheets thickness, 
they studied the influence of one and two bolts with different positions and different bolt diam-
eters. The results show four failure modes: namely the bolt shear, bearing, tear out and net 
section failure.  

Lu et al conducted an experimental and numeric study on screwed connections at different 
temperature levels: 20ºC, 200ºC, 400ºC e 600ºC. The results show two types of failure: (i) thin 
sheet bearing failure for tests under 200ºC and (ii) screw shear failure for tests at 400ºC and 
600ºC. From this results, the authors proposed a design formula based on the EC3-1-8 rules, 
when the ratio between the distance of the hole to end and the diameter of the hole is between 
1.00-1.75 (1.00 ≤ e2⁄d ≤ 1.75), [3]. The same authors also performed a numerical study of the 
connections using the finite element method in Abaqus software, considering an non-linear ex-
plicit analysis, [4]. The simulations consider the material and geometry nonlinearity and contact 
elements between the various surfaces. The bolt geometry is simplified by a simulated thread 
with three circumferential segments. 

Chung and IP conducted a numeric study on thin sheet steel connections, form G300 and 
G550 sheets, using the finite element software Ansys, [5]. The numerical analyses include the 
elastoplastic behaviour of the material obtained experimentally and contact elements with a 
friction coefficient equal to 0.2. The numerical results show that the contact stiffness and fric-
tional coefficient between element interfaces, and clamping force in bolt shanks are important 
parameters for accurate prediction of bolted connections load-displacement behaviour.  

This work presents a study of the behaviour of cold-formed thin steel sheeting screwed 
connections at room temperature and elevated temperatures. The shear and bearing failure 
modes are analysed experimentally by means of a parametric analysis, considering: (i) dif-
ferent elevated temperature values; (ii) cold-formed steel grades; (iii) board effect of the 
screw position; (iv) and different steel sheet thicknesses. The set of experimental results are 
used for calibration and verification of the numerical model developed by the finite element 
method in the software Ansys. The numerical method is used for a wider parametric analysis 
about cold-formed screwed connections at elevated temperatures. The numerical and exper-
imental results are compared with the simplified calculation method presented in the Euro-
pean standards. 

2 SAFETY VERIFICATION OF BOLTED CONNECTIONS 

The design of screwed connections must be performed at room temperature and also in an 
accidental fire situation, in which it is necessary to know the resistance design value in function 
of exposure temperature. At room temperature the bolted connections loaded in shear of the 
bearing type, according to EN1993-1-8, should comply with the safety verifications in relation 
to their design shear resistance and design bearing resistance. This methodology differs from 
the one presented in the EN1993-1- 3 for cold-formed member connections, which provides 
rules for the design of self-drilling screwed connections. At elevated temperatures, the annex D 
of EN1993-1-2 presents the methodology to design bolted connections for shear and bearing 
resistance, updating the ambient temperature design resistance by a reduction factor for the 
appropriate bolt temperature. 

2.1 Design of bolted connections at ambient temperature. 

The design methodology of bolted connections in shear, defined as category A according to 
EC3 part 1.8, [6], stats that the design ultimate shear load should not exceed the design shear 
resistance (Fv,Ed < Fv,Rd), nor the design bearing resistance, (Fv,Ed < Fb,Rd). 
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Where v  represents the factor associated with the bolt class ( v = 0.6 for classes 4.6, 5.6 e 
8.8, v = 0.5 for classes 4.8, 5.8 e 10.9). If the shear plane passes through the threaded part of 
the bolt is assumed v = 0.6, ubf represents the bolt ultimate of tensile strength, A the resistant 
area of the bolt and 2M  the partial safety factor for joints. The constant b  is obtained by the 
smallest of fub /fu , αd or 1. The value of αd must be calculated for end bolts and inner bolts 
independently, by the following expressions, respectively: 

0

1
d

3d

e
 (3) 

4
1

3 0

1
d 

d

p
 (4)

The factor k1 considers the bolt position perpendicular to the direction of load transfer. For 
edge bolts assume the smallest of equations (5) and (6) values and 2.5. In the case of inner bolts 
k1 is given by the smallest value between the equation (6) and 2.5. 
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Eurocode 3 part 1-3, [7], provides additional rules for safety verification of cold-formed thin 
steel sheets screwed connections (applied to self-drilling screws). In this case the connections 
bearing resistance is determined by the following equation. 

2
,

M

u
Rdb

dtf
F




 (7)

The value of α is determined in function of the thickness of the connected plates, by the 
following expressions. 

11.22.3 ttford
t  (8)

mmtandttford
t 0.15.21.22.3 1  (9)

mmtandttfor 0.15.21.2 1   (10) 

 represents the thickness of the thinner plate and 1 the thickness of thicker plate. In the 
cases not mentioned, α is obtained by interpolation ( ttt 5.21  ). The net section resistance is 
determined by equation 11.  
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Figure 2 - Bearing resistance according to EN1993-1-3 for different steel sheet thicknesses. 

Additionally, it is necessary to check the screw shear resistance. However, this part of the 
Eurocode defines that this resistance is determined through experimental testing, dividing the 
characteristic shear resistance ( RkvF , ) by the partial safety factor. This experimentally deter-
mined value, in the case of a single screw connection, is subject to the conditions presented in 
equation 13.  

2

,
,

M
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F
F


 (12) 

RdbRdv FF ,, 2.1  or RdnRdv FF ,, 2.1 (13) 

The experimental values are usually determined through experimental tests conducted by the 
screw manufacturers when the product certification is based on an European technical approval 
(ETA). In the case of the screws used in this study, the shear resistance characteristic values, at 
room temperature, are presented by SFS INTEC in ETA-10/0198 [8]. 

2.2 Design of screwed connections at elevated temperatures. 

The annex D of EN 1993-1-2, [9], presents the methodology to determine the resistance of 
screwed connections in shear and bearing at at elevated temperatures. The net-section failure at 
screw holes do not need to be considered if there is a screw in each hole, because the steel 
temperature is lower at the connection due to the presence of additional material. The shear and 
bearing resistances are determined by the following equations, in which Fv,Rd  and Fb,Rd are rel-
ative to the screw resistance at room temperature. 

, , , ,
,

(14) 

, , , ,
,

(15) 

,  represents the reduction coefficient for the appropriate screw temperature. This reduc-
tion value is independent of the screw strength and steel class of the connecting plates. Conse-
quently the connection bearing resistance is determined in function of this parameter and its 
resistance at room temperature. Figure 3 shows the reduction coefficient temperature variation 
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and its comparison with the ultimate strength ( ,  reduction coefficient for the material G250, 
with , . 292  and 361 , determined by Kankanamge et al [10]. The next fig-
ure shows that in temperature range 400-600 [ºC] the reduction coefficient ,  increases the 
bearing resistance in a non-conservative way. 

Figure 3 - Bearing resistance reduction value and comparison with the G250 ultimate strength temperature varia-
tion. [10]. 

3 EXPERIMENTAL TESTS 

3.1 Thin steel sheets screwed connections. 

This paper presents a set of experimental tests at elevated temperatures on the behaviour of 
screwed connections of thin steel sheets in simple shear. The galvanized steel sheets are from 
class DX51D +Z (EN10342) with  MPaf y 284  and  MPafu 355 . The connections are
made with self-drilling carbon steel screws, with the reference SFS SD6-H15 Ø5,5 x 22 mm 
and a diameter of D=5,5 [mm]. The screw is placed along the middle axis of the sheet and the 
different distances from the end edge to the hole centre (e1): 10mm, 15mm and 20mm, as pre-
sented in Figure 4. A parametric study is made considering the steel sheets thickness (1.5+1.5, 
2.0+1.5 and 2.0+2.0 [mm]) and different temperature levels, representative of a fire event. 

The tests presented allow the analysis of this parameters on the connection resistance and on 
the collapse mode. 

Figure 4 - Dimensions of test specimens for the screwed connections. 
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Figure 5 - Experimental setup of the screwed connections. 

The experimental setup consists of a universal tensile testing machine to apply the mechan-
ical load, (Figure 5), resulting in a shear effort to the screw. The elements are placed inside of 
an electric furnace, whose temperature is measured by the thermocouple type K and controlled 
by a PID system. After the set point temperature is attained, and a small initial load of approx-
imately 0.1 [KN] is applied, the test starts with a displacement control at the velocity equal to 
1 [mm/min], following the reference to the technical documentation of the ECCS, [11]. Ac-
cording to this procedure, the failure resistance must be defined as the peak load in a defor-
mation of 3[mm], as represented in Figure 6, using an extensometer in a reference length of 150 
[mm]. To measure the reference length extension two auxiliary rods, fixed to steel plates are 
used, allowing the mechanical extensometer be placed outside the furnace, as can be seen in 
Figure 5. 

Figure 6 – Experimental tests failure limits, [11]. 

The failure modes obtained from self-drilling screwed connections are usually one or a com-
bination of two failure modes presented in Figure 7. This figure presents the mechanisms of 
failure by shearing of the screw (SFM), bearing failure mode (BFM), which can occur with or 
without tearing of the steel sheet, and screw pull-out and tilting due to the screw slipping from 
the connection hole (TFM). In the case of thick steel sheets the expected failure mode is due to 
the screw shear, while for very thin steel sheets the sheet tearing or bearing is verified. Other 
situations may include two or more combinations of this failure modes. 

Figure 7 - Failure modes: Shear failure mode (SFM), b) Bearing failure mode (BFM), c) Tilting failure mode 
(TFM). 
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Figure 8 presents the experimental results for a combination of sheet thicknesses 1.5+1.5 
[mm], considering the applied load in function of the displacement, for different edge distances 
of the connection and temperature values. 

Figure 8 - Experimental results of plates 1.5+1.5 [mm] at a temperature of 20, 200, 400, 500, 600 e 800 [ºC]. 

In the Table 1 the experimental tests results are presented for the maximum load, the load 
value for 3 [mm] displacement and the failure mode or combination of modes visualized in each 
test. The table also present the resistance of each connection determined from the simplified 
equations EC3-1-8 and EC3-1-3, presented in the previous section, considering unit partial 
safety factors. 

The results show that, as expected, the connection resistance decreases with the temperature 
increase, with the exception of the 200 [ºC] tests, requiring some additional tests. For the same 
sheet combination, 1.5+1.5 or 2.0+1.5, the resistance increases with the edge distance e1, inde-
pendently of the test temperature. However, the table shows that the failure mode is mostly 
influenced by the edge distance (e1) and the test temperature. For thinner steel sheets (1.5+1.5), 
when an edge distance e1=10[mm] is used, the failure mode is always due to bearing, while for 
e1=20 [mm] the most predominant is the tilting failure mode, where the screw rotation and 
sliding is attained. For the combination of steel sheets 2.0+1.5 with an edge distance e1=20[mm] 
the predominant failure mode is due to the screw shear, with the exception of the room temper-
ature tests. For steel sheet thicknesses 2.0+2.0 at a temperature of 500[ºC], the failure mode is 
always do to shear, regardless of the edge distance value. 

3.2 Mechanical strength of the screws steel 

The usual process of design bolted connections is based on the mechanical strength of bolts 
and plates material. In the case of conventional bolts, the minimum value of the bolts nominal 
strength (yield strength and ultimate strength) is defined by its material class, established by the 
standard ISO898-1:1999 [12]. In the case of self-drilling screws SFS INTEC SD6-H15 Ø5,5 x 
22 mm a classification from this standard is unknown. According to the manufacturer, these 
screws are produced by cold forming a length of a steel wire from steel 18B2 according to the 
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EN10263. The threaded length is opened by cold working followed by a hardening heat treat-
ment and stress relief. Finally, there is a surface treatment and dehydrogenation.  

According to the manufacturer's experimental tests of the screws, the bolt tension resistant 
and shear resistance are 16 and 10 [KN], respectively, [13]. 

Reference PMAX 
[kN] 

P[d=3mm]  
[kN]

Failure 
mode EC3-1-8 EC3-1-3 

Fb,t,Rd Fv,t,Rd Fb,t,Rd Fv,t,Rd 
P1.5+1.5_1.82d_T20 5.820 5.514 BFM 4.438 6.808 4.894 3.430 

P1.5+1.5_1.82d_T200 6.008 5.659 BFM 5.432 8.332 5.991 4.198 
P1.5+1.5_1.82d_T400 4.537 4.435 BFM 3.075 4.718 3.392 2.377 
P1.5+1.5_1.82d_T500 2.336 2.303 BFM 1.771 2.716 1.953 1.369 
P1.5+1.5_1.82d_T600 1.622 1.616 BFM+TFM 1.052 1.613 1.160 0.813 
P1.5+1.5_2.73d_T20 6.459 6.266 TFM+SFM 6.656 6.808 4.894 3.430 

P1.5+1.5_2.73d_T200 6.260 5.686 BFM 8.147 8.332 5.991 4.198 
P1.5+1.5_2.73d_T400 4.387 3.871 TFM 4.613 4.718 3.392 2.377 
P1.5+1.5_2.73d_T500 3.141 2.964 TFM 2.656 2.716 1.953 1.369 
P1.5+1.5_2.73d_T600 2.223 1.777 SFM 1.578 1.613 1.160 0.813 
P1.5+1.5_3.64d_T20 7.152 6.051 TFM 7.322 6.808 4.894 3.430 

P1.5+1.5_3.64d_T200 6.765 6.003 TFM 8.962 8.332 5.991 4.198 
P1.5+1.5_3.64d_T400 5.004 4.999 TFM 5.074 4.718 3.392 2.377 
P1.5+1.5_3.64d_T500 3.281 3.125 TFM 2.921 2.716 1.953 1.369 
P1.5+1.5_3.64d_T600 2.266 1.766 SFM 1.735 1.613 1.160 0.813 
P2.0+1.5_1.82d_T20 5.750 5.101 BFM 4.438 6.808 5.173 4.310 

P2.0+1.5_1.82d_T200 6.631 6.325 BFM 5.432 8.332 6.332 5.275 
P2.0+1.5_1.82d_T400 4.977 4.940 BFM 3.075 4.718 3.585 2.987 
P2.0+1.5_1.82d_T500 3.001 2.996 BFM 1.771 2.716 2.064 1.720 
P2.0+1.5_1.82d_T600 1.670 1.664 BFM+SFM 1.052 1.613 1.226 1.021 
P2.0+1.5_2.73d_T20 8.086 6.636 SFM 6.656 6.808 5.173 4.310 

P2.0+1.5_2.73d_T200 8.666 7.452 SFM 8.147 8.332 6.332 5.275 
P2.0+1.5_2.73d_T400 5.702 5.380 TFM+SFM 4.613 4.718 3.585 2.987 
P2.0+1.5_2.73d_T500 3.511 3.485 TFM+SFM 2.656 2.716 2.064 1.720 
P2.0+1.5_2.73d_T600 1.863 1.788 TFM+SFM 1.578 1.613 1.226 1.021 
P2.0+1.5_3.64d _T20 8.274 6.481 TFM 7.322 6.808 5.173 4.310 

P2.0+1.5_3.64d _T200 7.501 7.114 SFM 8.962 8.332 6.332 5.275 
P2.0+1.5_3.64d _T400 4.730 4.515 TFM+SFM 5.074 4.718 3.585 2.987 
P2.0+1.5_3.64d _T500 3.458 3.426 TFM+SFM 2.921 2.716 2.064 1.720 
P2.0+1.5_3.64d _T600 1.885 1.681 TFM+SFM 1.735 1.613 1.226 1.021 
P1.5+1.5_1.82d_T800 0.397 0.344 BFM 0.186 0.285 0.205 0.144 
P1.5+1.5_2.73d_T800 0.537 0.526 TFM 0.279 0.285 0.205 0.144 
P1.5+1.5_3.64d_T800 0.532 0.532 TFM 0.307 0.285 0.205 0.144 
P2.0+2.0_1.82d_T20 8.059 6.196 SFM 5.917 6.808 7.535 4.310 
P2.0+2.0_2.73d_T20 8.977 5.981 SFM 8.875 6.808 7.535 4.310 
P2.0+2.0_3.64d_T20 9.364 7.060 SFM 9.763 6.808 7.535 4.310 

P2.0+2.0_1.82d_T500 3.474 3.474 SFM 2.361 2.716 3.007 1.720 
P2.0+2.0_2.73d_T500 3.640 3.452 SFM 3.541 2.716 3.007 1.720 
P2.0+2.0_3.64d_T500 3.839 3.650 SFM 3.895 2.716 3.007 1.720 

Table 1 - Characteristics and results of the experimental tests (maximum load, load at 3 [mm] of deformation and 
failure mode). 
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With the aim of establish the classification of the screw material strength, a set of tensile 
experimental tests were carried out until the material rupture, using a universal testing machine. 
The screws were previously machined to remove the threads and to create a constant reference 
length with 6 [mm] of length and 3 [mm] of diameter. An increasing load was applied to the 
screw between its head and a drilled 4 [mm] thick sheet, as shown in Figure 9. For the tests 
performed at elevated temperatures this setup was placed inside an electric ceramic furnace. 

Figure 9 - Experimental setup for traction test. 

Table 2 presents the average values of the experimental results of maximum load and its 
tensile strength for different temperature levels. The results show a noticeable reduction of the 
screw ultimate strength with temperature. The average results at room temperature (from a set 
of three) allow us to conclude that the screw meets the requirements of the minimum tensile 
strength for the class 10.9. 

Temp. [ºC] PMAX [kN] Ultimate Strength [Mpa] 
20 8,003 1135,67 

200 7,952 1125,00 
400 5,326 753,50 
500 3,157 443,9 

Table 2 – Average value of the screws tensile tests.  

4 NUMERICAL MODELLING OF THIN SHEET SCREWED CONNECTIONS 

The structural model used in the numerical simulations, by the finite elements method, is 
presented in Figure 10. This model follows the experimental setup used in the previous sections, 
in which one end of the steel sheet is fixed and the other is subjected to an increasing mechanical 
load until the collapse load is achieved. The simulations are performed in the software Ansys® 
considering geometric and material non-linear analysis. The structural steel elements, including 
the screw, are modelled using three-dimensional solid finite elements (Solid186 and Solid187) 
and the contact surfaces between screw-sheets and sheet-sheet modelled with contact elements 
(Conta174 and Targe170). All contact surfaces consider frictional contact with a friction coef-
ficient equal to 0.2, with an Augmented Lagrange Formulation, and a refined mesh to obtain 
the required numeric precision of the contact between the contact and target finite elements.  
The material nonlinear behaviour of the steel sheets was considered using the stress-strain 
curves presented in the Eurocode 3 part 1.2 at high temperatures, [9]. These curves are deter-
mined in function of the material characteristic yield stress and the temperature reduction coef-
ficients therein presented. 
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Figure 10 - Geometric model used in the numerical simulations. 

In the case of thin steel sheets, being considered of class 4, the design yield strength and its 
variation with temperature must be considered equal to the proportional limit strength at 0.2% 
deformation. For this class the temperature reduction coefficients of yield stress at 2% are not 
presented. This requires a modification of stress-strain curves design presented by Eurocode 3 
part 1-2, consisting in an iterative process for calculating the 2% reduction coefficients, and its 
yield strength in function of the temperature, so that the proportional limit strength at 0.2% 
match the ones from EN1993-1-2 annex E, [9]. 

The nonlinear material analysis performed in Ansys defined by an elastic-plastic material 
law, needs the stress-strain curves to be converted into true stress-true strain curves. This trans-
formation is accomplished by the following equations, where the nominal stresses and strain 
values are determined by the nominal curves provided by EC3-1-2. 

1
1

	 (16) 

The Figure 11 presents the true stress-strain curves for different temperature values of gal-
vanized steel sheets S350GD + Z, with a yield stress at 0.2% equal to 350 [MPa], and consid-
ering strain hardening up to 400 [ºC]. 

Figure 11 - True stress-strain curves for different temperatures. 

As this self-drilling screws are not classified as the conventional bolts, to allow the material 
characterization a set of tensile tests were done to the screws in tension. The average ultimate 
strength value obtained was 1135.67 [MPa], allowing the screw to be classified as class 10.9, 
from ISO898-1:1999 [12]. The screw material stress strain curves follow a bilinear model de-
fined by the yield strength and a tangent modulus equal to E/100. 

4.1 Numerical simulations. 

The simulations performed at room temperature follow a two step analysis. Firstly, without 
mechanical load (F=0), the equilibrium conditions of the contact pressure and contact condi-
tions between the various surfaces are determined. As the experimental screw preload was not 
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determined, this was not included in the numerical analysis. The second step consists in apply-
ing a linearly increasing load, with minimum increments of 1 [N], while the equilibrium condi-
tion are attained, obtaining the connection collapse load at the end of the simulation. 

Figure 12 presents the finite element model of two thin steel sheets (1+2 [mm]) screwed 
connection considering an edge distance equal to 20 [mm]. To reduce the finite element model 
and its computational time a symmetry condition was used. The Von Mises equivalent stress 
distribution show the yielding of the sheets due to bearing, with stress values higher than the 
yield stress, and a small plastic area along the screw thread, with stresses over 900 [MPa]. The 
connection collapse load applied at this instant is 4693.4 [N]. The numerical results from sim-
ulations performed with a steel sheets combination equal to 2+2 [mm] allow to obtain a collapse 
load of 5600 [N]. 

Figure 12 - Finite element model of steel sheets 2+1 [mm]. Steel sheets and screw von Mises equivalent stress 
distribution at the collapse load. 

5 CONCLUSIONS 

 The experimental tests presented allowed to determine the load resistance of self-drilling
screwed connections of thin steel sheets and the influence of the sheet thickness, edge dis-
tance (e1) and the connection temperature.

 For the same connection, keeping the sheet thickness and edge distance e1, we can observe
a change on the failure mode with the temperature increase. The three failure modes were
detected, being mainly the screw shear failure, steel sheets bearing failure and a combina-
tion of both.

 Connections with double steel sheets of 2.0 [mm] have a failure mode due to screw shear
at ambient temperature and at 500 [ºC]. Connections with double steel sheets of 1.5 [mm],
the failure mode varies with the edge distance e1 and changes from steel sheets bearing
failure to a combination of tilting and screw shearing at higher temperatures.

 The finite element numerical model shown allow to study the behaviour of self-drilling
screwed connections and determine the collapse load. The cases analysed give results close
to the characteristic resistance of the screws manufacturer.

 Further experimental tests are being planned for a parametric analysis of the steel sheet
material class (SGD220, SGD280, SGD320 and SGD350) with different sheet thicknesses.
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Abstract: Driving security of trains with high speed is one of pivotal issues influenced by the 
smoothness of rail lines significantly. For high-speed railway steel bridges, fatigue cracking 
of typical positions under the rail lines will reduce stiffness of the deck plate inducing the 
smooth of the rail lines. In this paper, the strain data recorded by the structural health moni-
toring system is analyzed and a new theoretical approach is proposed by integrating fatigue 
assessment of typical welded joint for high-speed railway steel bridge in service. The theoret-
ical approach includes various factors including stress concentration, environmental corro-
sion and train flow. Having applied in an actual high-speed railway bridge –Dashengguan 
Yangzte River Bridge, the approach was converted to conduct determinative and reliable fati-
gue-life evaluation of the bridge. Static-load experiment was conducted to obtain the stress 
distribution around the weld, as well as the distinction of stress between the positions of weld 
and strain gauge. The influence of environmental corrosion was integrated by two aspects: 
increase of stress and reduce of the fatigue resistance. Without consideration of train-weight 
growth, in conclusion, the fatigue life of typical welded joint will be infinite even if the train 
flow is with growth constantly. In addition, fatigue life of typical welded joints, determinative 
or reliable, may be less than the designed service period when growth rate of the train weight 
arrives at 5%. 
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1 INTRODUCTION 
High-speed train emerges to satisfy passengers’ need of shorter time between distant cities. 

Trains in high speed are likely to suffer cruel accidents resulting in mayor loss of life and 
property [1,2]. A mayor concern about the railway transportation system is whether these as-
built high-speed railway bridges are robust enough to carry the ever-increasing transportation. 
Considerable railway bridges were built in steel for lighter weight and easier construction 
[3,4]. However, steel material and structure are vulnerable to suffering corrosion and fatigue 
issues especially in welded positions. Thus, subjected to repeated load with ever increasing, 
there is an urgent need to assess the fatigue performance, remaining fatigue life or reliability 
combining environmental corrosion. 

Fatigue performance assessment requires actual information on structural response of strain 
at welded position [5-7]. Although Structural Health Monitoring System (i.e. SHMS) has pro-
vided strain historical information, proper consideration has to be given involving stress con-
centration in welds, environmental corrosion and consistent growth of train flow in the future 
[8,9]. Limited by the feasible positions for strain gauges, measured strain data is incapable of 
acquiring the strain closing to the weld. So, laboratory test has to be conducted to obtain the 
stress field around the weld, solving the problems of distinction between the in-situ measure-
ment and actual stress state. In addition, various investigations have been conducted on reduce 
of cross section by environmental corrosion. But, it is not remarkable to consider the influ-
ence of corrosion on fatigue resistance of steel material. 

Besides the determinative fatigue-life evaluation of welded joints, reliable fatigue-life eval-
uation has become much more noticeable, with the growing attention on uncertainty of ma-
terial, geometry, environmental and loading actions [10,11]. Because of the variation of 
influencing factors with time, time-dependent reliability assessment becomes essential for 
full-cycle evaluation of fatigue performance [12]. SHMS has been proved to be one of essen-
tial measures to conduct reliability evaluation for actual projects [13]. However, additional 
investigations require being carried out for the restriction of sensor-system scale and envi-
ronmental conditions. Mechanical-property and material-resistance experiments are likely to 
help completion and improvement for the in-situ evaluation of projects. 

In this paper, a new theoretical approach is proposed by integrating fatigue assessment of 
typical welded joint for high-speed railway steel bridge in service. The approach is developed 
by considering multiple influencing factors - stress concentration, environmental corrosion 
and growth of train flow. Structural health monitoring system is introduced to provide essen-
tial data for fatigue evaluation. Static-load experiment is adopted to obtain the information of 
stress concentration between the welds and strain-sensor locations. In addition, the relation of 
the stress reducing and environmental corrosion is derived to coincide with the actual property 
of plate structure. Finally, determinate and reliable fatigue-life evaluations are conducted by 
adopting the recommended approach, applying to a large high-speed railway bridge – the Da-
shengguan High-speed Railway Bridge in China. 

 

2 STRAIN MONITORING SYSTEM OF DASHENGGUAN HIGH-SPEED 
RAILWAY BRIDGE 

Dashengguan High-speed Railway Bridge (Fig. 1 (a))is located in Nanjing city of Jiangsu 
province in China, spanning the Yangtze River which is the longest river in China. Two na-
tional railway lines were conducted and run through the bridge. These two railway lines are 
respectively Beijing-Shanghai High-Speed Railway and Shanghai-Hankou-Chengdu Railway 
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and the design speed is 300 km/h and 250km/m. Two kinds of trains serve for these two main 
rail lines with respectively and 16 carriages. As one kind of steel trussed arch bridge, the ver-
tical view of the bridge is presented in Fig. 1(b) with the main span of 336m. To obtain higher 
stiffness reducing the risk of train derailing, orthotropic steel deck is applied with internal 
crossbeams distributed longitudinally. 

To acquire structural performance of the railway bridge, structural health monitoring sys-
tem was installed in construction period. Strain gauges were equipped near rib-to-deck-joint 
locations for further evaluation of fatigue performance as the orthotropic steel deck is prone to 
fatigue cracking. The locations of strain gauges are shown in Fig. 1(c). There are two strain 
gauges in the middle cross section of orthotropic steel deck, which are labeled as DYB-11-23 
and DYB-11-24. The strain gauge DYB-11-23 belongs to the side of Beijing-Shanghai High-
Speed Railway and DYB-11-24 is on the side of Shanghai-Hankou-Chengdu Railway. 

 
Fig. 1(a) Landscape of the whole bridge 

1

1

NO. 4 pier NO.5 pier NO.6 pier NO.7 pier NO.8 pier NO.9 pier NO.10 pier

Beijing City Shanghai City

Cross section of fixed-up strain gauges 

108 192 336 336 192 108

 

Fig. 1(b) Side elevation of the main bridge (unit: m) 

DYB-11-24
Axes of the Shanghai-Beijing railway

Fringe truss Fringe trussMiddle truss

Downstream direction Upstream direction

Axes of the Shanghai-Chengdu railway

DYB-11-23

 

Fig. 1(c) Cross-section diagram of strain gauges 

Fig. 1:  Layout diagram of strain gauges for steel deck 
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3 MONITORED STRAIN DATA AND TWO CALCULATED FATIGUE EFFECTS 

3.1 Strain history curve under typical trains 
In this paper, strain history data is introduced for fatigue evaluation from February to July 

in 2013. It is presented by Fig. 1 (c) that the strain-gauge locations of DYB-11-23 and DYB-
11-24 are symmetrical. Thus, the monitored strain data of DYB-11-24 was merely applied to 
conduct fatigue analysis. Fig. 2 presents two typical strain history curves of DYB-11-24 under 
single train. These two curves were induced by typical trains with respectively 8 and 16 car-
riages. The maximum value of changes in strain is within 2-6 με during the passing of train 
with8 and 16 carriages. For the train with 8 carriages, the number of the strain peaks is 16 
while the same value for the train with 8 carriages is about 32. Considering the number of 
wheels for each carriage is 2, the number of the strain peaks corresponds to the number of to-
tal wheels.  
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Fig. 2 (a) Typical strain history curve during the passing of train with 8 carriages 
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Fig. 2(b) Typical strain history curve during the passing of train with 16 carriages 
Fig. 2: Typical strain history curves of strain gauge DYB-11-24 during the passing of typical trains 

3.2 Stress amplitude and stress cycle number 
Firstly, stress curves were obtained by multiplying0.206 to strain data, in which the units 

of stress and strain are respectively MPa and με. In addition, 0.206 is the value of elastic 
modulus of steel in unit of GPa. Stress amplitude and stress cycle number are two typical pa-
rameters for evaluating fatigue performance of welded joint. Secondly, rain-flow method was 
introduced to process the calculated stress history data and stress amplitude spectrum was ob-
tained for further investigation. Fig. 3 presents the stress amplitude spectrum of two typical 
trains with 8 and 16 carriages. In the figure, the scope of stress amplitudes smaller than 
0.3MPa occupying the vast majority is induced by interferences with randomness. Thus, the 
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stress amplitudes smaller than 0.3MPa were eliminated for further calculation conduction. Fi-
nally, two fatigue parameters of Seq (equivalent stress amplitude) and Ns (stress cycle num-
ber) under single train were calculated as follows based on the Palmgren and Miner theory 
combined with standard of Eurocode 3: 

1/ 5
5

i i

eq

i

n S
S

n

 
 
                                                  (1) 

s iN n                                                                (2) 

where Si is the ith stress amplitude, ni is the number of stress cycle corresponding to Si and 
1/5 is slope value of logS-logN curve corresponding the scope of stress amplitude in Euro-
code 3. Fig. 4 presents the series of fatigue S-N curves recommended by Eurocode 3. In the 
figure, the type of rib-to-deck joints corresponds to Type 71 with ΔσD equals to 52 MPa. 
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Fig. 3 (a) 8-carriage train                   Fig. 3 (b) 16-carriage train 

Fig. 3: Stress amplitude spectrum of DYB-11-24 under two typical trains 

Table 1 presents the calculated results of Seq and Ns for typical stress history curve under 
single train with 8 and 16 carriages. The values of Seq are similar by comparison of trains 
with 8 and 16 carriages. The difference ratio between these two trains is only 5.6%. However, 
the difference of Ns between these two types of trains is much more significant. As the ratio 
of Ns between two trains is about 2.0, the number of stress cycle is certainly linearly relative 
with the number of train carriages. 

 
Type of train Seq (MPa)                             Ns 

8-carriages 0.75 22 
16- carriages 0.71 45 

 
Table 1: Comparative results of fatigue effects under two typical trains 
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Fig. 4: Series of fatigue S-N curves recommended by Eurocode 3 
 

Time-dependent rule of two fatigue effects is investigated by processing the strain data 
from February to July in 2013. The processing time unit of the strain data is defined as one 
day. The treating procedure is similar to presentation in the previous paragraph. Thus, the re-
sultant fatigue effects are so-called daily Seq and daily Ns. Fig. 5 presents the curves of daily 
Seq and daily Ns from February to July in 2013. The value of daily Seq is similar between 
various days as the distribution is confined to the scope between 0.67 MPa and 0.80 MPa. 
However, daily Ns in the first half of the February is much greater than other months. In this 
period, the train flow is much larger because of the nationally shot rush called Spring Festival 
Travel in China. 
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Fig. 5 (a) Daily stress amplitude              Fig. 5 (b) Daily stress cycle number 

Fig. 5: Time-varying curves of two fatigue effects from February to July in 2013 
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4 MUTI-FACTORS INFLUENCING FATIGUE PERFORMANCE  

4.1 Stress concentration 
It is presented in the section 3 that the monitored data of strain is capable of obtaining the 

typical factors accounting fatigue performance. However, accurate evaluation is merely 
achieved when sufficient causes are taken account into consideration (Ma et al. 2010). Re-
stricted from the field environment and sensor’s capability, strain gauges have to be only in-
stalled from the weld with certain distance. Thus, the recorded monitoring strain data is much 
smaller than the actual where approaching the weld toe. Near the weld toe, the stress is called 
hot-spot stress and the recorded monitoring stress is regard as the nominal stress. Currently, 
the difference between them is profiled by the parameter called Stress Concentration Factor 
(SCF) which is described as follows: 

/hot nomSCF S S                                                     (3) 

where Shot is hot-spot stress and Snom is nominal stress.  
Static-load experiment is conducted to obtain SCF for rib-to-deck welded joint. The geo-

metry of experimental specimen is uniform with actual steel deck of Dashengguan Railway 
Bridge. The specific dimension of the experimental specimen is presented in Fig. 6 and Table 
2. In addition, the WJ-X# indicates the rib-to-deck welded joints of the specimen. Resistance 
strain gauges are applied to measure the stress distribution around the deck plate under typical 
load level. The layout of the strain gauges is presented in Fig. 7. The label of DTX and DBX 
indicates the stain gauges located on the deck top and deck bottom. In addition, the label of 
RBX indicates the stain gauges on the rib bottom approaching the weld. Typical two-point 
bending experiment is adopted as static-load mechanism. Fig.8 presents the loading equip-
ment and mechanism for static-load experiments. During the region between the loading 
points, the bending moment keeps constant and the deck-top/bottom stress at the middle posi-
tion between neighboring welds is regard as the nominal stress. Then, the stress approaching 
the weld toe is considered to be the hot-spot stress.  

 
Group Specimen Deck plate   U-shaped rib  
 Number Length Width Thickness Opening 

width 
Flange 
width 

Height Thickness Spacing 

1 OSD1-
OSD4 

2100 300 16 300 160 280 8 600 

 
Table 2: Typical geometrical parameters of experimental specimen (unit: mm) 
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Fig. 6: Geometric parameters of experimental member (unit: mm) 
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DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9 DT10 DT11

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11

WJ-1# WJ-2# WJ-3# WJ-4# WJ--5# WJ-6#

 

Fig. 7:  Layout of strain gauges for experimental specimen 
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Fig.8 (a) Experimental device of static test 

Hydraulic jack

Reaction beam

Pressure sensor

Distribution beam

Beam support

Platform

Experimental specimen

 

Fig.8 (b) Loading diagram of static test 

Fig.8:  Experimental diagram of static test for typical experimental specimen 

9 load levels are adopted to conduct the static-load experiment. The minimum and maxi-
mum loads are 2kN and 18kN with load interval of 2kN. Taking OSD5 for instance, typical 
stress distribution is presented in Fig. 9 under the loads of 6 kN, 12kN and 18kN. The deck-
top stress and deck-bottom stress is similar in absolute value with reverse direction. Thus, the 
specimen is certainly in the state of the pure moment conforming to the mechanical model. In 
addition, the stress is nearly equality during the middle region between neighboring welds. 
However, the stress increases significantly with the locations approaching the welded joint. 
The SCFs are calculated and obtained by Equation (2). Among the equation, the deck-bottom 
stress of middle locations between neighboring welds is applied as Snom while the deck-
bottom stress approaching the weld toe is adopted as Shot. Various SCFs are presented in Ta-
ble 3 with two welds for each specimen. It appears that SCFs at different weld location differs 
significantly because of the distinction from the geometrical dimension of the weld. Thus, fa-
tigue evaluation requires taking into account of the discreteness of SCF.  

 
Specimen  

Weld number 
 

Value of SCF 
Specimen  

Weld number 
 

Value of SCF 
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number   number   
 WJ-2# 1.12  WJ-2# 1.25 

OSD1 WJ-3# 1.46 OSD2 WJ-3# 1.11 
 WJ-4# 1.06  WJ-4# 1.55 
 WJ-5# 1.32  WJ-5# 1.56 
 WJ-2# 1.11  WJ-2# 1.29 

OSD3 WJ-3# 1.17 OSD4 WJ-3# 1.13 
 WJ-4# 1.11  WJ-4# 1.22 
 WJ-5# 1.24  WJ-5# 1.21 

 
Table 3: Data summary of experimental values of SCF around weld toe 
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Fig.9: Typical stress distribution of deck plate for OSD 5under various loading steps 

4.2 Environmental corrosion 
Metal material and structure are subjected to environmental actions such as temperature, 

wetness and chemical substance in the standing service period [7,8]. Among these causes, fa-
tigue performance of steel structure is affected significantly by the environmental corrosion. 
The influence of the corrosion is mainly highlighted on two aspects acting on fatigue perfor-
mance. Firstly, fatigue resistance of steel material degrades gradually under the action of cor-
rosion. Secondly, cross area of steel member decreases with the erosion of the corrosion 
environment. So, the stress or the stress amplitude magnify with the reducing of the cross area 
under uniform loads. Thus, above two aspects require taking account into consideration for 
achieve more accurate evaluation of steel-structural fatigue performance. 

Assumptions are proposed to profile the action of corrosion on the cross area. Firstly, depth 
of the steel plate is merely influenced by the corrosion while the other two geometrical di-
mensions are consistence with no variation. Secondly, the depth of steel plate is presumed to 
satisfy the function with time as follows [14]: 

( ) rt bt                           (4) 

where ( )t denotes etch depth of steel plate, tis exposure time of steel structure, b and r is 
parameters related with material property. 

For steel-plate composed structures, stress is influenced more significantly by the etch 
depth in through-thickness direction. For rib-to deck welded joint belonging to orthotropic 
steel deck, the stress around deck-plate region is crucial for the performance of fatigue. Pre-
vious investigations indicate that flexure stress of deck plate approaching the weld toe is sig-
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nificant to fatigue performance. Therefore, the loss rate of section modulus ( ( )t ) is described 
as follows corresponding to the flexure capacity: 

2

2

( ) 2 ( ) ( )
( )

W W t t t
t

W B B

 



  

                       (5) 

where W denotes initial section modulus, ( )W t


is effective section modulus and B is width 

of cross section.，Bis thickness of steel plate. Assuming the stress is within elastic range 
around the rib-to-deck joint for deck plate, the bending moment is described as follows: 

( ) ( )E W E t W t                                                      (6) 

where E denotes elastic modulus of steel material,  and ( )t are initial strain and the strain 
at time of t respectively.   

Substituting equation (5) into (6), then: 

2

2

1
( )

2 ( ) ( )
1

t
t t

B B

 
 


 

     (7) 

Finally, effective stress amplitude (S(t)) is described as follows: 

2

2

1
( )

2 ( ) ( )
1

nS t S
t t

B B
 


 

                            (8) 

where Sn denotes nominal stress amplitude which is calculated by initial area of cross sec-
tions.  

Compared to the aggravation of near-weld stress for typical members, material property of 
fatigue resistance is much harder to profile under the action of environmental. Typical resis-
tance models for fatigue of the specific welded joint are described by series of S-N curves. 
Most equations corresponding to S-N curves are shown as: 

lg lg lgN C m S                                                           (9) 

where N denotes fatigue life represented by cycle number, C is model parameter relating to 
material property, m is slop of lgS-lgN curves, and S is stress amplitude of welded joints. 
Plenty of investigations have pointed out that the value of m keeps consistent by action of the 
environmental corrosion. In addition, the parameter C indicates time-dependent fatigue resis-
tance of steel material acted by corrosion. Thus, C is transferred as ( )C t to account for its time-
dependent property. Some fitting functions have been proposed to profile the time-dependent 
property of ( )C t . In further, exponential function has been recommended for application de-
scribed as follows [14]: 

 0 0( ) ( ) tC t C t C e                                                        (10) 

Where C0 is initial parameter of welded joint without environmental corrosion, φ(t) is de-
generate function of C, and is fitting parameter of ( )C t relative with environment condition 
and types of welded joints. 
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5 DETERMINATIVE FATIGUE- LIFE EVALUATIONS INTEGRATING 
MULTIPLE FACTORS 

5.1 Primary evaluation method 
Fatigue-resistance model is the basis to conduct fatigue- life evaluation. Typical codes for 

fatigue evaluation of steel bridge include BS5400, Eurocode 3and AASHTO. Compared to 
the ancient code of BS5400, Eurocode3and AASHTO involve the influence of stress thre-
shold, which means that fatigue life of typical welded joints is infinite when stress amplitude 
is less than a certain value. Such kinds of certain value were called fatigue life constant ampli-
tude fatigue limit. In addition, different slope value is taken into account at various scope of 
stress amplitude. Thus, Eurocode 3 has been applied to conduct the fatigue design and evalua-
tion of steel bridge in mayor nations and regions.  

Similarly with typical fatigue-resistance codes, fatigue life profiled by Eurocode 3 in shape 
of series of S-N curves. Fig. 4 presents the series of S-N curves for various types of welded 
joints. In the figure, ΔσC presents type of welded joints defined by constant stress range ΔσR 
(ΔσR=2.0×S) in condition of stress cycle number equals to two million. ΔσC and ΔσL denote 
respectively constant fatigue limit and fatigue cut-off. The value of constant slope m of lgS-
lgN curves equals to zero in condition of ΔσR<ΔσL. In such range, fatigue life of welded joints 
is infinite. In range of ΔσL≤ΔσR<ΔσD, the value of m varies from zero to five while the value 
of m becomes three when ΔσR ≥ ΔσC. 

Fatigue damage requires being calculated and obtained to confirm subsequently the fatigue 
life of typical welded joint. Plamgren-Miner methodology is adopted in mayor scopes includ-
ing fatigue design and real-time evaluation. The methodology is based on the assumption of 
linear damage accumulation described as follows: 

53

i D L j D

j ji i

S SC D

n Sn S
D

K K     

  
                                          (11) 

where KC and KD keynote parameters related with types of welded joint. 
Suffered from variable stress amplitudes, the most significant issue is how the fatigue life 

in confirmed by corresponding to the accumulated fatigue damage. Although the linear fati-
gue-damage methodology of Plamgren-Miner has been admitted widely, the ultimate value of 
accumulated fatigue damage, which indicates the ultimate fatigue life, is still in dispute. The 
reason for these disputes is mainly because linear fatigue-damage methodology does not in-
clude the nonlinear influence of fatigue damage by variable stress amplitudes. Therefore, fati-
gue life may achieve when fatigue damage D is less or more than 1.0. For simplification, 
deterministic fatigue life is confirmed and obtained by principle of fatigue damage D equaling 
to 1.0. 

5.2 Fatigue-life evaluation considering multiple factors 
Having identifying the general principle of evaluating fatigue life, fine factors are then re-

quired being taken account including the influence of stress concentration and environmental 
corrosion. Firstly, influence of stress concentration is represented by SCF. According to the 
result of static-load experiment, the value of SCF scatters in scope from 1.11 to 1.56. The 
mean value of SCF equaling to1.24 is adopted to conduct fatigue evaluation for simplification. 
Secondly, fatigue capacity is reflected in two aspects of ΔσC and ΔσL described by Equation 
(10).  Α is set as 0.006 and C0 is selected as ΔσL, ΔσR , ΔσD, KC and KD.As recommended by 
Eurocode 3 for rib-to-deck welded joint, ΔσL, ΔσR,, ΔσD, KC and KD are respectively 70MPa, 
52MPa, 29MPa, 7.16×1011 and1.90×1015. Thirdly, the weakness of section corresponding to 
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corrosion is presented by Equation (4) to (8). In the equation, b and r is made as 60 and 0.48 
[14]. 

Daily Seq is consequently obtained with the increase of service time, presented by Fig. 10. 
With the growth of service time, the daily Seq increases linearly with the service time. When 
the service time arrives at 100 year, the daily Seq reaches at 1.04 MPa. Even through the ser-
vice time arrives at 300 year, three times of the designed service period, the daily Seq is only 
about 1.09 MPa. Fig. 11 presents curves of ΔσL decreasing with commission period nonli-
nearly. ΔσL equals to 15.9, 8.7 and 4.8 MPa, when commission period arrives at 100, 200 and 
300 years. Without consideration of increase of train weight, Se,d is far less than ΔσL indicat-
ing that fatigue life of rib-to-deck welded joints is beyond 300 years. As the designed service 
life of bridge is 100 years, fatigue life of orthotropic steel deck of Dashengguan Bridge can be 
considered infinite. 
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Fig.10: Curve of equivalent stress amplitude with service time  Fig.11: Curve of fatigue limit with service time 

5.3 Discussion on influence of train weight, train flow and number of carriages 
However, fatigue life is perhaps not infinite when taking account of sustained development 

of train weight. If the stress of orthotropic steel deck is within elastic range under train load 
actions, the stress amplitude is linearly increased with the growth of train weight. Annual 
growth rate of train weight is introduced to considering the sustained development of train 
weight. The value of 1%, 3% and 5% are adopted to investigate the influence of train weight 
growth on fatigue life. Fig. 12 presents the curves of Se,d under growth rate of train weight of 
1%, 3% and 5%, as well as the variation curves of ΔσL and ΔσD. When the train weight is in-
creased by annual growth rate of 1% and 3%, Se,d approaches to ΔσL at the time of 95th year 
by far. It indicates that fatigue life is much greater than the designed service period of 100 
years.  

Yet, Se,d is perhaps beyond ΔσL and ΔσD at 61th and 72th year when annual growth rate of 
train weight reaches at 5%.It is known from Equation (11) that there is no fatigue damage 
within the first 61 years and fatigue damage is accumulated from 61th and index of stress am-
plitude transform from 5.0 to 3.0 at 72th. Fatigue life is consequently 77 years when accumu-
lated fatigue damage D reach at 1.0. It means that fatigue failure perhaps occurs within the 
designed service life (100 years).  

However, above investigations merely includes the increase of train weight without con-
sideration of annual train flow and number of train carriages. If these two factors are taken 
account of, the calculated fatigue life becomes much shorter, less than 77 years.  
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Fig.12: Curves of equivalent stress amplitude, constant-amplitude fatigue limit  

and cut-off fatigue limit with the service time 

6 TIME-DEPENDENT FATIGUE RELIABILITY ASSESSMENT 

6.1 Limit state equation of fatigue failure 
When stress amplitude exceeds the constant fatigue limit, fatigue damage is accumulated 

induced by action of sustained train load and environmental corrosion. Fatigue failure perhaps 
occurs in condition that the fatigue damage arrives at critical value. Thus, the limit state equa-
tion of fatigue failure for welded joint can be described as follows: 

 
53

i D L j D

j ji i

S SC D

n Sn S
D

K K
g X e e

     

 
 

       
 
 

                            (12) 

where△ denotes ultimate value of fatigue damage, e is correction factor caused by error 
measurement of strain gauges and D is accumulated fatigue damage calculated by Equation 
(11).  

When g(X)<0, the welded joint is under fatigue-failure state in probability sense. Thus, fa-
tigue failure probability is described as   0 Xgpp f  and the fatigue reliability index β is 
calculated as follows: 

   ff ppβ 11 1                                              (13) 

where  1   denotes inverse function of standard normal distribution. 

6.2 Probability-distribution function of critical factors 
There are four variables in the fatigue-failure limit state equation, i.e. △, e, Si (Sj). Above 

determinative fatigue-life calculation is based on the assumption that fatigue life arrives when 
fatigue damage D equals to 1.0. However, fatigue failure may occur when the D is unequal to 
1.0 with random distribution. According to related investigation from article [15], e is de-
scribed statistically as normal distribution whose mean value and standard deviation are re-
spectively 1.0 and 0.03. 

Fig. 13 presents the calculated histogram distribution of two fatigue effects, i.e. daily Seq 
and N. In the figure, Nominal, Log-nominal and t-distribution functions are applied for profil-
ing. By contrast, t-distribution function fits much better than the two others. Thus, t-
distribution functions are applied to profile statistical property of daily Seq and N. Table 4 
presents the parameters of t-distribution function for daily Seq and N. 
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Fatigue effect 
Distribution Mean Standard Variable 

 function value deviation cofficient 
Daily Seq t-distribution 0.72 0.025 0.03 
Daily N t-distribution 5179 267 0.05 

 
Table 4. Parameters of probabilistic models for daily Seq and daily N 
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Fig. 13: Probabilistic models of daily equivalent stress amplitude and daily stress cycle number 

6.3 Time-variant fatigue-reliability index 
Because of the randomness of influencing factors, reliability evaluation is constantly ap-

plied to assess in-service performance of engineering structure. With the service time going 
on, the stochastic behavior of influencing factors varies inducing the transformation of struc-
tural reliability. The characteristic of structural reliability corresponding to time is so-called 
time-dependent reliability.  

Constantly, reliability index βis adopted as the parameter for evaluation the reliability. Var-
ious methods has been carried out to calculate the reliability index β. These presentative me-
thods include First Order Second Moment Method, Response Surface Method and Monte-
Carlo Simulation Method. Typically, Monte-Carlo Simulation Method is much more applica-
ble in situation when influencing factor does not fit the Nominal distribution function. Monte-
Carlo Simulation Method conducts random sampling directly based on statistical model of 
actual events. Then, the occurrence frequency of actual events is acquired such as the fatigue-
failure frequency of welded joints. 

In this paper, Monte-Carlo Simulation Method is applied to acquire the approximate solu-
tion of fatigue failure probability according to Equation (12). Influencing factors are taken 
account of including the stress concentration, environmental corrosion as well as the growth 
of train weight. The action rule of above influencing factors is considered by Section 4 incor-
porating the time effect. Fatigue reliability index β is finally commutated by Equation (12). 

The value of 100,000 is selected as the sampling number in each condition for typical 
Monte-Carlo Simulation process. Including the influencing factors mentioned above, three 
kinds of growth rate of train weight, i.e. 1%, 3% and 5%, are adopted as typical conditions. 
Fig. 14 presents the curves of fatigue reliability index β corresponding to time under above 
three typical conditions. The target reliability index is selected as 3.0 according to engineering 
experience [16]. In the figure, the fatigue reliability index β maintains 3.30 until the designed 
service period of 100 years under the condition of growth rate of train weight with 1% and 3%.  
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In contrast, the fatigue reliability index β maintains 3.30 until the 84th year when the 
growth rate of train weight equals to 5%. Then, the fatigue reliability index β declines rapidly 
and reaches 3.0 at the time of 85th year. After short-time volatility for about ten years, the fa-
tigue reliability index β maintains at constant level equaling to 0.0. It indicates that fatigue 
failure may occur with significantly high probability.  

 
Fig.14: Curve of reliability index with time under different growth rate of train weight 

7 CONCLUSIONS  
Fatigue issue is typical structural performance for high-speed railway bridge. Once fati-

gue cracking is happened in the deck plate under rail lines, the ride performance of the high-
speed train is reduced inducing potential major traffic accident. Obtained from the structural 
monitoring system, strain history data provides chances to conduct the real-time fatigue eval-
uation for typical high-speed railway bridge. In this paper, the fatigue performance is eva-
luated for Dashengguan High-speed Railway Bridge in China by assessing its fatigue life and 
time-dependent fatigue reliability. In addition, multiple factors are taken into account includ-
ing stress concentration, environmental corrosion and growth of train weight. Conclusions are 
presented as follows: 

 Under the passage of trains with different number of carriages, the value of equivalent 
stress amplitude is approaching with each other. However, the stress cycle number is 
proportional to the number of train carriages, indicating the linear relation between stress 
cycle number and train axle number.  

 Without consideration of the randomness of influencing factors, the fatigue life of rib-to-
deck welded joint is infinite taking only account of environmental corrosion and stress 
concentration. If consistent development of train weight is considered, the fatigue life 
may decrease to the value less than the designed service period. For instance, fatigue life 
is only about 132 years and 77 years when the annual growth rate of train weight reaches 
to 3% and 5%.  

 Similarly to the fatigue-life evaluation without regardless of randomness, fatigue reliabil-
ity of rib-to-deck welded joint remains at relatively higher level taking no account of the 
consistent development of train weight. If the growth rate of train weight is considered as 
5%, the fatigue reliability index is less than the target reliability index when arriving at 
the 84th year. Thus, the reliable fatigue life is 84 years when the growth rate of train 
weight equaling to 5%. Consequently, it indicates that fatigue performance of rib-to-deck 
welded joint is likely to be unreliable within the design-life period. 
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Abstract. The subject of this paper is a visualization tool which may prove helpful for 
understanding the highly complex responses of granular systems during shear tests. The 
motivation of such approach is to face the challenge related to the micro scale contact forces 
in a granular system. The Discrete Element Method (DEM) was used to simulate shear testing 
on an assembly of spherical glass beads. All simulations were performed using the 3D virtual 
laboratory SiGran. The macro-scale response of the granular system is presented, including 
energy and force distributions. Two particle-size distributions were considered in the study to 
validate the virtual approach. The influence of the contact model is also a part of this study. 
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1 INTRODUCTION 

In this paper, we present a first attempt to assess the different types of energy involved in 
granular systems at a particle scale by using the Discrete Element Method (DEM). Continuum 
approaches do not take into account the particulate nature of the granular system, in which 
overall deformation is essentially the effect of two non-linear and irreversible processes: 
relative sliding between particles, and rotation of particles. Because of their particulate nature, 
granular systems exhibit highly complex responses to applied load. For practical purposes, 
then, it is important to consider this particulate nature in order to overcome the limitations of 
continuum approaches. Being discrete in nature, DEM [1] is able to model the motion of a 
particle assembly without losing or neglecting the individual characteristics of each particle. 
The granular system could either be saturated with water or have other fluids or/and gases in 
the voids. A virtual laboratory named SiGran was developed by Hydro-Quebec’s research 
institute (IREQ) to mimic the different experimental tests that are standard for soil sciences 
and also to better understand the different phenomena that occur at the micro level during 
those tests. The visualization features of this laboratory help to access information that is very 
difficult or impossible to study in real experiments. The description of work conducted with 
SiGran can be found in the proceedings of international conferences [2-4]. SiGran is based on 
coupling of DEM and MAC (Marker-And-Cell [5]) methods. Additionally, we assume a dry 
particle assembly, excluding any kind of attraction forces. A description of the MAC method 
is absent here but can be found in [6]. 

In the present study, a validation was first performed by comparing the DEM simulation 
results with the experimental ones obtained by [7] at a macro-scale on a sheared granular 
system made up of mono-disperse idealized spherical particles. In the second phase, the 
model was applied to poly-disperse idealized spherical particles.   

2  DISCRETE ELEMENT METHOD  
The Discrete Element Method (DEM) describes the motion of particle assemblies and has 

been widely used as a mathematical tool studying their behavior. DEM was introduced by 
Cundall in 1971 [1] for the analysis of rock mechanics and was applied to soils by Cundall 
and Strack in 1979 [8]. It is based on Newton’s second law of motion. An explicit time 
stepping scheme is used for integration in time. The behavior of the particle assembly under 
external loading at a given time step can be described using information from the previous 
time step, including the dimensions of each particle, its position relative to adjacent particles 
and the relative velocities (displacement and rotation) of neighboring particles. The contact 
forces acting on the particle are calculated from this data, and the acceleration, velocity and 
position at the new time step are determined. The concept of interactive forces between 
particles is illustrated in Figure 1. 

The fundamental equations of motion for the i th particle are as follows (the subscript j 
refers to the jth neighboring particle, and k is the number of neighboring particles): 
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Where: 

mi, Ii, are the mass (kg) and moment of inertia (kg.m2) of particle i respectively;  

iV
r

 and iωr  are the translational (m/s) and rotational (s-1) velocities of particle i; 
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, δ−=  is the normal force of contact (N); 
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Where E is Young’s modulus (Pa), ν is the Poisson ratio, Ri is the particle radius (m), µr is the  
rolling (m) friction coefficient, and Dn and Dt are the normal and tangential damping 
coefficients respectively.  

 

Figure 1.  Interactive forces between two particles 

3  TANGENTIAL FORCE MODELS  

A wide range of tangential forces models are available for DEM [9]. The theoretical basis 
for a complex approach was proposed by Mindlin and Deresiewicz [10] for elastic materials 
based on Hertz theory. According this theory, the actual tangential force depends on the 
whole loading history and also on the instantaneous rate of change of the normal force or 
displacement. The tangential force is given by:  
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G is the shear modulus; vt is a relative tangential velocity between surfaces in contact. 
A complete loading force-displacement path can be built through successive incremental 
steps. A limit on the maximum tangential stress exists as stated by Coulomb’s law of friction 
and is expressed as follows:  

ijcnsijct FF ,, µ≤           (4) 

Where µs is the sliding friction coefficient. 
More details and analysis of loading and unloading curves for specific cases can be found 

in [11] and [12]. 
The SiGran programming code uses a high level of data parallelism on NVIDIA Graphics 

Processing Units (GPU) based on Tesla High Performance Computing (HPC) hardware. The 
forces acting on each inter-particle contact at each step of time are computed on its own GPU-
kernel. Thousands of contacts are thus processed at the same time. In addition, one contact 
usually lasts several time steps, and several contacts can begin or end during a given time 
step. In theory, each particle can have more than one contact with all of the particles in the 
assembly during an experiment. For calculation purposes, only the history for the acting 
contact must be stored. This history begins with the first contact of specific particles, and it 
can be ended after loss of contact. A special algorithm, optimized for GPU calculations, was 
introduced into SiGran to maintain the history of each contact. This algorithm takes into 
account the maximum possible contacting particles, which depends on the relative particle 
size (i.e., the biggest and the smallest) in the assembly and a memory model of the GPU to 
minimize calculation time.  

The simplest tangential forces model uses only the maximum force obtained by Coulomb’s 
law. In this case, no history of contact is considered, which simplifies the algorithm and 
significantly reduces calculation time and used memory.  In the case of SiGran, this is overall 
shared GPU memory. 

4  DIRECT SHEAR TEST 

 The direct shear test is one of the oldest soil strength tests performed in the laboratory. 
Even though it has some disadvantages, as documented in ASTM D 3080 – 98 [13], it is 
routinely used by geotechnical engineers to determine the shear strength parameters of soil 
essential for stability assessment. The first direct shear apparatus was built by Alexander 
Collin in 1846 to measure the strength of a clay soil shear for purposes of slope stability 
assessment [14, 13]. The current version of the direct shear apparatus was designed by 
Casagrande in 1932.  Figure 2 shows a schematic representation of the shear box. 
 A normal load is applied to the specimen before shearing across the predetermined 
horizontal plane between the two halves of the shear box. Measurements of shear load, shear 
displacement and normal displacement are recorded. From these results, the shear strength 
parameters can be determined. 

4.1  Physical direct shear test on spherical mono-disperse chrome steel particles 

The shear tests performed on spherical chrome steel particles are described in [7]. A square 
metal box, cross-section 60 x 60 mm, was filled with 11,700 chrome steel particles with a 
sphere radius of 0.992mm. The material density was 7,800 kg/m3, the shear modulus was 7.9 
x 1010Pa, and the Poisson’s ratio was 0.28. The average friction coefficient of 0.096 was 
measured in [16], and the sphere-boundary friction coefficient for the shear box was 0.175. 
The force required to maintain the fixed section of the box in a stationary position was 
measured using a load cell. The normal stress was 55 kPa. 
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Figure 2: Schematic representation of a shear box 

4.2  Numerical simulation of direct shear test with spherical mono-disperse chrome steel 
particles 

The shear test simulation was conducted with SiGran. The forces applied on each box wall 
were calculated by summing the contact forces during interaction between particles and 
boundaries. The comparison between the experimental data and numerical results is shown in 
Figure 3. The shear stress was determined as in the experiment: the total of particle forces 
applied on the fixed section of the box was divided by the original cross-section area. The 
overall shear strain, as proposed in [7], is considered to be the displacement of the moving 
section of the box divided by the initial height of the sample.   The vertical strain is taken to 
be the ratio of the vertical displacement of the upper half of the shear box to the original 
height of the samples. The difference in vertical stress results between the laboratory tests and 
the DEM simulations is most likely due to initial preloading and better arrangement for the 
simulation. The increase in the inter-particle friction coefficient during a shear test also 
contributed to the difference in the results. 

   
                               (a)                                                                                   (b) 

Figure 3. Comparison of numerical and experimental data 

The numerical simulations for two tangential force models were conducted with two 

values of Courant’s number that differed by a factor of 10 (1.0 and 0.1). Courant’s number is 
known for its connection with the Courant-Friedrichs-Lewy convergence condition for 
solving partial differential equations. The time step is calculated using the following formula: 
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nK

m
Ct min≤∆                              (4) 

Where: 
C is a Courant number  
m is the mass of the particle 
Kn is a normal stiffness coefficient (see Formula 1)   

The results for the Mindlin-Deresiewicz model are independent of the number of iterations 
during a particle contact, in contrast with Coulomb’s low, which is dependent on that value. 

As mentioned before, numerical simulation gives access to more parameters than physical 
experiments. The real tangential force can be obtained from the force equilibrium on the shear 
box in the shear direction.  All forces acting on the boundaries in the shear direction are 
shown in figure 4.  

 

Figure 4. Forces acting in shear direction 

The following expressions can be written to find the shear forces involved in the upper and 
lower halves of the shear box:   

sb
tbrtbftbnblnbrsb

ttrttfttntrntlst FFbut
FFFFFF

FFFFFF
=

+++−=
−−−−=

st                                             (5) 

Where: 
Fst :  Shear force obtained from the equilibrium of the upper half of the shear box (N) 
Fsb :  Shear force obtained from the equilibrium of the lower half of the shear box (N) 
Fntl :  Normal force on the left boundary of the upper half of the shear box (N) 
Fnbl :  Normal force on the left boundary of the lower half of the shear box (N) 
Fntr :  Normal force on the right boundary of the upper half of the shear box (N) 
Fnbr :  Normal force on the right boundary of the lower half of the shear box (N) 
Ftt  :  Tangential (friction) force on the top surface of the upper half of the shear box (N) 
Ftb :  Tangential (friction) force on the down surface of the lower half of the shear box (N) 
Fttf :  Tangential (friction) force on the front surface of the upper half of the shear box (N) 
Ftbf :  Tangential (friction) force on the front surface of the lower half of the shear box (N) 
Fttr : Tangential (friction) force on the rear surface of the upper half of the shear box (N) 
Ftbr : Tangential (friction) force on the rear surface of the lower half of the shear box (N) 

Figure 5 shows the evolution of all forces on the upper and lower part of the shear box 
separately. These forces are obtained by simulations.   
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(a)                                                                                        (b) 

Figure 5. Evolution of forces acting during the shear test 

Figure 6 shows the comparison between the shear forces calculated from Formula 5 and 
the normal forces. The shear force can be measured during physical experiments. The shear 
force values calculated at the upper and lower halves are almost identical, which demonstrates 
a good equilibrium of forces during all simulations. This figure shows that the force needed to 
move the upper half of the shear box is different from the force needed to keep the lower half 
stationary. This difference is a result of friction between the particles and the box. 

 
Figure 6. Normal and shear forces obtained during the shear test 

4.3  Work-energy balance during shear test 

The force required to move the upper section of the box accomplished work. The work 
done was calculated by integrating the force vector along the path traveled by the force. The 
total work done by all forces must be equal to the energy variation. The following types of 
energy were used: 
- Kinetic energy, which has two parts: translation (Ekt)  and rotation (Ekr): 
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Where n is the number of particles in the shear box. 
 

- Potential energy: 
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Where hi is the distance from the bottom of the box to the particle center.  
-  Internal elastic energy: 
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Where k is a number of contacts for particle i. 
- Normal dissipative energy: 
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- Friction energy: 
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Where l is a tangential overlap during of contact ( m). 
- Tangential dissipative energy  
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- Rotation energy: 
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Where ϕ is a rotational angle of particle i (rad). 
Note that this type of energy can be included in tangential energy by including rotation in 

the tangential overlap. 
- Dissipative rotational energy: 
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More details about the calculation of energy using SiGran can be found in [17].  

Figure 7 shows the work-energy balance and also the contribution of the normal forces 
applied to move the half box and accomplish the total work. 

 

Figure 7. Work-Energy balance during the shear test 

Figure 8 shows the contribution of each type of energy in the total energy balance of the 
system. It is clear that the main work of external forces is expended by the dissipation of 
energy during inter-particle and particle-wall friction. The others type of energies are shown 
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in Figure 8 b and 8c in which the scale of the vertical axe has been changed.  Figure 9 shows 
the distribution of different energies among the particles. The dissipative types of energy were 
calculated cumulatively from the beginning of the shear experiment without considering the 
energy scattered during sample formation. Inter-particle force distribution during shear testing 
is shown in Figure 10.

 
(a) 

       
(b)                                                                                               (c) 

Figure 8. Change in energy during shear testing 
 

  
(a) Kinetic translation energy  (b) Kinetic rotation energy  

  
(c) Elastic energy  (d) Dissipative normal direction energy  
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(i) Friction energy  (f) Dissipative tangential direction  

  
(j) Dissipative rotational energy  (h) Potential energy  

Figure 9. Distribution of different energies among particles (shear displacement = 2.5 mm) 

          
(a) Normal forces                                                            (b) Tangential forces 

Figure 10. Inter-particle force distribution (shear displacement = 2.5 mm) 

4.4 Simulation of shear test on poly-disperse particle assembly 

The next simulation was carried out on a particle assembly having the particle size 
distribution presented in Figure 11. The details about this test and its comparison with 
experimental data can be found in [17]. Only the influence of the friction coefficient will be 
considered in this case. The shear tests were carried out in a box with internal dimensions of 
55 x 55 mm. The samples were spherical glass beads.  

 

Figure 11. Particle size distribution of idealized granular media used in numerical and laboratory simulations 
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the particles was disregarded. This simplification allows us a better understanding of the 
inter-particle friction effect. Figure 12 shows the influence of the inter-particle friction 
coefficient on shear stress and vertical displacement. 

    
                                            (a)                                                                          (b) 

Figure 12.  Shear stress and vertical displacement with different friction coefficients 

The influence of friction is more important at low coefficient values because the particles 
can slide more easily on each other. Rolling friction predominates for the highest coefficients 
of friction. This phenomenon can be studied by analysis of the different energy types as 
shown in Figure 13.  
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(e)                                                                                     (f) 

    
(j)                                                                                     (h)     

Figure 13. Variation in energies during a shear test 

Figure 13 shows that the energy during the shear process increases with the friction 
coefficient. Due to the difficulty of sliding (see Figure 14a, b), more particles are drawn into 
movement, which in turn causes the dissipative energy to increase in two directions (see 
Figure 13d, f). The rolling motion prevails under sliding for high friction coefficients (see 
Figure 13b); therefore more rolling energy dissipates (see Figure 13h). The value of tangential 
force also increases with the friction coefficient, and thus more energy dissipates because of 
friction (see Figure 13e). The change in elastic energy follows the shear stress curve because 
the normal interaction force between the particles is the main force in this experiment. Some 
of the external work was spent during the movement by the interlocking of the particles on 
each other. There is little variation in potential energy because the vertical particle 
displacement is very small. The curve of potential energy follows  of the change in vertical 
position of the top surface (see figures 12b and 13j)  

Figure 14 shows the distribution of energy among particles for the maximum and 
minimum friction coefficients (0.1and 0.9, respectively). The area where the shear is greatest 
is clearly visible, and is characterized by larger relative displacements. The dissipation of 
energy is at its maximum at this surface. The distribution of maximum deformation of 
particles (elastic energy) is along the line between the upper left surface and lower right 
surface (Fig. 14c). 
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µ =0.1 µ =0.9 

  
(a) Kinetic translation energy  

  
(b) Kinetic rotation energy  

  
(c) Elastic energy  

  
(d) Energy dissipation in normal direction  

  
(e) Friction energy  

  
(f) Energy dissipation in tangential direction  
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(g) Dissipative rotational energy  

  
Potential energy (h) 

Figure 14.  Energy for maximum and minimum friction coefficents (displacement of 2.5 mm) 

The work of external forces during the shear test is shown in Figure 15. 

    
(a)                                                                                           (b)

    
(c)                                                                                           (d) 

Figure 15. Work of external forces during shear test 

Figure 16 shows the inter-particle force distribution before and during the shear test for the 
minimum and maximum friction coefficients. 
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5 DISCUSSION 

We present a model that provides complete microscopic contact and force vector 
information from a 3D granular system made up of spherical particles subjected to a shear test 
and, consequently, all the energies can be evaluated. The obtained microscopic data allows us 
to quantitatively assess the relationship between the macroscopic mechanical response of the 
granular system and the microscopic measures such as the forces at the contact of each 
particle. This virtual approach has great potential for improving understanding of other 
granular systems, including granular response to flow, effects of particle shape and so on. 
This paper also presents the capability of the model to show, at each time step, images in 3D 
configurations. From these images, we can see the geometric properties of the particles, their 
contacts and also all the energy distributions in the granular assembly. Furthermore, 3D 
tracking of each particle can be extracted.   

6 CONCLUSION 

SiGran, a 3D model developed for quantitatively assessing energies involved in a granular 
system at a particulate scale, is presented in the current work. This model has demonstrated 
the ability to evaluate the change in different energies during a shear test. This powerful tool 
offers a new opportunity to link the energy applied to a granular system to the energies at the 
micro-scale.   

A shear test was simulated, and the obtained results clearly indicate that the proposed 
model is able to solve significant problems associated with the granular system.  In fact, it 
gives access to parameters that are impossible to reach in physical experiments. All the 
phenomena involved in a granular system can be captured, and the quantification of the 
different energies at the micro-scale can be assessed.  Several findings can be used for 
different granular fields. 

The simulation results at the macro-scale agreed well with those of physical tests.  
However, further work must be done to reduce the differences between simulation results and 
physical ones. 

Extension of the current approach to soils liquefaction phenomena is underway. 

µ =0.1 µ =0.9 

  
(a) Normal forces before the test (shear displacement = 0 mm) 

  
(b) Tangential forces (shear displacement = 0 mm) 
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(c) Normal forces (shear displacement = 2.5mm 

  
(d) Tangential forces (shear displacement = 2.5mm) 

Figure 16. Forces during the shear test at different displacements 
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Abstract. A three-dimensional BE–FE model for the time harmonic analysis of bucket founda-
tions in poroelastic soils is presented. The soil follows the Biot’s poroelasticity and is discretized
using the BEM. The skirt of the bucket is modeled as a degenerated shell finite element. The
soil-structure interaction is taken into account assuming a crack-like boundary from the soil
point of view, where the Dual BEM is applied. It is shown that this simple representation is
accurate and efficient. This model is applied to an analysis of the impedances of bucket foun-
dations, where the influences of the foundation geometry and soil properties are studied. The
study shows that, when considering realistic seabed soils, a poroelastic model should be used
for the low-frequency range (< 1− 6 Hz depending on the seabed soil). It is shown that this is
particularly true for bucket foundations with small length to diameter ratios.
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1 INTRODUCTION

Bucket foundations (or suction caisson foundations) are used as anchors and foundations of
offshore platforms, and more recently as foundations of offshore wind turbines when suitable
water depths and soil conditions are encountered [1]. Foundations of offshore wind turbines ex-
perience important horizontal and moment loadings, which are larger for deeper waters. Single
bucket or monopod foundations are used for wind turbines installed at moderate water depths.
When monopod foundations are not enough to carry these loads, three or four small buckets
can be combined to form what are known as tripod or tetrapod foundations. In general, wind
turbines with bucket foundations are well suited for water depths between 20 to 50 meters [2].

Despite the experience gained from oil and gas industries, their application to wind turbines
faces several new challenges [1, 3]. They must be designed to withstand large horizontal forces
and overturning moments, and in addition these are of dynamic nature. These loads mainly
comes from steady-state operation of the machine (rotor rotation), wind field, water current
field, water waves, tidal effects, and earthquakes. Furthermore, the installation process and
the soil conditions of the seabed near the foundation introduce several uncertainties. These
designs should be able to operate under such conditions for a number of years in order to be
economically viable. Therefore, it is necessary to advance towards the development of rigorous
models able to take into account realistic conditions.

Many aspects of the installation and design of bucket foundations have been studied, and
the literature is large. A very complete review about bearing capacity and installation was
published by Foglia and Ibsen [4]. In the context of dynamics, a recent work of Kourkoulis et
al. [5] uses a non-linear FEM model to study the behaviour of bucket foundations of offshore
wind turbines under lateral monotonic, cyclic, and earthquake loading. They give an interesting
discussion about the interface conditions between soil and foundation. Liingaard et al. [6]
studied the impedances of bucket foundations in elastic soils, including the variation of these
under changes of geometry and soil properties.

In the present work, dynamic stiffnesses of bucket foundations buried in poroelastic soils are
studied. A simple but accurate boundary element – finite element (BE–FE) model is developed
to this aim. Bucket foundations with different skirt length to diameter ratios buried in different
realistic seabed soils are considered. Also, the effect of different contact conditions between the
lid and the seabed is studied.

The rest of the paper is organized as follows. In Section 2, the boundary element – finite
element model is described. In Section 3, impedances of bucket foundations buried in different
poroelastic seabeds are obtained and discussed. Finally, in Section 4 the main conclusions are
given.

2 BE–FE MODEL

2.1 Conventional and Dual BEM for three-dimensional Biot’s poroelasticity

The soil is considered to be a homogeneous poroelastic half-space following the Biot’s theory
of poroelasticity. Given its unbounded nature, the BEM is used to numerically treat it. A
particular feature of the proposed model is that, unlike Liingaard et al. [6], the problem can be
handled directly without needing any artificial interfaces. This is achieved thanks to the usage
of the Dual BEM.
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The governing equations of Biot’s poroelasticity [7] in the time domain can be written as:

µ∇2
u+∇

[(

λ+ µ+Q2/R
)

(∇ · u) +Q (∇ ·U)
]

+X = ρ11ü+ ρ12Ü + b
(

u̇− U̇

)

(1)

∇ [Q (∇ · u) +R (∇ ·U)] +X
′ = ρ12ü+ ρ22Ü− b

(

u̇− U̇

)

(2)

and the stress-strain relationships are:

τij = δij
[(

λ+Q2/R
)

(∇ · u) +Q (∇ ·U)
]

+ µ (ui ,j + uj ,i) , i, j = 1, 2, 3 (3)

τ = Q (∇ · u) +R (∇ ·U) (4)

whereui, τij andX are respectively displacements, stresses and body forces in the solid phase,
andUi, τ andX′ are respectively displacements, equivalent stress and body forces in the fluid
phase. The poroelastic medium has the following properties:λ andµ are the Lamé’s parameters
of the solid phase,Q andR are the Biot’s coupling parameters,b is the dissipation constant,
andρ11 = (1 − φ)ρs + ρa, ρ12 = −ρa, ρ22 = φρf + ρa, beingφ the porosity,ρs the solid
phase density,ρf the fluid phase density, andρa the additional apparent density. The additional
apparent densityρa is obtained fromρa = (α − 1)φρf , whereα is the tortuosity [8]. The
dissipation constantb is related to the hydraulic conductivityk by the relationshipb = ρfgφ

2/k,
whereg is the gravitational acceleration [9]. In the frequency domainω, Equations (1-2) can be
written as:

µ∇2
u+∇

[(

λ+ µ+Q2/R
)

(∇ · u) +Q (∇ ·U)
]

+X = −ω2ρ̂11u− ω2ρ̂12U (5)

∇ [Q (∇ · u) +R (∇ ·U)] +X
′ = −ω2ρ̂12u− ω2ρ̂22U (6)

whereρ̂11 = ρ11 − ib/ω, ρ̂22 = ρ22 − ib/ω andρ̂12 = ρ12 + ib/ω. It is well known that three
bulk modes exists: two longitudinal modes (P1 and P2) and one transverse mode (S); and their
associated wavenumbers are denoted respectively ask1, k2 andk3.

The BEM is based on the usage of Boundary Integral Equations (BIE), which are used to
build a solvable linear system of equations after its discretization. Domı́nguez [10, 11] presented
a BEM based on a Singular BIE (SBIE) for two-dimensional Biot’s poroelasticity, and Maeso
et al. [12] extended it to three-dimensions. One of the advantages of this family of BIEs
over others is the reduction of the variables related to the fluid phase to two: the equivalent
stressτ and the normal displacementUn. Another advantage is the possibility of writing the
fundamental solution and its derivatives in a way that resembles the fundamental solutions of
acoustics and elastodynamics and their derivatives.

Let Ω be a poroelastic region, andΓ = ∂Ω its boundary with outward unit normaln. Using
the weighted residual formulation proposed by Domı́nguez [10, 12], the SBIE at a collocation
pointxi can be written as:
[

Jci 0
0 cilk

]{

τ i

ui
k

}

+−

∫

Γ

[

−(U ∗

n00 + JX ′∗

j nj) t
∗

0k

−U
∗

nl0 t∗lk

]{

τ
uk

}

dΓ =

∫

Γ

[

−τ ∗00 u
∗

0k

−τ ∗l0 u∗

lk

]{

Un

tk

}

dΓ

C
i
Su

i +−

∫

Γ

T
∗
u dΓ =

∫

Γ

U
∗
t dΓ

(7)

wherel, k = 1, 2, 3, andJ = 1/(ρ̂22ω
2). The vectoru contains the primary variables: fluid

equivalent stressτ and solid displacementsuk; andt contains the secondary variables: fluid
normal displacementUn = Ujnj and solid tractiontk = τkjnj . The superscript�i is not an
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index, and indicates that the corresponding variable is related to the collocation point. The free-
term matrixCi

S contains the potential free-termci and the elastostatic free-termcilk , which are
ci = 1 andcilk = δlk for an interior collocation point (xi ∈ Ω), andci = 1/2 andcilk = 1/2δlk for
a smooth boundary collocation point (x

i ∈ Γ, Γ(xi) ∈ C1). As usual, the notation−
∫

stands for
an integral in the Cauchy Principal Value (CPV) sense, which is evaluated as described in [12].

The Hypersingular BIE (HBIE) for two-dimensional problems was obtained by Bordón et
al. [13]. Likewise, the three-dimensional HBIE is built by establishing the secondary variables
at the collocation point:

U i
n = U i

jn
i
j = −Jτ i,jn

i
j − Zui

jn
i
j (8)

til = τ iljn
i
j =

[

λui
m,mδlj + µ

(

ui
l,j + ui

j,l

)]

ni
j +

Q

R
τ ini

l (9)

whereZ = ρ̂12/ρ̂22, ni is the unit normal vector at the collocation point, and the comma deriva-
tive notation denotes∂/∂xi

k. Therefore, a mix of the SBIE and its derivatives with respect to the
collocation point is required to build the HBIE. After carrying out all the required operations,
the HBIE at a collocation pointxi with unit normalni can be written as:

[

ci 0
0 cilk

]{

U i
n

tik

}

+=

∫

Γ

[

−s∗00 s
∗

0k

−s∗l0 s∗lk

]{
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uk

}

dΓ = −

∫

Γ

[

−d∗00 d
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0k

−d∗l0 d∗lk

]{

Un

tk

}

dΓ

C
i
Ht

i +=

∫

Γ

S
∗
u dΓ = −

∫

Γ

D
∗
t dΓ

(10)

where the notation=
∫

stands for an integral in the Hadamard Finite Part (HFP) sense. The
presence of a HFP integral imposes that the primary variables at the collocation point must
have continuous first derivatives, i.e.τ(xi), uk(x

i) ∈ C1. Using this fact, a meaningful HBIE
can be obtained once a regularization process based on the work of Domı́nguez et al. [14] is
performed.

Equations (7) and (10) correspond to BIEs for interior collocation points, or boundary col-
location points at ordinary boundaries. When the collocation point is located at a crack-like
boundary, both BIEs have to be modified. A crack-like boundary has two boundaries geomet-
rically coincident but with opposite orientations, denoted as positive+ and negative− faces.
Hence, the SBIE and HBIE when the collocation pointx

i is located at a crack-like boundary
can be written as:

1

2

[

J 0
0 δlk

]

(

u
i+ + u

i−
)

+−

∫

Γ

T
∗
u dΓ =

∫

Γ

U
∗
t dΓ (11)

1

2

[

1 0
0 δlk

]

(

t
i+ − t

i−
)

+=

∫

Γ

S
∗
u dΓ = −

∫

Γ

D
∗
t dΓ (12)

where it has been assumed thatΓ(xi) ∈ C1. Both Equations (11) and (12) have to be used simul-
taneously in order to solve problems where crack-like boundaries are present. When considered
this way, they are known as Dual BIEs, and their application to the BEM is called the Dual BEM
[15, 16]. As explained before, the HBIE requires thatτ(xi), uk(x

i) ∈ C1, thus the collocation
at crack-like boundaries must be performed carefully. Aliabadi and co-workers [15, 16] use
discontinuous boundary elements with nodes already located at points where this condition is
fulfilled. Another approach is that of Domı́nguez et al. [14], where standard continuous bound-
ary elements with multiple non-nodal collocation is used. The latter is considered in the present
work since, as it will become clear in the next section, continuous boundary elements are much
more appropriate for the proposed coupling.
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2.2 Degenerated shell finite element

The bucket foundation is considered to be a massless linear elastic solid. It is modelled
with degenerated shell finite elements. The degenerated shell FE has been formulated and
implemented following Oñate [17], and a robust 8-noded quadrilateral element with reduced
integration is used.

2.3 BE–FE coupling

The BE–FE coupling is done at the level of discretized equations. The boundary element
mesh and the finite element mesh must be conforming. A perfect bonding between the mid-
surface of the shell and the crack-like boundary of the soil is considered. It means that rotations
are not taken into account in the coupling. Given the small thickness to length ratio of the
bucket skirt, their contribution can be neglected. Furthermore, since the bucket is made of steel,
an impermeable interface between the shell and the poroelastic soil is assumed.

Considern+
j , U+

n , u+
i , τ+ andt+i as respectively the unit normal, fluid normal displacement,

solid displacement, fluid equivalent stress and solid traction of the positive face of the crack-like
boundary (soil), and analogously for the negative face. Also, considerus

i as the displacement
of the mid-surface, andtsi as the distributed load on the mid-surface. Then, the compatibility
and equilibrium coupling conditions between the crack-like boundary and the mid-surface of
the shell can be written as:

U+
n = u+

j n
+
j , U

−

n = u−

j n
−

j , u
+
i = us

i, u
−

i = us
i (13)

τ+n+
i + t+i + τ−n−

i + t−i + tsi = 0 (14)

3 IMPEDANCES OF BUCKET FOUNDATIONS

A bucket foundation is composed of a rigid lid with diameterD, and a flexible skirt of length
L and thicknesst. Using six degrees of freedom at the center of the lid, it is possible to build an
impedance matrixS relating the forces and momentsR produced by unitary displacements and
rotationsU. Since buckets are axisymmetric, the impedance matrix has five different impedance
functions: horizontal (SHH), vertical (SVV), rocking (SMM), horizontal-rocking coupling (SMH),
and torsional (STT). In the present paper, all impedance functions are studied except the tor-
sional one. For the sake of brevity, the same notation and normalization procedure as Liingaard
et al. [6] is used.

Elastic soils can be defined by a small set of properties, for example shear modulusµ, Pois-
son’s ratioν, densityρ and a hysteretic damping ratioξ (µ∗ = µ(1 + i2ξ)). Hence, fully
dimensionless studies can be carried out by defining some shape factors of the structure, a di-
mensionless frequencya0 with the help of a length of the structure and a wave velocity of the
soil, and setting the Poisson’s ratio and damping ratio of the soil. In the case of poroelastic soils,
this task becomes impractical due to the number of properties involved, and the difficulties of
knowing if a given set of values of the properties represents a realistic soil or not. For these
reasons, we have decided to use realistic seabed soils taken from Buchanan and Gilbert [18],
see Table 1. All results are shown using a dimensionless frequencya0 = ωR/cuS, whereR is
the radius of the bucket, andcuS =

√

µ/(φρf + (1− φ)ρs) is the undrained S-wave velocity.
The bucket foundation is considered massless (ρ = 0 kg/m3), with a Young’s modulusE =

210 GPa, Poisson’s ratioν = 1/4 and hysteretic damping ratioξ = 0.01 (E∗ = E(1 + i2ξ)).
The diameter isD = 10 m, and the thicknesst = 0.05 m. Because of the nature of the BE-
FE coupling presented, the mass distribution through the soil-structure interface is continuous
according to the density of the soil despite the structure is considered massless.
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Property, symbol and units
Coarse
sand and
fine gravel

Coarse
sand

Fine
sand

Silty
clay

Silty
sand

(sb1) (sb2) (sb3) (sb4) (sb5)
Frame shear modulusRe (µ∗) [MPa] 12.50 74.00 7.12 0.79 41.00
Frame shear modulusIm (µ∗) [MPa] 4.50 4.70 0.23 0.03 7.90
Frame bulk modulusRe (K∗) [MPa] 27.10 52.00 9.49 3.67 29.00
Frame bulk modulusIm (K∗) [MPa] 0.90 0.74 0.30 0.12 1.30
Poisson’s ratioν [–] 0.30 0.02 0.20 0.40 0.02
Porosityφ [–] 0.30 0.38 0.43 0.68 0.65
Fluid bulk modulusKf [GPa] 2.38 2.40 2.39 2.38 2.40
Biot’s coupling paramaterQ [GPa] 1.666 1.488 1.362 0.762 0.840
Biot’s coupling paramaterR [GPa] 0.714 0.912 1.028 1.618 1.560
Fluid densityρf [kg/m3] 1000 1000 1000 1000 1000
Solid densityρs [kg/m3] 2680 2710 2670 2680 2670
Tortuosityα [–] 1.25 1.25 1.25 3.00 3.00
Additional apparent den.ρa [kg/m3] 75 95 107.5 1360 1300
Fluid viscosityη [mPa · s] 1.01 1.01 1.01 1.01 1.01
Permeabilityκ [m2] 2.6 · 10−10 7.5 · 10−11 3.1 · 10−14 5.2 · 10−14 6.3 · 10−15

Hydraulic conductivityk [m/s] 2.5 · 10−3 7.3 · 10−4 3.0 · 10−7 5.1 · 10−7 6.2 · 10−8

Disipation constantb [N · s/m4] 3.52 · 105 1.95 · 106 5.99 · 109 8.98 · 109 6.74 · 1010

Undrained Poisson’s ratioνu [–] 0.4992153 0.4942119 0.4993609 0.4998878 0.4945113
Bulk densityρ [kg/m3] 2176 2060 1952 1538 1585
Undrained S-wave velocitycu

S
[m/s] 75.8 189.5 60.4 22.6 160.9

Table 1: Properties of seabed soils taken from Buchanan [18].Top: poroelastic medium. Bottom: undrained solid.

Impedances are calculated using a BE-FE model based on the methodology described in
the previous section. Figure 1 shows a mesh used in the calculations. Taking into account
the symmetric nature of the geometry, only one-quarter of the domain is discretized. The soil
regionΩsoil has three BE boundaries: the seabed free-surfaceΓfree−surface, the soil-skirt interface
Γsoil−skirt (a crack-like boundary), and the bucket lidΓlid. The skirt regionΩskirt is a mesh of
degenerated shell FE. For the sake of clarity in Figure 1, the skirtΩskirt is not located at its real
position, which is exactly in the position ofΓsoil−skirt. The seabed free-surfaceΓfree−surface is a
permeable traction-free boundary, i.e.τ = 0 andtk = 0. The bucket lidΓlid has prescribed
fluid and solid displacements according to the impedance that is being being calculated. Shell
FE nodes in (x > 0, y > 0, z = 0) and inzx andyz symmetry planes are 6 DOF shell nodes,
while the rest are 5 DOF nodes. By doing so, it is easy to establish the prescribed displacements
and rotations to the 6 DOF nodes according to the impedance that is being calculated and the
symmetric/anti-symmetric conditions imposed by the displacement field. BothΓsoil−skirt and
Ωskirt are discretized with conforming meshes of 8-noded quadrilateral elements. Boundaries
Γlid andΓfree−surface are discretized with 6-noded triangular elements. The size of the elements
of the foundation and its surroundings is at least of 6 elements per wavelength, while at least 4
elements per wavelength is used beyond it.

3.1 Validation

In order to check the validity of the formulation and the models, a comparison between
several results of Liingaard et al. [6] and results from our BE-FE model is done. Figure 2 shows
impedances (normalized magnitude and angle) for bucket foundations with several length to
diameter ratiosL/D = {1/4, 1, 2}. The given elastic soil properties areµ = 1 MPa, ν = 1/3
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Γfree−surface

Γlid

Γsoil−skirt

Ωskirt

z

y
x

Figure 1: Description of a mesh used in the calculations (L/D = 1)

andξ = 0.025. In our model, the same properties are used for the solid, the fluid is considered
to be air, and a small porosity is usedφ → 0. Figure 2 demonstrates complete agreement
between results. Although not shown here, all other static and dynamic results presented in [6]
also agree with results obtained by our model.

3.2 Results and discussion

Seabed soils taken from Buchanan and Gilbert [18], see Table 1, cover a wide range of possi-
ble realistic soils, from gravels, sands, silts, to clays. These soils are denoted as “sb1” to “sb5” in
the following tables and graphs. Three length to diameter ratiosL/D = {1/4, 1, 2} are studied.
Table 2 shows the dimensionless quasi-static stiffnesses for all cases, where they are calculated
for a small dimensionless frequencya0 = 10−6. Nondimensionalization of impedances is per-
formed using the shear modulusµ of the soil and the radiusR of the bucket. Figures 3 to 5
show the impedances for all cases, where in the low-frequency range (a0 = [10−6, 1]) only their
magnitudes are analysed, and in a broader frequency range (a0 = [0, 6]) also their angles are
shown. Taking into account the definition of the dimensionless frequencya0, the low-frequency
range corresponds approximately to frequencies below1 − 6 Hz depending on the seabed soil.
Also, the broader frequency range corresponds approximately to frequencies between1− 6 Hz
and40 Hz depending on the seabed soil.

Dimensionless quasi-static stiffnesses are similar in magnitude to those obtained by Liin-
gaard et al [6] for elastic soils, considering the seabed as a drained elastic soil. In fact, Table 2
includes the results using an elastic solid with the drained conditions of the porous medium, and
the discrepancy is small. Differences are due to a not sufficiently small dimensionless frequency
for the calculation of the quasi-static stiffness.

As can be seen in the left hand side graphs of Figures 3 to 5, impedance functions are almost
constant and approximately equal to the quasi-static value in the low-frequency range. This is
characteristic of any elastic soil, which is even more smooth. In the case of poroelastic soils,
the smaller length to diameter ratio the less regular behaviour at low-frequencies. In the case
of buckets withL/D = 1/4, it is very noticeable the variation of impedances whena0 → 0.
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Figure 2: Comparison between Liingaard et al. [6] and the present approach. From top to bottom: normalized
horizontal, vertical, rocking, and horizontal-rocking coupling impedances.
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Figure 3: Impedances of bucket foundations withL/D = 1/4 in poroelastic soils. From top to bottom: horizontal,
vertical, rocking, and horizontal-rocking coupling impedances normalized with respect to the corresponding quasi-
static stiffness.
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Figure 4: Impedances of bucket foundations withL/D = 1 in poroelastic soils and corresponding undrained
elastic soils (dashed lines) . From top to bottom: horizontal, vertical, rocking, and horizontal-rocking coupling
impedances normalized with respect to the corresponding quasi-static stiffness using the poroelastic soil.
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Figure 5: Impedances of bucket foundations withL/D = 2 in poroelastic soils. From top to bottom: horizontal,
vertical, rocking, and horizontal-rocking coupling impedances normalized with respect to the corresponding quasi-
static stiffness.
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Quasi-static stiffness Seabed L

D
= 1

4

L

D
= 1 L

D
= 2

(porous:a0 = 10−6) soil
Porous Porous Drained Porous

KHH

sb1 7.774 13.073 13.116 (0.3%) 16.137
sb2 6.186 8.900 8.892 (0.1%) 9.385
sb3 7.445 13.198 12.175 (7.8%) 17.754
sb4 8.065 14.516 14.069 (3.1%) 21.614
sb5 7.216 11.525 9.956 (13.6%) 12.723

KVV

sb1 7.557 11.288 11.336 (0.4%) 15.502
sb2 5.822 8.954 8.946 (0.1%) 11.952
sb3 7.483 11.662 10.124 (13.2%) 16.013
sb4 8.403 12.321 11.58 (6.0%) 16.731
sb5 7.904 11.849 9.283 (21.7%) 15.407

KMM

sb1 8.739 47.368 47.48 (0.2%) 131.429
sb2 7.066 28.100 28.096 (0.0%) 44.571
sb3 8.003 46.973 46.246 (1.5%) 153.538
sb4 8.993 53.106 52.728 (0.7%) 217.156
sb5 7.581 35.139 34.53 (1.7%) 68.016

KMH

sb1 −2.778 −15.539 −15.572 (0.2%) −30.881
sb2 −2.464 −8.816 −8.806 (0.1%) −10.950
sb3 −2.729 −16.036 −15.307 (4.5%) −37.250
sb4 −2.700 −17.923 −17.561 (2.0%) −51.545
sb5 −2.550 −11.751 −11.112 (5.4%) −17.182

Table 2: Quasi-static stiffnesses of the studied bucket foundations and seabed soils

The effect is due to the permeability of the porous medium, the smaller permeability the more
pronounced variation. It is more relevant for buckets with smaller length to diameter ratios
because of the relevance of the compressional interaction of the bucket lid with respect to the
total impedance.

In Figure 4, results of the corresponding undrained elastic soils are included, and they are
normalized with respect to the quasi-static stiffnesses of the correspoding porous media. Along
the low-frequency range (except whena0 → 0), it is quite clear that neither the drained nor the
undrained elastic soil is able to reproduce the real poroelastic behaviour.

The right hand side and central graphs of Figures 3 to 5 show impedance functions for
a broader frequency range (a0 = [0, 6]). By comparing these graphs and those obtained by
Liingaard et al. [6] for elastic soils, the same qualitative behaviour is observed. For small
length to diameter ratios, results tend to the solution of a disc foundation, while for larger ratios
results tend to the solution of an infinite hollow cylinder. As shown in Figure 4, the behaviour
is not only qualitatively similar, but also numerically if the corresponding undrained elastic soil
is used. The difference between the real poroelastic soil and the undrained elastic soil is very
small.

4 CONCLUSIONS

In this paper, a simple, efficient and accurate three-dimensional BE-FE dynamic model able
to directly manage bucket foundations in poroelastic soils is presented. The model makes use
of the Dual Boundary Element Method in order to avoid using any artificial boundary in the
discretization when thin open structures are buried in soils.

In this work, results of impedance functions for horizontal, vertical, rocking and horizontal-
rocking coupling modes of bucket foundations buried in poroelastic soils are presented. A
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realistic set of seabed soils are used to obtain the impedances. It is shown that the poroelastic
nature of the seabed soil should be considered when studying a problem in the low-frequency
range (< 1−6 Hz depending on the seabed soil). This is particularly true for bucket foundations
with small length to diameter ratios.
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Abstract. Inertia plays a crucial role in rigid body dynamics, and the associated mass matrix 
is of various forms in representation. The influences of accuracy of different representation, 
however, have not drawn enough attention in previous researches about numerical simulation 
of rigid body dynamics. In the paper, the inertia representation is intensively investigated for 
rigid body dynamics and a modified formulation is derived through splitting the kinetic ener-
gy into two parts: a square term of velocity and a quadratic form in the derivatives with 
quadratic coefficients in generalized displacement, of which the proportion is controlled by a 
scaling parameter. Although the kinetic energy with different scaling parameters is theoreti-
cally equivalent in dynamics, error estimation demonstrates that accuracy of numerical 
scheme crucially depends on the particular value of scaling parameter if only rotational co-
ordinates are expressed in pseudo vectors. This attractive feature distinguishes the modified 
formulation from others in numerical significance. According to the modified representation 
of inertia, a variational integrator is derived for rigid body dynamics in pseudo vectors. Nu-
merical results demonstrate that the variational integrator, of which the scaling parameter is 
selected as the arithmetic mean of three principal moments of inertia tensor, is of impressive-
ly higher accuracy in simulation, especially compared with the integrations derived with the 
original formulation of mass matrix. 
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1 INTRODUCTION 
Rigid body dynamics is applied frequently in engineering, physics, chemistry, molecular 

dynamics, etc. As well known, the motion of a single body can be split into two separate parts 
[1], of which, one is the pure translation of a reference point, and the other is pure rotation 
about the reference point. Although the description and integration of the translation part has 
found a fairly conclusive form, the rigid body rotation is still actively investigated because a 
variety of representation coexists and presents their respective advantages in different aspects 
of the application. The most common and widely used type of rotational coordinates for de-
scribing the rotation motion of a rigid body is Euler angles, that one of the minimal represen-
tation for rigid body rotation. It has advantage that the motion of rigid body is governed by 
ordinary differential equations in the description of Euler angle. In the last few decades, the 
theory of numerical methods for general (non-stiff and stiff) ordinary differential equations 
has reached a certain maturity [2], excellent general-purpose codes, mainly based on Runge-
Kutta methods or linear multistep methods, have become available for the numerical simula-
tion of rigid body dynamics.  

Nevertheless, with steady increases in both size and complexity of the systems investigated, 
pseudo-vectors, such as unit quaternion and convected base vectors, are found new attraction 
due to the simplicity in mathematical formulation and the possibility of avoiding singularities 
which may occur in the framework of Euler angles. Because of the non-independence of the 
parameters in pseudo-vectors, algebraic constraints are usually included in the equations of 
motion, which essentially extends the equations by holonomic constraints and yields a set of 
differential-algebraic equations (DAEs) of Index 3, instead of ordinary differential equations 
(ODEs). According to a formal definition of the index of DAEs [3], the early researches [4-6] 
underline that higher indices result in more arduous solving process, especially numerical dif-
ficulties associated with the solution of these index-3 DAEs. Due to these reasons, a large 
amount of effort [7-18] has been devoted to the study of computational methods in pseudo-
vectors for handling the motion of rigid body. 

 One of the more remarkable aspects of pseudo-vector is that the inertia representation can 
greatly influence the numerical accuracy of integrations in simulation. The inertia representa-
tion, associated with mass matrix, expresses the connection between velocity of a system and 
the kinetic energy of that system. Xu and Zhong [19] first found this numerical phenomenon 
in their research about quaternion-based rigid body dynamics. They present that the quaterni-
on-based mass matrix can be split into two parts: an identity matrix with a scaling parameter, 
denoted as σ , and a displacement-dependent matrix with a partial inertia tensor, denoted as 

σJ , and the proportion of two components is controlled by the scaling parameter.  They fur-
ther demonstrate that geometric integrations with a proper value of scaling parameter is of 
much higher accuracy than the others. Here we aim to present that the new type of inertia rep-
resentation are available no matter what kind of rotational coordinates are used to describe the 
motion of rigid body. In the continuous case these inertia representation with different scaling 
parameter σ  are theoretically equivalent, however, while the pseudo-vector is considered as 
the rotational coordinates, accuracy of numerical scheme crucially depends on the particular 
value of scaling parameter that is being chosen as starting point for the discretization process. 
This attractive feature distinguishes the modified formulation from others in numerical signif-
icance. We derive the variational integrator with the aid of the new type of inertia representa-
tion. The arithmetic average of three principal moments of inertia, denoted as mσ  is 
recommended as a reasonable preconditioning value of the scaling parameter. Numerical re-
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sults demonstrate that the variational integrator with mσ σ= is of impressively high accuracy, 
especially compared with the integrator with the original formulation of mass matrix. 

2 KINEMATICS 
The motion of a single rigid body is illustrated in Figure 1. A body fixed coordinate frame, 

denoted by -O XYZ  is centered at point O  with translation vector x0 . A point located inside 
the rigid body with coordinates =X [ , ,X Y Z ]T has the global components [18] 

 =x x RX0 +  (1) 

where R is the rotational matrix satisfying the orthonormal condition  

 T T= =RR R R I3  (2) 

and I3  is the 3×3 identity matrix.  

x

y
z

Z
Y

X

o

X

x0

O
x

 
Figure 1: A single body described by translation vector x0  and rotational matrix R . 

The kinetic energy of a body with volume V0  can be expressed by the integral  

 dT

V
T Vρ= ∫ x x

0
0

1
2

   (3) 

where ρ  denotes the mass density. Substituting (1) into (3) and selecting the reference point 
O  as the center of mass, the kinetic energy takes a particularly simple form where the transla-
tional kinetic energy of the center of mass tT  decouples from the rotational kinetic energy of 
the body rT  as  

 t rT T T= +  (4) 

First, the translational part of kinetic energy of the mass center is expressed as  

 t
TT m= x x0 0

1
2

   (5) 

where m denotes the mass of the body, and x0  is the velocity of the mass center. Similarly, 
the rotational part of the kinetic energy can be expressed in terms of the velocity rv  due to 
rotation in the form  

 r r rd
T

V
T Vρ= ∫ v v

0
0

1
2

 (6) 
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2.1 Rigid body motion 

In the present formulation of rotational part of kinetic energy, the vector rv  represents the 
rotation velocity of a mass point of rigid body in the body fixed coordinate frame -O XYZ . 
Considered the rigid body is rotating with angular velocity Ω ,  the rotation velocity can there-
fore be expressed in terms of the angular velocity Ω  as,  

 r
ˆ ˆ= × = = −v Ω X ΩX XΩ  (7) 

where the symbol (^ ) denotes the vector product via the skew-symmetric local component 
matrix  

 ˆ
−Ω Ω 

 = × = Ω −Ω 
 −Ω Ω 

Ω Ω
3 2

3 1

2 1

0

0

0

 (8) 

Substituting (7) into (6) yields  

 ( )r
ˆ ˆT T T

V
T dVρ= =∫Ω X X Ω Ω JΩ

0
0

1 1
2 2

 (9) 

where J  is the inertia tensor, defined by the volume integral  

 ˆ ˆT

V
dVρ= ∫J X X

0

 (10) 

and conveniently expressed in body fixed coordinate frame, whereby J  is constant. 
Suppose that the angular velocity can be formally expressed as  

 = ( )TΩ L q q  (11) 

where q  denotes the n generalized coordinates described the three dimensional rotation mo-
tion and q  is its velocity; ( )TL q represents a geometric mapping between Ω  and q . While 
n =3, q  represents the minimal coordinate representation for rigid body rotation. while n >3,  
q  represents pseudo-vector, of which the n components are not independent, and generally n-
3 constraint equations, defined by 

 ( ) =ψ q 0  (12) 

are imposed on the system to preserve the one to one correspondence relation between Ω  and 
q .   

The kinetic energy of the rigid body motion can now be expressed in terms of the transla-
tion velocity, the generalized coordinates q   and the time derivative q , by substitution of the 
angular velocity from (11) into the expressions (9), whereby  

 T TT m= +x x q Mq0 0

1 1
2 2

     (13) 

where  

 ( ) ( )T=M L q JL q  (14) 

is defined as the mass matrix with respect to the rotation motion. 

8742



Xiaoming Xu and Wanxie Zhong 

2.2 Rotational coordinates for rigid body rotation 
As presented in the above, the rotational part of kinetic energy can be expressed formally 

by the generalized coordinates q   and the time derivative q , and however,  not every general-
ized coordinates preserving the one to one mapping relationship between Ω  and q  can be 
used to describe the rotation motion of a rigid body. Actually, it can be derived from the infin-
itesimal rotation that the rotation motion is governed by the differential equations [1] 

 ˆ=R RΩ  (15) 

Considered that  T =R R I3 ,  we have  

 ˆ T=Ω R R  (16) 

which implies a one to one mapping relationship between Ω  and R , and consequently, it re-
quires  one-to-one mapping between q  can R to describe the rotation motion of a rigid body 
with q .  

1) Euler angles  
The most common and widely used type of rotational coordinates is Euler angles. In the 

description of Euler angles[1], the rotational motion is expressed in terms of the angle of nuta-
tion θ , the angle of precession φ , and the spin angle ψ , whereby  

 
cos cos cos sin cos cos sin cos cos sin sin sin
sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

ψ φ θ φ ψ ψ φ θ φ ψ ψ θ
ψ φ θ φ ψ ψ φ θ φ ψ ψ θ

θ φ θ φ θ

− + 
 = − − − + 
 − 

R  (17) 

Substituting (17) into (16) leads to  

 

Ω sin sin cos

Ω sin cos sin

Ω cos

φ θ ψ θ ψ

φ θ ψ θ ψ

φ θ ψ

= +

= −

= +

1

2

3

 

 

 

 (18) 

In combination of (18) with (11), we have the generalized coordinate =q [ , ,ψ θ φ ]T and  

 
sin sin cos

( ) sin cos sin
cos

Tθ ψ ψ
θ ψ ψ

θ

 
 = − 
  

L q
0

0

0 1

 (19) 

2) Unit quaternion  
Unit quaternion is another popular way to describe the rotation of a rigid body. In the (real) 

matrix representation [16], unit quaternion can be thought of as a 4-dimensional vector  

 [ , , , ]Tq q q q=q 0 1 2 3  (20) 

with the unit length constraint  

 ( ) T= − =ψ q q q 1 0 (21) 

and then the rotation matrix can be expressed in terms of unit quaternion  
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( ) ( )

( ) ( ) ( )
( ) ( )

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

+ − − − + 
 = + − + − − 
 − + − − + 

R q

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2

2 2

2 2

 (22) 

Substituting (22) into (16) leads to  

 
( )
( )
( )

q q q q q q q q
q q q q q q q q
q q q q q q q q

Ω = − + + −
Ω = − − + +
Ω = − + − +

1 1 0 0 1 3 2 2 3

2 2 0 3 1 0 2 1 3

3 3 0 2 1 1 2 1 4

2

2

2

   
   
   

 (23) 

and correspondingly  

 ( )

Tq q q q
q q q q
q q q q

− − 
 = − − 
 − − 

L q
1 0 3 2

2 3 0 1

3 2 1 0

2  (24) 

3) Convected base vectors 
As an alternative way to describe the rotation of a rigid body, the rotation matrix can be 

expressed directly by  

 [ , , ]=R q q q1 2 3  (25) 

where , ,q q q1 2 3 are named as the convected base vectors [15, 18]. Define the 9-dimensional 
vector  

 
TT T T =  q q q q1 2 3  (26) 

and then the orthonormal constraints presented by (2), can be rewritten as  

 

( )
( )
( )

( ) ( )

( )

( )

T

T

T

T T

T T

T T

 −
 − 
 −
 = =+ 
 + 
 + 

q q
q q
q q

ψ q q q q q

q q q q

q q q q

1
1 12

1
2 22

1
3 32

1
2 3 3 22 2

1
3 1 1 32 2

1
1 2 2 12 2

1

1

1
0  (27) 

Substituting (26) into (16) yields the expression of angular velocity  

 
( )
( )
( )

T T

T T

T T

Ω = − +

Ω = − +

Ω = − +

q q q q
q q q q
q q q q

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

2

2

2

 
 
 

 (28) 

Correspondingly, the projection matrix is expressed as  

 ( )
− 

 =  
 − 

q q
L q q q

q q

3 2

3 1

2 1

1
2

0
0

0
 (29) 
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3 DYNAMICS AND INERTIA REPRESENTATIONS 
In rigid body dynamics, the motion of a single body is governed by the Lagrange’s equa-

tions of first kind. Suppose that the translation vector =x0 0 , and the equations of rotation 
motion can be expressed in a unified form  

 cd T T
dt

∂ ∂
− = +

∂ ∂

 
 
 

Q Q
q q

 (30) 

In the above expression, Q denotes the generalized torque vector in terms of the generalized 
coordinates q . Suppose that the rigid body is rotating in gravitational fields, the generalized 
torque vector can be expressed as  

 U= −∂ ∂Q q  (31) 

where U is the potential energy. The vector cQ  denotes the constrained forces. While minimal 
representation is implemented (e.g. Euler angles), cQ  is identically equal to zero, whereas the 
constrained forces are defined as   

 ( )c T=Q A q λ  (32) 

where A  is the constraint jacobian matrix, defined by 

 ( ) ( ) T= ∂ ∂A q ψ q q  (33) 

and λ  is the Lagrange’s multiplier which preserves the path of pseudo-vector satisfying the 
constraints (12).  Define the generalized momentum  

 T= ∂ ∂ =p q Mq   (34) 

and the generalized force  

 T= ∂ ∂ +f q Q  (35) 

and then Expression (30) can be expressed in a simplified form  

 c= +p f Q  (36) 

3.1 The modified inertia representation for rotation motion  
The inertia representation, associated with mass matrix, establishes the connection between 

velocity of a system and the kinetic energy of that system. The mass matrix of a system is of 
various forms in representation: Firstly, it can be observed from the above that inertia repre-
sentations of rotation motion are different if only different rotational coordinates, such as Eu-
ler angles, unit quaternion and convected base vectors, are implemented in practice; Secondly, 
the inertia representation is non-unique, even if the system is described under the same gener-
alized coordinate. The former is a clear and logical conclusion, and the latter would be inten-
sively investigated in the following, though it is not terribly intuitive in understanding. 

Without loss of generality, suppose that the body-fixed coordinate axes -O XYZ  are aligned 
along the principal axes of inertia of the rigid body, and then the inertia tensor can be ex-
pressed as diag( , , )J J J=J 1 2 3 . Pre-multiply Expression (11) by itself, and then we have  

 = ( ) ( )T T TΩ Ω q L q L q q   (37) 
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Assuming that  

 ( ) ( )T T T=q L q L q q q q     (38) 

and then it can be derived that  

 T T=Ω Ω q q   (39) 

Reformulate the rotational part of kinetic energy in an equivalent form  

 +T TT σσ= Ω Ω Ω J Ω1 1
2 2

 (40) 

where  

 σ σ= −J J I3  (41) 

and σ >0, and then substituting (11) and (39) into (40) yields  a new type of formulation of 
kinetic energy 

 + ( ) ( )T T TT σσ= q q q L q J L q q1 1
2 2
     (42) 

In the modified inertia representation, the kinetic energy is generally split into a square term 
of velocity and a quadratic form in the derivatives with quadratic coefficients in generalized 
coordinates, of which the proportion is controlled by a scaling parameter, denoted as σ . 
Based on the Legendre transformation, we can derive the generalized momentum,  

 σ=p M q  (43) 

where  

 ( ) ( )T
σ σσ= +M I L q J L q  (44) 

and I  is the identity matrix. The mass matrix σM , presented by (44), is distinguished with 
the mass matrix M  since an identity matrix with respect to the scaling parameter σ  is sepa-
rated from the original mass matrix, and while σ =0, the two matrices are of the same formu-
lations. Consequently, substituting (43) into (36), we can obtain a more generalized 
formulation of Lagrange’s equations for rotation motion.  

3.2  The inertia representations under different rotational coordinates 
In the proceeding section, a newly inertia representation are derived by addition and sub-

traction of the homogeneous isotropic form TσΩ Ω1
2 . It can be observed that the assumption 

presented by (38), plays an important role in the derivational process. However, this re-
striction is not a necessary condition to make sure the existence of the inertia representation, 
but it provides a clear way to reach the ultimate formulations, and the mass matrix presented 
by (44) can be considered as the standard formulation of mass matrix in the modified repre-
sentation. Here we aim to develop the application of the modified inertia representation to 
three different rotational coordinates presented above. 

1) Euler angles  
While Euler angles is considered as the rotational coordinates, Pre-multiplying Expression 

(19) by itself and considering trigonometric identities yield 
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cos

cos

T

θ

θ

 
 =  
  

LL
1 0

0 1 0

0 1

 (45) 

Substituting (45) into (37) yields  

 = cosT T ψφ θ+Ω Ω q q 2     (46) 

Substitute (11) and (46) into (40) , and finally the mass matrix can be formally expressed as  

 
cos

( ) ( )
cos

T
σ σ

θ
σ

θ

 
 = + 
  

M L q J L q
1 0

0 1 0

0 1

 (47) 

2) Unit quaternion 
While unit quaternion is considered as the rotational coordinates, the unit length constraint 

leads to  

 T =q q 0  (48) 

Pre-multiplying Expression (24) by itself and considering T =q q 1  gives  

 ( ) ( )T T= −L q L q I qq44 4  (49) 

where I4  is 4-dimentional identity matrix. Substituting (48) and (49) into (37) yields  

 4T T=Ω Ω q q   (50) 

Substitute (11) and (50) into (40) , and finally the mass matrix can be expressed as 

 ( ) ( )T
σ σσ= +M I L q J L q44  (51) 

3) Convected base vectors 
While convected base vectors are considered as the rotational coordinates, the orthonormal 

constraints lead to the following constraint jacobian matrix 

 

T
 
 

=  
 
  

q q q

A q q q

q q q

1 1
1 3 22 2

1 1
2 3 12 2

1 1
3 2 12 2

0 0 0

0 0 0

0 0 0

 (52) 

The constraint jacobian matrix satisfies the following orthogonal relation  

 =Aq 0  (53) 

A direct calculation reveals that  

 [ , ] [ , ]
T T

T T   
= =   

   

L LL A L A I
A A 9

2 2
2 2  (54) 

where  I9  is 9-dimentional identity matrix. Substituting (53) and (54) into (37) gives 
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 T T=Ω Ω q q 2   (55) 

and hence, the mass matrix can be expressed as 

 ( ) ( )T
σ σσ= +M I L q J L q2  (56) 

3.3 A glance about the error estimation 
In the above, three different formulations of mass matrix has been derived for rotational 

motion under the modified representation, and a scaling parameter σ  is formally, extracted 
from the original formulations. In the continuous case these formulations with different scal-
ing parameter σ  are theoretically equivalent, that specifically the scaling parameter can be 
eliminated if only one admits that the geometric relations, which should be obeyed by rota-
tional coordinates for describing rotation motion, are precisely satisfied. However, this is not 
always reached by every kind of rotational coordinate in numerical simulation.  

Suppose that ( )t=q q  denotes the real solution of rotation motion of a single body, and 
( )t+ +=q q  is its numerical approximated solution. Correspondingly, we can define  

 ( ), ( )+ += =L L q L L q  (57) 

and  

 +, ( ) ,T T δ+ + += = = −Ω L q Ω L q Ω Ω Ω   (58) 

Then the approximation error of kinetic energy can be expressed as  

 ( , ) ( , )T T Tδ + += −q q q q   (59) 

Without loss of generality, we assume that the relation presented by (38), is satisfied, and then 
the kinetic energy can be expressed in the standard form under the modified representation of 
inertia. In combination of (57), (58) and (59) with (42), it can be derived that  

 sT K Tδ σ δ= + 0  (60) 

where  

 T TTδ δ δ δ= +Ω JΩ Ω J Ω0 2  (61) 

is just the numerical error of the kinetic energy with the original formulation of kinetic energy, 
and the slope sK  is  

 ( ) [ ( ) ]T T T T
sK + + + + + + + += − = −q q Ω Ω q I L L q1 1

2 2
     (62) 

It can be observed that the scaling parameter σ  has no influence on the numerical error of 
kinetic energy if and only if  sK =0, whereas the discretization error of kinetic energy is a 
linear function with respect to the scaling parameter. 

While rotational coordinates are expressed in minimal representation, sK =0 is equivalent 
to ( ) =T+ +L L I . Consider that all the geometric relations are satisfied automatically in minimal 
representation, and this would not be broken by any perturbation about the rotational coordi-
nates. Consequently, ( ) =T+ +L L I  if only =TLL I , and this assumption is admitted at the be-
ginning of the discussion. As a result, we can conclude that the scaling parameter σ  has no 
influence on the numerical error in minimal representation. For instance, we consider the Eu-
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ler angles, that one of the minimal representation, as the rotational coordinates. In this case, 
the representation is not in standard form. However, a direct calculation reveals that  

 
cos

( )
cos

T

θ

θ

+

+ +

+

 
 =  
  

L L
1 0

0 1 0

0 1

 (63) 

and this leads to  

 ( ) ( ) ( ) ( ) ( )T T
σ σσ+ + + + + + += + = =M L L L q J L q L q JL q M  (64) 

Hence the scaling parameter can be directly eliminated from the expression of mass matrix in 
minimal representation. 

While rotational coordinates are expressed in non-minimal representation (i.e. the pseudo-
vector), the geometric relations, which should be obeyed by rotational coordinates, are direct-
ly embodied as the constraints ( )ψ q  = 0  and the implicit orthogonal relations =Aq 0 . In 
continuous case, the scaling parameter σ  can be eliminated from the formulation of kinetic 
energy through the geometric relation  ( )ψ q  = 0  and =Aq 0 . Nevertheless, the geometric 
relations ( )ψ q  = 0  can only be satisfied strictly at every time-grid points in the discretization 
process, following which the scaling parameter σ  cannot be eliminated from the formulation 
of kinetic energy (i.e. sK ≠0 ), and consequently, the numerical accuracy of integration can 
be improved by determining a proper value of the scaling parameter σ . This distinguishes the 
modified representation of inertia with others in numerical significance.  This numerical phe-
nomenon is first discovered by Xu and Zhong [19] in their research about unit quaternion. 
They further recommend that  

 m ( + )J J Jσ = +1 2 3 3 (65) 

is a reasonable preconditioning value for the scaling parameter. In the following, we will first 
develop the variational integrator for rigid body dynamics in pseudo-vector by considering the 
modified inertia representation, and further investigate the numerical performance of the scal-
ing parameter σ  through two numerical examples. 

4 A DIRECT DISCRETIZING APPROACH FOR VARIATIONAL INTEGRATOR 
Considered the generalized momentum defined by  

 ( )σ=p M q q  (66) 

where σM  is expressed specifically by (51) for unit quaternion and (56) for convected base 
vectors. Define an equidistant time grid, consisting of a number N +1  of discrete points kt , 
defined by  

 [ , , , ]kt k t k N= ∆ ∈ 0 1   (67) 

Then differential part of  the Lagrange’s equations, presented by (36) can be formally written 
as  

 c
k k k= +p f Q  (68) 

for every discrete time [ , ]kt N t= ∆0 . The approximation of the above equations leads to dif-
ferent difference schemes in Lagrange’s frame. Here we define the difference approximations 

8749



Xiaoming Xu and Wanxie Zhong 

 / /( ) , ( )k k k k k kt+ + + += − ∆ = +q q q q q q1 2 1 1 2 1 2  (69) 

and correspondingly, define   

 / / / / / /( ) , ( , )k k k k k kσ+ + + + + += =p M q q f f q q1 2 1 2 1 2 1 2 1 2 1 2   (70) 

Then the vectors kp  and kf  are approximated as 

 / / / /( ) , ( )k k k k k kt+ − − +≈ − ∆ ≈ +p p p f f f1 2 1 2 1 2 1 2 2  (71) 

Substituting (32) and (71) into (68) and considering the constraint conditions (12) yield the 
following schemes  

 / / / /( ) ( ) ( ) , ( )T
k k k k k k kt s+ − − + +− ∆ = + + =p p f f A q λ ψ q1 2 1 2 1 2 1 2 12 0  (72) 

where s=λ λ  are scaled Lagrange multipliers and the scaling factor s  can be set to any con-
stant and is recommended as s t−= ∆ 2  to avoid ill-conditioning problem of iteration matrices 
[20]. The three-term recursion (72) is proposed by Leyendecker et al [21] through discrete 
variational principle (also see Wendlandt and Marsden [22]), and in the first step, it can be 
simplified to the term recursion  

 / /( ) ( ) ( ) , ( )Tt s− ∆ = + =p p f A q λ ψ q11
1 2 0 1 2 0 0 12 2 0  (73) 

The specific algorithm is summarized in pseudo-code format in Table 1. 

 
1) Initial condition: q0 , p0 , − =λ 1 0 . 

2) Prediction step: k k+ =g g1  where  [ ]T T
k k k−=g q λ 1

  

3) Residual calculation: [ ]T= q λr r r  

/ /

/ / / /

( ) ( ) ( ) ,
( ) ( ) ( ) ,

( )

T

T
k k k k k k

k

t s k
t s k+ − − +

+

 = − ∆ − − =
 = − ∆ − + − ≥

=

q

q

λ

r p p f A q λ
r p p f f A q λ

r ψ q

11
1 2 0 1 2 0 02 2

1 2 1 2 1 2 1 2

1

0

2 1


  

4) Update incremental rotation parameters:  
, k kδ δ−

+= − = +g K r g g g1
1 ,  

where T
k+= ∂ ∂K r g 1  and If rε>r , repeat from 3). 

5) Return to 2) for new step, or stop. 
 

Table 1: Variational integrator algorithm 

5 NUMERICAL EXAMPLES  
The numerical examples deal with a top spinning in gravitational field. As is shown in Fig-

ure 2, a top with the mass m  is considered. The distance between mass center A  and fixed 
point O  is denoted by l , and the gravitational acceleration g  is equal to 9.81 in the negative 
z-direction. While unit quaternion is considered, the gravitational potential energy of the top 
can be written as  
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( ) cos TU mgl mglθ= =q q Kq (74) 

where diag(1, 1, 1,1)= − −K  and correspondingly, we have 

U mgl∂ ∂ =q Kq2  (75)

While convected base vectors are considered,  the gravitational potential energy of the top can 
be written  

( ) cos( ) TU mgl mlθ= =q g q3  (76) 

where the gravitational vector is given as [ , , ]T g=g 0 0 . Hence external force can be ex-
pressed as 

[ ]T TU ml∂ ∂ =q g0 0 0 0 0 0 (77) 

300ψ

54

l

Ox y

zz′
θ

φ
A

mg

Figure 2: A heavy top. 

5.1 Fast spinning top 
Firstly, the fast spinning of a symmetric top is considered. The parameters are correspond-

ing to m =1 , .l =0 04 , and the principal moments of inertia tensor with respect to the fixed
point [ , ] [ . , . ]J J J= =1 2 3 0 002 0 0008 . The following initial condition is considered

[ , , ] [ , , ], [ , , ]Tφ θ ψ π π= =Ω0 0 0 00 6 0 0 0 40  (78) 
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Figure 3: the maximum of periodic energy error with time step increasing. (a) unit quaternion, (b) convected 
base vectors. σ =0( --- ), mσ σ= ( × ).
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Figure 4: Trajectory errors of variational integrator with unit quaternion. (a) the x - component of mass center, 

(b) the z - component of mass center. σ =0( --- ), mσ σ= (× ), analytical ( --- ), time step .t∆ =0 007 . 

Figures 3-5 show numerical comparison of variational integrators with different values of 
scaling parameter σ . Figure 3 presents that the variational integrator is a two-order algorithm. 
Figures 3-5 further present that the variational integrator with mσ σ=  is of impressively high-
er accuracy than that with σ =0. Considered that ( )σ σ = =M M0 , the value of the scaling 
parameter σ , in modified inertia representation, can greatly influence the numerical accuracy 
of integrations , although it can be determined arbitrarily in theoretical analysis. 
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Figure 5: Trajectory errors of variational integrator with convected base vectors. (a) the x - component of mass 
center, (b) the z - component of mass center. σ =0( --- ), mσ σ= ( × ), analytical ( --- ), time step .t∆ =0 0035  

5.2 Regular precession 
We secondly consider the regular precession of a heavy top in gravitational field. The top 

is represented as a cone with dimensions equivalent to those used in [16-18]. As illustrated in 
Figure 2, the parameters are height .h =0 1, l h= 3

4 , radius r h= 2  and the mass m hρπ= 2 3  
with the mass density ρ =2700 . The principal values of the inertia moments with respect to 
fixed point are given by 

 . ( . ), .J J m r h J mr= = + =2 2 2
1 2 30 6 0 25 0 3  (79) 

The regular precession requires that nutation angle θ , the velocity components φ  and ψ  sat-
isfy the relation 
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 ( ) ( ) cos( )J mgl J J Jψ φ φ θ− −= + −1 1
3 3 1 3
   (80) 

see e.g. [1]. The initial conditions correspond to those used in [16-18], i.e. a precession rate 
φ =10 , an initial nutation angle θ π=0 3  and the initial angular velocity vector 

 [ , sin( ), cos( )]Tφ θ ψ φ θ= +Ω0 0 00    (81) 
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Figure 6: Numerical integrations with unit quaternion. (a) the x - component of mass center, (b) the z - compo-

nent of mass center. Variational integrator with σ =0  (° ) and mσ σ= (× ), energy-momentum conserving 
scheme ( --- ), analytical solution ( --- ), time step .t∆ =0 01 . 
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Figure 7: Numerical integrations with convected base vectors. (a) the x - component of mass center, (b) the z - 
component of mass center. Variational integrator with mσ σ= , energy-momentum conserving scheme ( --- ), 

analytical solution ( --- ), time step .t∆ =0 01 . 

Recently, regular precession top is detailed discussed by Krenk and Nielsen, in their re-
searches about energy-momentum conserving integrations of rigid body dynamics [17,18]. 
They observed that the numerical integrations are of significant nutation error in simulation of 
regular precession, whether the integrations are implemented in terms of unit quaternion or 
convected base vectors. Figures 6-7 compare the numerical results of regular precession be-
tween the variational integrator and energy-momentum conserving schemes proposed by 
Krenk and Nielsen [17, 18]. It should be mentioned that the convected-base-vectors-based 
variational integrator with σ =0  and .t∆ =0 01  presents almost wrong numerical results in 
simulation, and hence is not shown in Figure 7. In addition, the energy-momentum schemes 
are implemented in terms of unit quaternion and convected base vector in Figures 6 and 7, 
respectively. It can be observed that the variational integrator with σ =0  and energy-
momentum conserving integration both present significant numerical errors, whereas the vari-
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ational integrator with mσ σ=  present impressively high accuracy in simulation. In combina-
tion of Figures 6-7 with Figures 3-5, we can conclude that the numerical accuracy of integra-
tions can be improved in modified representation of inertia, associated with the scaling 
parameter σ , and the mean value of three principal moments of inertia tensor can be consid-
ered as a reasonable value of the scaling parameter, with which the numerical integrations are 
expected to present much higher accuracy than others. 

6 CONCLUSIONS 
A modified inertia representation is proposed for rigid body dynamics, through splitting 

the kinetic energy into two parts, that a square term of velocity and a quadratic form in the 
derivatives with quadratic coefficients in generalized displacement. The proportion of the two 
components is controlled by a scaling parameter, denoted as σ . The associated mass matrix 
with different values of scaling parameter, are theoretically equivalent in dynamics. However, 
it presents different features while discretizing the govern equations of the system. Error esti-
mation demonstrates that the discretization error of kinetic energy is a linear function with 
respect to the scaling parameter, of which the slope is not equal to zero if only the rotational 
coordinates are expressed in pseudo-vector, such as unit quaternion, convected base vectors, 
etc. 

Error estimation implies that the numerical accuracy of integration can be improved by op-
timizing the scaling parameter. Based on the modified representation of inertia, a variational 
integrator is proposed for rigid body dynamics in terms of pseudo vectors. Two examples that 
the fast spinning top and the regular precession, are considered to testing the numerical per-
formance of the scaling parameter. Numerical results demonstrate that the variational integra-
tor with m=σ σ  presents impressively higher accuracy in simulation than other integrations. 
Consequently, the arithmetic mean value of the principal moments of inertia tensor (i.e. mσ ), 
is a reasonable preconditioning value of the scaling parameter, with which the numerical inte-
grations are expected to present much higher accuracy than others. 
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Abstract. Multibody systems modelling and analysis are efficient tools utilizable in general 
tasks of nonlinear dynamics. One of the branches suitable for the application of multibody 
approaches is the modelling of nonlinear motion and dynamical analysis in nuclear engineer-
ing. The motion of important parts of nuclear reactors called control assemblies has to be an-
alyzed. The purpose of these control systems is to control the power of a nuclear reactor and 
possibly to stop the reaction in case of an emergency state. With respect to different types of 
nuclear reactors, different control systems composed of various mechanical parts and trans-
missions can be distinguished. Generally, they can be simplified to the typical problem of a 
long thin rod moving through guide tubes and driven by a motor. Then the modelling ap-
proach depends on the chosen mode of operation, which can be operation (regulation) under 
normal conditions or a certain emergency state. The paper is focused on the control assembly 
of the VVER 1000 nuclear reactor. The VVER 1000 reactor is a pressurized water-cooled and 
water-moderated reactor consisting of a reactor pressure vessel with an interior structure 
and a reactor upper block with 61 control assembly drives. Under the vessel head with noz-
zles of the control assembly drives there is a block of protective tubes, which is above the core 
with 163 fuel assemblies. A moveable part of the control assembly, i.e. a rod control cluster 
assembly (this part is the necessary condition for stopping the nuclear reaction), is composed 
of a suspension bar, a spider and 18 long thin absorber rods. Two modular spatial multibody 
models of the LKP-M/3 control assembly of the VVER 1000 nuclear reactor were created in 
the alaska simulation tool and they differ in their kinematic scheme and in the number of con-
tact positions. Both models are meant for the simulations of the control assembly moving 
parts drop. The first one is intended for the simulations of the rod control cluster assembly 
drop during the seismic event, where the total time of the drop is the significant measured and 
computed quantity, and the second one for investigating limit curves of deformations of fuel 
assembly guide tubes, at which the absorber rods still reach the lower part of the core.
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1 INTRODUCTION 

Multibody systems modelling and analysis are efficient tools utilizable in general tasks of 
nonlinear dynamics. They are used for solving many different mechanical problems in various 
branches of industry. Multibody approaches are based on the concepts of classical mechanics 
with different complicated couplings and applied force effects. They are useful due to their 
ability to handle complex systems of bodies with nonlinear behaviour and they can be applied 
in different multidisciplinary applications. 

One of the branches suitable for the application of multibody approaches is the modelling 
of nonlinear motion and dynamical analysis in nuclear engineering. Besides the necessary 
seismic analyses of reactor buildings and structures, which belong rather to structural dynam-
ics, the motion of important parts of nuclear reactors called control assemblies has to be ana-
lyzed [1]. The purpose of these control systems is to control the power of a nuclear reactor (i.e. 
to control nuclear reaction) and possibly to stop the nuclear reaction in case of a defined 
emergency state. With respect to different types of nuclear reactors, different control systems 
composed of various mechanical parts and transmissions can be distinguished [2]. Generally, 
they can be simplified to the typical problem of a long thin rod moving through guide tubes 
and driven by a motor. The influences of contacts and influences of a coolant (water) sur-
rounding the control assembly in the nuclear reactor would be considered in the mathematical 
models (note: the relevant sources for their introduction are given in the following chapters). 
The modelling approach depends on the chosen mode of operation, which can be operation 
(regulation) under normal conditions or a certain emergency state, in addition. 

 
Figure 1: Scheme of the VVER 1000 plant layout. 

The problem of the mechanical behaviour of a control assembly during the emergency 
drop is not commonly studied in available literature and therefore the investigation of this 
problem is a challenge. Some basic studies can be found in [1] or [3], but they are not focused 
on mechanical behaviour in a sufficient detail. Authors of this paper presented several ap-
proaches to modelling the flexible falling rod in [2, 4, 5, 6, 7] and more detailed models of 
control assemblies in [8, 9, 10, 11]. 
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The paper is focused on multibody modelling of the control assembly of the VVER 1000 
reactor. The scheme of the VVER 1000 plant layout is given in Fig. 1. 

 
Figure 2: Scheme of the VVER 1000 reactor. 

Two modular spatial multibody models of the LKP-M/3 control assembly of the VVER 
1000 nuclear reactor were created in the alaska 2.3 simulation tool [12] and they differ in 
their kinematic scheme and in the number of contact positions. Both models are meant for the 
simulations of the control assembly moving parts drop. The first one is intended mainly for 
the simulations of the rod control cluster assembly drop during the seismic event [11], where 
the significant measured and computed quantity is the total time of the drop, and the second 
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one for investigating limit curves of deformations of fuel assembly guide tubes [13], at which 
the absorber rods still reach the lower part of the core. 

2 VVER 1000 NUCLEAR REACTOR 

The VVER 1000 nuclear reactor is a pressurized water-cooled and water-moderated reac-
tor developed in the Soviet Union and is used in many countries (e.g. the Czech Republic, the 
Ukraine, Bulgaria, China etc.). This reactor type is very similar to the PWR reactors produced 
in the USA and some west European countries. 

The VVER 1000 reactor consists of a reactor pressure vessel with an interior structure and 
a reactor upper block with control assembly drives (see scheme in Fig. 2). 

 
Figure 3: Scheme of the control assembly without casing (not in a real scale factor) and scheme of the rod con-

trol cluster assembly. 

Under the vessel head with nozzles of the control assembly drives there is a block of pro-
tective tubes, which is above the core with fuel assemblies (so called active zone). Fuel as-
semblies are placed on the core support plate. 
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The VVER 1000 reactor contains 163 fuel assemblies and 61 control assemblies (e.g. [14]). 
A moveable part of the control assembly called a rod control cluster assembly (this part is the 
necessary condition for the stopping of nuclear reaction), is composed of a suspension bar, a 
spider and 18 long thin absorber rods. 

The detailed scheme of the control assembly is shown in Fig. 3. It has to be noted that the 
objects in this figure are not displayed in a real scale factor, especially the rod control cluster 
assembly. The suspension bar is divided into an upper and a lower part with a bayonet joint 
for connecting with a spider of the control element (i.e. the rod control cluster assembly). The 
suspension bar of the rod control cluster assembly is driven by a linear stepper motor, the 
mechanism of which is based on the usage of electro-magnets. In case of an emergency state 
the lifting system mechanism is set off and the rod control cluster assemblies can drop down 
through the protective tubes to the reactor core with fuel assemblies and stop the nuclear reac-
tion. Other functional subsystems plotted in Fig. 3 do not influence the dynamic behaviour in 
the course of the studied rod control cluster assembly drop. The spider and the absorber rods 
of the rod control cluster assembly are schematically drawn in Fig. 3. 

When the absorber rods reach the lower part of the core, they pass through the guide chan-
nel narrowing, which have the function of hydraulic shock absorbers for the stop of the rod 
control cluster assemblies drop. 

3 MULTIBODY MODELS OF THE CONTROL ASSEMBLY 

The spatial multibody models of the control assembly were created in the alaska 2.3 simu-
lation tool [12] on the basis of the technical documentation and drawings provided by the con-
trol assembly producer ŠKODA JS a.s. (the Czech Republic). As it has been already 
mentioned, the first one is intended mainly for the simulations of the rod control cluster as-
sembly drop during the seismic event [11] (model 1), where the significant measured and 
computed quantity is the total time of the drop, and the second one for investigating limit 
curves of deformations of fuel assembly guide tubes [13] (model 2), at which the absorber 
rods still reach lower part of the core. Basic summary data of both multibody models are giv-
en in Tab. 1. 
 

 
Model intended for simulations of the rod control cluster 
assembly drop 

 
during the seismic 
event (model 1) 

at considering deformations of fuel 
assembly guide tubes (model 2) 

Number of (rigid) bodies 23 22 
Number of kinematic joints 23 22 
Number of degrees of freedom 56 45 
Number of contact points in 
vertical direction 

10 11 

Number of contact positions in 
horizontal plane 

40 70 

Table 1: Basic summary data about multibody models of the control assembly. 

Two different computational models of the control assembly were created due to the com-
plex including of all effects influencing the rod control cluster assembly drop, which results in 
relatively long computational times of simulations (in the order of tens of hours). In model 1 
intended mainly for the simulations of the rod control cluster assembly drop during the seis-
mic event [11] it was necessary to consider more degrees of freedom due to introducing a 

8760



Pavel Polach and Michal Hajžman 

seismic excitation and in model 2 it was necessary to consider more contact positions in a 
horizontal plane for investigating limit curves of deformations of fuel assembly guide tubes 
[13] (see Tab. 2). Dynamical aspects of the control assembly that do not influence the rod 
control cluster assembly drop were neglected in both computational models. 

Problems of dynamical mechanical systems in nuclear engineering are of a strong multid-
isciplinary character. The presented multibody models are the intermediate control assembly 
models that should be the initial state to start the detailed study of the control assembly behav-
iour. The multibody models include coolant influences, impacts, contacts and, in case of mod-
el 1, seismic excitation. Not all influences and specific behaviour could be considered in 
detail in the models, but some aspects of the control assembly are and will be studied in more 
detail in future works. 
 
Contact between bodies (see Fig. 4) Number of contact positions 
First body Second body Model 1 Model 2 
upper part of suspension bar lifting block 1 1 
upper part of suspension bar pulling block 2 2 
upper part of suspension bar protective tube, fuel assembly 1 - 
upper part of suspension bar frame - 1 
cluster spider protective tube, fuel assembly 6 - 
cluster spider frame - 6 
upper parts of 1st to 6th 
threes of absorber rods 

protective tube, fuel assembly 18 - 

upper parts of 1st to 6th 
threes of absorber rods 

frame - 24 

lower parts of 1st to 6th 
threes of absorber rods 

protective tube, fuel assembly 12 - 

lower parts of 1st to 6th 
threes of absorber rods 

frame - 36 

Table 2: Contact positions of bodies in horizontal plane in the multibody models. 

3.1 Kinematic scheme, contact positions and seismic excitation 

Kinematic scheme of the control assembly multibody model is shown in Fig. 4, where cir-
cles represent kinematic joints (BUNC – unconstrained, PRI – prismatic in vertical axis, UNI 
– universal around horizontal axes) and quadrangles represent rigid bodies. In the computa-
tional model, the rigid bodies are described by their mass and inertia properties computed ana-
lytically for simple shapes or by means of the COSMOS/M software [15] based on the finite 
element method. 

Due to virtual division of the rod control cluster assembly into thirteen rigid bodies (the 
purpose of this virtual division is partial considering the elastic properties of the rod control 
cluster assembly) certain distinguishing names of its parts were introduced (cluster spider, 
upper parts of the 1st to 6th threes absorber rods and lower parts of upper parts of the 1st to 
6th threes absorber rods). The terminology is evident from Fig. 4 (or partly from Fig. 3 left). 
This modelling enables, using appropriately chosen torsional stiffnesses in the kinematic 
joints, to “tune” the values of the lowest natural frequencies corresponding to bending vibra-
tion modes to the natural frequencies obtained from the FEM model of the rod control cluster 
assembly. 
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The best way of introducing the seismic excitation in the computational model is presented 
in [8, 9, 10] (and in internal research report [16]), the introducing of fuel assembly guide tubes 
deformations is given in available publication first time ([13] is internal research report). 

 
Figure 4: Kinematic scheme of the control assembly multibody models. 

In multibody model 1 (i.e. model intended mainly for the simulations of the rod control 
cluster assembly drop during the seismic event), a special rigid body substituting interior parts 
in the reactor (“protective tube, fuel assembly” – see Fig. 4) is important to specify contact 
and impact conditions in the course of the rod control cluster assembly drop. Motion of this 
body and body “drive housing” are defined by seismic excitations, which are specified by 
time histories of the absolute displacements in three directions (see example of time history of 
seismic excitation in Fig. 5). In multibody model 2 (i.e. model intended for investigating limit 

8762



Pavel Polach and Michal Hajžman 

curves of deformations of fuel assembly guide tubes), protective tube and fuel assembly are 
modelled as a part of the frame (see Fig. 4). Both considered time histories of normalized de-
formations of fuel assembly guide tubes are given in Fig. 6. 

 
Figure 5: Time histories [s] of the absolute displacements [m] in horizontal directions in place of connection of 
nozzle of the reactor vessel head and drive housing during seismic event (prescribed motion of the body “drive 

housing”). 

      
Figure 6: Normalized deformations of fuel assembly guide tubes. 

3.2 Modelling of contacts and impacts 

Possible contacts and impacts of the moving parts with adjacent structural parts inside the 
reactor are very important and significant aspects of the rod control cluster assembly drop 
modelling. Many publications studying contact problems were released, e.g. [17, 18, 19, 20]. 
However, it was necessary to use some simple contact-impact model of the rigid bodies appli-
cable in the alaska 2.3 simulation tool. 

The problem can be divided into two steps – the first one is the determination of the con-
tact occurrence and contact position and the second one is the calculation of the impact force 
acting on the bodies. The possible bodies in contact were specified on the basis of technical 
documentation and drawings. Since the clearances between the falling bodies (parts of the rod 
control cluster assembly) and adjacent structures (protective tubes, fuel assembly guide tubes) 
are relatively small – 1 to 7.5 millimetres – the contacts occur frequently. In all cases the con-
tact of the body of circular cross section with the circular hole (the body moves through the 
hole) can occur in the multibody model. The simple geometrical consideration can decide if 
the contact of the body cross section boundary curves occurs or not (see Fig. 7). It holds 

 2 2
S S 0R x y r− + − ≤ , (1) 

if the body is in contact with the adjacent structure. Coordinate system axes are designated by 
letters x and y, R is the hole radius, r is the radius of the body cross section, Sx  and Sy  are 
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horizontal displacements of the body centre. If the condition (1) is fulfilled angle 

S

Sarctan
x

y
=α  can be computed and relative deformation d of the contact surfaces can be ex-

pressed 

 2
K

2
K yxRd +−= , (2) 

where αcosSK ⋅+= rxx  and αsinSK ⋅+= ryy  are coordinates of contact point K. 

 
Figure 7: Contact of the body of the circular cross section moving through the circular hole. 

Relative deformation d is used in the impact force evaluation. E.g. the simple nonlinear 
Hertzian law (e.g. [21]) 

 nF k d= ⋅ , (3) 

can be used for the impact force evaluation, where k is the generalized stiffness and n is the 
constant coefficient for given materials. 

The contacts are related to vertical motion and therefore the friction force 

 FfF ⋅=t , (4) 

where f is the friction coefficient and F is the impact (normal) force acting in the contact, is 
introduced. 

The impact (normal) forces are introduced in the control assembly multibody model as the 
applied forces. Their instantaneous value is (instead of formula (3)) given by the bistop func-
tion [12]. After introducing axis u, direction of which is given by connecting point 0 (centre 
of the circular hole) and instantaneous position of contact point K, and independent variable u 
in its direction, impact (normal) force is calculated using the bistop function 
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where u is the independent variable, u&  is the first-order derivative of u and c, bd , e, b are the 

coefficients determining the course of the function when one of the boundary values 
Rru −=1  or rRu −=2  is exceeded. 

Function step approximates a step function by evaluating a cubic polynomial, which starts 
at the initial ordinate value 0h  at 0uu =  and ends at the final ordinate value 1h  at Euu =  

 ( ) ( )
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3.3 Influence of the coolant 

The most problematic factor in the control assembly multibody model is the influence of 
the pressurized water (coolant) that flows through the reactor interior structure and acts 
against the rod control cluster assembly motion. Like in the case of the contacts and impacts, 
this issue is frequently studied in the theoretical way (e.g. [22]) but the simple practical ap-
proach was necessary in case of modelling such a complex system in the alaska 2.3 simula-
tion tool. It is evident that the main influence of coolant is the hydraulic resistance and friction 
slowing down the rigid body motion. 

If Vm ⋅= FF ρ  is the fluid mass pushed up by the body of volume 
B

B

ρ
m

V =  static uplift 

pressure is respected in the corrected gravity force acting on the body 

 







−⋅⋅=⋅−⋅=

B

F
BFB 1

ρ
gmgmgmG

ρ
, (7) 

where Bm  is the body mass, g is the gravity acceleration, Bρ  is the body material density and 

Fρ  is the coolant density. 
The influence of the fluid on the horizontal vibrations is involved into the control assembly 

multibody model considering the hydraulic resistance force in the form (e.g. [23]) 

 2
HHFHH 2

1
vSCF ⋅⋅⋅⋅= ρ  . (8) 

The relative horizontal velocity of the body is designated Hv , HS  is the body effective sur-

face and HC  is the hydraulic coefficient depending on the shape of the body. 

Presence of the flowing medium has essential influence on the vertical motion of the rod 
control cluster assembly. This effect is significant due to the falling bodies motion in the fluid 
filling the limited volume of the protective tubes and the fuel assemblies guide tubes and be-
cause of the fact that the fluid cannot leak out in the horizontal directions. The vertical resis-
tance force is introduced in the control assembly multibody model using formula 

 2
VFVV 2

1
wSCF ⋅⋅⋅⋅= ρ  . (9) 

The total vertical velocity of the body w  is the vector sum of the falling body velocity and 
the fluid velocity flowing against the falling body, VS  is the body effective surface and VC  is 
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the hydraulic coefficient depending on the shape of the body. Due to the complexity of the 
cluster surface the hydraulic resistance coefficient VC  is difficult to determine accurately by 

the simple computation. The fact that rod control cluster assembly falls in the limited volume 
also makes the estimation more difficult. The way of the hydraulic resistance coefficient VC  

determination is given in [16]. 

4 CONCLUSIONS 

The paper presents two modular spatial multibody models of the LKP-M/3 control assem-
bly of the VVER 1000 nuclear reactor created in the alaska 2.3 simulation tool. Both models 
are meant for the simulations of the control assembly moving parts drop. Model 1 is intended 
mainly for the simulations of the rod control cluster assembly drop during the seismic event 
[11], where the significant measured and computed quantity is the total time of the drop, and 
model 2 for investigating limit curves of deformations of fuel assembly guide tubes [13], at 
which the absorber rods still reach the lower part of the core. The multibody models include 
the influences of the fluid and the contacts and impacts of the rod control cluster assembly 
with the adjacent structural parts inside the reactor. 

The models with the considered influences should be understood to be of the intermediate 
level in the framework of this topic. Various problems arising from the solution of this task 
will be studied in more detail in the future work. Mainly the problems of the falling body that 
is in contact with other bodies and interacts with fluid (coolant) in limited space have to be 
investigated. The rod control cluster assembly is composed of many absorber rods and con-
sideration of their flexibility seems to be useful. Introduction to modelling the flexible rods 
has already been given in [2, 5, 6, 7]. The advanced modelling of flexible rods based on the 
absolute nodal coordinate formulation (ANCF) is given in [24]. 

The paper has originated in the framework of solving LG 15058 project the Ministry of 
Education, Youth and Sports of the Czech Republic entitled “Presidency of CEACM and re-
lated posts” and institutional support for the long-time conception development of the re-
search institution provided by the Ministry of Industry and Trade of the Czech Republic to 
Research and Testing Institute Plzeň. 
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Abstract. As the offshore energy industry moves towards deepwater installations, plate 

anchors are increasingly used to moor floating production facilities. The ultimate holding 

capacity of a plate anchor in undrained clay has been widely investigated in scenarios where 

the undrained shear strength is a deterministic parameter, uniform or linearly increasing 

across the soil mass. However, it has been shown that bearing capacity of footings can be 

overestimated if spatial variability is not taken into account. In this paper, a least angle 

regression-based sparse polynomial chaos expansion is used to efficiently study the uplift 

capacity of horizontal plate anchors in spatially variable clay represented by a high-

dimensional random field. The coefficients of the expansion are obtained from a set of finite 

element analyses and a range of anchor embedment ratios are modelled to investigate both 

shallow and deep anchor behaviour. The limiting cases of an attached and vented anchor, 

where the anchor is either fixed to or separable from the soil, are also considered. It is found 

that the probability of failure of vented anchors reduces with embedment depth due to a 

decrease in the variability of anchor capacity as shear planes lengthen. In the attached case, 

the probability of failure is dependent upon whether the anchor fails by a shallow or deep 

mechanism.  
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1 INTRODUCTION 

The recent move towards deepwater energy production has led to an increased interest in the 

analysis and design of anchoring systems. Plate anchors are commonly deployed to moor 

floating production facilities [1]. The holding capacity of plate anchors in undrained clay has 

been widely investigated, using both physical modelling and numerical analysis [2-4]. In these 

studies, the undrained shear strength is uniform or linearly increasing according to a defined 

trend. In reality, natural clay is a highly variable material and the values of engineering 

parameters fluctuate across the soil mass [5]. Spatial variability, generally represented by 

random fields, has been shown to influence mechanical behaviour in a range of geotechnical 

scenarios [6]. In footing problems, bearing capacity can be overestimated if spatial variability 

is not taken into account. This has recently been demonstrated by Li et al. [7] for the case of 

buried footings, representative of applications such as spudcan foundations for offshore drilling 

platforms. The effect on uplift capacity is less well-studied but clearly has important design 

implications.  

In this paper, a least angle regression (LAR)-based sparse PCE [8] is used to efficiently study 

the uplift capacity of horizontal plate anchors in spatially variable undrained clay represented 

by a random field. LAR enables automatic selection of only the most influential terms of the 

expansion, reducing the number of model evaluations required to ensure a well-posed least 

squares regression problem and a good approximation. A finite element model is used to obtain 

the uplift capacity across a range of embedment ratios and the limiting cases of an ‘attached’ 

and ‘vented’ anchor, where the anchor is either fixed to or separable from the soil, are 

considered. The use of the PCE enables an accurate assessment of the probability of failure in 

comparison with current offshore design practice, where the mean undrained shear strength 

value is applied in combination with a partial safety factor. 

2 SPARSE POLYNOMIAL CHAOS EXPANSIONS 

Polynomial chaos expansions are a method for quantifying uncertainty in complex numerical 

models with input parameters represented by random variables. The model output can be 

approximated by expanding the response quantity onto a basis of orthogonal multivariate 

polynomials. If the model is denoted Γ, and is a function of M independent input random 

variables 𝝃 = {𝜉1, … , 𝜉𝑀}𝑇, this can be written as follows: 

 
Γ(𝝃) = ∑ 𝑎𝜶𝜓𝜶(𝝃)

𝜶 𝜖 ℕ𝑀

 (1)  

where 𝜓𝜶 is a multivariate polynomial basis and 𝑎𝜶 are deterministic coefficients which must 

be computed, for example by regression from a set of model evaluations. The sequence of non-

negative integers 𝜶 =  {𝛼1, … , 𝛼𝑀}  is a multi-index representing the polynomial order 

associated with each random variable. The series is known as a polynomial chaos expansion 

and provides an analytical expression for the model response. For optimal convergence, the 

multivariate polynomial basis is chosen to be orthogonal with respect to the joint probability 

density function (PDF) of the input random variables. The multivariate, M-dimensional basis is 

constructed as a product of one-dimensional polynomials. In this paper, Gaussian input random 

variables are used with the corresponding Hermite polynomials.  

The truncation, for computational purposes, of the infinite series in Eq. (1) was originally 

undertaken by keeping only those polynomials with degree less than or equal to the current PCE 

order p, i.e. ∑ 𝛼𝑖
𝑀
𝑖=1 ≤ 𝑝 . The size of this basis is 𝑃 = (𝑀+𝑝

𝑝
) and the number of retained 
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coefficients, and so the computational cost, grows dramatically as either the number of random 

variables M or polynomial order p is increased. 

In a sparse polynomial chaos expansion (SPCE), only significant terms are retained in the 

polynomial basis, thus reducing the number of coefficients that must be computed. Firstly, the 

candidate set of terms can be reduced prior to analysis to remove high-order interactions likely 

to be insignificant. Blatman and Sudret [8] proposed a ‘hyperbolic’ PCE in which a q-norm of 

the multi-indices should be smaller than the current order as follows: 

 

‖𝜶‖𝑞 = (∑(𝛼𝑖)
𝑞

𝑀

𝑖=1

)

1
𝑞⁄

≤ 𝑝 (2)  

where 0 < q ≤ 1. This is a stricter requirement than the classical truncation scheme, which is 

recovered by setting q = 1. 

The PCE is finally obtained as: 

 
Γ(𝝃) ≅ Γ̂𝑝(𝝃) = ∑ �̂�𝜶𝜓𝜶(𝝃)

‖𝜶‖𝑞 ≤ 𝑝

 (3)  

However, even after the size of the truncation set has been reduced, not all remaining terms 

will be significant. An efficient solution is to use least angle regression (LAR) [9] to select the 

basis functions that have most effect on the model response. In LAR, the predictors are 

progressively activated based on their correlation with the set of model outputs until either all 

predictors are active or, if the number of model evaluations n ≤ P, n – 1 predictors are active.  

The LAR-SPCE method [8] does not actually use the coefficients computed by LAR but 

instead uses the predictors retained in each step along the LAR path in a least squares regression.  

Hence a series of SPCEs are produced and their approximation performance is assessed by a 

corrected leave-one-out cross-validation error, denoted Q2*, in order to select the best expansion 

for subsequent use. Details of the error estimate Q2* can be found in [8]. To minimise the 

number of deterministic model evaluations an adaptive method is implemented in this study, 

with q = 0.7 and a maximum expansion order of 4. 

3 PLATE ANCHOR UPLIFT CAPACITY 

3.1 Description 

Figure 1 shows the layout and notation of the plate anchor scenario analysed in this study. 

The dimensionless ratio H/B is used to describe the embedment depth at which the plate anchor 

is installed. Loads are applied perpendicular to the longitudinal axis of the anchor, with the 

ultimate pullout capacity denoted 𝑄𝑢(= 𝑞𝑢𝐵). The pullout capacity in an undrained clay is 

generally expressed in terms of a dimensionless factor: 

 

𝑁𝑐 =
𝑄𝑢

𝐴𝑠𝑢
 (4)  

where A is the area of the plate and su is the undrained shear strength. In the deterministic 

analysis the clay is weightless and uniform, with su constant across the soil mass. If the anchor 

is embedded to such a depth that the failure mechanism becomes localised, the anchor can be 

described as ‘deep’. In contrast, the failure mechanism of a shallow anchor will extend to 

ground level as the anchor is pulled out of the soil. It should be noted that this distinction is 

only relevant if soil and anchor are attached. Vented anchors only reach the ultimate capacity 

once the failure mechanism reaches the surface. 
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Figure 1. Layout and notation. 

3.2 Representation of spatial variability 

The spatial variability of undrained shear strength, su, is modelled as a lognormal random 

field. The mean (𝜇) of su is 10kPa and the coefficient of variation (COV) is taken to be 0.2, 

representing a typical variability based on results reported by Lacasse and Nadim [5]. In 

addition a constant rigidity index of 𝐸 𝑠𝑢⁄  = 500 is assumed, where E is the elastic modulus. In 

statistical terms, E is therefore perfectly correlated with su and is generated from the same set 

of random variables.  

An anisotropic square exponential autocorrelation function is adopted for su, with correlation 

distance 10m and 1m in the horizontal and vertical directions respectively. The lognormal 

random field can be generated as follows: 

 
𝑠𝑢(𝑥, 𝑦) = exp(𝜇L,r + 𝜎𝐿,𝑟𝐺(𝑥, 𝑦)) (5)  

where 𝜇𝐿,𝑠𝑢
 is the mean of 𝑙𝑛(𝑠𝑢), 𝜎𝐿,𝑠𝑢

 is the standard deviation of 𝑙𝑛(𝑠𝑢), and 𝐺(𝑥, 𝑦) is a 

correlated Gaussian random field of zero mean and unit variance. The expansion optimal linear 

estimation (EOLE) method [10] is used to discretise the random field 𝐺(𝑥, 𝑦) on a rectangular 

grid, henceforth referred to as the stochastic mesh to indicate its independence from the 

deterministic model. The expansion is truncated to include M random variables, chosen such 

that at least 90% of the variance of 𝐺(𝑥, 𝑦) is captured. 

3.3 Finite element model 

The geotechnical FE software Plaxis 2D [11] is used as the deterministic model. The plate 

anchor, of width B = 2m, is modelled in plane strain and a range of embedment ratios are 

considered (H/B = 1, 2, 3, 6, and 10) in order to analyse both shallow and deep anchor behaviour.  

Figure 2 shows a typical mesh, consisting of 15-node triangular elements, for an anchor 

embedded at H/B = 6. The anchor is modelled by a stiff plate element and the analysis is 

displacement-controlled. The clay is undrained and behaves according to the Mohr Coulomb 

model with friction angle φ = 0° and cohesion c = su. In the vented condition, an interface 

element is applied along the underside of the anchor with extensions at either end of 0.25B to 

avoid stress concentrations at the anchor tips. The section of interface adjacent to the anchor 

has no tensile strength so that separation of clay and plate occurs immediately when the anchor 

is displaced in the pullout direction. An interpolation procedure is used to transfer information 

from the stochastic mesh to the FE mesh. The deterministic capacity factors (𝑁𝑐,𝑑𝑒𝑡), using the 

mean value of su in a uniform soil profile, showed an overestimation of less than 2% compared 

with those reported by Yu et al. [4]. 
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Figure 2. Typical FE mesh (H/B = 2). 

4 RESULTS AND DISCUSSION 

4.1 Performance of the LAR-SPCE method 

Figure 3 shows the SPCE prediction of anchor capacity at H/B = 6 for the regression (or 

‘training’) set and a test set of an additional 100 FE simulations not used in the regression. In 

this case, the random field is discretised using 50 standard Gaussian variables. To achieve the 

target accuracy, 1100 FE model evaluations were necessary in the attached condition, with 400 

needed for a vented anchor. In both cases, a 3rd order expansion was found to be optimal, 

meaning the terms in the retained expansion have a maximum order of 3.  

 

 

Figure 3. Retained SPCE approximation of FE model for a horizontal anchor with H/B = 6: training and test 

data for (a) attached and (b) vented anchor. 

The strong linear relationship between the output of the FE and SPCE models demonstrates 

that the SPCE is able to produce an accurate approximation of the pullout capacity. This ensures 

that valid conclusions can be drawn about the probability distribution of the plate anchor 

capacity using an SPCE in place of the expensive FE model. The target accuracy of Q2∗
= 0.99 

also provides acceptable performance for the number of simulations required; the rate of 

convergence tends to slow as the error reduces. 

The number of FE model evaluations required to construct an SPCE of target accuracy is 

given in Table 1. In general, the computational effort is related to the number of variables 

necessary to discretise the field. However, in certain cases the nature of the failure mechanism 
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can slow convergence. For example, the target value of Q2* was not achieved for the attached 

anchor at H/B = 2. A very slow convergence was observed and the number of simulations was 

limited to 5000 for practical reasons. This slow convergence rate is a result of the anchor failing 

in a variety of different modes due to the spatial variability of the clay.  

 

H/B Random variables Interface Q2* FE simulations Max. order 

1 50 Attached 0.9915 800 3 

Vented 0.9908 400 3 

2 60 Attached 0.9863 5000* 4 

Vented 0.9921 300 3 

3 60 Attached 0.9908 1200 3 

Vented 0.9910 300 3 

6 50 Attached 0.9906 1100 3 

Vented 0.9908 400 3 

10 120 Attached 0.9910 3300 3 

Vented 0.9903 800 3 

Table 1. Details of the retained SPCEs (*indicates target Q2* was not reached). 

In uniform (i.e. not spatially variable) clay, a deep mechanism forms with the shear plane 

localised around the anchor. In contrast, as shown in Figure 4, if the clay is spatially variable 

the failure mechanism can either be deep, being fully localised around the anchor, or shallow, 

involving a reverse end bearing mechanism, depending on the particular realisation of the 

random field. For this case the function Γ(𝝃) is not smooth, resulting in slow convergence of 

the SPCE. Note that 4th order terms were retained whereas in all other expansions only 3rd order 

polynomials were necessary. It is also clear that the critical embedment ratio, when the anchor 

transitions from a shallow to deep mechanism, is difficult to define exactly in spatially variable 

soil.  

 

Figure 4. Failure mechanisms for an anchor embedded at H/B = 2 for two different random field realisations. 

4.2 Statistics of the uplift capacity 

The mean and standard deviation of the anchor capacity are obtained analytically from each 

SPCE. Figure 5 shows the mean, �̂�𝑁𝑐, and standard deviation, �̂�𝑁𝑐, of the capacity factor in 

spatially variable clay across a range of embedment ratios. For comparison, the figure also 

shows the deterministic capacity factors. In both interface conditions, it can be seen that the 

mean capacity factor has a similar relationship with the embedment ratio as in the deterministic 

case and tends to be marginally (no more than 5%) lower than the equivalent deterministic 

capacity factor. 
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Figure 5. Mean, standard deviation, and deterministic capacity factors, Nc. 

The variability of the pullout capacity for the different anchor configurations can be 

compared by considering the COV, as presented in Figure 6. For the vented case, the COV 

reduces with increasing embedment ratio. Li et al. [7] show that, for buried footings, a longer 

shear plane lowers the COV of the bearing capacity due to a greater spatial averaging effect. 

The same conclusion can be drawn from the failure mechanisms of the vented anchors. When 

anchor and soil are separable, the ultimate load is reached once the shear plane reaches the 

ground surface, regardless of anchor orientation. As H/B increases, the length of the shear plane 

is necessarily longer and the COV reduces. When the anchor and soil are attached, there is a 

distinct difference between the COV of ‘shallow’ and ‘deep’ anchors. If H/B is ≥ 3, the 

embedment ratio no longer affects the failure mechanism and COV is relatively constant.  

 

 

Figure 6. Coefficient of Variation (COV) against embedment ratio, H/B. 

4.3 Probability of failure 

The probability of failure can be defined as: 

 

𝑃𝑓 = 𝑃 (𝑁𝑐 <
𝑁𝑐,𝑑𝑒𝑡

𝐹𝑆
) (6)  

where FS is a factor of safety. This represents the probability that the capacity factor in spatially 

variable clay will be less than that predicted in a conventional numerical analysis with 

deterministic soil parameters.  
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Monte Carlo realisations of the SPCE are used to compute the probability of failure. To 

ensure a COV ≤ 0.1 for a probability of failure of 10-5, which tends to be the lowest value of 𝑃𝑓 

considered in practice, the number of samples (𝑛𝑆𝑃𝐶𝐸) is 107. The estimated probability of 

failure is then: 

 

�̂�𝑓 =
1

𝑛𝑆𝑃𝐶𝐸
∑ 𝐼 (𝑁𝑐

(𝑖)
<

𝑁𝑐,𝑑𝑒𝑡

𝐹𝑆
) 

𝑛𝑆𝑃𝐶𝐸

𝑖=1

 (7)  

where I is the indicator function. 

Figure 7 shows the probability of failure across a range of embedment depths as the factor 

of safety is increased from 1 to 3. If no factor of safety is used (FS = 1), the probability of failure 

ranges from 0.53 to 0.71 and is relatively independent of the interface condition. When a factor 

of safety is applied to 𝑁𝑐,𝑑𝑒𝑡, the probability of failure can change greatly depending on the 

anchor configuration. If the anchor is vented, the probability of failure reduces as the anchor is 

embedded deeper into the clay. This is a direct result of the decreasing COV with depth 

observed for vented anchors. For the attached case, a distinction is again observed between deep 

and shallow anchors. As H/B increases, a constant probability of failure is reached as the failure 

mechanism is localised around the anchor.  

 

 

Figure 7. Probability of failure for (a) attached and (b) vented anchors when different factors of safety (FS) 

are applied to the deterministic capacity factor (𝑁𝑐,𝑑𝑒𝑡).  

The recommended practice for the design of plate anchors DNV-RP-E302 [12] suggests a 

partial safety factor of 1.4 to account for uncertainty in “su(z) as it affects Rs(z)” (where z 

indicates depth and Rs is the static resistance), as well as epistemic uncertainties resulting from, 

for example, the analytical model. The Nc values recommended by the design code correspond 

to attached anchors, and the mean of su is used as the characteristic value. The analysis presented 

here suggests that this factor may not be sufficient to account for natural spatial variability if 

the intended probability of failure is less than 10-2. However, further investigation into the effect 

of COV and the autocorrelation structure of su is needed before concluding that the current 

design method is not conservative.  
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5 CONCLUSIONS  

A study of the uplift capacity of a horizontal plate anchor in spatially variable clay has been 

conducted. An LAR-SPCE method was used to efficiently obtain the statistical moments of the 

anchor capacity and the probability of failure with respect to a conventional numerical analysis 

employing deterministic soil parameters. The probability of failure of vented anchors reduces 

with embedment depth due to a decrease in the variability of anchor capacity as shear planes 

lengthen. In the attached case, the probability of failure becomes relatively constant once the 

embedment ratio is large enough to ensure that the failure mechanism is localised around the 

anchor. The results of this study suggest that the partial factor used in current design practice 

may be not be sufficient to account for the spatial variability of undrained shear strength. 

Further research is necessary in order to better understand the effect of spatial variability on the 

ultimate capacity of plate anchors. 
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Abstract. Miner’s rule employed deterministic or probabilistic fatigue assessment approaches 

are generally used to predict remaining fatigue life of ageing railway bridges. Under many 

variable amplitude loading conditions, life predictions have been found to be unreliable since 

Miner’s rule does not properly take account the loading sequence effect. Therefore, this paper 

presents a comparison of a new probabilistic fatigue assessment approach with deterministic 

approach consisting of a new damage indicator, which captures the loading sequence effect of 

variable amplitude loads more precisely than the Miner’s rule. The comparison is performed 

by applying both fatigue assessment approaches to predict the remaining fatigue life of an age-

ing railway bridge. Initially the paper presents a probabilistic stress-life approach. Then the 

proposed approach is applied to predict the remaining fatigue lives of the ageing railway bridge. 

Finally, predicted fatigue lives are compared with fatigue lives predicted by the deterministic 

approach. Hence applicability, significance and validity of the proposed approach is discussed.  
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1 INTRODUCTION 

Majority of the railway bridges in the world are exceeding their design lives and bridge 

authorities are working on precious life extension methods [1-3]. As a result, a significant 

amount of research are ongoing for development of precious structural health monitoring and 

life assessment methods [2-12]. As railway bridges are vulnerable for time-dependent fatigue 

damage due to cyclic nature of traffic loads, the assessment of remaining fatigue life of railway 

bridges for continuing services has become more important than ever, especially when making 

decisions regarding structure replacement and other major retrofits. However, this task is diffi-

cult due to the increase of axel load and corrosion deterioration on bridges. 

The fatigue assessment of structures mainly done by either deterministic or probabilistic 

approach. Most of the present day deterministic fatigue assessment approaches of railway 

bridges are generally based on the combination of measured stress histories under actual traffic 

load [12,13], Miner’s rule [14] and railway code provided fatigue curve (also referred S-N or 

Wöhler curve). Although the mentioned deterministic approach predicts the remaining fatigue 

life, the uncertainties inherent in the fatigue evaluation process are not captured. These uncer-

tainties are found in the process of determination of stress histories (i.e. structural analysis, field 

measurements, load testing, loading sequence and respective histories), selecting detail catego-

ries, choosing fatigue damage theories [15, 16]. 

The probabilistic fatigue assessments have been originated to capture the effect of these un-

certainties more precisely. This approach is generally based on probability of fatigue failure 

associated reliability index. Fatigue reliability index provides a tool for predicting the remaining 

fatigue life [16]. A number of studies on the reliability analysis have been done for fatigue life 

prediction of bridges. Imam et al. [17] proposed a probabilistic fatigue assessment methodology 

for riveted railway bridges under historical and present-day train loading. Kwon and Frangopol 

[18] performed fatigue reliability assessment of steel bridges using the probability density func-

tion (PDF) of the equivalent stress ranges obtained by field measurement data. Ni et al. [19] 

proposed a fatigue reliability model for fatigue life and reliability evaluation of steel bridges 

with long-term monitoring data, which integrates the probability distribution of hot spot stress 

range with a continuous probabilistic formulation of Miner’s damage cumulative rule. Recently, 

Kwon et al. [15] and Soliman et al. [16] proposed a probabilistic bilinear stress-life approach 

for better fatigue assessment of steel bridges.  Miner’s rule has been used as the fatigue damage 

theory for mentioned probabilistic models. 

The Miner’s rule is the simplest and the most commonly used fatigue life prediction tech-

nique. One of its interesting features is that life calculation is simple and reliable when the 

detailed loading history is unknown. However, under many variable amplitude loading condi-

tions, life predictions have been found to be unreliable since it does not properly take account 

the loading sequence effect [20-22]. Therefore, it is uncertain to use the Miner’s rule for re-

maining fatigue life estimation of railway bridges because most of the railway bridges are sub-

jected to variable amplitude loadings. None of research studies confirmed about the 

consideration of the loading sequence effect on probabilistic fatigue assessment approaches. 

To overcome this problem to some extent, objective of this paper is to compare probabilistic 

fatigue assessment approach with deterministic approach consisting of a new damage indicator 

(i.e. damage stress model) [22], which captures the loading sequence effect of variable ampli-

tude loads more precisely than Miner’s rule. The comparison is performed by applying both 

fatigue assessment approaches to predict the remaining fatigue life of an ageing railway bridge. 

This comparison provides an indication of feasibility of probabilistic stress-life fatigue ap-

proach for ageing railway bridges. 
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2 FATIGUE RELIABILITY INDEX 

This section proposes a method to determine fatigue reliability index of bridges based on 

probabilistic bilinear S-N approach. The reliability index provides a measure of fatigue damage 

of the considered detail category of the bridge. Reliability index defines as the probability of 

violating fatigue limit state. The fatigue reliability index is defined as, 
𝛽 = ∅−1(1 − 𝑃𝑓)       (1) 

where ∅−1 is the inverse the standard normal distribution function. The corresponding fatigue 

limit state function can be derived as, 

𝑔(𝑡) = ∆ − 𝐷       (2) 

where Δ is Miner’s critical damage accumulation index, which is assumed to be lognormal 

distribution with a mean value of 1.0 and coefficient of variation (COV) of 0.3 and D is the 

Miner’s damage accumulation index, which can be derived as, 

𝐷 = {

𝑁(𝑡)

𝐴1
(𝑆 𝑟𝑒

𝐿 )𝑚1                                  𝑓𝑜𝑟 𝑁(𝑡) ≤
𝐴1

𝐶𝐴𝐹𝑇𝑚1

𝑁(𝑡)

(𝐶𝐴𝐹𝑇𝑚2−𝑚1 .𝐴1)
(𝑆 𝑟𝑒

𝐵 )𝑚2              𝑓𝑜𝑟 𝑁(𝑡) >
𝐴1

𝐶𝐴𝐹𝑇𝑚1
  
  (3) 

where 𝑆 𝑟𝑒
𝐿  and 𝑆 𝑟𝑒

𝐵  are equivalent constant amplitude stress ranges calculated using linear and 

bilinear S-N approach respectively as shown in Eq (4). The CAFT designated as constant am-

plitude fatigue threshold. The m1 and m2 are slopes of stress-life fatigue curve above and below 

the CAFT, respectively. The A1 is the fatigue detail coefficient above the CAFT of the fatigue 

curve. The 𝐴2 = 𝐴1𝐶𝐴𝐹𝑇
𝑚2−𝑚1, which is the fatigue detail coefficient bellow the CAFT of the 

fatigue curve. The N(t) is the number of cycles that considered detail category has subjected at 

the life time of t. The m1, m2, CAFT and N(t) are considered as the deterministic parameters. 

The stress range Sre, fatigue detail coefficient A1 are considered as random variables. 

As bridges are generally subjected to variable amplitude stress cycles, the equivalent con-

stant amplitude stress range Sre can be calculated for bilinear S-N approach as [16], 

𝑆𝑟𝑒 = [
∑(𝑛𝑖

𝑜𝑆𝑟𝑖
𝑚1)+(𝐶𝐴𝐹𝑇𝑚1−𝑚2).∑(𝑛𝑗

𝑜𝑆𝑟𝑗
𝑚2)

∑(𝑛𝑖
𝑜)+∑(𝑛𝑗

𝑜)
]

1 𝑚1⁄

     (4) 

where 𝑛𝑖
𝑜

 is the number of cycles in stress range bin Sri greater than the CAFT and 𝑛𝑗
𝑜is the 

number of cycles in stress range bin Srj less than the CAFT. The ∑(𝑛𝑖
𝑜) + ∑(𝑛𝑗

𝑜) is the total 

number of cycles. Alternatively, the equivalent constant amplitude stress range Sre can be cal-

culated using the PDF of the stress ranges as follows [16], 

𝑆𝑟𝑒 = [∫ (𝐶𝐴𝐹𝑇𝑚1−𝑚2). 𝑆𝑚2 . 𝑓𝑠(𝑠). 𝑑𝑠 +
𝐶𝐴𝐹𝑇

0 ∫ 𝑆𝑚1 . 𝑓𝑠(𝑠). 𝑑𝑠
∞

𝐶𝐴𝐹𝑇
]
1 𝑚1⁄

   (5) 

The Eqs. (2) and (3) can be used to calculate fatigue reliability index (β) by using Monte 

Carlo simulation employed some of the softwares R, RELSYS, CALREL or etc. The fatigue 

reliability index (β) versus lifetime of bridge should be plotted and compared with target relia-

bility index (βtarget) to determine the fatigue life of each detail category. 

 

3 CONSIDERED RAILWAY BRIDGE 

The selected bridge is one of the longest railway bridges in Sri Lanka spanning 160m (Fig.1). 

It is a six span-riveted bridge with double lane rail tracks having warren type semi through 

trusses supported on cylindrical piers. The bridge deck is made of wrought iron and the piers 

are made of cast iron casings with infilled concrete. The bridge was constructed in 1885 and is 

located in marine environment. The bridge components have been categorized to several groups 
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entitled “member set” by considering similar cross sectional properties as shown in Fig. 2. De-

tails of trains carried by the bridge and their frequencies illustrate that the bridge is subjected to 

variable amplitude loading [23]. 

The laboratory testing concluded that the bridge super structure material is wrought iron and 

the obtained values for elastic modulus, yield strength, ultimate strength in tension, fatigue 

strength and density are 195 GPa, 240 MPa, 383 MPa, 155 MPa and 7600 kg/m3 respectively 

[3]. 

Fig.1 General views of the considered bridge 

(b) 

C 

BR3 BR3 

CG CG CG CG CG CG 

BR3 BR3 

ST ST ST ST ST ST 

ST ST ST ST ST ST 

ST ST ST ST ST ST 

ST ST ST ST ST ST 

EB2 EB1 EB4 

EB2 EB1 EB4 

C 

 

(a) 

MG1 

DC1 DC2 DC3 DC4 DC5 DC5 

DT1 DT2 DT3 DT4 DT5 DT5 

MT1 MT1 MT2 MT2 MT3 MT3 MT1 MT2 

MC1 MC1 MC2 MC2 MC3 MC3 MC1 MC2 

Fig. 2. Member set categorization: (a). Main truss girder, (b). Horizontal bridge deck [3] 

(c) (a) 
(b) 

Fig. 3. The FE analysis results for moving train load: (a) Vertical displacement when the train is in the middle of the 

bridge (b) Maximum stress taken over all stress points at each cross sections when train is in the middle of the bridge 

(c) Minimum stress taken over all stress points at each cross sections when train is in the middle of the bridge cross 

sections when the train just before leave the bridge 

Yellow color: Tensile stress- Red color: compressive stress 
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4 STRUCTURAL ANALYSIS  

The bridge deck was analyzed using the 

general-purpose software SAP 2000. A 

three-dimensional (3D) model (Fig. 3) of 

one complete middle span of the bridge was 

analysed under actual loading to determine 

stresses in members and deflections, as well 

as variations of stresses under moving 

loads. The material properties recorded in 

section 3 and calculated section properties 

were utilized for this analysis. The bridge 

deck was modelled with 3D frame elements 

and the riveted connections were assumed 

to be fully-fixed [5]. Dynamic analysis was conducted for each different past and present pas-

sage of trains specified by the owner. The validation of FE model was done by comparing the 

results of time history dynamic analysis with those from measured time histories during the 

structural appraisal in year 2001 [3, 23]. These comparisons show that there are good agreement 

among analytical results of the FE model and the measurement of the actual bridge. Finally, the 

model is used to obtain past and present stress histories of each members due to each passage 

of trains. 

5 FATIGUE STRENGTH  

The S-N curve of detail category (also referred to as detail class) are generally used with 

nominal stress histories to capture the fatigue damage due to the local stresses near the connec-

tion. The detail category is determined by considering the current condition of the connection. 

Field investigations revealed that the riveted wrought iron connections of the bridge repre-

sent lapped or spliced connection behaviour with normal clamping force. Therefore, riveted 

connections were classified as WI-rivet (i.e. WI-rivet detail category or class), which is pro-

posed by the UK railway assessment code [1,24]. The different mean and design S-N curves for 

WI-rivet detail class have been proposed by previous researchers based on results of experi-

ments on full scale riveted members [1]. The above design S-N curve of WI-rivet detail (i.e. 

mean minus two standard deviations, which has 2.3% probability of failure), which is shown in 

Fig. 4, was used for fatigue reliability assessment of this bridge. The corresponding slopes of 

S-N fatigue curve m1, m2, fatigue detail coefficients A1, A2 and constant amplitude fatigue 

threshold CAFT are 4,6, 3.117×1013, 5.489×1016 and 42MPa respectively. 

6 FATIGUE RELIABILITY ASSESSMENT  

The stress ranges and average number of cycles per day at each members were calculated 

for each period using the rainflow counting algorithm. The stress range histograms for critical 

members and its probability density functions are plotted as shown Fig. 5. The Fig. 5 illustrates 

that the stress ranges of almost all critical members follow the log-normal distribution. Hence 

equivalent constant amplitude stress ranges (Sre) for each critical members of each member sets 

were calculated by Eq (5). 

Fig. 4. S-N curves for WI-rivet detail 
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The COV of Sre is considered as 0.1 [15,25]. The parameter A1 and Δ are random variables 

and corresponding COV’s are 0.45 and 0.3 respectively as discussed in section 2 [18,25]. Other 

parameters such as m1, m2, CAFT and N(t) are considered as the deterministic parameters. As 

all the random variables follow the log normal distribution, based on Eqs. (2) and (3), fatigue 

reliability index, β can be derived as follows: 

 . 𝛽(𝑡) =

{
 
 

 
 
𝜆∆+𝜆𝐴1−𝑚1.𝜆𝑆𝑟𝑒

𝐿 −ln𝑁(𝑡)

√𝜁Δ
2+𝜁A1

2 +(𝑚1.𝜁𝑆𝑟𝑒
𝐿 )

2
         𝑓𝑜𝑟 𝑁(𝑡) ≤

𝐴1

𝐶𝐴𝐹𝑇𝑚1

 
𝜆∆+𝜆𝐴2−𝑚2.𝜆𝑆𝑟𝑒

𝐵 −ln𝑁(𝑡)

√𝜁Δ
2+𝜁A2

2 +(𝑚2.𝜁𝑆𝑟𝑒
𝐵 )

2
        𝑓𝑜𝑟 𝑁(𝑡) >

𝐴1

𝐶𝐴𝐹𝑇𝑚1
  

  (6)  

where λ and ζ are lognormal parameters of the various random variables. 

The cumulative number of cycles N(t), lognormal parameters of Sre , A1, A2 and Δ are sub-

stituted to Eq. (6) and hence the fatigue reliability profiles (i.e. variation of fatigue reliability 

index with the age of the bridge) of the critical members of each member set of the bridge are 

generated and plotted in Fig.6.  A target reliability index is defined to evaluate probability of 

limit state failure and corresponding fatigue life. Based on survival probability of 95%, target 

reliability indices was calculated as 1.65. The calculated fatigue lives are shown in Table 1. 

The sequential law associated method [22], obtained nominal stress ranges in section 4 

were used together to obtain remaining fatigue lives of critical members of each critical member 

sets of the bridge. The obtained fatigue lives of fatigue critical members of each member sets 

(i.e. which are possible to fatigue damage) are shown in Table 1. It is assumed that future se-

quence of passage is similar to that of the present day. 

7 CONCLUSIONS  

A probabilistic fatigue assessment approach and a deterministic approach consisting of a 

new damage indicator, which capture the loading sequence effect of variable amplitude loads 

more precisely than Miner’s rule, were introduced to assess the fatigue life of an ageing railway 

(c) 

(a) (b) 

(d) 

Fig. 5. Stress range histogram and its probability distribution function: (a) for critical member in cross girder set 

CG; (b) for critical member in stringer set ST; (c) for critical members in main girder set MT2; (d) for critical 

members in truss diagonal set DT3  
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bridge. Obtained fatigue lives were compared for critical members of each member sets as 

shown in Table 1. The Table shows that both deterministic and probabilistic approaches provide 

almost closer fatigue lives for bridge deck members (i.e. cross girders CG and stringers ST). 

However, it is opposite for the main girder truss members (i.e. main girder chords and truss 

diagonals). 

Table shows that highly stressed member of main girder bottom chord MT2 is the most 

vulnerable to fatigue failure and the vulnerable members are located in the main girder consist-

ing of truss members. Further, it seems that there are no more remaining lives for majority of 

vulnerable members of main girder truss under the 95% of survival probability. However, 

bridge is still in service without any recorded damage or fracture. The deterministic approach 

(a) (b) 

(d) (c) 

Fig. 6. Fatigue reliability index versus life of the bridge: (a) for critical member in cross girder set CG, (b) for 

critical member in stringer set ST, (c) for critical member in main girder set MT2, (d) for critical member in 

truss diagonal set DT3 

Table 1. Summary of fatigue lives for critical members of each member sets  

Bridge component Mem-
ber set 

Fatigue life (years) 
Deterministic Approach  Probabilistic Approach 
 Damage stress model   βtarget=1.65 

Cross girders CG  133  119 
Stringers ST  134  135 
Main girder bottom chord  MT2  286  102 
Truss diagonal (tension member) DT3  259  108 
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predicts most vulnerable member for fatigue failure as the critical member in cross girder mem-

ber set CG. According to the deterministic approach, the remaining fatigue life of the consid-

ered bridge is three more years. 

The deviations of fatigue lives of both approaches illustrate that introduced probabilistic 

fatigue assessment approach may not preciously capture the loading sequence effect. However, 

it can be concluded that application of introduced probabilistic model provides a conservative 

fatigue assessment for railway bridges. Therefore, it is doubtful to conclude that this introduced 

probabilistic model and corresponding modal parameters provides a precise remaining life for 

ageing railway bridges. 
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Abstract. This paper deals with developing an efficient Robust Design Optimization (RDO) 
framework. The goal is to obtain an aerodynamic shape that is less sensitive to small random 
geometry perturbations and to uncertain operational conditions. The initial shape is the 
RAE2822 airfoil which is parameterized with 10 design variables. The robust design formula-
tion used is based on an expectation measure. The goal was to minimize the sum of the mean 
and standard deviation of the drag coefficient of the RAE 2822 airfoil for a given nominal lift 
coefficient. Here, we focus on improving the methods used for computing the statistics of the 
aerodynamic performance of the airfoil in every optimization cycle. A relatively small number 
of samples is evaluated with CFD and used to construct surrogate models based on Kriging 
and gradient-enhanced Kriging. The aerodynamic performance statistics, which are used to 
evaluate the robust objective function, are estimated by using quasi Monte Carlo (QMC) 
sampling with many samples evaluated on the surrogate models. A large number of geomet-
rical uncertainties is parameterized by using a truncated Karhunen-Loève expansion, which 
enables a significant reduction of the dimensionality of the problem and thus of the surrogate 
models. By varying the number of samples used to build the surrogate model and by compar-
ing the two types of surrogate modeling methods, it is confirmed that the robust objective 
function can be evaluated accurately with at most 30 CFD computations and corresponding 
adjoint computations. 
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1 INTRODUCTION 

Computational Fluid Dynamics (CFD) has become a sophisticated tool and can be used for 
complex aerodynamic analysis and design of aircraft. Many traditional shape optimization 
problems have been solved by high fidelity CFD and the optimized configurations feature the 
desired aerodynamic performance under perfect conditions. However, the performance may 
degrade due to environmental and operational uncertainties, or manufacturing tolerances. Re-
cently, robust design of aircraft under uncertainties is gaining interest in aerodynamics. In 
general, the high-fidelity CFD models used in deterministic shape optimization are expensive 
in terms of computational cost if applied to robust design.  

In this paper, we are concerned with robust design optimization (RDO) of the transonic 
RAE2822 airfoil, which is a test case in the FP7 European project UMRIDA [1]. The func-
tional of interest is the drag coefficient (Cd). Random variations of the flight conditions such 
as angle of attack, α, and Mach number, M, may occur during flight due to changing atmos-
pheric conditions. The airfoil shape may also be subject to manufacturing tolerances and to 
degradation during operations. These factors are irreducible and considered as realistic uncer-
tainties (aleatory uncertainties). On the other hand, numerical and modeling errors are an ad-
ditional source of uncertainty that has an impact on the RDO results. These are reducible 
(epistemic) uncertainties. Figure 1 shows a simple depiction of these uncertainties in numeri-
cal flow simulations. Here, we focus on simulating the effect of irreducible uncertainties on 
the design, which are modeled using stochastic methods. We consider non-intrusive ap-
proaches, where we treat the flow solver as a black box and only use it to calculate the outputs 
that are required to evaluate the objective function. In the whole process, the flow solver set-
tings, the mesh topology, and the geometry parameterization are carefully chosen and fixed. 
We consider the realistic uncertainties as input uncertainties with normal distributions when 
we evaluate the robustness of the design and we introduce our efficient RDO approach which 
combines a shape optimization framework with uncertainty quantification (UQ) methods. 

There are two main issues that need to be considered when developing an RDO framework. 
One is how to evaluate stochastic values, such as the mean and standard deviation, accurately 
and efficiently. For example, in transonic flow, because of the strong non-linearity of the gov-
erning equations, the results from full Monte Carlo (MC) simulations and those derived from 
approximations by stochastic modeling could be different. The MC method is one of the most 
straightforward UQ methods, but comes at a much higher cost than other non-intrusive meth-
ods. The method of moments, polynomial chaos expansion and stochastic collocation meth-
ods are widely used non-intrusive approaches for evaluating stochastic values [2,3,4,5]. We 
propose a RDO framework based on low-discrepancy sampling methods combined with 
Kriging-based surrogate models to compute the stochastic values, which are used to evaluate 
the objective function to be optimized, accurately and efficiently. The other issue is how to 
deal with a large number of uncertain parameters. Here, a large number of geometrical uncer-
tainties is parameterized by a Karhunen-Loève expansion to achieve a significant reduction of 
the number of uncertain inputs [6,7]. 

There are several measures of robustness [5] that can be used in RDO and reliability-based 
design optimization. In this paper, we limit ourselves to a robustness measure that is based on 
the sum of the mean and standard deviation of the drag coefficient as caused by the operation-
al and geometrical uncertainties. Here we mainly discuss the accuracy of the robust objective 
function and how we can obtain the statistics efficiently. 
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Figure 1: Overview of aleatory and epistemic uncertainties. 

 

2 UNCERTAINTY QUANTIFICATION FOR ROBUSTNESS MODELING 

2.1 Description of test case and problem setting 

RDO is applied to the RAE2822 airfoil, which is one of the basic test cases in the 
UMRIDA project [1]. We consider the angle of attack, α, the Mach number, M, and the ge-
ometry to be uncertain. The nominal condition of the angle of attack and Mach number are 
=2.79 deg. and M=0.734, respectively. The standard deviations of these operational parame-
ters are =0.1 deg. and M=0.005 for the angle of attack and Mach number, respectively.  
These uncertainties are assumed to have a normal distribution. The Reynolds number is 
Re=6.5 million and is not considered uncertain. The operational uncertainties are therefore 
expressed as    ,~ N  and  MMNM  ,~ . The geometrical uncertainties are de-
scribed in section 2.2. 

To evaluate the aerodynamic performance of the airfoil, DLR’s flow solver TAU [8,9,10] 
was used. Fully turbulent computations were performed with the negative Spalart-Allmaras 
turbulence model [11]. A quasi two-dimensional hybrid unstructured grid with prisms and tet-
rahedral elements was used for the RANS simulations. Figure 2 shows a detailed view of the 
grid around the RAE2822 airfoil, which is used as the baseline configuration in this paper. 
The number of grid nodes is approximately 29,000. During the RDO the geometry changes of 
the airfoil are  realized by using a radial basis function (RBF) based mesh deformation tool 
developed at DLR [12]. In this paper, all 380 surface nodes are considered uncertain. This 
yields the issue of how to treat a large number of geometrical uncertainties. 
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Re, etc…)
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- Boundary conditions
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Figure 2: Detailed view of hybrid unstructured grid around RAE2822 airfoil. 

 

2.2 Modeling of a large number of geometrical uncertainties 

As briefly mentioned in the introduction, our approach to evaluate the cost function (the 
robust objective function) is based on a combination of design of experiment (DOE) methods 
and surrogate modeling. A reduction of the rather large number of geometrical uncertainties 
using a truncated Karhunen-Loève expansion (tKLE) [6,7] enables us to use much less sam-
ples in the DOE. We assume that random perturbations of the airfoil arise from manufacturing 
tolerances, for example, resulting in the surface to be smooth, i.e., the nodes on each surface 
are regarded to be correlated to each other.  

The Karhunen-Loève expansion (KLE), which is also known as proper orthogonal decom-
position (POD), is used to decompose correlated random fields into a linear combination of 
orthogonal functions, which are represented by uncorrelated random variables. In practice the 
orthogonal functions are carefully truncated to keep their number small. We assume a random 
perturbation  x  of each surface grid node in the direction normal to the airfoil surface on 
both the upper and lower surfaces with zero-mean normal distributions, i.e., 
    xNx  ,0~ . Here, the standard deviation of the perturbation,  x , is represented by 

the distribution represented in Fig. 3(i). This setting means that perturbations are largest at the 
mid-chord and zero at the leading and trailing edges. Thus, the maximum perturbation of the 
upper and lower surfaces is 0.0025 in total in this case, which is around half of the UMRIDA 
test case definition. Here, it is assumed that the random perturbations are spatially correlated 
by a Gaussian correlation function. Then, the KLE can decompose these correlated variables 
into uncorrelated ones. Only a relatively small number of the first several significant modes is 
retained. Finally, the correlated random perturbation  x  is transformed into a smaller num-
ber of independent standard Gaussian variables as  1,0~ Nξ , which are the newly modeled 
geometrical uncertainties. In our test case the number of random geometrical variables is re-
duced from 380 to 10 using the KLE. More details of this process can be found in [6]. Three 
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realizations of the randomly perturbed geometry of the RAE2822 airfoil based on this para-
metrization are shown in Fig. 3(ii) as examples. 

 

 
Figure 3: Distribution of the standard deviation of each surface node (left), and examples of the perturbed airfoil 
configurations of RAE2822 parameterized by truncated Karhunen-Loève expansion (tKLE) (right). 

 

2.3 Design of experiments and surrogate models 

The statistics, which are used to evaluate the robustness measure in every optimization cy-
cle, are approximated using a combination of a DOE method and a surrogate model. The Sob-
ol sequence based quasi Monte Carlo (QMC) [13,14,15] was used as a DOE method to 
generate samples of the above uncertain input parameters in the domain of . The sam-
ples are used to construct Kriging-based surrogate models of the functional of interest [2,3,16]. 
A further reduction of the computational cost is achieved by constructing gradient-assisted 
surrogate models, so called gradient-enhanced Kriging (GEK) [16], such that the gradient of 
the function of interest with respect to the uncertain input parameters are used as secondary 
DOE samples. Both Kriging and GEK are response surface methods used to statistically   
evaluate the function values belonging to an unsampled combination input parameters based 
on Bayesian inference. In both methods, maximum likelihood estimation (MLE) is adopted to 
optimize parameters of the correlation function. In this study, a Gaussian correlation function 
was used. Both Kriging and GEK as implemented in DLR’s surrogate and reduced-order 
modeling toolbox SMARTy were used. The gradients with respect to the operational and ge-
ometrical parameters supplied to GEK were obtained by an adjoint method available in the 
DLR TAU-code [17]. The advantage of the adjoint method in this context is that all partial 
gradients of one cost function can be computed with a single adjoint solve. 

Once a surrogate model is constructed, it can be used to evaluate the statistic of the func-
tional of interest. The errors in the statistics computed with the help of the surrogate model 
can be made small by applying a MC method with a large number of samples such as 106. For 
example, the mean and standard deviation can be evaluated with an error to the true value of 
around 0.01% by using the MC. Note that it is feasible to evaluate such a large number of 
samples using the surrogate model, while this is not feasible when using the CFD solver itself.  

 3

(i) (ii) 
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3 ROBUST DESIGN OPTIMIZATION FRAMEWORK  

The UQ approaches described in Section 2 are applied to evaluate the robust objective 
function. Once the objective function value is determined, existing deterministic optimization 
algorithms are applicable. Figure 4 shows the framework of the deterministic optimization 
part. We use an in-house aerodynamic shape optimization toolbox called Pyranha [18] as the 
basis in this part. As in deterministic optimization, the objective functions, the design varia-
bles, and the constraints can be introduced. In this case the constraints are a constant thick-
ness-chord ratio (t/c) and a constant lift coefficient (Cl). Therefore, the parameterization to 
define the nominal shape is applied to the camber line. In this paper, we used Bernstein poly-
nomials. The objective or cost function, f , is a measure of the robustness of the design:  

 

 













.
./..s
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constC

constctt

f

l

χ
χ

 (1) 

where χ  denotes the deterministic design variables. The design variables are the output of the 
ROD. The computation of the cost function at each optimization cycle is described later and 
depicted in Fig. 5. 

Compared to  deterministic design optimization (DDO), an additional target-lift CFD cal-
culation is required before the cost function can be evaluated to determine the mean angle of 
attack μα that satisfies the nominal Cl constraint. Here, Cl is fixed to 0.791. The design varia-
bles, which are denoted by χ , are represented by 10 Bernstein polynomials that are applied to 
the camber line. The Subplex algorithm [18] was used in this paper to optimize the cost func-
tion f  according to Eq. (1). It is based on the Simplex and Nelder–Mead algorithms. Differ-
ent from the Simplex algorithm, the Subplex searches for the convex hull in several 
decomposed low dimensional subspaces. Thus, the Subplex algorithm is generally more effi-
cient than the Simplex for many design variables. Moreover, it is applicable to noisy cost 
functions [19]. 

Figure 5 shows more details of the stochastic modeling part concerned with computing the 
cost function. In this paper, the cost function f  is the sum the mean,  , and the standard de-
viation,  , of the drag coefficient (Cd): 

      ξaχξaχξaχ ,,,,,, CdCdf    (2) 

where χ , a , and ξ  are the design variables, the operational uncertainties, and the geometrical 
uncertainties given by the tKLE parameters, respectively. The number of parameters χ , a , 
and ξ  are 10, 2, and 10, respectively. Note that the design variables, χ , are deterministic and 
describe the nominal airfoil geometry at each iteration of the optimization process.  

As described in Section 2,  ξaχ ,,Cd  and  ξaχ ,,Cd  are calculated by constructing a sur-
rogate model of dC  based on a limited number of CFD computations. This is detailed in the 
flowchart in Fig. 5. At first, QMC sampling with a limited number in the range μ±3σ for the 
uncertainty parameters a  and ξ  is performed. This covers 99.97% of the cumulative density 
function (cdf) of the normally distributed input uncertainties. Here, the uncertainty parameters 
are angle of attack, Mach number and 10 geometrical uncertainties given by 10 tKLE parame-
ters. Therefore, the dimension is 12. In this research, the number of QMC samples was set to 
12 or 30, respectively. 
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Figure 4: Overview of robust design optimization framework (deterministic optimization part). 

Next, to construct a surrogate model of dC , CFD calculations with the TAU-code are con-
ducted on the samples. When a gradient-enhanced surrogate model is considered, additional 
adjoint calculations are run with the TAU-code to obtain gradients of dC  with respect to the 
uncertainty parameters a  and ξ . The computation of the samples values and their gradients is 
obviously the most time-consuming part of the entire process. Therefore, the number of DOE 
samples has the largest impact on the framework in terms of efficiency. Note, however, that 
each sample is independent of all other samples. Thus, all samples can be computed in paral-
lel. 

Finally, a surrogate model is constructed by using Kriging or GEK. Then the mean,  , and 
standard deviation,  , of the drag coefficient are calculated based on the surrogate model by 
direct MC quadrature as: 

 
    

      
























N

i
CdC

N

i
dCd

dd
C

N

C
N

1

2

1

,,,,
1

1,,

,,1,,

ξaχξaχξaχ

ξaχξaχ





 (3) 

where N is a sufficiently large number of samples (N=106 in this paper). As described in Sec-
tion 2.3, the error to the true value on a surrogate model is negligible when the number of 
samples is large. Therefore the quality of the surrogate models is the most important factor in 
terms of accuracy of the statistics. 

In the next section, both Kriging and GEK are investigated in this respect by varying the 
number of samples used to construct the surrogate models.  
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Figure 5: Overview of robust design optimization framework (evaluation of stochastic cost function). 

 

4 RESULTS AND DISCUSSION 

4.1 Accuracy of cost function  

In this section, the cost function f , which is defined by Eq. (2), calculated for  different 
surrogate models is compared with the true cost function f̂  for the baseline airfoil configura-
tion The true cost function f̂ , which acts as a reference, was calculated according to Eq. (3) 
by the direct QMC quadrature based on 105 samples computed with TAU for RAE2822 as the 
given nominal airfoil shape. Note that in general in RDO, the true cost function f̂  for a de-
signed nominal airfoil shape at each optimization cycle is unknown. 

As mentioned in the previous sections, the accuracy of the statistics at every optimization 
cycle depends on that of the surrogate models. As mentioned in Section 2.3, the cost function 
f  is almost uniquely determined once a surrogate model is constructed by Eq. (3). As for the 

construction of a surrogate model, once the sample points are fixed, the Kriging-based surro-
gate model is uniquely determined by its Gaussian correlation function and the likelihood 
function. When constructing a Kriging model, model parameters, so-called hyper-parameters, 
need to be tuned based on the sampled data using MLE, which is obtained in this study by the 
differential evolution as a global optimization method. 

In our RDO framework, a surrogate model is constructed at every optimization cycle to ob-
tain the cost function f . The surrogate model needs to be accurately constructed many times 
to obtain the cost function f , which is unknown but should be robustly evaluated to sample 
points f̂  for a better guide to the next steps in whole the optimization cycles. 

Therefore as a first step of estimation of the cost function f , we focus here on the initial 
guess, that is, the distribution of sample points. In practice, different 100 sets of distributions 
of sample points are derived from the Sobol sequence. Then, the dependency of accuracy of 
f  (in surrogate models) on the sample points are investigated by using two kinds of the num-
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ber of sample points: 12 and 30, and by using two types of surrogate models: Kriging and 
GEK. Therefore, we investigated the following four approaches: (a) 12 samples with Kriging, 
(b) 30 samples with Kriging, (c) 12 samples with GEK, (d) 30 samples with GEK. 

As defined in the previous section, the number of uncertainties is fixed to 12. Therefore, 
12×12 or 30×12 sequences are generated to construct one surrogate model. These different 
sets of sequences are extracted 100 times from the Sobol sequences. Then 100 sets of differ-
ently distributed sample points are generated. The mean f  and standard deviation f  of 
these 100 cost functions 1001 ~ ff  in the 100 surrogate models are calculated to investigate 
how accurate the approach to construct surrogate models is by comparison with the true cost 
function f̂ . 

Figure 6(i) shows distributions of the 100 predicted cost functions 1001 ~ ff  obtained by 
100 different sets of sample points by the four approaches (a)~(b). The stochastic values of 
these cost functions 1001 ~ ff  are then calculated. The standard deviation f  and mean f  of 

1001 ~ ff  is summarized in Fig. 6(ii). The mean values f  are depicted by adjusting to the 

relative error to the true cost function f̂  as   fff
ˆˆ . In this figure a correlation can be 

observed between f  and   fff
ˆˆ , those of which express the accuracy in terms of the 

distribution of sample points. The result using the strategy (d) 30 samples with GEK, can pro-
vide the mean of cost function f  with only 0.0003% relative error to the true value f̂  and 
with 0.9 count (here one count=10-4) for the standard deviation f  as the error bound. Fur-
ther improvement of efficiency by using less sample points can be expected by applying adap-
tive sampling strategies, which will be the next step of estimation of the cost function f . 

Finally, the averaged computational costs to construct a surrogate model on one core on a 
cluster are summarized in Table 1. They are proportional to between the square and the cube 
of the samples points for both Kriging and GEK. For instance, the GEK using 30 samples 
costs around 10 times more than that using 12 samples. However, they are all quite small 
compared with one general CFD computational time. In this study, we fixed the optimizer for 
the MLE to a global one. We note that it was pointed out in [20] that global optimizers can 
provide a more accurate surrogate model in terms of not only the MLE but also the sample 
points. 

 

4.2 Application to robust design optimization (RDO) 

The developed RDO framework was applied to the transonic RAE2822 airfoil, which is 
one of the URMIDA test cases, by taking into account an uncertain angle of attack and Mach 
number, and a large number of geometrical uncertainties. Based on the results in the previous 
section, the GEK surrogate model used to evaluate the robust objective function at each opti-
mization cycle is constructed by computing 30 samples and the corresponding partial gradi-
ents with TAU and its adjoint flow solver. All the other settings are described in Section 3. 
Figure 7 shows the history of the cost function f  defined in Eq. (2) and the nominal design 
variables χ . We can observe that there is a relatively large amplitude of oscillations of the 
cost function f  after 350 optimization cycles, while the design variables χ  do not vary any 
more. However, this amplitude is the smallest in the four types of surrogate models mentioned 
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Figure 6: Dependency of accuracy of cost function on number of sample points and surrogate methods used to 
construct a surrogate model (left), and comparison of mean and standard deviation of the cost function based on 
(a) 12 samples with Kriging, (b) 30 samples with Kriging, (c) 12 samples with GEK, (d) 30 samples with GEK 
(right). 

 
 12 samples 30 samples  
Kriging (a) 0.4 sec. (b) 0.4 sec. 
GEK (c) 1.7 sec. (d) 14.6 sec.

 
Table 1: Averaged computational costs for construction of a surrogate model on one core on a cluster. 

 

in the previous sub-section. Figure 8 depicts a comparison of configurations of the initial air-
foil (RAE2822) the robust airfoil. A designed airfoil configuration by the deterministic design 
optimization (DDO) is also shown in this figure. Table 2 shows Cd  and Cd  of the initial, 
robust, and the deterministic designed airfoils. These stochastic values Cd  and Cd  were re-
evaluated by using the same strategy as that in Section 4.1. They are calculated by taking the 
average of 100 stochastic cost functions f  predicted by 30 sample points and the GEK surro-
gate model. It can be observed that both Cd  and Cd  were successfully decreased. The total 
iteration number of the Supblex-based RDO for 10 design variables was 564. All computa-
tions were performed on a single core apart from the CFD computations which were ran in 
parallel on 24 cores. In terms of computational time, the total wall clock time was about 160 
hours. The efficiency of the total RDO optimization could be improved by a two-step optimi-
zation strategy. For instance, at first deterministic design optimization (DDO) is conducted to 
the initial configuration and then a local optimizer such as gradient-based optimization algo-
rithm is applied to the deterministic designed airfoil for RDO. 

In this paper, we focused on accuracy and efficiency of construction of surrogate models in 
terms of stochastic values such as mean and standard deviation. The developed framework 
can also be applied for investigating the Pareto front in this robust optimization setting. 
Moreover, this surrogate-assisted cost function evaluation can also be applied to reliability-
based design optimization by considering the probability density function of dC . 

As can be confirmed by Fig. 6 in the previous sub-section, there is a correlation between 
the amplitude of the oscillations of the cost function and the accuracy of the surrogate models. 
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The amplitude of the oscillations can be further reduced by improving the accuracy of the un-
derlying surrogate models, e.g., by employing adaptive sampling strategies.  

 

 

Figure 7: History of objective function and design variables in robust design optimization (RDO). 

 

 
Figure 8: Comparison of initial (RAE2822), robust and deterministic designed airfoil geometries. 
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 Initial Robust Deterministic
Cd  192.4 cts. 137.9 cts. 134.2 cts. 

Cd  26.6 cts. 8.8 cts. 12.6 cts. 
 

Table 2: Mean and standard deviation of Cd of initial, robust, and deterministic designed airfoils (1cts.=10-4). 

 

5 CONCLUSIONS  

A robust optimization framework for the aerodynamic design of airfoils was developed. To 
efficiently calculate the stochastic values which are used to evaluate the robustness measure in 
every optimization cycle, we employ design of experiments methods and Kriging-based sur-
rogate models. A large number of geometrical uncertainties was modeled using a Karhunen-
Loève expansion. The stochastic output values due to two operational uncertainties and 10 
geometrical uncertainties were evaluated quite accurately based on at most 30 CFD computa-
tions and corresponding adjoint computations, the latter providing gradient information with 
respect to the 12 uncertainty parameters. These stochastic methods were integrated into an in-
house framework for deterministic shape optimization. The developed framework was used to 
perform robust optimization of a transonic RAE2822 airfoil, which is one of the test cases in 
the EU project UMRIDA. The stochastic values such as the mean and standard deviation of 
the drag coefficient were successfully minimized and a new, more robust nominal configura-
tion was proposed by this efficient robust design optimization framework. 
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Abstract. Different factors such as age, location of timber within the tree, structural imper-
fections, load history such as wind and snow etc. can affect the material properties of timber. 
Consequently, there is a high variability in the mechanical properties which is sometimes re-
ferred to as ‘random spatial variability’. In this work, the spatial variability of the transverse 
elastic modulus of clear spruce wood is quantified by conducting mechanical tests. Specimens 
of 120 mm nominal length with a small cross-sectional area were prepared and their quasi-
static behavior was experimentally investigated under tensile loading. In addition to the glob-
al displacement monitoring, the local deformations along the length of each specimen were 
measured. Using these data, the spatial variability of the elastic modulus was experimentally 
characterized in both longitudinal and transverse directions. Variability coefficients were de-
fined to quantify the variability in both directions. Also, the effect of the mesostructure of the 
clear timber on the local elastic modulus was examined. The results show a very significant 
spatial variability in the transverse elastic modulus, more 1000% within some specimens. The 
variability of the transverse elastic modulus is much higher in the transverse direction. The 
grain angle has the most important effect on the value of the local elastic modulus. The re-
sults of this work can be considered as part of establishing advanced stochastic models with 
ransom spatial variability for timber structures. 
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1 INTRODUCTION 
Different factors such as age, location of timber within the tree, structural imperfections, 

load history such as wind and snow etc. can affect the material properties of timber taken 
from the same species, and grown in the same geographical location and local growth condi-
tions. Consequently, there is a high inherent variability in the timber mechanical properties [1]. 
This variability is both spatial and random, and is sometimes referred to as ‘random spatial 
variability’ [2, 3]. 

A few experimental works have been devoted to the characterization of the spatial variabil-
ity in the transverse mechanical properties of timber and timber products. Regarding the clear 
timber, Xavier et al. [4] used the unnotched Iosipescu test for the study of the radial variabil-
ity of stiffness parameters of maritime pine wood. Pereira et al. [5] conducted tensile tests on 
cubic specimens cut in different radial positions and heights of Pinus pinaster tree. The results 
show that the radial transverse modulus and the shear transverse modulus decrease from tree 
center outwards. Also, Brandner and Schickhofer [6] used EN standard-type specimen (cubic 
bulk material) to investigate the spatial correlation in the transverse tensile strength and elastic 
modulus along the tree stem. 

Nevertheless, the characterization of spatial variability in the transverse local elastic modu-
lus at mesoscale (a few millimeters) has not been studied in detail in the literature. Conse-
quently, the spatial variability is frequently neglected in the probabilistic simulations of 
timber structures [7-9]. The knowledge of the random spatial variability in elastic parameters 
can lead to predicting more accurate stress fields within the material. This can improve struc-
tural designs with a required reliability levels. 

The mesostructure of clear wood is mainly characterized by earlywood-latewood arrange-
ments. Concerning the transverse plane, the mechanical properties are superior in the radial 
direction [10]. Therefore, when the latewood are locally perpendicular to the nominal axis of 
a specimen, which is cut in the transverse plane, the local mechanical properties are higher. 

Specimens of 120 mm lengths were cut in the transverse direction of clear spruce wood 
and their quasi-static behavior was experimentally investigated under tensile loading. In addi-
tion to the global displacement monitoring, the local deformations along the length of each 
specimen were measured. The spatial variability of the elastic modulus was experimentally 
characterized. The effect of the mesostructure of the clear timber on the local elastic modulus 
was examined.  

2 EXPERIMNETAL INVESTIGATION 
Clear Norway spruce wood was used for the specimens’ preparation in this study. All spec-

imens were conditioned to 12% moisture content and were tested at the laboratory tempera-
ture of 22 ± 3 C°. Three boards were cut from the same batch of spruce wood in the radial-
longitudinal plane. These were used for cutting regularly positioned transverse specimens and 
designated as REB1, REB2 and REB3. Figure 1 shows REB1. 

The nominal length of the specimens was 120 mm with a square cross section of 4×4 mm2. 
A total of 52 specimens were tested on a 5 kN electromechanical Walter+Bai testing machine. 
Quasi-static tensile tests were performed in displacement-control mode. A stroke rate of 2 
mm/min for the specimens was used on the basis of previous preliminary experiments so that 
the final failure occurred within 180 ± 60 s throughout the testing program.  

A video extensometer system composed of a 10-bit Sony XCLU1000 CCD connected to a 
Fujinon HF35SA-1, 35 mm, f 1.4-22 lens with an accuracy of ± 0.005 mm was used during 
the experiments to measure the axial deformation. Prior to the tests, black target dots of 
1.1 mm diameter were applied on the specimen surfaces. The distance between each two con-
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secutive dots was 4 mm. A typical specimen mounted in the testing rig is shown in Fig. 2. The 
axial coordinates of the dots were recorded at a frequency of 5 Hz by the video extensometer 
throughout loading. Using these data, the engineering strain between each two consecutive 
dots was calculated, designated as the local strain. These data were used for calculation of the 
local elastic modulus. Also, using the displacements of the first and last dots on each speci-
men, an overall strain for each nominal length was obtained. These data were used for calcu-
lating the effective elastic modulus, for each specimen. Nominal axial stresses were calculated 
by using the load measurements and the initial cross-sectional areas. 

3 SPATIAL VARIABILITY IN THE MECHANICAL PROPERTIES 
The spatial variability of the transverse elastic modulus along the transverse direction are 

shown in Fig. 3 for the three REBs. The three boards are different in terms of local elastic 
modulus variations. On average, the third board is stiffer than the second board and the sec-
ond board is stiffer than the first board. In most specimens cut from these boards, the local 
modulus value gradually increases from the one side, reaches a maximum value somewhere in 
the middle, and then decreases. Also, the scatter in the results is more significant in the second 

 
Figure 1: Board REB1 with regular arrangement of transverse specimens. 

 
Figure 2: Specimen of 120 mm 

nominal length with applied dots 
inside machine grips. 

 
Figure 3: Spatial variability of the transverse elastic modulus in the 

transverse direction in 3 REBs. 
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board compared to the other two boards. There are major changes in the trend of the modulus 
variability in the first board in a few specimens compared to the others such as the highlighted 
dashed and dotted curves for specimens TT-120-16-05-REB1 (TT is transverse tensile, 120 is 
length, 16 is cross section, 05 is specimen number and REB1 is the board name) and TT-120-
16-19-REB1, respectively, in Fig. 3. In the first case, first four 4 mm segments or the speci-
men were affected by the presence of a small nearby knot, which increased the local modulus 
very significantly. In the second case, the presence of a small knot in the board changed the 
mesostructure of the specimens 16 to 21 in REB1 at the range between 70 mm to 120 mm. 

The variability of the local elastic modulus due to changing the spatial position within in-
dividual specimens (within-specimen variability or WSV) and its variability due to switching 
between specimens (between-specimen variability or BSV) contribute to the total variability 
of the local elastic modulus. In Table 1, the COVs for total variability of the local elastic 
modulus, the average COV for WSV and the COV for BSV are given. It is seen that the con-
tribution of the WSV is higher than that of the BSV.  

Variability of the transverse modulus in the longitudinal direction in the three REBs is 
plotted in Figs. 4-6. In each board, 30 paths longitudinal paths exist. Four curves have been 
highlighted in each figure in order to show how the longitudinal variability of the transverse 
modulus differs from lower paths to upper paths. On average, the longitudinal variability is 
higher in the first board. 

 

 

Parameter Data set size COV (%) 

Local modulus (total variability) 1560 60.65 

Local modulus of individual specimens (WSV) 30 (each specimen) 48.02 (average) 

Effective modulus (BSV) 52 44.06 

Table 1: Variability of local and effective elastic moduli of 120 mm specimens. 

 
Figure 4: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB1 
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Figure 5: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB2 

 
Figure 6: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB3 

As a general trend in REB1, the upper paths have higher values of the modulus compared 
to the lower paths. The paths are closer to each other in the left half length (lower scatter) of 
the board compared to the right half length (higher scatter). The unusual increase in the value 
of the transverse modulus, at the longitudinal position of 90 mm, as mentioned above for 
specimen TT-120-16-05-REB1, is due to a small nearby knot. Excluding this unusual varia-
tion at 90 mm position, the local modulus variation within individual paths ranges from 183.4 
MPa to 1340.5 MPa, with a mean value of 581.3 MPa. The corresponding values for the 
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transverse paths in this board are 208.9, 1372.8 and 869.0 MPa. The mean variation in the 
longitudinal direction is significantly lower than in the transverse direction.  

In the second board, the upper paths have again higher values. The difference between 
paths after the position of 320 mm from the left side is considerably lower than before that 
position. The minimum and maximum variation in the individual paths is 394.1 MPa and 
1650.8 MPa, with a mean value of 686.4 MPa. These values for transverse paths are 484.0 
MPa, 2075.5 MPa and 1064.5 MPa, respectively. Again, the mean variation in the transverse 
direction is higher than in the longitudinal direction.  

In the third board, the longitudinal variability of the transverse elastic modulus is more uni-
formly distributed, although the scatter is slightly reduced from left to right. Generally, mid-
dle paths are stiffer. In this case, the minimum, the maximum and the mean variation in 
individual paths are 167.0 MPa, 1216.1 MPa and 421.9 MPa, respectively, which are consid-
erably lower than the corresponding values for the transverse paths, namely 733.6 MPa, 
1918.5 MPa and 1205.4 MPa. Similar to previous cases, the mean variation in the transverse 
direction is significantly higher than in the longitudinal direction. 

The spatial variations of the elastic modulus in the three boards are shown in Fig. 7 as 2D 
contours. In order to compare the degree of the variability in the boards, three coefficients are 
defined for each board. The first is the ratio between the mean variation in the transverse di-
rection and the transverse distance, the second is the ratio between the mean variation in the 
longitudinal direction and the longitudinal distance and the third is the ratio of these two coef-
ficients, designated as anisotropy ratio, in the sense of different levels of variation in different 
directions. These values are provided in Table 2. It can be seen that the longitudinal variabil-
ity coefficients are much lower than the transverse variability coefficient. 

 
Figure 7: 2D contours of the spatial variability of the transverse elastic modulus in REBs 

 

Board number 
Longitudinal variability 
coefficient (MPa/mm) 

Transverse variability 
coefficient (MPa/mm) Anisotropy ratio 

1 1.17 7.24 6.19 

2 1.61 8.87 5.51 

3 1.56 10.0 6.41 
 

Table 2: Longitudinal variability coefficients, transverse variability coefficients and anisotropy ratios in REBs. 
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4 EFFECT OF TIMBER MESOSTRUCTURE ON LOCAL ELASTIC MODULUS 
Typical examples of the correspondence between the local elastic modulus and the local 

mesostructure of spruce wood are given in Fig. 8, considering three specimens of 120 mm 
length. In specimen the TT-120-16-11-REB1 starting from the left, the grain angle, defined as 
the angle between the latewood and the vertical axis in Fig. 8, decreases up to 70 mm of the 
length. This is associated by a gradual increase in the local elastic modulus. The angle in-
creases from 70 mm to 95 mm and after that decreases again, causing the local modulus to 
decrease and then increase, as a general trend. The maximum value happened to be at end of 
the specimen, where the grain angle has its lowest value. There is also a localized decrease in 
the value of the elastic modulus in the part of the specimen between 110 mm and 115 mm 
which is attributed to a decrease in the thickness of the latewood strips in this zone. 

 
Figure 8: Correspondence between mesostructure of spruce and local transverse elastic modulus 

In specimen the TT-120-16-36-REB2, over the first 10 mm of the specimen length, there is 
a decrease in the grain angle, then from 10 mm to about 60 mm the angle increases and after 
that the angle decreases. Correspondingly, the value of the elastic modulus first increases, 
then decreases and finally increases again, as a general trend. The effect of the grain angle on 
the local elastic modulus is even clear at the last 20 mm of the specimen length. In this seg-
ment of the specimen, the angle first increases a little and then decreases a little and, accord-
ingly, there is a localized minimum in the value of the local elastic modulus in the middle of 
this segment. Also, a local maximum for the local modulus has happened in about 80 mm 
from the left end of the specimen. The grain angle has a local minimum in this position of the 
specimen length.  

The local elastic modulus in specimen TT-120-16-47-REB3 has generally higher values 
compared the other two discussed specimens. The main reason is that, in this specimen, the 
grain angle has generally lower values. Only, in the first 30 mm and last 20 mm of the speci-
men length where the grain angle has higher values, the value of the modulus of this specimen 
is less than those of the other specimens. Also, in this specimen, latewood strips are thicker. 
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The presence of higher volume fractions of latewood tends to increase the value of the lo-
cal elastic modulus. This can either happen by presence of a higher number of latewood strips 
or thicker latewood strips. For example, in both specimens TT-120-16-11-REB1 and TT-120-
16-47-REB3 in the segment from 60 mm to 80 mm the number of latewood strips are higher 
than in the rest of segments in the corresponding specimens. Consequently, the transverse 
elastic modulus has a local peak in those segments. 

5 CONCLUSIONS  

 A highly significant spatial variability was observed in the transverse tensile elastic mod-
ulus of clear spruce wood. A difference of more than 1000% for the local elastic modulus 
was observed within some specimens. 

 The variability of the transverse modulus is higher in the transverse direction than its var-
iability in the longitudinal direction. 

 The main reason for the spatial variability of the local elastic modulus is irregular chang-
es in the mesostructure of the wood. The change in the grain angle is the most important 
factor influencing the local elastic modulus. 

 Knots can substantially increase the transverse modulus of the clear wood around them. 

REFERENCES  
[1] J.D. Barrett, Effect of size on tension perpendicular-to-grain strength of Douglas-fir. 

Wood and Fiber, 6, 126-143, 1974. 

[2] M. Vořechovský, Interplay of size effects in concrete specimens under tension studied 
via computational stochastic fracture mechanics. International Journal of Solids and 
Structures, 44, 2715-2731, 2007. 

[3] S. Sriramula, M.K. Chryssanthopoulos, An experimental characterisation of spatial var-
iability in GFRP composite panels. Structural Safety, 42, 1-11, 2013. 

[4] J. Xavier, S. Avril, F. Pierron, J. Morais, Variation of transverse and shear stiffness 
properties of wood in a tree. Composites: Part A, 40, 1953-1960, 2009. 

[5] J. Pereira, J. Xavier, J. Morais, J. Lousada, Assessing wood quality by spatial variation 
of elastic properties within the stem: Case study of Pinus pinaster in the transverse plane. 
Canadian Journal of Forest Research, 44, 107-117, 2014. 

[6] R. Brandner, G. Schickhofer, Spatial correlation of tensile perpendicular to grain prop-
erties in Norway spruce timber. Wood Science and Technology, 48, 337-352, 2014. 

[7] P.L. Clouston, F. Lam, A stochastic plasticity approach to strength modeling of strand-
based wood composites. Composites Science and Technology, 62, 1381-1395, 2002. 

[8] P.L. Clouston, F. Lam, Computational modeling of strand-based wood composites. 
Journal of Engineering Mechanics, 127, 844-851, 2001. 

[9] T. Tannert, F. Lam, T. Vallée, Strength prediction for rounded dovetail connections 
considering size effects. Journal of Engineering Mechanics, 136, 358-366, 2010. 

[10] Forest Product Laboratory, Wood handbook: Wood as an engineering material. USDA, 
Madison, Wis, 1999. 

8808



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

COMPARISON BETWEEN A POLYNOMIAL CHAOS
SURROGATE MODEL AND MARKOV CHAIN MONTE

CARLO FOR INVERSE UNCERTAINTY QUANTIFICATION
BASED ON AN ELECTRIC DRIVE TEST BENCH

Philipp Glaser1, Michael Schick1, Kosmas Petridis1, and Vincent Heuveline2

1Robert Bosch GmbH
Robert-Bosch-Campus 1, 71272 Renningen, Germany

e-mail: {philipp.glaser, michael.schick3, kosmas.petridis}@de.bosch.com

2 Engineering Mathematics and Computing Lab (EMCL)
University Heidelberg, 69117 Heidelberg, Germany

e-mail: vincent.heuveline@uni-heidelberg.de

Keywords: Polynomial Chaos Expansion, Sparse Grid, Bayes Inference, Electric Drive
Test Bench, Markov Chain Monte Carlo

Abstract. The development of uncertainty quantification schemes has been pushed for-
ward due to the increasing demands for complex physical and computational simulation
models. In industrial applications, distributions on model parameters play a crucial role
and quantifing them is a big challenge.

In this work, a test bench hardware is presented, which is designed to measure the mo-
tor characteristic of an electric drive. The special aspect of this setup is that parameter
distributions, which in general are unknown, can be defined a priori. The obtained mea-
surements serve as a reference to analyse the convergence of Polynomial Chaos (PC) and
Markov Chain Monte Carlo (MCMC) in context of Bayesian inference.

Our focus is on analysing the feasibility of the PC approach as a surrogate model to
replace the forward model in the Bayesian inference. In comparison to the classical ap-
proach, which directly uses the simulation model, we investigate the number of simulations
needed to obtain a good estimation of the parameter distribution. In addition we use dif-
ferent orders for the PC expansion to fit the surrogate model. In our benchmark, we show
that the PC expansion is able to significantly reduce the computational cost compared to
a pure MCMC approach.
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1 INTRODUCTION

Many industrial applications involve uncertain parameters, for which correct values are
rarely available in a precise way and which have a significant impact on simulation results.
Therefore, the quantification of such uncertainties plays a crucial role, for example, in
face of unknown component tolerances or measurement errors. Among many others, one
challenging task is to infer knowledge on parameter distributions in light of experimental
data.

In this context, Bayesian inference [6, 7, 16] offers a framework to combine numerical
simulations with observed experimental data in order to gain better knowledge on model
parameter uncertainties. One popular method is the so-called Markov Chain Monte Carlo
(MCMC) approach in which the posterior of the model parameters is updated using
correlated Monte Carlo samples. However, in order to achieve a high numerical accuracy,
usually many MCMC samples are required. This can become a large drawback, especially
if the numerical cost of a single simulation becomes prohibitive. In contrast, surrogate
models, like, for example, Polynomial Chaos (PC) expansions [9, 18] provide a meta
description of model output variations with respect to the random input, making the
exploration of the posterior parameter distribution numerically cheap. PC is a spectral
approach which expands the stochastic solution in an orthogonal polynomial basis defined
in terms of the input parameters. The corresponding coefficients in this expansion, which
account for the major part of the numerical cost, may be determined by many different
methods. In our work, we consider a projection based approach [11, 21] to compute the
coefficients using a Smolyak sparse grid numerical cubature [15].

Furthermore, we built a test bench hardware, which is used to measure a motor charac-
teristic of an electric drive with uncertain physical parameters. In our test bench hardware
it is possible to define physical reference parameter distributions a priori and store an ac-
cording set of measurements. This can be seen as a replacement of the electric drive
with another one from series-production for every measurement. An alternative method
to obtain those measurement data would be to pick out a large amount of electric drives
from the production line. For each sample drive a motor characteristic has to be recorded
under a standardized measurement setup. This would increase significantly the time and
cost needed. Afterwards we use this reference data to compare the posterior distribution
obtained from a PC surrogate with the posterior of the MCMC approach starting from
various prior distributions, which are different to the distributions taken to generate our
reference data. Our focus is on the analysis of the truncation error resulting from re-
stricting the total polynomial degree of the PC expansion along with a comparison of the
numerical effort for computing the PC coefficients to the number of samples required for
a pure MCMC approach.

The remainder of this article is organized as follows. Section 2 introduces the used
methods for the approximation of the posterior distributions. In addition the PC surrogate
model is presented and a method for fitting this model is addressed. The summary of
this part is given by a combination of the surrogate model with the Bayesian inference.
In the following section 3 the benchmark problem is introduced. This includes on the one
hand the test bench hardware and on the other hand the underlying simulation model.
The identification and verification between those is one main challenge and analyzed in
a subsection. Besides the simulation model in total, one focus is on the modeling of
physical parameter at the input. This is based on the defined hyperpriors for the mean
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and standard derivation which have to be mapped into one prior. The numerical results
are presented in section 4. We conclude this work and provide an outlook on open research
questions in Section 5.

2 UNCERTAINTY QUANTIFICATION

In the following, a model with a given uncertain parameter space is considered. For
convenience the input and output connection of this forward problem can be represented
by a deterministic mapping

y =M(x),

where x = {x1, . . . , xN}T ∈ RN is a vector of the model parameters uncertainties. The
vector y = RQ represents the model outputs. As the parameter vector x is assumed to
be uncertain, we change notation from x to X. The probability density function (PDF)
pX(x) is assumed to be with independent, scalar components xi (finite noise assumption).
Hence the model outputs are represented by a random vector, too, and are denoted as
follows:

Y =M(X).

2.1 BAYESIAN INFERENCE

The main issue of the Bayesian paradigm is to model uncertainties, e.g., arising from
a lack of knowledge in a probabilistic way. In this work the focus is on model parameters
X and any additional information about those can be described with a prior probability
density pX(x). In the absence of information, one may select a prior that is uninformative,
e.g., a uniform distribution. Our goal is to update the knowledge about X by perform-
ing experiments and using the obtained observations yobs to infer knowledge about the
according pdf of X. The connection between the model parameters and the gathered ob-
servations is expressed by the likelihood function p(yobs|X), which requires the evaluation
of a forward model. Using Bayes’ rule, the posterior density for the model parameters
can be written as

p(X|yobs) = p(yobs|X)p(X)∫
p(yobs|X)p(X)dX . (1)

For convenience the likelihood function can be defined as L(X) := p(yobs|X), which may
be viewed as a function of the model parameters X. A classical approach is than to model
the results from the forward problem with an additive noise:

yobs =M(X) + ε,

where the components of ε are independent and identically distributed random variables
with density pε and the pdf of ε is assumed to be normal distributed with mean µ = 0 and
variance σ = Σ. In this simple case ε includes both the model error and the measurement
error, that can arise for example from sensor noise. The likelihood function can now be
rewritten as follows:

L(X) =
∏
i

pε(yobsi −Mi(X)), (2)
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where Mi(X) :=M(X(i)) denotes the model outputs at the i-th sample X(i).The pos-
terior distribution in equation (1) can be approximated by a Markov Chain Monte Carlo
(MCMC) method. Therefore many simulation runs have to be evaluated, which often are
expensive to compute due to the involved cost of evaluating the forward model Mi(X).
Using a surrogate model, e.g. a Polynomial Chaos expansion, which is described in sub-
section 2.2, can provide a means to decrease the computational costs.

2.2 POLYNOMIAL CHAOS EXPANSION

The original polynomial chaos was first introduced by Wiener [18]. It uses the Hermite
polynomials with respect to Gaussian random variables. It can also be extended to non-
Gaussian measures [2]. Considering the given modelM(X), the output is represented as
a random vector Y . Without loss of generality, a scalar output Y is assumed for simplicity
in the following. The vector case can be obtained by applying the approach component-
wise to the model outputs using the same polynomial basis for each component.

2.2.1 DEFINITION IN ONE-DIMENSIONAL CASE

Assume the probability space (Θ, 2Θ,P), where Θ is the sample space and θ ∈ Θ is
a sample of it. 2Θ is the σ-algebra and P is some probability measure. Now, let Y (θ)
be a random process, treated as a function of θ. The spectral stochastic representation
considered in this work can be seen as an Fourier-like decomposition [12]:

Y (θ) =
∑
i

yiφi(ξ(θ)),

where yi are the spectral coefficients, which have to be determined. The hyperparameter
ξ is defined on the support Θ, corresponding to type of basis polynomials. {ψi}∞i=0 denote
the basis functions, which form an orthogonal basis with the following orthogonality
relation:

〈φj(ξ(θ)), φk(ξ(θ))〉 = E [φj(ξ(θ))φk(ξ(θ))] = E
[
φ2
k(ξ(θ))

]
δjk, j, k ∈ N0, (3)

with the Kronecker delta δjk which is equal 1 if j = k and 0 otherwise. E [φ2
k(ξ(θ))] is

a normalization factor. To simplify the notation, we shall drop the dependence of the
hyperparameter ξ on θ. Suppose that the cumulative distribution function F (ξ) of Y is
absolutely continuous w.r.t. the Lebesque-measure, then the corresponding PDF exists,
such that dF (ξ) = ρ(ξ)dξ. The inner product from equation (3) can be written as:

〈φj(ξ), φk(ξ)〉 = E [φj(ξ)φk(ξ)] =
∫
φj(ξ)φk(ξ)ρ(ξ)dξ, j, k ∈ N0.

Some examples on the correspondence between common continuous distributions on Y
and the type of the generalized PC basis polynomials and the support Θ for the hyper-
parameter ξ [21] can be found in Table 1.

2.2.2 DEFINITION IN MULTI-DIMENSIONAL CASE

Now we assume the hyperparameter ξ to be a random vector ξ = {ξ1, . . . , ξN} with
mutually independent components. The orthogonality relation from equation (3) imme-
diately takes the form (due to independence):

〈φj(ξ), φk(ξ)〉 = E [φj(ξ)φk(ξ)] =
∫
φj(ξ)φk(ξ)ρ(ξ)dξ, 0 ≤ j, k ≤ ∞, (4)
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Table 1: Correspondence between the type of generalized PC polynomial basis and probability distribu-
tion.

distribution generalized PC basis polynomials support
Beta Jacobi [a, b]
Gamma Laguerre [0,∞]
Gaussian Hermite (−∞,∞)
Uniform Legendre [a, b]

where ρ(ξ) = ∏N
i=1 ρi(ξi). Let i = {i1, . . . , iN} ∈ NN

0 denote a multi-index with |i| =
i1 + · · · + iN . The N -variate generalized PC basis functions can be obtained by the
product of the univariate generalized PC polynomials in equation (4):

ψi(ξ) =
N∏
j=1

φij (ξj).

Then, the generalized PC expansion reads:

Y (ξ) =
∞∑
|i|=0

yiψi(ξ),

where yi are the unknown PC coefficients. In addition the multi-index i can be mapped
into a one dimensional index by a one-to-one correspondence, which results in the following
relation:

Y =
∞∑
j=0

yjψj(ξ). (5)

For computational reasons the given polynomials have to be truncated at order p. The
approximation is denoted as Ỹ and can be written as:

Ỹ =
P∑
j=0

ỹjψj(ξ), with P + 1 = (N + p)!
N !p! . (6)

In a second step the PC coefficients ỹj for j = 0, . . . , P in equation (6) have to determined.
The PC coefficients can be recast each as a multidimensional integral which can be com-
puted by multivariate numerical quadrature rule. This approach is called the projection
method and will be used in the following.

Starting from the expansion of the solution in equation (6) the projection method
projects the solution Ỹ against each basis function {ψi} using inner product:

〈
Ỹ , ψi(ξ)

〉
=
〈

P∑
j=0

ỹjψj(ξ), ψi(ξ)
〉
. (7)

By applying the orthogonality property of the basis polynomials in equation (3), the
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right-hand side of the equation (7) can be modified as follows:

E
[
Ỹ ψj(ξ)

]
=
〈
Ỹ , ψi(ξ)

〉
=
〈

P∑
j=0

ỹjψj(ξ), ψi(ξ)
〉

=
P∑
j=0

ỹjE [ψj(ξ)ψi(ξ)]

=
P∑
j=0

ỹjE
[
ψ2
j (ξ)

]
δij.

Thereby the PC coefficients result in

ỹj = 1
E
[
ψ2
j (ξ)

]E [Ỹ ψj(ξ)
]
, for j = 0, . . . , P,

with Ỹ , that can be seen as an approximation of the random process. If we assume that
ξ is continuous then the orthogonality can be written as:

ỹj = 1
E
[
ψ2
j (ξ)

] ∫
RN
M̃(ξ)ψj(ξ)ρ(ξ)dξ, for j = 0, . . . , P, (8)

where ρ(x) is the multivariate distribution density. The PC coefficients in equation (8)
can be estimated numerically based on discretization. The integration can be done e.g.
using a full tensor quadrature rule with order r and weights wi. Hence the total number
of quadrature points computes to:

R = (r)N (9)

and the approximation of the PC coefficients can be expressed as:

ỹj ≈ ŷj = 1
E
[
ψ2
j (ξ)

] R∑
i=1

Ỹ (ξi)ψj(ξ(i))wi, for j = 0, . . . , P. (10)

2.3 SPARSE GRID

One limitation of the full grid approach is the severe exponential growth of the required
simulations related to the number of dimensions in the parameter space. Given that,
modifications has to be done to make the method applicable to complex models. One
approach considers the choice of the nodes where the model is evaluated by selecting
’important’ points. This is called sparse grid and it can reduce the number of evaluations
appreciably.

Based on a spectral projection method described in the previous section 2.2 it is es-
sential to give a selection of nodes to approximate the multidimensional integral in equa-
tion (8) with a discrete sum given in equation (10). We use a set of points generated
by Gauss quadrature. This rule approximates best for the one-dimensional case (N = 1)
[19, 21]. In the multi-dimensional case (N > 1) the total number of simulation points
grows fast in high dimensional random parameter space.

It is obvious from equation (9) that even for a proportionally small parameter space
N � 1 and an adequate PC order of p = 3, it can be assumed that Q = 4N � 1. With
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Figure 1: Comparison of two-dimensional grids based on the same one-dimensional nodes based on a
two-dimensional parameter space. Left: full grid with 1089 nodes. Right: sparse grid with 145 nodes.

respect to this property the full grid rule is only used at lower dimensions. To reuse the
spectral projection method sparse grids are proposed in this context [20]. Those were
introduced in [15] and they are first used in the context of multivariate integration [8, 14].

The Smolyak algorithm is a linear combination of product formulas and based on a
one-dimensional interpolation formula for an univariate function f

Q1
jf :=

n1
j∑

i=1
wjif(xji),

with the nodal sets Θ1
j =

(
xj1, . . . , xjn1

j

)
. The Smolyak algorithm [8] is given:

Qk
jf =

∑
j≤|i|1≤j+k−1

(−1)j+k−|i|1−1
(

k − 1
|i|1 − j

)
(Q1

i1 ⊗ · · · ⊗Q
1
ik

)f, (11)

where i = (i1, . . . , iN) ∈ N. The points of the multivariate Smolyak formula in equa-
tion (11) form a sparse grid given by the union over the parwise disjoint nodal sets:

ΘN =
⋃

j≤|i|1≤j+k−1
(Θ1

i1 ⊗ · · · ⊗Θ1
ik

).

Figure 1 shows the comparison of a full and sparse grid based on a two dimensional
parameter space. It can be seen that the sparse grid based on the Smolyak algorithm [15]
is a subset of the full grid and it consists of less simulation points than the full tensor
grid. This opens up the possibility of considering higher dimensional random parameter
spaces in combination with the PC expansion [1, 5, 11].

2.4 BAYESIAN INFERENCE WITH A PC SURROGATE MODEL

The integration of the PC surrogate model with a suitable sparse grid approach and the
Bayesian inference can be done in the following way. The assumptions on the parameter
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distributions can be used to define priors p(X) for the uncertain model parameters. With
knowledge of the PC coefficients obtained in equation (10), an approximation for the
density function of model output Ŷ = M̂p(ξ(X)) with order P , which can be seen
as an surrogate model.To simplify the notation, we shall drop the dependence of the
hyperparameter ξ on X and the PC surrogate model reads:

M̂P (ξ) =
P∑
j=0

ŷjψj(ξ).

The likelihood function L(X) from equation (2) results in the following approximation:

L̂(X) =
∏
i

pε
(
yobsi − M̂P (ξ)

)
=
∏
i

pε

yobsi − P∑
j=0

ŷjψj(ξ)
 . (12)

Applying the obtained result to equation (1) and excluding the normalization in the
denominator for an instant, one achieve the following:

p(X|yobs) ∝ L(X)p(X) =
∏
i

pε

yobsi − P∑
j=0

ŷjψj(ξ)
 p(X). (13)

As mentioned above, one approach to estimate the posterior parameter distributions
p(X|yobs) is to employ MCMC methods, which construct a Markov chain on the pa-
rameter space X, whose steady state distribution is the posterior distribution of interest.

3 BENCHMARK PROBLEM

One main challenge is the validation of the resulting posterior distributions by apply-
ing the methods mentioned in section 2 to a real application case. One reason is that
parameter distributions can not easy obtained in many cases or determining them is very
expensive. On the other hand measurements of the outputs can be gathered simply.

For this purpose a test bench hardware is built up and there it is possible to vary the
voltage supply and the winding resistance in an automatic way. This offers the possibility
to define parameter distributions and run the test bench on them. For the resulting
measurements the based parameter variations are known. Besides that, different motor
characteristics can be chosen and recorded. The given model of an electric drive consists
of a motor and a worm gear. Besides the electrical and mechanical relations, a detailed
thermal model is available. To obtain a good fitting between the test bench and the
model, a parameter identification, described in section 3.3, was performed.

3.1 TEST BENCH HARDWARE

The electric drive (cf. figure 2, 1©) contains the motor and the gearing and is attached
to a plate, which is connected to the mounting (cf. figure 2, 6©) of the test bench. Several
temperature sensors are fixed to the motor and the gear housing. The motor shaft is
connected with a torque sensor (cf. figure 2, 2©). In addition the rotational speed can
be measured. The electromagnetic powder break (cf. figure 2, 3©) enables the test bench
to perform different series of measurements, which can range from static operating mode
through motor characteristics. To compensate the resulting shaft misalignments, metal
bellow-type couplings (cf. figure 2, 5©) are used for the link between the components.
The electric drive is connected with a power supply (cf. figure 2, 4©).
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Figure 2: Schematic view on the test bench hardware.
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Figure 3: Schematic view on the electric drive model with the input/output connections.

The special feature of the test bench is the possibility to add uncertainties, which
influences the power supply voltage of the drive and the characteristics of the electric
motor. Hence, this can be done in an automatic way without replacing the electric drive
or the power supply. For this reason many measurements based on given parameter
variations can be generated.

3.2 SIMULATION MODEL

The given model of an electric drive consists of a motor and a worm gear. Beside
the electrical and mechanical relations, a detailed thermal model is provided. They are
strongly connected in both directions by internal states, cf. Fig. 3. The electric drive
has eight model parameters and one input which is considered as uncertain. We assume
that it is independent and identically distributed with a Gaussian distribution. To get
a general view on the model, simplified equations are representing the correlations of
the parts. The electric and mechanic part is characterized by the two states which are
the current I(t) and motor speed ω(t). The ordinary differential equations are given as
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follows:

d

dt
I(t) = 1

L

[
−RI(t)− cmω(t) +

(
U(t)− Udrop(I(t))

)]
, (14)

d

dt
ω(t) = 1

J

[
− τload(t)ig +

((
τmotor(I(t), cm)

)
− τfric

(
ω(t), η

))
η
]
. (15)

The inputs of the simulation model are the voltage U(t) and the load torque τload(t)
which are summarized as u(t). The parameters are defined as the winding resistance R,
the motor constant cm, the inductance L, the gear ratio ig and the gear efficiency η. The
voltage drop Udrop(I(t)) is approximated by a polynomial of high order depending on the
current I(t).

The motor torque τmotor can be characterized by the following equation:

τmotor(I(t), cm) = cmI − τloss(εiron),

where the losses in the copper, the iron and by hysteresis are summarized. They can be
adapted by the parameter εiron. The mechanical friction losses can be described by the
following nonlinear function:

τfric = f(ω(t), η, µA, µB),

which only shows the dependences for the sake of simplicity. The losses in the bearings
A and B can be modified by the parameters µA and µB.

The thermal model of the electric drive is subdivided into several parts related to the
mechanical structure. The link with the two states given in equations (14) and (15) are
provided with the thermal power losses. The additional states are the temperatures at

• the magnet Tmagnet,

• the bearings A TbearingA and B TbearingB,

• the minus brush Tbrush,

• the worm Tworm and

• the coil Tcoil.

The interconnection with the electrical and mechanical model are as follows:

R = R0 [1 + α (Tcoil − Tamb)] ,

cm =
6∑

n=0
kp(n)In, with kp(n) =

6∑
i=0

bn(i)T imagnet,

η = g(Tworm), g ∈ nonlinear function,
τfric = h(TberaingA, TberaingB) h ∈ nonlinear function.
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3.3 OBTAINING MEASUREMENT DATA AND PARAMETER IDENTI-
FICATION

On main part of the benchmark problem is the parameter identification of the in-
troduced model in subsection 3.2 with the measurements obtained from the test bench
mentioned in subsection 3.1. In this paper, the temperatures of the system supposed to
be at a stationary level and therefore the measurements have to be taken in a bounded
temperature range:

Tbrush = Tbrush,stat ± 1[K], Tmagnet = Tmagnet,stat ± 0.5[K],
Twinding = Twinding,stat ± 0.5[K], Tworm = Tworm,stat ± 1.5[K].

This can be obtained by monitoring the temperature levels and run a warm-up sequence
before the measurements are recorded. A measurement i starts at time ti0 and records the
time responses of the outputs. After a fixed time ∆t the measurement is finished. The
resulting data can be called measurement run i and contains Imeasured,i(t), ωmeasured,i(t)
within the range t ∈ [ti0, ti0 + ∆t]. Moreover, the voltage U(t) is set to a stationary value
in run i using the Heaviside step function:

U(t) = ÛiH(t), t ∈ [ti0, ti0 + ∆t].

Before the next run is started, the electric drive is switched off by setting the voltage U(t >
ti0 + ∆t) to zero. The next run i+ 1 will then start at time ti+1

0 > ti0 + ∆t with stationary
voltage Ûi+1. This offers the opportunity to vary the model input Û = [Û1, Û2, . . . ] over
the measurement runs 1, 2, . . . , or to put it another way, the electric drive is switched on
in every run and the variation can be seen in the different stationary input voltages.

For the identification of the simulation model a measurement run at Ûident is performed
and the obtained data over time is used to fit the physical model parameters:

θ = [R, cm, L, J, ηiron, µA, µB, µworm] .

This nonlinear optimization problem is solved using the Matlab Optimization Toolbox
[17] with the function lsqnonlin which includes a large-scale algorithm. This algorithm
is a subspace trust-region method and is based on the interior-reflective Newton method
described in [3] and [4]. Each iteration involves the approximate solution of a large
linear system using the method of preconditioned conjugate gradients. The estimated
parameters are denoted as θ̂ in the following.

3.4 MODELING OF PHYSICAL PARAMETER

Instead of using a non-parametric Bayesian model, it is assumed that the distribution
of the physical parameter U belongs to a Normal distribution. This leads to a parametric
model which has to be extended in the following way:

Ũ(µU , σU , ξU) = µU + σUξU ,

with the hyperprior µU and the hyperprior σU . The parameter ξU is Normal distributed
with expected value 0 and standard derivation 1. The interconnection of the parameter
and the simulation model is shown in figure 4.
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Figure 4: Parameter mapping.

Using the parametric model the likelihood function in equation (13) can be rewritten
in the following way:

L̂(X) =
∏
i

pε

yobsi − M∑
j=0

ŷi,jψ(ξµ(µU), ξσ(σU), ξU)
 ,

where ξµ(µU) and ξσ(σU) are hyperparameters of the PC surrogate model with the map-
ping:

ξµ(µU) = µU − E[P (µU)]√
V ar(P (µU))

, ξσ(σU) = σU − E[P (σU)]√
V ar(P (σU))

.

4 NUMERICAL RESULTS

We assume a constant load scenario with τload = 3Nm and a stationary input voltage
Û . For this reason the observed motor speed ω will reach a steady state. In the following
all given quantities are normalized with a fixed maximum value.

The physical parameter of the stationary voltage Û is assumed to be Normal distributed
with the expected value µU,real = 0.9 and the standard derivation σU,real = 0.047. The
number of measurement runs is set to 100 and ∆t is fixed to 10 [s]. The data can be
obtained using Û = [Û1, . . . , Û100], which are drawn from the assumed distribution. Based
on the setting a steady state of the motor speed ωmeasured,i(t) will be reached after time
t = tsteady with 0 < tsteady ≤ ∆t for each run i and a stationary value for the motor speed
ωsteady,i = ωmeasured,i(tsteady) can be obtained. This means that for every measurement
run a scalar value for the motor speed is taken into account, instead of a time behavior.

Based on the measurement runs i = 1, . . . , 100 an error εi between the data ωmeas,i =
ωsteady,i and the simulation model ωsim,i =M(Ûi, θ̂) can be defined. This is illustrated in
figure 5. The resulting error ε can be described by the stochastic moments:

µε = 0.00015, σε = 0.00603.

Applying the MCMC method to the described benchmark problem and the measured
data, the Metropolis-Hastings algorithm [10, 13] is used for the estimation of posterior dis-
tribution. The priors are assumed to be Uniform distributed with the following stochastic
moments:

P (µ) = U(0.65, 1), P (σ) = U(0, 0.065).
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Figure 5: The first plot shows the normalized model output ω at a stationary time point tsteady for
the measurement (•) and the simulation result (+). The second plot shows the error ε between the
measurement and the simulation output. The third plot shows the corresponding normalized voltage for
the model evaluation.
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Figure 6: This figure shows the result of the MCMC estimation. The first plot contains the prior and
posterior PDF of the hyperparameter µU . The second plot visualize the trace.
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Figure 7: This figure shows the result of the MCMC estimation. The first plot contains the prior and
posterior PDF of the hyperparameter σU . The second plot visualize the trace.
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Figure 8: This figure shows the result of the PC surrogate approach. The first plot contains the prior
and posterior PDF of the hyperparameter µU . The second plot visualize the trace.
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Figure 9: This figure shows the result of the PC surrogate approach. The first plot contains the prior
and posterior PDF of the hyperparameter σU . The second plot visualize the trace.
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Note that the first 10% of the MCMC runs are thrown away to give the Markov Chain
time to reach its equilibrium distribution. The results of the posterior distribution using a
pure MCMC approach is shown in figure 6 and figure 7. The expected values for the mean
and standard derivation of the voltage are well approximated. However, we stopped the
iteration at 10, 000 MCMC samples, since the involved computational cost of evaluating
the forward model became prohibitive.

The results of the posterior distribution using a MCMC approach based on a PC
surrogate model is shown in figure 8 and figure 9. As before the expected values are
well approximated and compared to the method without a surrogate model the duration
for the estimation was reduced significant. In this case a polynomial order of p = 3
was assumed and Q = 111 evaluations on the simulation model were performed. Note
that increasing the polynomial order in the PC expansion did not provide any further
improvement in the approximation of the mean and standard derivation. The remaining
uncertainty represents the effect of the discrepancy between simulation model and reality
in combination with measurement noise.

5 CONCLUSIONS

We presented a comparison between a PC surrogate model and a MCMC approach
for inverse UQ. The used benchmark problem is based on an electric drive test bench
hardware. The advantage of this setting is the possibility to define a distribution for an
uncertain parameter at the system input. Based on the design of experiment measurement
data can be recorded under real-world conditions. This approach gives us the ability to
compare the gained results from the method with the assumed, or to put it another way,
predefined distributions, which are in general not known.

We focused on the implementation of a MCMC approach, which uses the recorded
data with 100 measurement runs. The estimation of the posterior distributions was done
using a PC surrogate model in addition to run all evaluations on the simulation model.
Due to the fact, that the time for a single simulation run is quite high and therefore the
number of evaluations is limited in an industrial context. The duration, which is needed
for the estimation of the posterior distributions, can be reduced significantly by using a
PC surrogate model. For the pure MCMC run 1, 000, 000 evaluations were needed. In
contrast, 111 runs on the simulation model were performed to fit the PC surrogate model.
Afterwards 100, 000, 000 evaluations on the surrogate model for the MCMC approach were
done. In addition, the obtained results for both approaches are satisfying.

Our current work is to investigate different types of distributions. Beside that, more
uncertain parameters are take into account.
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