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PREFACE 

This volume contains the full-length papers presented in the 3rd International Conference on 

Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019) that 

was held on June 24-26, 2019 in Crete, Greece.  

UNCECOMP 2019 is also a Thematic Conference of ECCOMAS, with the objective to reflect the 

recent research progress in the field of analysis and design of engineering systems under 

uncertainty, with emphasis in multiscale simulations. The aim of the conference is to enhance the 

knowledge of researchers in stochastic methods and the associated computational tools for 

obtaining reliable predictions of the behavior of complex systems. The UNCECOMP conference 

series, held in conjunction with the COMPDYN conferences, gives the opportunity to the 

participants to interact with the Computational Dynamics community for their mutual benefit.  

The UNCECOMP 2019 Conference is supported by the National Technical University of Athens 

(NTUA), the Greek Association for Computational Mechanics (GRACM). 

The editors of this volume would like to thank all authors for their contributions. Special thanks go 

to the colleagues who contributed to the organization of the Minisymposia and to the reviewers 

who, with their work, contributed to the scientific quality of this e-book.  
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Abstract. The paper aims at characterizing the influence of particle placement and clustering
in lattice discrete particle model (LDPM) simulations of concrete on structural response. The
presented spatial variability package for LDPM enables for the first time to influence the previ-
ously independent and random particle placement. The proposed scheme correlates the particle
placement to an initial random or gradient-based fields in order to mimic some of the exper-
imentally observed phenomena such as aggregate clustering or the effect of casting direction.
The study is based on high-dimensional Monte Carlo (MC) LDPM simulations of three classi-
cal concrete tests in which the inherent variability and production process are represented by
the proposed particle placement schemes with varying parameters. The material property fields
are kept constant at this phase of the investigation in order to isolate and quantify the potential
effect of the proposed particle placement schemes on structural response. This investigation is
based on a comparison of stress and strain values at peak for different tests against the case of
independent and random placement. The coefficients of variation of the above-mentioned out-
puts are also evaluated. This research aims at evaluating the importance influencing the particle
placement according to experimentally measurable phenomena before initiating research on the
spatial variability of material properties and the respective correlation structure.
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1 Introduction

According to classical theories and some already outdated codes [1, 2] the nominal strength
of geometrically similar structures made from non-random materials is independent of the struc-
tural size. The application of random heterogeneous media, however, such as concrete, require
higher order theories [3] for a safe and economical design, especially when large or slender
structures are considered. The scattering of physical experiments [4] and occasional structural
failures [5], however, do not always comply with such theories, even if current probabilistic
approaches are introduced. While the energetic size effect is relevant regardless if the material
is heterogeneous or not there is also a statistical size effect linked to the spatial variability of
heterogenous materials.

In Monte Carlo (MC) based probabilistic simulations [6], the random material properties are
typically considered spatially uniform and as such are assigned to structural members or entire
structures. This simplification is important for the formulation of MC sampling schemes [6, 7],
required for feasible tail characterization of structural response (engineering failure probabili-
ties).

On the other hand, neglecting the spatial variability means that the most fundamental con-
cepts in structural reliability cannot be directly captured by simulations. Clearly, if random
fields are introduced to MC based probabilistic simulations, the established sampling schemes
cannot be applied, and the outcome of applying random fields is limited to answering what-if
scenarios. The reason can be found in the extreme dimensionality of the problem combined
with unknown sensitivity.

Recent developments in sampling schemes for spatial or temporal variability are discussed
by [7, 8, 4], where a feasible sample selection strategy for spatial variability is proposed. With
the introduction of random (spatially variable) fields in the MC simulations the question of
autocorrelation quickly emerges as the amount of response scattering, e.g. in terms of COV
(coefficient of variation) of load capacity, becomes sensitive to particular parameters of the
random field. These are most typically the functional form of the autocorrelation function
and its coefficients, which can be linked to a characteristic length, both mimicking the micro-
structural features of a particular (composite) material and production processes [9, 10, 11, 12].
The introduction of spatial variability to discrete meso-scale simulations of concrete has been
previously done by [13], who experimented with randomized material property fields and thin,
nearly 2D, specimens.

This paper is unique in directly linking the micro-structural features of the random heteroge-
neous material to the COV of response by the investigated particle placement schemes, which
are governed by the initial spatial field, while maintaining the material property fields constant.
Moreover, the investigated classical concrete specimens are investigated fully in 3D, which re-
sults in a number of qualitatively different failure modes and crack paths, aside from the ability
to capture the relationship between the COV of response and the particular correlation struc-
ture. In particular, gradient-based fields and random fields are introduced into the stochastic
framework of the lattice discrete particle model (LDPM) to account for the inherent variability
and production processes of several concrete specimen test series (Figure 4), such as cylinder
and cube compression tests, and unnotched three point bending tests. As a consequence, the
lattice models become sensitive to a particular particle placement concept, which is no longer
independent and random [4], and the scattering of the response can, thus, be controlled and
associated with the physical meaning of an auto-correlation length (6 values tested) and partic-
ular form of the spectral function (1 value tested in this paper). The aim of this contribution is

2
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a) b) c)

Figure 1: 2D representation of the LDPM polyhedral cell construction. a) Particle placement, b) Lattice mesh and
tetrahedralisation, and c) Domain tessellation.

to evaluate the influence of such particle placement schemes on the structural response having
constant material property fields. Only in a second step also the spatial variability in material
properties and the respective correlation structure will be investigated. Due to complex nature of
the investigated problem it is essential to first isolate and quantify the importance of mimicking
clustering and directional effects by the later proposed particle placement schemes.

2 Lattice Discrete Particle Model (LDPM)

A well-established member of the discrete framework, the lattice discrete particle model
(LDPM), has been extensively calibrated and validated. It has shown superior capabilities in
reproducing and predicting concrete behaviour [14, 15, 16, 17, 18] in a number of practically
relevant applications. It simulates the meso-structure of concrete by a three-dimensional (3D)
assemblage of particles that are generated randomly according to a given grain size distribution.
Figure 1 shows a 2D representation of the LDPM polyhedral cell construction. After the par-
ticles are randomly placed in the concrete domain from the biggest to the smallest (Figure 1a),
the lattice mesh is generated connecting the centers of the spheres (Figure 1b). Delaunay tetra-
hedralization and 3D domain tessellation (Figure 1c) are used to generate the system of cells
interacting through triangular facets (blue lines in the 2D representation). Note that even though
spherical aggregates are assumed for the purpose of generating the particle distribution the final
discretization consists of polyhedral cells as sketched in Figure 1c) for the 2D case.

Displacements and rotations of such adjacent particles form the discrete compatibility equa-
tions in terms of rigid body kinematics. At each cell facet the meso-scale constitutive law is
formulated such that it simulates cohesive fracture, compaction due to pore collapse, frictional
slip and rate effect. For each single particle equilibrium equations are finally formulated. An
extended version of LDPM is currently developed and simulates various deterioration mecha-
nisms, such as e.g. the Alkali-Silica reaction (ASR) [16], creep and shrinkage. Creep analyses
are performed in a rate type form based on code models [19] or by utilizing the Micro-Prestress
Solidification Theory MPS [20, 21, 22, 23, 24]. A further development is the age-dependent
LDPM framework in which the local material properties are derived by chemo-mechanical cou-
pling from a chemo-hygro-thermal model [25, 26].

3 Characterization of internal structure

If studied at a particular scale and quantity, random heterogeneous materials, such as con-
crete, exhibit clustering features, which cannot be mimicked by the current LDPM version,
where particles are placed randomly and independently. Literature offers a number of ap-
proaches on how to describe, quantify, reproduce and compare observed and artificially gen-
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erated spatially variable structures (spatial arrangement and heterogeneity of micro-structural
features). Since the scope of this paper does not allow to cover all classes of statistical descrip-
tors, please refer e.g. to [27, 28, 29] for review. Among the classical approaches allowing for
the inference of correlation length (or in general the length scale parameters that characterize
spatial heterogeneity and clustering) is the two-point, three-point, and higher order microstruc-
tural correlation functions [30], the Ripley’s functions and its derivatives [31], the Lineal-Path
Function, Chord-Length Density Function, Pore-Size Functions, or the Two-Point Cluster Func-
tion [29]. The increasingly available computing resources enabled the practical utilization of
morphological-based analyses, which may be more suitable for smaller domain to feature size
ratios, i.e. instances where the system size is not sufficiently larger that the correlation length
of interest.

The authors briefly introduce here an original approach, which is both computationally ef-
ficient and robust, and is based on the Mean value of Minimum Euclidean Distance between
centres of fitted circles (MMED). This approach requires that the originally continuous random
field is binarized. By using standard image processing, object recognition and morphologi-
cal analysis algorithms, the boundary components and possibly small components are deleted
and subsequently the circular objects (circles) are detected (see Figure 3). Then, for each cir-
cle center coordinate a nearest (in euclidean space) neighbour is identified and the correlation
length then corresponds to the mean value of such (nearest neighbour) distances. The detection
and measurements of objects is based on a local feature detector and descriptor SURF algorithm
[32], where the circular objects can be replaced by fitted ellipses or any other parametric shapes.
The binarization process is governed by the Otsus cluster variance maximization method [33].
Please note that the correlation lengths in this paper are understood as relative measure, since
the random field realizations are self-similar at various scales and independent on the resolution.
In fact, this corresponds to various power spectral function parameter sets.

This way, it is ensured that although each specimen has different physical and discretization
size, the same patters for the same power spectral function parameters emerge relative to the
size of the specimen. The absolute values of the correlation length can be obtained by simply
multiplying the relative value of the correlation length with the maximum size of the bounding
box of the specimen, d. This is due to the fact that the random fields are initially generated in a
d× d× d box lattice.

A large number of paradigms related to the generation of correlated spatially variable struc-
tures (random fields) exists, including classical algebraic approaches, such as e.g. Fourier trans-
formation [34], Karhunen-Love approximation [35], Polynomial chaos decomposition [36], or
evolutionary algorithms, such as cellular automata [37], offering various levels of control in the
achieved correlation, variance or stationariness, to name a few. Various production artefacts,
such as casting process, can also be simulated by the classical or mesh-less particle-based com-
putational fluid dynamics, possibly also coupled with discrete element method (DEM) [38]. The
material structure can be also There is still an ongoing debate concerning the optimal model,
mostly from a mathematical and philosophical perspective, since very little is yet known at the
required (statistically relevant) level on structural materials.

Given the dimensionality of the problem and the aformentioned arguments, a simple model
for the generation of random field has been adopted. It is based on a discrete inverse Fourier
transform of a product of noise and amplitude. The noise is defined as a discrete Fourier trans-
form of a pseudo-random variate from a symbolic (Gaussian) distribution and the amplitude is
defined by an arbitrarily chosen spectral (autocorrelation) function [34].

In the literature, several functional forms are proposed for autocorrelation functions (Fig-

4
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Figure 2: Comparison of the structurally relevant autocorrelation functions from the literature, scale of fluctuation
equals to 2.

Table 1: Power spectral function exponents (pfse) and related relative autocorrelation length (RAL). The RAL
is relative to the maximum specimen size.

a 3.5 3.0 2.5 2.0 1.5 1.0
RAL 18.36 % 7.81 % 4.69 % 3.52 % 3.13 % 2.73 %

ure 2). However, the proposed estimates for their coefficients vary in the order of magnitudes
[39, 11, 40, 41] due to their different (physical) interpretation and due to the fact that random
heterogeneous materials in general can be considered fractal, i.e. statistically self-similar on a
range of length scales. Also, often different equations or names can be found describing the
same functional form. Therefore, similarly to the question of generating random fields, the sim-
plest form has been assumed, which corresponds to Type A from Figure 2 which presents the
spectral functions p(x) for continuous distance, x. Note that by definition, the spectral density
function must be non-negative. The investigated power spectral function with exponent a reads:

p(x) = 1/(xa) (1)

The herein adopted meaning of autocorrelation length should follow from Figure 3a (MMED
applied to periodic field), while the basis for quantification of a particular autocorrelation length
for random fields using the proposed MMED is depicted in Figure 3b. The particular values of
relative autocorrelation lengths (RAL) compared to size d of the bounding box depend on the
power spectral function exponent (coefficient a in Equation 1) and are listed in Table 1.

The absolute values of the correlation length depend on the maximum values of the bounding
box of the specimens, i.e. 400, 300 and 150 mm (beam, cylinder and cube, respectively) and
can be computed by simply multiplying the latter sizes by the relative correlation lengths, i.e.
ranging from 73 mm for the beam with a = 3.5, to 4 mm for the cube with a = 1.0.

The proposed particle placement schemes may influence the scattering and asymptotic prop-
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(a) (b)

Figure 3: a) MMED applied to periodic field to illustrated the meaning of correlation length (mean distance be-
tween nearest neighbours), and b) MMED applied to binarised random field to illustrated the meaning of correlation
length.

erties of the spatially variable models and, thus, contribute to the general understanding of the
physics and reliability of spatial variability [42, 43]. The abstraction levels for LDPM are cate-
gorized as following [43]:

• Independent and random particle placement (IRPP);

• IRPP combined with random or gradient-based field for material characterization only;

• Particle generation governed by a field (PGGF).

Independent and random particle placement (IRPP) Independent and random particle
placement and random diameter according to the size distribution curve and required volume
fraction, as is currently implemented in the LDPM [14]. No conflicting requirements are to be
solved. Overlapping or less than minimum distance particles are re-sampled.

IRPP combined with random or gradient-based field for material characterization only
The second abstraction level assumes the original particle placement scheme, i.e. the IRPP,
combined with one or more random fields, which are used to describe local fluctuations of ma-
terial properties resulting from the inherent variability (random field) and construction or trans-
port processes (gradient-based fields). Similarly to the previous case, there are no geometry-
related conflicting requirements. Overlapping or less than minimum distance particles are re-
sampled. Boundary regions may be normally populated by adopting a simple modification to
the re-sampling algorithm.

Material characterizations derived from random fields must be verified for inadmissible val-
ues, such as negative strength, modulus, etc. This may lead to a conflict if the governing proba-
bility distribution used for generating the random field is to be maintained. Otherwise, truncated
distributions may be used or the realizations of random field can be rescaled to fit the admissible
range [13, 4, 44].

6



J. Podroužek, M. Marcon, J. Vorel and R. Wan-Wendner

Tr

Ax

Z

XY

Figure 4: Visual representation of particle placement governed a) by gradient field (PGGF-G) and b) by a random
field (PGGF-R).

Particle generation governed by a field (PGGF) Here it is assumed that an initial random
(PGGF-R) or gradient-based (PGGF-G) field of choice (or their arbitrary combination) is gov-
erning not the material properties (optional), but the particle generation process (i.e. the position
and/or the size of each particle). If the particle generation is to be governed not only by granulo-
metric distributions, but also by a gradient-based field (PGGF-G, Figure 4a) or an initial random
field (PGGF-R, Figure 4b), the particle generation becomes a complex problem and has to be
approached by balancing trade-offs between conflicting goals.

Clearly, the global requirement to follow a particular size distribution can lead to a local
conflict with the initial random field, the role of which can be further ambiguous if we consider
it to affect both the position and size of the particles (clustering of large particles). Details
regarding the associated steps/choices for random fields were published by [43, 45] and are
detailed in 4.1 PGGF implementation.

For higher volume fractions this becomes a computationally expensive procedure, however
local conflicts can be resolved in parallel and terminate with the first valid particle. The advan-
tage of the approach lies in the compatibility of the mimicked meso-structure (lattice geome-
try) with any considered material property field (via governing random field) which otherwise
cannot be maintained. This enables to verify the relationship between spatial variability, auto-
correlation length of the random fields, type of spectral function and meso/micro-structure of
the material which is an open research question. Ultimately, it is the goal to investigate the inter-
action of meso-structure and material property fields derived from the same or related random
fields.

However, in a first step the statistical consequences of different particle generation schemes
are investigated and compared to each other and the reference, the IRPP. For this purpose, the
material properties remain spatially constant and are not derived from fields.

7
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Table 2: LDPM mix design and main LDPM mesoscale properties. The parameters explanation can be found in
[14, 15].

Mix Design LDPM parameters Mesoscale LDPM parameters
Cement content 240 kg/m3 Elastic modulus 41000 MPa
Water/Cement 0.83 - Poissons ratio 0.18 -
Aggregate/Cement 8.83 - Tensile strength 2.54 MPa
Fullers coefficient 0.5 - Softening exponent 1 -
Min. aggregate size 4 mm Shear/Tensile

strength
1.85 -

Max. aggregate size 18 mm Tensile charact.
length

200 mm

4 Numerical models

In this section, the numerical models of classical concrete experiments are introduced. Im-
portant inputs for the models are the maximum and minimum aggregate sizes. The higher bound
of the sieve curve is defined by the maximum aggregate size (da) while the minimum aggregate
size (d0) defines its arbitrary lower cut-off, i.e. the diameter under which no particles are dis-
cretely generated and placed. Thus, the minimum aggregate size affects the refinement of the
discrete mesh and consequently also the computational cost. The concrete parameters used for
the LDPM in this contribution are taken from [18] since they were calibrated and validated on
an experimental dataset. The main LDPM parameters along with the mix design parameters are
defined in Table 2. Their explanation can be found in the original LDPM papers by Cusatis at
al.[14, 15].

The simulations include cubes and cylinders loaded in compression, and unnotched beams
loaded in a three point bending configuration. Cubes with an edge length of 150 mm and cylin-
ders with a length of 300 mm and a diameter of 150 mm are considered. For both cubes and
cylinders, the loading platens are modeled as rigid bodies. The unnotched beam has dimensions
of 100× 100× 400 mm and a span length between the supports of 300 mm. A visual represen-
tation of the specimens is shown in Figure 4. Figure 4a shows the three specimens’ geometry
having the particle placement distorted with a gradient based field while Figure 4b illustrates
the particle placement according to a random field.

In the compression tests, friction between the concrete specimens and the steel platens is
considered by a constraint algorithm implemented in the numerical framework MARS [46].
This algorithm constrains the surface nodes of the LDPM domain to the surface of the steel
platens based on the friction coefficient µ(s), according to a contact algorithm described in
a previous work by Cusatis et al. [47]. Such friction coefficient is dependent on the contact
cumulative slippage s, on the static friction coefficient µs, on the dynamic friction coefficient µd,
and on a characteristic length s0 derived from fitting available test data (see [48]). The relation is
described by: µ(s) = µd+(µs−µd)s0/(s+s0). For the cubes, aiming at simulating the contact
between concrete and smooth steel, parameters µs = 0.13, µd = 0.015, and s0 = 1.3 mm were
used. For the cylinders, aiming at simulating the contact between concrete and a Teflon sheet
on the steel platens, parameters µs = 0.03, µd = 0.0084, and s0 = 0.0195 mm were used.

The loading speed for the beams was 2 mm/s, 8 mm/s for the cubes, and 5 mm/s for the cylin-
ders. All simulations are run using a dynamic explicit solver implemented in MARS which en-
sures convergence at the price of computational cost due to the small stable time steps required.
For all the models the kinetic energy has been monitored and limited to acceptable levels. As
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already mentioned, for the PGGF-R analyses of all the geometries, the power spectral function
exponent a used in the simulations was chosen to be between 1.0 and 3.5 with a discrete step of
0.5 which means having a relative autocorrelation length range between 2.7% and 18.4% of the
maximum specimen dimension.

For the PGGF-G compression specimens, two directions were chosen for the gradient based
field. The direction along which the top plate moves to compress the specimen is identified as
Ax direction, while the direction transversal to the loading is identified as Tr. For the PGGF-G
beams, their dimensions, considering the three Cartesian orthogonal directions, are: 100 mm
in the Z and Y directions and 400 mm in the X direction. The load and the two supports are
acting along the Z direction. In this case, one gradient field along the Y direction (Y +) and two
gradient based fields in the Z directions are analysed. The two directional fields which are along
the Z directions have opposite orientation (Z+ has the same orientation of the load, and Z− has
the opposite orientation).

Each of the simulations was run in the Vienna Scientific Cluster which consists of 2020
nodes, (8 cores with 2.6 GHz) using one node each for about 3 hours.

4.1 PGGF implementation

Particle generation governed by a field is a modified version of a standard geometrical char-
acterization of the concrete mesostructure presented in [14].

In the present study, the generated mesostructure has to follow both the particle distribution
curve and the distribution of a given (random, directional, etc.) field. In the first step, particles
represented by spheres are generated following the defined concrete granulometric distribution,
the interested reader is referred to [14]. The main difference between the standard and the
new procedure lies in the particle placement phase during which the particle centers are placed
throughout the volume of the specimen one by one (from the largest to the smallest). Assuming
that N0 particles have to be placed, N0 random particle positions are generated and the intensity
for each of them is evaluated based on the prescribed field. The positions are then ordered
following the given intensity (from the highest to the lowest) and the position with the highest
intensity is assigned to the largest particle. The largest particle is then placed at this position
(assuming that it does not cross the border of the domain) and both the particle and the position
are deleted from their lists. Next, the new position with the highest intensity is utilized to
place the new largest particle (previously second in the particle list). If there is no conflict with
the previously placed particle(s) and the boundary of the domain, the particle is placed and
again deleted from the list. However, if it exceeds the domain boundary or overlaps with the
previously placed particle(s), this position is discarded, a new random position is generated and
the intensity for it is evaluated. Then the positions are again ordered based on the given intensity
and the particle placing procedure continues as described before. To minimize the geometrical
bias of the discretization, a minimum distance between two adjacent particles is defined as
δs (r1 + r2), where r1,2 stand for the radii of the particles and δs ≥ 0 is the non-dimensional
scaling parameter. The utilized minimum distance rule allows a smaller distance between small
and large particles compared to the distance between two large particles. δs = 0.1 is utilized in
the current study.

Specific examples and alternative choices regarding the particle placement algorithm are
presented in [45].
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Table 3: IRPP results of different geometries with 20 repetitions. The COV is expressed in %.

Type Property Beam Cylinder Cube

IRPP F@P (MPa,kN) 11.12±2.82% 21.50±0.41% 26.20±0.55%
D@P (−,mm) 0.0389±4.51% 0.0012±1.18% 0.0017±3.58%

5 Results discussion

The presented observations are based on an unique and extensive computational campaign
involving in total 600 simulations. Given the dimensionality of the problem, it is hard to separate
physically or mechanically relevant sources of response scattering from the noise components,
owing to model uncertainties (solution and discretiztion artefacts) [49].

Along with simulations in which the particle generation is governed by a field (PGGF),
also the independent and random particle placement (IRPP) simulations were run for direct
comparison. In all cases, 20 repetitions per specimen configuration were run. The results used
in the comparison are: the mean stress or the mean force at peak (mean F@P ) for compression
specimens and beams respectively, and the mean strain or the mean displacement at peak (mean
D@P ) for compression specimens and beams respectively. Also their coefficient of variations
were computed for the comparison. Table 3 shows the IRPP results for the three geometries.

Table 3 shows that, for the 20 repetitions done for the three geometries, the COV s of D@P
are generally higher than the COV of the F@P . Also, it can be noticed that the compressive
tests results have lower COV than the test results of the beams. This can be explained by
different failure mechanism in tension and in compression. In case of flexural failure (tension)
there is just one main crack that propagates and ultimately leads to failure, while in case of
compression, there are many small cracks that together lead to failure. Each small crack finds
its own preferential (least energy) path but in the process causes local stress redistributions
affecting the other cracks so that in the end, effects average out and the response for individual
realisations stay quite close to the overall mean.

The PGGF results are presented with the same nomenclature as introduced for the IRPP.
Also for the PGGF simulations, 20 repetitions per configuration were run. Figure 5 shows the
results for different geometries of PGGF-R with a = 3 (which means that the RAL is 7.8% of
the maximum size of the specimen). The solid line represents the average numerical result; the
numerical results’ envelope is plotted as grey area. As can be seen, the 20 repetitions lead to
relatively small scatter both in terms of F@P and D@P . Note that the simulated unnotched
beams experience a snap-down instability in the early post-peak, as expected in displacement
control. Nevertheless, the explicit simulations up to this point fully converge with an acceptable
amount of kinetic energy in the explicit simulations. Therefore, load and displacement values
at peak can be considered correct and serve for this investigation.

The figure shows for the beam case, in comparison with the IRPP results, that the mean
values increase while the COV s decrease. For the compression specimens the mean F@P
decreases while its scatter increases.

All the PGGF results are shown in Figure 6. On the left Y axes of each figure, the coefficients
of variation of D@P and F@P are plotted in red empty square markers, while the right Y
axes represent the mean D@P and F@P in black full diamonds. The straight lines represents
the IRPP related results. Figures 6(a-b) present the beams results, figures 6(c-d) the cylinders
results, and figures 6(e-f) the cube results. The left figures show the PGGF-G results while the
right ones show the PGGF-R results.

Regarding the directional field beam (Figure 6a), the results show very consistent trends

10
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Figure 5: Results of a) Beams, b) Cylinders and c) Cubes for PGGF-R with a = 3

among the three different directions both in terms of mean values and in terms of COV . Re-
garding the random field results (Figure 6b), some weak trends can be noticed. The mean values
tend to increase with the autocorrelation length, while the COV tends to stay constant. In com-
parison with the IRPP beam results, for the PGGF-R both the mean F@P and D@P increase
while their COV s decrease. This can be explained by the clustering of big and small particles
during the particles placement. With the clustering, some weaker and stronger areas are created,
causing the fracture surface to deviate from the nominal path in order to follow the least energy
consuming path for its propagation.

The cylinder results are shown in Figure 6(c-d). The directional field results (Figure 6c)
show noticeable differences between the axial direction and the tangential direction field. Even
though it can be noticed that the transversal direction has higher mean values and COV (com-
pared with the longitudinal one), this doesn’t happen for the COV of the peak load which is
smaller for the transversal direction. The PGGF-R cylinder results (Figure 6d) show stronger
trends compared with the beam case. The trend of the mean D@P and F@P is decreasing with
the autocorrelation length while, the trend of the COV is increasing with it. In comparison with
the IRPP results, the D@P mean and COV tend to increase; the mean F@P decreases while
the COV keeps similar values.

Figure 6(e-f) present the cube results. As for the cylinder, the PGGF-G show that one of
the curves, (in this case the mean D@P ) deviates from the main trend. The PGGF-G results
(Figure 6f) show no clear trends for the mean values or the COV .

In comparison with the IRPP cube results, the mean values of D@P and F@P decrease
while their COV stays approximately constant. As could be seen from this summary, for the
compression geometries the mean F@P tends to be smaller for the PGGF field. In case of the
beam only one macro-crack forms and ultimately causes failure, depending on its path across
the specimen. For the compression specimens, multiple cracks lead to failure and in this case
the clustering lead to a reduction of the peak load.

Please also note the purpose of this study was not to generate (increased) scatter in LDPM
simulations, but to quantify scattering caused by the particle placement algorithm independent
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Figure 6: Normalized results for PGGF: (a-b) Beams, (c-d) cylinders, and (e-f) cubes. The straight lines represents
the IRPP related results.
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(a) (b)

Figure 7: Different failure mechanisms for two repetitions of PGGF-R for a) beams and b) cylinders.

of any variability in the material property fields. The influence on the L@P and the D@P is
limited in comparison with the experimental scatter. On the other hand the failure mechanisms
are influenced, especially in the case of cylinders with different directional fields (see Figure 7).

5.1 Sample size

A subsampling-based analysis has been performed to evaluate the uncertainty in estimates
of mean value and standard deviation with respect to sample size. For the analysis, a set of 40
simulations were run on cylinders having particles placed according to a gradient field perpen-
dicular to the loading direction. Their result is assumed to be an independent and identically
distributed sequence. From this sequence, subsamples with sizes from 2 to 38 have been ran-
domly and non-repetitively drawn 700 times in order to ensure non-repetitiveness in boundary
subsets containing exactly 2 or 38 elements, where only 780 combinations exist. The mean
values and standard deviations of each subsample were calculated. Figure 8a shows the con-
fidence bound on the mean value, while Figure 8b illustrates the uncertainty in the standard
deviation. In Figure 8a, the solid line is the mean value of the original sequence. The circles
are the 5% fractile of the 700 samples mean values and converge to the mean. The t-Student
test was performed on each of the subsamples, in order to obtain the subsamples mean value
with a 95% confidence interval. Maximum and mean values of the confidence intervals higher
bound, and minimum and mean values of the confidence intervals lower bound, were recorded.
The diamonds show mean higher and mean lower bounds of the confidence intervals for all the
sample sizes. The squares show maximum higher and minimum lower bounds of the confidence
intervals for all the sample sizes. From the results, 5 realizations of LDPM simulations appear
to be a reasonable compromise in order to obtain a good approximation of the real mean value
while limiting the computational cost.

A similar analysis was performed for the standard deviation as shown in Figure 8b. The esti-
mation of the standard deviation confidence intervals is based on the χ-square test. It becomes
clear that the confidence bounds converge much slower. Thus, approximately 15-20 realiza-
tions of LDPM simulations appear to be a reasonable compromise in order to obtain a good
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J. Podroužek, M. Marcon, J. Vorel and R. Wan-Wendner

Subsample size (-)
0 10 20 30 40

S
u
b
sa
m
p
le
M
ea
n
L
@
P
(M
P
a)

20.5

21

21.5

22
Max CI Higher bound
Min CI Lower bound
Mean CI Higher bound
Mean CI Lower bound
95% fractile
5% fractile
Mean Value

Subsample size (-)
0 10 20 30 40

S
u
b
am
p
le
S
ta
n
d
ar
d
D
ev
ia
ti
on
L
@
P
(M
P
a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Standard Deviation
Max CI Higher bound
Min CI Lower bound
Mean CI Higher bound
Mean CI Lower bound
95% fractile
5% fractile

Figure 8: Subsampling-based analysis performed in order to evaluate the uncertainty of mean value and standard
deviation predictions.

approximation of the real standard deviation.

6 Influence on failure mechanisms

In order to verify the observed effect of particle clustering on the failure mechanism, the three
point bending tests (Figure 7a) are analyzed in detail. The compression simulations (as can be
seen in Figure 7b) also show an indication of differences in the failure mechanism. The failure
of the beams, on the other hand, shows a unique main crack, the end position of which can be
measured and compared. The PGGF-G results are not analyzed because the three directions are
symmetric along the main crack path. The results of this analysis are the crack initiation points
for different autocorrelation lengths (Figure 9a) and the mean distances between the initiation
points and the midspan of the beam (Figure 9b). It can be seen that the scatter in the crack
initiation points is basically identical in all the cases.

Figure 9b shows a slight indication that increasing the autocorrelation length, the crack is
more likely to reach larger distances from the beam center. Nevertheless, it appears that the
only the placement of particles is not enough to perturbate such an output. A stronger trend was
observed by Elias et al. [50], where the lattice geometry was independent and random but the
material property fields were governed by random fields. From these results it can be concluded
that also the material properties need to be influenced by the random field in order to reproduce
realistic amounts of scatter and variability in failure modes. A stronger influence of the particle
placement is visible for the case pf directional fields.

7 Conclusions

A spatial variability package for LDPM has been presented, including two new abstraction
levels for the discrete framework, where particle generation are governed by an initial random
field or directional filed. The presented work is a first step of a larger investigation in which
modeling concepts for and different sources of spatial variability in concrete are being investi-
gated including spatially variable material property fields.
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Figure 9: a) Distance between crack and beam center for different pfse, and b) Mean distance between crack and
beams center for different autocorrelation lengths.

In order to separate the effects of particle generation process governed by random or gradient
based field from randomized material property fields governed by random or gradient fields, the
material property fields have been kept constant for all of the presented analyses. Thus, by
considering constant material property fields, the presented results show how:

• Directional effects, mimicking production processes (concrete casting) and represented
by gradient based fields, may affect the mean values of force at peak, displacement at
peak, and the respective coefficients of variation;

• Correlated spatial variability models (random fields) governing the particle generation
process influence the response and failure mode compared to the independent and random
generation of particles;

• No clear functional dependence exists between COV of the structural response and auto-
correlation length of the random field determining the particle placement and clustering,
at least for the investigated geometries and chosen number of realizations.

• The investigated particle placement schemes with constant material property fields en-
hance the realisms of simulations but are insufficient to reproduce realistic amounts of
experimental scatter.

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs
and the National Foundation for Research, Technology and Development is gratefully acknowl-
edged, as well as the support of the project No. LO1408 ”AdMaS UP and FAST-S-18-5327.
The computational results presented have been achieved using the Vienna Scientific Cluster
(VSC).

15
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[23] I. Boumakis, M. Marcon, K. Ninčević, L.-M. Czernuschka, and R. Wan-Wendner, “Con-
crete creep effect on bond stress in adhesive fastening systems,” in Proceedings of the
3rd International Symposium on Connections between Steel and Concrete, ConSC 2017,
(Stuttgart, Germany), pp. 396–406, 2017.

[24] I. Boumakis, M. Marcon, L. Wan, and R. Wendner, “Creep and shrinkage in fastening sys-
tems,” in CONCREEP 2015: Mechanics and Physics of Creep, Shrinkage, and Durability
of Concrete and Concrete Structures - Proceedings of the 10th International Conference
on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete
Structures, pp. 657–666, 2015.

[25] L. Wan, R. Wendner, B. Liang, and G. Cusatis, “Analysis of the behavior of ultra high
performance concrete at early age,” Cement and Concrete Composites, vol. 74, pp. 120–
135, 2016.

[26] L. Wan-Wendner, R. Wan-Wendner, and G. Cusatis, “Age dependent size effect and frac-
ture characteristics of ultra high performance concrete,” Cement and Concrete Compos-
ites, vol. 84, pp. 67–82, 2018.

[27] P. B. Corson, “Correlation functions for predicting properties of heterogeneous materials.
i. experimental measurement of spatial correlation functions in multiphase solids,” Journal
of Applied Physics, vol. 45, no. 7, pp. 3159–3164, 1974.

17
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Abstract. Pedestrian simulations serve to predict the movement of a crowd. These simulations
have become an important tool for building planners, event managers, crowd managers and
many more. In microscopic simulations, one simulates individual virtual pedestrians (agents).
The behavior models for the agents range from differential-equation-based over step-based to
rule-based systems. Independent of the underlying systematics, all models depend on a set of
parameters. It is crucial to analyze the parameters and their impact on the results in order to
know how much trust we can put in the simulations.

In this work, we present first results of an application of Bayesian inversion to a step-based
model in our simulation framework Vadere as a proof of concept. More specifically, we focus on
preferred walking speeds of pedestrians. Distributions of these free-flow speeds are a necessary
input for most microscopic pedestrian simulations and can typically not be measured directly.
We consider a simple scenario of pedestrians walking in a hallway. We apply the Metropolis
algorithm to sample from the posterior.

If we provide a prior that differs from the actual distribution of the uncertain parameter, we
expect the method to inform the posterior so that it is closer to the actual distribution. This
serves as a first proof of concept and motivates the incorporation of experimental data. The
results serve as a basis for the development of a framework with uncertainty quantification
(UQ) methods customized for our open-source simulation framework Vadere.
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1 INTRODUCTION

Pedestrian dynamics is a rather young research field that focuses on the movement of an ag-
gregation of pedestrians. It comprises several areas of research: Observing pedestrian behavior,
conducting experiments, modeling of observed behavioral patterns, implementing computer
models. In addition, it is an interdisciplinary field of study: Psychologists and sociologists
are interested in the topic as well as engineers, computer scientists and mathematicians. Even
though they utilize different methods and focus on different aspects, their motivation is the
same: Enhancing the safety of crowds.

There are several typical use-cases of pedestrian crowd simulation: Nowadays, the evalua-
tion of emergency routes and closeout concepts is supported by simulation results. In general, a
simulation of a venue can help to identify potential bottlenecks. Case studies can reveal the ben-
efit of possible improvements. In addition, simulations help to estimate the capacity at events,
in public spaces, or in infrastructural facilities. Another field of application is the optimization
of pedestrian facilities like train stations or airports. Consequently, these simulations are handy
for organizers of all kinds of events as well as building and infrastructure planners.

1.1 Microscopic crowd simulation

Our research group focuses on the microscopic simulation of pedestrian crowds. The under-
lying models are based on observations of pedestrians. The most popular locomotion models
are cellular automata [8] and force-based models [10]. Cellular automata discretize the space
into cells which are either occupied or free. A set of rules is defined in order to describe how
each pedestrian moves from one cell to another. On the other hand, force-based models define
social forces acting on pedestrians similar to Newtonian forces acting on particles. Each pedes-
trian is attracted by his / her target and repulsed from obstacles and other pedestrians. The most
famous force-based model is the social force model, which is formulated as a system of ordinary
differential equations. The positions of pedestrians are calculated at discrete time steps.

In contrast to the types of models listed above, in which time and / or space are discretized in
an artificial manner, we consider a model that utilizes a natural discretization, the so-called step-
ping procedure. The optimal steps model [18, 19] finds, for each pedestrian in each time step,
the next optimal position within a disc around his / her current position. Instead of modelling
the impacts by forces, we use utility functions to encode the value of a position to a pedestrian.

1.2 Limitations of UQ for pedestrian dynamics

Independent of the chosen locomotion model, pedestrian crowd simulations typically have
a rather large set of input parameters. The UQ literature distinguishes between two types of
parameters: Physical parameters and non-physical parameters. Physical parameters can be
measured in controlled experiments or inferred from videos. On the contrary, non-physical
parameters are model parameters which cannot be measured.

Regarding crowd simulations, examples for physical parameters are the number of pedestri-
ans in the scenario and all parameters concerning the description of the location that is simu-
lated. Many parameters fall in the second category, non-physical parameters, due to different
reasons: First, there are computational parameters such as the parameters of the optimizer. Sec-
ond, all parameters that are introduced by mathematical modeling. For example, utility dips
are used to model the disadvantage of positions close to an obstacle. There are certain param-
eters that define how large the influence radius of an obstacle is and how large the utility dip
is. These parameters are part of the mathematical model which is motivated by the observation
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that pedestrians keep a natural distance from walls and other obstacles. Third, there are parame-
ters which technically could be measured easily, but for which the measurement process would
change the behavior of the human participants. Thus, these parameters elude measurement.
Other examples are parameters influenced by psychology such as the percentage of people who
would help others in emergencies or the speed of movement when carrying or helping injured
people. We consider the high number of non-physical parameters a central challenge when
applying methods of uncertainty quantification in pedestrian dynamics.

Another challenge are stochastic simulations. Most, if not all, methods of uncertainty quan-
tification are designed to handle stochastic inputs to the system under investigation. Neverthe-
less, the system in focus is considered a deterministic system. This is not generally true for
crowd simulators. In case of our simulation framework, Vadere [1], some attributes such as
preferred speeds or starting positions are usually assigned randomly within the simulator.

In addition, the UQ methods assume that the relation between input parameters and quantity
of interest is continuous. Again, this requirement cannot be fulfilled by all crowd simulators. It
is important to be aware of these limitations. To our knowledge, these challenges have not been
tackled so far, but they need to be addressed in the future.

1.3 Benefits of UQ for pedestrian dynamics

Despite these challenges when applying UQ methods to pedestrian dynamics, it is crucial to
find ways to examine the impact of the parameters on the simulation output in order to know
how much trust one can put into the results. Applying methods of uncertainty quantification is
a promising approach to reach this goal.

One set of methods aiming in this direction are forward propagation and sensitivity analysis.
When using forward propagation, for each uncertain parameter, a probability density function
needs to be provided. For physical parameters, these distributions may be known from the
application, but for non-physical parameters, they are typically unknown. One way to find
the distribution of an uncertain input parameter is utilizing Bayesian inversion. Another field
of application is the choice of parameter values for non-physical parameters. Here, inversion
methods can be applied to infer the parameter values based on empirical data (parameter cali-
bration).

1.4 State-of-the-Art

To our knowledge, there are currently only a few publications available in which methods
of uncertainty quantification are applied to pedestrian dynamics. They can be divided into two
groups: Applications of forward propagation and of Bayesian inversion.

Von Sivers et al. utilize forward propagation with stochastic collocation as intrusive method
to investigate the impact of parameters of a certain sub-model of a pedestrian simulator [20]. In
addition, Dietrich et al. apply forward propagation to the simulation of a train station [6]. To
speed up the method, a surrogate model is constructed that approximates the simulator. This
combination allows what they call real time uncertainty quantification.

In this contribution, we focus on inversion methods. Since pedestrian crowd simulators typ-
ically have many non-physical parameters, inferring parameter distributions for the forward
propagation is an important task. To our knowledge, there are only two applications of inver-
sion techniques to pedestrian crowd simulations: Corbetta et al. demonstrate an application of
Bayesian inversion [5]. Based on experimental data, they infer non-physical model parameters.
Finally, Bode utilizes approximate Bayesian computation, a likelihood-free inversion method
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to infer parameters and compare two different movement models [2].
All of these applications demonstrate first successful applications of uncertainty quantifica-

tion concepts to pedestrian dynamics. Nevertheless, each one of them is an individual applica-
tion of one method on a specific problem. In our contribution, we concentrate on the method of
inversion itself and its general applicability to pedestrian dynamics models. We aim to provide a
proof of concept of Bayesian inversion utilizing Markov chain Monte Carlo (MCMC) methods
based on our model, the optimal steps model. Our goal is to provide a framework of uncertainty
quantification methods for users of crowd simulators.

1.5 Paper Outline

In chapter 2 we will give a brief introduction to microscopic simulation of crowd behavior
and the most commonly used terms, describe the simulation setup and the inversion method. In
addition, we give an overview on the proposed framework. Chapter 3 focuses on the results of
the proof of concept. We show that the inversion corrects the incorrect prior, which proves that
it extracts information from the model. Finally, in chapter 4 we provide a conclusion on the
performed work and an outlook.

2 METHODS

This chapter starts with a brief description of microscopic crowd simulations, which needs
some specific terminology. We introduce commonly used terms in the pedestrian dynamics
community.

Agent We refer to the simulated, virtual pedestrians as agents.

Origin Area in which pedestrians are spawned (generated) in the simulation.

Destination Physical target of pedestrians. In microscopic crowd simulators, individual agents
move from origins to destinations.

Topography Description of the location that is simulated. This could be a building or a venue.
The topography contains origins and destinations.

Scenario A scenario contains all information for the simulation. That means, it contains a
topography and the configuration of the model including all parameters.

Trajectory A list of positions that an agent occupies during its movement to its origin.

Free-flow speed The free-flow speed is the speed with which a pedestrian moves unhindered
towards his / her target, meaning in absence of other pedestrians or obstacles. This pa-
rameter is common to almost all locomotion models.

When it comes to the distinction between physical and non-physical parameters, there is a
great difference between observing humans and technical systems. While parameters such as
speed are easy to measure regarding the technical difficulty, humans behave differently when
observed. In many experiments, the goal is to capture the free-flow speed by measuring the
time that pedestrians need to walk through a hallway and then by deriving the speed [22].
Nevertheless, this can only serve as an approximation to the actual intrinsic free-flow speed of
a pedestrian, if existent.

23
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Even though the free-flow speed is a parameter that is necessary for most microscopic sim-
ulator types, it cannot be measured directly. Consequently, Bayesian inversion is particularly
useful to obtain a distribution for this quantity. In addition, even though the free-flow speed is
a non-physical parameter, it can be estimated from experiments and therefore we roughly know
the size of it from studies [21].

2.1 Configuration of the simulation scenario

We focus on a simple but relevant scenario, a single agent walking unhindered from origin
to destination (see Fig. 1). This scenario is also known as the first test case in the guidelines for
pedestrian simulations [16]. In particular, the scenario shown in Fig. 1 is the test case for the
free-flow speed. That is why we choose this scenario.

As described before, in most crowd simulators, pedestrians move from origins to destina-
tions. Nevertheless, origin and destination are modelling constructs which may lead to artifacts.
In reality, pedestrians do not just appear and disappear. That is why we only observe the pedes-
trian within the measurement area.

As quantity of interest, we choose the service time, which is the time the pedestrian needs to
travel to his / her target. Instead of using the travel time between origin and destination, we use
the travel time within the measurement area.

Figure 1: Single pedestrian scenario: The agent moves from the origin (green) to the destina-
tion (orange). The agent is shown as a blue circle and its trajectory is depicted in blue. The
measurement area is shown in red. This scenario is also known as RiMEA 1 test case [16].

2.2 Bayesian inversion and MCMC

Now, we briefly introduce the concept of Bayesian inversion and Markov chain Monte Carlo
methods. A detailed description of this approach can be found, for example, in [4, 11]. Bayesian
inversion is an approach to solve the inverse problem

d = m(x) + e (1)

for the random parameters x ∈ Rn. Here, m(·) : Rn → Rm is a deterministic map from
parameters to observables. In our case, the map is the simulator including the evaluation of
the chosen quantity of interest. It is handled as a black box since the model is rule-based, not
equation-based. d ∈ Rm are the random data from which the parameters x will be inferred and
e ∈ Rm is a random, additive noise. In the described setup, all terms are scalars (n = m = 1)
and hence m : R → R. We assume that e ∼ N (0, σ), that is, e is a zero-mean Gaussian noise.
This assumption leads to the likelihood

ρlik(d|x) = exp
(
− ‖ d−m(x) ‖22

2σ2

)
. (2)

Bayes Theorem implies

ρpos(x) =
ρlik(d|x)ρpri(x)

ρ(d)
∝ ρlik(d|x)ρpri(x) (3)
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where ρpri(x) is the prior of the parameter x and ρpos(x|d) is the posterior of the parameters x
given the data d. ρ(d) is the so called evidence, a normalization constant.

One standard approach to access the posterior distribution is Markov chain Monte Carlo. All
methods of this type construct a Markov chain whose stationary distribution is the posterior.

We use the well-known Metropolis algorithm [14]. Since our work addresses both the UQ
and the pedestrian dynamics community, which is not familiar with the algorithm, we will
shortly describe how the Metropolis algorithm works.

The parameters for the Metropolis algorithm are:

Initial point The starting point of the algorithm. Typically, the center of the prior distribution
is chosen as initial point.

Proposal function The proposal function is a distribution used to generate a new candidate.
This parameter contains a type of distribution and distribution parameters. A typical
choice is a normal distribution.

Number of iterations The number of iterations that are performed with the Metropolis algo-
rithm. The size depends on the number of uncertain parameters.

Burn-in The number of iterations before the algorithm reaches a steady state. These iterations
are usually not considered for further evaluations.

The algorithm starts at the initial point. In each step, a new candidate

x′ = xt + z, z ∼ N (0, τ). (4)

is created based on the previous candidate xt and a random value z drawn from the proposal
distribution. For each candidate, the model is evaluated to calculate the posterior

ρpos(x
′) = ρlik(d|x′)ρpri(x′) = exp

(
− ‖ d−m(x′) ‖22

2σ2

)
ρpri(x

′). (5)

Based on the posterior, it is decided if the candidate is accepted or rejected.

xt+1 =

{
x′ if ρpos(x′) ≥ ρpos(xt) or ρpos(x′)

ρpos(xt)
≤ u (accepted)

xt otherwise (rejected)

where u ∼ U(0, 1). After the chosen burn-in period, the accepted candidates can be used as a
sample of the posterior distribution.

2.2.1 Adaptive regulation of the proposal distribution

The main parameter for configuring the Metropolis algorithm is in our case τ , i. e. the vari-
ance of the proposal distribution, also called the jump width. The jump width is a crucial
parameter because a too large jump width deters the candidates from concentrating around the
true parameter value. On the other hand, if the jump width is chosen too small, it takes long to
converge, especially if the prior guess is inaccurate.

In order to find an appropriate jump width, we choose to adapt the jump width to the ac-
ceptance rate. The acceptance rate α is the ratio between the number of accepted candidates
to the total number of candidates. In [7, 17] optimal acceptance rates for Gaussian posterior
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distributions are presented. They propose to monitor the acceptance ratio and to scale the jump
width accordingly to obtain an optimal acceptance rate. According to [9], this method is widely
used in practice. Gelman et al. state that the optimal acceptance rate for a one-dimensional
problem is 0.44 [7]. Based on their findings, we modify the jump width only when it is outside
the interval [0.3; 0.5]:

τ =

{
α ≤ 0.3 τ/α

α ≥ 0.5 τ · α.
(6)

To avoid too frequent adaption of the jump width, we allow the correction only in every 10th

step, similar to [15], but we make use of all candidates in order to compute the acceptance rate.

2.2.2 Measures for MCMC performance

There are two common measures to evaluate the quality of the samples obtained from the
MCMC method: autocorrelation of samples and effective sample size. We calculate the effec-
tive sample size according to [13, p. 184] as

ESS =
N

1 + 2
∑∞

i=1 ACF(i)
≈ N

1 + 2
∑m

i=1 ACF(i)

where N is the number of samples (after burn-in) and ACF is the autocorrelation function
(ACF). The effective sample size is approximated by limiting the infinite sum when ACF(m +
1) ≤ 0.05 according to [13, p. 184].

In general, the acceptance rate is also a measure which provides information about the per-
formance of the algorithm. Nevertheless, as described in the previous chapter, we alter the jump
width to obtain a certain acceptance rate. Consequently, the acceptance rate provides less infor-
mation than in the regular case. Despite the manipulation, the acceptance rate can still be used
to get an indication for the size of the burn-in. While the autocorrelation function is known
in many disciplines to analyze the correlation of a time series, the effective sample size is a
measure explicitly for Markov chain Monte Carlo methods. It gives an estimate of the number
of uncorrelated samples within the samples of the posterior. Due to the generation manner of
candidates, consecutive samples are highly correlated.

Both measures are strongly impacted by the jump width: While a small jump width leads to a
high acceptance rate, because a new candidate close to the previous sample (accepted candidate)
is very likely to be accepted, it also leads to highly correlated samples. Consequently, the
effective sample size is small.

2.3 Proposed framework

The Bayesian inversion described in this manuscript is foreseen to be one module of a frame-
work that we plan to provide. It will be designed in a way that users of pedestrian simulation can
carry out parameter studies. Figure 2 shows the scheme of the framework and displays the build-
ing blocks. The uncertainty quantification framework will use the so-called SUQ-controller to
communicate with the Vadere simulation framework. The SUQ-controller sends queries to
Vadere, obtains the results and stores them. The uncertainty quantification framework will have
three main building blocks: Forward propagation, Bayesian inversion and (global) sensitivity
analysis. Some methods can be applied in multiple contexts. For example, active subspaces can
be used for Bayesian inversion to reduce the dimensionality of the parameter space, but they
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can also be utilized to derive sensitivity indices [3]. It is important to design the framework in
a modular way.

Uncertainty Quantification

SUQ-Controller

Vadere 

Forward Propagation

Bayesian Inversion

Sensitivity Analysis
Important Directions

Stochastic Collocation

Sobol‘ indices

Sampling Methods

McDiarmid diameters

Sampling the Posterior

Active Subspaces

Important Parameters

Monte Carlo

MCMC

SMC

Quasi-Monte-Carlo

Communication

Communication

Optimal Steps Model

Social Force Model

Cellular Automaton

Storage

Queries

Figure 2: Scheme of the framework that is foreseen. The building blocks and pipeline part
that we focus on in this work are highlighted in a darker blue. The uncertainty quantification
framework will communicate via the SUQ-Controller with our Vadere simulation framework.

3 RESULTS AND DISCUSSION

In this section, we present numerical experiments. To carry out a proof of concept we start
with the simple scenario described in Chapter 2.

We observe that running one simulation of the proposed scenario takes about 1 second, that
means 104 iterations of the Metropolis algorithm take about 2.8 hours. As a consequence,
we perform only 104 iterations of the chain at first. Since the relationship between uncertain
parameter and quantity of interest is strong and only one parameter is inferred, we can already
see the chain converge to the true parameter even with the rather small number of iterations.

We start the Metropolis algorithm with the prior ρprior ∼ N (2.5, 1.0) and a measurement
noise of 10−2. In Figure 3, we can see that the posterior distribution is no longer centered
around the prior (N (2, 1)), but around the true parameter value of 1.34 m

s
. The samples have a

mean of 1.3382 and a variance of 5.0807 · 10−5. This is the proof of concept that the method
works sufficiently. In addition, the evolution of the acceptance rate shows that the adaptive
regulation of the jump width succeeds at keeping the acceptance rate within the predefined
limits.

3.1 Surrogate model

The amount of time spent on the model evaluation motivates the use of a surrogate model.
There are two advantages regarding the speed when using MCMC with a surrogate model: First,
the evaluations of the model can be replaced by evaluations of the surrogate model, which is
typically much faster. Second, even though it takes time to generate the data points necessary
for the model, this step can be easily parallelized (embarrassingly parallel).

In this explanatory setup, we only have one uncertain parameter and in addition, its relation
to the quantity of interest is known. The service time is the quotient of travelled distance and
speed. Therefore, it is clear which function should be fitted to the data. In addition, [21] states
that free-flow speed is typically located between 0.5 and 2.2 m

s
. Therefore, we evaluate the

27
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(a) Histogram of posterior samples (without burn-
in).

(b) Evolution of jump width and acceptance rate
over time.

Figure 3: Proof of concept of applying Bayesian inversion to RiMEA test case 1: The inaccurate
prior, centered around 2 was corrected over 104 iterations of the Metropolis algorithm. The
resulting posterior is centered around 1.3382, close to the true parameter value of 1.34m/s. The
effective sample size is 1943.71.

model at equidistant candidates within this interval to find the base for the surrogate model.
Figure 4 shows the evaluations of the model for different parameter values together with the
fitted surrogate model. The high coefficient of determination shows that the surrogate is a good
fit.

In our example, the usage of a surrogate model leads to another advantage: Due to the
normal measurement noise, ρprior is conjugate prior for the likelihood. As a result, the posterior
can be calculated analytically. In Figure 5, the results of the Bayesian inversion based on the
surrogate model are presented. In addition to the posterior obtained from the samples in form
of the histogram, we also show the analytical posterior. The histogram of the posterior samples
obtained by the Metropolis algorithm fits the shape of the theoretical posterior perfectly. This
is another indication that our sampling works and serves as verification of the code. When
analyzing the mean of the posterior samples, one can observe that it is close to the true parameter
value but even closer to the parameter value that produces a surrogate model output equal to the
Vadere result for the true parameter. Here, one can see the impact of evaluating the surrogate
model instead of the simulator itself. Nevertheless, the error is small enough to be neglected.

In our case, the surrogate model is simple. In higher dimensions, however, the construction
of a surrogate model can be challenging. In [6] the application of forward propagation with a
more elaborate surrogate model is presented.

3.2 Impact of measurement noise

Since the first proof of concept was successful, we take a look at the parameters of the in-
version. One parameter is the measurement noise of the data provided. While this parameter
cannot be varied when empirical data is used, in our exemplary setup, we are able to investi-
gate the impact of the measurement noise on the obtained posterior. This variation serves as a
plausibility check of the method.

In Figure 6, the histograms of the posterior samples are depicted for different levels of mea-
surement noise. As expected, the width of the posterior distribution decreases with decreasing
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(a) Surrogate model constructed from 25 simula-
tions.

(b) Relative error of surrogate model evaluated at
100 reference points.

Figure 4: A surrogate model for the described configuration of Vadere. The coefficient of
determination of the fit is R2 = 0.99975. The relative error at the true parameter value is
6.5070 · 10−3. Without any measurement noise, for the parameter of 1.34875 the result of the
surrogate model is identical to the Vadere evaluation at the true parameter.

measurement noise. The measurement noise level provided to the algorithm can be seen as the
level of trust that the algorithm puts into the data provided. If the data has only a low noise
level, the estimate of the uncertain parameter is very accurate, hence the small posterior width.

3.3 Impact of Jump Width

Now we take a look at the impact of the jump width on two measures for MCMC perfor-
mance described in chapter 2.2.2: acceptance rate and effective sample size. For the evaluations
presented in this chapter, we have deactivated the adaptive jump width regulation and instead
used a fixed jump width. We apply a measurement noise σ of 10−2.

In Figure 7, the results of varying the jump width are laid out. As expected, the acceptance
rate decreases with increasing jump width. In addition, the effective sample size shows that
neither too large nor too small jump widths are favorable since both extremes lead to small
effective sample sizes. While for too small jump widths the reasons of the low ESS results
from the proximity of the candidates, for large jump widths, most candidates are rejected and
therefore the number of unique samples is low. Both results are line with our expectations are
verify our results as well as the implementation.

In addition, one run was performed with the adaptive regulation of the jump width. An
effective sample size of 21020.32 is observed with a mean jump width of 1.04904 · 10−2. The
effective sample size obtained with this approach is better than with all fixed jump widths that
we tried. This motivates altering the jump width based on the acceptance rate.

4 CONCLUSION AND OUTLOOK

In this work, we presented a first proof of concept application of Bayesian inversion with a
Markov chain Monte Carlo method to a pedestrian crowd simulator. We applied the well-known
Metropolis algorithm as a Markov chain Monte Carlo method and we chose the implementation
of the optimal steps model within our framework Vadere as a crowd simulator. The reference
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Figure 5: Results obtained with the surrogate model. The incorrect prior was centered around
2 (N (2, 1)]). The center of the posterior is close to the true parameter value. In addition, the
analytically derived posterior is depicted.

Figure 6: Histogram of the samples of the posterior obtained from the Metropolis algorithm for
different levels of measurement noise. Surrogate model was created from 25 data points. For
each noise level 105 iterations were performed.

scenario is simple but essential because it is the reference test case of the RiMEA guidelines
for free-flow speed. A single pedestrian is walking through a hallway. We based the proof of
concept on data obtained from the simulator itself instead of empirical data. Then, we started
the inversion with an inaccurate prior. Our results show that the inversion is able to correct
the information provided at the beginning by using information from model evaluations. The
posterior is centered around the true parameter value. That means, this method is applicable
to a typical parameter of pedestrian crowd simulations, the preferred speed (free-flow speed).
In addition to the proof of concept application, we performed plausibility checks to verify the
code.

Pedestrian crowd simulations become quickly computationally expensive when the number
of pedestrian and / or the size of the scenario increases. Since Markov chain Monte Carlo
methods are iterative methods that cannot be parallelized easily, the inversion can take a long
time for a larger scenario. One approach to reduce the computation time is to construct a
surrogate and evaluate the surrogate instead of the actual model in each iteration of the chain.
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Marion Gödel, Rainer Fischer, and Gerta Köster

(a) Relation between jump width and acceptance
rate.

(b) Relation between jump width and effective sam-
ple size.

Figure 7: Impact of the jump width on the effective sample size and the acceptance rate. In red,
the results obtained in the same setup with the adaptive regulation of the jump width are shown.

Alternatively, another method can be used. We have demonstrated the usage of a surrogate
model with our setup. However, with increasing dimensions, the construction of a surrogate
becomes more challenging.

The work presented here serves as a first step towards a framework of uncertainty quantifica-
tion methods for pedestrian dynamics. In the next step, the framework needs to be designed and
built from modules such as Bayesian inversion, forward propagation and sensitivity analysis.
During this process, it is crucial to pertain a modular structure to allow all useful combina-
tions of building blocks. One module that can be linked to multiple other modules is the active
subspaces module which can be combined either with the sensitivity analysis or the Bayesian
inversion. The framework is aimed to provide support for users of pedestrian crowd simula-
tions. It is planned to be an easy starting point for parameter analysis or sensitivity studies
which should help users when calibrating parameters or comparing different models
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Abstract. Uncertainty quantification of nonlinear stochastic dynamic problem is always a
challenging task due to the complexity of the systems. In this paper, a hybrid surrogate mod-
elling approach is proposed for the uncertainty quantification of nonlinear stochastic dynamical
systems in the time domain. The proposed hybrid surrogate model is constructed using a non-
linear system identification tool, the Nonlinear AutoRegressive with eXogenous (NARX) input
model, and the Kriging approach for uncertainty propagation. Further, to increase the com-
putational efficiency, least angle regression (LARS) is utilized in the hybrid framework. The
method is applied on a nonlinear stochastic dynamic oscillator to check its applicability. The
time dependent mean and standard deviation are predicted using the proposed approach, and
all the results are compared with the Monte Carlo simulation (MCS) results. A high-level ac-
curacy is noticed using the proposed approach as compared to other state-of-the-art methods.
This accuracy is achieved using a very limited number of model evaluations which is suggest-
ing the efficiency of the proposed approach. Moreover, an excellent accuracy and efficiency is
achieved using the proposed approach in predicting the probability density function (PDF) at
several time instances for the nonlinear stochastic dynamic oscillator.
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1 INTRODUCTION

Uncertainty Quantification (UQ) of dynamical system has always been a great interest of re-
search in the scientific community [1, 2, 3]. For the nonlinear stochastic dynamical systems, the
stochastic response depends on the level of nonlinearity with respect to the uncertain variables.
Therefore, an appropriate prediction of the stochastic response for the nonlinear dynamical sys-
tems is the main objective of this paper. Monte Carlo simulation (MCS) [1] is one of the main
tools in state-of-the-art literature for UQ of any complex problem such as nonlinear dynami-
cal system. However, the level of accuracy of the prediction gets increased with the increase
of number of model evaluations which is the main limitation of this method. This issue has al-
ready been solved by several researchers in the past few decades with different surrogate models
[4, 5, 3]. The main objective of most of the surrogate models is the reduction of the computation
cost without compromising with the level of accuracy. Most of the surrogate models proposed
for the stochastic dynamical systems have been based on polynomial chaos expansion (PCE)
[6]. Initially, PCE was utilized to solve the stochastic partial differential equation (SPDE). Later
on, PCE has been used for UQ in different class of problems including the dynamical systems
[2, 7]. Therefore, several improvements have been made to apply the PCE for studying random
dynamical systems.

The main computational burden in PCE for the dynamical system is the computation of the
polynomial bases at each time-step. On the other hand, PCE works well for weakly nonlin-
ear dynamical systems. However, for the strongly nonlinear dynamical systems, PCE requires
large number of model evaluations with high degree polynomials which seems a similar lim-
itation like MCS. Therefore, a few investigation has been made to address the issue of strong
nonlinearity for the dynamical systems [7, 8, 9]. In this respect, recently a surrogate model
was proposed by combining PCE with the Nonlinear AutoRegressive with eXogenous (NARX)
input model [8, 3], this model is called PCE-NARX model. In this model, the problem of cap-
turing the nonlinearity has been solved by the NARX model and the uncertain input parameters
are propagated by the PCE model. However, the computation of the PCE model still requires
high degree polynomials for the nonlinear dynamical systems [3] which is ultimately increasing
the computational cost. On the other hand, the accuracy and the efficiency of the Kriging surro-
gate model [10, 11] has already been proved over the PCE model [12]. Therefore, to reduce the
computational cost, the NARX model is formulated with the Kriging surrogate model in this
paper.

The rest of the paper is organized as follows. A brief review of the Kriging surrogate model
is described in the next section, and the computation of NARX model is illustrated briefly in
section 3. Then, the proposed model is introduced in section 4 along with a suitable algorithm.
Further, the applicability of the proposed model is illustrated through an example in section 5
and the conclusions drawn from this study are discussed in section 6.

2 REVIEW OF KRIGING

For an uncertain dynamical system, the d-dimensional random variables can be written in a
vector form as X̂ = {x̂1, x̂2, . . . , x̂d} ∈ Rd. The computation of the surrogate model is based on
N samples of the random variables. The realizations of the random variables are denoted by the
design of experiment (DoE) matrix X = {x1, x2, . . . , xd} ∈ RN×d (xi is the i-th column of ma-
trix X) and the corresponding responses are denoted by Y = {y (X1) , y (X2) , . . . , y (XN)}T
(Xi is the i-th row of matrix X and is the i-th sample of the d random variables). Having the
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samples and the responses, the Kriging model performance function [10] is given by:

M (X) = wTψ (X) + z (X) (1)

In the above equation, wTψ (X) represents the regression part of the polynomial, and z (X)
denotes the Gaussian process part. Various types of Kriging models are available in the literature
according to the type of the polynomial ψ (X). Out of all, an ordinary Kriging is used in this
paper. The main parameters in the ordinary Kriging model are the coefficients in the regression
part (wT ) and the Gaussian process part. The Gaussian process is modelled as zero mean with
covariance:

cov [z (Xi, Xj)] = σ2
zr (Xi, Xj) ; i, j = 1, 2, . . . , N (2)

where, σ2
z is the Gaussian process variance and r (•) is the auto-correlation function. Sev-

eral auto-correlation functions are available in the literature [13, 10] and the Gaussian auto-
correlation function is used for the present work.

The Kriging model predicts the response at the untried samples Xu by a best linear unbiased
predictor (BLUB) which is given by:

M̂ (Xu) = ŵTψ (Xu) + <T (Xu) R−1
(
ŵTψ (Xu)

)
(3)

where, < (•) is the correlation between the untried sample and the initial samples and R is the
correlation matrix for the initial samples. Therefore, from the Kriging formulation [11, 12], the
predicted coefficients are given by:

ŵ =
(
F TR−1F

)−1
F TR−1Y (4)

where F is the basis function matrix at the initial samples. The detail formulation procedure
of the Kriging model parameters are given in [11]. The DACE toolbox [14] is utilized in this
paper for the implementation of the Kriging model.

3 NARX MODEL

3.1 Full NARX model

The NARX model [15, 16] was proposed as the tool for nonlinear dynamic system identifi-
cation. The basic phenomenon behind the formulation of the NARX model is that the dynamic
response at a particular time-step is predicted by the responses of some previous time-steps and,
the external force/excitation for some previous and present time-steps. Therefore, the response
for a dynamic problem can be given by using the NARX model as:

y (t) = f [g (t)] + ε (t) (5)

where, g (t) = {ξ (tτ ) , ξ (tτ−1) , ξ (tτ−2) , . . . , ξ
(
tτ−nξm

)
, y (tτ−1) , y (tτ−2) , . . . , y

(
tτ−nym

)
}T

contains all the regressors for a dynamical system. ξ is the external force, y is the response
and τ is the index of time-steps. nξm and nym are the maximum time lags for the input and the
response respectively. f [•] is the performance function for the NARX model and ε (t) is the
residual of the process in Equation 5. The main objective of the NARX model is to capture the
nonlinearity of the dynamical systems. Therefore, the underlying performance function must
have the nonlinear terms such that the nonlinearity can be captured easily. For the NARX model,
several nonlinear performance functions have been proposed in the literature [17] which include
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polynomial, wavelet, sigmoid, radial basis function (RBF). Out of all, the simplest and widely
used polynomial type performance function is chosen for the present study which is given by:

f [g (t)] =
M∑
i=1

$iφi [g (t)] (6)

where, $i are the coefficients corresponding to the polynomial bases φi [•]. Therefore, for the
τmax number of time-steps, the polynomial basis matrix and the coefficient vector are given by:

Φk (tτ , Xk) = [φ1 [gk (tτ , Xk)] , φ2 [gk (tτ , Xk)] , . . . , φM [gk (tτ , Xk)]]
T ∈ RM×τmax (7)

$ (Xk) = {$1, $2, . . . , $M} ∈ R1×M (8)

In both the above equations, k in the subscript denotes the k-th sample point. Therefore, once
the dynamic system is identified through Equation 5, the coefficients are available for the dy-
namic system which can be utilized to predict the response characteristics of the deterministic
dynamical system. However, the coefficients of the NARX model (Equation 6) for a random
dynamical system are random. For that reason, the NARX model is coupled with the Kriging
model to propagate the uncertain characteristics of the system.

One of the important aspects of Equation 6 is the computation of the NARX coefficients. It
is noticed from Equation 6 that the coefficients can be computed easily via the ordinary least
square (OLS) method due to the form of the equation. However, it is evident from the previous
studies [18, 8, 3] that all the terms (M terms) in the polynomial do not contribute for the system
identification. Therefore, reducing the number of terms would make the system sparse in nature
and would also enhance the computational efficiency. The important terms in the NARX model
has been already identified in the literature by the Genetic algorithm [8] or by the least angle
regression (LARS) [3]. In this paper, we have utilized the later one to identify the important
terms in the NARX polynomial bases.

3.2 Formulation of the sparse NARX model

In a similar way to [3], a sparse NARX model is constructed in this paper. The main aim of
this paper is to predict the stochastic response for the dynamical systems. The NARX model
is constructed for the highly nonlinear samples as the representation of the stochastic system.
For the selection of the highly nonlinear samples, the restoring force versus response curve is
utilized in [8] and a threshold value approach is utilized in [3]. In this paper, a combination of
these two approaches is adopted. Firstly, the restoring force versus response is plotted keep-
ing the other values at their means until the nonlinearity is observed. Therefore, by locating
the starting point of the nonlinearity, the threshold value for the dynamical system is decided.
According to the threshold value, less number of samples would be retained as the nonlinear
samples (N1 < N ). Therefore, only N1 full NARX model are constructed in this step. Each of
the full NARX model can be represented by Equation 5 as:

y (tτ , Xk) = $ (Xk)Φk (Xk, tτ ) + ε (tτ ) k = 1, 2, . . . , N1 (9)

In this step, the response series for the k-th sample point is known. Therefore, the polynomial
basis matrix Φk is known beforehand. For the k-th sample point, the coefficient vector can be
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computed by minimizing the sum squared error which is given by:

τmax∑
i=1

[ε (ti, Xk)]
2 =

τmax∑
i=1

[y (ti, Xk)−$ (Xk)Φk (ti, Xk)]
2 (10)

The important terms for the full NARX model are captured at this step by the LARS [19]
which leads the total terms in the polynomial to M1 < M . Thereafter, the M1 NARX coeffi-
cients are computed through the OLS using Equation 10. Similarly, for all the N1 samples, the
sparse NARX model is constructed. Therefore, at the end of this step, N1 sparse NARX models
are available.

Remark 1: It may happen that the same identical terms are captured in more than one sparse
NARX model. For that reason, only the unique sparse NARX model are required to be selected
at this step which may reduce the number of sparse NARX models to N2 ≤ N1.

The N2 number of unique sparse NARX models are utilized to reconstruct all the N initial
response series separately and the relative error for each of the N samples is computed as
follows:

εpk =

τmax∑
i=1

[y(ti,Xk)−ŷp(ti,Xk)]2

τmax∑
i=1

[y(ti,Xk)−ȳ(Xk)]2
k = 1, · · · , N ; p = 1, · · · , N2 (11)

In Equation 11, ŷp (•) is the predicted response series at the k-th sample point using the p-th
sparse NARX model and ȳ (•) is the mean of the actual time series which can be written as:

ȳ (Xk) =
1

τmax

τmax∑
i=1

y (ti, Xk) (12)

After computing the relative error for all the sample points using a sparse NARX model, the
mean relative error is computed as the mean of relative errors for all the samples. The mean
relative error is given by:

ε̄p =
1

N

N∑
i=1

εpi p = 1, 2, . . . , N2 (13)

Therefore, N2 number of mean relative error is computed for the N2 unique sparse NARX
model. The final sparse model is selected as the one having the mean relative error less than a
threshold value. For the current work, the threshold value is taken as 1× 10−3.

Remark 2: A situation may come that more than one unique sparse NARX model have the
mean relative error less than the threshold value. In that case, the sparse NARX model having
less number of terms is selected as the final sparse NARX model.

4 SPARSE KRIGING-NARX MODEL

The sparse NARX model has already been discussed in the previous section. Therefore,
the sparse NARX model can be utilized to capture the strong nonlinearity of a dynamical sys-
tem. However, the NARX model coefficients are random. Therefore, the independent surrogate
model is constructed by combining the sparse NARX model with the Kriging model presented
in this section. To formulate this, each of the coefficients of the final sparse NARX model are
predicted by the Kriging model as:

$i (X) = wTi ψ (X) + zi (X) ; i = 1, 2, . . . ,M1 (14)
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In the above equation, the coefficients of the sparse NARX model for the initial N samples
are considered as the response quantity and X is the DoE matrix. Therefore, combining this
equation with the sparse NARX model, the sparse Kriging-NARX (KNARX) model is given
by:

y (t,X) =

M1∑
i=1

(
wTi ψ (X) + zi (X)

)
φi [g (t,X)] (15)

The Kriging model in Equation 15 are constructed M1 times to make the predicted model
independent. The predictions at the untried samples are made by the BLUP estimator in accor-
dance with the sparse NARX model which is given by:

ŷ (t,Xu) =

M1∑
i=1

[
ŵTi ψ (Xu) + <T (Xu) R−1

(
ŵTi ψ (Xu)

)]
φi [g (t,Xu)] (16)

where ŵi are the computed coefficients of the Kriging model.
The above-mentioned equation is utilized for the prediction of the stochastic dynamic re-

sponses in the time domain. Accordingly, the solution is made through two steps as discussed
above. In the first step, the coefficients of the sparse NARX model are predicted by the Kriging
surrogate model, and in the second step, the stochastic dynamic response is predicted by the
sparse NARX model. A step by step flowchart for constructing the sparse KNARX model is
given in Figure 1.

Remark 3: One of the important aspects in constructing the sparse KNARX model is the
choice of the maximum time lags nξm and nym for the input and the response respectively. In a
similar way to [3], in the present paper these two maximum time lags are chosen as two times
the number of degrees of freedom (DOF) of the dynamical system.

5 NUMERICAL APPLICATION TO A HALF OSCILLATOR

The sparse KNARX model (Figure 1) as developed in the previous section is applied to a
simple nonlinear dynamical system for UQ. More specifically, a half oscillator [20], defined
by Equation 17, is considered to check the applicability of the sparse KNARX model. Along
with this, the result is also computed with the recently proposed sparse PCE-NARX model [3]
and all the predicted results are compared with the full scale MCS results. The accuracy of the
surrogate model predicted results are measured by the mean relative error (Equation 13) and the
coefficient of correlation (R2). For the construction of the surrogate models, the initial sample
points are generated using the Latin hypercube sampling (LHS) scheme in the present work.

The governing differential equation of the half oscillator is given by:

ẏ (t) + νy (t) + εy3 (t) = A sin (ωξt) (17)

where ν and ε are the system parameters, and A and ωξ are the parameters of the sinusoidal
excitation. All the parameters of this problem are uncertain. The distribution type of all the
uncertain parameters are presented in Table 1.

The main goal is to quantify the uncertain response parameter y (t) of the half oscillator due
to the uncertain input parameters as mentioned in Table 1. For the solution of the system, time
integration has been performed for a total time of T = 30 s at a time-step ∆t = 0.01 s using the
MATLAB solver ode45. The initial condition for this problem is considered as y (0) = 0. The
problem has been solved by MCS, sparse PCE-NARX [3] and sparse KNARX model to predict
the time dependent uncertain response quantity. MCS has been performed with 3× 104 number
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Figure 1: Flowchart to construct the sparse KNARX model

Table 1: Uncertain parameters for the half oscillator

Variables Distribution type Mean Standard deviation Unit
ν Uniform 1 0.15√

3
−

ε Uniform 1 0.1√
3

−
A Normal 0.6 0.06 N
ωξ Normal 1 0.1 rad s−1
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Figure 2: Restoring force versus displacement for the half oscillator

of sample points which is considered as the reference response characteristic and the error for
the other methods is predicted with respect to the MCS result.

At the initial step, the restoring force (fs = νy (t) + εy3 (t)) versus the displacement (y (t))
is plotted in Figure 2 by fixing all other values at their means. It is seen from the figure that the
displacement shows nonlinear behavior beyond the region y (t) ∈ [−0.45m, 0.45m]. Therefore,
the threshold for the nonlinearity is decided as max |y (t)| > 0.45m. This threshold criterion is
imposed on the oscillator to choose the highly nonlinear samples for constructing the surrogate
models.

For the construction of the full NARX model, a suitable polynomial basis function is chosen
which is given by:

φi [g (t)] = ξliτ−nξiy
mi
τ−nyi

(18)

In Equation 18, ξ and y are the excitation and the response of the half oscillator respectively.
Right hand side of Equation 17 is the excitation part i.e. ξτ = A sin (ωξt). nξ and ny are the time
lags for the excitation and the response respectively, whereas, l and m are the corresponding
maximum degrees. It is important to note that for the simple formulation, the excitation and
the response are expressed without the function t. For the half oscillator, l = 1 and m = 3 are
chosen with a maximum degree of the polynomial i.e. l+m ≤ 3 due to the cubic non-linearity
of the problem. The maximum time lags are chosen as twice the number of DOF [8, 3] of the
half oscillator i.e. 2 with nξ = {0, 1, 2} and ny = {1, 2}. As a result, 22 number of terms
are found in the polynomial basis matrix for the full NARX model utilizing all the possible
combinations including the constant term i.e. i = 1, 2, . . . , 22 in Equation 18.

For the surrogate models, N = 4 number of initial sample points are generated using LHS
which are listed in Table 2. Initially, the samples exhibiting high order non-linearity are selected
based on the threshold value of displacement as decided previously. Therefore, N1 = 1 sample
is detected as the nonlinear sample (4-th sample in Table 2). Further, the only full NARX
model is constructed and the most important terms for the NARX model are detected by the
LARS algorithm. This procedure transforms the full NARX model in a sparse NARX model
by reducing the total number of terms in the NARX polynomial basis. The final sparse NARX
model is selected which predicts the mean error for all the N samples less than 1 × 10−3 and
in this case, only 1 unique sparse NARX model was found. For that unique sparse NARX
model, the coefficients for N samples are calculated by OLS method and the predicted mean
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Table 2: Samples for all the random variables of the half oscillator generated using LHS

Sample number ν ε A ωξ
1 1.1175 1.0880 0.5840 0.9887
2 0.9772 0.9825 0.6237 1.1855
3 0.9174 1.0221 0.5390 1.0662
4 1.0376 0.9226 0.6885 0.8460
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Figure 3: Statistical response characteristics of the half oscillator

error is found as ε̄ = 9.16× 10−8 for N = 4 samples which satisfies the threshold criterion for
selecting the sparse NARX model. It is observed that the selected final sparse NARX model has
5 terms in the polynomial basis matrix which are

{
yτ−1, y

3
τ−2, ξτ−1, ξτ−2, ξτ−2y

2
τ−2

}
. Therefore,

5 surrogate models are required to be identified for the prediction of the stochastic response.
For the purpose of uncertainty quantification, the time dependent mean and standard de-

viation are plotted in Figure 3 by MCS (N = 3× 104), sparse PCE-NARX (N = 4) and by
sparse KNARX model (N = 4). It is clearly seen from Figure 3 that the time varying mean
and standard deviation are predicted quite well by both sparse PCE-NARX and sparse KNARX
model.

To compare the response characteristics at certain time instances, the scatter diagrams (the
plot between the MCS and the predicted response) and the PDFs of the displacement are plotted
at 10 s, 20 s and 30 s in Figure 4. The R2 value and the error (Equation 11) of the corresponding
responses are listed in Table 3. Both surrogate models exhibit very promising results. However,
the sparse KNARX outperforms the sparse PCE-NARX in predicting the R2 value and the error
εy(t) for all the time instances.

Further, the uncertain maximum absolute displacement max (|y (t)|) is also predicted by
both the surrogate models which ultimately measures the safety of the system. The scatter
diagram and the PDF of the max (|y (t)|) are plotted in Figure 5. It can be observed from the
figure that the sparse KNARX outperforms the sparse PCE-NARX significantly in predicting
max (|y (t)|).

For the overall assessment on the accuracy and the efficiency of the surrogate models, the
overall mean error of the models is predicted by Equation 13 on 3× 104 number of samples in
Table 4. Along with this, the CPU times are also reported in Table 4. The error in predicting the
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Figure 4: Comparison of the instantaneous response characteristics at different time instances
for the half oscillator
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Table 3: Accuracy of the surrogate models in predicting the instantaneous response character-
istics for the half oscillator

Method Time instance εy(t) R2

Sparse PCE-NARX
t = 10 s

1.20× 10−3 0.9988
Sparse KNARX 6.62× 10−5 0.9999
Sparse PCE-NARX

t = 20 s
7.39× 10−4 0.9993

Sparse KNARX 5.05× 10−5 0.9999
Sparse PCE-NARX

t = 30 s
7.64× 10−4 0.9992

Sparse KNARX 4.95× 10−5 1.0000
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Figure 5: Prediction of the max (|y (t)|) for the half oscillator
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Table 4: Prediction of the accuracy and the efficiency of the surrogate models for the half
oscillator

Method ε̄ εmax(|y(t)|) R2
max(|y(t)|) CPU time

Sparse PCE-NARX 7.73× 10−4 7.01× 10−2 0.9299 24.34 s
Sparse KNARX 4.87× 10−5 4.30× 10−3 0.9957 23.18 s

MCS − − − 404.80 s

max (|y (t)|) (using Equation 11) and R2 value are reported in Table 4. All the results depict
that both the sparse KNARX and the sparse PCE-NARX are very efficient and accurate, even if
the former slightly outperforms the latter.

6 CONCLUSIONS

UQ of a dynamical system has been addressed in this paper. The main focus has been
made towards developing an accurate and efficient surrogate model for solving the UQ problem
of the nonlinear stochastic dynamical system in the time domain. In this line, a surrogate
sparse KNARX model has been proposed in a similar way to [3]. The main concept of the
proposed surrogate model is capturing the nonlinear behavior of a dynamical system through
the NARX model and further, propagating the uncertainty by Kriging. The applicability of the
proposed model has been shown through a simple nonlinear dynamic oscillator. Further, the
implementation of this model on the multi degree of freedom system can be considered as the
future scope of this study.
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Abstract 

A vibration based computational framework for damage identification of composite cylindrical 

parts, produced on a spinning axis by winded carbon fibers, cascaded on specified number of 

plies, in various angles and directions, was presented in this work. First, a discrete FE model 

of the examined structure is developed, by consecutive shell and solid elements, simulating each 

carbon fiber ply and resin matrix. Focusing on the updating methodology, coupled with robust, 

accurate and efficient finite element analysis software, the linear and non-linear behavior of 

the composite parts was examined under various load conditions followed by equivalent 

experimental trials, in order to classify the material properties (isotropic, orthotropic, 

anisotropic) and develop a high-fidelity FE model. This is achieved through combining modal 

residuals, that include the lowest identified modal frequencies and mode shapes, with response 

residuals, that include shape and amplitude correlation coefficients considering measured and 

analytical frequency response functions and time-histories of strains and accelerations. Single 

objective structural identification strategies without the need of sub-structuring methods, are 

used for estimating the parameters (material properties in each deformation plane) of the finite 

element model, based on minimizing the deviations between the experimental and analytical 

dynamic characteristics. A stochastic optimization evolution strategy is applied in parallel 

computing, to solve the single-objective optimization problem, arising from combining the 

above residuals. The effect of model error, finite element model parameterization, number of 

measured modes and number of mode shape components on the optimal models along with and 

their variability, are examined.  

 

Keywords: Modal identification, Model updating, Large Scale Structures, Structural 

Dynamics
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1 INTRODUCTION 

Carbon fiber reinforced polymer (CFRP) composites have gained much attention in recent 

years through their industrialized implementation and use, as a structural material for static and 

dynamic load bearing as well as resistance to accidental excitations and actions. Due to its low-

density, low thermal expansion and high strength, stiffness and corrosion resistance, 

applications from aerospace and automotive industry to building reinforcement and retrofit, as 

well as cryogenic fuel storage tanks are emerging rapidly [1-6]. CFRP composites are 

manufactured on a spinning axis of various radii, by compressing multiple cascaded plies of 

pre-tensed carbon fibers, which are winded in certain volume fractions and patterns of angles 

and directions, against a liquid resin polymer matrix. The final product is obtained after leaving 

the composite material in a furnace for specific duration in order to achieve full strength and 

hardening characteristics [7-9]. Being inherently sensitive to manufacturing treatment and due 

to its material variability, CFRPs strongly require certification results through numerical 

validation and hybrid (numerical - experimental) verification [10]. 

The most popular carbon fiber-reinforced composites, which have been extensively 

investigated by researchers, are the plain-woven CFRPs. Their popularity is attributed mainly 

to the low production cost combined to their effectiveness and efficiency under in-plane loading 

conditions. Presenting tension-compression asymmetric characteristics and orthotropic or even 

strong anisotropic mechanical behavior, due to varying fiber patterns, plain woven CFRPs are 

categorized to matrix-dominant presenting low strength and to fiber-dominant presenting high 

strength [11]. Thus, it is of high importance to fully understand and grow high confidence about 

the mechanical behavior and in-plane loading capacity of each CFRP made structure. Moreover, 

as most engineering applications require multi-axial loading strength, their behavior in such 

loading conditions need also to be examined. Combined experimental measurements, 

conducted in and out of laboratory, to numerical Finite Element (FE) model simulations are 

employed in order to investigate in the macroscopic mechanical characteristics and material 

properties of CFRP structures [10, 12, 13].  

In this work, the material properties of a specific woven CFRP structure are classified and 

tuned reconciling experimental data to equivalent numerical (FE) model computations. This is 

achieved through combining modal residuals, that include the lowest identified modal 

frequencies and mode shapes, with response residuals, that include shape and amplitude 

correlation coefficients considering measured and analytical frequency response functions and 

time-histories of strains and accelerations [14-19]. Single objective structural identification 

strategies without the need of sub-structuring methods, are used for estimating the parameters 

of the finite element model. A state-of-the-art optimization algorithm, namely, covariance 

matrix adaptation evolution strategy (CMA-ES) [20-23], is applied in parallel computing, to 

solve the single-objective optimization problem, arising from combining the above residuals 

[24, 25]. The applicability and effectiveness of the methods applied, is explored by updating 

the finite element model of a lightweight small-scale CFRP pin-joined structure. Issues related 

to estimating unidentifiable solutions [26-29] arising in FE model updating formulations are 

also addressed. A systematic study is carried out to demonstrate the effect of model error, finite 

element model parameterization, number of measured modes and number of mode shape 

components on the optimal models and their variability. 

The presentation in this work is organized as follows. The theoretical formulation of finite 

element model updating based on modal characteristics, frequency response functions is briefly 

presented in section 2. Section 3 presents the adopted residual in time domain. Section 4 

presents the experimental application, the development of the FE model of small-scale 

cantilever CFRP beam, its modal identification along with the FE model updating 
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parameterization and results for orthotropic material characterization. Finally, in section 5 the 

updated orthotropic material properties are verified on a small-scale pin-joined CFRP frame 

under dynamic excitation comparing experimental data and numerical results. Conclusions are 

summarized in section 6. 

2 MODAL AND FREQUENCY RESPONSE RESIDUALS – LINEAR MODELS 

Let a parameterized class of linear structural models used to model the dynamic behavior of the 

structure and let   N
R  be the set of free structural model parameters to be identified using the 

measured modal data. The overall measure of fit of the linear model, between the measured and 

the model predicted characteristics is formed in the following expression, combining modal and 

frequency response residuals [30, 31]: 

 1 1 2 2 3 3 4 4( ; ) ( ) ( ) ( ) ( )    = + + +J w w J w J w J w J  (1) 

using equally weighting factors 0iw , 1,2,3,4=i , with 1 2 3 4 1+ + + =w w w w . 

For the first group, the measure of fit 1( )J  is selected to represent the difference between the 

measured and the model predicted frequencies for all modes. For the second group, the measure 

of fit 2 ( )J  is selected to represent the difference between the measured and the model predicted 

mode shape components for all modes, given by: 

 
2 2

1 2

1 1

( )     ( )( ) ( )      
= =

= = r r

m m

r r

J and J  (2) 

where the modal data are used 0{ ( ),  ( ) , 1, , }     =
N

r r R r m  to formulate the following residuals: 

 
2 2

2

ˆ( ) ( )( )
( )       ( )

ˆ

ˆ

ˆ
 

    
   



 


=

−−
=

r r

r r rr r

r r

and  (3) 

and for the second group the measure of fit 3( )J  and 4 ( )J  represent the frequency response 

measures of fit as follows: 
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constitute the global and amplitude correlation coefficients [32], where  ( )X kH and  ( )A kH  

are the experimental (measured) and the numerical (predicted) response vectors at matching 

excitation - response locations, for any measured frequency point, k . 

3 TIME DOMAIN RESPONSE RESIDUALS – NONLINEAR MODELS 

Additionally, parameter estimation of nonlinear model is based on response time history 

measurements such as acceleration and displacements. This formulation has the advantage of 

applicability over both linear and non-linear systems; it compares the measured raw data of the 

experimental arrangement to the equivalent predictions of the numerical model. In this way, all 
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available information is preserved and systematic errors of the identification procedure are 

alleviated.  

The measure of fit is given by: 

 

 

(7) 

where ( )|ij mg M
 
is the numerical time-history of the introduced FE model and ˆijy is the 

respective experimental signal. Subscripts i  correspond to the sensor (accelerometer) location 

and measurement direction, and j  corresponds to the time-step instant. n  is the total number 

of measured sensor locations and directions, whereas m  is the total number of measured time-

steps (number of observations).  

4 EXPERIMENTAL APPLICATION 

In order to examine the complexity and orthotropic material mechanical behavior of the used 

CFRP, two types of experimental arrangements were set. Firstly, a static tension-compression 

experimental test, as presented in Figure 1. Specifically, in this figure shown the tension-

compression experimental device and its controller board, the strain gauge sensors placed on 

the CFRP tube and the equivalent FE model.  

 

Figure 1 Experimental setup of composite cylindrical tube in tension-compression test device. 

Moreover, dynamically induced excitation tests were conducted at a cantilever CFRP tubular 

beam as presented in Figure 2. Specifically, Figure 2 presents the cantilever CFRP small-radius 

tube along with two (2) tri-axial accelerometers, a strain gauge sensor and a load cell at the free 

end of the cantilever beam, where an electromagnetic shaker device is mounted. Both 

arrangements were introduced in order to acquire knowledge of the mechanical behavior of the 

CFRP material and thus characterize its orthotropic behavior. 

The CFRP is consisted of a stack of nine (9) plies with equal thickness and orientation angles 

apart from one ply. Specifically, plies 1 to 6 and 8 to 9 have a thickness of   t =0.175mm at  q =55°  

and  q =-55° orientation angles consecutively. Ply 7 has a thickness of   t =0.16mm at  q =86° . 

The nominal material parameters of the 2D orthotropic material used to model the CFRP was 

  
E

1
= 146,45GPa  and 

  
E

2
= 7.73GPa  for the modulus of elasticity in X and Y direction 

respectively, 
  
v

xy
= v

yx
= 0.12  is the Poisson’s ration for in-plane bi-axial loading, and 
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G

12
= 3.54GPa, G

xz
= 3.95GPaand G

yz
= 2.80GPa  are the in-plane, transverse for shear in XZ 

plane and transverse for shear in YZ plane shear moduli and 
  
r =1600kgr / m3 is the density. 

 

Figure 2 Experimental setup of cantilever CFRP tube under dynamic load excitation. 

4.1 Development of the FE model and modal analysis of cantilever CFRP tube  

The geometry of the cantilever CFRP beam is discretized with composite shell elements and 

tetrahedral solid elements for the aluminum ends using appropriate pre-processing commercial 

software [33]. The total number of DOFs was 1,500,000 [34]. The detailed FE model is 

presented in Figure 3. Indicative mode shapes of the predicted by the nominal FE model are 

presented in Error! Reference source not found. colored by spectrum colors of the normalized 

deformations. 

 

Figure 3 FE model of cantilever CFRP tube along with aluminum drop-outs. 

 

Figure 4 Typical eigenmodes predicted by the nominal FE model. 
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4.2 Experimental modal analysis 

After developing the nominal finite element model, an experimental modal analysis procedure 

of the CFRP cantilever beam was performed in order to quantify the dynamic characteristics of 

the examined structure. First, all the necessary elements of the FRF matrix, required for 

determining the response of the structure were determined by imposing impulsive loading [14-

17, 19]. The measured frequency range of the test was 0-600 Hz. An initial investigation 

indicated that the beam has seven (7) natural frequencies in this frequency range.  

 

Figure 5 Typical FRFs for modal identification. 

Figure 5 presents typical Frequency Response Functions (FRFs) at three components X, Y and 

Z for two specific measuring points under a specific impulse location and direction. Moreover, 

the top diagram of Figure 6 presents a stabilization diagram of a detailed FRF for modal 

identification, whereas the lower diagram is the detailed view of the FRF. 

 

Figure 6 Detailed FRF and stabilization diagram for modal identification. 
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4.3 FE model parameterization and updating results 

The parameterization of the finite element model is introduced in order to facilitate the 

applicability of the updating framework. The parameterized model is consisted of five (5) parts, 

as shown in Figure 6.  

 

Figure 7 Parts of the parameterized FE model. Detail of CFRP tube and aluminum drop-out. 

Part 1 is modeled with composite shell elements and orthotropic material properties while parts 

2 to 5 are modeled with solid elements and isotropic material properties. Specifically, part 2 is 

a steel base, parts 3 and 4 represent the aluminum drop-outs of the beam and part 5 is the glue 

between the CFRP and the aluminum end. All orthotropic material properties along with the 

nine ply thicknesses  t  and orientation angles q were used as design variables of part 1. 

Additionally, Young’s moduli and the material densities of isotropic material parts were also 

used as design variables. Apart from material properties parameters, the Rayleigh modal 

damping ratios are used as design variables. Specifically, modal damping ratios 1 to 
 
z

7
 

pertaining to the first seven (7) eigenmodes are included in the design variables, so as to enhance 

fitting of compared time histories and FRFs, using nominal damping ratio of 3%, as the most 

common for a composite and steel structures. The total number of design variables for the FE 

model is thirty-six (36). 

Table 1 Comparison between identified, nominal and updated FE predicted modal frequencies. 

 

Mode Identified Numerical (before updating) Numerical (after updating) 

 Frequency (Hz) Damping (%) Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

1 18.16 0.85 15.54 16.86 18.48 1.73 

2 18.18 0.63 16.62 11.79 19.12 2.82 

3 149.45 0.82 137.23 8.90 147.53 1.30 

4 167.51 0.25 144.22 16.15 168.8 0.76 

5 414.32 0.71 408.12 1.52 415.34 0.25 

6 436.14 0.91 428.12 1.87 435.54 0.14 

7 531.36 1.2 472.35 12.49 524.87 1.24 
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The CMA-ES framework is applied at  ±10% from the nominal values as design bounds, in 

order to update the developed FE model using the objective function of equation (1) in 

combination to equation (7), combining modal residuals that include the lowest identified 

modal frequencies with mode shapes and response residuals that include shape and amplitude 

correlation coefficients considering measured and numerical frequency response functions 

including components at all sensor locations, along with time domain acceleration time-

histories. Finally, the results of the FE model-updating framework are presented in Table 1. A 

comparison between identified, nominal and updated FE predicted modal frequencies is also 

presented. 

5 ANALYSIS OF A SMALL-SCALE PIN-JOINTED CFRP STRUCTURE 

Finally, the experimental arrangement presented in Figure 8 was set up in order to verify the 

updated material parameters of the CFRP. Four (4) tri-axial accelerometers were placed on the 

pin-joined CFRP frame structure, which was anchored on flat plate parallel to the ground, on a 

vertical concrete column. An electromagnetic shaker was mounted on a free end of the frame 

where a load cell sensor was placed to record imposed forces under dynamic excitation load.  

 

Figure 8 Experimantal setup of small-scale CFRP pin-joined structure. 

Additionally, a detailed FE model of a small-scale CFRP pin-joined structure was also 

developed. The geometry of the structure is discretized with composite shell and solid elements 

as presented in Figure 9. The same figure also presents a detailed view of the FE model at a pin-

joint and two indicative mode shapes of the FE model, using the updated orthotropic material 

parameters, colored by spectrum colors of the normalized deformations. 
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Figure 9 FE model and typical eigenmodes of CFRP pin-joined structure. 

Finally, a comparison between experimental and numerical acceleration time histories at 

matching locations and excitation loading is presented in Figure 10. Specifically, time-histories 

of acceleration at the measured components X, Y and Z of the experimental arrangement under 

harmonic excitation is presented for two measured locations with black continuous line, 

whereas the numerically predicted equivalent response of the FE model using the updated 

parameters is presented with red continuous line. The experimentally obtained acceleration time 

histories, result very close to those numerically computed, concluding in a high fidelity FE 

model that could be used for damage identification of the composite cylindrical parts of the 

structure. 

 

Figure 10 Comparison between experimental and numerical acceleration time histories in X, Y and Z local 

dirrections at a random force excitation. 
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6 CONCLUSIONS 

In this work, a vibration based computational framework for developing a high fidelity FE 

model of a CFRP structure, characterizing its orthotropic material properties, that could be used 

for damage identification of its composite cylindrical parts, is presented. At first, a discrete FE 

model of a cantilever CFRP tubular beam is developed, by consecutive composite shell 

elements and solid elements, simulating each carbon fiber ply and resin matrix and its aluminum 

and steel dropouts respectively. A state of the art FE model updating framework, utilizing 

CMA-ES optimization algorithm coupled with robust, accurate and efficient finite element 

analysis software, was applied in order to reconcile modal residuals that include the lowest 

identified modal frequencies, mode shapes, response residuals that include shape and amplitude 

correlation coefficients and time-histories of accelerations of experimentally measured data and 

numerical FE model computation results, in order to classify the material properties (isotropic, 

orthotropic, anisotropic), update its parameters and develop a high-fidelity FE model. The 

updated orthotropic material properties are verified on a small-scale pin-joined CFRP frame 

under harmonic dynamic excitation comparing experimental data and numerical results. 
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Abstract. The paper deals with the modelling, response quantification and vibration control of
rigid-plastic blocks in presence of stochastic forcing with indicative application to seismic engi-
neering. The full dynamic interaction between a rigid-plastic block and a linear base-isolation
system is considered and efficient piecewise numerical solutions are derived for analysing the
true nonlinear response, in comparison with the base-fixed counterpart. Stochastic forcing is
modelled as stationary filtered white noise, characterised by a modified version of the Kanai-
Tajimi power spectrum suggested by Clough and Penzien, commonly used in earthquake engi-
neering applications. A statistical linearisation approach is adopted in view of approximating
the strongly nonlinear systems during the sliding motion regime, which conveniently permits
quantification of the steady-state, stationary response statistics. The accuracy of the lineari-
sation approximation is investigated, and the effectiveness of the base isolation in suppressing
the extreme forcing delivered to the block is assessed. The work delivers insights into the deter-
mination and understanding of the probabilistic characteristics of the response of dynamically
driven base-fixed and base-isolated rigid-plastic systems, further encouraging investigations on
other types of structures, isolation systems and hazard scenarios.
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1 INTRODUCTION

For the vast majority of the structural systems encountered in engineering, it is of paramount
importance to understand the dynamics that underpin their response and reliability in the occur-
rence of extreme environmental loading conditions. Examples include motions of high speed
crafts and ships in rough seas [1], vibration of buildings and offshore structures due to wave
impacts [2], wind loads [3] and earthquakes [4]. It is widely common to cast idealised models
for these structures or their subsystems, as a starting point in characterising their behaviour. The
class of block-type models, for instance, can be considered representative of the acceleration-
sensitive rigid systems, that is, a broad spectrum of the mechanical, electrical and electronic
equipment of engineering interest (e.g. transformers, emergency generators, computer cabi-
nets, compressors, medical and telecommunications equipment etc.) whose survivability and
operational continuity during transportation and throughout their design life is critical. Inherent
nonlinearities and uncertainties in their properties, the presence of randomness in the external
excitation as well as the type of hazard, pose challenges that render the determination of their
response statistics as a non-straightforward task.

Of interest is the case of the idealised sliding block, exhibiting rigid-plastic behaviour, a
widely accepted model representing a broad range of structural and geotechnical systems, in-
cluding buildings on moving foundation, equipment, retaining walls, slopes and masonry. Sev-
eral studies have been devoted to the deterministic seismic analysis of such blocks, including
those dealing with idealised ground acceleration pulses [5–7] and recorded earthquake ground
motions [8]. The stochastic response of such systems has been examined in presence of white
noise [9] and filtered white noise, characterised by the Kanai-Tajimi [10, 11] power spectrum
[12–17], mostly for applications dealing with rigid structures resting on a frictional foundation.
Modelling the excitation as white noise, however, implies infinite power of the resulting pro-
cess, which is unphysical. Nonetheless, such idealisation can deliver useful insights in analysis,
provided the results are carefully interpreted. The Kanai-Tajimi spectrum on the other hand,
provides a more realistic model for earthquake engineering applications, however, it has been
criticised due to the presence of low-frequency content [18].

Among risk mitigation technologies, base isolation aims at limiting the vibration response of
the system to be controlled via the use of supports that uncouple the structure from the ground.
Theory and practice are covered in several books and papers; a comprehensive review of the
subject is given by Kelly [19]. Previous endeavours in this context investigate the effectiveness
of seismic isolation on the primary load-bearing structure [20], with limited efforts to exam-
ine such effects on the performance of components. The ‘cascade’ response of rigid-plastic
systems, for instance, has been examined in base-isolated buildings subjected to broadband
ground motions [21, 22]. Adequate characterisation of the nonlinear dynamics for the com-
bined primary-secondary system assembly is in fact necessary, when the equipment vibrates
close to, or is tuned with the primary structure. From a different viewpoint, isolation directly
applied on the component can be a viable cost-effective strategy to protect sensitive equipment
in critical facilities [19]. Nevertheless, to our knowledge, the only past publication dealing with
isolation directly on the sliding component is the one by Roussis et al. [23], which tackles the
problem on a conventional deterministic basis.

Recognising the importance of understanding the response probabilistic characteristics of
such systems, this paper addresses the modelling, response quantification and vibration control
of rigid-plastic blocks, in presence of stochastic forcing with indicative application to seismic
engineering. The scope of the paper is fivefold: (1) to characterise the full dynamic interaction
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between a rigid-plastic block and a linear base-isolation system; (2) to derive efficient piece-
wise numerical solutions for quantifying the nonlinear response of fixed-base and base-isolated
rigid-plastic blocks to a general-type excitation; (3) to quantify the statistics of the steady-state,
stationary response of the associated equivalent linear systems during the sliding motion regime,
in presence of excitation characterised by the Clough-Penzien spectrum; (4) to investigate the
acuracy of the linearisation approximation; and (5) to assess the effectiveness of the isolation
in suppressing the seismic forcing delivered to the block. The work will form the basis for
extending our investigations to other types of systems and hazard scenarios.

2 VIBRATION OF FIXED-BASE AND BASE-ISOLATED RIGID-PLASTIC BLOCKS

2.1 Fixed-base rigid-plastic block

Let us consider first the case of a rigid-perfectly plastic single-degree-of-freedom (SDoF) block
(S), as depicted in Figure 1(a). The block has a mass ms and is subjected to the horizontal base
acceleration ξ̈(t), where the overdot denotes differentiation with respect to time and us(t) is the
unidirectional displacement, relative to the ground.

(a) (b)

Figure 1: Free-standing sliding block (a) and force-displacement relationship (b).

The system exhibits infinite pre-yielding stiffness and infinite ductility, and the restoring
force takes the form:

fs =

{
∈ [−µ gms, µ g ms] , u̇s = 0

µ gms sgn (u̇s(t)) , otherwise
, (1)

in which µ = as/g is the coefficient of sliding friction assuming horizontal contact surface, as

being the system’s specific strength (i.e. the level of the ground acceleration ξ̈(t) required for
S to yield), and g is the acceleration due to gravity; sgn(•) denotes the signum function (i.e.
sgn(x) = +1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0). Evidently, the
formalism given by Eq. (1) contains information about two distinct motion regimes, namely,
sticking (i.e. when u̇s = 0), and slipping [24].

The equation of motion for S is:

üs(t) =

{
0, us, u̇s = 0

−µ g sgn (u̇s(t))− ξ̈(t), otherwise
. (2)

The initiation condition for the sliding regime is set to |ξ̈(t)| = µ g (Figure 1(b)). Following
initiation, an instantaneous stop or a full stop can occur in the system once the velocity drops
to zero (u̇s = 0). In the former case, the motion will reverse or it will continue in the same
direction, while in the latter case the system will remain at rest until the initiation condition is
exceeded again.

61



S. Kasinos and F. Ma

2.2 Base-isolated rigid-plastic block

Consider now the case of a two-degree-of-freedom (TDoF) system, comprising of the block S
being supported on a linear base isolation system (B) undergoing horizontal accelerated motion,
as depicted in Figure 2(a), where ub(t), us(t) are the unidirectional displacements of B and S,
relative to the ground, and ub

s (t) = us(t)− ub(t) is the motion of S relative to B.

(a) (b)

Figure 2: TDoF system: sliding block on a linear isolation system (a); free-body diagram (b).

Figure 2(b) shows the forces acting on B and S, where mb and ms are the associated masses.
Further extending the formulation in [4], fb(t) = ω2

bmb ub(t) represents the restoring force in
B, where ωb =

√
k/mt is the associated natural circular frequency, k being the stiffness of a

linear spring and mt = mb + ms the total mass of the system. Furthermore, c = 2 ζωb mt is
the viscous damping coefficient, where ζ is the equivalent viscous damping ratio. The rigid-
perfectly plastic S system finally assumes a restoring force, fs as in Eq. (1), where u̇b

s is used in
place of u̇s.

Dynamic equilibrium of the mass mp in the horizontal direction then gives:

üb(t) = −γ üb
s (t)− 2 ζωb u̇b(t)− ω2

b ub(t)− ξ̈(t) ; ub(0) = u̇b(0) = 0 , (3)

where γ = ms/mt is the ratio of the block’s mass to the total mass of the system, controlling
the relative significance of the feedback action on B.

Setting ub
s (t) = u̇b

s (t) = 0 in the above for the sticking phase where no relative motion is
exhibited for S, the resulting system can be interpreted as an equivalent oscillator with massmt.

Equilibrium of the forces (Figure 2(b)) gives the equation of motion for S:

üb
s (t) =

{
0, ub

s , u̇
b
s = 0

−µ g sgn
(
u̇b

s (t)
)
− üb(t)− ξ̈(t), otherwise

. (4)

The initiation condition for sliding in the TDoF system is set to |üb(t) + ξ̈(t)| = µ g, üb(t)
being a solution of Eq. (3).

Equations (3) and (4) are cast in a state space form (i.e. explicit expressions of the state
variables) and are solved together. In this case, the state vector is:

y (t) =


{
ub(t) u̇b(t)

}>
, ub

s , u̇
b
s = 0{

ub
s (t) u̇b

s (t) ub(t) u̇b(t)
}>

, otherwise
, (5)

62



S. Kasinos and F. Ma

whose time derivative is:

ẏ (t) =



{
u̇b(t)

−2 ζ ωbu̇b(t)− ω2
bub(t)− ξ̈(t)

}
, ub

s , u̇
b
s = 0

u̇b
s (t)

−µ g sgn(u̇b
s (t))+2 ζωbu̇b(t)+ω2

bub(t)

1−γ

u̇b(t)
γ µ g sgn(u̇b

s (t))−2 ζωbu̇b(t)−ω2
bub(t)

1−γ − ξ̈(t)


, otherwise

. (6)

During the sticking phase, integration is carried out solely for B based on the top part of
Eq. (6), using the initial conditions from the last step. Following initiation integration proceeds
thereafter using the bottom part of the equation.

It is worth mentioning that the formulation presented herein, is in agreement with an equiv-
alent expression in [23] for the sliding motion regime, and delivers further insights during the
sticking motion regime.

3 NUMERICAL PROCEDURE FOR PIECEWISE RESPONSE QUANTIFICATION

Owing to the piecewise linear form of the dynamical systems considered, a highly efficient
numerical procedure is employed for quantifying the true nonlinear response due to a general-
type of excitation. In what follows, each regime of motion is separately considered and the
response time history is constructed by piecing together the individual segments.

3.1 Fixed-base rigid-plastic block

The response of the SDoF system in Eq. (2) is considered first during the sliding motion regime.
Accordingly, a numerical scheme [4] is adopted for the response evaluation by interpolating the
excitation over each time interval. The response vector is then readily determined through the
recurrence formula:

y(ti+1) =

[
1 ∆t
0 1

]
· y(ti)−

[
∆t2

3
∆t
2

]
· η(ti)−

[
∆t2

6
∆t
2

]
· η(ti+1) , (7)

where y(t) = {us(t), u̇s(t)}
>

and η (t) = ξ̈(t) +µ g sgn (u̇s(t)). Notably, the only restriction in
Eq. (7) is that ∆t is sufficiently low to closely approximate the excitation.

3.2 Base-isolated rigid-plastic block

The TDoF system in Eq. (6) is considered next. Similar to the fixed-base block, the response
is separately derived for the sticking and sliding motion regimes. The response vector is then
obtained from the recurrence formula:

y(ti+1) = Θ(∆t) · y(ti) + Γ0(∆t) · µ g sgn
(
u̇b

s (t)
)

+ Γ1(∆t) · ξ̈ (ti) + Γ2(∆t) · ξ̈ (ti+1) , (8)

where Θ(∆t) is the so-called transition matrix, and Γ0(∆t), Γ1(∆t) and Γ2(∆t) are vectors
depending on ∆t, which is tacitly assumed sufficiently small so that the interpolation of the
force is satisfactory.
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During the sticking regime, Θ(∆t) is given by:

Θ(∆t) =

[
A(∆t) B(∆t)

−ω2
b B(∆t) A(∆t)− 2 ζωbB(∆t)

]
, (9)

where A(∆t) = e−ζωb∆t cos(ωd∆t) + ζωb B(∆t), B(∆t) = e−ζωb∆t

ωd
sin(ωd∆t), and ωd =

ωb

√
1− ζ2 is the damped circular frequency.

Furthermore, Γ0(∆t) is a zero vector and Γ1(∆t), Γ2(∆t) are given by:

Γ1(∆t) =

 ωb∆tA(∆t)+2 ζ(A(∆t)−1)−ωbB(∆t)

ω3
b∆t

1−A(∆t)

ω2
b∆t

− B(∆t)

 ; (10)

Γ2(∆t) =

 −2 ζA(∆t)+ωbB(∆t)−ωb∆t+2 ζ

ω3
b∆t

A(∆t)−1

ω2
b∆t

 . (11)

For the sliding regime, the response depends on:

Θ(∆t) =


1 ∆t 1− ζωb F− ωd1Q ∆t+ (γ − 1)F
0 1 ω2

b F 1 + ζωb F− ωd1Q
0 0 ζωb F + ωd1Q (1− γ)F
0 0 −ω2

b F ωd1Q− ζωb F

 ; (12)

Γ0(∆t) =


γ(ζωb F+ωd1Q−1)

ω2
b

− ∆t2

2

−γ F−∆t

−γ(ζωb F+ωd1Q−1)

ω2
b

γ F

 ; (13)

Γ1(∆t) =



6(γ−1)ζ2Fωb+ωb(∆t3(−ω2
b)+3(γ−1)2F+3(γ−1)∆tQωd1)+3(γ−1)ζ(∆tFω2

b+2Qωd1−2)
3∆tω3

b

−∆t2ω2
b−2Fωb(∆tωb+ζ)+2γ(Fωb(∆tωb+ζ)+Qωd1−1)−2Qωd1+2

2∆tω2
b

− (γ−1)((γ−1)Fωb+ζ(Fωb(∆tωb+2ζ)−2)+Qωd1(∆tωb+2ζ))

∆tω3
b

(γ−1)(Fωb(∆tωb+ζ)+Qωd1−1)

∆tω2
b


; (14)

Γ2(∆t) =



−∆t3ω3
b+6(γ−1)ωb(∆t+(γ−1)F)+12(γ−1)ζ2Fωb+12(γ−1)ζ(Qωd1−1)

6∆tω3
b

−∆t2ω2
b+2ζFωb−2γ(ζFωb+Qωd1−1)+2Qωd1−2

2∆tω2
b

(γ−1)(ωb(∆t+(γ−1)F)+2ζ(ζFωb+Qωd1−1))

∆tω3
b

− (γ−1)(ζFωb+Qωd1−1)

∆tω2
b


, (15)

where the above depend on F(∆t) = 1
ωd1
e
ζωb ∆t

γ−1 sin(ωd1∆t
1−γ ), Q(∆t) = 1

ωd1
e
ζωb ∆t

γ−1 cos(ωd1∆t
1−γ ) and

ωd1 = ωb

√
1− γ − ζ2.
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In using the piecewise linear solutions presented herein, the response is evaluated separately
during the sticking and sliding motion regimes and once both components have been determined
the overall response is constructed by piecing together the individual segments. Notably, an
iterative scheme needs to be employed to identify the time of initiation for each regime of
motion as well as subsequent changes in the regime when the velocity changes sign. Details on
the numerical implementation procedure are provided in Appendix A.

4 STOCHASTIC MODEL OF SEISMIC FORCING

Let us now consider a ground acceleration ξ̈(t), modelled as stationary filtered white noise
process, characterised by a more realistic version of the Kanai-Tajimi power spectrum [10, 11],
suggested by Clough and Penzien [25], commonly used in earthquake engineering applications.

The spectral density function takes the form:

Sξ̈(ω) = S0 ·Hk(ω) ·Hc(ω) ; −∞ < ω <∞ , (16)

where S0 represents a constant power spectral density level due to white noise, Hk(ω) and
Hc(ω) represent the Kanai-Tajimi and Clough-Penzien filters, respectively, given by:

Hk(ω) =
1 + 4 ζ2

g (ω/ωg)
2(

1− (ω/ωg)
2)2

+ 4 ζ2
g (ω/ωg)

2
; Hc(ω) =

(ω/ωf )
4(

1− (ω/ωf )
2)2

+ 4 ζ2
f (ω/ωf )

2
,

(17)
where the parameters ωg and ζg denote the frequency and damping ratio of the soil layer, re-
spectively, and ωf , ζf control the Clough-Penzien filter’s characteristics.

In this model, the first filter Hk(ω) attenuates the frequency content for ω > ωg as ω →
∞, and amplifies the frequencies in the vicinity of ω = ωg; the second filter Hc(ω) is then
introduced to eliminate the low-frequency content, thus assuring finite power for the ground
displacement.

Table 1 lists filter parameter values for producing reasonable spectral shapes for ‘firm’,
‘medium’ and ‘soft’ soils, as suggested in [26]. Figure 3 plots the corresponding curves for
S0 = 1, where the soft soil indicates a narrow-band process while the firm ground is broad-
band with significant high frequency content.

0 10 20 30 40 50
0

2

4

6

8

ω [rad/s]

S
ξ̈
(ω

)

Firm
Medium
Soft

Figure 3: Clough-Penzien spectrum for different soil types [26].
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Table 1: Filter parameters for different soil types [26].

Soil type ωg [rad/s] ζg ωf [rad/s] ζf

Firm 15.0 0.6 1.5 0.6
Medium 10.0 0.4 1.0 0.6
Soft 5.0 0.2 0.5 0.6

5 STEADY-STATE STATIONARY RESPONSE QUANTIFICATION

We next consider the case where the statistics of the steady-state, stationary response are of
interest and the intensity of the base acceleration is sufficiently high such that the probability of
sticking can be regarded negligible. In this case, the bottom part of Eq. (5) and (6) is valid for
all time.

5.1 Fixed-base sliding block

Following the procedure delineated in [17] the nonlinear Eq. (2) is replaced with a linear one:

üs(t) = −β u̇s(t)− ξ̈(t) , (18)

where β represents a linear viscous damping term.
Minimising the mean square of the error ε = µ g sgn (u̇s(t)) − β u̇s(t) with respect to β

and after manipulation based on the standard assumption of zero mean Gaussian response, one
obtains:

β =

(
2

π

) 1
2 µ g

σu̇s

, (19)

where σ2
u̇s

= E 〈u̇2
s (t)〉 is the mean square of u̇s(t).

Further manipulation based on the specification of the spectrum, gives σus and σu̇s in terms
of β:

σ2
us

=

∫ ∞
−∞

(
ω2(β2 + ω2)

)−1
Sξ̈(ω) dω ; σ2

u̇s
=

∫ ∞
−∞

(
β2 + ω2

)−1
Sξ̈(ω) dω . (20)

Solution to Eq. (20) was presented in [17] for white noise excitation i.e. Sξ̈(ω) = S0, in
which case σ2

u̇s
= πS0/β and β = 2(µ g)2/π2S0. In the case where the excitation is charac-

terised by the Kanai-Tajimi spectrum (i.e. setting Hc(ω) = 1 in Eq. (16)), solution is reported
in [16]. Notably, for both these cases, the first integral in Eq. (20) is infinite which implies that
the mean-square of the displacement will indefinitely grow with time.

Further extending the existing contributions, we present here solutions for the Clough-Penzien
spectrum in Eq. (16).

Analytical evaluation of Eq. (20) gives:

σ2
us

=
πS0 ω

2
g(C1 + C2)

2 ζf ζg ωf C3 C4

; σ2
u̇s

=
πS0 ω

2
g(C5 + C6)

2 ζf ζg C3 C4

, (21)

where the coefficients C1 - C6 are given by:
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C1 = β (2 ζfωf + 2 ζgωg + β) C8 ; (22a)

C2 = ωg
(
ω3
f C7 + ζgωg

(
4ω2

f

(
ζ2
f + ζ2

g

)
+ 4ζfζgωfωg + ω2

g

))
; (22b)

C3 =
(
β2 + 2βζfωf + ω2

f

) (
β2 + 2βζgωg + ω2

g

)
; (22c)

C4 = 2ω2
fω

2
g

(
2ζ2
f + 2ζ2

g − 1
)

+ 4ζfζgω
3
fωg + 4ζfζgωfω

3
g + ω4

f + ω4
g ; (22d)

C5 = ωg(2β(ζfωg + ζgωf ) + ωfωg) C8 ; (22e)

C6 = β2
(
ω3
g C7 + 4ζ3

g

(
4ζ2
fωfω

2
g + ω3

f

)
+ 16ζfζ

4
gω

2
fωg + ζgωfω

2
g

)
, (22f)

in which C7 = ζf
(
4 ζ2

g + 1
)

and C8 = 4 ζ3
gω

2
f + ζgω

2
g + ζf

(
4ζ2
g + 1

)
ωf ωg.

On combining Eq. (19) with Eq. (21), the resulting algebraic equation can be solved numer-
ically for β and therefore σus and σu̇s can be evaluated from Eq. (21).

5.2 Base-isolated sliding block

The TDoF base-isolated block is next considered. The system is of chain-like structure and
statistical linearisation is admissible. Accordingly, the term sgn (u̇s(t)) in Eq. (6), is replaced
with the linear viscous damping term β, which assumes a similar form as the fixed-base block,
except that σu̇b

s
(i.e. the standard deviation of u̇b

s (t)), is used in place of σu̇s in Eq. (19).
The equation of motion of the equivalent linear system then reads:

üb
s (t) =

−βu̇b
s (t) + 2 ζωb u̇b(t) + ω2

b ub(t)

1− γ
; (23a)

üb(t) =
γ βu̇b

s (t)− 2 ζωb u̇b(t)− ω2
b ub(t)

1− γ
− ξ̈(t) , (23b)

where the spectral density matrix of the response process takes the form:

Su(ω) = H(ω) · Sf (ω) ·H>∗(ω) , (24)

in which Sf (ω) denotes the spectral density matrix of the forcing, the symbols > and ∗ de-
note transposition and conjugation, respectively, and H(ω) is the matrix of frequency response
functions, given by:

H(ω) =

 ω2−2 i ζωb ω−ω2
b

ωG −ω
G

−γ ω
G

ω−β i
G

 , (25)

where G(ω) = ω2((γ − 1)ω + i β) + 2 ζωb(β + i ω)ω + ω2
b(ω − i β).

Further, the cross-variance of the response is evaluated through:

E 〈ui(t)uj(t)〉 =

∫ ∞
−∞

Suiuj(ω) dω ; E 〈u̇i(t)u̇j(t)〉 =

∫ ∞
−∞

ω2Suiuj(ω) dω , (26)

where Suiuj(ω) is the (i, j)th element of Su(ω).
An alternative iterative procedure is employed for evaluating Eq. (26). Specifically, it is first

assumed that β = 0 and the cross-variance terms in Eq. (26) are evaluated. These are used
for determining a new estimate of β, which results in an update to Eq. (26). The procedure is
repeated several times until accuracy is satisfactory.
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6 NUMERICAL INVESTIGATIONS

The contributions presented in the preceding sections are next investigated by simulation tech-
niques. Purpose is the quantification of the statistics of the steady-state stationary response of
the systems under consideration due to filtered white noise excitation.

6.1 Piecewise linear solutions

The piecewise linear solutions presented in § 3 are first demonstrated on the nonlinear response
quantification of fixed-base (FB) and base-isolated (IB) blocks with the purpose of assessing
the validity of approximating the rigid-plastic behaviour with pure-sliding one (i.e. neglecting
the rigid regime of motion, assuming that sliding is valid for all time). In the sequel, us(t) is
used in place of ub

s (t), to represent the motion of the block relative to its base.
Figures 4(a) and 4(b) show two simulated realisations of the earthquake excitation, charac-

terised by the Clough-Penzien power spectrum for a medium soil with ωg = 10 rad/s, ζg = 0.4,
ωf = 1 rad/s, ζf = 0.6 and S0 = 0.0025 m2/s3. Details on the procedure used for generating
the excitation time series are provided in Appendix B.

The relative displacement and relative velocity response time histories of the FB and IB
systems have been quantified next using the proposed piecewise linear solutions. Each system
has been successively modelled with idealised rigid-plastic (R) and sliding (S) behaviour, and
the isolation parameters γ = 0.04, ωb = 1.5 rad/s and ζ = 0.05 have been assumed.

Figures 4(c) and 4(e) show the response due to the first realisation of the excitation with µ =
0.02, indicating excellent agreement between the rigid-plastic and sliding solutions. Plotting
the response histories for the second realisation in Figures 4(d) and 4(f), with µ = 0.06, shows
pronounced variations between the rigid-plastic and sliding solutions for both the two systems
under consideration.

Overall, considering the probability of sticking negligible appears reasonable for low values
of µ, or when the excitation is sufficiently high. Under these conditions, the approximation is
admissible for use in the statistical linearisation procedure. In cases where these conditions are
not met, such an approximation can be checked a priori. It is finally noted that demonstrating
the validity of the piecewise linear solutions through comparisons with reference ones, falls
outside the scope of this paper.

6.2 Statistical linearisation

The effectiveness of the statistical linearisation (SL) procedure described in § 5 is investigated
next for the two systems under consideration.

Figure 5 compares the standard deviation of the relative velocity response determined us-
ing the SL procedure, with the nonstationary one numerically evaluated using the piecewise
linear solutions via pertinent Monte Carlo (MC) simulation (N = 200 realisations), for vari-
ous parameter combinations of ωb and µ. The analysis has been carried out for a medium soil
(ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6), and with parameters S0 = 0.003 m2/s3,
γ = 0.04, and ζ = 0.05.

As shown, for the fixed-base block, the standard deviation of the velocity response reaches
stationarity in very short time. Further, for µ = 0.01 and µ = 0.03, there is good agreement be-
tween the MC and SL, confirming the validity of the expressions derived in § 5.1. Interestingly,
the accuracy of the SL approximation deteriorates at higher values of µ, as evidenced by the
large deviation for µ = 0.05. This is in agreement with investigations carried out in [16] using
the Kanai-Tajimi power spectrum.
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Figure 4: Response of fixed-base (FB) and base-isolated (IB) block, modelled with idealised rigid-plastic (R)
and sliding (S) behaviour: realisations of base excitation (a, b) due to filtered white noise (S0 = 0.0025m2/s3,
ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6); corresponding relative displacement and relative velocity
response time histories (γ = 0.04, ωb = 1.5 rad/s and ζ = 0.05) for µ = 0.02 (c, d) and µ = 0.06 (e, f).

69



S. Kasinos and F. Ma

0

2

4

6

8

10
·10−2

ωb = 0.6, µ = 0.01

σ
( u̇

s)
[ m

]

0

2

4

6
·10−2

ωb = 0.6, µ = 0.03
0

1

2

3

4
·10−2

ωb = 0.6, µ = 0.05

0

5

10

15

20
·10−2

ωb = 0.8, µ = 0.01

σ
( u̇

s)
[ m

]

0

2

4

6
·10−2

ωb = 0.8, µ = 0.03
0

1

2

3

4
·10−2

ωb = 0.8, µ = 0.05

0

10

20

30
·10−2

ωb = 1.0, µ = 0.01

σ
( u̇

s)
[ m

]

0

5

10

15
·10−2

ωb = 1.0, µ = 0.03
0

1

2

3

4
·10−2

ωb = 1.0, µ = 0.05

0

10

20

30
·10−2

ωb = 1.2, µ = 0.01

σ
( u̇

s)
[ m

]

0

5

10

15

20
·10−2

ωb = 1.2, µ = 0.03
0

2

4

6

8
·10−2

ωb = 1.2, µ = 0.05

0 50 100 150 200

0

10

20

30
·10−2

ωb = 1.4, µ = 0.01

t [s]

σ
( u̇

s)
[ m

]

0 50 100 150 200

0

5

10

15

20
·10−2

ωb = 1.4, µ = 0.03

t [s]
0 50 100 150 200

0

2

4

6

8

10
·10−2

ωb = 1.4, µ = 0.05

t [s]

FB-MC IB-MC FB-SL IB-SL

Figure 5: Standard deviation of relative velocity quantified for various parameter combinations of ωb and µ: com-
parison of statistical linearisation (SL) and Monte Carlo (MC) simulation (N = 200 realisations), for the fixed-base
(FB) and base-isolated (IB) block modelled with sliding behaviour. Reference parameters: S0 = 0.003m2/s3;
ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6 (medium soil); and γ = 0.04, ζ = 0.05.

For the base-isolated block, the SL is found satisfactory for lower values of µ than those
required for the fixed-base block, and for certain parameter combinations (e.g. ωb ≥ 0.8 and
µ = 0.01), while for other combinations (i.e. ωb = 0.8 and µ = 0.03) the iterative procedure
employed for evaluating Eq. (26) does not converge and the solution breaks down. Further
investigations are required to examine the influence of parameters γ and ζ on the effectiveness
of the procedure.

6.3 Response spectra

A comparative study has been carried out with the purpose of assessing the effectiveness of
the base isolation in suppressing the seismic forcing delivered to the block. Three soil types
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have been considered, namely, firm (ωg = 15 rad/s, ζg = 0.6, ωf = 1.5 rad/s, ζf = 0.6);
medium (ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6) and soft (ωg = 5 rad/s, ζg = 0.2,
ωf = 0.5 rad/s, ζf = 0.6). In all cases, a spectral density level S0 = 0.003 m2/s3 has been
considered, and the isolation parameters γ = 0.04 and ζ = 0.05 have been assumed.

For each case, an ensemble of N = 200 synthetic ground motions has been generated us-
ing the procedure delineated in Appendix B, and Monte Carlo simulations have been used to
quantify the stationary value of the standard deviation of the velocity response of each system.

Figure 6 plots the calculated standard deviation of the response, for several values of the
parameters ωb, and µ, where the standard deviation of the response of the base-isolated block
(σIB(u̇s)), has been normalised with respect to the corresponding value of the fixed-base (σFB(u̇s))
model.

As shown, seismic isolation can attenuate the velocity response of the sliding block in all
cases considered. Reducing the isolation frequency ωb results in a reduction in the response
standard deviation, and as ωb →∞, the response of the isolated block approaches the response
of the fixed-base block (i.e. σIB/σFB → 1). Seismic isolation is effective for ωb < 1.25, ωb < 1
and ωb < 0.7, for the firm, medium and soil, respectively, and higher values of ωb are admissible
as µ increases.
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Figure 6: Isolated to non isolated standard deviation of relative velocity, quantified via N = 200 Monte Carlo
realisations: (a) firm (ωg = 15 rad/s, ζg = 0.6, ωf = 1.5 rad/s, ζf = 0.6); (b) medium (ωg = 10 rad/s,
ζg = 0.4, ωf = 1 rad/s, ζf = 0.6); and (c) soft (ωg = 5 rad/s, ζg = 0.2, ωf = 0.5 rad/s, ζf = 0.6) soil.
Reference parameters: S0 = 0.003m2/s3, γ = 0.04 and ζ = 0.05.

7 CONCLUSIONS

The modelling and response quantification of fixed-base and base-isolated rigid-plastic blocks
were addressed in presence of stochastic forcing with indicative application to seismic engi-
neering.

The dynamics of fixed-base rigid-plastic blocks were first overviewed, and equations govern-
ing their full dynamic interaction with a linear base-isolation system were presented. Highly-
efficient piecewise numerical solutions were then derived for the two systems under considera-
tion, which permit accurate quantification of the true nonlinear response due to a general-type
excitation via pertinent Monte Carlo simulations.

A statistical linearisation approximation approach was adopted in view of approximating the
strongly nonlinear systems during the sliding motion regime in presence of filtered white noise
excitation, characterised by the Clough-Penzien stationary power spectrum, commonly used in
earthquake engineering applications.

71



S. Kasinos and F. Ma

The accuracy of the linearisation approximation was examined and the effectiveness of the
isolation system was assessed in attenuating the forcing delivered to the block.

The work delivers insights into the determination and understanding of the probabilistic char-
acteristics of dynamically driven fixed-base and base-isolated rigid-plastic systems, motivating
further investigations.

APPENDIX A. SOLVERS FOR THE SDOF AND TDOF NONLINEAR SYSTEMS

The piecewise linear solutions presented in § 3, govern the true nonlinear response of the sys-
tems considered and have been implemented in C++ resulting in standalone solver executable
files. An iterative procedure based on the bisection method [27] has been adopted to identify
state events (i.e. transition points such as the initiation and change in the regime of motion) and
break down the solution in parts which have been later pieced together.

In order to confirm the validity of the solvers the solution has been compared to a MATLAB
[28] implementation that has been prototyped using build-in Ordinary Differential Equation
solvers. Specifically, ODE45 has been used, which is based on an explicit fourth- and fifth-
order Runge-Kutta formulation. In this implementation, the continuous function tanh (α u̇s(t))
has been used in place of sgn (u̇s(t)), where α is a large constant. Further, consistent initial con-
ditions have been used, and MATLAB’s odeset parameters have been set to AbsTol = RelTol =
10−8 and Refine = 4, which refer to relative and absolute solution tolerances and interpolation
output, respectively. The option ‘Events’ has been invoked to identify state events.

APPENDIX B. SIMULATION OF STOCHASTIC FORCING

A stationary stochastic process representing the excitation time series ensemble, is generated
through the summation of cosines with amplitudes and frequencies characterised by the power
spectrum under consideration and random phases uniformly distributed over the interval [0, 2π]
[29]. In doing this, a frequency interval [0, ω̃] is considered, where ω̃ = 100 is an upper cut-off
frequency, beyond which the spectral density is negligible. This interval is discretised using
a frequency step ∆ω = ω̃/Nω, where Nω = max

{
N0, ceil

(
ω̃ T
4π

)}
depends on N0 ≈ 100

(chosen such that the variance of the resulting process closely approximates the PSD) and on
the temporal duration T of interest [30]. The time series is finally discretised using a time step
∆t ≤ π

4 ω̃
.
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Abstract 

A method for the evaluation of the statistics of response sensitivity of both classically and 

non-classically damped discrete linear structural systems under fully non-stationary stochas-

tic seismic processes is presented. To do this the evolutionary frequency response function, 

also referred in literature as the time-frequency varying response function, plays a central 

role in the evaluation of the spectral characteristics of non-stationary response. 

The proposed approach requires the following items: a) to write governing motion equations 

in state-variables, which are very suitable to evaluate the statistics of the response of both 

classically and non-classically damped discrete linear structural systems by an unified ap-

proach; b) to evaluate in explicit closed form solutions the derivatives of time-frequency re-

sponse vector functions with respect to the parameters that define the modified structural 

model; c) to obtain the sensitivity of the structural response statistics by frequency domain 

integrals.   

A numerical application shows that the proposed approach is suitable to cope with practical 

problems of engineering interest. 

 

 

Keywords: Sensitivity analysis, Fully non-stationary processes, Non-geometric spectral mo-

ments, Evolutionary power spectral density function; Evolutionary frequency response func-

tion. 
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1 INTRODUCTION 

During the analysis of structural systems, the reference structural parameters could be 

modified for design reasons. This is very frequent in optimization procedures, design of de-

vices for vibrations control, etc. (see e.g., [1,2,3]). In this framework, the sensitivity analysis 

(i.e. the evaluation of partial derivatives of a performance measure with respect to system pa-

rameters) is a suitable vehicle to evaluate the response variation of structures under the influ-

ence of changes of parameter values. 

Strong motion earthquakes are certainly the main critical actions for structures located in 

the seismically active regions of the earth. The analysis of recorded accelerograms in different 

sites shows that earthquake ground motion time-histories are non-stationary processes in both 

amplitude and frequency content. Then, the stationary models fail to reproduce the time-

varying intensity, which is typical of real earthquakes ground-motion accelerograms. To take 

into account the time variability, the so-called quasi-stationary (or uniformly modulated non-

stationary) random processes have been introduced [see e.g. 4,5]. These processes are con-

structed modulating the amplitude of a stationary zero-mean Gaussian random process 

through a deterministic function of time; for this reason they are also called separable non-

stationary stochastic processes. However, these processes catch only the time-varying intensi-

ty of the accelerograms. To consider simultaneously both the amplitude and frequency chang-

es, time-frequency varying deterministic modulating functions have been introduced in the 

characterization of the seismic process. The latter processes are referred as fully or non-

separable non-stationary stochastic processes (see e.g., [6,7]).  

Several papers have been devoted afterward to study the sensitivity of the response of 

structural systems subjected to stochastic excitations. As an example, Szopa [8] studied the 

stochastic sensitivity of the Van der Pol equation. Benfratello et al. [9] proposed a procedure, 

in the time domain, to evaluate the sensitivity of the statistical moments of the response of 

structural systems for stationary Gaussian and non-Gaussian white input processes. Proppe et 

al. [10] showed that the sensitivity analysis can be considered as an application of the Equiva-

lent Linearization for design problem. Chaudhuri and Chakraborty [11] dealt with the re-

sponse sensitivity evaluation in the frequency domain of structures subjected to non-stationary 

seismic processes. In Cacciola et al. [12] the sensitivities governing the evolution of spectral 

moments of the response are evaluated by solving set of differential equations once the Kron-

ecker algebra is applied.  

For linear structural systems subjected to non-stationary stochastic excitations, the evolu-

tionary frequency response function, also referred in literature as the time-frequency varying 

response function, plays a central role in the evaluation of the statistics of the response [13]. 

In fact, by means of this function, it is possible to evaluate in explicit form the evolutionary 

power spectral density of the response and, consequently, the non-geometric spectral mo-

ments, which are required in the prediction of the safety of structural systems subjected to 

non-stationary random excitations (see e.g., [14-19]). 

In recent studies [20,21], the senior authors, have evaluated in explicit form, for both clas-

sically and non-classically damped structural systems, the time-frequency varying response 

function. 

In this study handy expressions for the sensitivities of non-geometric spectral moments of 

the structural response of linear classically or non-classically damped linear structural systems 

subjected to both separable and non-separable non-stationary excitations are evaluated. The 

proposed approach requires the following items: a) to determine sensitivities of evolutionary 

frequency response functions by means of explicit closed form solutions; b) to evaluate the 

sensitivity of the structural response statistics by frequency domain integrals.  
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A numerical application shows that the proposed approach is suitable to cope with practi-

cal problems of engineering interest. 

2 DYNAMIC RESPONSE SENSITIVITIES FOR DETERMINISTIC LOADS 

The sensitivity analysis consist in the evaluation of the change in the system response due 

to system parameter variations in the neighborhood of prefixed values, called “nominal pa-

rameter”. To this aim, preliminarily the set of significant parameters, for which the influence 

on the response has to be evaluated, are collected in the r-component vector α , where r being 

the number of the significant parameters taken into account. For a quiescent structural system 

at time 
0t t , the dependence of the damping and stiffness matrices of the structure, and of 

the response vector collecting the nodal displacements, on the actual value α  of the signifi-

cant parameter vector, is expressed as: 

              0;t t t F t t        M U α C α U α K α U α Mτ U α 0         (1) 

where M ,  C α , and  K α  are the n×n  mass, damping, and stiffness matrices of the struc-

ture,  tU α  is the n-dimensional vector of nodal displacements relative to the ground, τ  is 

the n-dimensional array listing the influence coefficients of the ground shaking, ( )F t  is the 

time-dependent loading vector, and a dot over a variable denotes differentiation with respect 

to time.  

Denoting with 
0α  the vector of the significant parameters in correspondence of the nominal 

parameters, any vector α  in the neighborhood of 
0α  can be represented as: 

          
0  α α α ,                                                             (2) 

where α  is assumed to be a vector collecting small parameter variations with respect to the 

nominal parameter vector
0α . In order to evaluate the response sensitivity, the equation of mo-

tion (1) is written as: 

                 0 0 0;t t t F t t                  M U α C α C α U α K α K α U α Mτ U α 0

           (3) 

in which  0K α  and  0C α  are the stiffness and damping matrices of the structure evaluated 

in correspondence of the nominal parameter vector 
0α , while,      0  C α C α C α  and 

     0  K α K α K α . It follows that the structural system is non-classically damped. To 

solve Eq.(1) the equations of motion have to be rewritten in state variables: 

                 0= + ;t t tF t   Z α D α Z α w Z α 0                             (4) 

where  tZ α  is the 2n- state vector variable while the 2n×2n  matrix  D α  and the 2n- vec-

tor w are defined as: 

 
 

 
 

   
,

1 1
; ; ;

n n n n
t

t
t

 

     
             

O IU α 0
Z α D α w

M K α M C αU α τ
    (5) 

where nI  and ,n nO  are respectively the identity and the zero matrices of n×n  order while n0  

stands for a n- dimensional vector. In order to evaluate the structural response the 2n×2n  
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transition matrix  tΘ α  has to be introduced [22,23], and for non-classically damped sys-

tems this matrix can be evaluated as: 

                   * * *exp exp expT Tt t t t            Θ α D α Ψ α Λ α Ψ α A α Ψ α Λ α Ψ α A α

               (6) 

in which  D α  has been defined in Eq.(5),  Λ α  and  Ψ α  are the complex matrices col-

lecting eigenvalues and eigenvectors respectively, depending of uncertain parameters α . 

Formally, these matrices can be evaluated by applying the complex modal analysis. Accord-

ing to this analysis the following coordinate transformation is introduced: 

     .t t  Z α Ψ α X α        (7) 

If m is the number of modes selected for the analysis,  tX α  is a complex vector of order 2m 

and the complex matrix  Ψ α , of order (2 ×2 )n m , collects the complex eigenvectors, solu-

tions of the following eigenproblem: 

             1 1

2;     T

m

 D α Ψ α Ψ α Λ α Ψ α A α Ψ α I     (8) 

where the superscript T  denotes the transpose operator, Λ  is the diagonal matrix collecting 

the 2m  complex eigenvalues and 

 
 

,

.
n n

 
 
 

C α M
A α

M O
        (9) 

In order to evaluate the first-order sensitivity, Eq.(4) must be differentiated with respect to 

α , setting 
0α α , leading to the following differential equation [12]: 

         0 0 0 0 0 0, , , ;,i ,i ,it t t t  Z Z Zs α D α s α +F α s α 0   (10) 

where the pseudo-force vector  0 ,tF α  is given by the equation 

     0 0 0, ,it tF α = D α Z α     (11) 

in which all the quantities are known. In Eq.(11) the matrix  0i
D α  can be readily determined 

deriving the matrix  D   with respect to i-th significant parameter i . That is, 

 
 

   
   

00

, ,

0 0 -1 -1

0 0

,
, ;

n n n n

,i i

i ii i

t
t

  
         

Z

α αα α

O OZ α
s α D α D α

M K α M C α


 (12) 

where 

       
0 0

0 0; .i i

i i

 
  

 
α α α α

K α K α C α C α

 

  (13) 

It is noted that the set of first-order ordinary differential in Eq.(10) is formally similar to 

Eq.(4), which represents the equation of motion of the structural system in the state variable 

space. This means that the derivatives of the response with respect to the i-th parameter can be 

calculated by means of the same procedures used for response evaluation, that is: 
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0

0 0 0 0 0 0, exp , , d

t

T

,i

t

t t     Zs α = Ψ α Λ α Ψ α A α F α     (14) 

It follows that the sensitivity vector of the response in state variables can be evaluated as: 

             

           

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0

, exp , , d

               exp , exp , d d

t

T

,i i

t

t

i

t t

t t

t F


  

    

  

   
         

    



 

Zs α = Ψ α Λ α Ψ α A α D α Z α

= Ψ α Λ α B α Λ α v α

(15) 

where 

         
0

0 0 0 0, exp , d
t

F


   
 

   
  
Z α = Ψ α Λ α v α     (16) 

and 

         0 0 0 0 0( ) ( ) ( ) ; .T T

i i
v α Ψ α A α w B α = Ψ α A α D α Ψ α     (17) 

For deterministic excitation the sensitivity of the response can be evaluated by a step-by-step 

procedure [12,22,23]. 

3 DYNAMIC RESPONSE SENSITIVITY FOR FULLY NON-STATIONARY 

STOCHASTIC LOAD PROCESSES 

3.1 Closed form solutions for the time-frequency varying response vector function 

In the framework of non-stationary analysis of structures, the spectral moments can be 

evaluated in compact form by introducing the pre-envelope covariance (PEC) matrix. This 

matrix, in nodal space, is a 2 2n n  Hermitian matrix, that, for non-classically damped sys-

tems, can be evaluated formally as [18,19]: 

* *

*

* *

0, 1,

1, 2,

E ( ) ( ) E ( ) ( )
( ) E ( ) ( )

E ( ) ( ) E ( ) ( )

( ) i ( )
                                                 

i ( ) ( )

T T

T

T T

T

t t t t
t t t

t t t t

t t

t t

    
     
    
 

  
  

   

ZZ

UU UU

UU UU

U α U α U α U α
Σ α Z α Z α

U α U α U α U α

α α

α α

 

 

  (18) 

where ( )tZ α  is the nodal state variable vector solution of Eq.(4), while the matrices 

, ( )i tUU α  collect the non-geometric spectral moments (NGSM) [15-19]. After some algebra, 

the nodal PEC matrix, can be evaluated in time-domain, for quiescent structural systems (at 

time 
0 0t  ), as follows: 

     
0 0

1 2 1 2 1 2( ) , d d

t t

T T

FF

t t

t t t R           ZZ α Θ α ww Θ α              (19) 
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where w  is the vector defined in Eq.(5), 
1 2( , )FFR    is the complex autocorrelation function 

and  tΘ α  is the transition matrix defined in Eq.(6). By substituting the transition matrix (6) 

into Eq.(19), the nodal PEC matrix can be written also as [20,21]: 

     
0 0

* * *

1 2 1 2 1 2( ) ( ) exp , ( ) ( ) exp , d d ( )

t t

T T

FF

t t

t t t R     
  

         
  
 ZZ α Ψ α Λ α v α v α Λ α Ψ α  

                       (20) 

where the vector ( )v α  has been defined in Eq.(17). In this equation the autocorrelation func-

tion is defined as follows:  

    *

1 2 1 2 1 2 0

0

, exp i ( , ) ( , ) ( )dFFR t t t t a t a t G    


                  (21) 

where ( , ) ( , )a t a t    is the modulating function, that for fully non-stationary processes 

depends on both time and frequency. In Eq.(21)  0G   is the one-sided power spectral densi-

ty (PSD) function of the stationary counterpart of the fully not stationary input process having 

the one-sided evolutionary PSD (EPSD) defined as 
2

0( ) ( , ) ( )FFG t a t G   . By substitut-

ing Eq.(21) into Eq.(20), it is possible to evaluate the nodal PEC matrix (18) as: 

*

0

( , ) ( , , )d ( ) ( , ) ( )Tt t t 


 ZZ ZZ XX
Σ α G α Ψ α Σ α Ψ α                (22) 

where ( , )tXXΣ α  is the PEC matrix in the complex modal state subspace defined as: 

0

( , ) ( , , )dt t 


 XX XX
Σ α G α                 (23) 

where ( , , )tXXG α  is the one-sided EPSD function matrix of the modal complex response, 

that is: 

*

0( , , ) ( ) ( , , ) ( , , ).Tt G t t   XXG α X α X α                (24) 

Notice that, in evaluating the nodal PEC matrix of Eq.(22), the following coordinate trans-

formation has been introduced: 

( , , ) ( ) ( , , )t t Z α Ψ α X α        (25) 

where ( , , )tZ α  is the time-frequency varying response (TFR) vector function of the nodal 

response, while ( , , )tX α  is the TFR vector function of the modal response, defined as: 

   
0

( , , ) exp , exp i ( , )d ( ).

t

t

t t a       X α = Λ α v α                (26) 

In order to evaluate in explicit form the TFR vector function of modal response, the vector 

( , , )tX α  can be evaluated as the solution of a set of 2m first order uncoupled differential 

equations, since the following relationship holds [20]: 

   0 0 0( , , ) ( ) ( , , ) ( )exp i ( , ) ; ( , , ) ( , )t t t a t t t t        X α Λ α X α v α X α X α   (27) 
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where  0 0, , ( , )t X α X α  is the vector of the initial condition at time 
0t t  and ( )t  is 

the unit step function.  

If the particular solution of Eq.(27),  p , ,tX α , can be determined in explicit form, the 

TFR vector function, according to the dynamics of non-classically damped systems, can be 

written as [21]: 

          p 0 p 0 0, , , , exp ( , ) , , .t t t t t t           X α X α Λ α X α X α    (28) 

The analytical expression of the particular solution vector  p , ,tX α , can be easily ob-

tained in closed form for the most common models of modulating function ( , )a t  proposed 

in literature [4-7]. It has been recently shown that the most useful time-frequency functions to 

model the fully non-stationary seismic excitation can be written as [6]: 

 0 0 0( , ) ( ) ( ) exp ( ) ( ) ( );aa t t t t t t t                           (29) 

where     and  a   could be complex functions which have to be chosen to satisfy the 

condition: ( , ) ( , )a t a t   .  

It has been demonstrated that for quiescent structural systems at time 
0 0t  ,  0 , X α 0 , 

and for the modulating function, defined in Eq.(29), the vector  , , tX α , defined in Eq.(28), 

can be evaluated in explicit form as [20,21]: 

      2 2, , ε(ω) exp [ (ω) ] ( ) ( ) exp  ( ) ( )t t t t t             X α Γ Γ Λ α Γ v α    (30)
  

where ( ) ( ) ia       and ( )Γ  is the diagonal matrix, function of the α  vector too that 

for simplicity‟s sake is omitted, defined as: 

       
1

2, + .m   


    Γ Γ α Λ α I              (31) 

Then, it is possible to evaluate, in explicit form, the EPSD function matrix of the modal re-

sponse by substituting Eq.(30) into Eq.(24) which can be written as: 

* *

0( , , ) ( ) ( ) ( , , ) ( , , ) ( )T Tt G t t   ZZG α Ψ α X α X α Ψ α     (32) 

3.2 Closed form solutions for the sensitivity of time-frequency varying response vector 

function 

By differentiating the PEC matrix, defined in Eq.(18), it is possible to evaluate its sensi-

tivity with respect to the i-th parameter, as follows: 

     
0

*
* *

0 0 0 0 0

( )
, E ( ) , E ( ) ,

,i ,i

T
T T

,i ,i

i

t
t t t t t



 
    

Z Z

ZZ
s s Z Z

α α

Σ α
α Z α s α Z α s α



   (33) 

where the vector  0 ,,i tZs α  has been defined in Eq.(12). It follows that, analogously to 

Eq.(22), the following relationship holds: 

   * * *

0 0 0 0 0 0 0

0

E ( ) , ( ) ( , , ) ( , , ) ( )dT T T

,i it t t t G   
 

   
 
zZ α s α Ψ α X α Y α Ψ α   (34) 
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where the vector 
0( , , )i tY α  is the sensitivity of TFR vector function with respect to the pa-

rameter 
i : 

   0 0 0 0

0

( , , ) exp , ( , , )d .

t

i it t       Y α Λ α B α X α    (35) 

Alternatively the sensitivity of PEC matrix can be defined as: 

   0 0

0 0

0, 1,

0 0

0

1, 2,

( ) i ( )

, , d

i ( ) ( )

,i ,i ,i ,i

i i

T

i i

t t

t t

t t

 


 





  
  

  
  

    
  
 

Z Z Z Z

UU UU

α α α α

s s s s

UU UU

α α α α

α α

α G α

α α

 

 

 



 

   (36)

whose elements are the sensitivity of first three spectral moments with respect to the parame-

ter 
i . In this equation  0 ,

,i ,i
t

Z Zs sG α  is the sensitivity of the one-sided EPSD function of nod-

al response, that is: 

 
0

0

* * *

0 0 0 0 0

( , , )
,

( ) ( ) ( , , ) ( , , ) ( , , ) ( , , ) ( ).   

,i ,i

i

T T T

i i

t
t

G t t t t





    






   

Z Z

ZZ
s s

α α

G α
G α

Ψ α X α Y α Y α X α Ψ α

   (37) 

The main problem is now to evaluate the vector 
0( , , )i tY α , defined in Eq.(35), taking in-

to account Eq.(30). This vector function can be evaluated as solution of the following differ-

ential equation with zero start conditions at time 
0 0t  : 

   0 0 0 0 0 0 0( , , ) ( ) ( , , ) ( , , ) ; ( , ,0) .i i i it t t t       Y α Λ α Y α B α X α Y α 0   (38) 

To perform the solution of this set of differential equations the vector defined in Eq.(30) is 

rewritten as: 

     0 1 0 2 0, , , , , ,t t t   X α X α X α     (39) 

where 

   

     

2

1 0 0

2

2 0 0 0

, , (ω)exp [ (ω) ] ( ) ( ) ( ) ;

, , (ω)exp  ( ) ( ) .

t t t t

t t t

    

  

     

   

X α Γ Γ v α

X α Λ α Γ v α
   (40) 

It follows that it is possible to split the vector solution of Eq.(38) as the sum of two vectors, 

solutions of the following two sets of differential equations, with zero start initial conditions 

at time 
0 0t  : 

 

 

,1 0 0 ,1 0 0 1 0 ,1 0

,2 0 0 ,2 0 0 2 0 ,2 0

( , , ) ( ) ( , , ) ( , , ); ( , ,0)

( , , ) ( ) ( , , ) ( , , ); ( , ,0)

i i i i

i i i i

t t t

t t t

   

   

  

  

Y α Λ α Y α B α X α Y α 0

Y α Λ α Y α B α X α Y α 0
  (41) 

It follows that the sensitivity TFR„s vector function can be evaluate in closed form solution as: 

         

        

0 ,1 0 ,2 0 ,1,p 0 ,2,p 0

0 ,1,p 0 ,2,p 0

, , , , , , , , , ,

                     exp , ,0 , ,0

i i i i i

i i

t t t t t

t t

    

 

  

      

Y α = Y α Y α Y α Y α

Λ α Y α Y α
  (42) 
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where the particular solution vectors of Eqs.(41), can be evaluated, after some algebra, as fol-

lows: 

       

 

,1,p 0 0 0 0 0

2

,2,p 0 0 0 0

, , (ω)exp [ (ω) ] ( ) ( ) ( )  ( ) ( );

( , , ) (ω) ( , )exp ( ) ( );

i i i i

i i

t t t

t t t

      

  

     

   

Y α Γ Γ B α B α Γ B α Γ v α

Y α P α Λ α Γ v α

            (43) 

where 
0( , )i tP α  is a matrix of order (2 ×2 )m m  whose elements, , 0( , )i jkP tα , are defined as fol-

lows: 

                                    
, 0

, 0 , 0 , 0

( )
( , )  ( ); ( , ) ,

i jk

i jj i jj i jk

k j

B
P t t B P t j k

 
  



α
α α α             (44) 

with , 0( )i jkB α  elements of the matrix  0iB α . Finally, the sensitivity of PEC matrix with re-

spect to the parameter 
i , defined in Eq.(36), can be evaluated by substituting Eqs.(39) and 

(42) into Eq.(37), and then the result (the explicit closed form of the nodal EPSD function ma-

trix) into Eq.(36). 

4 NUMERICAL APPLICATIONS 

In this section, the accuracy of the proposed procedure has been verified, through the com-

parison of the results of a numerical application with the Monte Carlo Simulation (MCS) 

method (1000 samples). The analysed system is composed by two interconnected three-story 

selected structures, having the same floor elevation, as depicted in Figure 1. The two neigh-

bouring floors are connected by a damper device. Each fluid damper device is modelled as a 

combination of a linear spring, having stiffness   5

d, 1 10 N/mik   , and a linear dashpot, 

having damping coefficient   6

d, 1 10 N s/mic   , with 0   a dimensionless parameter. 

It follows that the vector α  becomes a scalar quantity and the nominal structural matrices are 

evaluated setting 0  .  

 

Figure 1: Geometric configuration of the analyzed structure. 

83



T.Alderucci, F.Genovese and G. Muscolino 

 

The characteristics of each floor (mass 
im , stiffness 

ik and damping coefficient 
ic ) for the 

two buildings are summarized in Table 1. In Table 2 the modal characteristics of the two un-

linked buildings (circular frequency 
i , period 

iT  and modal participating mass ratio 
i ), 

together with the global system are reported. 

 

 Building 1 Building 2 

 N mik   112 10  92 10  

 kgim  
61.29 10  

61.29 10  

 Ns mic  
51 10  

51 10  

Table 1: Characteristics of the analysed buildings. 

 

Building 1 Building 2 Global system 

 rad si   siT   %i  
 rad si   siT   %i  

 rad si   siT   %i  
175.235 0.036 91.408 17.523 0.359 91.408 17.527 0.359 47.704 

490.998 0.013 7.488 49.099 0.128 7.488 49.100 0.128 3.744 

709.512 0.009 1.104 70.951 0.089 1.104 70.952 0.089 0.552 

Table 2: Modal information of the analysed buildings. 

The selected structures are subjected to a fully non-stationary seismic input whose EPSD 

function can be expressed as: 

2

0( ) ( , ) ( ).FFG t a t G                                            (45) 

In the previous equation the parameters of the modulating function, defined in Eq.(29), 

have been set as:  
2

2

1
0.15

2 25π
a


 

 
 

 
 ,  

2

5π
    and 

0 0t  ; the Tajimi-Kanai PSD 

function is used to model the PSD function of the stationary counterpart of the input stochas-

tic process: 

 

 

2 2 2 4

K K K

0 W 2
2 2 2 2 2

K K K

4
( )

4
G G

   


    




 
                                  (46) 

where 
2 3

W 0.05 m sG  , K = 4 π rad/s  is the filter frequency that determines the dominant 

input frequency and 
K = 0.6  is the filter damping coefficient that indicates the sharpness of 

the PSD function. 

In order to show the accuracy of the proposed method, the sensitivity  
,ur

S t  (indicated in 

Eq.(47)) with respect to the parameter  of NGSMs of the generic r-th floor displacement 

( )ru t  are compared with MCS results and are depicted in Figures 2-4.  

                                                     
 

,

,

0

,
r

ur

u t
S t














                                                (47) 
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In Eq.(47),  , ,
ru t are the r-diagonal elements of the 

, ( )tUU α  matrix defined in 

Eq.(36) while the subscript  indicates the order of the NGSMs. 
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Figure 2: Time histories of the sensitivity of the NGSM 0, ( )
ru t , for the six relative to ground floor displace-

ments of the buildings (black line) and comparison with the MCS (red dots). 
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Figure 3: Time histories of the sensitivity of real part of the NGSM 1, ( )
ru t , for the six relative to ground floor 

displacements of the buildings (black line) and comparison with the MCS (red dots). 
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Figure 4: Time histories of the sensitivity of the NGSM 2, ( )
ru t , for the six relative to ground floor displace-

ments of the buildings (black line) and comparison with the MCS (red dots). 

 

The figures 2-4 evidence a perfect superposition between the proposed analytical solution and 

the MCS method, demonstrating the accuracy of the proposed procedure. Obviously a positive 

sensitivity indicates an increment of the corresponding NGSM, when the parameter   chang-

es, while a negative sensitivity means that the NGSM decreases when the parameter changes. 

Finally, in Figure 5 the sensitivity of the first NGSM of the response of third floors, for 

both buildings, and for five different ratio of the stiffness, have been depicted. In the first 

three cases the stiffness of building 1 is assumed: 112 10 N/mik  . In the latest two cases the 

stiffness of building 2 is: 112 10 N/mik  . These figures show that the sensitivity of the first 

NGSM is positive for the more rigid building, while it is negative for the more deformable 

building. Namely, for the presence of devices, changing the parameter   the response of 

more rigid structures increases, while the response of lighter structures decreases. In the third 

case, when the two structures have the same stiffness, the sensitivity for building 1 is negative 

for the former time instants and positive for the following ones. The opposite result is ob-

tained for building 2. This means that in the third case the sign of the sensitivity changes in 

the time. Zero sensitivity means that a change of parameter   does not modify the response 

of two buildings with respect to the nominal case. 
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Figure 5: Time histories of the sensitivity of the NGSM 
30, ( )u t , for the third relative to ground floor displace-

ments of the buildings for different ratio of the stiffness. 
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5 CONCLUSIONS 

In the framework of optimization procedures, especially during the design of vibration 

control devices, the sensitivity analysis is a very powerful tool to evaluate how the structural 

response is modified with reference structural parameters changes. 

In this paper a novel method for the evaluation of the sensitivities of non-geometric spec-

tral moments of the structural response of linear classically or non-classically damped linear 

structural systems subjected to both separable and non-separable non-stationary excitations is 

proposed. 

The proposed procedure is based on two fundamental steps: first, it is necessary to deter-

mine sensitivities of evolutionary frequency response functions, and it is possible thanks to 

the herein obtained explicit closed form solutions; then, by simple frequency domain inte-

grals, it is possible to evaluate the sensitivity of the structural response statistics. 

The presented method has a unified approach for both classically and non-classically 

damped discrete linear structural systems, thanks to use of the state-variables. 

The numerical application on a plane-frame demonstrated the effectiveness of the proposed 

method, since a validation with MCS method has been done.  
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Abstract 

During the last decade, many vibration-based structural health monitoring systems have been 

successfully implemented in different structures such as bridges, towers, stadia roofs and 

wind turbines, with the aim of studying the structures dynamics and its evolution over time 

and eventually detecting the occurrence of novel structural behaviour that may indicate the 

presence of damage. 

Such vibration-based monitoring systems generally rely on the identification of modal proper-

ties, which are then used as monitoring features. Therefore, from operational modal analysis 

to the tracking of those features, many processing steps occur that depend on the accuracy of 

the identified modal properties in order to produce good results. Thus, the calculation of the 

uncertainties associated with the identified modal properties increase the robustness of this 

process. 

In this context, data obtained from the continuous dynamic monitoring of a concrete arch 

dam has been used to test the effect of taking the uncertainties of identified modal properties 

into consideration when performing operational modal analysis and modal tracking.  

 

 

Keywords: Uncertainties in Modal Properties, Operational Modal Analysis, Continuous Dy-

namic Monitoring, Concrete Arch Dam. 
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1 INTRODUCTION 

Integrated monitoring systems considering real time data directly obtained from structures 

are very important to the long-term management of large civil infrastructures, such as dams. 

Though health monitoring systems are historically associated with static data, vibration-based 

systems have already been successfully implemented in different structures such as bridges 

[1], wind turbines [2], stadia roofs [3] or bell-towers [4]. 

Such vibration-based health monitoring systems rely on operational modal analysis to con-

tinuously identify the structure’s modal properties, which can be used as monitoring features 

to evaluate the structures health condition evolution over time. From operational modal analy-

sis to the tracking of these features, many processing steps occur that depend on the accuracy 

of the identified modal properties in order to produce good results. Therefore, the calculation 

of the uncertainties associated with the identified modal properties may act as an important 

tool in this process, helping to quantify confidence levels and to eliminate misidentifications 

of modal properties, thus creating more robust and reliable monitoring databases. 

In order to test the influence of the consideration of the uncertainties associated with modal 

properties in automatic operational modal analysis, the data obtained during one year of moni-

toring of Baixo Sabor arch dam is used. 

After a brief description of the dynamic monitoring system installed in Baixo Sabor arch 

dam, the results obtained between 01/12/2016 and 01/12/2017 and the methodology used to 

achieve such results are presented. This paper refers as well the method used to quantify the 

uncertainty associated with the obtained modal properties and it presents the effect of the con-

sideration of such uncertainties in the tracking of the dam’s first four vibration modes.  

2 CONTINUOUS DYNAMIC MONITORING OF BAIXO SABOR ARCH DAM 

2.1 Instrumented dam and monitoring system 

The Baixo Sabor hydroelectric development is located in Sabor river, a tributary of Douro 

river in the northeast of Portugal, and has been operating since 2016. This concrete double-

curvature arch dam is 123 meters high and its crest is 505 meters long. The arch is composed 

by 32 concrete blocks, separated by vertical contraction joints, and includes six horizontal vis-

it galleries. The left part of Figure 1 shows an aerial picture of the dam and the reservoir, dat-

ed May 2016, after the monitoring had started. 

A vibration-based health monitoring system was installed in the dam in December 2015, 

right after it started operating, in order to identify the dam’s dynamic characteristics and their 

evolution over time, taking into account the variation of ambient and operational conditions, 

as well as the possible evolution of the materials mechanical properties. 

The continuous dynamic monitoring system consists of 20 uniaxial accelerometers that 

have been radially disposed in the dam’s three upper visit galleries, whose synchronization is 

achieved using GPS antennas. The right part of Figure 1 shows the position of the accelerom-

eters installed in the dam, marked with red dots in a picture of the structure. The dynamic 

monitoring system is configured to continuously record acceleration time series with a sam-

pling rate of 50 Hz and a duration of 30 minutes at all instrumented points, thus producing 48 

groups of time series per day [5].  

The continuously collected data is processed with a monitoring software developed at 

ViBest/FEUP called DynaMo [6]. Besides backing up the original data samples, this monitor-

ing software performs the pre-processing of the acceleration time series, through trend elimi-

nation, filtering and re-sampling, it characterizes vibration levels and it performs the 

identification of the dam modal properties through automatic operational modal analysis. The 
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continuous and automatic identification of modal parameters is achieved by combining the 

Covariance Driven Stochastic Subspace Identification method (SSI-Cov) with a routine based 

on cluster analysis that automatizes its application. A brief description of this approach is pre-

sented in the next section. 

 

Figure 1 – Baixo Sabor arch dam: a) aerial view (on the left) [7]; b) position of accelerometers marked with red 

dots (on the right) 

2.2 Automated operational modal analysis and modal tracking 

In the context of continuous dynamic monitoring, it is crucial to automate modal analysis, 

in order to process the enormous amount of produced data more easily and to obtain results in 

real time. As it was mentioned before, in this application the automation of operational modal 

analysis is achieved through the combination of the SSI-Cov method with a routine based on 

cluster analysis. 

After the application of the SSI-Cov method to each time series of accelerations and after 

the construction of stabilization diagrams, the methodology based on a hierarchical clustering 

algorithm proposed in [8] is used to group poles with similar modal properties, thus producing 

groups with high internal (within-cluster) homogeneity and high external (between-cluster) 

heterogeneity. Similarity between poles is measured using a metric that depends on the rela-

tive differences between natural frequencies and consistency of mode shapes.  

A predefined number of different clusters are obtained from the application of cluster anal-

yses, corresponding to both physical and numerical modes. The final modal estimates associ-

ated with the dataset under analysis are defined as the mean values of the poles included in 

each cluster. To separate physical modes from numerical ones, the modal estimates identified 

in each setup are compared with a set of reference values, which were obtained from selected 

datasets with very clear stabilization diagrams. Each new set of modal properties is only ac-

cepted as a physical mode if the MAC (Modal Assurance Criterion) [9] between the estimated 

mode shape and the reference mode shape is higher than 0.55 and the variation between their 

frequency values is lower than 4.5%.  

This methodology was applied to one year of data that was continuously collected by the 

Baixo Sabor arch dynamic monitoring system between 01/12/2016 and 01/12/2017 and the 

structures first four vibration modes were tracked. In this sense, the evolution of the natural 

frequencies of the dam’s first four modes was represented over time (Figure 2), being each 

mode represented by a different color, whereas Figure 3 presents the evolution of the four 

modes damping ratios during the same period, using the same color system. 

Since 48 daily datasets were considered during 366 days, resulting in a total 17568 modal 

estimates considered per mode, the tracked modal properties show daily and seasonal variabil-

ity. On the one hand, the seasonal variation provoked by operational and environmental con-
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ditions (essentially water level and structure temperature) is clear on natural frequencies, and 

on the other, a higher daily scatter is observed with the damping estimates.  

 

Figure 2 – Evolution of the first four modes natural frequencies between 01/12/2016 and 01/12/2017 

 

Figure 3 – Evolution of the first four modes damping ratios between 01/12/2016 and 01/12/2017 

3 UNCERTAINTY QUANTIFICATION OF MODAL PARAMENTERS 

ESTIMATES 

3.1 Introduction 

Modal parameters of a structure, estimated from ambient vibration measurements using 

state of art identification methods, are always subject to bias and variance errors. Since identi-

fied modal characteristics are quite often used for calibration and validation of dynamic struc-

tural models, for structural control or for structural health monitoring it becomes important to 

analyze the accuracy associated with estimated parameters. Errors introduced in the identifi-

cation process may be due to several reasons [10]. For instance: the use of a finite number of 

data samples; the inputs may not be a white noise; nonlinear distortions may be present in the 

data because of material or geometrical nonlinearities; non-stationary nature of structures, ac-

tivated by external factors as temperature or wind; analog and/or digital filters introducing 

spurious poles; human induced errors. 

Depending both on the identification method used and on the structure characteristics, each 

of the previous error causes may gain relevance over the others, and even different causes that 

were not mentioned may arise. Both the physical part of the problem, more strongly associat-
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ed with the data collection, and the processing part, strictly related with the identification pro-

cedure, must be conducted with extreme care, in order to reduce the number of error sources 

and to mitigate the effects of those that cannot be completely suppressed. 

To mitigate bias errors, stabilization diagrams are of good use. However, unlike bias errors, 

which can be mitigated, variance errors can only be estimated, they cannot be not removed. In 

[10] a detailed sensitivity analysis of the reference-based covariance-driven stochastic sub-

space identification method (SSI-Cov) yielded a novel expression for the covariance of the 

system matrices that are identified using this method.. Additionally, subsequent sensitivity 

analysis yielded expressions for the covariances of the modal parameters estimates, allowing 

the estimation of uncertainty bounds. A computationally faster version of this algorithm [11] 

was later developed along with a multi-order extended implementation that allows the calcu-

lation of uncertainty bounds for all elements of a stabilization diagram. This second version 

was integrated on the available routines for automated operational modal analysis to obtain 

standard deviation values associated with all the modal estimates. This method was validated 

with two application examples that were presented in [12]. 

3.2 Application example 

Using the methodology of section 2 for automatic operational modal analysis, a group of 

clusters is obtained after the application of SSI-Cov to each 30 minute sets of recorded accel-

erations. Moreover, each cluster is composed by a group of poles that resulted from the multi-

tude of orders considered during the application of SSI-Cov. Besides the three regular 

quantities obtained from the common application of SSI-Cov, two more are obtained with this 

new version, thus five different quantities are associated with each pole: 

 Natural frequency (f [Hz]); 

 Damping ratio (d [%]); 

 Mode Shape; 

 Standard deviation of natural frequency (fstd [Hz]); 

 Standard deviation of damping ratio (dstd [%]). 

With this implementation, it would be possible to obtain as well the standard deviations as-

sociated with each modal ordinate, which would indicate the uncertainty related to the final 

mode shape. However, this was not considered in this work. Additionally, relative values of 

standard deviations may be computed, dividing each standard deviation value by its natural 

frequency (fstd-relative) or damping ratio (dstd-relative). In the end, the estimates of modal proper-

ties and respective standard deviation values are calculated as the mean value of all the poles 

integrating the cluster, eventually disregarding estimates with high uncertainty. 

An example using real data from the dynamic monitoring system of Baixo Sabor is pre-

sented in Table 1, comprehending five poles belonging to the same cluster, thus resulting 

from the same set of 30 minutes acceleration time series. Most of the five poles present natu-

ral frequencies close to 3.52 Hz, and damping ratios around 1.5 %. It is worth noticing that 

the frequency value of pole 3, the only one in the group closer to 3.51 than to 3.52 Hz, shows 

the highest standard deviation, indicating that higher uncertainty is associated with this pole. 

The same is observed with the standard deviation of its damping ratio, which is so high that it 

leads to a relative standard deviation of 101.7 %. In this sense, the estimates of modal proper-

ties for this cluster were calculated considering both the mean of the five poles and the mean 

of four poles, excluding pole 3. Even if small differences were obtained, it is worth pointing 

out that the uncertainty associated with the modal properties was minimized in the second 

case, which gives the analyst more confidence in the results obtained and prospects better 

chances of successfully building damage detection models in the future. 
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Pole f [Hz] fstd [Hz] fstd-relative [%] d [%] dstd [%] dstd-relative [%] 

1 3.522 0.0041 0.117 1.488 0.110 7.4 

2 3.521 0.0053 0.152 1.503 0.229 15.2 

3 3.513 0.0419 1.194 1.540 1.566 101.7 

4 3.524 0.0086 0.245 1.624 0.335 20.6 

5 3.520 0.0113 0.321 1.585 0.500 31.6 

Mean all 3.520 0.0143 0.406 1.548 0.548 35.3 

Mean [1,2,4,5] 3.522 0.0073 0.209 1.550 0.294 18.7 

Table 1 – Pole quantities example 

4 EFFECT OF UNCERTAINTIES ON MODAL TRACKING  

To test the effect of considering uncertainties in the algorithm used for modal tracking, the 

results presented in Figure 2 and Figure 3 will be used as baseline for comparison. These re-

sults were obtained applying the methodology presented in section 2, in which the uncertainty 

of modal estimates was quantified but was not included in any part of the tracking algorithm. 

For reference in this work this processing will be named Processing A. 

 In this sense, each mode natural frequencies and damping ratios obtained with Processing 

A were represented independently in Figure 4 and Figure 5, to provide a closer evaluation of 

their evolution over time. However, in this case, the color of each modal estimate was repre-

sented as a linear function of its standard deviation. Therefore, natural frequencies were repre-

sented in blue if their standard deviation values were close to 0 Hz, and they were represented 

in yellow if they were close to 0.05 Hz, or higher than this value. For the modal damping rati-

os estimates, relative standard deviations were used to choose the color of each estimate. Thus, 

damping ratios were represented in blue if their relative standard deviation values were close 

to 0 %, and they were represented in yellow if they were close to 50 %, or higher than this 

value.  

The value of 0.05 Hz was picked taking into account the authors’ experience on modal 

analysis, and it represents a substantial uncertainty that for the structure under consideration 

should not be accepted. Furthermore, the 50 % limit for t-he relative standard deviation results 

from the consideration that values higher than 50 % would mean negative values could be 

admitted for damping ratios (assuming a normal distribution and a 95% confidence interval), 

which is not physically possible.  

Figure 4 shows that the frequency estimates of the first two modes are generally associated 

with lower standard deviation values than the third and fourth modes, which present a higher 

scatter during the period under analysis. However, all the four modes show many yellow es-

timates that clearly diverge from the main tracking line. Additionally, in the figure that corre-

sponds to the evolution of mode 3, a thin blue horizontal alignment seems to be defined 

between 3.55 and 3.60 Hz, indicating a specific frequency that always presents very low 

standard deviations. 

The damping ratios of all four modes present as well many estimates represented in yellow, 

indicating a considerable number of estimates associated with relative standard deviations 

higher than 50 %. Furthermore, besides the normal variability around the mean, mode 3 pre-

sents a significant number of estimates with low damping, between 0 and 1 %, and mode 4 

presents a significant number of estimates with high damping, between 2 and 4 %. The major-

ity of the estimates with seemingly abnormal damping values present high relative standard 

deviations, as indicated by its yellow color. 
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Figure 4 – Natural frequencies with color as function of standard deviation (Processing A) 

 

  

  

  
Figure 5 – Damping ratios with color as function of relative standard deviation (Processing A) 
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After the analysis of the results provided by processing A, a new tracking strategy was put 

through, yet this time, before the comparison between each new set of modal properties esti-

mates and the previously defined references, all the clusters obtained from the application of 

SSI-Cov to each 30 minutes time series of accelerations were analysed considering the uncer-

tainties of each pole estimate. This analysis, which will be referenced as Processing B, con-

sisted on the evaluation of standard deviations and, consequently, all the poles whose 

frequency standard deviation was equal or higher than 0.05 Hz and all the poles whose rela-

tive damping standard deviation was equal or higher than 50 % were eliminated. In conclu-

sion, most clusters became more homogeneous, and many clusters that were composed 

mainly by poles associated with high standard deviations disappeared. However, the number 

of setups for which one or mode modes were not tracked increased, diminishing the number 

of successful identifications. 

In the perspective of the first two modes, this strategy turned out to be profitable, and the 

good results obtained will be presented hereafter. However, in a first stage, in the case of the 

third mode, it had negative consequences, and in the case of the fourth mode it was not very 

efficient. Figure 6 presents the distribution of frequencies and damping ratios identified for 

the third mode with Processing B. On the one hand there is an abnormal number of identifica-

tions between 3.55 and 3.60 Hz, and on the other there is an abnormal number of identifica-

tions with damping close to 0 %. This indicates that the elimination of poles with higher 

uncertainty was favorable to a systematic identification of the turbine rotation frequency (3.57 

Hz) as the frequency of mode 3, increasing the number of misidentifications.  

  

Figure 6 – Histograms of frequency and damping of mode 3 (Processing B) 

In order to minimize the number of times the turbine rotation frequency is identified as 

mode 3 natural frequency, the characteristics of the estimates associated with this parasite fre-

quency were studied. Thus, besides presenting modal damping ratios close to 0, these esti-

mates systematically present very low standard deviation values for both frequency and 

damping. In this sense, in the left part of Figure 7, all the frequency estimates identified for 

mode 3 which presented frequency standard deviations lower than 0.005 Hz were represented 

in yellow, while all the other frequency estimates were represented in black. The vast majority 

of yellow points correspond to frequencies very close to 3.57 Hz, therefore associated with 

the turbine frequency.  

In the case of the fourth mode, Processing B did not introduce any kind of bias, on the con-

trary, though many misidentifications were eliminated, it is still possible to improve the mod-

al tracking of this mode. In this sense, frequency estimates with relative standard deviations 

higher than 0.3 % were represented in yellow, in the right side of Figure 7, while all the other 

frequency estimates were represented in black. This leads to a figure with a high number of 
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yellow points dispersed all over the frequency range, but mostly associated with estimates lo-

cated far from the main frequency track. 

  

Figure 7 – Misidentifications of the third and fourth modes after Processing B 

Taking into account previous considerations, Processing C was put through, combining the 

conditions used in Processing B with the elimination of poles with frequency standard devia-

tions lower than 0.005 Hz, in the range between 3.566 Hz and 3.576 Hz. Additionally, poles 

with relative frequency standard deviations higher than 0.3 % in the range between 3.90 and 

4.35 Hz were also eliminated. 

This time, good results were achieved for the four modes. The color of natural frequency 

(Figure 8) and damping (Figure 9) estimates was once again represented as function of their 

respective standard deviation values, using the same limits used in Figure 4 and Figure 5. 

In the case of natural frequency, there are still some outliers in the four modes, but its 

number reduced considerably. Moreover, the four figures generally present darker colors, in-

dicating a significant reduction in the value of standard deviations, thus increasing the confi-

dence level of individual estimates. Though mode 3 still presents a few estimates with high 

uncertainty, the thin blue horizontal alignment associated with the turbine frequency is not 

distinguishable anymore. 

The general level of accuracy of damping ratios increased as well, especially with the 

fourth mode, which presented many estimates with high damping values and high relative 

damping standard deviations that were eliminated. The third mode is again the one which pre-

sents the higher number of estimates with high uncertainty, though many have already been 

eliminated. Most of these estimates present damping values between 0.5 and 1 %, indicating 

that in some cases the SSI-Cov algorithm was not capable to separate the third mode estimate 

from the turbine harmonic. 
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Figure 8 – Natural frequencies with color as function of standard deviation (Processing C) 

 

  

  

  

Figure 9 – Damping ratios with color as function of relative standard deviation (Processing C) 

Finally, the results obtained with Processings A and C, the first and last ones, were summa-

rized in Table 2 for comparison. For each vibration mode, means and standard deviations of 

the estimates obtained for the entire analyzed period were calculated for four parameters: nat-

ural frequencies (mean (f) and std (f)), damping ratios (mean (d) and std (d)), frequency 

standard deviations (mean (fstd) and std (fstd)) and relative damping standard deviations (mean 

(dstd-relative) and std (dstd-relative)). 

99



Sérgio Pereira, Edwin Reynders, Filipe Magalhães, Álvaro Cunha and Jorge Gomes 

 

In the case of natural frequencies, the mean and standard deviation for the whole studied 

period did not present considerable changes from Processing A to C, which was expected, 

since the effect of operational and environmental conditions on natural frequencies is predom-

inant when compared to the effect of random errors. The elimination of estimates associated 

with the turbine frequency, however, led to a decrease of the third mode natural frequency 

mean. On the other hand, the mean and standard deviation of frequency standard deviations 

decreased substantially for the four modes, indicating a more accurate set of estimates.   

Considerable variations were observed in the means of damping ratios of third and fourth 

modes. The third mode damping ratio mean for the studied period increased in agreement 

with the elimination of turbine rotation generated poles, and the fourth mode damping ratio 

mean decreased in agreement with the elimination of outliers with high uncertainty, which 

presented high damping values as well. Estimates that are more accurate were achieved also 

in the case of damping ratios, as shown by the clear reduction of the relative standard devia-

tion values of damping. 

Processing mean (f) std (f) mean (d) std (d) mean (fstd) std (fstd) 
mean  

(dstd-relative) 

std  

(dstd-relative) 

Mode 1 – A 2.516 0.143 1.38 0.379 0.012 0.014 35.4 52.7 

Mode 1 – C 2.516 0.144 1.37 0.301 0.008 0.004 20.9 7.5 

Mode 2 – A 2.660 0.146 1.22 0.284 0.011 0.012 34.5 44.0 

Mode 2 – C 2.659 0.146 1.23 0.276 0.006 0.004 18.1 7.0 

Mode 3 – A 3.484 0.194 1.45 0.485 0.027 0.026 82.0 107.5 

Mode 3 – C 3.479 0.199 1.57 0.412 0.014 0.007 23.3 8.8 

Mode 4 – A 4.095 0.227 1.39 0.472 0.025 0.028 45.9 69.5 

Mode 4 – C 4.100 0.230 1.26 0.260 0.007 0.002 15.0 6.0 

Table 2 – Results comparison between Processing A and C 

5 CONCLUSIONS  

Automated operational modal analysis was performed to one year of data recorded by the 

continuous dynamic monitoring of Baixo Sabor arch dam, which was used to track the modal 

properties of its first four vibration modes. The tracking was based on the application of SSI-

Cov method, an algorithm using cluster analysis and on the comparison between modal esti-

mates and reference values.  

A version of SSI-Cov was used that allows the quantification of the uncertainty associated 

with the modal parameters estimates. It was verified that several frequency and damping es-

timates presented high standard deviation values, which should not be accepted, and the ma-

jority of them correspond to outliers. In this context, the effect of the consideration of 

uncertainties within the tracking algorithm was tested, in order to minimize the number of 

outliers and increase the confidence level of modal estimates. The intended purpose was ac-

complished and good results were achieved with this processing, that is, the standard devia-

tion of both natural frequencies and damping ratios estimates was considerably decreased for 

the four studied modes, and many outliers corresponding to misidentifications were eliminat-

ed, especially with the fourth mode. 

Additionally, the consideration of the uncertainty of modal estimates in the tracking algo-

rithm revealed to be adequate to remove as well the presence of parasite frequencies from 

tracked data, namely the influence of the rotation frequency of the turbines in the hydroelec-
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tric development, which was achieved through the elimination of poles with very low stand-

ard deviations. 

In short, the quantification of uncertainties demonstrated to be a useful tool for the accurate 

tracking of modal parameters estimates. In the future, the authors expect to test the influence 

of the inclusion of said uncertainties in methods related to mitigation of environmental and 

operational effects and damage detection.  
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Abstract 

A new formulation for likelihood-informed Bayesian inference is proposed in this work based 
on probability models introduced for the features between the measurements and model pre-
dictions. The formulation applies to both linear and nonlinear dynamic models of structures. 
A relation between likelihood-informed and likelihood-free approximate Bayesian computa-
tion (ABC) is also established in this study, demonstrating that both formulations yield rea-
sonable and consistent uncertainties for the model parameters. In particular, the 
uncertainties obtained with the new formulation account better for the fact that different sam-
pling rates used in recording response time history measurements often yield measurements 
that contain the same information and so the sampling rate should not affect the uncertainty 
in the model parameters. The effectiveness of the proposed approach is demonstrated using 
an example from model updating of a linear model of a dynamical spring-mass chain system.  
 
 
Keywords: Uncertainty quantification, Bayesian learning, model updating, structural dynam-
ics, Likelihood-informed Bayesian computation, data features
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1 INTRODUCTION 

Bayesian model updating has gained more interest because of its effectiveness in practical 
engineering problems [1-3]. In Bayesian updating, the prior probability density function 
(PDF) of model parameters is updated to the posterior PDF by accounting for the information 
obtained from the measurements. Using probability models for the prediction errors, often 
formulated as the discrepancy between model predictions and the measurements, the 
likelihood function is developed. Asymptotic methods and sampling techniques have been 
developed to solve the parameter inference problem. In particular, sampling methods include 
versions of Markov Chain Monte Carlo (MCMC) (e.g. [4]), adaptive MCMC [5] as well as 
Transitional MCMC (TMCMC) [6, 7]. For likelihood-free parameter inference, the 
approximate Bayesian computation (ABC) has been developed. Among the algorithms 
proposed to solve the ABC, the subset simulation [8, 9] is shown to be computational 
effective alternative.  

Bayesian model updating in structural dynamics using response time histories measure-
ments such as accelerations, displacements or strains is often formulated by introducing point-
to-point probabilistic descriptions of the discrepancy between the measurements and model 
predictions [10]. Spatially and temporally uncorrelated prediction error models used to quanti-
fy these discrepancies, result in very peaked posterior probability distributions for the model 
parameters due to the large number of data points available from high sampling rates. Spatial-
ly and temporally correlated prediction error models are more reasonable for quantifying un-
certainties [11, 12]. However, the uncertainty depends on the correlation structure assumed 
which is often unknown and needs to be selected from a family of user-introduced correlation 
structures that might not be representative for the application. In general, the uncertainty 
quantified by the posterior probability distribution depends highly on the prediction error 
models and the correlation structure introduced between time instances as well as between 
measurements at different locations. 

Herein we address the problem of Bayesian learning given response time history measure-
ments. It is expected that for sufficiently small sampling rate, the information contained in the 
response time histories is independent of the sampling rate used to represent the time histo-
ries. Conventional techniques fail to quantify such independence and also give unrealistically 
small uncertainties due to the large number of data points used to represent the time histories. 
To properly quantify uncertainties, we propose a new formulation for likelihood-informed 
Bayesian inference based on probability models introduced for the features between the 
measured data and model predictions. Specifically, a probability model is assigned to the 
square of the discrepancy of the response time history between the measurement and the 
model prediction. Different probability models are investigated, such as a truncated Gaussian 
model and an exponential distribution model. It is demonstrated that reasonable uncertainties 
are obtained for the model parameters that are independent of the sampling rate used to repre-
sent the response time histories. A relation between likelihood-informed and likelihood-free 
Bayesian computations is also established, demonstrating that both formulations yield reason-
able and consistent uncertainties for the model parameters. A spring-mass chain model with 
simulated, noise contaminated, measured acceleration time histories is used to demonstrate 
the effectiveness of the proposed approach.  

The rest of this paper is organized as follows. In Section 2, the new likelihood-informed 
formulation for Bayesian model updating is proposed and compared with ABC formulation. 
The effectiveness of the proposed method is demonstrated using a spring-mass chain system 
in Section 3. Section 4 reports the conclusions of this study.  
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2 PROPOSED BAYESIAN FORMULATIONS 

In Bayesian framework, the probabilities of unknown parameter sets   in the model class 
M  can be first estimated from the prior probability density functions (PDF), and then it can 
be updated based on the following Bayesian formula when some measurements D  are 
available: 

 ( | , ) c ( | , ) ( | )p D M p D M p M    (1) 

where ( | , )p D M  is the posterior PDF of the model parameters given the measurements D  

and the model class M ;  ( | )p M  is the prior PDF; c is the constant which is selected so that  

the posterior PDF integrates to one; ( | , )p D M  is the likelihood function of observing the 
data from the model class.  

2.1 Model parameter estimation 

Consider a parameterized class of structures models  ;g M , where M is the model,   is 

the set of model parameters which can be identified using the measurements D . Let 

 0
0ˆ ( ) , 1, 2, , ; 1, 2, ,N

j DD y k t R j N k N       be the measured response time histories 

data from the structure, where 0N  is the number of degrees of freedom (DOF) of the models, 

DN  is the number of the sampled data using a sampling rate t , j and k denote the j-th modes 

and time index at time k t , respectively. 
Conventional methods for parameter estimation in structural dynamics using direct re-

sponse time history measurements are based on prediction error equations formulated at time 
t k t   as follows:  

    ˆ ; , ( ; )j j jy k g k M k     (2) 

Using a zero-mean Gaussian model for the prediction errors ( ; )j k  , 1, 2, , Dk N  , and as-

suming of the prediction errors between the different sensor DOF 01,2, ,j N  , one can 

readily built the likelihood in the form given in [10, 13].  

Herein, a new formulation for the likelihood is presented based on introducing probabilis-
tic models for the features between the data and the model predictions. Specifically, it is as-
sumed that the average of the square of the discrepancy between the measurements  ˆ jy k  

and the model prediction  ; |jg k M , 1, 2, , Dk N  , satisfy the following equation: 

     2

1

1
ˆ ; ;

DN

j j j
kD

y k g k M e
N




     (3) 

Due to the fact that the square error is always larger than zero, the uncertainty in je  can be 

quantified with the following two kinds of distributions: 1. the truncated normal distribution; 
2. the exponential distribution. 

Regarding the case 1, the PDF of each variable je  can be written as [14]: 

 
2

2

2
( ) exp( )

2
j

j

e
p e


   (4) 
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where   is the prediction error parameter of the truncated Gaussian probability models. The 
likelihood-informed based on the data features can be derived by the following formula: 

 
0

1

( | , ) ( | , )
N

j
j

p e M p e M 


  (5) 

The proposed likelihood is then given by: 

  
0 02 1 1

( | , )= exp ; ;
2

N N

p e M J M  


                  
 (6) 

where    
0
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1

1
; ; = ;

N
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j

J M J M  
 
 , and       2

1

1
ˆ; ; ;

DN

j j j
kD

J M y k g k M
N

 


    . Conse-

quently, the logarithmic of the likelihood is: 

      
0 2

0 0 2
1 1

1
ˆ=ln ( | , )=c ln ; ;

2

DN N

j j
j kD

L p e M N y k g k M
N

   
  

      (7) 

where 0 0

2
lnc N


 . 

In the case 2, the PDF of each variable je , assuming that it follows an exponential distribu-

tion, is given by: 

 
exp( ) 0

( )
0 0

j j

j
j

e e
p e

e

    
 (8) 

where the parameter   is reparameterized by 
2

1
=

2



, which can make the exponent term 

equal to that of the truncated normal distribution. Similarly, the logarithmic likelihood func-
tion is calculated as: 

      
0 2

1 0 2
1 1

1
ˆ=ln ( | , )=c 2 ln ; ;

2

DN N

j j
j kD

L p e M N y k g k M
N

   
  

      (9) 

where 1 0 ln 2c N  .  

When the prior PDF and likelihood function are determined, the posterior PDF of the mod-
el parameters   is further solved according to the Eq. (1). It should be noted that the new 
method extends a recent likelihood-informed formulation developed for the case where the 
modal frequencies and mode shape components are available as the measured data [15].  

Several methods have been introduced to estimate the model parameters and their uncer-
tainties. Specifically, Monte Carlo Markov Chain (MCMC) [4], adaptive MCMC [5] as well 
as Transitional MCMC (TMCMC) [6], etc, can be used for populating with samples the sup-
port of the posterior distribution. Herein, the TMCMC algorithm is applied. 

2.2 Relationship between likelihood-informed formulation and ABC  

Based on the Eq. (9), the most probable value (MPV) 2̂  of the posterior PDF can be 
obtained. Equivalently, it can be solved by maximizing the logarithmic likelihood function L : 
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2 2

1
2

ˆ=

=0
L

 



 (10) 

where 1=L L . The best estimate is then given by: 

 2

0

1
ˆ =

2N
   (11) 

where   is defined as a prediction error, which is given by: 

    
0 2

1 1

1
ˆ= ; ;

DN N

j j
j kD

y k g k M
N

 
 

     (12) 

Equivalently, Eq. (11) can be rewritten as follows: 

 2
0 ˆ2N   (13) 

In ABC algorithms, a summary statistics   and a tolerance parameter   are first intro-
duced [16]: 

     ,X D     (14) 

where X D  denotes a simulated dataset from ( | , )p D M , and  ,    is a distance measure 

on the model output space. In general, the measure  ,    is chosen to be the least square 

measure of the distance between the measurements and the model prediction from a parame-
terized class of structures models. Specifically for the model with predictions  ;g M , it is 

written as: 

    
0 2

1 1

1
ˆ= ; ;

DN N

j j
j kD

y k g k M
N

 
 

     (15) 

It can be readily found that the right side term in Eq. (15) is exactly the same as that in Eq. 
(12), thus the tolerance value   can be then selected based on the best estimate 2̂ : 

 2
0 ˆ=2N   (16) 

The effectiveness of choosing the tolerance value is also demonstrated using examples in the 
next section. 

3 NUMERICAL EXAMPLE 

3.1 Description of a 10-DOF Spring-Mass Chain model 

Consider a 10-DOF spring-mass chain system excited at the base. The equation of motion 
with base excitation  gy t : 

          + 1 gMv t Cv t K v t M y t      (17) 

where  1= 1,1, ,1
T  is a 10 1  vector. The system is created based on the following assump-

tions: 
a) The mass matrix M  is diagonal having elements equal to 1kg. 
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b) The springs are assumed to have the same stiffness equal to 1000N/m, and the spring ma-
trix K  is given by the following stiffness matrix when the parameter 1  : 

 

1 2 2

2 2 3 3

3

9 10 10

10 10

0 0

0 0

0 0

0 0

0 0 0

k k k

k k k k

K k

k k k

k k

  
    
  
   
  



 


 (18) 

c) Rayleigh damping is assumed with the damping matrix written as  

 C M K    (19) 

where the coefficient   and   are taken to be 0.2265 and 6.7515 4e , respectively, cor-

responding to given damping ratios 1 5 0.02    for the first and fifth modes of the sys-

tem. .  
d) Given the above system properties, the natural frequencies 1 2 3, ,    of the first three 

modes are estimated to be 1.0Hz, 3.0Hz and 4.9Hz.  
e) The base excitation gy  is obtained from an earthquake excitation, as shown in Fig. 1.  

 
Fig. 1 Earthquake excitation 

Eq. (17) can be also expressed with respect to the modal coordinates using the transfor-
mation    v t t  , as follows: 

        * 1T
gt C t t M y t         (20) 

where *C  and   are two diagonal matrices with elements 2 i  and 2
i , respectively. The 

state-space form is next constructed: 

      = c cx t A x t B p t  (21) 
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where x  is state vector, x  is first derivative of the state, cA  is system state matrix and cB  is 

the input to state matrix given as: 

  
 
 

 *

0 0
, , , (t)

1c c g

t I
x t A B p y t

MCt





     
               

  (22) 

The observation equation can also be written in the form: 

 ( ) ( ) ( )c cd t G x t J p t   (23) 

For absolute acceleration measurements ( )d t , the matrixes cG  and cJ  are given by: 

 * , (1 1)T
c a a c aG S S C J S M              (24) 

where aS  is the  selection matrix. Thus, the system of equations (23) and (24) can be applied 

to predict the acceleration measurements.  

3.2 Results 

The proposed method is now applied to the system mentioned above. Two cases are 
investigated in this section. The first one studies the problem of parameter estimation using 
the data features to formulate the likelihood, with truncated normal (TN) distribution assumed 
for the square of the discrepancy between the measured and model predicted response time 
histories (Case 1). The other one formulates the likelihood in a similar way but assumes an 
exponential (EXP) distribution for the square error, instead of a truncated Gaussian 
distribution. The exponential distribution is also used to explore the relationship between 
likelihood-informed algorithm and the likelihood-free ABC algorithm. All methods are 
compared with the conventional Bayesian formulation assuming normal (NORM) distribution 
for the prediction errors at each time instant to construct the likelihood.  

Results are presented for simulated measurements that are generated for a nominal spring-
mass chain model. To simulate the effect of model error, 5% Gaussian noise is added to the 
acceleration response time histories generated from the nominal model. The acceleration 
measurements from all ten DOF of the system are considered. For demonstration purposes, a 
single stiffness parameter is considered as the model parameter to be updated. This parameter 
included the stiffness of the first three springs in the spring-mass chain system.  

Parameter estimation results along with their uncertainties (5 and 95% quantiles) are 
presented in Figs. 2 and 3 for different sampling rates t  ranging from 0.1 t  to 10 t  of the 
same time history. The number of the samples DN  are decreased accordingly from 10 DN  to 

0.1 DN . Specifically, results from the proposed truncated Gaussian distribution (TN) are 

compared with results obtained from the conventional Bayesian method. It should be noted 
that the different sampling rates chosen do not affect the information contained in the data. 
Both methods give almost the same MAP estimates for the structural model parameter (Fig. 
2). However, uncertainty bounds are substantially different for the two methods. Specifically, 
from the results in Fig. 2, it becomes evident that the conventional Bayesian method gives 
very small uncertainties that decrease as the number of sampling points increase. The 
proposed method based on the data features provides much higher uncertainties that are 
independent on the number of data points used. This is consistent with intuition since the 
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information contained in the acceleration time history is almost independent of the sampling 
rate used in this example.  

θ
1

 
Fig. 2 Parameter estimation of 1  using TN (Case 1) and NORM 

 
Fig. 3 Parameter estimation of   using TN (Case 1) and NORM 

 
Next, parameter estimation results along with their uncertainties (5 and 95% quantiles) are 

compared in Fig. 4 for the TN case (Case 2), the conventional Bayesian method (NORM) and 
the ABC method. Again the sampling rates t  range from 0.1 t  to 10 t  of the same time 
history. The best estimate ̂  of the standard deviation is specified as the value 90  (90-

quantile) obtained from EXP. Then the tolerance value   in ABC algorithm can be calculated 
based on the formulation in Eq. (16). Although all three methods predict the same MAP esti-
mate, the uncertainty bounds computed from the conventional Bayesian methods are again 
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substantially smaller than the bounds computed from the other two methods. Also, the uncer-
tainty in the model parameter decreases as the sampling rate increases which is contrary to 
intuition, since there is not extra information contained in the time history with higher sam-
pling rate. The uncertainty predicted by the proposed likelihood-informed method is similar to 
the uncertainty estimated by the ABC method. Both methods (TN and ABC) provide uncer-
tainty bounds that are almost independent on the sampling rate. The small discrepancies in the 
uncertainty bounds are due to the choice of the tolerance value in ABC. A slightly different 
tolerance can zero the discrepancy between the two methods.  

 
Fig. 4 Parameter estimation of 1  using EXP (Case 2), NORM and ABC 

4 CONCLUSIONS  

A new formulation based on the data features for likelihood-informed Bayesian infer-
ence has been presented and discussed in this paper. The effectiveness of the proposed for-
mulation has been demonstrated by a spring-mass chain model. The main conclusions of 
this work are:  

 The proposed data-features likelihood-based Bayesian methodology correctly accounts 
for the uncertainty in the model parameters, making such uncertainty independent of 
sampling rate of the measured response time histories. In contrast, the uncertainty in the 
model parameters obtained from conventional Bayesian inference formulation depends 
on the sampling rate of the response time histories, despite the fact that the information 
contained in the response time history data is independent of the sampling rate.  

 The proposed likelihood-informed Bayesian formulation provides results that are con-
sistent with the ones obtained from likelihood-free ABC formulations.  

 The proposed method applied herein to linear structural systems can also be extended to 
non-linear structural systems given response time history measurements. 
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Abstract. This paper unifies several recent results from possibilistic uncertainty analysis in
order to contribute to a general theory of possibilistic parameter estimation by providing an
exemplary procedure to estimating possibilistic distributions of model parameters from samples
of an aggregated output quantity.

This task is accomplished by dividing the problem in two subproblems. In the first step, the
output samples are represented in a structured manner by a possibility distribution. The second
step deals with the backpropagation of the output distribution through a model, thus arriving at
a distribution of the input quantity to be estimated.

The theoretical basis for this two-step scheme lies in the theory of imprecise probabilities,
giving the computed distributions an immediate and meaningful interpretation. It is intended to
provoke the development of a novel theory complementary to classical statistics.
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1 Introduction

In some cases, e.g. in mechanical engineering [1], it is necessary to infer an input (a-priori)
distribution of an unknown quantity, e.g. masses, stiffnesses or damping from the a-posteriori
distribution of a measurable output quantity, e.g. energy, displacements, or eigenfrequencies. In
the general probabilistic case, this typically requires the solution of a system of equations in-
volving stochastic variables and possessing infinitely many solutions. Thus, it cannot be solved
without additional assumptions, such as maximum entropy of the input distribution or its shape
(Gaussian, uniform, etc.). This problem can be resolved if one is willing to revert back to the
coarser framework of possibility theory. A solution scheme is proposed here, which is divided
into two steps.

First of all, the available output data are represented in a structured manner by means of a
possibility distribution, which is motivated by results about consistent probability-possibility
transformations. Few scholars have investigated this topic, and literature is sparse or uninspir-
ing. Many authors simply assume a reasonable range and a nominal value of some parameter
and then construct a triangular fuzzy number from these values. This approach may be justi-
fiable in some cases [2], but often it falls short of the capabilities that possibility theory has
to offer for representing uncertainty. Apart from the methods gathered in this contribution,
namely percentage sets and possibilistic moment matching, Dubois and Prade provide some
basic approaches to this problem in [3], and Masson and Denœux show how the empirical prob-
abilities (relative frequencies) of multinomial probability distributions can be used to construct
possibility distributions by means of confidence intervals [4]. For practical methods for the con-
struction of possibility distributions from probability distributions or families thereof interested
readers may refer to [5]. Secondly, relying on results about inverse fuzzy arithmetic, the output
distribution is propagated backwards through the given model, yielding the desired possibility
distribution of the parameter to be inferred. The solution of such fuzzy equations [6], where the
parameters are of possibilistic rather than probabilistic nature, has also received little attention
by scholars in the past and therefore requires further analysis. The most rigorous pursuer of
this line of research is certainly Tanaka who solves fuzzy linear equations with very restrictive
assumptions about the shape of the involved fuzzy parameters in the context of fuzzy linear
programming, but is able to provide strong results, e.g. in [7, 8, 9]. Furthermore, Hukuhara
introduces the Hukuhara difference for set-valued functions in [10], which Bede and Stefanini
employ on an α-cut basis in [11] to propose an inverse to the addition and multiplication of
fuzzy-valued functions. In a recent review, Lodwick and Dubois argue that the solution of inter-
val linear systems is a first step to solving systems of fuzzy linear equations [12]. They identify
four cases – depending on the kind of uncertainty that is encoded in the interval – how interval
linear systems should be categorized and solved. Consequently, they recommend applying tech-
niques for the solution of interval linear systems, such as contractor programming [13] or the
identification of robust solution spaces [14], on an α-cut basis for the solution of fuzzy linear
systems. Here, a generalization of the above mentioned results is sought.

The remainder of this contribution is organized as follows. In Section 2, a brief overview of
possibility theory is given. Section 3 is concerned with the structured representation of data by
means of a possibility distribution, and in Section 4, inverse fuzzy arithmetic is introduced to
infer a-priori possibility distributions. In order to demonstrate the usefulness of the suggested
solution scheme, a well-known application example, the GARTEUR SM-AG-19 testbed, is
employed in Section 5, where the two basic steps of the proposed procedure are performed.
Some concluding remarks are given in Section 6.
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2 Possibilistic Uncertainty Descriptions

Possibility theory provides a unified framework for a robust treatment of polymorphic un-
certainties. Therein, the possibility measure Π : Ω → [0, 1], the possibilistic counterpart to a
probability measure P, assigns varying levels of confidence between Π (∅) = 0 and Π (Ω) = 1
to all subsets of the universe of discourse Ω. In contrast to the probability measure fulfilling
the additivity axiom P (A ∪B) = P(A) + P(B) for disjunctive events A,B ∈ 2Ω, the possi-
bility measure fulfills the maxitivity axiom Π (A ∪B) = max (Π(A),Π(B)). This allows for
a very general description of aleatory and epistemic uncertainties [15]. Arguing from the point
of view that in a state of perfect knowledge only aleatory uncertainties remain and epistemic
uncertainties arise do to a lack of knowledge about the true underlying probability distribu-
tion, an interval is the least specific representation of uncertainty and a probability distribution
is its most specific representation [16] as it describes the uncertain outcome of an experiment
perfectly. For instance, a fair coin will show heads fifty percent of the time. This aleatory
uncertainty is irreducible; there is not a more specific way to describe it. Possibility theory
can be employed to represent an additional epistemic lack of knowledge and to encode several
probability distributions in just one possibility distribution. Encoding e.g. the confidence levels
of such a probability distribution in a possibility distribution [5] loses some of the information,
but still allows for a conservative assessment of upper and lower probabilities, i.e. the descrip-
tion of uncertainty is coarsened. In this context, the concept of consistency is of fundamental
importance. Here, the definition by Dubois and Prade [17], viewing a possibility measure as an
upper probability measure, is employed. More precisely, a probability measure P and a possi-
bility measure Π are called consistent if the probability of an event U ∈ 2Ω is bounded from
above by its possibility, i.e. P (U) ≤ Π (U), and consequently from below by the dual neces-
sity N (U) = 1 − Π (Ω \ U) ≤ P (U). Therefore, any possibility measure induces a credal set
of consistent probability measures PΠ = { P : P (U) ≤ Π (U) ∀ U ∈ 2Ω

}
. Illustrative results

about which probability distributions are actually contained in PΠ may be found in [16]. A pos-
sibility distribution consistent with all probability distributions with zero mean and unit variance
is visualized in Figure 1. The corresponding possibility density function is shown in Figure 1a.
The cumulative possibility and necessity distribution and the cumulative probability distribution
of the normalized Gaussian distribution, all evaluating the event U(x) = (−∞, x], are depicted
in Figure 1b. In the continuous case, an Rnx-valued uncertain (random or fuzzy) variable X
may possess a probability distribution PX or a possibility distribution ΠX on the Borel σ-
algebra Bnx . The possibility density function (fuzzy set membership function) πX and the prob-
ability density function pX have to satisfy ΠX (U) = sup πX (U) and PX (U) =

∫
U
pX dλ,

where λ is the Lebesgue measure, for all events U ∈ Bnx .
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(a) Possibility density function.
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(b) Cumulative distribution functions.

Figure 1: Possibility distribution consistent with all probability distributions with zero mean
and unit variance.
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3 Possibility Distribution Estimation

The construction of meaningful possibility distributions has received relatively little attention
in the past. Below, two methods for the construction of possibility distributions from samples
are presented.

3.1 Percentage Sets

The most intuitive method for constructing a possibility distribution from samples are per-
centage sets. The basic idea in one dimension, percentage intervals, is presented in [18] with-
out mentioning the powerful theoretical results that can be shown about them. For the one-
dimensional case, a well-known result from possibility theory, which can be found e.g. in [5],
states that any cumulative probability distribution function can act as a possibility density func-
tion, e.g. πX = CX (x) = PX ({ξ ∈ R : ξ ≥ x}) for x ∈ R, inducing a possibility distribu-
tion ΠX which is consistent with PX since

PX (U)
x̂=inf U

≤ CX (x̂) = πX(x̂)
(†)
= sup πX (U) = ΠX (U) ∀ U ∈ B , (1)

where (†) follows from the fact that πX is monotonously decreasing.
The {0, 1}-valued uncertain variable Yx = 1{X≥x} assuming one if X ≥ x and zero other-

wise is, thus, Bernoulli distributed with probability CX (x). Given nr realizations x1, . . . , xnr
of the independent and identically distributed (iid) random variables X1, . . . , Xnr ∼ PX , the
relative frequency νx of realizations with xi ≥ x is an unbiased estimator of CX (x), and
for nr → ∞ this yields νx → CX (x) according to Borels strong law of large numbers for
the Bernoulli distribution of Yx. This motivates choosing π̂XPS (x) = 1

nr

∑
xi≥x 1 to approxi-

mate a possibility distribution that is consistent with PX .
An extension to the M -dimensional case is also feasible by approximating

πX (x) = PX ({ξ ∈ Rnx : ||ξ − c|| ≥ ||x− c||}) ∀ x ∈ RM (2)

via π̂XPS (x) = 1
nr

∑
||xi−c||≥||x−c|| 1 for any c ∈ (R ∪ ±∞)nx . Depending upon the choice of

the norm this yields different geometrical shapes, such as Percentage Boxes for the∞-norm || ·
||∞, Percentage Spheres for the 2-norm || · ||2, Percentage Hyperellipsoids for the weighted
2-norm ||A · ||2 where A ∈ Rnx×nx is a non-singular matrix, etc. An outer approximation of
the Percentage Intervals in [18] can be obtained for M = 1 and c = 1

nr

∑nr
i=1 xi.

3.2 Possibilistic Moment Matching

Moment matching is a standard technique in statistics for the parameters of probability dis-
tributions. Following a similar line of reasoning as in the previous section, Mauris argues in [19]
that the possibilistic representation of families of probabilities with certain characteristics, i.e.
moments µi, is fundamentally linked to the solution of the possibilistic moment matching prob-
lem

πX(x) = max
PX

PX(|X − c| ≥ |x− c|)

subject to pX(ξ) ≥ 0, ∀ ξ ∈ R∫
R
pX(ξ) dξ = 1,∫

R
pX(ξ)hi(ξ) dξ = µi, i = 1, . . . , nh ,

(3)
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where c is usually the suspected mode of the probabilities and hi are the moment functions. This
allows for a more general procedure for the construction of possibility densities. In principle, all
moments can be estimated from the samples without bias by computing µ̂i = 1

nr

∑nr
i=1 hi(xi).

However, the variance of these estimates grows quickly such that matching the moments of
higher order is generally not recommendable unless the number of samples is large. Therefore,
only the sample moments µ̂i of lower order are matched and the resulting family of probabilities
is captured via the estimated possibility density π̂XMM .

Notice, that the possibility density in Figure 1a may be obtained by matching the first-order
raw moment, i.e. the mean by h1(ξ) = ξ with µ1 = 0 and the second-order central moment, i.e.
the variance by h2(ξ) = ξ2 with µ2 = 1.

4 Inverse Fuzzy Arithmetic

The forward propagation of possibilistic variables through models of the form Y = φ (X)
is performed by the application of Zadeh’s extension principle [20] providing the possibility
distribution of Y according to

πY (y) = sup
x:y=φ(x)

πX(x) (4)

where the supremum of the empty set is defined to be zero. For the inverse propagation, Y
is an Rny -valued fuzzy variable with known membership function πY and the membership
function πX of the Rnx-valued fuzzy variableX is sought.

Hose and Hanss provide an approach to inverse fuzzy arithmetic in [21] which can serve as a
basis for a more general solution to fuzzy equations. This approach is further investigated here.
It is a variation of the approaches provided in [9], [11] and [12]. The functional dependency is
generalized to the nonlinear case, yet the dependency on additionally known fuzzy parameters is
not considered. This overall reduced involvement allows for showing some desirable properties
within the theory of imprecise probabilities [22].

Specifically, in [21] it is argued that the minimum specific inverse possibility distribution
given by

π∗φ−1(Y ) (ξ) = πY (φ (ξ)) ∀ ξ ∈ Rnx (5)

is a sensible choice, purely approaching the problem in the framework of fuzzy set theory as
an inverse to Zadeh’s extension principle. This proposition may also be investigated in the
framework of imprecise probabilities, yielding the following powerful results:

Suppose X is an Rnx-valued uncertain variable, φ : Rnx → Rny a Borel measurable and
surjective function, and Y = φ (X) an Rny -valued uncertain variable. If Y possesses a prob-
ability distribution PY , then in general there exists an infinite number of probability distribu-
tions PX yielding this pushforward measure under φ. These extensions may be gathered in
the set IφPY

= {PX : PY (V ) = PX (φ−1 (V )) ∀V ∈ Bny} which is generally hard to com-
pute. Theorem 2 in [23] states that an outer approximation of this credal set may be found
by transforming PX into any consistent possibility distribution ΠX (refer e.g. to [2]) and then
computing its minimum specific inverse possibility distribution Π∗φ−1(Y ), whose induced credal
set satisfies IφPY

⊆ PΠ∗
φ−1(Y )

.
The univariate densities π∗X1

, . . . , π∗Xnx can then be obtained by the marginalization

π∗Xi(xi) = sup
x1,...,xi−1,xi+1,...,xnx

π∗φ−1(Y )(x1, . . . , xi−1, xi, xi+1, . . . , xnx) , i = 1, . . . , nx . (6)
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The framework of imprecise probabilities facilitates the computation of upper and lower bounds
of the expected values of the Xi [24] by evaluating the Choquet integrals [25]

E[Xi] =

∫
Xi dΠ∗Xi =

∞∫
0

Π∗Xi (Xi ≥ ξ) dξ +

0∫
−∞

[
Π∗Xi (Xi ≥ ξ)− 1

]
dξ (7)

and

E[Xi] =

∫
Xi dN∗Xi =

∞∫
0

N∗Xi (Xi ≥ ξ) dξ +

0∫
−∞

[
N∗Xi (Xi ≥ ξ)− 1

]
dξ (8)

which may serve as an interval-valued estimator X̂i =
[
E[Xi],E[Xi]

]
.

5 Application

In order to illustrate the general solution scheme for possibilistic parameter inference, the
two steps provided in Sections 3 and 4 shall now be applied to the GARTEUR SM-AG-19
testbed presented in [26], which was originally designed to provide a benchmark problem for
the various techniques available for stationary oscillation testing. A finite-element model of the
GARTEUR structure is exhibited in Figure 2.

Several model updating techniques have been applied using experimental data [27, 28, 29,
30, 31]. However, these conflicting measurement results are a perfect example of epistemic
uncertainties since the deviations do not stem from stochastic disturbances in the measurement
process, but rather from the application of different measuring techniques. Simply fitting a
model with a Gaussian noise term would fail to address this form of uncertainty in a reasonable
manner.

Figure 2: Finite-element model of the GARTEUR SM-AG-19 testbed.

5.1 STEP 1: Possibilisty Distribution Estimation

To ellucidate the methods of percentage sets and possibilistic moment matching, these meth-
ods will be applied to the experimental results of the groups who collaborated in the GARTEUR
project. These data are gathered in Table 1, consisting of the six lowest identified eigenfrequen-
cies with the associated modes shown in Figure 3.
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(a) First eigenmode. (b) Second eigenmode. (c) Third eigenmode.

(d) Fourth eigenmode. (e) Fifth eigenmode. (f) Sixth eigenmode.

Figure 3: Mode shapes of the GARTEUR SM-AG-19 testbed.

Table 1: Eigenfrequencies of the GARTEUR SM-AG-19 testbed determined by different modal
analysis techniques.

Source Laboratory f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz]

[32] - 5.50 14.91 31.96 32.33 34.38 43.89
[33] Intespace a 6.1 16.3 33.7 36.0 40.7 49.6
[33] Conservatoire National des

Arts et Métiers
6.19 16.16 32.45 32.96 35.63 49.08

[33] Intespace b 6.2 16.3 33.3 35.8 41.4 49.4
[34] Deutsches Zentrum für Luft-

und Raumfahrt
6.38 16.10 33.13 33.53 35.65 48.38

[33] Aerospatiale a 6.39 15.98 31.84 32.33 35.12 48.47
[33] Aerospatiale b 6.4 16.01 31.92 34.66 35.13 48.49
[33] Saab 6.48 16.33 33.31 33.75 35.73 48.85
[33] Defense Research Agency a 6.49 16.41 33.42 33.87 36.26 49.55
[33] Defense Research Agency b 6.50 16.45 33.49 33.97 36.34 49.85
[33] Defense Research Agency c 6.50 16.47 33.47 33.97 36.38 49.84
[35] Imperial College a 6.54 16.55 34.86 35.30 36.53 49.81
[35] University of Wales 6.55 16.61 34.88 35.36 36.71 50.09
[33] Imperial College b 6.623 16.210 35.420 37.177 37.464 48.421
[33] Office National D’Etudes et

de Recherches Aerospatiales
6.63 16.25 33.16 33.57 35.36 48.62

[33] University of Manchester 6.71 16.40 33.46 33.94 36.12 49.65
[33] Aerospatiale c 6.92 16.09 32.96 33.48 35.33 48.41
[33] Aerospatiale d 6.949 15.996 32.867 33.375 34.726 48.07
[33] Imperial College c 6.974 16.079 33.862 33.938 34.915 46.080
[33] Sopemea 6.974 16.079 33.682 33.938 34.915 46.080
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a) Percentage Sets

Figure 4a shows the possibility density π̂FPS
1

obtained from the percentage intervals of the
first eigenfrequency, and Figure 4b shows the percentage hyperellipsoid possibility density π̂FPS

2,5

obtained from the empirical cumulative probability distribution function of the eigenfrequen-
cies f2 and f5 after a student normalization, i.e. by centering about the sample means and scaling
with the Cholesky decomposed sample covariance matrix.
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0.8
1

f1 [Hz]

π

(a) Possibility density π̂FPS
1

of the first eigen-
frequency.
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0.2
0.4
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0.8
1

(b) Joint possibility density π̂FPS
2,5

of the eigen-
frequencies f2 and f5.

Figure 4: Percentage sets of the data given in Table 1.

b) Moment Matching

The raw ith moments µ̂i,j of the jth eigenfrequencies in Table 1 are given in Table 2. The
possibility density π̂FMM

1
in Figure 5 are obtained by possibilistic moment matching, i.e. by

solving (3) for the first three raw sample moments of the first eigenfrequency.

Table 2: Raw sample moments of the data in Table 1.

Moment function f1 f2 f3 f4 f5 f6

h1(ξ) = ξ 6.5 16.2 33.4 34.2 36.2 48.5
h2(ξ) = ξ2 42.4 262 1.11 · 103 1.17 · 103 1.32 · 103 2.36 · 103

h3(ξ) = ξ3 277 4.24 · 103 3.72 · 104 4 · 104 4.79 · 104 1.15 · 105

3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

f1 [Hz]

π

Figure 5: Possibility density π̂FMM
1
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5.2 STEP 2: Inverse Fuzzy Arithmetic

Using the possibility distributions identified above, inverse fuzzy arithmetic now enables the
identification of e.g. a possibility distribution of the Young’s modulus of the material or of the
Rayleigh damping parameters.

a) Young’s Modulus

The GARTEUR testbed may be described by the second-order differential equation

M ÿ +K(E)y = 0 , (9)

resulting from the finite-element formulation. Its dependency on the Young’s modulus E can
formally be expressed as a function φ1 allowing to estimate a possibility distribution for E.

Using the percentage intervals of the first eigenfrequency FPS
1 in Figure 4a as the output

distribution, one obtains the minimum specific inverse solution Π∗
φ−1
1 (FPS

1 )
shown in Figure 6a,

yielding the expected value bounds

E[EPS] = 71.24 GPa and E[EPS] = 83.93 GPa . (10)

Using the possibility distribution Π̂FMM
1

in Figure 5 as the output distribution, one obtains the
minimum specific inverse solution Π∗

φ−1
1 (FMM

1 )
shown in Figure 6b and

E[EMM] = 67.91 GPa and E[EMM] = 90.01 GPa (11)

as the bounds for the expected value. Since the latter bounds are more conservative, one may
deduce that the information given by the sample moments is less specific than the information
contained in the percentage sets.
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(a) Identified possibility density π∗
φ−1
1 (FPS

1 )
.
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(b) Identified possibility density π∗
φ−1
1 (FMM

1 )
.

Figure 6: Estimation of the possibility density of the Young’s modulus by inverse fuzzy arith-
metic.

b) Rayleigh Damping

The proposed procedure can also be employed to identify Rayleigh damping, i.e. to esti-
mate the possibility distributions of the parameters α and β which constituting the damping
matrix C(α, β) = αM + βK. In this case, a function ψ2,5 formally describes the dependency
of the eigenfrequencies f2 and f5 of the system equations

M ÿ +C(α, β) ẏ +K y = 0 (12)
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on the Rayleigh parameters. Applying inverse fuzzy arithmetic to the percentage hyperellip-
soids of F PS

2,5 , the density of the joint possibility distribution Π∗
ψ−1
2,5(FPS

2,5)
of the Rayleigh param-

eters shown in Figure 7a is obtained. A marginalization yields the univariate densities

π∗α(a) = sup
b≥0

π∗
ψ−1
2,5(FPS

2,5) (a, b) and π∗β(b) = sup
a≥0

π∗
ψ−1
2,5(FPS

2,5) (a, b) (13)

shown in Figures 7b and 7c. The bounds on the expected values are given by

E[αPS] = 72
1

s
and E[αPS] = 97

1

s
(14)

and
E[βPS] = 1.6 ms and E[βPS] = 3.1 ms . (15)
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(b) Identified marginal possibility density π∗α.
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(c) Identified marginal possibility density π∗β .

Figure 7: Estimation of the possibility densities of the Rayleigh damping parameters by inverse
fuzzy arithmetic.

6 Conclusion

Since the proposed procedure is based on theoretical results about probability-possibility
transformations and inverse possibility propagation, it provides a meaningful interpretation
of the involved uncertainty descriptions within the framework of imprecise probabilities. It
is, furthermore, conceptually simple and straightforward to compute as the application to the
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GARTEUR testbed shows, and thus it promises to be a suitable method for a broad range of
applications.

The next sensible step is to investigate whether similar results can be proven for non-determi-
nistic process models. In order to do so, a more general inverse fuzzy arithmetic has to be
developed, capable of solving fuzzy equations of the form

Y = f (P ,X) , (16)

where Y and P are considered to be known fuzzy quantities and the distribution of X is
sought. This would prove useful when e.g. measurement noise has to be taken into account.
Amongst other things, this requires a careful examination of the results presented in [12] within
the framework of imprecise probabilities.
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Abstract. The concept of consistency between multivariate probability and possibility distri-
butions is of essential importance for solving possibilistic inference problems in large-scale
applications where potentially many uncertain variables are involved.

The transformation of probability distributions to possibility distributions with minimal loss
of information has been treated before. For instance, it has been shown that the (maximum
specific) possibility distribution of a univariate uniform probability distribution is a triangular
fuzzy number. Unfortunately, this result does not directly translate to higher dimensions, a prob-
lem which has received little attention among scholars. Yet, the construction of joint possibility
distributions in the multivariate case and, consequently, their propagation are mandatory for
the interpretation of the possibilistic results in the context of imprecise probabilities.

In this contribution, the consistent aggregation of marginal possibility distributions in a joint
distribution is investigated, with the aim of enabling the consistent propagation of uncertainty
of a high dimension using possibility theory.

In particular, rather than deriving the joint possibility distribution from consistent marginal
distributions, which may result in an inconsistent joint distribution, the consistency of the joint
distribution has to be ensured first, and the marginal distributions can be deduced therefrom.

This approach is motivated by the transformation of multivariate uniform probability distri-
butions. It highlights that the often-used triangular shape of the possibility density function,
which is optimal in the univariate case, yields an inconsistent distribution in the multivariate
case for independent variables. The conclusions are then generalized for arbitrary possibil-
ity distributions, resulting in a mathematical program for the construction of multivariate joint
possibility distributions.

The main result is that, instead of modeling uncertainty by means of triangular fuzzy num-
bers, the dimension of the uncertainty space has to be accounted for and the provided alternative
which is highly meaningful in the context of imprecise probabilities should be chosen. Addition-
ally, it is shown that for an increasing number of uncertain variables, the resulting possibility
densities become less and less specific, and possibilistic analysis degenerates to interval calcu-
lus.
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1 Introduction

This contribution initially intendeds to provide a concise summary of possibility theory
within the framework of imprecise probabilities for engineers in Sections 2 – 6. Supple-
mentary literature is referenced where it is needed. An emphasis is put on the problem of
high-dimensional uncertainty propagation of possibility distributions, and some difficulties are
pointed out in Section 7, building upon the results of Baudrit and Dubois who are the main
pursuers of this line of research with many useful results, e.g. in [1] and [2]. However, they
specialize in the problem of the joint propagation of probability and possibility distributions.
Here, some novel theoretical approaches regarding the construction of joint possibility distribu-
tions from marginal possibility distributions are illustrated from the point of view of imprecise
probabilities. In a first step, an optimal transformation of multivariate uniform probability dis-
tributions is derived manually in Section 8. Generalizing these results, a mathematical program
for obtaining the joint possibility distribution is given in Section 9 and the core of this contri-
bution, an argument for the replacement of triangular fuzzy numbers, is presented. Some final
remarks in Section 10 conclude the discussion.

2 Probability and Possibility Spaces

The definitions of a probability space (X ,S,P), consisting of a sample space X , the σ-
algebra S on X , and a probability measure P, are well-known [3]. The set of all probability
distributions on the measurable space (X ,S) is denoted by P (X ,S).

Many scholars (e.g. Destercke, Dubois and Chojnacki in [4]) have argued that in certain
scenarios a more general description of uncertainty is necessary in order to avoid having to
agree on just one probability distribution.

One alternative description of uncertain bodies of evidence is the theory of possibility which
Zadeh proposes [5]. It is based on the possibility measure, a sub-additive Choquet capac-
ity [6], which is a set function Π : 2X → [0, 1] that satisfies Π (∅) = 0 and Π (X ) = 1,
and for two disjoint sets U1, U2 ⊆ X the possibility of their union is given by Π (U1 ∪ U2) =
max (Π(U1),Π(U2)). The introduction of a σ-algebra is not required for possibility measures
but it is certainly possible to consider their restrictions Π|S in order to compare them with the
respective probability measures.

Finally, analogously to a probability measure inducing a probability density, a possibility
measure Π induces a possibility density π and vice versa, satisfying the identities

Π (U) = sup
x∈U

π(x) ∀ U ∈ S and π (x) = Π({x}) ∀ x ∈ X . (1)

3 Possibility as an Imprecise Probability

As stated in [7], the Dempster-Shafer Theory of Evidence [8] can serve as a general frame-
work for descriptions of uncertainty by imprecise probabilities [9]. Therein, the belief mass
plays a central role in assigning belief values to subsets of the sample space. If certain restric-
tions are imposed on this belief mass function, it degenerates to a probability distribution or a
possibility distribution demonstrating how closely they are interconnected. A nice review of the
different representations of uncertainty and their relation to each other is given in [4].

Therefore, one can attempt to measure their consistency in order to determine how closely
a specific possibility and probability distribution are actually connected. Several concepts of
a measure of consistency have been proposed, see [10] for a review. Here, the definition by
Dubois and Prade [11], viewing a possibility measure as an upper probability measure, is em-

128



Dominik Hose, Markus Mäck and Michael Hanss

ployed. Namely, a probability measure P and a possibility measure Π are called consistent if
the probability of all events U ∈ S is dominated by its possibility, i.e.

P (U) ≤ Π (U) . (2)

From the upper bound provided by the possibility measure, it follows immediately that the
probability measure is also bounded from below by the necessity measure

N (U) = 1− Π (X \ U) ≤ 1− P (X \ U) = P (U) ∀ U ∈ S . (3)

Therefore, necessity and possibility measures may be viewed as upper and lower probabili-
ties [12].

4 Credal Sets

A possibility distribution induces a credal set of consistent probability distributions [13]

PΠ = {P ∈ P (X ,S) : P (U) ≤ Π (U) ∀ U ∈ S} . (4)

Generally, a possibility measure Π′ is called more specific than Π′′, denoted by Π′ � Π′′, if
for all events U ∈ S it holds that Π′(U) ≤ Π′′(U). It is easy to see that this implies PΠ′ ⊆ PΠ′′ .
More illustrative results about which probability distributions are actually contained in PΠ may
be found in [14].

A necessary and sufficient criterion to check consistency between a probability measure P
and a possibility measure Π, i.e. P ∈ PΠ, is to check if Equation (2) is fulfilled only for the
sub-level sets

SαΠ = {x ∈ X : π(x) ≤ α} (5)

for all α ∈ [0, 1] instead of all U ∈ S , see [15], making this verification computationally
tractable. This, or course, requires π to be S-measurable, which is usually the case in engineer-
ing applications.

5 Probability-Possibility Transformations

Since possibility theory is able to provide insight about the bounds of the true probabilities
of an event, it is a broader framework that at the same time handles coarser knowledge and can
never be as precise as probability theory. However, it can be favorable to replace a probability
distribution on some evidence by a possibility distribution in certain situations, e.g. in order
to facilitate further calculations or for the solution of inverse problems [16]. Of course, this
possibility distribution should be consistent with the original probability distribution in order
to account for it. In [14], Dubois and Prade argue that given a probability measure P with
probability density p, an optimal transform is given by the possibility density

π(x) = 1− P ({ζ ∈ X : p(ζ) ≥ p(x)}) ∀x ∈ X . (6)

Notice that optimal transforms are not unique and other possibilities exist. For instance, the
cumulative distribution function F (x) = P ({ζ ∈ X : ζ ≤ x}) for x ∈ X may also serve as a
suitable optimal transform depending on the application scenario. For alternative methods for
the construction of possibility distributions refer e.g. to [15].

In Figure 1, several optimal transforms of a standard Gaussian distribution are depicted.
Therein, π1 is obtained from Equation (6), π2 represents the cumulative distribution and π3

represents the complementary cumulative distribution.
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Figure 1: Possibility densities of the optimal transforms of the standard Gaussian distribution.

6 Uncertainty Propagation

The propagation of uncertainties through models represented by a (measurable) function ϕ :
X → Y mapping from the uncertain input space X to the uncertain output space Y is often
the main concern in uncertainty quantification. Formally, the pushforward of a possibility or
probability measure µ is defined by

µϕ(V ) = µ
(
ϕ−1(V )

)
∀V ∈ Y , (7)

where Y is a σ-algebra on Y and ϕ−1(V ) = {x ∈ X : ϕ(x) ∈ V }. This definition can
then by extended to credal sets by defining Pϕ = {Pϕ : P ∈ P}. A well-known result (e.g.
Proposition 1 in [17]) states that PϕΠ = PΠϕ . The forward propagation of consistent measures
yields consistent pushforward measures.

Next, the case of inverse uncertainty propagation is investigated. Given a pushforward mea-
sure µϕ, only a restriction of the original measure µ|X on the algebra X = {ϕ−1(V ) : V ∈
Y} ⊆ S is known and there exists a (possibly infinite) set of extensions on S

Iµϕ =
{
µ′ on S : (µ′)

ϕ
= µϕ

}
(8)

yielding this pushforward measure. In the case of possibility measures, the outer extension
induced by the possibility density

π∗ : x ∈ X 7→ πϕ (ϕ(x)) (9)

satisfies Π′ � Π∗ for all Π′ ∈ IΠϕ , i.e. it is the least specific possibility distribution Π∗ ∈ IΠϕ .
Moreover, for all Pϕ ∈ PΠϕ it follows that IPϕ ⊆ PΠ∗ , as shown e.g. in Theorem 2 in [18].

7 High-Dimensional Consistency

Suppose that two independent R-valued uncertain (stochastic) variables ξ1 and ξ2 with given
possibility densities πξ1 and πξ2 are to be propagated through a model ϕ : R× R→ R in order
to compute the possibility distribution of the output variable η = ϕ (ξ1, ξ2). Equation (7) then
translates to computing

πη(y) = max
ξ1,ξ2 ∈R : y=ϕ(x1,x2)

πξ1,ξ2 (x1, x2) . (10)

A reader, unaware of the extensive discussion on possibilistic independence summarized in [19],
now may assume that the propagation of possibilistic uncertainties, traditionally known as fuzzy
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arithmetic [20], could serve as a conservative alternative to probabilistic calculus, i.e. that the
joint probability density

pξ1,ξ2 (x1, x2) = pξ1 (x1) · pξ2 (x2) ∀x1, x2 ∈ R (11)

ought to be consistent with the the joint possibility density

πZadeh
ξ1,ξ2

(x1, x2) = min {πξ1 (x1) , πξ2 (x2)} ∀x1, x2 ∈ R , (12)

from the original formulation of Zadeh’s extension principle [21], if Pξ1 ∈ PΠξ1
and Pξ2 ∈ PΠξ2

.
However, this is not the case as Baudrit et al. demonstrate in Section III.B of [1]. Instead, if one
wishes to maintain meaningful results within the framework of imprecise probabilities, the aim
is to construct a (in some sense optimal) joint possibility distribution Πξ1,ξ2 from the marginal
possibilities Πξ1 and Πξ2 such that the joint probability distribution Pξ1,ξ2 of all marginal prob-
abilities Pξ1 ∈ PΠξ1

and Pξ2 ∈ PΠξ2
is contained in PΠξ1,ξ2

.
This would also enable the joint propagation of any number of marginal possibility distribu-

tions by recursively applying this procedure. A sensible sub-problem to be considered first is
that of transforming high-dimensional probability distributions into possibility distributions as
done in the following section.

8 High-Dimensional Probability-Possibility Transformations

The most commonly used possibility density is of triangular shape with zero density outside
its support [ξl, ξu] and a linear increase towards its nominal value ξ̄ with density one, refer to
Figure 2. A triangular possibility density function represents the optimal transform of a uni-
form probability density function and bounds all density functions transformed from symmetric
probability densities with the same (bounded) support as an upper envelope [22]. However, the
extension from the one dimensional case to the multivariate case of N uniformly and indepen-
dently distributed probability densities cannot be achieved by assuming independent triangular
shaped possibilistic densities.

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

x

π

Figure 2: Symmetric triangular possibility density on the support [0, 1].

In the following, the optimal transform of N -dimensional, uniform probability densities is de-
rived. Let Pξ1,...,ξN be an N -dimensional uniform probability distribution. As explained in
Section 4, a consistent possibility measure Πξ1,...,ξN has to satisfy

Pξ1,...,ξN

(
SαΠξ1,...,ξN

)
≤ Πξ1,...,ξN

(
SαΠξ1,...,ξN

)
≤ α ∀α ∈ [0, 1] . (13)

DefiningCα to be the α-cut given throughCα = RN \SαΠξ1,...,ξN , its probability can be expressed
by

P (Cα) = 1− Pξ1,...,ξN

(
SαΠξ1,...,ξN

) Eq. (13)
≥ 1− α (14)
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and by

P (Cα) =

∫
Cα
pξ1,...,ξN (x)︸ ︷︷ ︸

%=const.

dx = %

∫
Cα

dx︸ ︷︷ ︸ = %V (Cα) . (15)

Consequently, the volume of the α-cut is bounded by V (Cα) ≥ 1−α
%

, where the constant fac-
tor % is determined from the normalization condition

∫
RN p(x)dx = 1. For independent and

symmetric possibility density functions, it holds that

Cα =
{
x ∈ RN : ||ξ̄ − x||∞ ≤ R(α)

}
(16)

where ξ̄ is the center of Cα, i.e. the N -dimensional nominal vector, and R : [0, 1] → R+
0 is a

monotonously decreasing positive function. Hence, the volume of Cα may also be expressed
as V (Cα) = (2R(α))N and consequently

R(α) ≥ 1

2

(
1− α
%

) 1
N

. (17)

Choosing the most specific and consistent marginal possibility density function corresponds to
replacing the inequality by an equality, and therefore

πξi(xi) = 1− %
(
2|ξ̄i − xi|

)N ∀ i = 1, . . . , N and xi ∈ R . (18)

This means that the actual shape of the marginal densities depends on the dimension and is
given by the expression in Equation (18). Triangular fuzzy numbers are just a special case of
this result for N = 1.

In the two dimensional case for ξi ∈ [0, 1], the optimal, consistent and symmetric marginal
possibility densities are given by πξi(xi) = 1 − 4

(
xi − ξ̄i

)2, i = 1, 2, and are shown, together
with the resulting joint density function, in Figure 3.
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Figure 3: Maximum specific possibility density of a two dimensional uniform probability den-
sity.
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9 Computation of Joint Possibility Distributions

The considerations in the previous section may be generalized in the following way: GivenN
uncertain R-valued variables ξ1, . . . , ξN with marginal possibility distributions Πξ1 , . . . ,ΠξN , a
maximally specific joint possibility distribution Πξ1,...,ξN gathering all joint probability distribu-
tions Pξ1,...,ξN of the independent marginal probability distributions Pξ1 ∈ PΠξ1

, . . . ,PξN ∈ PΠξN
is the solution of the mathematical program

πξ1,...,ξN (x) = max Pξ1,...,ξN

({
ζ ∈ RN : ||ζ − c||∞ ≥ ||x− c||∞

})
s.t. Pξi ∈ PΠξi

for i = 1, . . . , N
(19)

for all x ∈ RN . The center point c ∈ RN will be the nominal vector of the resulting joint
possibility density and can be chosen arbitrarily. However, it is recommendable to choose the
nominal values of the marginal possibility distributions such that c = ξ̄.

Once again, consider the case of two uncertain variables ξ1 and ξ2 with triangular possibility
densities πξ(x) = πξ1(x) = πξ2(x) = 1 − 2

∣∣x− 1
2

∣∣ for x ∈ [0, 1], as shown in Figure 2.
For x ∈ [0, 1]2, denote r = ||x − c||∞ and define Ur = {ζ ∈ R2 : ||ζ − c||∞ ≥ r},
where c =

(
1
2
, 1

2

)T. Then, Equation (19) simplifies to

πξ1,ξ2(x) = max 1− Pξ1,ξ2 (Ur)

s.t. Pξi ∈ PΠξi
i = 1, 2 .

(20)

Notice, that Ur may be decomposed into Ur = I2
r with Ir = [1

2
− r, 1

2
+ r]. Since Pξ1 and Pξ2

are considered independent, one can then bound Pξ1,ξ2 (Ur) from below via

Pξ1,ξ2 (Ur) = Pξ1 (Ir) · Pξ2 (Ir) ≥ Nξ1 (Ir) · Nξ2 (Ir) = (1−max
x6∈Ir

πξ(x)︸ ︷︷ ︸
1−2r

)2 = 4r2 (21)

and thus πξ1,ξ2(x) = 1−4r2 which is the same result as above and shown in Figure 3. Naturally,
this derivation extends to higher dimensions and the implications are manifold.

Most importantly, since the univariate triangular possibility density bounds all density func-
tions transformed from symmetric probability densities with the same support, the joint possi-
bility distribution obtained here bounds all their independent combinations.

The main conclusion is, thus, that if a possibilistic uncertainty analysis is performed with
more than one uncertain parameter, instead of assuming triangular possibility densities, they
should be chosen according to Equation (18).

A second implication is that with an increasing dimensionN the optimal possibility densities
become less and less specific and converge to unit function over the support. Thus, for many
uncertain parameters, this becomes an argument to switching from a possibilistic uncertainty
assessment to interval calculus.

Of course, Equation (19) may be employed to construct an even larger variety of joint pos-
sibility distributions from marginal ones. Propagating the resulting joint possibility density
through any model will yield a possibility distribution that accounts for all possible combina-
tions of probability distributions that could have arisen given the marginal possibility distribu-
tions. This may, of course, also be accomplished by propagating the marginal densities obtained
by the marginalization

π̃ξi(xi) = max
x1,...,xi−1,xi+1,...,xN ∈R

πξ1,...,ξN (x1, . . . , xN) ∀xi ∈ R (22)

according to the original formulation of Zadeh’s extension principle. Some examples of these
marginal densities for varying values of N are shown in Figure 4.
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Figure 4: Marginal densities π̃ξi of the joint distribution of N triangular and symmetric possi-
bility densities on the support [0, 1].

10 Conclusions

Possibility theory can provide useful solutions for the problem of considering polymorphic
uncertainties in many types of models. However, when the results ought to be meaningful
within the framework of imprecise probabilities, special care must be taken in order to compute
with the correct distributions. In this contribution, the authors hope to have highlighted some
possible pitfalls and ways to avoid them.

The main takeaway message is that when computing in uncertainty spaces of higher order,
triangular fuzzy numbers ought to be replaced by the expression in Equation (18).

In its spatially discretized form, Equation (19) is an optimization problem with linear equal-
ity and inequality constraints and a bilinear objective function, and there should exist adequate
methods for exploiting its specific structure. The authors are planning further investigations
regarding computationally efficient solution algorithms and potentially better-suited basis rep-
resentations of the probability distributions.
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Abstract. The objective modeling of (spatio-)temporal randomness following a random field
approach usually requires data with a high stochastic and (spatio-)temporal resolution. The
framework of imprecise probabilities has been shown to alleviate this burden of data by ex-
plicitly acknowledging epistemic uncertainty that originates e.g., from such lack of data, in the
analysis. However, work on imprecise random fields is only being performed very recently, and
up until now, only epistemic uncertainty in the definition of the first two statistical moments of
the random field is considered. This paper presents an approach to account for imprecision
in the first two statistical moments, but also in the covariance structure of the random field.
An efficient approach for application in linear transient dynamics applications is presented and
applied to the study of the dynamics of a car suspension subjected to an imprecisely known road
profile. It is shown that the presented approach indeed is capable of provinding an analyst with
the bounds on some comfort indicators of the car model, at greatly reduced computational cost
when compared to brute-force approaches.
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1 INTRODUCTION

In the context of including non-determinism into numerical models, usually either a proba-
bilistic or a possibilistic (interval/fuzzy) approach is followed, and recent work has been ded-
icated to the comparison of both philosophies in a forward [9] and inverse setting [6]. Some
specific considerations have to be made in case multivariate (spatial) uncertain parameters is
considered. The interval framework, while highly objective under scarce data, is less suited for
the description of such multivariate non-deterministic quantities, as intervals are by definition
independent. Therefore, application of a classical interval framework will yield in this context
over-conservative results. Methods to cope with dependence in a multivariate interval or fuzzy
context where only introduced very recently [16, 11, 12, 7, 8]. On the other hand, when suffi-
cient data are available, the probabilistic framework is highly suited for the description of mul-
tivariate uncertain non-deterministic quantities, e.g. following a random fields approach [14].
However, data with high spatial and stochastic resolution are usually necessary to construct an
objective random field description [3].

As a remediation for the strict requirements on the data that are necessary to accurately repre-
sent quantities in the probabilistic framework, the concept of imprecise probabilities is gaining
more and more traction [1]. Following an imprecise probabilistic framework, the analyst ac-
knowledges existing epistemic uncertainty in key attributes of the probabilistic quantities under
consideration, rather than assuming a certain crisp value. In practice, this is usually obtained
by assigning intervals to the statistical moments of a family of distributions belonging to a pre-
defined credal set [17]. In the context of imprecise random field analysis, Verhaeghe et al. [15]
where the first to study the effect of computing with interval-valued correlation lengths in a
random field with exponential covariance kernel. Similarly, Dannert et al. [5] recently intro-
duced a p-box framework for the propagation of imprecise random fields with interval-valued
correlation length where they select samples from the correlation length interval a priori. Gao
et al. [10] also recently proposed an efficient sampling approach to cope with impreciseness in
the first two central moments of a random field analysis to determine bounds on the reliability
of structural components under mixtures of stochastic and non-stochastic system inputs. This
paper is concerned with the analysis of imprecise random fields, where imprecision is present
in both the central moments of the random field, as well as in the definition of the underlying
covariance of the field.

2 RANDOM FIELD ANALYSIS

In a probabilistic context, model parameters x(r) that are subjected to spatial variability
are modelled as a random field x(r, θ). Such a random field x(r, θ) describes a set of correlated
random variables x(θ), assigned to each location r ∈ Ω in the continuous model domain Ω ⊂ Rd

with dimension d ∈ N. Each such a random variable x(θ) provides a mapping x : (Θ, σ, P ) 7→
R with θ ∈ Θ a coordinate in sample space Θ and σ the sigma-algebra. For a given event
θi, x(r, θi) is a realisation of the random field. A random field is considered Gaussian if the
distribution of (x(r1, θ), x(r2, θ), . . . , x(rn, θ)) is jointly Gaussian ∀r ∈ Ω. In this case, x(r, θ)
is completely described by its mean function µx(r) : Ω 7→ R and its auto-covariance function
Γx(r, r′) : Ω × Ω 7→ R. Commonly, (squared) exponential or Matérn covariance functions are
applied [4].

In an engineering context, the application of random fields for the modelling of spatial non-
deterministic material quantities requires a discretisation of x(r) over Ω. Specifically, this
means that the continuous random field x(r, θ) is represented by a finite set of M ∈ N+
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correlated random variables ζi, i = 1, . . . ,M , as well as a set of deterministic functions that
describe the spatial behaviour of the field. Usually, such discretisation is obtained following a
Karhunen-Loève (KL) series expansion [13]. At the core of the method lies a spectral decom-
position of a continuous, bounded, symmetric and positive definite auto-covariance function
Γx(r, r′) : Ω× Ω 7→ R following Mercer’s theorem:

Γx(r, r′) =
∞∑
i=1

λiψi(r)ψi(r′) (1)

where λi ∈ [0,∞) and ψi(r) : Ω 7→ R are respectively the eigenvalues and eigenfunctions
of Γx(r, r′). These are in practice obtained by solving the homogeneous Fredholm integral
equation of the second kind: ∫

Ω

Γx(r, r′)ψi(r′)dr′ = λiψi(r) (2)

Since Γx(r, r′) is bounded, symmetric and positive definite, these eigenvalues λi are non-
negative and the eigenfunctions ψi(r) satisfy an orthogonality condition such that they form a
complete orthogonal basis on L2. In this case, the series expansion in eq. (1) is convergent [13]
and the random field can be expressed as a series expansion:

x(r, θ) = µx(r) + σx

∞∑
i=1

√
λiψi(r)ξi(θ) (3)

with σx the variance of the random field (in case Γx(r, r′) : Ω × Ω 7→ [0, 1]) and ξi(θ), i =
1, . . . ,∞ standard uncorrelated random variables, which can be shown to be independent stan-
dard normally distributed in the case of a Gaussian random field. In case the field is non-
Gaussian, the joint distribution of ξi(θ) is very hard to obtain.

To limit the computational cost, the series expansion in eq. (3) is usually truncated by retain-
ing only the m ∈ N largest eigenvalues and corresponding eigenfunctions of Γx(ri, rj) [2]. A
closed form solution for the Fredholm integral equation presented in eq. (2) exists only for very
simple domains and Gaussian random fields. Therefore, it is usually approximated via numeri-
cal methods such as numerical integration via Nystrom’s method or Galerkin projection to find
a finite dimensional representation of the continuous basis functions. For a recent overview on
such numerical procedures, the reader is referred to [2].

3 Imprecise random field analysis

In case a Gaussian random field x(r, θ) with a auto-covariance function Γx(L) with L ∈ R+

the correlation length, is considered over the domain Ω, it is fully described by the triplet
(µx, σ, L). However, in engineering practice, it is often difficult or even intractable to ob-
jectively provide a crisp estimate for these quantities, leading to often subjective estimates to
obtain a random field description of the phenomenon under consideration. Especially given the
importance of the correlation length on both the numerical and statistical aspects of the ran-
dom field simulation, such approach is not desirable. In the context of a random field x(r, θ),
given epistemic uncertainty on (some of) its hyper-parameters (mean, variance and correlation
length), the field becomes an imprecise random field [x](r, θ). The KL expansion of an impre-
cise random field in this case becomes:

[x](r, θ) = µI
x(r) + σI

x

∞∑
i=1

√
λIiψ

I
i (r)ξi(θ) (4)
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with λIi ∈ IR interval-valued eigenvalues and ψI
i (r) : Ω 7→ IR interval fields representing the

bounds on the corresponding eigenfunctions. It can therefore be understood that an imprecise
random field describes a set of correlated P-boxes [x](θ) for each location in the model domain.
Similarly, for a given θi, also realizations [x](r, θi) are generated, which are interval field valued:

[x](r, θi) = µI
x(r) + σI

x

∞∑
i=1

√
λIiψ

I
i (r)ξi(θi) (5)

It should be noted that, in case F extends towards more than Gaussian random fields, the same
considerations concerning the correlation and dependence in ξi as made for regular random
fields have to be made.

4 PROPAGATION OF IMPRECISE RANDOM FIELDS IN TRANSIENT DYNAMICS

We consider the case of a transient dynamic problem, which is governed by the dynamic
equation:

MẌ(t) + CẊ(t) +KX(t) = F (t) (6)

with •̈ and •̇ representing respectively the second and first time derivative of • and M ∈
Rndof×ndof , C ∈ Rndof×ndof and K ∈ Rndof×ndof respectively the mass, damping and stiff-
ness matrices of the system under consideration. X ∈ Rndof is the solution of this ODE and
represents a vector of displacements. In case the system is discretized by a finite element model,
the terms in X represent the nodal displacements.

Let H(t) denote the impulse response function of the system at a certain time instant τ .
When the force excitation F (t) is discretized into nt time steps ∆t, the response x(tj) at a time
instant tj, j = 1, . . . , nt is given by:

X(tj) =

j∑
i=1

F (ti)H(tj − ti)∆t (7)

In the limit case where lim∆t→0, the problem reduces to the solution of the following convolu-
tion integral:

X(t) =

t∫
0

F (τ)H(t− τ)dτ (8)

Hence, in case H(t− τ) is a monotonic function of t, X(t) is a monotonic function as well with
respect to F (t). In this case it is sufficient to propagate only those values inH = {µ, σ, L} that
bound the eigenfunctions

√
λiψi(r of the imprecise random field.

Let G(Ω, L) : Ω× L 7→ {λ,ψ(r)} denote the process of solving eq. (2) for m eigenpairs of
Γx given a crisp value for L (e.g., following Galerkin or Nyström procedures), The main idea is
to apply a global optimization scheme to determine those values for L that yield extreme values
in
√
λiψi(r):

L
∗
i = arg max

G(L)

||
√
λiψi(r)||2, s.t. L ∈ LI (9a)

L∗i = arg min
G(L)

||
√
λiψi(r)||2, s.t. L ∈ LI (9b)

with i = 1, . . . ,m. The underlying idea to look for those L that correspond to extrema in the L2

norm of the basis function in each mode of the random field is that as such, a complete bounding
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set is obtained. Furthermore, due to the differentiability of the L2 norm, this is a smooth, con-
vex, non-linear optimization problem in limited dimension. Therefore, any sequential quadratic
programming approach can be followed to obtain the bounds without excessive computational
overhead. Note that the problem is not necessarily convex. As such, it is advised to try different
randomized initial estimates.

The maximally 2m solutions are then concatenated in a single vertex set L:

L =
{
L∗1, L

∗
1, L

∗
2, L

∗
2, . . . L

∗
M , L

∗
M ,

}
(10)

and the eigen pairs λ,ψ(r) are computed using (2) for each of these L ∈ L. In this way, a set of
complete orthogonal bases with corresponding scale factors is obtained that bound the possible
variation in the imprecise random field basis, given the interval uncertainty on the correlation
length. It should be noted that due to the smoothness of the decay of the eigenvalues of Γ, the
cardinality C(L) of L will be considerably smaller than 2m in practice.

5 CASE STUDY: VEHICLE SUSPENSION COMFORT ESTIMATION

The second case study is concerned with assessing the bounds on the comfort of a vehicle
suspension, given an imprecise random field description of the road profile. Hereto, a quarter-
car model is applied to model the car dynamics. Also this system can be regarded as a linear
transient dynamic system of the form shown in eq. (6). For this specific case, a state-space
model is employed:

d

dt


xus − x0

ẋus
xs − xus

ẋs

 = A


xus − x0

ẋus
xs − xus

ẋs

 +


−1
4ct
mus

0
0

 ẋ0 (11)

with xus the displacement of the unsprung mass, xs the displacement of the sprung mass, •̇ the
time derivative of •, mus and ms the unsprung and sprung mass of a quarter of the car, cs and
ct respectively the damping coefficients of the suspension and tire, ks and kt respectively the
stiffness coefficients of the suspension and tire and the matrix A equal to:

A =


0 1 0 0
−4kt
mus

−4(cs+ct)
mus

4ks
mus

4cs
mus

0 −1 0 1
0 4cs

ms

−4ks
ms

−4cs
ms

 (12)

The system is excited at the basis, with x0 modelling the vertical displacement of the tire. The
complete road profile is denoted x0(t). Four state variables are considered, being respectively
the tire deflection; the unsprung mass velocity; the suspension stroke, and sprung mass velocity.
Typically, in the context of assessing the comfort of a car, two parameters are of interest: the
suspension stroke (i.e., the relative displacement of the car body with respect to the unsprung
mass) and the acceleration of the sprung mass (car body).

In this example, the suspension of the car is tuned for performance. The parameters of the
state-space model are listed in table 1. The dynamics of the car are simulated over a distance of
100 m, when the car is travelling at a speed of 10 m/s. The one dimensional spatial domain is
discretized into 200 equidistant points and the time domain is discretized into time intervals of
0.005 s
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Table 1: Parameters of the quarter car state-space model

Parameter Value
ms 325 kg
mus 65 kg
cs + ct 1898 N.s/m
kt 2325 N/m
ks 505 N/m

The uncertain road profile is modelled as a zero-mean imprecise Gaussian random field with
exponential covariance kernel. Imprecision is present in the variance of the field, as well as
in the correlation length of the covariance kernel. The former corresponds in this case to to
the height of road roughness values, whereas the latter corresponds to their spatial frequency.
Specifically, the intervals are set as σI = [0.0015; 0.003] m and LI = [2; 15] m.

A solution to the optimization problem introduced in eq. (9) indicates that a set L with
cardinality of 16 is necessary to capture all spatial variation. This is a direct result from the
comparably large interval on the correlation length. As such, 32 vertex combinations are needed
to propagate the epistemic uncertainty in the imprecise random field. The bounds on the first
four basis functions are shown in figure 1.

Figure 1: Bounds on the basis functions of the imprecise Gaussian random field with exponen-
tial covariance kernel

The stochastic propagation is performed by means of Monte Carlo simulation with 1000
samples. The results of this propagation are compared to a simulation where the epistemic
uncertainty is propagated using a Sobol set consisting of 500 samples in between the intervals
on σI and LI . Figure 2 illustrates those realisations of the sobol set in the hyper-parameters that
yield an extremum in the profile of the relative displacement between the sprung and unsprung
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mass during the time interval [0, 2] s, as well as the extreme bounds [∆x(t); ∆x(t)] that are
predicted by taking:

∆x(t) = min ∆x(ti | V) ∀ti ∈ [0, 2] s (13a)

∆x(t) = max ∆x(ti | V) ∀ti ∈ [0, 2] s (13b)

with V denoting the vertex set of hyper-parameters that bound the basis functions of the impre-
cise random field. As can be noted from this figure, the bounds on the possible displacement
profiles are captured perfectly by the bounding of the basis functions at strongly reduced com-
putational cost.

Figure 2: Bounds on the acceleration of the sprung mass, obtained by propagating the hyper-
parameter combinations that yield the bounds on the basis functions (in black), as well as
extremum-yielding realisations of the Sobol-set simulation (in red).

The interval on the maximal stroke during the simulated time period (i.e., the relative dis-
placement between the sprung and unsprung mass of the car) is [4.453e − 05; 0.00901] m in
case only those parameters in H that yield the bounds on the basis functions are propagated,
and [4.91e − 05; 0.00794] m when a large-space filling design between the intervals on those
parameters is propagated. As such, even when very large bounds are imposed on the uncer-
tain road profile, the proposed methodology is able to give an exact estimate of the bounds on
selected quantities of interest of the car dynamics. Furthermore, this estimate is obtained at
greatly reduced cost.

6 Conclusions

The definition of covariance kernels and their parameters is often performed based on limited
data or the engineering judgement of the analyst. To overcome this possible bias, this paper
presents an approach to model and simulate random fields using the Karhunen-loève expansion
with imprecise covariance kernels in the context of transient dynamic problems. The problem
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is approached from an interval standpoint, and an iterative procedure is proposed to generate a
set of complete L2 bases that effectively bound the realisations of the imprecise random field.
A discussion on when such approach is applicable is included, and specifically focussed on
transient dynamic problems. A case study concerning the dynamics of a car suspension while
driving over a road that is modelled as an imprecise random field is studied. It is shown that
the method is indeed capable of efficiently and effectively computing the bounds on stochastic
quantities of interest, such as e.g., the probability of failure or cumulative density function of
the response, given the imprecision in the random field input.
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Abstract. This paper concerns the application of interval fields as a way to determine the
uncertainty of material parameters based on limited test data. More specifically, we focus on
the identification of a state-of-the-art non-linear visco-plastic material model based on stress-
strain data obtained on a limited set of experiments at different strain rates. This is especially
challenging as the corresponding parameters highly depend on the model, and in general, little
to no reference values are available from literature. In practice, most of these parameters are
determined using specialized curve-fitting software. Typically, a global optimization algorithm
is used, minimizing the error between prediction and test data. The problem arising is that
the model is fitted on all the sample data in a least-square error sense. This means that the
model averages out the (possibly large) scatter among the tested samples. In this manner the
intra-variability of the test samples and corresponding model non-determinism is neglected.

Therefore, this paper presents a novel methodology to include uncertainty in the material
model, while preserving the ability to be used in a non-intrusive way for transient numerical
analysis. This is achieved by using interval fields to represent the non-determinism in the scarce
amount of testing data. The application of the Inverse Distance Weighting interval field defini-
tion is studied in this context. It is shown how the choice of the control points and base functions
affect the quality of the interval field. Based on this interval field, a virtual set of complete mod-
els can be generated, enabling the use of the normal workflow for propagation through the
transient numerical model. To demonstrate the methodology, a case study is performed starting
from a limited amount of actual test data, obtained from tensile tests conducted on additively
manufactured polymer samples. This data is used to construct an interval field with three inter-
val scalars, from where the visco-plastic material model is fitted to determine the uncertainty
on a transient numerical model.
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1 INTRODUCTION

Today, advanced numerical solvers are being used with complex material models to be able
to numerically predict real life complex cases involving high strains, high strain rates, creep,
relaxation, and so forth. These material models can capture the complex nature of materials,
and as such, play a key role in the overall performance of the numerical simulation. How-
ever, such complex material models often need a large amount of parameters, ranging from
2 for a Neo-Hookean (NH) model up to 17 for a Three Network (TN) model [1]. Typically,
these parameters need to be determined using a large number of tests (e.g. uni-axial tension,
-compression, bi-axial, split Hopkinson bar, . . . ). A rule of thumb to make the model as com-
prehensive as possible is to have at least as many tests as there are invariants in the model [2].
Conducting these tests is usually not straightforward, as special measurement equipment and
a conditioned environment are necessary to minimize external influences and the measurement
error. This makes it difficult to have all necessary data for a complete model characterisation in
an early design stage, especially if there are new materials and production process being consid-
ered, like additive manufacturing (AM). In addition to the latter, conventional parameters (e.g.
Young’s modulus, shear modulus, bulk modulus, . . . ) that are typically obtained from material
data sheets provided by the supplier, are not very informative, as the required material models
for the visco-plastic behaviour often depend on non-conventional parameters specific for the
model at hand. For the determination of these parameters, specialized curve fitting tools are
used to calibrate the model parameters to the test data. Specifically, this is done by solving an
optimization problem where a least-squares error between model prediction and experimental
test data is minimized.

The problem arising is that when tests show a large amount of variability, it becomes very
hard to use one deterministic model to truthfully represent the stress strain relationship. Obtain-
ing a good model that incorporates this -possibly high- scatter however is complicated by the
fact that these non-conventional parameters are highly influenced by the error metric used in the
minimization during curve-fitting, introducing variability in the identification procedure itself.
Furthermore, there usually exists only limited reference literature on these parameters. This
in contrast to conventional parameters which can be determined quite confidently by standard
tests, and reference values are omnipresent in literature for frequently used materials. Combined
with the fact that the information at hand generally stems from a limited amount of tests con-
ducted, rendering the amount of data rather scarce, it is clear that the uncertainty quantification
(UQ) of these non-conventional model parameters is a challenging problem.

Interval methods have been proven to provide an analyst with an objective estimate of the
uncertainty under scarce data, as e.g., compared to Bayesian approaches [3]. One way to ap-
proach this problem could be by applying a multi-variate convex-hull based identification proce-
dure. However, there exists a physical coupling between the model parameters as they represent
the stress-strain relationship of the material. When independent intervals are defined on these
model parameters, it can no longer be guaranteed that for each realisation, the model represents
a physically feasible material model. So a different approach is necessary, starting from feasible
stress-strain curves rather than individual model parameters.

This paper applies the recently introduced framework of interval fields in this context. These
enable to account for non-deterministic material parameters that are variable and non-homogeneous
over the model domain. This can be regarded as a possibilistic counterpart to random fields [4,
5, 6]. The big advantage of these techniques is that the input fields can be defined in an intu-
itive sense, while remaining non-intrusive, i.e., enabling that the propagation of the uncertainty

147



C. van Mierlo, M. Faes and D. Moens

consists of multiple deterministic evaluations.
The paper is organized in the following manner: section 2 introduces the interval field con-

cept. Next, the considered visco-plastic material model is discussed in section 3. Section 4 then
describes how non-homogeneous interval fields can be used to represent the available test data,
obtained by performing experiments at the material level. Section 5 discusses how the obtained
interval fields can be used in a numerical simulation for a specific case study. Finally, section 6
discusses the conclusions and future work.

2 INTERVAL FIELD ANALYSIS

This section gives a general description of interval fields as recently introduced in [6]. By
definition interval parameters are indicated using apex I: xI . Vectors are indicated as lower-
case boldface characters x, whereas matrices are expressed as upper-case boldface characters
X. For the remainder of the text, interval parameters are either represented using the bounds of
the interval xI = [x;x] where x stands for the lower bound and x stands for the upper bound,
or by their centre point x̂ = x+x

2
and the radius ∆x = x−x

2
. An interval is closed when both

the upper and lower bound are a member of the interval. The domain of a real-valued closed
interval is denoted as IR. xI ∈ IR is specifically defined as:

xI = [x;x] = {x ∈ R | x < x < x} (1)

2.1 Explicit interval fields

The definition of an explicit interval field as introduced in [6] is given in equation (2), where
the field consists of a superposition of nb ∈ N base functions ψi defined over the domain Ω
of the FE model. Each of these base functions is scaled with an independent interval scalar
αI
i ∈ IR. When considering a discretised FE domain evaluated at k locations (e.g., one per

element) used to model the field variability, these base functions provide a mapping from the
full k dimensional input space to a reduced nb dimensional input space:

xI(r) = µI
x +

nb∑
i=1

ψi(r)α
I
i (2)

with nb � k. It is clear that through this definition, the intervals control the amount of un-
certainty in a strongly reduced dimensionality, while the base functions provide the coupling
between the local intervals at the element level.

2.2 Inverse distance weighting interval fields

Different base functions ψi can be defined to model the spatial complexity of the field. In this
paper, the Inverse Distance Weighting interpolation (IDW) is used to create the base functions.
For a comprehensive description of alternative base function definitions, the reader is referred
to [7]. When base functions are defined by IDW as in equation (3), the spatial complexity of
the field is based on a number of selected control points ri ∈ R inside the model domain Ω.
The assumption is that an independent interval is available to describe the level of uncertainty
at each of these locations. The base functions are then constructed such that for each other point
in the domain, the field value is a weighted sum of the known intervals at the selected locations,
the uncertainty of which is weighted by the Eucledian distance in physical space to the control
points. As such, the base functions are given as:

ψi(r) =
wi(r)∑nb

j=1wj(r)
(3)
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with wi(r) ∈ Ω and i = 1, . . . , nb:

wi(r) = [D(ri, r)]
−p (4)

with D() a distance measure in Ω, and p ∈ R a tunable scaling parameter. This technique al-
lows for an intuitive modelling of non-homogeneous uncertain fields based on local uncertainty,
making it well suited for representing uncertainty in material testing data, as envisaged in this
work.

2.3 Propagation of interval fields

The propagation of an interval field typically yields a d-dimensional non-convex set ỹ of
uncertain model responses given by the numerical model M() : Rk 7→ Rd. Since a general
solution to this problem is not feasible, the exact solution set ỹ is approximated by an uncertain
realisations set ỹs consisting of q deterministic propagations of the interval field xj(r). The
advantage of the interval fields as defined above, is that the propagation reduces to adequately
sampling the resulting nb-dimensional hypercubic input space spanned by the interval scalars.
For the application of a transient numerical modelM(t) this typically results in a time depen-
dent output set ỹ(r, t), containing the output of d-degrees of freedom, or corresponding strains
or stresses for each time step. This set is explicitly defined as:

ỹs,q =
{
ys,j(r, ti)|ys,j(r, ti) =M(xj(r), ti);αi,j ∈ αI

i ; i = 1, . . . nb; j = 1, . . . , q
}

(5)

where in addition to the general formulation this set is defined as time dependent. This stems
from the implementation of the time-dependent analysis envisaged in this work, where an im-
plicit or explicit solver will use a number of time steps to reach the final result. Typically, the
solver gives an output for every time step ti ∈ R, part of the solution set at this time step.

3 VISCO-PLASTIC MATERIAL MODELLING

The material model used throughout this study is the Three-Network model (TN), which
is found to be able to represent the material behaviour in the visco-plastic regime [8], specifi-
cally developed for thermoplastic materials, and capable of predicting large strain deformation
mechanical behaviour in cyclic multiaxial stress states. The model takes a total number of 17
parameters, 11 of which are determined by means of curve fitting when there is no temperature
dependence to be modelled, and there is only tensile test data available.

3.1 The Three-Network visco-platicity model

Here, the material model under consideration is shortly described. For a comprehensive de-
scription of the model, the reader is referred to [1], where the Three Network model is described
in detail. The model is similar to the hybrid model as described in [9], but it is numerically more
efficient. As the name of the model suggests, it is composed of three molecular networks acting
in parallel. The total deformation gradient Fappl consists of a terminal expansion part Fth and
mechanical deformation part F:

Fappl = FFth (6)

where on network A and B the deformation gradient is decomposed into a visco-plastic and
visco-elastic component:

F = Fe
A,BF

p
A,B (7)
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This can be interpreted as crystalline and amorphous zones in the material. The Cauchy stress
acting on these networks is given by an eight-chain representation [10]. For network C this
is given by a model with first order I2 dependence, where I2 stands for the second invariant.
The total Cauchy stress in the system is now given by the sum of these individual stresses
σ = σA + σB + σC . The velocity gradient of network A and B is decomposed in the same way
into an elastic and viscous component. In summary the velocity gradient of the viscoelastic
flow Ḟv for network A and B can be written as follows:

Ḟv
A,B = γ̇A,BF

e−1
A,B

dev[σa]

τA,B

Fp
A,B (8)

where γ̇ gives the effective flow rate which is considered to follow a power law form, and the
driving deviatoric stress on the relaxed configuration convected to the current configuration is
given by dev[σA]. By defining an effective stress by the Frobenius norm τ , the direction of the
driving deviatoric stress is given by:

dev[σA]/τ (9)

3.2 Uni-axial test data

The material under consideration here is the Durable Resin V1 printed on a Formlabs Form 2
stereolithography printer. To characterise the material parameters of the model, uniaxial tension
tests have been preformed in accordance with the NIST report on additive manufacturing [11].
These tests are summarized in figure 1 where two tests have been performed at different strain
rates, respectively at 50 mm−1 and 5 mm−1, further referred to as high speed (HS) and low
speed (LS). This difference is indicated by a dashed line for the HS tests and a full line for the
LS test results. From these tests, it is clear that the material behaves in accordance with most
polymers, where after an initial deformation the macromolecules start to orientate and cause a
stiffening of the material before failure occurs. The available data is very limited but one can
clearly state that there is a large variability on the data.

Figure 1: Test results of uni-axial tensile tests (ASTM D638)
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4 NON-HOMOGENEOUS INTERVAL FIELDS

When considering the test data as described in the previous section, a first (naive) interval
approach could be to calculate independent intervals on all model parameters by calibrating
material models to each individual test sample. All underlying dependencies of the material pa-
rameters are as such disregarded, and hence, the possibility of non-physical realisations arises.
This is shown in figure 2 where the material model prediction envelopes (black) are plotted
based on the vertex combinations of the resulting 11-dimensional hypercubic material parame-
ter space. The minimum and maximum value of the tests are indicated in blue and red for the
tests at high speed (full line) and low speed (dashed line). The realisations obtained by this ap-
proach are not realistic, as the prediction of the upper bounds of these envelopes starts yielding
at a stress higher than the ultimate strength of the material observed during testing. Also, it is
clear that the amount of non-conservatism is very high in the obtained result, clearly indicating
that unfeasible predictions will be included if dependencies between material parameters are not
taken into account. In addition to this, a multivariate vertex propagation on these naive intervals
requires a total number of 211 = 2048 runs. This is computationally intractable for the complex
numerical simulations under consideration, as they require several hours of wall-clock time on
high-performance computers to complete.

Figure 2: Data of the tests (red, blue) and the naive model prediction (black)

Therefore, this work focuses on the use of an alternative approach where the measurement
data is first pre-processed as an interval field that describes the bounds on stress-strain relation-
ship. Then, realisations of this interval field will be used to calibrate the model parameters. This
enables a reduction of the amount of evaluations depending on the number nb of base functions
used. Indeed, if this would be successful with for example nb = 3, a vertex approach takes
only a total of 2nb = 8 evaluations. Furthermore, every realisation of the interval field yields
a physically admissible stress-strain relationship and provides the physical coupling between
parameters as needed. Still, at the control points the interval field stays perfectly decoupled
enabling the use of different sampling schemes. These will be examined in this section.
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4.1 Interval field approach

In order to represent the non-determinism in the obtained experimental data using the in-
terval field concept, an envelope is considered that contains the lower and upper stress-strain
curves from the test data as shown in figure 1. This is done separately for the LS and HS data.
By considering the constructed envelopes ALS and AHS as bounds on the feasible stress-strain
curves at the respective reference speeds, we implicitly assume that the tests cover the complete
range of possible material behaviour. The challenge is now in defining base vectors and corre-
sponding interval scalars such that the dimensionality of the problem remains tractable, while
at the same time, a good correspondence with the test data is achieved.

For the construction of the interval fields, the Inverse Distance Weighting approach is ap-
plied. As described earlier, this approach relies on the exact quantification of field parameter
intervals at specific locations in the domain. Once these are chosen, the base functions over the
domain follow directly from equations 3 and 4. In this case, exact stress intervals σI

i have to be
determined at selected strain locations εi. This can be done using the midpoint and radius of the
envelopes ALS:

σ̂i,LS =
min(ALS(εi)) +max(ALS(εi))

2
(10a)

∆σi,LS =
max(ALS(εi))−min(ALS(εi))

2
(10b)

and AHS:

σ̂j,HS =
min(AHS(εj)) +max(AHS(εj))

2
(11a)

∆σj,HS =
max(AHS(εj))−min(AHS(εj))

2
(11b)

This means that the complete specification of the interval fields depends only on the chosen
reference locations, which consequently, have to be chosen with care. This is especially true
as the number of control points directly influences the number of evaluations and therefore,
the computational effort in the propagation step. These considerations are described in the
following subsection.

4.2 Controlling spatial complexity

When an interval field is discretised over the model domain the number of control points
influences the spatial complexity. Even when the interval scalars are homogeneous, some re-
alisations of the field exhibit a large gradient between two control points, this is referred to as
the spatial complexity of the field. This is controlled by choosing the correct location of these
control points. This is also of crucial importance to avoid non-physical material behaviour.
For example, when the material becomes ‘softer’ after yielding, this could result in an unstable
material model [12]

Hence this section describes the considerations of the number of control points and discusses
several interpolation approaches to construct the interval field, respectively for the case of two
and four control points.
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4.2.1 Two control point implementation

For the first case, the minimum number of two control points is applied, taken respectively
at the start and end of each envelope. The first interval scalar is placed at the origin of the curve,
ensuring all realisations to start at zero stress-strain. This also implies that the interval scalar
for the first base vector reduces to a crisp zero, lowering at the same time the interval space
dimension by one. The other interval scalar corresponding to the end-point of the envelope as
such acts as a scaling parameter. Physically, this means that the material characteristics in all
realisations of this interval field are coupled (e.g., a stiffer material will have a higher yield
stress and ultimate stress). This is obviously an assumption, as this information is not present
in the data.

(a) Weight factors measured over strain axis (b) Interval field realisations for two control points

Figure 3: Field realisation and weight functions over the strain axis, for two control points.

Figure 3a shows the linear base functions resulting from the one-dimensional distance-
weighting. Figure 3b shows the outer field realisations of the resulting interval field envelopes
(black) on top of the envelopes of the test data (blue/red). In this figure, the centre point is given
by the yellow line and the black dots describes the location of the control points. From this
figure, it becomes clear that the field can’t capture the whole envelope. This is due to the fact
that there is a constant increase of uncertainty along the strain axis. As a result, the uncertainty
is underestimated for a large part of the stress-strain curve.

The problem at hand is inherent to the use of IDW to model the interval field, where the
weight factor increases linear (when p = 1) with the distance along the strain axis. An intuitive
solution to this problem would be to change the distance measure D() of the weight functions
such that the distance is measured over the continuous midpoint curve of the stress-strain enve-
lope (yellow line in figure 3b). This approach results in the interval field as depicted in figure
4, where now the full experimental envelope is captured using again only two control points.
Here the influence of the first interval scalar decays rapidly over the strain-axis, while the influ-
ence of the second weight function increases quickly up to a strain level of 0.05, while slowly
increasing further on. This is due to the fact that the distance is now measured along the centre
line, having a large effect on what is happening at the beginning of the curve where there is a
fast increase of stress.
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(a) Weight factors measured over midpoint curve (b) Interval field realisations for two control points

Figure 4: Field realisation and weight functions over the midpoint, for two control points.

4.2.2 Four control point implementation

The limitation of the two control point implementation as discussed in the previous section is
that, by having only one interval scalar, the uncertainty analysis comes down to a homogeneous
scaling of a reference curve over the strain domain. This however does not cover for all vari-
ations observed in the experiments. In order to increase the achievable complexity, the field is
now constructed with four control points located (1) at the start, (2) at one tenth of the flexural
point, (3) at the flexural point and (4) at the end point of the envelope. In this manner, the mate-
rial can differ in initial stiffness, yield at a different stress and fail at different ultimate strengths,
all in a decoupled sense. Also, through this definition, the yielding stress is always lower than
the ultimate strength, even for the combination of vertex extrema on the interval scalars at these
four locations. This guarantees physically feasible realisations within the hypercubic interval
space. The resulting interval field is shown in figure 5.

(a) Weight factors measured over midpoint curve (b) Interval field realisations for four control points

Figure 5: Field realisation and weight functions over the midpoint, for four control points.

As the first interval again condenses to a crisp zero, the number of independent interval
scalars is now equal to 3. The field again clearly captures the experimental envelope, but now
from a physical perspective, the stiffness, yield strength and ultimate strength of the material
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are decoupled. This makes this approach better suited to capture the non-determinism in the
model and explore more of the parameter domain. This however comes at the cost of larger
amount of runs needed to propagate the uncertainty.

Also, in this implementation, the distance measure is taken over the mean curve rather than
directly in the strain domain. It could be stated that, through the addition of the intermediate
control points, this is no longer necessary, as these additional points provide exactly the required
flexibility to cover the full experimental envelope. However, figure 6 clearly shows that if this
approach is followed, the fit is less accurate. This can be explained by looking at the base
functions plotted in 6a, which show the weight of every scalar at a specified strain. The problem
arising from using IDW to construct a non-homogeneous interval field is that the weight factors
are non-zero even beyond the ‘next’ control point. This makes that the first two small intervals
at the start manifest themselves in the end by lowering the average between the control points.
This effect can be seen in figure 6a where the second relatively small scalar (orange) still plays
a role at a strain of 0.25, even though it was constructed at 0.009 strain. When using the centre
curve of the envelope, the distance between the scalars is influenced, making them less sensitive
to the small intervals at the start of the curve, as the distance between them is larger. This is
clear when comparing figure 5a and 6a, where a substantial decrease of the influence of the first
two scalars can be seen in figure 5a.

(a) Weight factors measured over strain axis (b) Interval field realisations for four control points

Figure 6: Field realisation and weight functions over the strain axis, for four control points.

It can be concluded that the proposed IDW-based approach is able to capture the non-
determinism in non-homogeneous testing data without overestimating the uncertainty, ensuring
physical realisations, and this at a controllable low dimensionality.

5 CASE STUDY

To test the proposed approach, a case study is performed where a component, as illustrated
in figure 7 is produced by means of additive manufacturing. One of the problems withholding
the true potential of additive manufacturing for many industrial applications, is that material
properties and their variability are difficult to characterise, and the production process has a
large influence herein [13]. An example of this can be found in the NIST report on additive
manufacturing [11] where guidelines are given for testing of additively manufactured samples.
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5.1 Description

The material that is used for this case is Durable Resin V1 printed on a Formlabs Form 2
stereolithography printer, the test results of which are summarized in figure 1. The material is
assumed to be isotropic and the build direction is not taken into account during the simulation of
its mechanical response. The goal of this case study is to study the stress at the corner node (nr.
1122) of the component, considering the uncertainty that is present in the material parameters.
A load is applied by setting a velocity of 50 mm−1 at the top surface of the component at node
(nr. 3498), for a duration of one second. For this work, only the output at the end time of the
simulation is considered.

1122

3498

Figure 7: Numerical model of the biaxial structure (the elements displayed are for illustration
purposes, a finer discretization is used during simulation)

5.2 Results

The interval field at the input side is assembled using the four control point approach as
discussed in section 4.2.2. The field is created as described in section 2, resulting in the vertex
realisations as show in figure 8. The output of the simulation at the 8 vertices is given in table 1.
These results show that the stress of the simulation lies within the interval of [14.76 18.51] MPa
for node (nr. 1122).

6 CONCLUSIONS AND FUTURE WORK

The presented Inverse Distance Weighting based interval field method performs well for
the use of complex material models. Compared to a naive interval approach, it increases the
realism of the realisations, and simultaneously reduces the dimensionality of the uncertainty
problem. Care should be taken to include enough control points to enable covering the full
experimental envelope. Also, the definition of the distance measure at the core of the base
function definition plays a crucial role in this. It is shown that the proposed method is capable
of rigorously determining the bounds on a requested output parameter, even in the presence of
a scarce amount of data. The total number of finite element solves is kept within reasonable
limits (8), making the approach applicable to transient numerical simulations where single runs
can take multiple days. As the proposed method is non-intrusive, the normal workflow of
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nr. principal stress [MPa] vertex
1 14.76 [0,-1,-1,-1]
2 15.38 [0,-1,-1, 1]
3 16.46 [0,-1, 1,-1]
4 17.41 [0,-1, 1, 1]
5 15.35 [0, 1,-1,-1]
6 17.01 [0, 1,-1, 1]
7 18.21 [0, 1, 1,-1]
8 18.51 [0, 1, 1, 1]

Table 1: Results of the numerical simulation including uncertain material properties.

Figure 8: Field realisation for four control points sampled by the vertex method.

preparing and addressing the finite element solver are kept, which also enables to parallelise the
simulations.
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Abstract. In uncertainty analysis, estimating the degree of uncertainty based on some physical
experiments is an essential part of the process to create robust products. Both at the input and
the output side of an available model, experiments may be done, which can then be (inverserely)
propagated to obtain uncertain results on the other side. In probabilistic analysis, PDF shape,
stochastic moments and correlation may be inferred from this data. In possibilistic analysis,
these quantities are hard to interpret physically and are therefore difficult to compute. Instead,
interval bounds and dependency information can be determined. This paper presents a strategy
to infer both interval bounds and dependency information from a (limited) set of data points in a
multidimensional space, based on Polynomial Chaos Expansion and a generalized Probability
Density Distribution (PDF) shape.
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1 INTRODUCTION

The use of intervals in numerical modelling to represent uncertainty is gaining increased in-
terest. Intervals can be more easily applied in cases of low data availability and where informa-
tion on extreme cases is of higher inportance. The use of intervals to represent non-deterministic
quantities omits the need to predefine a PDF, which may be hard to estimate when little data
is available. However, the simplicity of intervals also has a large disadvantage: they are un-
able te represent dependency between different uncertain quantities. Some solutions to this
have been the subject of recent research, such as interval fields [1, 2, 3, 5, 4], interactive fuzzy
numbers [6, 7], interval correlation [8], and the use of copulas in interval context [9]. In this
paper, a procedure is discussed that, given a small set of multidimensional data points, allows
to make an estimate of the total population uncertainty, incorporating the dependency present
in the data as well. It makes use of a generalized PDF shape to estimate intervals in a Bayesian
inference scheme, and then Polynomial Chaos Expansion (PCE) to convert the hypercubic re-
gion spanned by the marginal interval estimates into a uncertain region of arbitrary shape that
also incorporates the dependency present. Section 2 elaborates the concept of generalized PDF,
also mentioned in [10], section 3 discusses the way the dependency is captured using PCE, and
section 4 shows the combined method on a small 2D dataset.

2 Bayesian Interval Estimation based on a generalized PDF shape

This section provides a short summary of the method of estimating interval bounds based on
a generalized PDF shape. The reader is refered to [10] for a more elaborate explanation.

2.1 Principle of the generalized PDF shape

Equation 1 shows the general formula for Bayesian analysis, which describes the posterior
distribution given the data D p(θ | D) as the product of the likelihood of the data and a prior
distribution.

p(θ | D) =
p(D | θ)p(θ)

p(D)
(1)

θ represents a set of stochastic parameters that capture the PDF. In interval context, these pa-
rameters become the interval bounds x and x. The data provides a minimum and maximum
observed value x̂m and x̂M . Equation 2 again describes Bayes’ theorem, now in terms of the
observed interval bounds and the true interval bounds that are to be estimated.

p(x, x | x̂M , x̂m) =
p(x̂M , x̂m | x, x)p(x, x)

p(x̂M , x̂m)
(2)

To express the likelihood function p(x̂M , x̂m | x, x), an arbitrary PDF shape S and correspond-
ing stochastic parameter θ is introduced, as the interval bounds are assumed to bound an actual
PDF shape, which cannot be identified properly because the dataset is too small. Equation 2 is
then rewritten in terms of S and θ as:

p(x̂M , x̂m | x, x) =

∫
S

∫
θ

p(x̂M , x̂m | θ) · p(θ | x, x)dθdS (3)

=

∫
S

∫
θ

M (n)
x (x̂M , x̂m, θ) · p(θ | x, x)dθdS (4)

this equation theoretically only holds if the integration is done over all possible PDF shapes
S and all values of the corresponding parameter value θ. The first part of the integrand de-
scribes the occurence of certain extreme values given the PDF on the quantity x. This equals

160



Maurice Imholz, Dirk Vandepitte and David Moens

the extreme value distribution (EVD) M (n)
x (x̂M , x̂m, θ), which depends on the number of ex-

periments n. The second part describes the probability on having a certain stochastic parameter
value, given the extreme bounds in the total population. Assuming the total population is very
large, these extremes are equal to the maximum and minimum values allowed by the PDF that
corresponds to a certain value of θ. Given a certain bounded PDF shape S (e.g. the uniform
distribution, the 3-σ bounded Gaussian distribution, ...), p(θ | x, x) equals a delta function at
that specific parameter value (or combination of values if more than one stochastic parameter is
concerned) that puts the maximum and minimum possible values of the PDF at x and x. there-
fore, the integral needs to be taken over all possible PDF shapes S that are bounded by x and x
(equation 6).

p(x̂M , x̂m | x, x) =

∫
S

∫
θ

M (n)
x (x̂M , x̂m, θ) · δ(θ − θ∗)dθdS (5)

=

∫
S

M (n)
x (x̂M , x̂m, θ

∗)dS (6)

Putting this into equation 2, the interval Bayesian inference equation becomes:

p(xI | x̂M , x̂m) =

∫
S
M

(n)
x (x̂M , x̂m, θ

∗)dS · p(xI)
p(x̂M , x̂m)

(7)

To be able to evaluate the integral, a generalized PDF shape is proposed based on 4 controleable
parameters. By definition,

∫ +∞
−∞ fx(x)dx =

∫ x
x
fx(x)dx = 1. Many possible parametrizations

are possible, and greatly influence the shapes that are considered in evaluating the integral.
Since extreme values are of increased interest in the context of this paper, the following four
control parameters are proposed (table 1), all focussing on the PDF shape in the extreme values.

symbol description
p0 Probability density at x
p1 Probability density at x

dfx(x)
dx

∣∣∣
0

first derivative of the PDF at x
dfx(x)
dx

∣∣∣
1

first derivative of the PDF at x

Table 1: parameters used to determine the PDF shape

A fourth order polynomial is proposed for the explicit representation of the PDF, given by
equation 8:

fx(x) = ax4 + bx3 + cx2 + dx+ e (8)

Using this parameter set and the corresponding fourth order polynomial allows for a large va-
riety of PDF shapes (including nonsymmetrical, sharp tailed, blunt tailed and bipolar shapes),
while keeping the integral sufficiently fast to calculate.

The next section discusses two different ways of dealing with the integration defined in
equation 7. Next to simply calculating it explicitly, it can also be bounded on the upside by
calculating the maximum likelihood.
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2.2 Average likelihood and worst-case likelihood estimation

Returning back to equation 7, the following trivial relation can be established for the entire
parameter set S (which has been defined above):

M (n)
x (x̂M , x̂m, θ

∗) ≤ max
S

M (n)
x (x̂M , x̂m, θ

∗) (9)

Integrating both sides gives:∫
S

M (n)
x (x̂M , x̂m, θ

∗)dS ≤ max
S

M (n)
x (x̂M , x̂m, θ

∗) ·
4∏
i=1

(θi,max − θi,min) (10)

This means that a conservative approximation of the integral can be calculated by determining
the maximum likelihood value that occurs within the domain spanned by the parameters in
table 1. Essentially, this means that for each test interval xI , the likelihood is determined by
the PDF shape that makes the observed interval most likely, which could be interpreted as
the ’worst-case’ PDF. Through this, more probability and therefore higher relative importance
is given to larger intervals compared to explicitly evaluating the integral, which should lead
to larger estimated intervals and therefore more conservative results. This paper refers to the
latter approach as the worst-case likelihood (WCL) estimate, and the former as the average
likelihood (AL) estimate. Previous testing of the method shows that the AL estimates tend to
be not conservative enough to provide reliable results, but the WCL estimate, giving higher
relative importance to larger intervals, does. The combined method discussed in section 4 will
therefore use the interval Bayesian inference scheme illustrated here, using the WCL estimate
to represent the likelihood function.

3 Interval Polynomial Chaos Expansion

In probabilistic analysis, Polynomial Chaos Expansion (PCE) [11] is used frequently to de-
termine probability distributions on model output quantities. Application of PCE can be done
in two ways:

• Given an output y = f(x) as function of a random variable x with known probability
density function (PDF), the output distribution can be found by projecting onto a set of
polynomial basis functions which are orthogonal w.r.t. the input PDF. Determining the
output distribution then comes down to identifying the corresponding PC coefficients.

• Given a quantity u with a known but complex PDF, its probability function can be de-
scribed more easily by defining u as a function of some germ variable ξ with a simple
PDF, such as the uniform or Gaussian distribution. Theoretically, by choosing the right
functional relation, every type of distribution on u can be obtained.

The first application is well established in the field of numerical modeling [12, 13]. The
second application is of particular interest in sampling algorithms, as numerically sampling a
complex PDF is nontrivial. Computers can effectively sample from the uniform or Gaussian
distribution, but not necessarily from any arbitrary PDF.

3.1 The Inverse Cumulative Density Function transform

Using PCE, the objective is to obtain an explicit expression of:

u = f(ξ) (11)
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such that u has a specific distribution, given the distribution of the germ variable ξ, which
is a nontrivial problem, as many definitions of f can lead to the required pdf. The question
then becomes to find the most efficient one. It can be proven however that a solution for the
above problem is always present, known as the inverse Cumulative Distribution Function (CDF)
transform. If the PDF of u is known and u is a continuous variable, its CDF Fu(u) exists and
can be determined through:

Fu(u) =

∫ u

−∞
fu(t)dt (12)

The domain of Fu(u) is obviously [0, 1] as fu is always positive and
∫∞
−∞ fu(t)dt = 1. We can

then obtain the desired distribution of u starting from a uniformly distributed germ between[0, 1]
by writing:

u = F−1
u (ξ) (13)

For an arbitrarily distributed germ with CDF equal to Fξ we can write:

u = F−1
u (Fξ(ξ)) (14)

This expression is especially useful because it holds for any distribution on u or the germ ξ.
However, it usually does not give the most efficient mapping.

3.2 Dependent intervals

The use of intervals is of particular interest in the presence of low data availability, as it omits
the need of defining and quantifying a suitable PDF. An interval xI = 〈x|x〉 only requires an
upper and lower bound to be defined and describes a continuous region of possible values for the
quantity x. On the probability of occurence within the interval, no assumption is made, and for
the purpose of interval analysis, the probability is assumed to be nonzero of the interval interval,
and strictly zero elsewhere. In the multivariate case, an interval vector xI = [xI1 x

I
2 · · · xIN ] is

used with each entry a simple interval variable. By definition, the entries are assumed indepen-
dent, so the interval vector defines a set of vectors in the N -dimensional space described by:

xI =
[
x̂|x̂1 ∈ xI1, x̂2 ∈ xI2, · · · , x̂N ∈ xIN

]
(15)

Equation 15 describes a hypercube in the N -dimensional domain. Figure 1 illustrates this. If
two interval parameters aI and bI , are independent, this representation is accurate and intro-
duces no further conservativity. However, in the other case, some degree of conservativity is
always introduced through modelling with an interval vector. The higher the dependency, the
more conservative this representation will be. This problem cannot be solved within the simple
definition of an interval, as not enough parameters are available to represent dependency. Also,
this dependency may take a large variety of forms, depending on the shape of the region of pos-
sible (a, b)-couples, so the uncertainty model would need a large amount of extra parameters to
account for this. Still, the conservativity issue remains and should be addressed.

In structural dynamics, propagation of input interval parameters is usually done through op-
timization and anti-optimization within the region defined by the input intervals, as the models
are usually quite complex and non-monotonous behaviour is possible. Since intervals make
no assumption on the probability within the region the define, the optimization is supposed to
be unbiased and treat all points in the region as equally probable. For this reason, intervals are
usually sampled in a uniform way within the purpose of finding the output optima. So allthough
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Figure 1: illustration of independent (left) versus dependent (right) interval quantities. The independent case is
characterized by the hypercubic region, while the dependent case can theoretically consider any region.

the exact probability is unknown, the uniform distribution is assumed in practise for the purpose
of propagating the uncertainty.

The same principle holds in the multivariate case. Given a region with dependency as shown
in the right side of figure 1, the sampler is supposed to be unbiased towards any part of the re-
gion. This adds an extra requirement to the accurate definition of the uncertain region. Not only
does the boundary of the region have to be represented accurately, but also within the region
itself uniform sampling has to be possible. The next section describes a PCE-inspired technique
that can capture a wide variety of dependencies, starting from a simple interval vector, and in-
corporating the possibility of uniform sampling, which is called interval PCE. The method will
first be illustrated in 2D, but can be theoretically expanded to any number of interval compo-
nents.

3.3 interval PCE

Consider two interval parameters xI1 and xI2, with corresponding interval bounds x1,x2 and
x1,x2. Assume some dependency is present, which is characterised by a region Ω. Assume
the bounds of the intervals itself are perfectly non-conservative, so the square described by the
interval vector xI = [xI1 x

I
2] is the smallest circumscribed square still fully encapsuling Ω. The

means that the far left and far right point part of the region are given by (x1, x2,left), (x1, x2,right).
The upper and lower bounding curve of the region are distinguished as Cu : x2 = H(x1) and
Cl : x2 = h(x1) in between these points (see also figure 2). The PCE is then one of the
following form: x∗1 = F−1

Ω

(
x1−x1
x1−x1

)
x∗2 = (H(x1)− h(x1))

x2−x2
x2−x2 + h(x1)

(16)

with

FΩ(x1) =
1

A

∫ x1

x1

dt1

∫ H(t1)

h(t1)

dt2 (17)

In equation 17, A is the total surface area of Ω, and the double integral describes the surface
area of the part of Ω left of a certain value x1. Essentially, the first line of equation 16 is an
inverse CDF transform: x∗1 is given an artificial distribution, which increases with increasing
range of possible x2-values at a certain value for x1. This ensures that if x1 and x2 are sampled
uniformly, the corresponding points are uniformly distributed over the domain Ω. The second
line describes a very simple transformation from a uniform distribution between x2 and x2 to a
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Figure 2: illustration of the quantities mentioned in the following equations

uniform distribution between the upper and lower bounding curve Cu and Cl, for a certain value
of x1.

In multidimensional space, the PCE is of the following form:



x∗1 = F−1
Ω,1

(
x1−x1
x1−x1

)
x∗2 = F−1

Ω,2

(
x2−x2
x2−x2 , x1

)
· · ·
x∗n−1 = F−1

Ω,n−1

(
x2−x2
x2−x2 , x1, · · · , xn−2

)
x∗n = (hu(x1, · · · , xn−1)− hl(x1, · · · , xn−1))

xn−xn
xn−xn + hl(x1, · · · , xn−1)

(18)

with


FΩ,1(x1) = 1

Ωn

∫ x1
x1
dt1
∫ H1(t1)

h1(t1)
dt2
∫ H2(t1,t2)

h2(t1,t2)
dt3 · · ·

∫ Hn−1(t1,··· ,tn−1)

hn−1(t1,··· ,tn−1)
dt2

FΩ,2(x2, x1) = 1
Ωn−1

∫ x2
h1(x1)

dt2
∫ H2(x1,t2)

h2(x1,t2)
dt3 · · ·

∫ Hn−1(x1,t2··· ,tn−1)

hn−1(x1,t2,··· ,tn−1)
dtn

· · ·
FΩ,n−1(xn−1, · · · , x1) = 1

A

∫ xn−1

hn−2(x1,··· ,xn−2)
dtn−1

∫ Hn−1(x1,··· ,xn−2,tn−1)

hn−1(x1,··· ,xn−2,tn−1)
dtn

(19)

In equation 18, the inversion is only done with respect to the first variable inside the braccets,
leading to stairwise dependency in the expanded quantities as x∗1 = f(x1), x∗2 = f(x1, x2), x∗3 =
f(x1, x2, x3) and so on. This expansion requires an explicit formula for the edge of the region,
which can be hard to construct in higher dimensional space, particularly finding explicit descrip-
tions of Hi and hi in equation 19. Quite often, only 2-way interactions are considered in high
dimensional spaces as they tend to have a higher relative impact on the output, which comes
down to capturing the dependency in 2D-projections of the total uncertain space. Therefore, the
2D-case is considered in the remainder of this paper.

Usually, an explicit description for FΩ(x1), Cu and Cl is not available, or very difficult to
express, so in practise they are expressed by using a truncated PCE based on the univariate
legendre polynomials, as they are orthogonal w.r.t. the uniform distribution.
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Figure 3: data points used in this example of the combined method

4 The combined method to uncertain regions from small datasets

The method in this section is explained by applying it on the virtual dataset of 20 points, as
is given in figure 3.

The data is captured in the 20x2 matrix X. The objective will be to estimate an uncertain
region on it in an interval context. The dataset is centered and the eigenvectors Φ of XTX are
identified. The data is projected onto both eigenvectors, leading to two projected sets u1 = Xφ1

and u2 = Xφ2. Next to this two additional projections are done on the vectors v = λ1φ1+λ2φ2√
λ21+λ22

and w = λ1φ1−λ2φ2√
λ21+λ22

. Projection on these vectors lead to two additional sets u3 = Xv and

u4 = Xw. These directions signify the two height lines and diagonals of the smallest circum-
ferential rectangle of the dataset. On all four of the projected datasets, the bayesian inference
scheme as was described in section 2 is performed, leading to a total of 4 estimated intervals,
which are then multiplied with their corresponding direction, leading to 8 points in the 2D-space
that serve as the boundary points of the uncertain region. For the uncertain region, the following
parametrization is used (equation 20):{

x1 = R(θ)cos(θ)
x2 = R(θ)sin(θ)

(20)

with
R(θ) = a0 + a1cos(θ) + a2sin(θ) + a3cos(2θ)

+ a4sin(2θ) + a5cos(3θ) + a6sin(3θ) + a7cos(4θ)
(21)

The coefficients a0 to a7 can be uniquely determined by the 8 boundary points, leading to the
uncertain region in figure 4.

The second part of the method is to apply the theory of interval PCE as described in section
2 to ensure the mapping of the initial variables to the expanded parameters x∗1 and x∗2 ensure that
not only the hypercubic spaces is transformed into the uncertain region that was just determined,
but also that a uniform sampling on the initial variables also produce a uniform sampling of the
uncertain region. The most left and right points are determined by solving ∂x1

∂θ
= 0, which is
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Figure 4: Curve fitted using the 8 boundary points (black circles) and the parametrization in equation 20 and 21

valid for exactly 2 values of θ, referred to as θl and θr. The upper and lower curve are discretized
and fitted using a 10th order Legendre polynomial set, the result of which is given in figure 5.

The CDF as described in equation 17 is determined and inverted numerically and is fitted
using a 10th order Legendre polynomial set, the result of which is given in figure 6

This gives an expression for the mapping of x1 and x2 on x∗1 and x∗2 given by equation 22.
The coefficient values are given in table 2.{

x∗1 =
∑10

i=0 ci · Pi(
x1−x1
x1−x1 )

x∗2 =
(∑10

i=0(Hi − hi) · Pi(x∗1)
) x2−x2
x2−x2 +

∑10
i=0 hi · Pi(x∗1)

(22)

Table 2: coefficient values in equation 22 (values are multiplied by 100)

i = 0 1 2 3 4 5 6 7 8 9 10
Hi -67.06 18.67 53.65 -22.16 -7.47 3.98 13.0 7.10 -0.58 -10.82 2.06
hi 78.36 24.43 -44.17 -16.69 -14.7 -8.45 -3.52 6.62 -5.67 -3.63 -0.45
ci 50.66 42.69 0.14 4.45 -0.70 1.07 -0.21 0.64 0.23 0.53 -0.08

In equation 22, Pn(x) refers to the nth order Legendre polynomial. The final result of the
method given by equation 22 and figure 7 illustrates a uniform sampling within the bounds of
the basic variables and the result in the transformed space of x∗1 and x∗2.

5 Conclusion

This work presented a method to estimate two-dimensional uncertain regions, accounting
for possible dependency between the uncertain quantities. From figure 7, it can be seen that
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Figure 5: approximation of the upper and lower curve using a 10th order Legendre polynomial set. Blue dots: real
curve, black circles: fitted curve

Figure 6: Inverted CDF, red dots: actual curve determined by integral evaluation, blue circles: fitted curve
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Figure 7: 500 points uniformly sampled from a non-interactive normalized uncertain space (left) and the resulting
uncertain region (right)

from a uniform sampling of the initial germ variables, a uniform distribution of the transformed
quantities is obtained, and the boundary curve is obeyed as well. Future work will be done on
applying the combined method on actual datasets on Finite Element model input parameters
and compute resulting output uncertainty, and perform (anti-)optimization to obtain bounds on
uncertain output quantities.
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Abstract. This paper introduces a machine learning approach for the inverse quantification
of set-theoretical uncertainty. Inverse uncertainty quantification (e.g., following Bayesian or
interval methodologies) is usually obtained following a process where a distance metric be-
tween a set of predicted and measured model responses is iteratively minimized. Consequently,
the corresponding computational effort is large and usually unpredictable. Furthermore, often
only a limited dataset is available, further complicating the inverse procedure [3]. To overcome
these issues, a machine learning approach is proposed to predict the uncertainty in selected
model parameters given a limited dataset comprising measured responses.

To achieve this, machine learning is applied to train a Neural Network that is able to predict
model parameter uncertainty, presented a limited set of measured responses, following a set-
theoretical approach. This Neural Network is trained by means of a numerically generated
data set that captures typical uncertainty in the model parameters. Also, the application of
dimension-reduction techniques to aid this inverse quantification are studied. The developed
method is applied to the well-known DLR AIRMOD test structure and the results are compared
to literature data.
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1 INTRODUCTION

Numerical modelling techniques are the backbone in practically all branches of science and
technology, from academia to industry. On top of this, it is already proven that non-deterministic
approaches are required to cope with the relatively large amount of uncertainty in the input
data for these models, such as model parameters, boundary conditions or geometric variables.
The ability to include non-deterministic properties is of great value to asses the reliability of a
designed structure realistically. This can aid a design to be optimised for robust behaviour under
varying external influences. A popular concept in this context is the interval approach, where
uncertainties are considered to be contained within a predefined range, consisting of a lower and
upper bound. However, a large degree of conservatism on these bounds to prevent premature
failure is not the proper solution, but often necessary in case insufficient data are available. This
inherently leads to an economic cost, as well as far-from-optimal parameters such as thickness
or other weight-affecting parameters which are vital in sectors as automotive, aerospace [6].

In order to assess input data based on observed experimental data, inverse uncertainty quan-
tification (iUQ) aims to quantify the uncertainty in input parameters such that the discrepancies
between model output and observed experimental data is minimized. The standard approach
for iUQ is still the Bayesian framework, of which the performance is proven numerous times
empirically and in special cases even theoretically [13, 18]. A methodology to perform such in-
verse uncertainty quantification for multivariate interval uncertainty was introduced first in [4],
and further extended towards interval fields in [5]. This method is based on the convex hull
concept, to represent the dependent uncertain output quantities of an interval FE model. This
convex hull is iteratively reconstructed based on iterations on the input interval uncertainty,
aiming to minimize the discrepancies with the convex hull over a set of replicated measurement
data. This method is illustrated to outperform Bayesian approaches in scarce data conditions
[3]. However, the method suffers greatly from the curse of dimensionality due to the required
iterative solution of the underlying interval FE problem.

A possible solution to this problem is surrogate modelling, which is typically used to deal
with expensive computer codes. A cheap to evaluate surrogate model is constructed to replace
the forward model solver. Because such surrogate model is much cheaper to run than the orig-
inal model solver, it can be used in e.g., a real time monitoring or controlling setting. In the
context of inverse uncertainty quantification, Artificial Neural Networks were used in this way
in e.g., [3, 13, 14] for both Bayesian and interval iUQ. However, datasets from industrial ap-
plicable models often are high dimensional. Since the computation of a convex hull follows an
exponential time complexity with its dimension, the dimension should be reduced as to allow a
feasible computational time. This requires tools from the fields of big data & machine learning.
[10, 15] A broad range of techniques can be adopted, e.g. based on covariance matrix decom-
positions, active subspace methods, manifold learning or autoencoders have been introduced in
recent years. [17]

However for all these methods to perform iUQ, still a considerable computational budget is
required to perform the quantification, because still numerous model evaluations are required
due to the iterative nature of both the Bayesian and interval iUQ procedures. This paper presents
a methodologically new approach for inverse uncertainty quantification in an interval context.
The core idea is to train a Neural Network as inverse surrogate model based on the forward
FE code for this dataset in combination with deep autoencoder networks to perform dimen-
sionality reduction on the dataset. The DLR AIRMOD test structure with corresponding data
set [7] is used to validate the methodology, and the results are compared to those published in
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literature [3, 13]. This paper is organized as follows. Section 2 elaborates the general setup of
the problem in this work. Section 2.2 discusses the task of autoencoders for the dimensionality
reduction of the dataset. Section 2.1 describes the proposed technique for a surrogate model,
subsequent to the dimensionality reduction in precious section. Section 3 illustrates the perfor-
mance of this methodology based on the DLR-AIRMOD test structure data. Finaly, Section 4
wraps up the conclusions.

2 METHODOLOGY

The goal in this work is to quantify the interval uncertainty in a set of input parameters of
a model, based on limited experimental data. The quantification is performed by the inverse
training of a surrogate modelling architecture to predict the model’s parameters x based on a
set of measured responses y. Let ym be a set of data on the responses of the structure under
consideration. These data are acquired by e.g. an experimental campaign. Since they can be
high-dimensional, in general a reduction of their dimension is necessary to be handled by the in-
verse methodology. Therefore, these values pass through an autoencoder (AE) that is trained on
beforehand based on results from a forward FE solver to create a low-dimensional representa-
tion yr of these data. Then, based on this lower-dimensional representaiton of the data, a Neural
Network processes the resulting data, aiming at reconstructing the input data x̃ within interval
bounds. Both the autoencoder and the artificial Neural Network are offline trained based on a
Finite Element model of the structure. The proposed workflow is elaborated in figure 1.

Experimental data
ym

Autoencoder
yr = A(ym)

Low dimensional space
yr < ym

Neural Network
x = h(w.y + b)

Identified
parameters x̃

Training: dataset
from forward solverM

Training: dataset
from forward solverMV

al
id

at
ed

by
ru

nn
in

g
fo

rw
ar

d
so
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er
M

Figure 1: Flowchart of the proposed methodology

2.1 SURROGATE MODELLING

With this work, we are aiming at the identification of uncertainty in a computationally ex-
pensive modelM, often based on the Finite Element Method (FEM) including (multi-physics)
(partial) differential equations according to:

y =M(x) (1)

A forward solver, such as in eq. 1, based on FE solvers is mostly too computationally expen-
sive to solve the inverse problem. A single solution is manageable to compute, but to estimate
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for an inverse setting, such as the live monitoring and controlling on a production line, the model
should first be solved multiple times in an iterative procedure, with iterations up to a magnitude
of±105 before an inverse strategy can be adopted [2]. In this work, an efficient analytical model
M̂−1 for inverse uncertainty quantification is introduced to mimic this computational expensive
problem. The proposed method is to eliminate the need for fulsome computational iterations by
training a surrogate model M̂−1 to quantify the interval uncertainty on the input parameters by
means of feeding an Artificial Neural Network (ANN) with measured responses. This results
in:

x̃ =
{
x̃i | x̃i = M̂−1(yi),∀yi ∈ ym

}
(2)

In case x̃ is approximated by an encompassing hypercube, a conservative interval description
of the parameter uncertainty is obtained. The ANN surrogate modelling technique is chosen for
its effectiveness and versatility [1]. ANN have a guarantee to find a surrogate model description
of the output of the network as a close approximation of the real output of the same input value.
This universality provides that there is a Neural Network for each possible function [12]. It takes
time to set up this approach, due to the choice of several aspects e.g. number of layers, choosing
an activation function and the training of the network. Once the network architecture is set and
trained, the algorithm can provide responses at a fraction of the required computational cost
of running the full numerical model. Furthermore, such prediction is obtained not only on the
data used for training, but also on new (experimental) data, which is often referred to as the
out-of-sample extension.

Neural Networks (NN) are a powerful set of algorithms which can be trained from an input
dataset towards an output dataset, regardless of the physical meaning of each individual variable.
In an ANN are several layers that are passed by the data in the aim of converging to the output
dataset. Each layer in between the first and final layer is defined as hidden layer. By varying
the number and size of the hidden layers, an optimum between the accuracy of the output and
complexity of the network can be found. The size of the first and last layer is fixed, determined
by the dimension of these layers. An ANN defines a function f : X → Y , where f(x) is a
composition of multiple weighted functions f ln(x), where l is the layer and n the neuron in the
layer l. Often a non-linear weighted sum is used for the composition of the network as follows:

ŷ = f(x) = K

(∑
i

wi.gi(x)

)
(3)

where wi is a vector of weights to be updated during the training, K the activation function and
gi(x) the elements of the design matrix, which may include other powers or function of x. Since
overtraining is a common problem in ANNs, especially when large network achitectures are
considered, Bayesian regularization is used in the activation function to attempt to overcome
overtraining. Bayesian Regularized ANNs (BRANNs) incorporate Bayes’ theorem in to the
regularization scheme, and have proven their merit in multivariate interval analysis [6]. The
training of the (BR)ANN, also referred to as the learning stage, is typically regulated by back-
propagation. This involves comparing the output ŷ of the network with the output it is meant to
produce y, and using the difference between it to modify the weights wi of all the connection in
the network. Back-propagation ensures that the network learns the correct weights, as to reduce
L, the loss function that tells the difference between actual y and intended output ŷ, equivalent
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to the mean square error formulation:

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (4)

To prevent overfitting, a reguralisation term is added to eq. (4), and both terms are weighted by
two hyperparameters α and β:

S(w) = β
n∑
i=1

[yi − f(Xi)]
2 + α

NW∑
j=1

w2
j (5)

with NW the number of weights. When β >> α, the network will drive the mean squared
error to a lower value. Conversely, when α >> β, the network weights and biasses will be
smaller as compared to a non-regularised performance function, forcing the network response
to be smoother. Hence, the former case tends towards a perfect representation of the training
data, albeit with the risk of performing bad on new data, whereas the latter aims at a better
generalisation performance of the ANN. Specifically, this training is performed following a
Bayesian approach, where the weights w and biasses b are modelled as random variables, and
identified following a Bayesian approach that minimises L. The regularisation parameters ξ
and χ are related to the variances of the random weights and biases, and are also found by
performing Bayesian estimation [9].

Since the amount of parameters is rather large in many cases, the number of layers increases
most of the times, because the number of weights, which increases when the input layer ex-
ists of more parameters and therefore increases the number of connections, should be able to
reconstruct the data. This might make it difficult to train the network and often requires also
a large amount of samples. This leads to the need of dimensionality reduction techniques, as
elaborated in section 2.2. As a conclusion, the main purpose for the choice of a BRANN is the
low computational effort, the low risk of overfitting and the required time to test data in this
model after it is set up. It also provides an out-of-sample extension for new data, which is an
added benefit in several final applications, e.g. live monitoring.

2.2 DIMENSION REDUCTION

An important requirement to achieve the objective of establishing an inverse surrogate model
that only requires marginal computational effort and that can process new data, is the ability to
embed new high-dimensional data points into an existing low-dimensional data representation.
Autoencoders have this important property, which is not lost in combination with the proposed
surrogate modelling technique, neural networks [11]. Once the network, consisting of the pro-
posed surrogate model in combination with an autoencoder is trained, new data can easily be
projected by the autoencoder from a high-dimensional space into a low-dimensional space, as
the trained network defines this transformation. Linear techniques such as PCA lack the ability
of a parametric out-of-sample extension. Therefore they need some sort of interpolation based
on the linear mapping that they apply on the original data, to guide through the projection onto
the lower dimension.

Multilayer autoencoders are feed-forward neural networks with an odd number of hidden
layers. The middle layer has d nodes, and the input and output layer haveD nodes, with d < D.

XD Encoder→ Y d Decoder→ X ′D (6)
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The network is trained such that the mean squared error is minimized between the input and
output layer (eq. 4). Ideally the input and output layer from the autoencoder, both with D-
dimensions, are equal (X ≈ X ′). Training this network leads to a dataset Y in the middle
layer with a d-dimensional representation of the original data, preserving as much structure as
possible from the dataset X with D-dimensions. This separates the autoencoder in an input
layer, a decoder, the middle layer with d < D, an encoder and the reconstructed layer X ′.
The reconstruction part of the autoencoder makes it of a supervised technique [17]. After the
autoencoder is trained, the schematic model can be reduced, resulting in dataset Y :

XD Encoder→ Y d (7)

Before reducing the dimensionality, the intrinsic dimension di of the dataset should be esti-
mated. This dimension represents how many variables are needed to represent the full dataset,
thus 0 ≤ di ≤ D . Regularly used geometric methods exploit the intrinsic geometry of the
dataset and are mostly based on fractal dimensions or nearest neighbour distances [16]. Per-
haps the most popular fractal dimension is the correlation dimension. Given a set Sn = {x1, . . .
, xn} in a metric space, the correlation dimension is defined as:

DC ≡ lim
n→∞

lim
r→∞

log Cm(r)

log r
(8)

with:

Cm(r) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

I {‖xj − xi‖ ≤ r} (9)

where I is the indicator function, r the number of even intervals in the high dimensional hyper-
cube and n the number of data points. The correlation dimension is then estimated by plotting
log Cn(r) against log r and estimating the slope of the linear part of the curve until a cut-off
is achieved. This leads to a dimension, where data, embedded in a high-dimensional space,
can be efficiently summarized in a space of a much lower dimension, without the loss of vital
information.

Dimensionality reduction techniques have a high added value for the proposed method, as
they do not only reduce the size of the input layer for the ANN, but also the amount of hidden
layers is reduced. This leads to a more efficient network, resulting in less complex training and
more efficient testing functions.

3 CASE STUDY: DLR-AIRMOD TEST STRUCTURE

3.1 Introduction

The main objective in this work is to illustrate the performance of the developed approach
using the challenging DLR AIRMOD data set [7]. The test case is an ideal example to fit into
the methodology as described in figure 1. Since both the dimensionality reduction technique
and the surrogate model require a set of samples to be trained, a set of input parameters and
corresponding results from a Finite Element solver are included. A set of actual measurement
data, representing ym is available to test the methodology and identify the corresponding input
parameters x̃.

3.2 Model introduction

The DLR-AIRMOD structure is a scaled replica of the GARTEUR SM-AG19 benchmark
air-plane model. A set of 18 parameters including support and joint stiffness values, as well
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as mass parameters are selected for the identification, in correspondence with literature on the
subject ([7, 13]). The DLR-AIRMOD structure, with corresponding dataset is selected due
to its challenging nature and the elaborate literature on the subject. The dataset includes 18
input parameters consisting of mass and stiffness values and as an output, 30 eigenmodes cor-
responding with inital FE estimates and measured eigenfrequencies. According to literature,
several techniques are already applied on this case, where results were compared in terms of
obtaining information and accuracy [2, 8].

Previous work on the DLR-AIRMOD test structure includes results achieved by interval
methods and Bayesian model updating. Interval methods providing the analyst with responses
for respectively if the analyst is only interested in bounds on the uncertain parameters. Bayesian
model updating is optimal if the analyst is interested in a complete description of the (joint-
)plausibility, including correlation and multi-modal descriptors. It can be noted that the model
includes some challenges, including asymmetric modal behaviour and closely spaced modes.
Based on previous work, the included set of modes used in this methodology includes the 1st-
8th, 10th- 12th, 14th, 19th and 20th mode. These 14 modes are selected to be consistent with
literature on the subject [7]. More detail on the model and its eigenmodes can be found in [3].

3.3 Inverse Neural Net quantification based on reduced dimensionality

For an inverse UQ with out of sample extension, the pre-selected frequencies resulting from
the FEM model are used as input for an autoencoder to reduce its dimension. The FEM model
input data is generated by the Monte Carlo sampling technique in a uniform distribution with
±100% bounds on the nominal parameters [7]. The intrinsic dimension is derived based on
Eq. 8. Figure 2 illustrates the MSE in function of the dimensions whereto the autoencoder is
trained. The reduced dimensionality is chosen to be d =11 due to result of the proposed intrinsic
dimensionality, with a MSE of 4,37.10−6. All training computations are made using a single-
thread of an Intel Xeon E5 @ 3.7 Ghz, taking a total time of 23.037 s to reach the best training
performance, as illustrated in figure 3.

Figure 2: MSE values for each reduced dimension Figure 3: Training performance for d = 11

Figure 4 illustrates the correlation matrix from the pre-selected eigenmodes from the DLR-
AIRMOD test structure after the supervised learning technique. The matrix illustrates the cor-
relation between the original eigenmodes, being results from an offline FE solver, Y and the
reconstructed data Y ′ for each dimension D = 14. The diagonal denotes that the auto corre-
lation is high, which proves the performance of the autoencoder in reconstructing the original
responses. The correlation values, based on the complete 2000 sample dataset is provided in
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Figure 4: Correlation matrix for the normalised reconstructed results by the autoencoder

table 1. They provide information on how well the reconstructed data Y ′ resembles the original
data Y . The lowest observed correlation is set in bold, with a value of 98,37%. None of the
other graphs in the correlation matrix (figure 4) should denote a high correlation for the sake
of the autoencoder, because it is only trained on the auto correlation. However it is noted that
several frequencies have a rather high correlation with other frequencies. This is an indication
that the autoencoder is able to correlate certain responses that are linked to each other due to
physical properties in the FE model. This is already a detection for this specific dataset, that
the autoencoder will be able to reduce the dimensions, because there is a noticeable correlation
with several parameters, which is likely to be retained when the data is reduced. Several notes
in figure 4 include: Mode no 7 and 8 have a high correlation, as these are both respectively
the asymmetric and symmetric wing torsion. Mode no 19 and 20 have almost no correlation
with other eigenmodes, as these eigenmodes are effecting the Horizontal tail piece of the model
(respectively horizontal bending and fore-after bending). The autoencoder can therefore suc-
cessfully reduce the dimensionality, such that the amount of hidden layer connections in the
surrogate model will be lower, resulting in a more efficient ANN. The accurately trained au-
toencoder can perform a dimensionality reduction, according to eq. 7 by only encoding the data
into the low dimensional space d = 11.

A BRANN surrogate model M̂ is then trained using eq. 2 with the dataset yr for y (in the
lower dimensional space) and x̃θ the input data, of which 16 out of 18 parameters are used
as input variables for the FE solver. The selection of these 16 parameters is to be consistent
with literature on the subject [3]. The BRANN is trained for each input parameter θ separately
and the number of neurons in the hidden layer is increased until the accuracy of the BRANN
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Dimension Correlation
f1 99,99
f2 99,99
f3 99,99
f4 99,99
f5 99,00
f6 99,88
f7 99,87
f8 99,89
f10 99,82
f11 99,96
f12 98,37
f14 99,97
f19 99,97
f20 99,97

Table 1: Correlation from input data en decoded data on the limited set

converges with respect to a separated validation set. The set of trained architectures in the
BRANN for each separate AIRMOD model parameter is listed in table 2.

Table 2: Trained BRANN network architectures

θi ANN architecture
1 (11 – 7 – 1)
2 (11 – 7 – 1)
3 (11 – 4 – 1)
4 (11 – 3 – 1)
5 (11 – 10 – 1)
6 (11 – 7 – 1)
7 (11 – 5 – 1)
8 (11 – 4 – 1)
9 (11 – 9 – 1)

10 (11 – 7 – 1)
11 (11 – 7 – 1)
12 (11 – 7 – 1)
13 (11 – 7 – 1)
14 (11 – 7 – 1)
15 (11 – 7 – 1)
16 (11 – 7 – 1)

This yields a complete setup equal to:

y
AE→ yr

BRANN→ x. (10)

A set of measurement data, achieved from an experimental setup, is used to test the complete
trained model and to test its out-of-sample functionality. Figure 5 illustrates the normalised
histograms of a Bayesian model updating procedure obtained from literature [3]. The Black
arrows indicate the interval bounds obtained by the inverse method of [3]. The red interval
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bounds indicate the results from the proposed surrogate model. It is noted that for multiple
parameters, e.g. 1st-6th and 16th-18th, the surrogate model achieves almost similar results, a
few parameters are slightly conservative 8th-11th, 13th and 15th. Also a few parameters are
further off, including parameter 7, which is rather conservative, but compared to the normalised
histogram, the range from the bounds is even a better approximation with the Bayesian results.
Parameter 14 is largely conservative and parameter 12 has a small offset.
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Figure 5: Normalised histograms of the posterior distributions samples, black triangles indicate interval bounds
from Multivariate interval quantification, red triangles indicate interval bounds from the surrogate model.

The time required to process 87 data points through the network is marginal. To load new
data in the memory 0,409 s is required. The elapsed time to encode the data and passing it
through the network is only 0,0284 s. Compared to the inverse method in [3], this approach
presents a large increase in numerical efficiency at similar accuracy. Figure 6 illustrates all
combinations of the pre-selected eigenmodes obtained by propagating the identified parameters
x̃ through their corresponding surrogates of the AIRMOD FE model. They are shown next
to the measurement data and the propagated interval fields from [3]. The combination of the
considered eigenfrequencies illustrate an almost perfect encapsulation for the 1st-4th. As noted
in figure 5, a few parameters have a small offset. This is noted in all the combinations with
parameter 6 & 8. All other eigenfrequencies illustrate a good correspondence with the interval
bounds of [3].

4 CONCLUSIONS

In this work, an efficient approach for the inverse quantification of set-theoretical uncertainty
with black-box numerical simulation models that eliminates the need for iterative procedures is
developed. The proposed methodology trains an inverse machine learning architecture, based
on input-output pairs that are generated based on a finite element model of the structure or
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Figure 6: All combinations of considered eigenfrequencies, plotted for experimental data, quantified intervals and
the proposed surrogate modelling technique

system under consideration. When the network is trained, experimental data can be processed
to identify input parameters. Furthermore, advanced non-linear dimension reduction is used to
generalize the method to models have large numbers of inputs and outputs.

The proposed method is applied on a case study to illustrate its performance. The DLR-
AIRMOD test structure and the related dataset is used for this application due to challenging
nature and availability of benchark solutions. The inverse surrogate modelling method proves
to be fast and corresponds well to the original data. The computational time to process experi-
mental time is marginal, making the proposed model ideal for settings such as live monitoring
or model updating.

However it is noted that a few ANN were unable to match the model on which the surrogate
is trained accurately. Hence the result is more conservative or there is a slight offset between
the eigenfrequencies that are obtained when the identified intervals are propated through the FE
model and the experimental data. Future work includes the extension of propagating missing
data to make the methodology more robust under extremely scarce data conditions.
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Abstract 

The fatigue analysis of linear discretized structures with uncertain axial stiffnesses modeled 

as interval variables subjected to stationary multi-correlated Gaussian stochastic excitation is 

addressed. The key idea is to estimate the interval expected fatigue life by interval extension 

of an empirical spectral approach proposed by Benasciutti and Tovo [1], called 0.75  - meth-

od. 

The range of the interval expected fatigue life may be significantly overestimated by the clas-

sical interval analysis due to the dependency phenomenon which is particularly insidious for 

stress-related quantities. To limit the dangerous effects of the dependency phenomenon, a 

novel sensitivity-based procedure relying on the combination of the Improved Interval Analy-

sis via Extra Unitary Interval [2] and the Interval Rational Series Expansion [3] is proposed. 

This procedure allows one to detect the combinations of the bounds of the interval axial 

stiffnesses which yield the lower bound and upper bound of the interval expected fatigue life 

for the stress process at critical points of bar connections.  

 

Keywords: Uncertain-but-bounded axial stiffness, expected fatigue life, stationary random 

excitation, Improved Interval Analysis, Interval Rational Series Expansion, sensitivity analy-

sis. 

 

 

184

mailto:alba.sofi@unirc.it


F.Giunta, G. Muscolino and A. Sofi 

 

1 INTRODUCTION 

Fatigue is recognized as one of the primary causes of failure of many structures and me-

chanical components. Moreover, fatigue failures may have catastrophic consequences since 

they happen without any warning. Wind action, which is usually modeled as a stationary mul-

ti-correlated Gaussian random process, is perhaps the most important cause of fatigue failure 

of slender/light structures [4]. The approach commonly adopted to predict fatigue effects is to 

first convert the load into a set of cycles by using a cycle counting method and then to evalu-

ate the total damage by a proper damage accumulation rule (e.g., Palmgren–Miner rule) as a 

sum of single cycle damage contributions [5].  

In the framework of fatigue failure analysis, it has been recognized that time-domain 

counting algorithms are very expensive. For this reason, frequency-domain approaches are 

preferred, especially for stationary stochastic excitations (see e.g., [1],[6]). Indeed, such ap-

proaches yield exact or approximate analytical expressions of cycle distribution and fatigue 

damage under a given counting procedure, without requiring the knowledge of the critical 

stress or strain time-history.  

The rainflow counting (RFC) method is undoubtedly the most popular and used counting 

algorithm. In fact, this algorithm extracts cycles on the basis of the material memory mecha-

nisms ([1], [7],[8]). Furthermore, it is well-known that, for a very narrow-band (VNB) stress 

process, a Rayleigh distribution can be adopted to represent the cycle distribution (see e.g., 

[9]). In this case, it is reasonable to state that, for a zero-mean process, a stress cycle is formed 

by a peak and the following symmetrical valley, and the amplitude equals the value of peak. 

However, it has been recognized that for not VNB stress processes, the Rayleigh distribution 

yields too conservative results and alternative approximate methods have been proposed (see 

e.g., [10]-[12]). Recently, by performing both experimental and numerical tests, it has been 

demonstrated [13] that the approach proposed by Benasciutti and Tovo [1], called 0.75 - 

method, is very accurate. 

As known, uncertainties affecting structural parameters are commonly modeled resorting 

to well-established probabilistic approaches. When available data are insufficient to identify a 

proper probabilistic model for the uncertain variables, non-probabilistic approaches, such as 

convex models, interval models or fuzzy sets theory, can be alternatively applied. To the best 

of the authors’ knowledge, very few studies have been devoted in the literature to fatigue 

analysis of structures with uncertain parameters modeled resorting to non-probabilistic ap-

proaches (see e.g., [14],[15]).  

This study presents the extension of an empirical spectral approach proposed by 

Benasciutti and Tovo [1] to discretized structures with uncertain material properties modeled 

as interval variables subjected to stationary multi-correlated random excitation. Due to inter-

val uncertainties, all the response quantities, including the expected fatigue life, are described 

by intervals. To ensure safe design, the lower bound of the interval expected fatigue life 

(worst case scenario) needs to be computed.  

It has to be emphasized that the main drawback in the evaluation of the range of selected 

interval stress components is the so-called dependency phenomenon [16],[17] which often 

leads to an overestimation of the interval solution width unacceptable from an engineering 

point of view. This phenomenon is due to the inability of the classical interval analysis to 

treat multiple occurrences of the same interval variable in an expression as dependent ones. 

Interval stresses are more sensitive to the dependency phenomenon than displacements since 

their definition involves double occurrence of the same interval variable. In this paper, to re-

duce overestimation affecting the bounds of the interval expected fatigue life for the critical 
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stress process, a novel sensitivity-based procedure stemming from the combination of the Im-

proved Interval Analysis (IIA) via Extra Unitary Interval (EUI) [2] and the Interval Rational 

Series Expansion (IRSE) [3] is proposed. The key idea is to perform Sensitivity Analysis (SA) 

exploiting the IRSE to predict the monotonic increasing or decreasing behavior of the ex-

pected fatigue life for the critical stress process. This approach, herein referred to as SA via 

IRSE [18]-[21], provides explicit closed-form relationships for the sensitivities of the expected 

fatigue life to the uncertain parameters. Unlike the approach to interval fatigue analysis re-

cently developed by the authors themselves [15], the proposed method enables to identify the 

combinations of the endpoints of the uncertain parameters which give the Lower Bound (LB) 

and Upper Bound (UB) of the expected fatigue life.  

A truss structure with uncertain axial stiffness subjected to wind excitation is selected as 

case-study. Since the expected fatigue life is a monotonic function of the uncertain parameters, 

for validation purposes, the proposed bounds of the interval expected fatigue life are com-

pared with those provided by the classical combinatorial procedure, the so-called vertex meth-

od. 

2 EXPECTED FATIGUE LIFE OF LINEAR STRUCTURES UNDER 

STATIONARY STOCHASTIC EXCITATION 

Amongst all damage rules, the Palmgren-Miner linear damage model [5] is the most popu-

lar and used, due to its simplicity. According to this model, derived for constant amplitude 

tests, fatigue strength is quantified by the number of cycles to failure, N, under repeated si-

nusoidal cycles with amplitude y. For many materials, this relation is explicitly given as a 

straight line in a double-logarithmic diagram (Y-N curve): 

 ky N C   (1) 

where k and C are material parameters. For stationary stress processes, under the Palmgren-

Miner rule (ignoring mean-value), the expected damage per unit of time (or mean damage in-

tensity) is a constant quantity and can be evaluated as [9]: 

 1

,

0

E ( )dk

Y Y a YD C y p y y


    (2) 

where E  is the stochastic average operator, ( )Yp y  is the amplitude distribution of counted 

cycles, ,Y a  is the rate of occurrence of counted cycles (i.e. counted cycles/s), given as (see 

e.g., [9]): 
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1
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     (3) 

where ,Y m  is the spectral moment of order m [22] and ( )YG   is the one-sided Power Spec-

tral Density (PSD) function of the stationary random stress process ( )Y t . For stationary exci-

tations, the expected time to failure (i.e. the expected fatigue life) can be estimated as: 

 F

1
.

E Y

T
D

   (4) 
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Hence, for a given stationary random process ( )Y t  (i.e. for a given spectral density), the 

mean damage intensity E YD  and the expected fatigue life 
FT  depend on the expected rate of 

occurrence of cycles ,Y a  as well as on the amplitude distribution ( )Yp y  that in turn depends 

on the counted method adopted. Unfortunately, because of the complicated procedure of 

peak–valley pairing, at present no explicit analytical solution is available for the amplitude 

distribution as well as for the mean damage intensity and expected fatigue life. For this reason, 

all methods existing in the literature are only approximate. Recently, by performing both ex-

perimental and numerical tests [13], it has been demonstrated that the 0.75 - method proposed 

by Benasciutti and Tovo [1] is one of the most accurate among approximate procedures. Ac-

cording to this method, the mean damage intensity E YD  can be evaluated as: 

 

2

,0.75

,

,0 ,1.5

E E
Y

Y Y VNB

Y Y

D D


 
   (5) 

where ,E Y VNBD  is the mean damage intensity under the very narrow-band (VNB) approxima-

tion, evaluated as [9]: 
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( )   being the gamma function. Substituting Eq. (5) into Eq. (4), the following expression of 

the expected fatigue life, FT , is obtained: 
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It follows that the evaluation of the expected fatigue life, FT , involves four spectral mo-

ments of the stationary stress process ( )Y t . 

3 BOUNDS OF THE INTERVAL EXPECTED FATIGUE LIFE 

3.1 Interval model of uncertainties  

Over the last decades, the interval model has gained increasing popularity as a simple and 

effective non-probabilistic approach to represent uncertainties occurring in engineering prob-

lems. The basic idea is to describe the thi   uncertain parameter as an interval variable 

 ,I

i i i    , denoted by the apex I, with  indicating the set of all closed real interval 

numbers, while i  and i  are the Lower Bound (LB) and Upper Bound (UB) of I

i , respec-

tively. Interval variables are also referred to as uncertain-but-bounded. 

According to the classical interval analysis, the i-th real interval variable  ,I

i i i    is 

characterized by the midpoint value (or mean), 0,i , and the deviation amplitude (or radius), 

i , given by [16]:  
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Let  ,I r α α α  be a bounded set-interval vector of real numbers collecting r  interval 

variables such that  α α α , with α  and α  denoting the LB and UB vectors. In the sequel, 

0α  and α  will denote the vectors collecting the midpoint values and the deviation ampli-

tudes, 0,i  and i , respectively, of the interval variables I

i  ( 1, , )i r . 

The main limitation of the classical interval analysis is the so-called dependency phenom-

enon [16], [17] which often yields over conservative estimates of the interval solution which 

are useless for design purposes. This phenomenon typically arises when the same interval var-

iable occurs more than once in a mathematical expression. Indeed, the classical interval anal-

ysis in unable to keep track of interval variables throughout calculations. To reduce 

conservatism caused by the dependency phenomenon, recently the so-called Improved Inter-

val Analysis (IIA) via Extra Unitary Interval (EUI) [2] has been proposed. This approach re-

lies on the introduction of a particular unitary interval, called EUI,  ˆ 1, 1I

ie   , ( 1,2,..., )i r , 

which does not obey to the rules of the classical interval analysis. According to the IIA via 

EUI, the following affine form definition for the i -th interval variable I

i  is assumed: 

 0,
ˆ ,       ( 1,2, , ).I I

i i i ie i r       (9) 

For symmetric interval variables with i i   , so that 0, 0i   and i i i      , the 

previous equation reduces to: 

 ˆ .I I

i i ie     (10) 

3.2 Equations of motion  

Let us consider a quiescent n-DOF linear structure subjected to a stationary multi-

correlated Gaussian stochastic process ( )tF . Let j j j jE A L   be the axial stiffness of the j-

th element, where jE , jA  and jL  are the Young’s modulus, cross-sectional area and length of 

the element, respectively. Without loss of generality, attention is focused on structures with 

uncertain axial stiffness. Specifically, it is assumed that r m  elements are characterized by 

uncertain-but-bounded axial stiffness i.e.: 

 0, 0,
ˆ(1 ) (1 ),           ( 1,2, , )I I I

j j j j j je j r m            (11) 

where 0, 0, 0, 0,j j j jE A L   is the nominal value of the axial stiffness of the j-th element; 
I

j  is 

the dimensionless fluctuation of the uncertain axial stiffness around the nominal value, herein 

modeled as a symmetric interval variable. According to the IIA, 
I

j  is expressed as in Eq. (10) 

in terms of the associated EUI, ˆ I

je , and deviation amplitude j  with 1j   in order to 

ensure always positive values of the uncertain axial stiffness. 

The stiffness matrix of the structure is a n n  interval matrix defined as follows:  

 T( ) ( )I I I K K α S E α S   (12) 
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where I
α  is the interval vector collecting the fluctuations 

I

j  of the axial stiffnesses around 

the nominal value; T
S  is the n m  equilibrium matrix; ( )I IE E α  is the m m  interval di-

agonal internal stiffness matrix, given by [23] 

 T

0 , ,

1

ˆ( ) ,  
r

I I I

j j E j E j

j

e


   E E α E l l   (13) 

where 0 0,1 0,2 0,Diag m     E  is the nominal internal stiffness matrix; ,E jl  is a 

mvector having zero entries except the j-th which is equal to 0, j , such that the dyadic 

product 
T

, ,E j E jl l  gives a change of rank one to the nominal internal stiffness matrix.  

Taking into account Eq. (13), the interval stiffness matrix in Eq. (12) can be rewritten as 

sum of its nominal value, 0K , plus r  rank-one interval modifications, i.e.: 

 T

0 0

1 1

ˆ ˆ
r r

I I I

j j j j j j j

j j

e e 
 

      K K K K w  w   (14) 

where 
T

j j jK w  w  is a rank-one matrix and 

 

T

0 0

T

,

;

.j E j





K S E S

w S l
  (15a,b) 

The equations of motion of the structure with interval axial stiffness subjected to a station-

ary multi-correlated Gaussian stochastic process ( )tF  take the following form: 

 ( ) ( ) ( ) ( )I I I I It t t t  MU C U K U F   (16) 

where M  is the n n  mass matrix, herein assumed deterministic; ( )I IK K α  is the interval 

stiffness matrix given by Eq. (14); ( ) ( , )I It tU U α  is the interval stationary Gaussian vector 

process of displacements; and a dot over a variable denotes differentiation with respect to 

time t . The Rayleigh model is adopted to define the interval damping matrix, i.e.:  

 0 1( )I I Ic c C C α M+ K   (17) 

where 0c  and 1c  are the Rayleigh damping constants herein evaluated setting the uncertain 

parameters equal to their nominal values. Taking into account the decomposition (14) of the 

interval stiffness matrix, the interval damping matrix in Eq. (17) can be expressed as sum of 

the nominal value 0 0 1 0c cC = M K  plus a superposition of rank one matrices, i.e.: 

 T

0 1

1

ˆ( ) .
r

I I I

j j j j

j

c e


   C C α C w w   (18) 

The external load vector ( )tF  in Eq. (16), herein modeled as a stationary multi-correlated 

Gaussian random process, is fully characterized, from a probabilistic point of view in the fre-

quency domain, by the mean-value vector, =E ( )tF F , and the one-sided PSD function ma-

trix of the fluctuating part 
F FX X

G  [3].  
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The interval stationary Gaussian stochastic response process ( )I tU  ruled by the equations 

of motion in Eq. (16) is completely characterized in the frequency domain by the mean-value 

vector, ( )I I
U U

α  , and the one-sided PSD function matrix, ( ) ( , )I I UU UUG G α  which 

have an interval nature [19]-[21]. The generic response quantity, ( ) ( , )I IY t Y t α  (e.g., dis-

placement, strain or stress at a critical point), can be determined from the knowledge of the 

displacement vector ( ) ( , )I It tU U α  as follows:  

 T( , ) ( ) ( , )I I IY t tα q α U α   (19) 

where ( )I Iq α q  is a vector collecting the combination coefficients relating the response 

process ( )IY t  to ( )I tU . Such a vector may depend on the uncertain parameters, as happens, 

for instance, when stress processes are considered. The complete probabilistic characteriza-

tion of the interval stationary Gaussian random response process in Eq. (19), expressed as 

( ) ( )I I I

YY t Y t  , requires the knowledge of the interval mean-value, 
I

Y , and the interval 

one-sided PSD function, ( ) ( )I I

Y YY Y
G G   of the zero-mean random process ( )IY t . It is 

worth noting that, due to multiple occurrences of the same interval variable into Eq. (19), the 

bounds of the interval mean-value and one-sided PSD density function of the response proc-

ess ( )IY t  may be significantly overestimated by the classical interval analysis. The latter, in-

deed, treats multiple occurrences of the same interval variable in an expression as independent 

ones [16],[17]. By inspection of Eq. (19), it is readily inferred that the number of occurrences 

of the same interval variable is larger when the vector ( )I Iq α q , collecting the combination 

coefficients, depends on the interval parameters. It follows that interval stress quantities are 

more vulnerable to the dependency phenomenon than displacements. Without loss of general-

ity, attention is herein focused on the stationary normal stress process in the h-th element 

which, according to Eq. (19), can be written as [15]: 

   0,T T

0,

ˆ( , ) ( ) ( , ) (1 ) ( , )
hI I I I I I

h h h h h h

h

Y t Y t t e t
A


    α q U α s U α   (20) 

where T

hs  is the h-th row of the compatibility matrix S  (see Eq. (12)).  

3.3 Interval expected fatigue life  

As shown in the previous sections, the statistics of the response of a randomly excited 

structure with interval axial stiffness are described by intervals. It follows that, in the context 

of spectral approaches to fatigue analysis, the expected fatigue life of the structure, which de-

pends on certain spectral moments of the critical stress process, turns out to be an interval 

quantity too.  

By interval extension of the solution provided by the 0.75 method [1] reported in Eq. (7), 

the following expression of the interval expected fatigue life, F, h

I

YT , for the stationary normal 

stress random process ( )I

hY t  is obtained: 
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where the interval spectral moments of ( )I

hY t  of order 0,0.75,1.5,2  appear. It is readily 

inferred that Eq. (21) contains multiple instances of the same interval variables and, therefore, 

the range of the interval expected fatigue life may be affected by serious overestimation. In 

order to efficiently evaluate the bounds, the interval expected fatigue life in Eq. (21) may be 

viewed as a function of the four interval spectral moments ,h

I

Y  ( 0,0.75,1.5,2 ). Under this 

assumption, the LB and UB of F, h

I

YT  can be estimated from Eq. (21) setting the interval spec-

tral moments ,h

I

Y  equal to appropriate combinations of their bounds. However, this approach, 

recently adopted by the authors [15], often yields very conservative results. To reduce overes-

timation, in the present paper, a novel procedure based on sensitivity analysis is proposed. 

It is worth mentioning that, since the interval expected fatigue life, F, h

I

YT , is a monotonic 

function of the generic uncertain parameter I

i , its “exact” bounds can be computed by apply-

ing the vertex method. The latter evaluates the LB and UB of the interval expected fatigue life 

as the minimum and maximum among the values corresponding to all possible combinations 

of the bounds of the r  interval parameters I

i , say 2r . Since 2r  stochastic analyses are need-

ed, the computational costs become unaffordable as the number r  of uncertain parameters 

increases. Conversely, the proposed method is able to handle an arbitrary number of uncer-

tainties since it does not require repeated stochastic analyses, as will be shown in the sequel.  

3.4 Proposed sensitivity-based procedure  

In order to evaluate the bounds of the interval expected fatigue life of a selected stress 

process of linear structures with uncertain-but-bounded axial stiffness subjected to stationary 

multi-correlated stochastic excitation, in this section a novel sensitivity-based procedure is 

proposed. The key idea is to derive the interval one-side PSD function of a selected stress 

random process in approximate explicit form by applying the Interval Rational Series Expan-

sion (IRSE) [3], [18]-[21]. The latter may be viewed as an effective surrogate model of the 

interval frequency response function (FRF) matrix. Then, the bounds of the interval expected 

fatigue life are evaluated performing Sensitivity Analysis (SA) which allows us to predict the 

influence of each uncertain parameter on fatigue failure. To this aim, let the dimensionless 

fluctuations of the interval axial stiffnesses around the nominal value be treated as variable 

parameters [ , ]i i i      collected into the vector T

1 2[ ]r  α . By direct dif-

ferentiation of Eq. (21), taking into account that the spectral moments depend on the parame-

ters [ , ]i i i     , ( 1,2, ,i r ), the following expression of the sensitivity of the 

expected fatigue life F, ( )
hYT α  for the stress random process ( , )hY tα  with respect to the thi   

parameter i  is obtained: 
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  (22) 

where 
(0)

,hY  are the nominal values of the spectral moments, defined as:  
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 (0) (0)

,

0

( )d ,      ( 0 ,0.75 ,1.5 ,2)
h h hY Y YG   



    (23) 

with (0) ( )
h hY YG   denoting the nominal one-sided PSD function of the stress random process 

( , )hY tα , given by [24]: 

  
2

0,(0) T * T

0 02

0,

( ) ( ) ( )
h h

h

Y Y h h

h

G
A


   

F FX X
s H G H s   (24) 

where T

hs  is the h-th row of the compatibility matrix S  and 
0 ( )H is the FRF matrix of the 

nominal system, defined as: 

 
1

2

0 0 0( ) j  


     H M C K   (25) 

where j 1   denotes the imaginary unit. Furthermore, in Eq. (22), 
, ,Yh

i
S


 denotes the sensi-

tivity of the spectral moment of order  of the stress random process ( , )hY tα  to the thi   pa-

rameter i  

 
,

,
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( )
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0

α



  (26) 

where 
,
( )

Y Yh h
G i

S   is the thi   sensitivity of the one-side PSD function ( , )
h hY YG α , 

 ,I α α α α , of the normal stress stationary random process ( , )hY tα  which is defined as: 

        
2

20, T * T

2

0,

( , ) 1 , , .
h h

h

Y Y h h h

h

G
A


     

F FX X
α s H α G H α s


  (27) 

By inspection of the previous equation, it is inferred that the evaluation of the sensitivity of 

the one-sided PSD function ( , )
h hY YG α  requires the knowledge of the sensitivity of the inter-

val FRF matrix  ,H α ,  ,I α α α α . Such a sensitivity can be efficiently evaluated by 

direct differentiation of a surrogate model derived by applying the IRSE [3], [18]-[21]. Ac-

cording to this model, the interval FRF matrix can be approximated as follows: 

  0

1

( , ) ( ) ( , ) ( ),      ,
r

I

i i i

i

g    


   H α H B α α α α   (28) 

where:  
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  (29a-d) 
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where iw  is the n -vector defined by Eq. (15b). By direct differentiation of Eq. (28), the fol-

lowing approximate explicit expression of the thi   sensitivity of the interval FRF matrix is 

obtained  

 
 ,

( ) ( ) ( ).i i

i

p


  





  


0

H α
A B



  (30) 

Then, the sensitivity of the one-sided PSD function ( , )
h hY YG α  (see Eq. (27)) to the i -th 

uncertain parameter can be written in explicit form as: 
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  (31a,b) 

where 

 * T * T

0 0( ) ( ) ( ) ( ) ( ) ( ) ( ).i i i       
F F F FX X X X

Q A G H H G A   (32) 

By examining the sign of the i -th sensitivity given by Eq. (22), the monotonic increasing 

or decreasing behavior of the expected fatigue life, F, ( )
hYT α , with respect to the i -th uncertain 

parameter i  can be predicted. Specifically, if 
F, , 0

Yh
T iS  , the expected fatigue life, F, ( )

hYT α , is 

a monotonic increasing function of i  and its LB and UB are obtained setting i i   and 

i i  , respectively; conversely, if 
F, , 0

Yh
T iS  , F, ( )

hYT α  is a monotonic decreasing function of 

i  and its LB and UB are achieved assuming i i   and i i  , respectively. Thus, the 

combinations of the endpoints of the r  uncertain parameters which yield the LB and UB of 

the expected fatigue life, F, ( )
hYT α , for the stress random process ( , )hY tα , denoted by (L B)

,hY i  

and (UB)

,hY i , ( 1,2, , )i r , can be evaluated as follows [25] 

 
F,

F,

(UB) (LB)

, , ,

(UB) (LB)

, , ,

if   0,    then   ,    ;

if   0,    then   ,    , ( 1,2, , ).

Y h hh

Y h hh

T i Y i i Y i i

T i Y i i Y i i

S

S i r

   

   

  

   

  (33a,b) 

Such combinations can be collected into the following two vectors: 

 

T
(LB) (LB) (LB) (LB)

,1 ,2 ,

T
(UB) (UB) (UB) (UB)

,1 ,2 ,

;     

.

h h h h

h h h h

Y Y Y Y r

Y Y Y Y r

  

  

   

   

α

α

  (34a,b) 

Finally, the LB and UB of the interval expected fatigue life for the stress random process 

( , )I

hY tα  can be obtained by evaluating Eq. (21) for the structure with assigned values of the 

uncertain parameters given by those collected into the vectors 
(LB)

hYα  and 
(UB)

hYα , respectively: 
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  (35a,b) 

In the previous equations,  (LB)

,h hY Y α  and  (UB)

,h hY Y α , ( 0,0.75,1.5,2  ), are the spec-

tral moments of the stress random process ( , )I

hY tα  obtained performing a stochastic analysis 

of the structure with uncertain parameters (LB)

hYα α  and (UB)

hYα α . Notice that the proposed 

procedure is much more efficient than the vertex method since it requires only two stochastic 

structural analyses. Furthermore, it has to be remarked that the quantity of interest for design 

purpose is the LB of the interval expected fatigue life, given by Eq.(35a). 

4 NUMERICAL APPLICATION 

In order to demonstrate the effectiveness of the proposed method, the truss structure illus-

trated in Figure 1 subjected to turbulent wind loads has been selected as case-study. The truss 

structure is composed of 24 pin truss members characterized by nominal Young’s modulus 
8 2

0 0, 2.1 10  kN/miE E   , nominal cross-sectional areas 4 2

0 0, 5.76 10  miA A     and 

lengths 0,i iL L  ( 1,2, ,24i  ) as indicated in Figure 1, where 3L  . 

 

Figure 1: Truss structure under turbulent wind excitation. 

The parameters of the Y-N curve [5] of the critical points of the pin truss members are set 

equal to 4k   and 121934 10 MPakC    [26]. The nominal lumped mass pertaining to nodes 

1-6 is 0, 600 kgjm   ( 1,2, ,6j  ), while the one pertaining to nodes 7-10 is 0, 1200 kgjm   

( 7,8,...,10j  ). The structural damping is modelled by using the Rayleigh damping model 
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with constants 1

0 5.96807 sc   and 1 0.0004317 sc  , so that the modal damping ratio for the 

first and third mode of the nominal structure is 0 0.02  . 

As shown in Figure 1, nodes 1, 3, 5 and 7 at levels iz  ( 1,3,5,7)i  , are excited in the 

along-wind direction by the nodal forces ,x iF  ( 1,3,5,7)i   [27]: 

     2 ( ) 2

, , ,

1 1
, , , , ( 1,3,5,7)

2 2

s

x i D i i x i x i i D i s D i i sF C AW z t F F z t C Aw C AW z t w i          (36) 

where ( )

,

s

x iF  and  , ,x i iF z t  denote the mean and random fluctuating component of wind loads, 

respectively. The following values of the parameters appearing in Eq. (36) are assumed: air 

density 31.25 kg/m  , drag coefficient 1.2DC  , and tributary area iA ( 1,3,5,7)i   of 

nodes 1,3,5,7, given by 2

1 9mA  , 2

3 9mA  , 2

5 9mA   and 2

7 4.5mA  . Moreover, in Eq. 

(36)  ,10( ) 10s sw z w z


 , is the mean wind speed, where ,10sw  is the mean wind speed meas-

ured at height 10mz , and  ,W z t  is the fluctuating component of the speed which is mod-

elled as a zero-mean stationary Gaussian multi-correlated random process, fully described 

from a probabilistic point of view by the one-sided PSD function proposed by Davenport [28]: 

 

 

2
2

0 ,10 4/3
2

( ) 4
1

sWW
G K w




 



  (37) 

where 1 ,10/ ( )sb w   . In this numerical application, when not otherwise specified, it is as-

sumed ,10 25m/ssw , 0 0.03K  , 1 600 mb   and 0.3 . The 4-variate zero-mean stationary 

Gaussian random process ( )tX  collecting wind velocity fluctuations at the wind-exposed 

nodes (1,3,5,7) of the truss structure (see Figure 1) is fully characterized, from a probabilistic 

point of view by the PSD function matrix ( )
XX

G , as reported in Ref.[3]. 

Young’s moduli of the material of the 10r   bars highlighted in Figure 1 are modelled as 

interval variables, i.e. 0
ˆ(1 )I I

i iE E e   , ( 1,8,9,10,11,16,20,21,22,24i  ). The aim of the 

analysis is the evaluation of the range of the interval expected fatigue life 
1,

I

FT   for the normal 

stress interval random process of bar 1, i.e. 1(, ) ( )
I I

hY t t . 

For validation purpose, in Figure 2 the bounds of the interval expected fatigue life 
1,

I

FT   ob-

tained by applying the proposed method and the vertex method versus the deviation amplitude 

of the uncertain parameters   are plotted. An excellent agreement is observed even when 

the degree of uncertainty increases. Since the interval expected fatigue life is a monotonic 

function of the generic uncertain parameter, the bounds provided by the vertex method can be 

assumed as the “exact” ones. It worth noting, however, that the vertex method involves 2
r
 

( 10r   being the number of uncertain parameters) stochastic analyses of the structure, while 

the proposed procedure requires only 2 stochastic analyses, regardless of the number of uncer-

tain parameters. By inspection of Figure 2, it is observed that the LB of the interval expected 

fatigue life is always smaller than the nominal one. This implies that neglecting uncertainties 

may lead to dangerous overestimation of time to failure.  

Figure 3 displays the proposed and “exact” bounds of 
1,

I

FT   versus the number r of uncer-

tain parameters. Again an excellent agreement is observed. Moreover, it can be noticed that, 
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as the number of uncertainties increases, the truss structure is more exposed to fatigue failure. 

Indeed, the region of the interval expected fatigue life, 
1,

I

FT  , enclosed by the LB and UB, be-

comes wider.  
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Figure 2: LB and UB of the interval expected fatigue life 
1,

I

FT 
 provided by the vertex method and the proposed 

method versus the deviation amplitude of the uncertain parameters  . 
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Figure 3: LB and UB of the interval expected fatigue life 
1,

I

FT 
 provided by the vertex method and the proposed 

method versus the number of uncertain parameters r .  

LB

UB

30 4025 35
ws,10 [m/s]

0

20

40

60

80

T
 I F

,
1
 [
y

r]

Nominal

Proposed method

Vertex method

  =0.1

 

Figure 4: LB and UB of the interval expected fatigue life 
1,

I

FT 
 provided by the vertex method and the proposed 

method versus the mean wind speed. 
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In Figure 4, the bounds of the interval expected fatigue life, 
1,

I

FT 
, versus the mean wind 

speed ,10sw  measured at height 10mz are plotted. Notice that, as the mean wind speed in-

creases, the LB and UB of 
1,

I

FT 
 decrease and the structure becomes more prone to fatigue 

failure.  

In order to identify the most influential uncertain parameters, sensitivities may be ranked 

by evaluating a percentage measure of the influence of the i -th uncertain parameter on the 

expected fatigue life. For this purpose, the coefficient of sensitivity [19] is introduced: 

  
F, F,

F,

, ,(0) (0)

F, F,

( )1 1
(%) 100 100h

Y Yh h

h h

Y

i T i T i i

Y i Y

T
S

T T
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  (38) 

where i  denotes the deviation amplitude of the dimensionless fluctuation [ , ]i i i     , 

while (0)

F, hYT  is the nominal expected fatigue life obtained from Eq. (21) setting α 0 . The coef-

ficient of sensitivity in Eq. (38) measures the global variability of the expected fatigue life with 

respect to its nominal value. It follows that the most influential uncertain parameters are the 

ones characterized by higher values of the coefficient of sensitivity.  

In Figure 5, the coefficients of sensitivity of the expected fatigue life for the normal stress 

random process of bar 1 with respect to the fluctuations of the axial stiffness of the twenty-

four bars of the truss structure are depicted, for 0.1  . As expected, the various bars have 

a different influence on the expected fatigue life of bar 1. In particular, it can be observed that 

the most influential parameter is the axial stiffness of bar 11 followed by that of bar 1.  
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Figure 5: Coefficients of sensitivity of the expected fatigue life for the normal stress of bar 1 with respect to the 

fluctuations j ,  1,2, ,24j  , of the axial stiffness of the twenty-four bars of the truss structure around the 

nominal value. 

The fluctuations i  ( 11,1, 6i  ) of the axial stiffness of the twenty-four bars of the truss, 

ranked from the most ( 11 ) to the least influential ( 6 ) one, based on the values of the coeffi-

cients 
F, 1

, (%)i T 
  reported in Figure 5, are collected into the following vector: 

 




11 1 9 10 8 21 3 22 4 2 20 23 24 16 18 19 17 12 7

T

5 15 14 13 6

, , , , , , , , , , , , , , , , , , ,

       , , , , .

                  

    

b
  (39) 

The least influential uncertain parameters can be reasonably set equal to their nominal val-

ues without significantly affecting the accuracy of the analysis outcomes. In Figure 6a, the 
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bounds of the interval expected fatigue life, 
1,

I

FT  , for the normal stress of bar 1 versus the 

number 24,23, ,2r   of influential parameters retained in the analysis are displayed. Spe-

cifically, 24,23, ,2r   denotes the number of uncertainties collected into vector b , which 

progressively decreases from 24 to 2 as an uncertain parameter at a time is neglected, starting 

from the least influential one ( 6 ). The smallest number of uncertainties retained in the anal-

ysis is 2r   and pertains to the truss with only the axial stiffness of bars 1 and 11 assumed 

uncertain (see Eq. (39)).  
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Figure 6: a) Proposed bounds of the expected fatigue life for the normal stress of bar 1 versus the number of un-

certain parameters r  sorted as in Eq. (39); b) percentage difference with respect to the bounds pertaining to the 

truss with uncertain axial stiffness of all the bars. 

Figure 6b shows the percentage differences between the bounds of 
1,

I

FT   reported in Figure 

6a obtained assuming a decreasing number 24,23 ,2r   of uncertain parameters with re-

spect to the bounds obtained considering all the twenty-four bars with uncertain axial stiffness, 

defined as: 

 1 1

1 1 1, 1
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      (40) 

Considering only the first 13r   uncertain parameters in Eq. (39), the LB of the interval 

expected fatigue life, 
1,

I

FT  , is overestimated of 1.014%. This allows us to set the remaining 

parameters equal to their nominal values and thus reduce the computational burden. On the 

)a

)b
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other hand, the LB may be significantly overestimated when a larger number of uncertain pa-

rameters is set equal to the nominal value.  

5 CONCLUSIONS 

A novel method for estimating the region of the interval expected fatigue life of linear 

structures with uncertain-but-bounded parameters subjected to stationary multi-correlated sto-

chastic excitations has been proposed. Without loss of generality, attention has been focused 

on structures with uncertain axial stiffness. The interval expected fatigue life is defined by ap-

plying the empirical spectral approach proposed by Benasciutti and Tovo [1], called 0.75 -

method. The key idea behind the presented procedure is to derive the interval Power Spectral 

Density function of a selected stress random process in approximate explicit form by applying 

the so-called Interval Rational Series Expansion (IRSE) [3], which may be viewed as an ef-

fective surrogate model of the Frequency Response Function matrix (FRF). This allows a 

straightforward evaluation of the sensitivities of the interval expected fatigue life by direct dif-

ferentiation. Based on the results provided by sensitivity analysis, the combinations of the 

endpoints of the uncertain parameters which yield the bounds of the uncertain parameters is 

obtained. In order to limit the overestimation, uncertainties are handled by applying the Im-

proved Interval Analysis via Extra Unitary Interval [2].  

The main features of the proposed method may be summarized as follows: i) the IRSE al-

lows us to derive the sensitivities of the expected fatigue life to the uncertain parameters in 

approximate explicit form; ii) the computational effort is drastically reduced compared to the 

vertex method since only two stochastic analyses of the structure need to be performed what-

ever the number of uncertain parameters is; iii) sensitivity analysis may also be exploited to 

detect the most influential uncertain parameters. 

Numerical results have highlighted the significant influence of uncertainties on the ex-

pected fatigue life, which can be seriously overestimated when the nominal values of the input 

parameters are assumed. 
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Abstract. Many complex model functions allow the reduction of their effective dimension
through active subspaces. These are computed by an eigenvalue decomposition of the average
of the outer product of the function’s gradient with itself. The size of the eigenvalues indicates
how much the function changes on average along the direction given by the eigenvectors. This
motivates to omit directions belonging to small eigenvalues and therefore to effectively reduce
the model’s dimension without losing much accuracy. The remaining directions form the ac-
tive subspace, a linear combination of the input parameters. For real-world applications the
required gradients are usually not explicitly known and they are thus commonly approximated
with finite differences or ridge functions. The average of the outer product is then calculated us-
ing Monte Carlo quadrature. This converges slowly, resulting in long runtimes if the evaluation
of the model function is expensive. The differentiation and integration of B-splines is numeri-
cally fast and analytically exact. Together with adaptive sparse grid discretization, they can be
employed in higher-dimensional approximation. We use this to create a surrogate for the ob-
jective function, which provides us with better approximations for the gradient and thus better
approximations for the active subspace. Furthermore we present a new integration technique
for functions with a one-dimensional active subspace, that is based on a geometric interpreta-
tion of B-splines.
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1 INTRODUCTION

Many models in the field of uncertainty quantification rely on high-dimensional input pa-
rameters. This makes evaluations take long and calculations based on these models expensive.
Active subspaces [1, 2] are an emerging method for the detection of dominant directions in
the model’s parameter space. If an active subspace is detected, it can be used for sensitivity
analysis [3] and to reduce the model’s effective dimension.

The detection of active subspaces requires evaluations of the model’s derivative. If the deriva-
tive is unknown, it has to be approximated. This task has been done with finite differences [4],
which require lots of model evaluations, and with linear and quadratic ridge functions [3, 5],
which have only limited approximation quality. We were able to improve the detection of active
subspaces for models with unknown derivatives, using a surrogate based on spatially adaptive
sparse grids [6] and B-splines [7].

Sparse grids overcome the curse of dimensionality [8] to some extent and spatial adaptivity
can reduce the necessary amount of grid points even further. B-splines, in contrast to global
polynomials, are flexible in regard of their degree and do not suffer from Gibbs and Runge
phenomena. Furthermore they directly provide access to gradients and can numerically be
integrated exactly.

As a second contribution, we introduce a new approach for the integration of functions with
a one-dimensional active subspace. We construct a one-dimensional surrogate for the objective
function, again using spatially adaptive sparse grids and B-splines. From this we can calculate
an approximation for the integral of the original objective function. The difficulty is to deter-
mine the volume of the orthogonal space. We do this based on a geometric interpretation of
B-splines, which gives us the exact values for said volume.

2 METHODS

2.1 Active subspaces

Active subspaces are an emerging technique for the detection of important directions in the
parameter space of high-dimensional functions. They are linear combinations of the input pa-
rameters along which the quantity of interest changes the most on average.

Without loss of generality we consider models given by an objective function defined on
the unit cube and uniformly distributed parameters. Let f : [0, 1]D → R be such an objective
function Further define the symmetric positive semidefinite matrix C ∈ RD×D by

C :=

∫
[0,1]D

∇f(x)∇fT (x)dx. (1)

This matrix admits a real eigenvalue decomposition

C = WΛW T , (2)

whereW = [w1, . . . ,wD] is the matrix of eigenvectors, and Λ = diag(λ1, . . . , λD) is the matrix
of eigenvalues sorted in decreasing order.

The j-th eigenvalue equals the average squared directional derivative of f along wj [9],

λj = wT
j Cwj = E[((∇f)Twj)

2]. (3)

Consequently, f is constant along wj , if λj = 0. Furthermore, if λn > λn+1, f changes less, on
average, along wn+1 than along wn. If there is a significant gap between λn and λn+1, we split
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the eigenpairs accordingly,

W := [W1,W2] = [[w1, . . . ,wn], [wn+1, . . . ,wD]] , Λ =

(
Λ1 0
0 Λ2

)
, (4)

where Λ1 = diag(λ1, . . . , λn) and Λ2 = diag(λn+1, . . . , λD). The span of the columns of W1

is called the active subspace. If Λ2 is relatively small, f varies little along directions in W2 and
f can be approximated by a lower-dimensional function g : Rn → R,

f(x) ≈ g(W T
1 x). (5)

The detection of active subspaces, that is to say the calculation of the entries of the matrix
C, is usually done using Monte Carlo quadrature and evaluations of the objective function’s
gradient [4]. However if the gradient of the objective function is not known, or only datasets
from measurements are available, the gradient must be approximated. This is often done with
linear or quadratic ridge functions [3, 5]. But if f is not of linear or quadratic shape these
methods naturally are only capable of approximating f and ∇f up to a certain degree. We
propose to use B-spline basis functions to approximate f .

2.2 B-splines

B-splines are the canonical basis of the spline space, i.e. the space of piecewise polynomials.
They can be quickly evaluated, provide gradients and are numerically exactly integrable. We
therefore introduce them as a suitable choice for the calculation of active subspaces.

Let m, p ∈ N0 and ξ := (ξ0, . . . , ξm + p) be a knot sequence, that is a non-decreasing
sequence of real numbers. Using the Cox-de-Boor recursion [10, 11], we define bpi,ξ, the B-
spline of index i and degree p, as

bpi,ξ(x) =


x− ξi
ξi+p − ξi

bp−1i,ξ (x) +
ξi+p+1 − x
ξi+p+1 − ξi+1

bp−1i+1,ξ(x) p ≥ 1,

χ[ξi,ξi+1](x) p = 0,
(6)

where χ[ξi,ξi+1](x) evaluates to one in the interval [ξi, ξi+1] and zero elsewhere.
Schoenberg introduced B-splines using infinite and uniform knot sequences [12]. The de-

rived B-spline basis spans the corresponding spline space. Restricting the knot sequence to the
unit interval invalidates this important property, because the Schoenberg-Whitney conditions
are not fulfilled at the intervals boundaries [7]. To revalidate the conditions and obtain full ap-
proximation quality we use not-a-knot B-splines [7]. As is common, we only define and use
not-a-knot B-splines of odd degree p.

First we define uniform B-splines of level l through the uniform knot sequence ξul :=
(ξul,−p, . . . , ξ

u
l,2l+p

), where ξul,i := ihl and hl := 2−l. Then we derive not-a-knot B-splines
from uniform B-splines, by requiring continuity of the p−th derivatives at the p−1

2
left-most

and right-most knots inside Dp
ξul

:= (ξul,0, . . . , ξ
u
l,2l

). This requirement is equivalent to re-
moving these knots from the knot sequence ξul but keeping them in the set of interpolation
nodes. Consequently we obtain the uniform not-a-knot sequence of level l and degree p [13],
ξp,nakl := (ξp,nakl,0 , . . . , ξp,nak

l,2l+p+1
),

ξp,nak
l,i :=


ξul,i−p, i = 0, . . . , p,

ξul,i−(p+1)/2, i = p+ 1, . . . , 2l,

ξul,i−1, i = 2l + 1, . . . , 2l + p+ 1.

(7)
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This definition is only valid if l ≥ dlog2(p+1)e. Otherwise we cannot remove p−1 knots from
the sequence. Therefore, if l < dlog2(p+ 1)e, we use ξp,nakl,i = ξul,i and Lagrange polynomials

Ll,i(x) :=
∏

0≤m≤2l,
m6=i

x− ξul,m
ξul,i − ξul,m

, i = 0, . . . , 2l. (8)

This guarantees a basis of the polynomial space for the first levels [13]. Finally, the not-a-knot
B-spline basis bp,nakl,i of degree p, level l and index i is given by

bp,nak
l,i (x) :=

{
bp
i,ξp,nak
l

(x) l ≥ dlog2(p+ 1)e,

Ll,i(x) l < dlog2(p+ 1)e.
(9)

In the context of sparse grids, which we will use later on, the boundary points are usually
omitted to reduce the overall effort. In order to keep reasonable approximations, the left-most
and right-most B-splines are modified, so that they extrapolate towards the boundary [13]. This
results in bp,modl,i , the modified not-a-knot B-splines of degree p, level l and index i,

bp,mod
l,i (x) :=



1 l = 1, i = 1,

bp,nak
l,1 (x)−

d2

dx2
bp,nak
l,1 (0)

d2

dx2
bp,nak
l,0 (0)

bp,nak
l,0 (x) l ≥ 2, i = 1,

bp,mod
l,1 (1− x) l ≥ 2, i = 2l − 1,

bp,nak
l,i (x) otherwise.

(10)

2.3 Sparse grids

The amount of grid points of a full uniform isotropic grid in D dimensions grows like
O(h−Dl ). This exponential increase makes calculations in higher dimensions impossible. Sparse
grids were designed to mitigate this curse of dimensionality. The total amount of grid points
of regular sparse grids only grows like O(h−1l (log2 h

−1
l )D−1). Still, under certain smoothness

assumptions, it was shown that for hat functions, i.e. B-splines of degree 1, the L2-interpolation
error decays like O(h2l (log2 h

−1
l )D−1) for sparse grids. This is only slightly worse than the full

grid error convergence rate of O(h2l ) [14, 15].
For the definition of sparse grids we need hierarchical basis functions. We define Il, the

hierarchical index set of level l as

Il := {0 < i < 2l | i odd}. (11)

Given univariate basis functions ϕl,i that are determined by their level l and index i, for ex-
ample the B-spline basis, we define the corresponding multivariate hierarchical basis functions
via tensor products

ϕl,i(x) :=
D∏
d=1

ϕld,id(xd), l ∈ ND
0 , i ∈ Il := Il1 × · · · × IlD . (12)

Without loss of generality we define sparse grids on the unit hypercube [0, 1]D. Let l :=
(l1, . . . , lD) ∈ ND

0 be a multi index and Hl := {xl,i = (xl1,i1 , . . . , xlD,iD)} for xld,id = idhld
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(a) (b) (c)

Figure 1: (a) Hierarchical B-splines, (b) hierarchical not-a-knot B-splines, and (c) hierarchical modified not-a-knot
B-splines of degree 3 and levels 0, 1, 2 and 3 on the unit interval. The not-a-knot change in the knot sequence is
illustrated with crosses at xl,1 and xl,2l−1.

the anisotropic grid of level l on [0, 1]D. We define hierarchical subspaces of level l through the
basis functions corresponding toHl,

Wl := span{ϕl,i | i ∈ Il}. (13)

Regular nonboundary sparse grids V s
l of level l are defined as the direct sum of hierarchical

subspaces Wl,

V s
l :=

⊕
|l′|1≤l+D−1

Wl′ , (14)

where |l′|1 =
∑D

d=1 l
′
d is the discrete `1 norm of l′.

In previous work we introduced spatially adaptive sparse grids which can be used to cus-
tomize the sparse grid to the given objective function [6]. Individual points are added to the
sparse grid depending on an a priori guess for their benefit to the approximation. We define
the hierarchical children C(l, i) of a grid point xl,i as all grid points xl′,i′ for which there exists
r ∈ {1, . . . D} such that

ld = l′d, id = i′d ∀d ∈ {1, . . . D}\{r},
l′r = lr + 1,

i′r ∈ {2ir − 1, 2ir + 1}.
(15)

Now let G be a spatially refined sparse grid, i.e.

G = {xl,i | (l, i) ∈ I}, (16)

for some finite level-index set I ⊂ {(l, i) | l ∈ ND
0 , i ∈ Il} and let I ref ⊆ I be the set of

refineable grid points, i.e. the set of level-index pairs of grid points for which not all hierarchical
children are in G,

I ref := {(l, i) ∈ I : C(l, i) 6⊂ G}. (17)
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Figure 2: Hierarchical subspace scheme (left) and corresponding regular sparse grid (right).

The grid G can now be refined by identifying xl∗,i∗ ∈ G, the grid point with the largest influence
on the quantity of interest, and by adding all its hierarchical children to the grid. For the iden-
tification of xl∗,i∗ , we use the surplus-based standard criterion. It is based on the heuristic, that
larger interpolation coefficients |αi,j| imply a worse local approximation. Consequently, xl∗,i∗

is given by

(l∗, i∗) = argmax(l,i)∈Iref|αl,i|. (18)

This refinement procedure is reiterated until the total number of grid points exceeds a given
threshold.

2.4 Integration algorithm

If λ1 > 0 and λ2 =, . . . ,= λD = 0, then f has an exact one-dimensional subspace W1 = w1

and can be represented as

f(x) = g(W T
1 x) =: g(y), (19)

for some function g : [l, r] → R, with l = minx∈[0,1]D W
T
1 x and r = maxx∈[0,1]D W

T
1 x. This

assumption allows us to introduce our new integration algorithm.
We approximate g using not-a-knot B-splines on a one-dimensional spatially adaptive sparse

grid G, including the boundary points l and r, resulting in the surrogate ĝ,

f(x) = g(y) ≈ ĝ(y) =
∑
xl,i∈G

αl,i b
p,nak
l,i (y). (20)

Because in general g is unknown, we need to approximate it from evaluations of f . For every
grid point y ∈ G we solve x = argminx∈[0,1]D‖W T

1 x−y‖2 and interpolate in the pairs (y, f(x)),
resulting in ĝ.

Now we want to integrate ĝ subject to the volume of the inactive subspace. Calculating this
volume numerically is an expensive task, because the shape of the inactive subspace is that of
a zonotope [2]. However, combining Ramsay’s definition of M-splines [16] and Schoenberg’s
theorem on simplex volumes [17], we obtain the following corollary
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Corollary 1 The linear density function obtained by projecting orthogonally onto the x-axis the
volume of aD-dimensional simplex σ of volume Vσ, so located that itsD+1 vertices v0, . . . , vD
project orthogonally into the knot sequence ξσ := (ξσ,0, . . . , ξσ,D), is given by

Vσ ·MD
0,ξσ , (21)

where the M-spline MD
0,ξσ

can be represented as a scaled B-spline,

MD
0,ξσ =

D

ξσ,D − ξσ,0
bD0,ξσ , (22)

and Vσ = |detA|
D!

for A = [v1 − v0, . . . , vD − v0] ∈ RDxD.

Let SD be the group of all permutations of {0, . . . , D}. Every permutation π in SD defines a
simplex σπ ⊂ [0, 1]D via

σπ = {x = (x0, . . . , xD) ∈ [0, 1]D | 0 ≤ xπ(0) ≤ xπ(1) ≤ · · · ≤ xπ(D) ≤ 1}. (23)

By construction theses simplices triangulate the hypercube [0, 1]D and have equal volume V1.
Consequently, V (y) the volume of the (D − 1)-dimensional hyperplane {x ∈ [0, 1]D | W T

1 x =
y} is given by

V (y) = V1
∑
π∈SD

MD
0,ξσπ

(y). (24)

Finally we can calculate the desired integral via

∫
[0,1]D

f(x)dx =

∫ r

l

g(y)V (y)dy (25)

≈
∫ r

l

∑
xl,i∈G

αl,i b
p,nak
l,i (y)V1

∑
π∈SD

MD
0,ξσπ

(y)dy (26)

= V1
∑
xl,i∈G

αl,i

∑
π∈SD

∫ r

l

bp,nakl,i (y)MD
0,ξσπ

(y)dy. (27)

The integral in eq. (27) can be calculated fast and numerically exact using Gaussian quadrature,
because both multiplicands are splines.

If the initial assumption λ2 =, . . . ,= λD = 0 does not hold, Equation (25) does not hold
either. According to Equation (3), Equation (27) still remains a good approximation for the de-
sired integral, if λ2, . . . , λd are relatively small in comparison to λ1. However, there is no longer
a function g as in Equation (19) and interpolating the pairs (y = W T

1 x, f(x)) gets unstable. One
should be able to overcome this problem using regression with a suitable regularization term.

The restriction to one-dimensional active subspaces for this method seems quite harsh. How-
ever, one-dimensional active subspaces have been found in many models for real world applica-
tions, among others in models for airfoil shapes [5], solar cells [18] and lithium ion batteries [3].

3 RESULTS

We now show results for our two contributions, the detection of active subspaces and the
integration of functions with a one-dimensional active subspace. Throughout this section, we
use the common choice of B-spline degree p = 3. Adaptive sparse grids are initialized with a
regular sparse grid of level 2.
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(a) (b)

Figure 3: Errors of the interpolants of f1 created with a linear ridge function, quadratic ridge function and mod-
ified not-a-knot B-splines on an adaptive sparse grid, and error of the resulting approximations Ŵ1 for the active
subspace W1.

3.1 Active subspace detection

For the detection of active subspaces we compare our method to the state-of-the-art ”Python
Active-Subspaces Utility Library” (PASUL) [19]. This library provides routines for the detec-
tion of active subspaces using Monte Carlo quadrature. If the objective function’s derivatives
are not known, it provides approximations based on linear or quadratic ridge functions.

Our first demonstration function f1 : [0, 1]8 → R is given by

f1(x) =
sin(γ

∑8
i=1 xi + 1)

γ
∑8

i=1 xi + 1
, (28)

where we choose γ = 0.75. This function has an exact one-dimensional subspace given by
w1 = [1/

√
8, . . . , 1/

√
8].

In Figure 3b we see, that for any numbers of data points the active subspace is exactly
calculated using the analytical derivative and Monte Carlo quadrature. That is explained by the
active subspace being one-dimensional. Consider the matrix Λ from Equation (1). It has only
one non-zero entry. The actual value of this entry is of no significance, because in practice the
eigenvectors W are normalized to unit length. Consequently, one-dimensional subspaces are
already detected using a single gradient evaluation, assuming it is not zero by chance.

Let us now assume that we have no access to the objective function’s gradient. Then the
active subspace is best approximated by our method. This can be explained by Figure 3a. The
approximation f̂1 for f1 is best for modified not-a-knot B-splines on adaptive sparse grids. B-
splines can be differentiated and integrated numerically exact. Therefore the error of f̂ directly
relates to the error of the entries of the matrix C from Equation (1) and thus to the error of the
approximation of the active subspace.

Furthermore the error of our method converges towards zero, while the errors for linear and
quadratic ridge functions do not. The number of degrees of freedom of a modified not-a-knot
B-spline approximation increases with the number of grid points. This lets it converge towards
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(a) (b)

Figure 4: Errors of the interpolants of f2 created with a linear ridge function, quadratic ridge function and mod-
ified not-a-knot B-splines on an adaptive sparse grid, and error of the resulting approximations Ŵ1 for the active
subspace W1.

the objective function. The ridge functions have a fixed number of degrees of freedom. Once it
is reached, the approximation can no longer improve.

Our second demonstration function f2 : [0, 1]8 → R is given by

f2(x) = sin(β1x1 + β2x2) + cos(β3x3 + β4x4)− sin(β5x5 + β6x6)− cos(β7x7 + β8x8),

where β = [β1, . . . , β8] ∈ R8 is chosen randomly on condition that ‖β‖2 = 2π.
This function has a 4-dimensional active subspace W1, which we can not anymore state

analytically. Therefore we calculate reference values using the analytical derivative of f2 and
107 Monte Carlo points.

In Figure 4b we see, that the active subspace is best approximated with our method. It
even outperforms the Monte Carlo scheme, which has access to analytical gradients. This is
explained by the slow convergence of Monte Carlo quadrature. The active subspace is not one-
dimensional, like in our first example. Therefore the interplay of the entries of the matrix C
from Equation (1) is crucial to the calculation of Ŵ1. When calculating them, the Monte Carlo
quadrature only converges with O(

√
N), where N is the number of points. In contrast, our

method uses only approximations for the gradients, but can calculate exact integrals of these.
In Figure 4a we see, that the approximation for the gradients converges with O(N−3). For the
linear and quadratic ridge function we see the same behavior as for f1. Their approximation of
f cannot converge to zero and thus the approximation quality of the active subspace is limited.

3.2 Integration

We now compute an integral with our new spline-based integration algorithm from Equa-
tion (27). We compare the results with the PASUL library, which provides routines for approx-
imating the one-dimensional function ĝ with global polynomials. For these we tried all degrees
p ∈ [1, 10] and added the best ones to our comparison. PASUL integrates ĝ with Monte Carlo
quadrature, where the volume V (y) is approximated with a Monte Carlo Histogram.
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(a) (b)

Figure 5: Errors of the approximations ĝ1 calculated from f1 using an approximation for the active subspace (left).
Errors for approximating the integral I :=

∫
[0,1]8

f2(x)dx with a univariate integral based on the approximations
for ĝ via PASUL(gradient, linear and quadratic) and our spline based quadrature, error εW1

for approximating the
integral I with our spline based quadrature supplied with the exact active subspace, error for approximating I with
the Cuhre algorithm, and error εg for interpolating g with modified not a knot B-splines on a one-dimensional
adaptive sparse grid (right).

Additionally, we calculate the full-dimensional integral using the Cuhre algorithm imple-
mented in the Cuba library [20, 21]. Cuhre is one of the fastest known algorithms for quadra-
ture in moderately high dimensions. It is based on a cubature rule for subregion estimation on
a globally adaptive subdivision scheme.

The demonstration function f1 from Equation (28) has a one-dimensional active subspace.
The corresponding function g1 : [0,

√
8]→ R can be stated analytically and is given by

g1(y) =
sin(y

√
8γ + 1)

y
√

8γ + 1
. (29)

Using this and Equation (25) we calculate a numerically exact reference value for the integral∫
[0,1]D

f1(x)dx.
In Figure 5a we see the error of approximating g1 from f and the approximated active sub-

space Ŵ1. This error is mainly influenced by the quality of the approximation of the active
subspace. Modified not-a-knot B-splines on adaptive sparse grids need about 2000 grid points
to enter the convergent phase in the active subspace approximation, compare Figure 3b. From
then on they outperform the PASUL approximations. These use global polynomials of fixed
degree, so again the approximation error does not converge towards zero. This behavior is
propagated to the integral error in Figure 5b, where all PASUL methods stagnate around the
same error.

The integral error of our spline-based integration converges much faster, and for increasing
amount of grid points even gets competitive to the Cuhre algorithm. Also note, that the Cuhre
algorithm needs several hundred function evaluations for its first result, while our spline-based
integration needs only a small initial grid.
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In Figure 5b, we also show the integration error εW1 for our spline-based integration, when
provided with the exact active subspace W1, and the error εg := |

∫ r
l
g1(y)dy −

∫ r
l
ĝ1(y)dy|,

describing the interpolation of the one-dimensional g with modified not-a-knot B-splines on a
one-dimensional sparse grid. As expected the two errors εW1 and εg behave similarly. This
confirms that our method reduces the complexity of the high-dimensional integral to that of
the corresponding one-dimensional integral, where the error is primarily determined by the
approximation of W1. We conclude, that our method outperforms all other methods if W1 is
known, which holds in particular if the objective function’s derivative is known.

4 CONCLUSIONS AND OUTLOOK

In this paper, we introduced a new way to approximate active subspaces using modified not-
a-knot B-splines on spatially adaptive sparse grids. We showed how this method outperforms
simple ridge functions which are widely used in the field of active subspaces if the objective
function’s gradient is unknown. We developed an astonishing new algorithm for the integration
of functions with a one-dimensional subspace, based on a geometric interpretation of B-splines.
If the active subspace is actually known, the algorithm converges quickly towards the correct
integral. However, if the active subspace is only approximately known, the method’s accuracy
is limited by the quality of this approximation.

We plan to extend our sparse grid framework SG++ [6] by regression-based computation of
f̂ and ĝ in the context of active subspaces. This will allow us to consider data-driven scenarios.
Furthermore, the smoothing aspect of regression makes our new integration method applicable
to functions without an exactly one-dimensional active subspace.

The major limitation of our new integration method is the triangulation of the unit cube. We
used a simple approach to do so, which relies on D! simplices. Better triangulations would
improve the execution time of this algorithm. However, minimal triangulations of the unit cube
are highly nontrivial. Optimal triangulations have so far only been found for up to D = 7 [22]
and a lower bound for the number of simplices is given by (D + 1)

D−1
2 [23].
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Abstract. Calibration methods require a large number of calls to the model, so that the
computational time is far too high. To circumvent this issue, we built a meta-model based on
statistical emulation, Kriging (Gaussian processes). One of the difficulties was to deal with the
uncertain meteorological fields (e.g., time- and space-dependent winds), whose uncertainties
are best described by an ensemble of meteorological forecasts. We use an ensemble of 50
alternative meteorological forecasts which are assumed to sample the uncertain meteorological
variables. We parameterized the set of admissible meteorological fields as a convex linear
combination of the ensemble of forecasts, which raised a number of difficulties in the design of
experiment, in the meta-modeling and the calibration.

Similarly, six alternative emission terms from the Fukushima literature are combined with
random weights. The construction time of Gaussian process model is long but it provides in
addition a standard deviation of the prediction error. This standard deviation was evaluated on
an independent verification set of simulations. The meta-models are then used in an ensemble-
based calibration procedure. A deterministic optimization was carried out. The aim was to
find the best set of parameters that minimizes the model-to-data scores, like RMSE–Root Mean
Square Error. The optimization was made possible thanks to the evaluation speed of the meta-
model.
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1 INTRODUCTION

Atmospheric dispersion modeling is the mathematical processing of simulating transport,
dispersion and transformation of pollutants in a geographical area downwind of the source. At-
mospheric dispersion models are used in various fields: forecasting air quality, roadway emis-
sions or coastal fumigation modeling, etc. The French Institute of Radiation Protection and
Nuclear Safety–IRSN–develops and uses atmospheric dispersion models in emergency cases
that may imply an accidental release of radionuclides in the atmosphere. These models com-
pute air concentration of radionuclides, deposition on the ground and gamma dose rate. These
results are used in order to infer mitigation actions.

Using atmospheric dispersion models requires a meteorological forecast and a source term.
A weather forecast represents a prediction of atmospheric state during an given time period
in the future. It consists of data fields in 2D or 3D varying in time. A source term is a time
series of quantities of radionuclides released in the environment. It contains also information
about source location and release height. These two elements are the principal uncertainty
sources of dispersion models, because the knowledge on these input data is limited and they are
the most sensitive inputs, following [2, 3]. There are other uncertain parameters used within
the models, e.g. deposition velocity, diffusion coefficient, scavenging coefficient, etc. Values
of these parameters are often chosen in a deterministic way. So, simulations of atmospheric
dispersion models are subject to considerable uncertainties.

Quantifying these uncertainties can be carried out by calibration methods. They are statistical
algorithms which use output measurements to improve the knowledge on inputs. The aim of our
work is to build a meta-model which will be used to assign PDFs to the unknown errors on the
input variables and to calibrate those PDFs using field observations. A meta-model is necessary
because calibration methods require a high number of simulations (or calls to the model) and
using directly the full model is too costly in terms of computational time. In this study, Kriging
was used to create meta-models.

This paper focuses on the Fukushima nuclear disaster, using an operational dispersion model
and measurements collected during or after the disaster. In the evaluation and calibration pro-
cesses, we made use of radiological observations of activity concentration, deposition and dose
rate collected in Japan. Simulations were carried out by `dX , also called long-distance model.
This study is organized into three principal parts. The first one, section 2, will present the
different steps of the meta-model construction, including uncertainty modeling of inputs and
derivation of the Kriging model. The second part, section 3, consists in meta-models’ evalu-
ation. The last section 4 introduces an application using meta-models for the optimization of
deterministic scores.

2 Construction of meta-model

`dX is an operational version of the Eulerian transport model Polair3D from the air quality
modeling system Polyphemus [7]. Since it is used in emergency cases, efficiency and speed are
two important criteria. The computational time depends on many factors: number of grid cells,
time step or number of radionuclides, etc. `dX simulations often use the same horizontal mesh
as that of the weather forecasts. In this study, weather forecasts come from the European Centre
for Medium-Range Weather Forecasts–ECMWF. We make use of an ensemble of 50 forecasts
instead of just one forecast, in order to account for the uncertainty. Their spatial resolution
is 0.25◦ (about 25 km) and the meteorological time step is 3 hours. This spatial resolution
is coarse. A cell can cover many topographies that come with the sub-grid effect [6]. The
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simulations were carried out on an 40×40 horizontal field with 12 vertical levels, whose center
altitudes are 20 m, 100 m, 220 m, 340 m, 500 m, 700 m, 1000 m, 1500 m, 2200 m, 3000 m,
3850 m and 4650 m. The outputs were interpolated to a one-hour time step. The computational
cost for one simulation is about five minutes.

Simulation of Eulerian models is only reliable as from three or four cells from the source.
Near to the release source, the plumes stay unscattered while the Eulerian models compute
average quantities in the surrounding cells. In addition, with our spatial resolution, it is likely
that several measurement stations lie in the same cell. In the cells surrounding the source, the
plumes probably come across a certain number of stations but the models estimate the same
result for all. That is why in the model-to-data comparison of `dX , we select the measurement
stations whose distance from the source is higher than 100 km.

Calibration algorithms require a high number of simulations that may reach millions of calls
to the model. The construction of a meta-model is then essential. The meta-model provides a
computationally-efficient approximation of the original, physical model. The building of meta-
model consists in learning over an optimized database. Basically, it needs several simulations of
the physical model, whose entries constitute an ensemble of data set well distributed in the input
space. The outputs of these simulations are used as the response for meta-model learning and
this data ensemble, called design of experiment–DOE, must cover as much as possible cases.
The meta-model construction can be divided into three parts:

1. Establishment of a design of experiment (DOE),

2. Computing the response of the physical model, i.e., the outputs for each DOE point,

3. Learning a statistical model from the DOE, using Kriging in our case.

Two following subsections will present how to create the DOE. The first one, section 2.1,
introduces uncertainty modeling for physical parameters with their variation ranges. The second
one 2.2 shows a perturbation method for weather forecast and source term. Finally, in part 2.3,
we applied Kriging to construct the meta-model.

2.1 Uncertainty modeling of physical parameters

There are seven parameters in the input space of the meta-model, whose variation ranges
were determined by experts. These parameters are considered independent, and each parameter
follows its own probability distribution. The table 1 shows all independent parameters, as well
as their probability densities, perturbation methods and variation ranges. These parameters are
perturbed with different methods, some by adding a random value, some by multiplying by a
random value, and others replaced by a random value [6]. These variation ranges were evaluated
using experts judgment and bibliographical review, [3].
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Variable Distribution/Method Variation range
Source elevation [m] Discrete/replace [0−40, 40−160, 160−

280, 280−400]
Emission delay [hours] Truncated normal/addition [−6, +6]
Dry deposition velocity [m/s] Uniform/replace [5.10−4, 5.10−3]

Scavenging factor [hs−1mm−1] Uniform/replace [10−7, 10−4]

Scavenging exponent Uniform/replace [0.6, 1]
Horizontal diffusion [m2s−1] Uniform/replace [0, 1.5]×104

Vertical diffusion Uniform/multiplication [1/3, 3]

Table 1: Variation range of physical parameters.

In order to ensure that the meta-model is representative of the initial model, data sets in DOE
must be distributed to cover the entire variation space of inputs. There are many algorithms
to generate a DOE. In this study, we use the Latin Hyper-cube Sampling method–LHS. It is
based on Latin Square design, which has only one sample in each row and column. A hyper-
cube indicates a cube in dimension three or more. In other words, the aim of Latin Square is to
sample from high dimension. Otherwise, some criteria must be respected to optimize the spatial
distribution, cf figure A.1.

2.2 Perturbation of weather forecast and source term

The creation of the DOE for meteorological forecast and the source term is more difficult.
Recall that we make use of an ensemble of weather forecasts. We also make use of several pos-
sible source terms collected in the literature. In [6], a couple of index numbers, corresponding
to a weather forecast member and a source term, were randomly generated for each simulation
of our DOE. The construction and use of meta-models interpolate the `dX response between
samples of DOE. Interpolation between discrete indexes is unstable and does not make sense.
Hence, the DOE regarding the meteorological ensemble and source terms was formulated using
a convex linear combination, one for the meteorology fields, and another one for the source
terms. To define one point in the DOE, the same factors ki are used for all meteorological fields
(wind, temperature, pressure, rain, ...) and in all grid cells (in 2D or 3D) and for all times. For
any meteorological value p, the linear combination at one DOE reads

pc =
np

∑
i=1

ki pi,
np

∑
i=1

ki = 1 (1)

where np is the number of meteorological members, (pi)i are the values of the different forecast
members, and (ki)i are coefficients from the np-dimension simplex. The same is applied for the
source terms, but at each point of the DOE, there is one set of factors ki for the meteorology and
one independent set of factors for the source terms. Sampling from a unit simplex, e.g., mak-
ing convex combination, allows to keep physical properties from the construction of weather
forecast ensemble. So, the dimension of the DOE for only meteorological members is 50 coef-
ficients. Optimization and calibration on high-dimension space are very difficult and can cause
non-uniqueness. As a consequence, we reduced the size of weather ensemble from 50 to 20 by
selecting 20 members whose envelop is representative of the entire ensemble. In other words,
the standard deviations of the reduced (dimension 20) and that of the entire ensemble must be
similar within some error rate (e.g., 5% of original deviation), cf. A.2.
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In conclusion, the DOE dimension is 33: 20 coefficients for meteorological ensemble, 6 co-
efficients for the 6 source terms, and 7 other parameters shown in table 1. To sample data sets
from unit simplex, we used the Dirichlet distribution, available in the package scipy of PYTHON,
appendix A.3. Once the main meteorological members are selected, the dimension 20 is still
high, uniform sampling by Dirichlet distribution has difficulties to reach the edges and corners
of the space. In emergency case, simulations are often run in a deterministic way, which means
that only one weather prediction and one source term will be chosen. In our case, a given mete-
orological member or a given source term corresponds to a corner of the sampling space, with
coordinates all set to zeros except for one. In order to take into account these constraints in the
DOE, we divided the DOE for the meteorological part into two parts: the first one was sampled
by the uniform Dirichlet distribution with α = (1,1, . . . ,1) and the second one follows another
Dirichlet distribution with α = (0.1, . . . ,0.1). α = (1, . . . ,1) corresponds to a uniform sampling
in the input space. When α (0.1, . . . ,0.1), we increase the probability to sample in the corners
and edges.

2.3 Outputs’ meta-modeling

The `dX outputs (concentration, deposition and gamma dose rate) are data fields varying in
time. The weather forecasts were temporally interpolated to obtain results every hours from
March 12 at 00:00 to March 30 at 18:00 (UTC). There are in total 451 time steps in the `dX
result. Then, these data were spatially interpolated so as to obtain the forecast at the measure-
ment stations. The table 2 introduces information about the dimensions of `dX outputs at the
measurement stations.

Output Data shape
Concentration 108 stations × 451 one-hour time steps
Gamma dose rate 88 stations × 451 one-hour time steps
Deposition > 30 000 measurement cells of a 0.1◦ spatial resolution (about 1 km)

Table 2: `dX outputs’ information

However, meta-modeling is only carried out on scalar outputs. If we build a meta-model
for each output element, the meta-model construction time will be very high. Hence, we first
built the meta-models for model-to-data scores (RMSE, FMT—figure merit in time—or FMS—
figure merit in space) or integrated values (temporally integral dose rate). This solution allows
to estimate the general tendency of all stations, e.g. through the RMSE, or a station during the
entire release period, e.g. FMT. In case it is necessary to emulate all simulated output instead of
just a scalar, an algorithm can be used to reduce data dimension, PCA—Principal Component
Analysis. This is a statistical procedure that reduces data by geometrically projecting them onto
lower dimensions called principal components, with the goal of finding the best summary of
the data using a limited number of principal components. This paper will not make use of this
dimension reduction and focuses on scalar outputs.

In this study, an interpolation method is introduced to build the meta-model: Kriging. If Y
is the original model we want to replace with a meta-model, the aim is to build an approximate
model Ŷ with a very low computational time. Let n be the number of samples in DOE and d the
dimension of these points (here, d = 33), the DOE and learning response are written as follows:

• DOE: XDOE =
[
xT

1 , . . . ,x
T
n
]
, ∀i ∈ {1, . . . ,n} xi ∈ Rd , then X ∈ Rd×n,
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• Response: YDOE = (Y (x1), . . . ,Y (xn)) = (y1, . . . ,yn) ∈ Rn, where the {yi}i are the RMSE
or integrated dose rate, etc.

The meta-model consists in a linear regression part and an interpolation part, respectively
noted F and Z in equation 2. The coefficients of the regression part are solution of a pseudo-
linear system and the interpolation part Z is the residual of F :

Ŷ (x) = F (x)+Z (x) (2)

Kriging—Gaussian process Gaussian process (GP) modeling considers the deterministic re-
sponse {yi}i as a realization of a random function Ŷ (x), which consists in a regression part F
and a stationary centered stochastic process Z. According to [8], the latter is characterized by
its correlation function between two input points x and x′: Cov(Y (x) ,Y (x′)) = σ2R(x− x′),
where σ2 denotes the variance of Y and R represents the correlation function between the out-
puts which is formulated as a function of the inputs. This part provides interpolation and spatial
correlation properties.

Under the assumption of GP modeling, the joint distribution of response sample YDOE be-
comes a multivariate normal distribution:

YDOE ∼N (F (XDOE) ,ΣDOE) (3)

where the covariance matrix is ΣDOE =
{

Cov
(
Y (xi) ,Y

(
x j
))

= σ2R
(
xi− x j

)}
i j. Let x∗ be a

new point not included in the DOE, the joint probability distribution of YDOE and Y ∗ =Y (x∗) is
written as follows:

[YDOE ,Y ∗]∼N

((
F (XDOE)

F (x∗)

)
,

(
ΣDOE k (x∗)

k (x∗)T
σ2

))
(4)

where k (x∗) = (Cov(Y (x∗) ,Y (x1)) , . . . ,Cov(Y (x∗) ,Y (xn)))
T . The prediction of GP model on

the point x∗ is characterized by the following condition distribution:

Y ∗|YDOE
∼N

(
F∗,σ∗2

)
(5)

where F∗ = E
[
Y ∗|YDOE

]
= F (x∗)+ k (x∗)T

Σ
−1
DOE (YDOE −F (XDOE)) is considered as the predic-

tion value of GP model on x∗, and σ∗2 = Var
[
Y ∗|YDOE

]
= σ2− k (x∗)T

Σ
−1
DOEk (x∗) implies the

prediction error.
Our GP model was established using R package DiceKriging. The construction time takes

about 3 hours to build, but after that, it takes only 12 ms to make a call to the meta-model (to
be compared with the 5 minutes needed with the original, physical model). Let us now evaluate
how close the meta-model is from the original model.

3 Evaluation of meta-model

Once the meta-model is built, an evaluation is essential before using it for other applications.
Several methods exist to evaluate meta-models, and especially cross validation is applied for a
wide range of machine learning approaches, [1]. Their aim is to create many meta-models by
using only some points of DOE each time. Remaining points will be used as evaluation sample.
A disadvantage of this procedure is that the training algorithm must be rerun several times, the
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validation can be costly when the fitting time is high. In addition, according to [3], removing
some points in DOE can break the good structural properties of the Latin hypercube. In this
study, we built a test sample sequentially as suggested by [4], called complementary LHS.
The test sample is chosen from a low-discrepancy sequence such as the union of the original
LHS and the complementary LHS minimizes the centered discrepancy L2. In other words, the
distribution of complementary-LHS points completes the initial LHS to fill in the space avoiding
high closeness between training samples and test samples. This algorithm allows to qualify the
surrogate model in low-frequency area.

We also need a measure to evaluate the meta-models. The SMSE—standardized mean
squared errors—between predictions by meta-model and responses of `dX was chosen. The
formula for SMSE reads

SMSE =

(
Y ∗− Ŷ (X∗)

)2

Var (Y ∗)
(6)

where X∗ is the test sample in complementary LHS, Y ∗ = Y (X∗) is the response of `dX and Ŷ
represents the meta-model. Like the other MSE measures, the SMSE is always positive and a
value near to zero indicates an efficient meta-model. Additionally, dividing by the responses’
variance provides a relative measure of quadratic error compared to `dX responses.

3.1 Validation by using SMSE score

Meta-models are built with a 10,000-sample DOE. A complementary sample of size 1000
is generated in addition. These points are chosen so as to be as far as possible to the 10,000
learning samples, hence to verify the quality of the meta-models in the worst cases. The figure
1 shows two emulation examples using Kriging method: the first case emulates the activity
concentration in a station (Takasaki) at a given moment in time (March 15 18:00) (figure 1a),
the second one calculates the RMSE score on all stations whose distance from the source is
higher than 100 km (figure 1b), cf. 2. The 1000 samples were sorted in ascending order with
the aim of making easier interpretation. Generally, meta-models predict rather well the output
variation. The table 3 allows to further evaluate the results with the SMSE. We can conclude
that the meta-models performance is very satisfactory since the errors remain below 9%.

(a) Kriging: CTakasaki
03/15−18:00 (b) Kriging: RMSE on stations > 100 km

Figure 1: Predictions of Kriging meta-models against the values of the original, physical model.
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Emulated scores SMSE Kriging
Concentration in Takasaki at 18:00 March 15 0.088
Total concentration in Tokyo 0.027
RMSE in stations > 100 km 0.086

Table 3: SMSE of Kriging surrogates. Errors are below 9%.

3.2 Verification of the error predicted by Kriging

According to the GP principle (see section 2.3), the Kriging interpolation of Y ∗ at point x∗

follows a normal distribution whose mean is used as the emulator prediction and its standard
deviation is regarded as prediction error estimated by the meta-model itself. This value provides
a complementary view of the meta-model reliability. So the question arises: how much could
we trust this information? A study was carried out on the relationship between the model–
meta-model error, called ε`dX−Kriging, and the standard deviation of forecast computed by the
GP model, called σKriging. The Kriging construction shows that ε`dX−Kriging ∼N (0,σKriging),

then the fraction
ε`dX−Kriging

σKriging
must follow a standard normal distribution. Using the test on the

complementary LHS, the figure 2a plots ε`dX−Kriging in blue, and σKriging in red. As in figure
1, the result was sorted in ascending order and the figure was drawn in log scale. The model–
meta-model error is often lower than predicted error, which means that the GP model has a
tendency to overestimate discrepancy between `dX and its surrogate. The figure 2b shows that

the distribution of the fraction
ε`dX−Kriging

σKriging
looks more like a normal distribution with σ = 0.5

than the standard normal distribution. Therefore, the GP model doubles its prediction error,
which probably comes from a overestimation of the variance σ2 in the Kriging process, as
estimated by DiceKriging. Estimator of σKriging can be modified in the GP construction but this
result is reassuring.

(a) Visualization of the error predicted by Kriging (red)
and the actual model–meta-model error (blue)

(b) Histogram of the error fraction ε`dX−Kriging
σKriging

Figure 2: Comparison between predicted and actual errors.
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4 Application: minimization of RMSE on activity concentration

An objective of the calibration is to determine the best set of parameters in order to minimize
the model-to-data discrepancy. This study requires many runs of the model, hence the meta-
model is a useful replacement tool because of its short execution time. The first `dX meta-
model was built to determine the set of parameters that minimizes the RMSE score of activity
concentration. This section introduces firstly an analysis on some cross-sections of the RMSE.
It allows to clarify the meta-model performance as some inputs vary. Emulating the RMSE
of concentration by Kriging, the figure 3 shows this RMSE when either varying the weights
for three meteorological ensemble members (the other members receive a null weight), or for
three source terms ([5], [12] and [10]; the other source terms receive a null weight). Also, the
prediced error on the RMSE is shown for reference. All other inputs are set to their reference
value (i.e., without perturbation). In the left column, the red area corresponds to an important
model-to-data discrepancy. This means that the meteorological ensemble members number 12
and 18 perform better than the member 14. Similarly, in that case, the source term [5] performs
better than the terms from [12] or [10]. In the right column, we see that the highest meta-
modeling errors are in the corners. Because a unit simplex in high dimension (20 or 6) is a very
large space, this phenomenon can be explained by low sampling frequency in the corners and
boundaries of the input space. In any case, the prediction error is almost always below 10%.

(a) Prediction with different weather com-
binations

(b) Predicted error with different weather
combinations

(c) Prediction with different source term
combinations

(d) Predicted error with different source
term combinations

Figure 3: Cross-sections of the meta-model on the RMSE of the concentration.

Figure 3 shows that in some directions, the RMSE function seems to reach a minimum value,
but we found that an optimization has difficulties in finding a global mimimum. One hypothesis
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is that the RMSE function is rather flat in vast regions of the input space. We analyzed the
Euclidean distance between five points from the DOE with very low RMSE on the activity, see
table 4. The points, which correspond to the lowest model-to-data errors, are not located in
the same area of the input space. The figure 4 shows that there are many points in the input
space, whose RMSE values drop almost to the lowest, while they are far from each other. This
explains why optimization algorithm could not converge in this case.

Best point Point 2 Point 3 Point 4 Point 5
Best point 0. 1.504 0.943 1.228 0.967
Point 2 - 0. 1.658 1.747 0.967
Point 3 - - 0. 1.49 1.325
Point 4 - - - 0. 1.073

Table 4: Euclidean distance between the five DOE points with the lowest RMSE on the activity.
Note that the average distance between the DOE samples is 1.48, which means that the distances
of the table are rather high.

Figure 4: The activity RMSE according to the distance from the DOE point with the lowest
RMSE. Even far from the best DOE point, very low RMSE are found.

We created a 1 000 000-points LHS; and compared the minimal RMSE value foretold by
Kriging emulator on this denser LHS with the best score of the DOE. The points with the lowest
RMSEs tend to give more weight to the source term from [11]. This source term was built a
posteriori, after the Fukushima nuclear accident by using the concentration measurements and
the `dX model.

5 Conclusion and perspectives

We were able to build a meta-model of the `dX dispersion model, using 10,000 calls to `dX .
The samples were chosen so as to properly sample the range of variations of the inputs we
chose to perturb. A difficulty lied in the treatment of the meteorological ensemble and of the
source terms. We managed to sample from convex combinations of those. The meta-model
was built unsing Kriging as an interpolation method between the 10,000 samples. Note that one
meta-model was built for each output of interest, like the RMSE between the model outputs and
the field observations. Besides the cost of running 10,000 simulations, building a meta-model
requires 3 hours of computations, but then, any call to the meta-model only costs 12 ms. The
speed of the meta-model allowed us to investigate the calibration of its inputs.
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We faced difficulties in finding a global minimum. Deterministic optimization provided
many local minima. In the perspective of uncertainty quantification where we look for the
distribution of the inputs (not just the most probable value), this means that vast areas of the
input space should be associated with a significant probabity density. The Markov chain Monte
Carlo (MCMC) methods may be used as a sampling algorithms.

The dimension, which is fairly high in our case (33), may explain some difficulties in the
optimization. We could also perturb the meteorological inputs by applying a multiplicative
factor k to the ensemble standard deviation and adding this up to the ensemble mean. Here, this
factor k would replace the convex combination, which would greatly lower the input dimension.

In the calibration, using different measurement types is essential, e.g. calibrate input parame-
ters using simultaneously concentration and deposition measurements. It allows to compensate
for the shortcomings of each measurements. According to [9], deposition was measured on a
fine and regular mesh, this is a good spatial cover but it does not provide temporal information.
On the contrary, the activity concentration is observed at a limited number of measurement
stations, but the observations were collected every hours with a low measurement error.

A Appendices

A.1 LHS

(a) Without optimization (b) After optimization

Figure 5: Illustration of Latin Hyper-cube Sampling
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Algorithm 1 Reduce weather ensemble size
1: Input
2: Nnew The size of new ensemble
3: ε Error rate
4: M = (m1, . . . ,mN) the original ensemble, mi ∈ RN

t where N− t is the number of time
steps

5: Output
6: Mnew= (m1, . . . ,mNnew) the vector contains indices of selected members
7: while

σnew

σold
.100 > ε do

8: Compute σold = 1
Nt

∑
Nt
j=1

√
Var (M j) where M j =

(
m j

1, . . . ,m
j
N

)
9: Select Nnew within N members of the original ensemble

10: Compute σnew = 1
Nt

∑
Nt
j=1

√
Var

(
M j

new

)
11: end while

A.2 Reduction of weather ensemble size
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Figure 6: Illustration of reduction of ensemble size

A.3 Dirichlet distribution

The Dirichlet distribution is a family of continuous multivariate probability distributions,
parameterized by a n-dimension vector α of positive reals. The distribution samples n-vectors
v = (v1, . . . ,vn) whose entries are real numbers in the interval [0,1] and whose sum is equal
to 1. The main feature of a Dirichlet distribution Dir (α = (α1, . . . ,αn)) can be described as
in table 5. The figure 7 exposes in dimension three the probability density function (PDF) of
some Dirichlet distributions with different α vectors. When α = (1, . . . ,1), the PDF is similar
everywhere in the triangle. The blue area implies low probability of appearance and the red
one means strong probability. The white line on the color bar indicates the PDF value of α =
(1, . . . ,1).
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Support v = (v1, . . . ,vn) , (vi)i ∈ [0,1] and ∑
n
i=1 vi = 1

PDF fα (v) = 1
B(α) ∏

n
i=1 vαi

i −1

Mean E [Vi] =
αi
α0

Variance Var (Vi) =
αi(α0−αi)

α2
0 (α0+1)

Covariance Cov
(
Vi,Vj

)
=

−αiα j
α0(α0+1) , (i 6= j)

Table 5: Dirichlet distribution description.

where B(α) =
∏

n
i=1 Γ(α)

Γ(∑n
i=1 αi)

and α0 = ∑
n
i=1 αi.

(a) α = (1,1,1) (b) α = (5,1,1)

(c) α = (10,10,30) (d) α = (5,5,1)

Figure 7: Illustrations of Dirichlet distributions in dimension three.
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Abstract. In this paper, we solve a semi-supervised regression problem. Due to the luck
of knowledge about the data structure and the presence of random noise, the considered data
model is uncertain. We propose a method which combines graph Laplacian regularization and
cluster ensemble methodologies. The co-association matrix of the ensemble is calculated on
both labeled and unlabeled data; this matrix is used as a similarity matrix in the regulariza-
tion framework to derive the predicted outputs. We use the low-rank decomposition of the
co-association matrix to significantly speedup calculations and reduce memory. Numerical ex-
periments using the Monte Carlo approach demonstrate robustness, efficiency, and scalability
of the proposed method.
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1 Introduction

Machine learning problems can be classified as supervised, unsupervised and semi-supervised.
Let data set X = {x1, . . . , xn} be given, where xi ∈ Rd is feature vector, d is feature space di-
mensionality. In a supervised learning context, we are given an additional set Y = {y1, . . . , yn}
of target feature values (labels) for all data points, yi ∈ DY , where DY is target feature domain.
In the case of supervised classification, the domain is an unordered set of categorical values
(classes, patterns). In case of supervised regression, the domain DY ⊆ R. Using this informa-
tion (which can be thought as provided by a certain “teacher”), it is necessary to find a decision
function y = f(x) (classifier, regression model) for predicting target feature values for any new
data point x ∈ Rd from the same statistical population [5]. The function should be optimal in
some sense, e.g., give minimal value to the expected losses.

In an unsupervised learning setting, the target feature values are not provided. The problem
of cluster analysis, which is an important direction in unsupervised learning, consists in finding
a partition P = {C1, . . . , CK} of X on a relatively small number of homogeneous clusters
describing the structure of data. As a criterion of homogeneity, it is possible to use a functional
dependent on the scatter of observations within groups and the distances between clusters. The
desired number of clusters is either a predefined parameter or should be found in the best way.

We note that since the final cluster partition is uncertain due to random noise in sample
data, luck of knowledge about the feature set and the data structure, parameters, weights, and
initialization settings, a set of different cluster partitions is calculated. Then a final cluster
partition is formed.

In semi-supervised learning problems, the target feature values are known only for a part of
data set X1 ⊂ X. It is possible to assume that X1 = {x1, . . . , xn1}, and the unlabeled part is
X0 = {xn1+1, . . . , xn}. The set of labels for points from X1 is denoted by Y1 = {y1, . . . , yn1}.
It is required to predict target feature values as accurately as possible either for given unlabeled
data X0 (i.e., perform transductive learning) or for arbitrary new observations from the same
statistical population (inductive learning). In dependence of the type of the target feature, one
may consider semi-supervised classification or semi-supervised regression problems [31].

The task of semi-supervised learning is important because in many real-life problems only
a small part of available data can be labeled due to the large cost of target feature registration.
For example, manual annotation of digital images is rather time-consuming. Therefore labels
can be attributed to only a small part of pixels. To improve prediction accuracy, it is necessary
to use information contained in both labeled and unlabeled data. An important application is
hyperspectral image semi-supervised classification [8].

In this paper, we consider a semi-supervised regression problem in the transductive learning
setting. In semi-supervised regression, the following types of methods can be found in the lit-
erature [18]: co-training [30], semi-supervised kernel regression [26], graph-based and spectral
regression methods [27, 12, 28], etc.

We propose a novel semi-supervised regression method using a combination of graph Lapla-
cian regularization technique and cluster ensemble methodology. Graph regularization (some-
times called manifold regularization) is based on the assumption which states that if two data
points are on the same manifold, then their corresponding labels are close to each other. A graph
Laplacian is used to measure the smoothness of the predictions on the data manifold including
both labeled and unlabeled data [29, 1].

Ensemble clustering aims at finding consensus partition of data using some base clustering
algorithms. As a rule, application of this methodology allows one to get a robust and effective
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solution, especially in case of uncertainty in the data model. Properly organized ensemble (even
composed of ”weak” learners) significantly improves the overall clustering quality [7].

Different schemes for applying ensemble clustering for semi-supervised classification were
proposed in [25, 2]. The suggested methods are based on the hypothesis which states that a
preliminary ensemble allows one to restore more accurately metric relations in data in noise
conditions. The obtained co-association matrix (CM) depends on the outputs of clustering
algorithms and is less noise-addicted than a conventional similarity matrix. This increases the
prediction quality of the methods.

The same idea is pivotal in the proposed semi-supervised regression method. We assume a
statistical connection between the clustering structure of data and the predicted target feature.
Such a connection may exist, for example, when some hidden classes are present in data, and
the belonging of objects to the same class influences the proximity of their responses.

To decrease the computational cost and the storage requirement and to increase the scalabil-
ity of the method, we suggest usage of low-rank (or hierarchical) decomposition of CM. This
decomposition will reduce the numerical cost and storage from cubic to (log-)linear [16].

Parametric approximations, given by generalized linear models, as well as nonlinear models,
given by neural networks were compared in [6].

In the rest of the paper, we describe the details of the suggested method. Numerical experi-
ments are presented in the correspondent section. Finally, we give concluding remarks.

2 Combined semi-supervised regression and ensemble clustering

2.1 Graph Laplacian regularization

We consider a variant of graph Laplacian regularization in semi-supervise transductive re-
gression which solves the following optimization problem:

find f ∗ such that f ∗ = arg min
f∈Rn

Q(f), where

Q(f) :=
1

2

∑
xi∈X1

(fi − yi)2 + α
∑

xi,xj∈X

wij(fi − fj)2 + β||f ||2
 , (1)

f = (f1, . . . , fn) is a vector of predicted outputs: fi = f(xi); α, β > 0 are regularization
parameters, W = (wij) is data similarity matrix. The degree of similarity between points
xi and xj can be calculated using appropriate function, for example from the Matérn family
[22]. The Matérn function depends only on the distance h := ‖xi − xj‖ and is defined as
W (h) = σ2

2ν−1Γ(ν)

(
h
`

)ν
Kν

(
h
`

)
with three parameters `, ν, and σ2. For instance, ν = 1/2 gives

the well-known exponential kernel W (h) = σ2 exp(−h/`), and ν = ∞ gives the Gaussian
kernel W (h) = σ2 exp(−h2/2`2).

In this paper we also use RBF kernel with parameter `: wij = exp(−‖xi−xj‖
2

2`2
).

The first term in right part of (1) minimizes fitting error on labeled data; the second term
aims to obtain ”smooth” predictions on both labeled and unlabeled sample; the third one is
Tikhonov’s regularizer.

Let graph Laplacian be denoted by L = D −W where D be a diagonal matrix defined by
Dii =

∑
j

wij . It is easy to show (see, e.g., [1, 29]) that

∑
xi,xj∈X

wij(fi − fj)2 = 2fTLf. (2)
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Let us introduce vector Y1,0 = (y1, . . . , yn1 , 0, . . . , 0︸ ︷︷ ︸
n−n1

)T , and let G be a diagonal matrix:

G = diag(G11 . . . , Gnn), Gii =
{
β+1, i=1,...,n1

β, i=n1+1,...,n, . (3)

Differentiating Q(f) with respect to f , we get
∂Q

∂f
|f=f∗= Gf ∗ + αLf ∗ − Y1,0 = 0,

hence
f ∗ = (G+ αL)−1 Y1,0 (4)

under the condition that the inverse of matrix sum exists (note that the regularization parameters
α, β can be selected to guaranty the well-posedness of the problem). Numerical methods such
as Tikhonov or Lavrentiev regularization [24] can also be used to obtain the predictions.

2.2 Co-association matrix of cluster ensemble

In the proposed method, we use a co-association matrix of cluster ensemble as similarity
matrix in (1). Co-association matrix is calculated as a preliminary step in the process of cluster
ensemble design with various clustering algorithms or under variation across a given algorithm’s
parameter settings [13].

Let us consider a set of partition variants {Pl}rl=1, where Pl = {Cl,1, . . . , Cl,Kl}, Cl,k ⊂ X,
Cl,k

⋂
Cl,k′ = ∅, Kl is number of clusters in lth partition. For each Pl we determine matrix

Hl = (hl(i, j))
n
i,j=1 with elements indicating whether a pair xi, xj belong to the same cluster in

lth variant or not: hl(i, j) = I[cl(xi) = cl(xj)], where I(·) is indicator function (I[true] = 1,
I[false] = 0), cl(x) is cluster label assigned to x. The weighted averaged co-association matrix
(WACM) is defined as follows:

H = (H(i, j))ni,j=1, H(i, j) =
r∑
l=1

wlHl(i, j) (5)

where w1, . . . , wr are weights of ensemble elements, wl ≥ 0,
∑
wl = 1. The weights should

reflect the “importance” of base clustering variants in the ensemble [4] and be dependent on
some evaluation function Γ (cluster validity index, diversity measure) [3]: wl = γl/

∑
l′
γl′ ,

where γl = Γ(l) is an estimate of clustering quality for the lth partition (we assume that a larger
value of Γ manifests better quality).

In the methodology presented in this paper, the elements of WACM are viewed as similarity
measures learned by the ensemble. In a sense, the matrix specifies the similarity between objects
in a new feature space obtained utilizing some implicit transformation of the initial data. The
following property of WACM allows increasing the processing speed.
Proposition 1. Weighted averaged co-association matrix admits low-rank decomposition in the
form:

H = BBT , B = [B1B2 . . . Br] (6)

where B is a block matrix, Bl =
√
wlAl, Al is (n × Kl) cluster assignment matrix for lth

partition: Al(i, k) = I[c(xi) = k], i = 1, . . . , n, k = 1, . . . , Kl.
The proof is fairly straightforward and is omitted here for the sake of brevity. As a rule,

m =
∑

lKl � n, thus (6) gives us an opportunity of saving memory by storing (n × m)
sparse matrix instead of full (n × n) co-association matrix. The complexity of matrix-vector
multiplication H · x is decreased from O(n2) to O(nm).
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2.3 Cluster ensemble and graph Laplacian regularization

Let us consider graph Laplacian in the form: L′ = D′−H , whereD′ = diag(D′11, . . . , D
′
nn),

D′ii =
∑
j

H(i, j). We have:

D′ii =
n∑
j=1

r∑
l=1

wl

Kl∑
k=1

Al(i, k)Al(j, k) =

r∑
l=1

wl

Kl∑
k=1

Al(i, k)
n∑
j=1

Al(j, k) =
r∑
l=1

wlNl(i) (7)

where Nl(i) is the size of the cluster which includes point xi in lth partition variant.
Substituting L′ in (4), we obtain cluster ensemble based predictions of output feature in

semi-supervised regression:
f ∗∗ = (G+ αL′)−1 Y1,0. (8)

Using law-rank representation of H , this expression can be transformed into the form which
involves more efficient matrix operations.

Using law-rank representation of H , we get:

f ∗∗ = (G+ αD′ − αBBT )−1 Y1,0.

In linear algebra, the following Woodbury matrix identity is known:

(S + UV )−1 = S−1 − S−1U(I + V S−1U)−1V S−1

where S ∈ Rn×n is invertible matrix, U ∈ Rn×m and V ∈ Rm×n. We can denote S = G+αD′

and get
S−1 = diag(1/(G11 + αD′11), . . . , 1/(Gnn + αD′nn)) (9)

where Gii, D
′
ii, i = 1, . . . , n are defined in (3) and (7) correspondingly.

Now it is clear that the following statement is valid:
Proposition 2. Cluster ensemble based target feature prediction vector (8) can be calculated
using low-rank decomposition as follows:

f ∗∗ = (S−1 + αS−1B(I − αBTS−1B)−1BS−1) Y1,0 (10)

where matrix B is defined in (6) and S−1 in (9).
Note that in (10) we need to invert significantly smaller (m × m) sized matrix instead of

(n× n) in (8). The overall computational complexity of (10) can be estimated as O(nm+m3).
The outline of the suggested algorithm of semi-supervised regression based on the law-rank

decomposition of the co-association matrix (SSR-LRCM) is as follows.

Algorithm SSR-LRCM
Input:
X: dataset including both labeled and unlabeled sample;
Y1: target feature values for labeled instances;
r: number of runs for base clustering algorithm µ;
Ω: set of parameters (working conditions) of clustering algorithm.
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Output:
f ∗∗: predictions of target feature for labeled and unlabeled objects.
Steps:
1. Generate r variants of clustering partition with algorithm µ for working parameters randomly
chosen from Ω; calculate weights w1, . . . , wr of variants.
2. Find graph Laplacian in law-rank representation using matrices B in (6) and D′ in (7);
3. Calculate predictions of target feature according to (10).
end.

In the implementation of SSR-LRCM, we use K-means as base clustering algorithm which
has linear complexity with respect to data dimensions.

3 Hierarchical Approximation

In this section we discuss the case if matrices W and H do not have any low-rank decompo-
sition or this low-rank is expensive (e.g., the rank is comparable with n). In that case then one
can try to apply, so-called, hierarchical matrices (H-matrices), introduced in [15], [16] or, as an
alternative, low-rank tensor techniques [21, 23].

The H-matrix format has a log-linear computational cost1 and storage. The H-matrix tech-
nique allows us to efficiently work with general matricesW andH (and not only with structured
ones like Toeplitz, circulant or three diagonal). Another advantage is that all linear algebra op-
erations from Sections 2.1 and 2.2 preserve (or only slightly increase) the rank k inside of each
sub-block.

There are many implementations ofH-matrices exist, e.g., the HLIB library (http://www.hlib.org/),
H2-library (https://github.com/H2Lib), and HLIBpro library (https://www.hlibpro.com/). We
used the HLIBpro library, which is actively supported commercial, robust, parallel, very tuned,
and well tested library. Applications of the H-matrix technique to the graph Laplacian can be
found in the HLIBpro library2, and to covariance matrices in [17] and in [20].

The H-matrix technique is defined as a hierarchical partitioning of a given matrix into sub-
blocks followed by the further approximation of the majority of these sub-blocks by low-rank
matrices. Figure 1 shows an example of theH-matrix approximation W̃ of an n× n matrix W ,
n = 16000 and its Cholesky factor Ũ , where W̃ = Ũ Ũ>. The dark (or red) blocks indicate the
dense matrices and the grey (green) blocks indicate the rank-k matrices; the number inside each
block is its rank. The steps inside the blocks show the decay of the singular values in log scale.
The Cholesky factorization is needed for computing the inverse, W̃−1 = (Ũ Ũ>)−1 = Ũ−>Ũ−1.
This way is cheaper as computing the inverse directly.

To define which sub-blocks can be approximated well by low-rank matrices and which can-
not, a so-called admissibility condition is used (see more details in [20]). There are different
admissibility conditions possible: weak, strong, domain decomposition based. Each one results
in a new subblock partitioning. Blocks that satisfy the admissibility condition can be approxi-
mated by low-rank matrices; see [15].

On the first step, the matrix is divided into four sub-blocks. Then each (or some) sub-block(s)
is (are) divided again and again hierarchically until sub-blocks are sufficiently small. The pro-
cedure stops when either one of the sub-block sizes is nmin or smaller (typically nmin ≤ 128),
or when this sub-block can be approximated by a low-rank matrix.

1log-linear means O(kn log n), where the rank k is a small integer, and n is the size of the data set
2https://www.hlibpro.com/
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Figure 1: (left) An example of the H-matrix approximation W̃ of an n × n matrix W , n = 16000. (right) The
corresponding Cholesky factor Ũ , where W̃ = Ũ Ũ>.

Another important question is how to compute these low-rank approximations. One (heuris-
tic) possibility is the Adaptive Cross Approximation (ACA) algorithm [16], which performs the
approximations with a linear complexity O(kn) in contrast to O(n3) by the standard singular
value decomposition (SVD).

The storage requirement of W̃ and the matrix vector multiplication cost O(kn log n), the
matrix-matrix addition costsO(k2n log n), and the matrix-matrix product and the matrix inverse
cost O(k2n log2 n); see [15]. In Table 1 we show dependence of the two matrix errors on the
H-matrix rank k for the Matérn function with parameters ` = {0.25, 0.75}, ν = 1.5, and
xi, xj ∈ [0, 1]2. We can bound the relative error ‖W−1 − W̃−1‖/‖W−1‖ for the approximation
of the inverse as

‖W−1 − W̃−1‖
‖W−1‖

=
‖(I − W̃−1W )W−1‖

‖W−1‖
≤ ‖(I − W̃−1W )‖.

‖(I−W̃−1W )‖2 can be estimated by few steps of the power iteration method. The rank k ≤ 20

is not sufficient to approximate the inverse.The spectral norms of W̃ are ‖W̃(`=0.25)‖2 = 720

and ‖W̃(`=0.75)‖2 = 1068.

Table 1: Convergence of the H-matrix approximation error vs. the H-matrix rank k of a Matérn function with
parameters ` = {0.25, 0.75}, ν = 1.5, xi, xj ∈ [0, 1]2, n = 16,641, see more in [19]

k ‖W − W̃‖2 ‖I − W̃−1W‖2

` = 0.25 ` = 0.75 ` = 0.25 ` = 0.75
20 5.3e-7 2e-7 4.5 72
30 1.3e-9 5e-10 4.8e-3 20
40 1.5e-11 8e-12 7.4e-6 0.5
50 2.0e-13 1.5e-13 1.5e-7 0.1

Table 2 shows the computational time and storage for theH-matrix approximations [19, 20].
These computations are done with the parallel H-matrix toolbox, HLIBpro. The number of
computing cores is 40, the RAM memory 128GB. It is important to note that the computing
time (columns 2 and 5) and the storage cost (columns 3 and 6) are growing nearly linearly with
n. Additionally, we provide the accuracy of theH-Cholesky inverse.
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Table 2: Computing times and storage costs of W̃ ∈ Rn×n. Accuracy in each sub-block is ε = 10−7.

n W̃ ŨŨ>

time size kB/n time size ‖I − (Ũ Ũ>)−1W‖2
sec GB sec GB

128,000 7.7 1.16 9.5 36.7 1.31 3.8 · 10−5

256,000 13 2.55 10.5 64.0 2.96 7.1 · 10−5

512,000 23 4.74 9.7 128 5.80 7.1 · 10−4

1,000,000 53 11.26 11.0 361 13.91 3.0 · 10−4

2,000,000 124 23.65 12.4 1001 29.61 5.2 · 10−4

3.1 H-matrix approximation of regularized graph Laplacian

We rewrite formulas from Sections 2.1 - 2.3 in the H-matrix format. Let W̃ be an H-matrix
approximation of W . The new optimization problem will be:

find f̃ ∗ such that f̃ ∗ = arg min
f∈Rn

Q̃(f), where

Q̃(f) :=
1

2

∑
xi∈X1

(fi − yi)2 + α
∑

xi,xj∈X

w̃ij(fi − fj)2 + β‖f‖2

 . (11)

Using (2) and assuming that theH-matrix approximation error ‖L̃− L‖ ≤ ε, obtain

‖Q̃(f)−Q(f)‖ ≤ α
(
f>L̃f − f>Lf

)
≤ α‖f‖2‖L̃− L‖ = ‖f‖2ε. (12)

Let the approximate graph Laplacian be denoted by L̃ = D̃ − W̃ where D̃ be a diagonal
matrix defined by D̃ii =

∑
j

w̃ij . Differentiating Q̃(f) with respect to f , we get

∂Q̃

∂f
|f=f̃∗= Gf̃ ∗ + αL̃f̃ ∗ − Y1,0 = 0,

hence
f̃ ∗ = (G+ αL̃)−1 Y1,0 (13)

The impact of theH-matrix approximation error could be measured as follows

‖f̃ ∗ − f ∗‖ ≤ ‖(G+ αL̃)−1 − (G+ αL)−1‖ · ‖Y1,0‖ (14)

or
‖f̃ ∗ − f ∗‖ ≤ ‖(I + αG−1L̃)−1 − (I + αG−1L)−1‖‖G‖ · ‖Y1,0‖ (15)

Now, if matrix norm (e.g., spectral norm) of αG−1L̃ is smaller than 1, we can write

(I + αG−1L̃)−1 = I − αG−1L̃+ α2G−2L̃2 − α3G−3L̃3 + . . . (16)

and

‖(I + αG−1L̃)−1 − (I + αG−1L)−1‖
≤ α‖G−1(L̃− L)‖+ α‖G−2(L̃2 − L2)‖+ α2‖G−3(L̃3 − L3)‖+ . . .
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In general, the assumption ‖W − W̃‖ ≤ ε is not sufficient to say something about the error
‖(W−1 − W̃−1‖ because the later is proportional to the condition number of W̃ , which could
be very large. The reason for a large condition number is that the smallest eigenvalue could lie
very close to zero. In this case some regularization may help (e.g., adding a positive number to
all diagonal elements, similar to Tikhonov regularization). In this sense, the diagonal matrix G
helps to bound the error ‖(G+αL̃)−1− (G+αL)−1‖. We remind that by one of the properties
of the graph Laplacian states det(L) = 0 and L is not invertible. Assume now that instead of
Eq. 5 we have an H-matrix approximation H̃ of H . Then the H-matrix approximation of the
graph Laplacian will be L̃′ = D̃′− H̃ , where D̃′ = diag(D̃′11, . . . , D̃

′
nn), D̃′ii =

∑
j

H̃(i, j). It is

important to notice that the computational cost of computing D̃ is O(kn log n), k � n.
Substituting L̃′ in (13), we obtain cluster ensemble based predictions of output feature in

semi-supervised regression:
f̃ ∗∗ = (G+ αL̃′)−1 Y1,0. (17)

Here we cannot apply the Woodbury formula, but we also do not need it since the computational
cost of computing (G+ αL̃′)−1 in theH-matrix format is just O(k2n log2 n).

The SSR-LRCM Algorithm requires only minor changes, namely, in the second step we
compute an H-matrix representation of the graph Laplacian and on the third step calculate
predictions of target feature according to (17). The total computational complexity is log-linear.

4 Numerical experiments

In this section we describe numerical experiments with the proposed SSR-LRCM algorithm.
The aim of experiments is to confirm the usefulness of involving cluster ensemble for similarity
matrix estimation in semi-supervised regression. We experimentally evaluate the regression
quality on a synthetic and a real-life example.

4.1 First example with two clusters and artificial noisy data

In the first example we consider datasets generated from a mixture of two multidimensional
normal distributions N (a1, σXI), N (a2, σXI) under equal weights; a1, a2 ∈ Rd, d = 8, σX
is a parameter. Usually such type of data is applied for a classifier evaluation; however it
is possible to introduce a real valued attribute Y as a predicted feature and use it in regression
analysis. Let Y equal 1+ε for points generated from the first distribution component, otherwise
Y = 2 + ε, where ε is a Gaussian random value with zero mean and variance σ2

ε . To study
the robustness of the algorithm, we also generate two independent random variables following
uniform distribution U(0, σX) and use them as additional “noisy” features.

In Monte Carlo modeling, we repeatedly generate samples of size n according to the given
distribution mixture. In the experiment, 10% of the points selected at random from each com-
ponent compose the labeled sample; the remaining ones are included in the unlabeled part. To
study the behavior of the algorithm in the presence of noise, we also vary parameter σε for the
target feature.

In SSR-LRCM, we use K-means as a base clustering algorithm. The ensemble variants are
designed by random initialization of centroids (number of clusters equals two). The ensemble
size is r = 10. The wights of ensemble elements are the same: wl ≡ 1/r. The regularization
parameters α, β have been estimated using grid search and cross-validation technique. In our
experiments, the best results have been obtained for α = 1, β = 0.001, and σX = 5.

For the comparison purposes, we consider the method (denoted as SSS-RBF) which uses
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Table 3: Results of experiments with a mixture of two distributions. Significantly different RMSE values (p-value
< 10−5) are in bold. For n = 105 and n = 106, SSR-RBF failed due to unacceptable memory demands.

n σε
SSR-LRCM SSR-RBF

RMSE tens (sec) tmatr (sec) RMSE time (sec)

1000
0.01 0.052 0.06 0.02 0.085 0.10

0.1 0.054 0.04 0.04 0.085 0.07

0.25 0.060 0.04 0.04 0.102 0.07

3000
0.01 0.049 0.06 0.02 0.145 0.74

0.1 0.051 0.06 0.02 0.143 0.75

0.25 0.053 0.07 0.02 0.150 0.79

7000
0.01 0.050 0.16 0.08 0.228 5.70

0.1 0.050 0.16 0.08 0.229 5.63

0.25 0.051 0.14 0.07 0.227 5.66

105 0.01 0.051 1.51 0.50 - -

106 0.01 0.051 17.7 6.68 - -

the standard similarity matrix evaluated with RBF kernel. Different values of parameter ` were
considered and the quasi-optimal ` = 4.47 was taken. The output predictions are calculated
according to formula (4).

The quality of prediction is estimated as Root Mean Squared Error: RMSE =
√

1
n

∑
(ytrue
i − fi)2,

where ytrue
i is a true value of response feature specified by the correspondent component. To

make the results more statistically sound, we have averaged error estimates over 40 Monte
Carlo repetitions and compare the results by paired two sample Student’s t-test.

Table 3 presents the results of experiments. In addition to averaged errors, the table shows
averaged execution times for the algorithms (working on dual-core Intel Core i5 processor with
a clock frequency of 2.8 GHz and 4 GB RAM). For SSR-LRCM, we separately indicate en-
semble generation time tens and law-rank matrix operation time tmatr (in seconds). The obtained
p-values for Student’s t-test are also taken into account. A p-value less than the given signifi-
cance level (e.g., 0.05) indicates a statistically significant difference between the performance
estimates.

The results show that the proposed SSR-LRCM algorithm has significantly smaller predic-
tion error than SSR-RBF. At the same time, SSR-LRCM has run much faster, especially for
medium sample size. For a large volume of data (n = 105, n = 106) only SSR-LRCM has been
able to find a solution, whereas SSR-RBF has refused to work due to unacceptable memory
demands (74.5GB and 7450.6GB correspondingly).

4.2 Second example with 10-dimensional real Forest Fires dataset

In the second example, we consider Forest Fires dataset [10]. It is necessary to predict the
burned area of forest fires, in the northeast region of Portugal, by using meteorological and other
information. Fire Weather Index (FWI) System is applied to get feature values. FWI System
is based on consecutive daily observations of temperature, relative humidity, wind speed, and
24-hour rainfall. We use the following numerical features:

• X-axis spatial coordinate within the Montesinho park map;
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• Y-axis spatial coordinate within the Montesinho park map;

• Fine Fuel Moisture Code;

• Duff Moisture Code;

• Initial Spread Index;

• Drought Code;

• temperature in Celsius degrees;

• relative humidity;

• wind speed in km/h;

• outside rain in mm/m2;

• the burned area of the forest in ha (predicted feature).

This problem is known as a difficult regression task [11], in which the best RMSE was
attained by the naive mean predictor. We use quantile regression approach: the transformed
quartile value of response feature should be predicted.

The following experiment’s settings are used. The volume of labeled sample is 10% of
overall data; the cluster ensemble architecture is the same as in the previous example. K-means
base algorithm with 10 clusters with ensemble size r = 10 is used. Other parameters are α = 1,
β = 0.001, the SSR-RBF parameter is ` = 0.1. The number of generations of the labeled
samples is 40.

As a result of modeling, the averaged error rate for SSR-LRCM has been evaluated as
RMSE= 1.65. For SSR-RBF, the averaged RMSE is equal to 1.68. The p-value which equals
0.001 can be interpreted as indicating the statistically significant difference between the quality
estimates.

Conclusion

In this work, we solved the regression problem to forecast the unknown value Y . For this we
have introduced a semi-supervised regression method SSR-LRCM based on cluster ensemble
and low-rank co-association matrix decomposition. We used a scheme of a single clustering
algorithm which obtains base partitions with random initialization.

The proposed method combines graph Laplacian regularization and cluster ensemble method-
ologies. Low-rank or hierarchical decomposition of the co-association matrix gives us a possi-
bility to speedup calculations and save memory from cubic to (log-)linear.

There are a number of arguments for the usefulness of ensemble clustering methodology. The
preliminary ensemble clustering allows one to restore more accurately metric relations between
objects under noise distortions and the existence of complex data structures. The obtained
similarity matrix depends on the outputs of clustering algorithms and is less noise-addicted
than the conventional similarity matrices (eg., based on Euclidean distance). Clustering with a
sufficiently large number of clusters can be viewed as Learning Vector Quantization known for
lowering the average distortion in data.

239



Vladimir Berikov and Alexander Litvinenko

The efficiency of the suggested SSR-LRCM algorithm was confirmed experimentally. Monte
Carlo experiments have demonstrated statistically significant improvement of regression qual-
ity and decreasing in running time for SSR-LRCM in comparison with analogous SSR-RBF
algorithm based on standard similarity matrix.

In future works, we plan to continue studying theoretical properties and performance char-
acteristics of the proposed method. Development of iterative methods for graph Laplacian reg-
ularization is another interesting direction, especially in large-scale machine learning problems.
We will further research theoretical and numerical properties of theH-matrix approximation of
W and H . Applications of the method in various fields are also planned, especially for spacial
data processing and analysis of genetic sequences.
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CS34436, 3 Rue Tarfaya, 31400 Toulouse

e-mail: matthias.delozzo@irt-saintexupery.com

3 LIMSI
Campus Universitaire bâtiment 507, Rue John Von Neumann, 91400 Orsay

e-mail: didier.lucor@limsi.fr

4 EDF, LNHE
6 quai Watier, 78400 Chatou

e-mail: nicole.goutal, cedric.goeury@edf.fr

5 LHSV
6 quai Watier, 78400 Chatou

e-mail: sebastien.boyaval@enpc.fr

Keywords: Open-channel flow, Sensitivity analysis, Surrogate model, Gaussian process, Monte
Carlo method.

Abstract. River hydraulic models are used to assess the environmental risk associated to flood-
ing and consequently inform decision support systems for civil security needs. These numerical
models are generally based on a deterministic approach based on resolving the partial differ-
ential equations. However, these models are subject to various types of uncertainties in their
input. Knowledge of the type and magnitude of these uncertainties is crucial for a meaningful
interpretation of the model results. Uncertainty quantification (UQ) framework aims to proba-
bilize the uncertainties in the input, propagate them through the numerical model and quantify
their impact on the simulated quantity of interest, here, water level field discretized over an un-
structured finite element mesh over the Garonne River (South-West France) between Tonneins
and La Réole simulated with a numerical solver, TELEMAC-2D. The computational cost of the
sensitivity analysis with the classical Monte Carlo approach is reduced using a surrogate model
instead of the numerical solver. The present study investigates one of the machine learning al-
gorithms: A surrogate model based on Gaussian process. This latter was used to represent
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the spatially distributed water level with respect to uncertain stationary flow to the model and
friction coefficients. The quality of the surrogate was assessed on a validation set, with small
root mean square error and a predictive coefficient equal to 1. Sobol’ sensitivity indices are
computed and enhance the high impact of the input discharge on the water level variation.
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1 INTRODUCTION

Flood inundation models are central components in any flood risk analysis system as they
transform the bulk discharge outputs from flood-frequency analyses or rainfall-runoff mod-
els into distributed predictions of flood hazard in terms of water depth, inundation extent and
flow velocity. Predictions may be dynamic in time and can be derived from a range of codes
which vary in complexity from non-model approaches, such as fitting a planar surface to dig-
ital elevation data, through to numerical solutions of fluid dynamics equations derived from
considerations of mass and momentum conservation.
Whilst such models are parsimonious in terms of their data requirements and number of uncon-
strained parameters relative to other environmental physics, their underlying equations may be
non-linear. Moreover, the data sets that they do require may be subject to complex, but poorly
known errors that may vary markedly in time and space. As a consequence, considerable re-
search has, in recent years, sought to understand and better estimate these uncertainties in order
to improve flood risk analysis.
Typically, uncertainties in hydrodynamics models stand are classified as: parametric (or epis-
temic) uncertainty, arising from incomplete knowledge of the correct settings of the models
parameters; input data uncertainty, arising from incomplete knowledge of the true value of the
initial state and forcing, usually linked to the aleatory nature of the physics; and structural un-
certainty, which is the failure of the model to represent the system, even if the correct parameters
and inputs are known. Together, these three components represent a complete probabilistic de-
scription of the informativeness of the model for the underlying system. But in practice, all are
extremely challenging to specify.

In this study, we consider both epistemic and aleatory uncertainties by investigating the effect
of two uncertainty sources on water level calculation for extreme flood event, respectively the
roughness coefficient and the upstream discharge.
On the one hand, the estimation of the roughness is difficult because it is a lumped parameter
that mostly reflects the flow resistance of the river. Since the roughness coefficient has an ex-
tensive effect on flow analysis of a river, including computation of the water level and velocity,
its accurate estimation is important for prediction of the water level during flooding. Because of
its importance, various efforts have been made to quantify the roughness coefficients of rivers
in an objective manner. Among them, an element-based method [9] and empirical equations
that relate the roughness coefficient either to bed material [32] or to relative depth [5] are rep-
resentative. However, owing to the diversity and irregularity of natural rivers, prediction of the
roughness coefficient for a specific river reach using these methods is not simple. Thus, until
now, field measurements have been made either to directly estimate the roughness coefficient
[7] or to provide references [2, 18]. However, there remain uncertainties whether using the
methods referred to above or using field measurements. From a practical viewpoint, water level
and discharge as variables computed by numerical modeling are influenced by uncertainty in
estimating the roughness coefficient. Conducting simulation of dam breakage flow for the Teton
Dam, [13] showed that variation in calculated flood flow water depth was less than 5% with a
20% change in the roughness coefficient. He therefore argued that even if uncertainty in Strick-
lers roughness coefficient is large, its effect on the water depth might be reduced considerably in
the process of computation. These conclusions should be deeply investigated in the context of
flood simulation, on our own river test case, characterized by long homogeneous friction zones
calibrated in high flow.
On the other hand, inundation models require the specification of boundary conditions, which
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are typically the greatest source of aleatory and epistemic uncertainty when simulating the an-
nual exceeding probability of inundation. Flow at the upstream boundary of the river is often
the most important boundary condition, although most applications will require (unless using a
kinematic solution) or benefit from downstream-level boundaries (e.g. tidal reaches). In loca-
tions where they are available, gauging stations are typically the most accurate source of river
flow and level data. However, the ratings at these stations, that convert observed levels to flows,
are usually based on low to medium flow observations, necessitating an uncertain extrapolation
of the rating for high flows. Rating errors may be especially large when flow is out of bank.
Where gauging stations are not available or spatially sparse, hydrological models can be used
to simulate upstream discharges. However, despite much effort, rainfall-runoff models are still
very uncertain, especially where calibration/validation data are lacking.

Subsequently, once the sources of uncertainties have been identified, they must be propa-
gated in the model. The Monte Carlo (MC) methods are the most common techniques used for
uncertainty propagation (UQ) [15]. This framework allows to estimate standard statistics on
the model output, e.g. expectation, standard deviation, quantiles or probabilities of exceeding a
given threshold. It also makes it possible to estimate sensitivity indices representing the shares
of output uncertainty attributable to the different uncertain input parameters, e.g. Sobol’ in-
dices where output uncertainty is measured in terms of variance [30]. MC is simple and highly
adapted to massively parallel computational resources. Yet, its convergence is slow as it scales
inversely to the square root of the sample size and its cost gets prohibitive for expensive models.
In this respect, surrogate models such as Gaussian process model (GP) have received tremen-
dous attention in the last few years, as it allows one to replace the original expensive model by
a surrogate which is built from an experimental design of limited size [25]. Then the surrogate
can be used to compute the UQ study in negligible time. In particular, [27] have shown that,
for a 1D hydraulic model, on the Garonne river section that we consider and stationary flow,
it features similar performance to estimate statistics by Monte-Carlo random sampling when
friction and input forcing uncertainties are taken into account. The accuracy of the water level
correlation matrix and sensitivity Sobol’ indices estimated with the GP surrogate was assessed
with respect to a classical MC estimate based on a large data set. This article is a reference for
us because it involves the same section of Garonne river, the same types of uncertain variables
(friction and upstream flow) and the same family of surrogate model as those considered in our
work. Our work can be seen as an extension to two-dimensional flow modelling and floodplain
characterization.

The present study extends the surrogate model approach in hydraulics to 2D modeling tak-
ing into account the dynamics of the flood plain. Section 2 presents the hydrodynamics solver
TELEMAC-2D, the Garonne test case used in this article and the associated uncertainties. Sec-
tion 3 presents the GP surrogate strategy based on the reduction of the dimension of the output
space with a Proper Orthogonal Decomposition (POD). This section also presents the metrics
used to assess the quality of the surrogate along with the sensitivity indices based on output
variance decomposition. Results are presented in Section 4. Conclusions and perspectives are
finally given in Section 5.
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2 MODEL: TWO-DIMENSIONAL FLOW OF THE GARONNE RIVER UNDER UN-
CERTAINTY

2.1 Physical model

The Shallow Water Equations (SWE), also called depth-averaged free surface flow equations,
are commonly used in environmental hydrodynamics modelling [12]. They are derived from
the Navier-Stokes equations [31] and express mass and momentum conservation averaged in
the vertical dimension. The non-conservative form of the equations are written in terms of the
water depth (h) and the horizontal components of velocity (u and v):

∂h

∂t
+ div (hu) = 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g∂H

∂x
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1

h
div
(
hνe
−−→
grad (u)

)
(2)
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∂x
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and: ρw/ρair [kg.m-3] is the water/air density, Patm [Pa] is the atmospheric pressure, Uw,x

and Uw,y [m.s-1] are the horizontal wind velocity components, CDZ [-] is the wind influence
coefficient, Ks [m

1
3 .s-1] is the river bed and floodplain friction coefficient, using the Strickler

formulation [?]. Fx and Fy [m.s-2] are the horizontal components of external forces (friction,
wind and atmospheric forces), h [m] is the water depth, H [m] is the water level (h = H − zf
if zf [m] is the bottom level), u and v [m.s-1] are the horizontal components of velocity and
νe [m2.s-1] is the water diffusion coefficient. div and

−−→
grad are respectively the divergence and

gradient operators.
To solve the system of equations (Eq. (1) to Eq. (3)), initial conditions h(x, y, t = 0) =

h0(x, y); u(x, y, t = 0) = u0(x, y); v(x, y, t = 0) = v0(x, y) are provided along with
boundary conditions (BC) at surface, at bottom and at upstream and downstream frontiers
h(xBC , yBC , t) = hBC(t).

2.2 Study area

The study area extends over a 50 km reach of the Garonne river (France) between Tonneins
(upstream), downstream of the confluence with the river Lot, and La Réole (downstream) (see
Figure 1). This part of the valley was equipped in the 19th century with infrastructure to protect
the Garonne flood plain from flooding such as that occurred in 1875. A system of longitudinal
dykes and weirs was progressively constructed after that flood event to protect the floodplains,
organize submersion and flood retention areas. Protections on the Garonne river form a system
of successive storage areas for the flood plain beyond the dikes.

2.3 Uncertainty characterization

The hydraulic variables are discretized on an unstructured triangular mesh over the two-
dimensional study area. We note h the vector of the water level over the p = 41416 nodes of
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Figure 1: Study area of the Garonne river

the mesh. It represents our quantity of interest (QoI). In this study, the impact of roughness
and upstream flow on the discretized water level h is quantified in the context of extreme flood
event:

• The roughness coefficient defined according to 4 areas. Indeed, T2D was calibrated for
high flow in [4] using steady-state water surface profiles at high discharge, from bank-
full discharge in the main channel (2 500 m3.s−1) to bank-full discharge in the overbank
flow channel between dykes. In the floodplains, the roughness coefficient Ks,1 is selected
as an area with cultivated fields all around the river with a Strickler coefficient of 17
m1/3.s−1. Classically, according to the available expert knowledge, the friction coefficient
is contained in an interval bounded by physical values depending on the roughness of soil
material.

For the main channel, the Strickler roughness coefficient was split into three different
areas:

– from Tonneins to upstream of Mas d’Agenais, Ks,2: 45 m1/3.s−1,

– from upstream of Mas d’Agenais to upstream of Marmande, Ks,3: 38 m1/3.s−1,

– from upstream of Marmande to La Réole, Ks,4: 40 m1/3.s−1.

The distribution of Strickler roughness coefficient is chosen uniform and the interval is
set to cover the range of calibration values.

• The upstream discharge is assumed to follow a Gaussian distribution centered around the
thousand return period 8 490 m3.s−1with a standard deviation of 700 m3.s−1. The study
is thus focused on extreme flood events that activate the flood plains.

Tab. 1 summarizes the considered input uncertainties.
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Variable Distribution Units
Q U [2 500, 10 000] m3.s−1

Ks,1 U [5, 20] m1/3.s−1

Ks,2 U [40, 50] m1/3.s−1

Ks,3 U [33, 43] m1/3.s−1

Ks,4 U [35, 45] m1/3.s−1

Table 1: Distributions of the input variable uncertainties.

2.4 Computing environment

In this work, hydrodynamic is provided using TELEMAC-2D (T2D) depth-averaged hydro-
dynamic model1. It solves the SWE in two dimensions with an explicit first-order time integra-
tion scheme, a finite element scheme and an iterative conjugate gradient method. In each point
of the mesh, T2D gives the water depth and the vertically average horizontal velocity field [17].
T2D was developed initially by the National Hydraulics and Environment Laboratory (LNHE)
of the Research and Development Directorate of EDF, and is now managed by a consortium.
The software comes with an API to modify the values of the uncertain parameters in a non-
intrusive way.

The surrogate model construction as well as the sensitivity analysis was carried out using the
BATMAN-Open-TURNS (BATMAN-OT) library2. This library (developed at CERFACS and
CECILL-B licensed) provides a convenient, modular and efficient framework for design of ex-
periments, surrogate model and uncertainty quantification [26]. It relies on open source python
packages dedicated to statistics (openTURNS3 [3] and scikit-learn4 [23]). It also implements
advanced methods for resampling, robust optimization and uncertainty visualization.

In terms of infrastructures, CERFACS’s cluster, Nemo, has been used to run T2D simula-
tions. The Nemo cluster includes 6,912 cores distributed in 288 compute nodes. The ECU
power peak is 277 Tflop/s. On this architecture, simulating the river and flood plain dynamics
for the test case presented in Sect. 2.2 over 3 days, takes about 6 minutes on 15 cores.

3 AN EFFICIENT UQ FRAMEWORK FOR COSTLY TWO-DIMENSIONAL SIMU-
LATOR

The Monte Carlo (MC) framework is the most common framework used for uncertainty
quantification, due to its simplicity and good statistical results. It is theoretically applicable
whatever the complexity of the deterministic model or the desired statistical estimator. However,
the required sample size increases squarely with the estimator accuracy and makes this approach
rather impracticable when the computational cost of each run of the model, like T2D, is non
negligible. One way to lower the computationally demanding is to replace, on one side, the T2D
model by a surrogate model [11], on the other side, the pure random sampling by alternative
sampling methods such as the Latin Hypercube sampling approach [16].

1More information can be found on the website www.opentelemac.org.
2BATMAN-OT can be downloaded from https://gitlab.com/cerfacs/batman.
3More information on: http://www.openturns.org.
4More information on: https://scikit-learn.org.
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GOEURY, Sébastien BOYAVAL

3.1 Build a surrogate model with spatial output

The surrogate model based on Gaussian process regression (GP) [25] has been adopted in the
following. We have chosen this metamodel to the detriment of others for two reasons. The first
one is its small number of hyperparameters: about one per input parameter. The second one is
that it provides a measurement of its model error which would be of interest in our future work,
for optimization and data assimilation problems, based on methods as expected improvement
[19]. While surrogate models offer a low cost alternative to costly models, their formulation
is challenging in high dimension for inputs and outputs. In the present case, the size of the
uncertain input space is small and resumes to 5 scalars. Yet, the quantity of interest is 2D and
discretized over more than 41 000 points. The output space is reduced in order to limit the cost
of the surrogate formulation and the spatial coherence of the later, using a Proper Orthogonal
Decomposition (POD) strategy [24]. POD is a post-processing technique that takes a given set
of data and extracts basis functions, that contain as much ”energy” as possible. The meaning
of ”energy” depends on which kind of POD is used [8]. Here, only POD based on snapshot
method [29] is considered.

We propose to build a surrogate model combining POD and GP surrogate model. So we call
it “POD+GP surrogate model”. The corresponding algorithm is presented as follows:

1. build a learning datasetDl =
(
x(i),h(i)

)
1≤i≤Nl

of sizeNl where the design of experiments(
x(i)
)
1≤i≤Nl

is a Latin hypercube sample (LHS) [21] with x = (Q,Ks,1, Ks,2, Ks,3, Ks,4)

and h(i) is the water level computed by T2D over the mesh at x(i);

2. decompose the sampled output vector h by achieving a POD on the centered output learn-

ing matrix H =

(
h
(i)
j −N−1l

Nl∑
k=1

h
(k)
j

)
1≤i≤Nl
1≤j≤p

and derive the most significant compo-

nents; then, any sampled local water level h(i) can be approximated by a weighted sum
of these components where weights depend on the input vector value x(i);

3. for each component, approximate the relation between its sampled coefficient and the
corresponding sampled model inputs by means of a GP surrogate model;

4. formulate the POD+GP surrogate model ĥ(x) as the weighted sum of the more significant
POD components where weights are the GP surrogate models depending on x.

3.1.1 Reduction of the output dimension by proper orthogonal decomposition (POD)

The key idea of the snapshot method [29] is to achieve a POD of the centred snapshot matrix

H =

(
h
(i)
j −N−1l

Nl∑
k=1

h
(k)
j

)
1≤i≤Nl
1≤j≤p

∈ MNl,p(R), which gathers the water level computed at

each mesh point for the Nl snapshots, from which the sample mean is substracted.
Based on many observations of a random vector, the POD gives the orthogonal directions

of largest variances (or modes) in the probabilistic vector space in order to reduce the vector
space dimension [6]. Note that for simplicity purpose, the adjective centred is dropped in the
following when referring to the centred snapshot matrix H.
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The POD of the snapshot covariance matrix C = N−1l HT H ∈ Mp(R) is equivalent to the
Singular Value Decomposition (SVD) of the snapshot matrix H:

H = U Λ VT =

rp∑
k=1

λk uk vT
k , (4)

where U ∈MNl
(R) is an orthogonal matrix diagonalizing HHT (uk, the kth column of U, is a

left singular vector of H), where V ∈ Mp(R) is an orthogonal matrix diagonalizing HTH (vk,
the kth column of V, is a right singular vector of H), and where Λ ∈ MNl,p(R) is a rectangular
diagonal matrix including rp = min(Nl, p) singular values on its diagonal. The singular values
{λk}1≤k≤rp are the square roots of the eigenvalues of C. Note that in this study, since the size
of the training set Nl is lower than the number of mesh points p = 41 416, the rank of H is here
rp = Nl.

At the kth mesh point, the snapshot hk(x(i)) can then be retrieved as a linear combination of
rp modes {Ψi}1≤i≤rp:

hk
(
x(i)
)

=
(
U Λ VT

)
ki

= Uk:

(
Λ VT

)
:i

=

rp∑
j=1

γk,j Ψj

(
x(i)
)
, (5)

where for any j ∈ {1, . . . , Nl}, γp,j := Uk,j and Ψj

(
x(i)
)

:=
(
ΛVT

)
j,i

.
From that, we want to approximate each relation x→ Ψj(x) by a GP surrogate model Ψgp,j

from the dataset
(
x(i),Ψj

(
x(i)
))

1≤i≤Nl
in order to propose the following POD+GP surrogate

model:

ĥk(x) =

rp∑
i=1

γk,i Ψgp,i(x), (6)

This POD+GP surrogate model requires the construction of rp GP surrogate models.

3.1.2 Learning of the significant POD modes by Gaussian process (GP) modelling

As stated by [25], a GP is a random process (here the mode Ψi) indexed over a domain
(here Rd), for which any finite collection of process values (here

{
Ψi

(
x(j)
)}

1≤j≤Nl
) has a joint

Gaussian distribution. Concretely, let Ψ̃i be a Gaussian random process fully described by its
zero mean and its correlation πi:

Ψ̃i(x) ∼ GP
(
0, σ2

i πi(x,x
′)
)
, (7)

with πi(x,x′) = E
[
Ψ̃i(x)Ψ̃i(x

′)
]
. In our case, the correlation function π (or kernel) is chosen

as a squared exponential:

πi(x,x
′) = exp

(
−‖x− x′‖2

2 `2i

)
, (8)

where `i is a length scale describing dependencies of model output between two input vectors
x and x′, and where σ2

i is the variance of the output signal. Squared exponential kernel leads
to satisfying results but other kernel functions could have been considered, such as a decreas-
ing exponential one or a Matérn one – with their associated hyper-parameters. The choice of
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the kernel is still an open problem and can be mitigated using the available information on
the problem. The square exponential kernel leads to very smooth, thus stable results. Further-
more, it implies that the model is exact at sample points; it does not introduce any other strong
assumptions, hence its wide usage among practitioners.

Then the surrogate model of interest is the mean of the GP resulting of conditioning Ψ̃i by
the training set

{
Ψi

(
x(k)
)}

1≤k≤Nl
. For any x∗ ∈ Rd,

Ψgp,i(x) =
N∑
k=1

βk,i πi
(
x,x(k)

)
, (9)

where βk,i = (Πi + τ 2 INl
)
−1 (

Ψi

(
x(1)
)
. . .Ψi

(
x(Nl)

))T with Πi =
(
πi
(
x(j),x(k)

))
1≤j,k≤Nl

,
and where τ (referred to as the nugget effect) avoids ill-conditioning issues for the matrix Π.
The hyperparameters {`i, σi, τ} are optimized by maximum likelihood applied to the data set
DN using the L-BFGS-B algorithm [33].

3.1.3 Quality measures for the POD+GP surrogate model

In the present study, two common error metrics are used to assess the quality of the surrogate
water level both on the entire mesh (global approach) and at each point of the mesh (local ap-
proach): the root mean square error (RMSE) and the predictive coefficient (Q2). This validation
is carried out over an input-output validation dataset Dv of size Nv.

Root mean square error (RMSE)

The RMSE is used to measure the accuracy of the model, it should be 0 when the model is
perfect. At the kth given mesh node, it is defined as the square root of the mean square error
(MSE) measuring the square distance between the surrogate model and the reference model:

MSEk(Dv) = N−1v

Nv∑
i=1

(
h
(i)
k − ĥ

(i)
k

)2
and RMSEk(Dv) =

√
MSEk(Dv) (10)

Their global counterpart are: MSE(Dv) = p−1
∑p

k=1 MSEk(Dv) and RMSE(Dv) =
√

MSE(Dv).

Predictive coefficient (Q2)

At the kth mesh node, the Q2 predictive coefficient is defined as:

Q2,k = 1− MSEk(Dv)

MSEk(Dv; mean)
(11)

where MSEk(Dv; mean) = N−1v

∑Nv

i=1

(
h
(i)
k − h

(i)
)2

is the MSE of the “averaging model” re-
turning the mean of the learning outputs whatever the input parameter value.
The global counterpart of MSEk(Dv; mean) is MSE(Dv; mean) = p−1

∑p
k=1 MSEk(Dv; mean).

Thus, the global counterpart of Q2,k is:

Q2 = 1− MSE(Dv)

MSE(Dv; mean)
. (12)
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The predictive coefficient measures the performance of the surrogate model with respect to
the simplest one which consists in averaging the learning output values. When Q2 is lower
than (resp. equal to) zero, the surrogate is worse than (resp. equal to) the learning output
values average. When Q2 is equal to one, the surrogate interpolates the validation dataset.
In practice, the surrogate is deemed appropriate when Q2 is greater than 0.8. The predictive
coefficient is also found under the name of Nash-Sutcliffe model efficiency coefficient in the
hydrological literature where is assesses the predictive capacity of the simulated discharge over
a time window with respect to observed discharges [22].

3.2 Quantify and explain the output uncertainty due to input uncertainty propagation

Once the model is built and validated, it can be used instead of the reference model in an
uncertainty quantification study. After propagating the input uncertainties through the surrogate
model by means of specific Monte Carlo methods, we can conduct a statistical analysis on the
output uncertainty as well as a sensitivity analysis to explain how the uncertain input parameters
contribute to this output variability.

3.2.1 Statistical analysis on the output

Using a standard MC approach on the validation data set Dv, the mean value and standard
deviation of the water level at the kth mesh point are formulated as:

µk =
1

Nv

Nv∑
i=1

ĥ
(i)
k and σk =

√√√√ 1

Nv − 1

Nv∑
i=1

(
ĥ
(i)
k − µk

)2
. (13)

3.2.2 Sensitivity analysis on the output with respect to the inputs

Sobol’ indices [30] are commonly used for sensitivity analysis. They provide the shares of
the QoI variance V attributable to the different uncertain inputs. Under the hypotheses that
random input variables are independent, here the roughness coefficients and the upstream flow,
and the random QoI is square integrable, here the water level h, the decomposition of the QoI
reads:

V =
d∑

i=1

V{i} +
d∑

j=i+1

V{i,j} + · · ·+ V{1,2,...,d} =
∑

J⊂{1,2,...,d}

VJ , (14)

where V := Var [QoI], Vi := V [E[QoI|Xi)], Vij := V [E[QoI|XiXj]] − Vi − Vj and more
generally, for any I ⊂ {1, . . . , d}, VI := V [E[QoI|xI ]]−

∑
J⊂I s.t. J 6=I VJ . Then, we obtain:

1 =
d∑

i=1

S{i} +
d∑

j=i+1

S{i,j} + · · ·+ S{1,2,...,d} =
∑

J⊂{1,2,...,d}

SJ , (15)

where for any J ⊂ {1, 2, . . . , d}, SJ = VJ

V is called a Sobol’ index and belongs to the interval
[0, 1]. S{i} is the first order Sobol’ index corresponding to the ratio of output variance due to
the ith input parameter uniquely, and S{ij} is the second-order Sobol’ index describing the ratio
of output variance due to the ith parameter in interaction with the j th parameter. Also the total
Sobol’ index that corresponds to the whole contribution of the ith input parameter reads:

STi
=

∑
I⊂{1,...,d}

I3i

SI . (16)
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The computation of first order Sobol’ indices requires simple integration, those of the second
order requires double integration, and so on. Many Monte Carlo techniques exist to estimate
these integrals. In this study, the Sobol’ indices are estimated using the algorithm proposed in
[28].

Lastly, we note that the expression (14) is defined for a scalar QoI, such has the water level
hk at mesh node k ∈ {1, 2, . . . , p} where p is the mesh size. Consequently, we can easily plot
the different Sobol’ indices over the mesh on which is defined the model output. Furthermore,
this information can be summarized using the generalized Sobol’ indices [20]:

∀J ⊂ {1, 2, . . . , d}, SJ =

p∑
k=1

V[k]S[k],J

p∑
`=1

V(`)
[k]

. (17)

4 RESULTS

4.1 Learning and test samples

Figure 2: Latin Hypercube Sampling (LHS) DoE for a 300-sample data set, along (Ks,1, Ks,3, Q) directions on
the left panel and along (Ks,3, Q) directions on the right panel.

The design of experiment (DoE) for the training and validation data set was generated using
Latin Hypercube Sampling (LHS) [21] which is a statistical method for generating a near-
random sample of parameter values from a multidimensional distribution. Considering d the
number of input variables, LHS strategy scales as o(d) while other strategies require a larger
number of samples; for instance to insure the convergence of first order statistics [10]. The LHS
space-filling experimental design is shown in Fig. 2, it is associated with a limited computational
cost. While more advanced sampling method could be used, LHS strategy was deemed efficient
for the present study.

4.2 Surrogate model

The LHS strategy has been applied twice. A first time to build a 2000-sample training set
and a second one to create a 1000-sample validation set. Here, the GP kernel was prescribed to

254



Siham EL GARROUSSI, Matthias DE LOZZO, Sophie RICCI, Dider LUCOR, Nicole GOUTAL, Cédric
GOEURY, Sébastien BOYAVAL

a Matern(2.5) function. The validation set was only used to assess the quality of the surrogate
model with RMSE and Q2 error metrics.

Figure 3: Principal component analysis

The dimension of the output space was reduced with a POD in order to limit the cost of
the GP surrogate. The number of modes, also called principal components, to be retained is
justified by two criteria taken into account:

• Elbow criterion: on the scree of the POD modes, there is a decrease (elbow) followed by
a more regular decrease. In our case, as shown in figure 3, a decrease occurs at the fourth
mode, then a regular decrease from the fifth mode. Thus only the first four modes are of
interest.

• Kaiser’s criterion: only those modes whose inertia is greater than the average inertia
should be retained. This criterion leads us to select 4 modes, explaining 99.6% of the
total inertia. Indeed, the first principal component explains 95.84% of the total inertia,
the second 1.80%, the third 1.46% and the fourth 0.48%.

studyThe cost of the GP surrogate significantly decreases when the dimension of the output
is reduced5 (6 times smaller) applying the POD, as presented in Tab. 2. The output dimension
is indeed reduced from 41 416 elements to 4 components that explain 99.6% of the variance of
the QoI. But, the physical interpretation of the different modes is not always obvious.
As displayed in Fig. 4, the first mode, which explains 95.84% of the output variability, seems
to represent the effect of the upstream discharge on the average water level height. Indeed, this
component is essentially negative thus its weighting will increase everywhere the average water
level height if negative coefficient or decrease everywhere the average water level if positive
coefficient. While the second mode, which explains 1.80% of the output variability, seems to

5The remaining cost can be considered significant compared to linear surrogate models such as polynomial
chaos expansion. This situation is well-known and naturally explained by the learning sample size increasing
the cost of inverting the covariance matrix. For prediction, this surrogate model is as fast as the others and also
provides a measure of its error.
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Figure 4: Principal component analysis

represent the effect of main channel flow Strickler friction coefficients on the average water
level height as it allows to distinguish the three friction areas defined in section 2.3.
To give more meaning to the principal modes of the decomposition, perspective of our work
could stand in the representation of the learning data set on the bi-dimensional sub-spaces
spanned by couple of modes, e.g. visualizing the learning data set in a plot with the first mode
on the x-axis and the second one on the y-axis.

GP POD+GP
CPU run time (h) ≥ 12 2.5

Table 2: CPU run time comparison between GP without and with POD.

The POD+GP surrogate quality is very good with respect to global error metrics RMSE =
0.8 cm and Q2 = 0.99748. Locally, the quality deteriorates near the boundary of the catchment
area as well as along the dikes as shown in Fig. 5. The heterogeneity of the mesh with small
cells in the river bed (≤ 40 m), near the dikes (≤ 80 m) and larger cells in the flood plain
(≤ 150 m) should be noted and may hide some local failures of the surrogate in the global
RMSE and Q2 criteria.
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Figure 5: Root mean square error

4.3 Sensitivity analysis with the POD+GP surrogate

The POD+GP surrogate is used to carry out a variance-based sensitivity analysis (SA) over
the entire simulated area, with a focus on mesh node 29 515 where Marmande, a city prone to
flooding, is located. The POD+GP surrogate allows for a reliable estimation of first and second
order statistical moments at Marmande as shown in Tab. 3: the water level mean and standard
deviation estimated from the direct model T2D and surrogate are in good agreement with an
under estimation of 1.3% for the mean computed with the surrogate.

Given the statistical distributions for the input variables, the SA at Marmande highlights
that most of the water level variance is explained by the upstream discharge Q and to a lesser
extend, by the Strickler friction coefficient Ks,4 prescribed between Marmande and La Role
as displayed in Fig. 6. At this location, the floodplain friction coefficient Ks,1 and the friction
coefficients upstream of Mas d’Agenais (Ks,2) and upstream of Marmande (Ks,3) have barely
no impact on the water level. It should be noted that the bootstrap method [1] is used to estimate
the variance of the Sobol’ indices, this variance is represented by the black error bars in Fig. 6.
These indicate that the computation of the SA indices is converged and reliable. It should also
be noted that for each input variable, the first (S) and total Sobol’ (ST ) indices at Marmande
are equal, meaning that, at this location, the multivariate impact of the input on the water level
is minimal.

POD+GP T2D
Mean (m) 21.57 21.54
Standard deviation (m) 0.24 0.24

Table 3: Statistical moments of the water level height in Marmande.

Fig. 7 displays the mean and the standard deviation of the water level over the 2D domain
estimated with the POD+GP surrogate. The mean varies between 0 m near the limits of the
domain and 21.57 m at Marmande, where it reaches its maximum. In the floodplain, the mean
water level ranges from 3.21 m and 7.8m close to the dikes. The water level standard deviation
ranges from 0 m to 0.4 m in the floodplain between Mas d’Agenais and Marmande, where the
flow is highly bi-dimensional.
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Figure 6: First (S) and total (ST ) Sobol’ indices estimated with POD+GP surrogate at Marmande.

Figure 7: a- Mean water level, b- standard deviation of the water level, estimated with the POD+GP surrogate.

The 2D computation and representation of first Sobol’ indices confirms that the variance of
the water level is mostly explained (81 % on average) by the input discharge as shown in Fig. 8
and Fig. 9. The floodplain friction coefficient Ks,1 has no impact on the analysis, the upstream
friction coefficient in the river bed Ks,2 has a small impact on the water level close to Mas
d’Agenais, the friction coefficient Ks,3 between Mas d’Agenais and Marmande explains up to
10 % of the water level variance close to Marmande and the downstream friction coefficientKs,4

has an impact over the entire domain with most significance at the upstream and downstream
boundaries. As the sum of the first Sobol’ indices is smaller than 1, higher order Sobol’ indices
are non zero, meaning that multivariate effects between Q and Ks explain the remaining part of
the water level variance.

5 CONCLUSION AND PERSPECTIVES

In this paper, an uncertainty quantification study was carried out with a 2D numerical solver
for the Shallow Water Equations on a section of the Garonne river. It consisted in building a
Gaussian process surrogate model on a POD-reduced 2D water level output field.

The surrogate model was formulated with respect to friction coefficients and input discharge,
the distribution for friction is supposed to be uniform and centered around calibration values
while the discharge distribution is supposed to be Gaussian, centered around a high flood value.
The construction of the surrogate was achieved over a 2000-sample training data set and it was
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Figure 8: First order Sobol’ sensitivity indices computed with the POD+GP surrogate with respect to the input
discharge Q.

Figure 9: First order Sobol’ sensitivity indices computed with the POD-GP surrogate with respect to the friction
coefficients Ks,1 (flood plain), Ks,2 upstream Mas d’Agenais, Ks,3 (between Mas d’Agenais and Marmande and
Ks,4 (downstream of Marmande).

validated over a 1000-sample data set. The dimension of the quantity of interest was reduced
from 41416 elements to 4 principal components using the POD which has resulted in a sig-
nificant reduction of the computational cost of the surrogate. The correlation kernel was here
prescribed as a Matern(2.5) function. The quality of the POD+GP surrogate model was as-
sessed, the surrogate was deemed satisfying with Q2 metrics close to 1 for the entire domain
and RMSE smaller than 0.01m. The quality of the surrogate decreases near the dikes. The sur-
rogate was used to perform a global sensitivity analysis based on variance decomposition. It was
demonstrated that the upstream discharge is the predominant input variable and explains more
than 80 % of the water level variance. The downstream friction coefficient is also a significant
input with heterogeneous influence.

It is essential to mention that the conclusions for this study are strongly related to the hy-
pothesis made for the statistical distribution of the inputs. For instance, further study should
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investigate wider ranges for flood plain coefficients that are highly unknown and may signifi-
cantly over time as flood events occur on the catchment.

The results of the sensitivity analysis allows for a better understanding of the physics as well
as classification of major sources of uncertainty. The latter is of great importance in the context
of data assimilation where the control vector should be properly defined to include key factor
to improve the model outputs. It was here highlighted that in order to improve water level at
Marmande, the control vector should include at least the upstream discharge and the down-
stream friction coefficient. A perspective for this study thus stands in the implementation of an
ensemble-based data assimilation algorithm to improve input discharge and friction assimila-
tion water level observations in the system. Additionally, the cost of the ensemble integration
should be reduced using the surrogate model in place of the direct hydraulic solver.
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Abstract. Model inference for dynamical systems aims to estimate the future behaviour of
a system from observations. Purely model-free statistical methods, such as Artificial Neural
Networks, tend to perform poorly for such tasks. They are therefore not well suited to many
questions from applications, for example in Bayesian filtering and reliability estimation.

This work introduces a parametric polynomial kernel method that can be used for inferring
the future behaviour of Ordinary Differential Equation models, including chaotic dynamical
systems, from observations. Using numerical integration techniques, parametric representa-
tions of Ordinary Differential Equations can be learnt using Backpropagation and Stochas-
tic Gradient Descent. The polynomial technique presented here is based on a nonparametric
method, kernel ridge regression. However, the time complexity of nonparametric kernel ridge
regression scales cubically with the number of training data points. Our parametric polynomial
method avoids this manifestation of the curse of dimensionality, which becomes particularly
relevant when working with large time series data sets.

Two numerical demonstrations are presented. First, a simple regression test case is used to
illustrate the method and to compare the performance with standard Artificial Neural Network
techniques. Second, a more substantial test case is the inference of a chaotic spatio-temporal
dynamical system, the Lorenz–Emanuel system, from observations. Our method was able to
successfully track the future behaviour of the system over time periods much larger than the
training data sampling rate. Finally, some limitations of the method are presented, as well as
proposed directions for future work to mitigate these limitations.
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1 INTRODUCTION

Dynamical systems play a crucial role in mathematical modelling across all areas of physics,
engineering and applied mathematics. The equations used in some particular application do-
main are typically derived either phenomenologically [23] or from first principles such as the
conservation of energy, mass or momentum (as in mechanics [27]). The structure of the equa-
tions should describe the fundamental aspects of the system in question as much as possible. On
the other hand, constitutive parameters are often hard to know explicitly and need to be learnt
from data. As such, it is necessary to balance rigidity and flexibility when modelling a system.

This paper considers the problem of finding a model of a dynamical system, represented by
coupled Ordinary Differential Equations (ODEs), from observations. This is a particular form
of inverse problem (as in [25]). The time evolution of many dynamical systems is described
by polynomial equations in the system variables and their derivatives. We introduce a form
of parametric polynomial kernel regression (related to Radial Basis Function networks [21]).
This technique was developed during the search for an algorithm that is able to be trained
continuously on streaming data as opposed to complete trajectories. Hidden parameter models
(with unobserved variables) are not addressed but the techniques shown here could be extended
to such cases in the future, augmenting probabilistic Bayesian filtering methods (as in [16]).

Kernel ridge regression is a nonparametric method for fitting polynomials to data without ex-
plicitly calculating all polynomial terms of a set of variables [18, 21]. There are two limitations
of this approach when fitting models to time series data. First, as a nonparametric method, the
computational time complexity scales cubically with the number of observation points. This is
a significant issue when dealing with time series data. Second, it is difficult to compute kernel
ridge regression efficiently using streaming data. While it is possible to continually update the
inverse of a matrix (see [9]), the roughly cubic scaling of the required matrix operations is not
well suited to monitoring high-dimensional systems in a real time data setting. Here, to optimise
our parametric polynomial kernel function representations, Stochastic Gradient Descent (SGD)
is used along with the Backpropagation method (see [3]). This combination of techniques helps
to minimise computational complexity and the amount of explicit feature engineering required
to find a good representation of an unknown ODE.

We represent ODE models parametrically as compute graphs. Compute graphs are used
in Artificial Neural Network (ANN) theory to model complicated nonlinear structures by the
composition of simple functions and are well suited to gradient descent optimisation via the
Backpropagation method. It is demonstrated that numerical integration (both explicit and im-
plicit) can be used to discretise ODE time integrals in a way that allows for the inference of
continuous-time dynamical system models by gradient descent. This is an extension of an
approach that appeared at least as early as [6]. The discretisation procedure is related to the
Backpropagation Through Time method [29], which is used for modelling discrete time series
with so-called Recurrent Neural Networks.

To demonstrate the findings of this paper, two numerical case studies were carried out. The
first is a simple analysis that contrasts the performance of standard ANN techniques with the
proposed kernel method. It is shown that our method had the best extrapolation performance.
A more extensive analysis of the chaotic spatio-temporal Lorenz–Emanuel dynamical system
is also presented. The proposed method is able to recover a maximum likelihood estimate of
the hidden polynomial model. For comparison, a parametric model constructed by direct sum-
mation of polynomial features (without kernels, of the form used in [26]) was also tested. The
parametric polynomial kernel method was able to outperform the direct polynomial expansion,
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accurately predicting the future evolution of a chaotic dynamical system over periods many
times greater than the training interval.

The primary advantage of the technique presented in this paper is that the model represen-
tation in parametric form can avoid the curse of dimensionality and poor scaling with training
set size associated with nonparametric kernel regression. Further, polynomial kernels avoid the
combinatorial explosion that occurs when explicitly computing polynomial series expansions.
Interestingly, the accuracy of the proposed parametric kernel method can be tuned by adjust-
ing the dimension of a set of intermediate parameters. The trade-off for increased accuracy is
additional training time.

2 BACKGROUND ON COMPUTE GRAPH OPTIMISATION

2.1 Compute graphs and nonlinear function representations

The parametric polynomial regression technique introduced in this paper is built on the
framework of so-called compute graphs. This section provides the background theory required
for later parts of this work. Compute graphs are very general structures which define the flow of
information over a topology and as such provide a convenient parametric representation of non-
linear functions. In particular, compute graphs can be coupled with Automatic Differentiation
[20] and the Backpropagation algorithm (an application of the chain rule) to allow for gradient-
based optimisation. Stochastic Gradient Descent is the most common form of optimiser used in
this context and is briefly described in this section.

Artificial Neural Networks (ANNs) are a subset of compute graphs (in the sense of discrete
mathematics [7]). Common ANN terminology such as Deep Neural Networks, Boltzmann
Machines, Convolutional Neural Networks and Multilayer Perceptrons refer to different ANN
connectivity, training and subcomponent patterns [3, 8]. The choice of an appropriate ANN
type depends on the problem being solved. This section works with general compute graph
terminology, rather than specific ANN design patterns, as these principles are appropriate for
all ANN architectures.

A (real-valued) compute graph consists of a weighted directed graph, i.e. an ordered pair
G = (V,E) with the following properties:

• V is the finite set of vertices (or nodes) vi. Vertices specify an activation function σi :
R→ R, and an output (or activation) value ai ∈ R.

• E is the set of edges eij . Each edge eij specifies a start vertex, defined to be vi, and an end
vertex, defined to be vj . That is, edges are said to start at vi and terminate at vj . Edges
also specify a weight, Wij ∈ R.

Edges eij can be understood as ‘pointing’ from vi to vj . Incoming edges to a node vi are
all ejk ∈ E with k = i. Similarly, outgoing edges from a node vi are all ejk ∈ E with j = i.
Parents of a node vi refer to all nodes vj such that there is an edge starting at vj and terminating
at vi. Similarly, children of a node vi refer to all nodes vj such that there is an edge starting
at vi and terminating at vj . A valid path of length m starting at v1 and terminating at vm is a
set {v1, v2, · · · vm} of at least two nodes such that there exist edges in E from vi to vi+1 for all
i ∈ [1,m − 1]. A recurrent edge in a compute graph refers to an edge that lies on a valid path
from a node vi to any of its parents. A graph with recurrent edges is said to be a recurrent graph.
An example of a (recurrent) compute graph is shown in fig 1.

Inputs to the compute graph are all those nodes with no incoming edges (i.e. no parents),
{vi|vi ∈ V ∧ @eki ∈ E}. The activation values ai for input nodes vi must be assigned. The
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a1

σ2(z2)

σ3(z3)

σ4(z4)

σ5(z5)

σ6(z6)

σ7(z7)

W12

W13

W24

W34

W35

W63
W56

W47

W57

W67

Figure 1: Example of compute graph. The subscript inside each node denotes the node number.
Arrowheads indicate the direction of the graph edges. The function inside each node refers to
the output function to be applied at the node. Note that node 1 is an input (with value a1) as it
has no parents. Further note that edge W63 is recurrent as there is a cycle formed in the graph
between nodes 3, 5 and 6.

values at all other nodes, vi, in the compute graph are calculated by

zi =
∑

k: vk parent of vi

Wkiak, (1)

ai = σi (zi) , (2)

where zi represents the weighted inputs to a node from all parent nodes and ai represents the
output from a node.

Note that ANNs often define so-called bias units. Bias units allow for inputs to a node to have
their mean easily shifted. A bias input to some node vi can be represented in a compute graph
by creating a set of nodes bi ∈ B, with no parents, that always output a value of 1. Further, each
bi is assigned to be an additional parent of vi by creating an edge from bi to vi with weight Bi

so that

ai = σi


 ∑

k: vk parent of vi

Wkiak +Bi


 . (3)

Bias units will not, however, be explicitly indicated in the rest of this section as they can be
assumed to be implicitly defined in eqn (1).

The composition of simple functions with a compute graph structure allows for complicated
nonlinear functions to be represented parametrically [3].

2.2 Optimisation by Stochastic Gradient Descent and Backpropagation

Optimisation over very large compute graphs representing highly nonlinear functions has
become possible using Stochastic Gradient Descent (SGD) coupled with Backpropagation of
errors [3]. Advanced forms of SGD such as the Adam optimisation technique [15] are useful for
optimising complicated compute graphs. The basic SGD method is described here. Stochastic
Gradient Descent finds a locally optimal set of parameters, θ, by iteratively updating the current
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estimate for the optimal parameters, θi. It does so by moving the current estimate in the direction
of greatest decreasing error, given by the derivative ∇θJ(θi):

θi+1 := θi − η∇θJ(θi), (4)

where η is a small parameter that gives the distance to move in the direction defined by∇θJ(θ).
Iterations are repeated until a specified error tolerance ε > 0 is reached, i.e. until

J(θi) ≤ ε. (5)

Consider the case of approximating some unknown function f(x) by a compute graph that
outputs the function f̃θ(x). The weights θ are taken to be the values of the edge weights Wij for
all e ∈ E. Let the loss functional in this example be given by

J(θ) :=
∑

x

|f(x)− f̃θ(x)|2, (6)

for x in some finite set. Thus, J(θ) is also representable as a compute graph. The graph for
J(θ) contains the graph for f̃θ(x) as a subset. To apply SGD to a compute graph, extended to
contain the terms computing the loss functional, the Backpropagation method (an application
of the chain rule) can be used if two conditions are met:

• All nodal activation functions, σi, must be differentiable.

• The graph must be directed and acyclic, meaning the graph cannot contain any valid paths
from a node to any of its parents, i.e. the graph must not have any recurrent edges.

If the above conditions are satisfied, Backpropagation can compute ∇θJ(θ) via the chain
rule. The basic procedure is outlined here, but a more detailed treatment can be found in [3]. In
the case that the graph is not acyclic, it can be unrolled via a technique referred to as Backprop-
agation Through Time [29].

Backwards error derivatives must be computed at all nodes, vi, in the network:

δi :=
∂J

∂zi
. (7)

For nodes vi in the graph that compute the loss functional J(θ), the derivative δi can be com-
puted directly. Otherwise, assume that node vi has children {wj}Nj=1. Using the chain rule,
the error derivative δi can be calculated by pushing the error derivatives backwards through the
graph from children to parents:

δi =
N∑

j=1

δj
∂zj
∂ai

∂ai
∂zi

=
N∑

j=1

δjWijσ
′
i (zi) . (8)

Given the error derivative terms, the desired error gradients ∇θJ(θ) for θ = {Wij}ij can be
computed at node vj with parents {wk}Mk=1 by

∂J

∂Wij

= δj
∂zj
∂Wij

= δj
∂

∂Wij

(
M∑

k=1

Wkjak

)
= δjai. (9)
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Automatic Differentiation [20] can be used to write efficient computer code for Backprop-
agation. Specifically, Backpropagation is a form of ‘reverse accumulation mode’ Automatic
Differentiation. The above calculations can be organised efficiently by going through the com-
pute graph from output to input nodes. At the time of writing, Tensorflow [1] is a popular
implementation of the algorithms described above. Although other (including gradient-free)
optimisation procedures can be used that are suitable for general compute graphs, SGD with
Backpropagation is typically very computationally efficient when applicable.

3 PARAMETRIC POLYNOMIAL KERNEL REGRESSION

3.1 Overview

Before discussing model inference for ODEs in particular, a parametric polynomial kernel
function representation is introduced. Although ANNs and compute graphs are very effective
at fitting arbitrary functions, standard ANN methods are poorly suited to polynomial func-
tion representation. As typical ANN architectures fit a very large number of parameters, they
are unable to perform sensible extrapolation for even low-dimensional polynomial regression
problems. Polynomial kernel ridge regression using the so-called kernel trick [21] works well
for fitting polynomials but suffers from cubic (that is, O(N3)) computational time complexity.
Gradient-descent compute graph optimisation, as it is a parametric method, provides a way to
optimise large data sets without the computational difficulties faced by nonparametric methods.
While it is possible to build a compute graph that explicitly includes polynomial basis features,
this scales factorially with the number of polynomial features included. In this paper it is shown
that polynomial kernels can be inserted into compute graph structures and optimised by SGD,
avoiding both the combinatorial explosion of polynomial series expansions and the poor time
scaling of nonparametric kernel ridge regression.

3.2 Polynomial kernel ridge regression

Polynomial kernels, typically associated with kernel regression and Support Vector Machines
[21, 18], are functions of the form

K(x, y) = (b〈x, y〉+ c)d (10)

for some b, c ∈ R, d ≥ 1. If the values of y are assumed to be some parameters, the expansion
of the polynomial kernel (for d ∈ N) will, implicitly, yield all polynomial combinations up to
order d.

Kernel ridge regression is a nonparametric method in the sense that the number of parameters
grows with the amount of training data [18]. By contrast, in this paper ‘parametric model’ refers
to a model with a fixed number of parameters. Adopting the notation in [28], the standard form
of ridge regression is as follows. Given observations of an unknown function f : RD → RE at
N locations, {(xi, f(xi))}Ni=1, kernel ridge regression finds an approximation, fk(x), by

f(x) ≈ fk(x) =
N∑

i=1

αiK(x, xi), (11)

where the values αi are termed weights and K(x, xi) is a kernel function. Kernel functions
are a form of generalisation of positive definite matrices (see [18] for additional details). Only
the (real-valued) polynomial kernel in eqn (10) will be discussed in this paper. The weights
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α = (α1, . . . , αN) are calculated using f(x) = (f(x1), . . . , f(xN)) as follows:

α = (K + λI)−1 f(x), (12)

where K ∈ RN×N is the matrix with entries Kji = K(xj, xi) and I is the N by N identity
matrix. The term λ ∈ R is a regularisation term that controls overfitting. Note that if K + λI is
not invertible, then the inverse must be replaced by a pseudo-inverse. In the sense of Bayesian
regression, the term λ represents the scale of Gaussian noise added to observations f(xi) as a
part of the approximation procedure.

The use of kernels for regression as in eqn (11) has the effect of mapping a low-dimensional
problem implicitly into a high-dimensional space. This is a very powerful technique for pro-
jecting data onto high-dimensional basis functions. Unfortunately, as a (typically) dense matrix
must be inverted to calculate α, the computational complexity of standard kernel ridge regres-
sion scales cubically with the number of data points, N . This is a severe limitation when
considering large data sets such as the time series data considered in later sections of this paper.

3.3 Parametric polynomial kernel representation

Instead of calculating an inner product between known values of x and y as in eqn (10) and
inverting a matrix as in eqn (12), this paper demonstrates that a kernel representation can be
found in an efficient way using compute graphs and SGD. Consider the following parametric
representation of a function f : RD → RE with parameters θ ∈ Θ:

fθ(x) = W2 [(W1x+B1) ◦ (W1x+B1)] +B2, (13)

where ◦ denotes elementwise matrix multiplication (or Hadamard product), i.e. A = B ◦ C
means aij = bijcij for the corresponding matrix entries [12]. The remaining terms are de-
fined by W1 ∈ RM×D, B1 ∈ RD, W2 ∈ RE×M and B2 ∈ RE . The parameters B1, B2 are
known as bias weights in the ANN literature [3]. The full set of parameters for this model is
θ = {W1, B1,W2, B2}. The dimension M is an intermediate representation dimension and is
discussed below.

Eqn (13) is a parametric representation of a second-order polynomial kernel. Expanding
eqn (13) explicitly would yield a set of second-order polynomials in terms of xi. However,
using SGD the unknown polynomial expression can be found without the need to know the
expanded polynomial form. The elementwise matrix product acts like the d-th power in eqn
(10). The parameters θ can be trained by SGD and function as parametric representations of
Support Vectors. The term M required to complete the definition of eqn (13) is a hyperparame-
ter representing a choice of intermediate representation dimension and is related to the number
of Support Vectors required to represent the system (as in Support Vector Regression, see [21]).
Increasing the size of M increases the number of parameters but can improve the fit of the
regressor (as is demonstrated empirically in Section 5).

An n-th order polynomial could be fit by taking a larger number of Hadamard products.
Denote the composition of Hadamard products by A ◦n A := A ◦ A ◦ · · · ◦ A (n times). Then,
our approach consists of expressing an n-th order representation of fθ : RD → RE as follows:

fθ(x) = W2 [(W1X +B1) ◦n (W1X +B1)] +B2 (14)

or some similar variation on this theme. The expression in eqn (14) is differentiable in the sense
of compute graphs since all of the operations in eqn (14) are differentiable. Comparing with
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eqns (11) and (12), the parametric form of polynomial kernel regression can be thought of as
an approximation to both the αi and K(x, xi) terms in a single expression. As the parametric
regression form can be optimised by SGD, the cubic scaling of nonparametric kernel ridge
regression is avoided.

3.4 Numerical demonstration on simple regression problem

This section demonstrates the proposed method via the approximation of a simple cubic
function, namely

f(x) := (x− 1)(x+ 1)(x+ 0.5). (15)

The goal of this analysis is to infer the hidden function f(x). Given a set of training data, N
pairs {(xi, f(xi))}Ni=1, the problem is to minimise the loss functional

J(θ) :=
1

N

N∑

i=1

|f(xi)− fθ(x)|2. (16)

For this test problem, N = 25 training data points were sampled uniformly between x = −2
and x = 2.

First, a standard ANN ‘Multilayer Perceptron’ (specifically a three-layer deep, 100 unit wide
perceptron network) was tested. The reader unfamiliar with these terms can see [21] for defini-
tions, but it is sufficient for the purposes of this paper to understand that this perceptron model
computes the function

fθ(x) = W4σ(W3σ(W2σ(W1x+B1) +B2) +B3) +B4 (17)

where W1 ∈ R100×1, W2,W3 ∈ R100×100, W4 ∈ R1×100, B1, B2, B3 ∈ R100, and B4 ∈ R
such that the parameters of this network are θ = {Wi, Bi}4i=1. Additionally, σ(x) denotes the
sigmoid function:

σ(x) :=
1

1 + e−x
. (18)

In eqn (17), σ is applied to vectors componentwise.
Second, the parametric polynomial method in eqn (14) was tested for polynomial orders

n = 2, 3, 4. The parameter M was fixed to 20 for all comparisons.
Both the perceptron model and the parametric polynomial kernel model were trained in two

stages. The Adam optimiser [15] was first run for 1000 iterations with a learning rate of 0.01
and then for an additional 1000 iterations with a learning rate of 0.001. All ANNs and SGD
optimisers were implemented using the Tensorflow software library [1].

Finally, a nonparametric kernel ridge regression estimator of the form in eqn (11) was tested.
This was implemented using the SciKit learn ‘KernelRidge’ function [19] using a third-order
polynomial kernel. Note that this function has additional hyperparameters, α, coef0 and γ.
These were set to 0.1, 10 and ‘None’ respectively. The SciKit documentation describes these
parameters in detail. As with the parametric estimator, the choice of maximum polynomial
degree (d in eqn (12)) is another hyperparameter. For this demonstration, only the known true
value (d = 3) was tested with the nonparametric regression estimator.

The values of J(θ) after running SGD are shown in table 1. The third-order parametric
polynomial loss is ten orders of magnitude lower than the regression loss of the perceptron
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Function representation J(θ)
Multilayer Perceptron 1.12× 10−4

Parametric kernel with n = 2 1.70× 100

Parametric kernel with n = 3 5.95× 10−14

Parametric kernel with n = 4 2.34× 10−1

Nonparametric polynomial kernel 9.68× 10−3

Table 1: Values of J(θ), defined in eqn (16), after optimisation by SGD for the simple regression
task.

network. The lower loss of the n = 3 parametric polynomial method compared to n = 2 and
n = 4 is (of course) expected as the hidden function is a third-order polynomial. This indicates
that several polynomial orders should be tested when applying the proposed technique to other
problems.

The results of the analysis are shown in figs 2 and 3. Each model tested was able to recover
the true form of f(x) in the region of the training data. Relative errors for each method are
shown in fig 4. Both the parametric and nonparametric polynomial methods were also able to
extrapolate well beyond the range of the original data for the n = 3 model. This can be best
seen in fig 3. The perceptron model, by contrast, almost immediately fails to predict values
of the hidden function outside of range of the training data. For inferring hidden polynomial
dynamical systems from observations, where the ability to extrapolate beyond the training data
is essential, the analysis in this section suggests that the parametric polynomial kernel method
can be expected to have performance superior to standard ANN methods.

This analysis also indicates that the loss J(θ) is an effective indicator of extrapolation per-
formance for polynomial kernel methods (at least in this test case). This is not true for the
Multilayer Perceptron model which had a low J(θ) value but poor extrapolation performance.
One must however take care when making assertions about extrapolation performance, as it is
easy to make incorrect inferences in the absence of data.

271



David K. E. Green, Filip Rindler

−3 −2 −1 0 1 2 3
−10

0

10

20

x

y

f(x) = (x− 1)(x+ 1)(x+ 0.5)
Parametric polynomial kernel n = 2
Parametric polynomial kernel n = 3
Parametric polynomial kernel n = 4
Multilayer Perceptron
Nonparametric polynomial kernel
Training data

Figure 2: Comparison of performance of the parametric polynomial kernel method on a simple
regression task. Note that the true hidden function, from eqn (15), is underneath the function
inferred by the n = 3 parametric polynomial. The two coincide because of the virtually perfect
fit. The nonparametric polynomial kernel ridge estimator also closely coincides with the true
f(x). The 25 regression training data points were calculated by sampling uniformly between
x = −2 and x = 2.
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Figure 3: Comparison of performance of the parametric polynomial kernel method on a simple
regression task. This is a zoomed out view of fig 2 and shows that the polynomial kernel
estimators (both parametric for n = 3 and nonparametric) are able to recover the true hidden
function in eqn (15) outside of the range of the training data.
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Figure 4: Comparison of pointwise absolute errors for the simple regression task. Errors are
computed as

∣∣∣y−f(x)f(x)

∣∣∣where f(x) is the true hidden function defined in eqn (15). The parametric
polynomial kernel method has the best performance, followed by the nonparametric polynomial
kernel ridge method. Note that the training data was restricted to lie within x = −2 and x = 2.

4 ORDINARY DIFFERENTIAL EQUATION MODEL INFERENCE

4.1 Dynamical Systems

Dynamical systems are classified into either difference equations (discrete-time systems)
or differential equations (continuous-time systems) [17]. In this paper, only continuous-time
dynamical systems are investigated, although the numerical methods presented could be applied
to both continuous-time and discrete-time systems. Continuous-time dynamical systems of the
form considered in this paper can be expressed as coupled first-order Ordinary Differential
Equations (ODEs):

d

dt
u(t) = f(t, u(t)), (19)

where:

• t ∈ [0,∞) represents time;

• u(t) ∈ Rn is the vector of values representing the n variables of the system at time t;

• f(t, u(t)) ∈ Rn represents the prescribed time derivatives of u(t).

A trajectory of a dynamical system refers to a parameterised path u(t) which returns a value
of u for all values of the parameter t. The value of u(t) in eqn (19) can be computed given some
initial value, u(0), by integrating f(t, u(t)) forward in time:

u(t) = u(0) +

∫ t

0

d

dτ
u(τ)dτ = u(0) +

∫ t

0

f(τ, u(τ))dτ (20)
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To simplify the solution of ODEs and the implementation of the learning algorithm presented
in this paper, we only consider first-order systems. A differential equation of order m of the
form

dm

dtm
u(t) = f(t, u(t)) (21)

can be converted into a system of first-order coupled ODEs. This is also the standard approach
employed in numerical implementations of ODE solvers, for an example, see the SciPy func-
tion solve ivp [14]. The conversion can be achieved by introducing new variables for higher
derivatives. Consider an m-th order equation of the form

dmu

dtm
= g

(
t, u,

du

dt
,
d2u

dt2
, · · · , d

m−1u

dtm−1

)
. (22)

This can be rewritten by replacing the diu
dti

terms by new variables vi (i ∈ [1,m − 1]) such
that:

d

dt




u
v1
...

vm−1


 =




v1
...

vm−1
f(t, u, v1, v2, . . . , vm−1)


 . (23)

As the value of u at some time depends on the values at infinitesimally earlier times through
the derivatives of u, there is a recursive structure present in the equations (this would be even
clearer for difference equations or after a discretisation). The model inference technique pre-
sented in this paper uses loop unrolling to simplify the derived optimisation problem.

4.2 Model inference for coupled ODEs

Model inference, in this context, is the problem of recovering the form of f(t, u(t)) (as in
eqn (19)) given observations of u(t) at times from 0 to T . Model inference can be expressed as
an optimisation problem:

Minimise J(θ) :=

∫ T

0

∣∣∣∣ u(t)−
(
u(0) +

∫ t

0

fθ(τ, u(τ))dτ

) ∣∣∣∣
2

dt, (24)

where J(θ) is a loss functional over some unknown parameters θ ∈ Θ. The function fθ(τ, u(τ))
denotes a parametric approximation to the true latent function f(t, u(t)). For the purposes of
this paper, the parametric representation of fθ can be assumed to be a directed acyclic compute
graph. Denote the trajectories computed using the integral of fθ by

ũθ(t) := u(0) +

∫ t

0

fθ(τ, u(τ))dτ. (25)

Then the loss functional in eqn (24) can be expressed as

J(θ) =

∫ T

0

|u(t)− ũθ(t)|2 dt. (26)

In this form, it is clear that the J(θ) measures how closely the observed trajectories u(t) match
the predicted trajectories ũθ(t) for each value of θ. Additionally, although the L2 norm has been
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used above, this norm could be changed to any other norm as appropriate. For simplicity, only
the L2 norm will be used in this paper.

If observations of du
dt

are available, the optimisation problem can be expressed in an alterna-
tive, but not exactly equivalent, differential form:

Minimise K(θ) :=

∫ T

0

∣∣∣∣
d

dt
u(t)− fθ(t, u(t))

∣∣∣∣
2

dt. (27)

The loss functional surface for J(θ) will tend to be smoother over θ when compared to the
differential form (since there is an additional integration), potentially altering the behaviour of
various optimisation methods. However, the exact minimisers θ∗ of both J(θ) and K(θ), if they
exist so that J(θ∗) = K(θ∗) = 0, are the same, as can be seen by differentiation.

The choice to optimise over K(θ) or J(θ) depends on the chosen representation of fθ and
the availability of observations. Assume that only observations of u(t) are available and not
direct observations of du

dt
. Then it is necessary to either introduce some way to approximate

du
dt

or to approximate
∫ t
0
fθ(τ, u(τ))dτ . In the remainder of this section, it is shown that a dis-

cretised form of J(θ), denoted by Ĵ(θ), can be derived. The discretised objective Ĵ(θ) can be
trained using SGD and Backpropagation as long as fθ(t, u(t)) can be represented by an acyclic
compute graph. The derivation of Ĵ(θ) proceeds by first approximating the outer integral in
eqn (26) using a finite set of observations of u(t). The derivation of the discretisation is com-
pleted by approximating the integral

∫ t
0
fθ(τ, u(τ))dτ using standard numerical time integration

techniques.

4.3 Discretisation of the approximate trajectories

The continuous form of the integral in eqn (25) is not amenable to numerical computation
and requires discretisation. In particular, if fθ is to be represented by a compute graph and learnt
by SGD, then the entire loss functional J(θ) must be represented by a differentiable, directed
acyclic compute graph. To achieve this, it is useful to first note that the integral in eqn (25) can
be decomposed into a series of integrals over smaller time domains. Consider the trajectories
from times 0 to t and 0 to t+ h:

ũθ(t) := u(0) +

∫ t

0

fθ(τ, u(τ))dτ. (28)

Then,

ũθ(t+ h) = u(0) +

∫ t

0

fθ(τ, u(τ))dτ +

∫ t+h

t

fθ(τ, u(τ))dτ (29)

= ũθ(t) +

∫ t+h

t

fθ(τ, u(τ))dτ, (30)

giving the trajectory predicted by fθ from ũθ(t) to ũθ(t+ h).
The required discretisation can be completed using standard numerical integration tech-

niques. Numerical integration methods such as Euler, Runge-Kutta and Backwards Differenti-
ation (see [13] for an overview) work, roughly, by assuming some functional form for f(x) and
analytically integrating this approximation. Numerical integration methods can be expressed as
a function of the integrand evaluated at some finite set of m points {xj}mj=1:

∫ b

a

f(x)dx ≈ G
(
a, b, f, {xj}mj=1

)
. (31)
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Note that the points a ≤ xj ≤ b are defined as a part of the specification of a particular numerical
integration scheme. The function to be integrated, f , must be able to be evaluated at each xj .

The trajectories in eqn (30) can then be approximated with a numerical approximation
scheme as in eqn (31):

ũθ(t+ h) ≈ ûθ(t+ h) := ûθ(tj) +G
(
t, t+ h, fθ, {(τj, u(τj))}mj=1

)
, (32)

ûθ(0) := u(0). (33)

ûθ(t) refers to a trajectory ũθ(t) with continuous integrals replaced by approximate numerical
integrals. The values τj are evaluation points and correspond to the values xj in eqn (31). In
general, the smaller the value of h the greater the accuracy of the approximation. Small values
of h, however, increase the computational burden required to compute approximate trajectories.

4.4 ODE inference loss functional for observations at discrete times

For practical problems, observations of u(t) will not be available for all times between 0 and
T . Typically, the trajectory u(t) will be known only at a finite set of times t ∈ {ti}Ni=1 so that u(t)
is known at {u(ti)}Ni=1. The finite set {(ti, u(ti))}Ni=1 will be referred to as ‘training data’ and
can be used to discretise the optimisation problem in eqn (24) by the following approximation:

Minimise J̃(θ) :=
1

N

N∑

i=1

∣∣∣∣u(ti)−
(
u(0) +

∫ ti

0

fθ(τ, u(τ))dτ

)∣∣∣∣
2

(34)

=
1

N

N∑

i=1

∣∣u(ti)− ũθ(ti)
∣∣2. (35)

However, the terms ũθ(t) must also be replaced by a discretisation, as in eqn (32). Assume
that a numerical integration scheme is selected that evaluates the integrand at m points. It
is convenient to decompose the trajectory integrals ũθ(t) into a series of integrals over finite
subsets of the training data, ti to ti+p for the window size p ∈ N (typically either m or m− 1),
such that

ũθ(ti+p) = ũθ(ti) +

∫ ti+p

ti

fθ(τ, uθ(τ))dτ. (36)

With reference to eqn (32), this can be further approximated by numerical integration:

ûθ(ti+p) = ûθ(ti) +G
(
ti, ti+p, fθ, {(τj, u(τj))}mj=1

)
(37)

such that the value of u(τj) is known (given the training data) for all evaluation points τj ,
j ∈ [1,m].

Finally, eqn (37) can be modified by using the known value (from the training data) of u(ti)
in place of ûθ(ti):

û(ti+p) := u(ti) +G
(
ti, ti+p, fθ, {(τj, u(τj))}mj=1

)
. (38)

Eqn (35) can be approximated by the discretised loss functional Ĵ(θ) by inserting û(t):

Ĵ(θ) :=
1

N − p

N−p∑

i=1

∣∣u(ti+p)− û(ti+p)
∣∣2 (39)

=
1

N − p

N−p∑

i=1

∣∣u(ti+p)−
(
u(ti) +G

(
ti, ti+p, fθ, {(τj, u(τj))}mj=1

))∣∣2. (40)
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As Ĵ(θ) is a discrete approximation to J(θ), the model inference problem in eqn (26) is approx-
imately solved by minimisation of Ĵ(θ) over a training data set:

θ∗ = argminθ J(θ) ≈ argminθ Ĵ(θ). (41)

The inferred ODE model then is fθ∗(t, u(t)).
Note that in the above derivation, loss functionals have been computed for time-dependent

models of the form f(t, u(t)). In practice, optimisation over a single trajectory will only provide
useful estimates of fθ very close to (t, u(t)). To find estimates of fθ away from those points, one
would have to observe multiple trajectories and modify J(θ) to average over these trajectories.
Alternatively, in the autonomous case, where f is of the form f(u(t)), one trajectory may be
enough to infer fθ, depending on the number of sampling points available.

4.5 Example using Euler integration

To demonstrate concretely how eqn (40) gives a loss functional discretisation, Ĵ(θ), for
an ODE model that can be optimised by SGD and Backpropagation, an example using simple
numerical integration techniques is discussed in this section. Forward Euler (see [13]) computes
an approximation to a dynamical system trajectory time integral as follows (h > 0):

u(t+ h) ≈ u(t) + hf(t, u(t)). (42)

With reference to eqn (31), Forward Euler is a numerical integration scheme with m = p =
1, τ1 = a and

G (a, b, f, {(a, u(a))}) = |b− a|f(a, u(a)). (43)

Forward Euler is a so-called explicit method as the approximation of u(t+ h) depends only
on functions evaluated at times earlier than t + h. Backward Euler, conversely, is an implicit
method:

u(t+ h) ≈ u(t) + hf(t+ h, u(t+ h)). (44)

With reference to eqn (31), Backward Euler is a numerical integration scheme with m = p = 1,
τ1 = b, and

G (a, b, f, {(b, u(b))}) = |b− a|f(b, u(b)). (45)

Forward time integration using Backward Euler requires solving a system of equations (typ-
ically by Newton-Raphson iterations [13]) as u(t + h) appears on both sides of eqn (44). This
is characteristic of implicit integration methods. The choice of when to use explicit or implicit
integration methods for simulation of a system depends on the form of the dynamical system
to be approximated [13]. Implicit methods are more efficient and accurate for so-called ‘stiff’
problems [10, 11].

However, either method can be used to discretise an ODE into a compute graph representa-
tion. For example, assume that fθ(t, u(t)) is represented by an acyclic compute graph. Then,
given training data {(ti, u(ti))}Ni=1, the model inference loss functional, Ĵ(θ), in eqn (40) can
be approximated using Forward Euler as follows:

ĴF (θ) :=
1

N − 1

N−1∑

i=1

∣∣u(ti+1)−
(
u(ti) + |ti+1 − ti|fθ(ti, u(ti))

)∣∣2. (46)
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Implicit integration schemes can be used in essentially the same way as shown above for
Forward Euler. As an example, the Backward Euler scheme in (44) can be used to set the model
inference loss functional, Ĵ(θ), from eqn (40) as follows:

ĴB(θ) :=
1

N − 1

N−1∑

i=1

∣∣u(ti+1)−
(
u(ti) + |ti+1 − ti|fθ(ti+1, u(ti+1))

)∣∣2. (47)

Note that for the explicit Euler scheme, as in eqn (46), up to time tN we can infer fθ only up
to time tN−1. Hence, there is a time lag in the learning which is not observed for the implicit
Euler scheme.

The loss functionals in eqns (46) and (47) are trivially differentiable and acyclic (as the values
of ti and u(ti) are just constants that have been taken from observations) as long as the graph
representation of fθ is differentiable and acyclic. Thus, if fθ is represented by a differentiable
and acyclic compute graph, the loss functionals Ĵ(θ) can be optimised by SGD.

4.6 Example using linear multistep integration approximation

More sophisticated integration schemes than Backward or Forward Euler can be used to
find a differentiable parametric representation of Ĵ(θ). Linear multistep integral approximation
schemes are briefly described here as they will be used for the numerical simulations presented
in the next section of this paper. Any numerical scheme that is differentiable and representable
by a directed acyclic compute graph when inserted into the loss functional could be used. Linear
multistep methods are a convenient choice when the training data consists of observations of
u(t) that have been sampled at constant frequency.

From [10], Adams-Moulton linear multistep integration of order s = 2 can be used to ap-
proximate a trajectory of a dynamical system from time a to time b = a + 2h for some h ∈ R
as follows:

û(b) = u(a+ h) + h

(
5

12
fθ(b, u(b)) +

2

3
fθ(a+ h, u(a+ h))− 1

12
fθ(a, u(a))

)
. (48)

To derive the loss functional Ĵ(θ), assume that training data observations of u(t) are given
by {ti, u(ti)}Ni=1 and that the times ti are evenly spaced such that ti = (i − 1)h. Inserting eqn
(48) into eqn (40) gives the Adams-Moulton approximate loss functional (m = 3, p = 2):

ĴA(θ) :=
1

N − 2

N−2∑

i=1

∣∣u(ti+2)− û(ti+2)
∣∣2. (49)

Note that the full Adams-Moulton integrator (defined in [10]) could also be used to derive
a loss functional that approximates a trajectory discretisation using a series of interpolation
points between the observations in the training set. For simplicity, only the method shown
above (placing the evaluation points at the values in the training data set) is used in this paper.

5 NUMERICAL ANALYSIS OF THE LORENZ–EMANUEL SYSTEM

5.1 Overview

This section demonstrates the application of the parametric polynomial kernel regression
technique to the model inference problem for a dynamical system using the discretisation de-
tailed in the previous section of this paper. Simulations of the Lorenz–Emanuel system (see
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§7.1 of [23]) were analysed. This dynamical system consists of N variables, ui for 1 ≤ i ≤ N ,
arranged periodically such that uN+1 = u1, u0 = uN and u−1 = uN−1. Let the full set of
variables be denoted by u := {ui}Ni=1. The Lorenz–Emanuel system can be highly chaotic,
displaying sensitive dependence on initial conditions. The equations of motion for this system
are:

dui
dt

= (ui+1 − ui−2)ui−1 − ui + F. (50)

For the analysis in this section, the following parameters were adopted:

N = 8, F = 5. (51)

The parameter F represents an external forcing term that prevents the energy in the system from
decaying to zero. The value F = 5 was chosen to be high enough to cause sensitive dependence
on initial conditions.

5.2 Model inference training data and test description

Model inference was performed given the training data shown in fig 5. The training data was
generated using the SciPy solve ivp method [14] with the ‘RK45’ algorithm (variable 4th-5th
order Runge-Kutta [5]) and sampled at a rate of 1000 samples per time unit for times t = 0 to
t = 20. The initial values for the data were generated by sampling each ui independently from
a normal distribution with mean 0 and standard deviation 3:

ui(t = 0) ∼ N (µ = 0, σ = 3). (52)

The performance of the proposed method was tested by resampling new initial conditions
from the same distribution in eqn (52) and comparing the outputs from the true simulation to
simulations generated using an inferred model. All test simulations were again carried out using
the SciPy solve ivp method with ‘RK45’ integration [14, 5].

We used the Adams-Moulton loss functional, ĴA(θ), in eqn (49) to define the model infer-
ence task. The specific form of the inferred models is given in Section 5.3. All models were
implemented using Tensorflow [1] and optimised with the Adam variant of SGD (see [15] for
implementation details). A fixed optimisation training schedule was adopted in all cases and
consisted of three phases, P1, P2, P3. Each phase is described by an ordered pair (Ii, ηi) where Ii
is the number of gradient descent iterations for that phase and ηi is the ‘learning rate’ parameter
as in eqn (4). The training schedule adopted was:

{P1 = (1000, 0.1), P2 = (2000, 0.01), P3 = (200, 0.001)}. (53)

It was found that this schedule was sufficient to minimise ĴA(θ) to approximately the maximum
achievable precision for all models tested.

Note that the integrator used to generate trajectories (RK45) and that used for discretisation
of the ODE trajectories (Adams-Moulton) are not the same. This was to demonstrate that any
ODE solver can be used to generate simulations from the inferred model.

5.3 Model representation with polynomial linearisations and kernels

To complete the specification of the problem, the basic form of fθ must be provided. If
the form of the dynamical system equations are known beforehand, this information can be
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Figure 5: Lorenz–Emanuel system training data, generated using the model defined in eqn (50).

used to simplify the analysis. If no information is available, a search over different types of
compute graph architectures must be conducted (as in [24]). For this demonstration, only a
polynomial structure is assumed. This is a reasonable assumption that one could make when
investigating general interdependent data observations from a dynamical system without any
other prior knowledge, as a number of systems have such a structure [23].

For this inference task, the exact form of the polynomial couplings between the various
ui were not provided to the compute graph. Instead, two types of polynomial nonlinearities
were tested. First, a linear combination of all second-order polynomial terms that could be
constructed using each of the ui terms was considered, that is, equations of the form

dûi
dt

= f iθ(u) =
N∑

k=1

k∑

j=1

αikjukuj + βikuk + γi (54)

for each i ∈ [1, . . . , N ]. The parameters are γi ∈ R, βik ∈ RN , αikj ∈ R for i ∈ [1, . . . , N ],
k = [1, · · · , N ], j = [1, · · · , k]. This sort of polynomial is of the traditional form used for
polynomial chaos expansions (see [26]).

Second, the parametric polynomial kernel method introduced in this paper and defined in
eqn (13) with dimensions D = E = 8 was used to represent fθ. Values of M = 60, 80 and 100
were tried to test the effect of this parameter on the accuracy of the results.

5.4 Results

Stochastic Gradient Descent, combined with ODE trajectory discretisation, was successfully
applied to model inference for the Lorenz–Emanuel system in eqn (50). Our parametric kernel
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Figure 6: Lorenz–Emanuel system error vs time. Errors are calculated as per eqn (56).

model gave the best accuracy on the inference task. Importantly, the kernel model was able to be
tuned to higher accuracies by increasing the number of weights used, M . Although increasing
M increases the number of total parameters to be optimised, this trade off may be worthwhile
depending on the particular problem.

The performance of the different models is shown in fig 6. The accumulated error, ε(t), was
calculated as the sum of squared errors from the true model:

ε(t = 0) = 0, (55)

ε(t+ h) =

√
((u(t+ h)− û(t+ h))2 + ε(t), (56)

where h = 0.001 (matching the training data sampling rate of 1000 samples per time unit). The
errors were calculated for the polynomial feature model in eqn (54) and the polynomial kernel
model in eqn (13) for M = 60, M = 80 and M = 100.

From fig 6, the direct polynomial feature mapping had the worst accuracy. The parametric
kernel method was able to track the system evolution more accurately. In all cases, the inferred
models were able to maintain a small inference error at times up to at least an order of magnitude
greater than the training data sampling rate.

Performance on the model inference task for the polynomial kernel method defined by eqn
(13) with M = 100 is demonstrated in fig 7. This pair of figures shows a comparison between
the true model output, u(t), and inferred model output, û(t). From fig 7, it can be seen that the
overall structure of the equations is captured by the inferred model. Due to the chaotic nature of
the system being analysed, once a few errors accumulate, the true and inferred models diverge
rapidly.

5.5 Discussion

The parametric polynomial kernel method was able to infer the hidden ODE model with
good accuracy given a fixed set of training data. The accumulated errors grow quickly with
time. This is reasonable considering the chaotic nature of the Lorenz–Emanuel system. A more
mathematically rigorous stability analysis of the numerical scheme would be interesting but is
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beyond the scope of this paper. A number of possible variations on the numerical example
presented could be analysed in future work. For instance, the type of integration method used,
the sampling rate of the data, and the effect of different amounts of training data would all be
interesting to investigate.

6 CONCLUSIONS

This paper presented a parametric form of polynomial kernel regression, as well as numeri-
cal case studies. In particular, the proposed method was applied to the model inference problem
for a chaotic dynamical system. Our parametric polynomial kernel method was able to har-
ness the power of kernelised regression without the cubic computational complexity typically
incurred by nonparametric polynomial regression, thereby avoiding the curse of dimensionality.
Although the method was successfully applied to a test problem, more work will be required
to fully understand how best to apply parametric polynomial kernels to real world (rather than
simulated) data. As is the case in all regression models, some form of regularisation would need
to be included to address overfitting and observational noise.

It was assumed for the analysis in this paper that it was known a priori that only certain
polynomial couplings are present. Using the wrong polynomial order in the model expansion
was found to cause convergence difficulties. This is also the case in nonparametric kernel
regression (see [18] and the example in fig 2). As such, this is not considered a serious limitation
of the method in that it is possible to test a few different sets of model forms when attempting
to find a good fit to a data set. Bayesian model selection methods could be applied to formally
assess the quality of different polynomial kernel model dimensions.

It is worth noting that direct projection onto polynomial features was found to perform poorly
compared to the polynomial kernel method. Although stochasticity was not considered in this
paper, it is quite possible that this finding will impact standard techniques frequently employed
for Uncertainty Quantification. A kernel representation of the type introduced in this paper
applied to Gaussian and other stochastic features may be useful for improving standard polyno-
mial chaos methods (which are described in [26]).

The search for effective compute graph architectures remains a problem that plagues all
methods attempting to learn hidden function structures without inserting large amounts of prior
knowledge into the inverse problem. Scaling to very high-dimensional problems would be
an interesting challenge. Given the partial decoupling from the curse of dimensionality that
gradient descent methods can provide, it is hoped that the techniques presented in this paper
would be suitable for model inference on large scale dynamical systems in the future.
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(a) Data trace from true model, u(t).

(b) Data trace from inferred parametric polynomial kernel model, û(t), with M = 100.

Figure 7: Comparison of output traces for the Lorenz–Emanuel system, defined in eqn (50): (a)
true system simulation, u(t), and (b) most accurate inferred model, û(t). The inferred model
structure is given by the parametric polynomial kernel in eqn (13) for M = 100.
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Abstract 

Most of the dams around the world were designed before the introduction of seismic regula-

tions and without concerns about their dynamic behavior. The failure of a large gravity dam 

might have catastrophic effects putting at risk a large number of human lives, not counting 

the considerable economic consequences. Since there are no case histories of concrete gravity 

dams failed after seismic events, numerical models assume great importance for the evalua-

tion of the seismic performance of such structures or to control them within a SHM frame-

work. Several different sources of uncertainty are involved in numerical models of concrete 

gravity dams, their effects can be reduced by exploiting all available information about the 

structure. Ambient vibrations are an important source of information because they can be 

used to characterize the dynamic behavior of the structure. In this paper, a procedure, de-

fined in the Bayesian framework, which allows calibrating the dynamic model parameters us-

ing ambient vibration is presented. Ambient vibrations are used to determine the modal 

characteristics of the system, by applying the Operational Modal Analysis (OMA), which are 

used in the updating process. The use of meta models based on the general Polynomial Chaos 

Expansion (gPCE) and a modified version of Markov Chain Monte Carlo (MCMC) allows 

both considering the SSI in the numerical model of the dam and solving the problem of coher-

ence between experimental and numerical modes. Finally, the proposed procedure is applied 

to the case of an Italian dam showing the applicability to real cases. 
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1 INTRODUCTION 

Concrete dams are fundamental infrastructures due to their use for energy production, 

floods control and industrial supply. However, the largest part of existing concrete dams lo-

cated in developed countries have been designed by following only static concepts. In light of 

the revaluation of some areas as seismic and the higher reliability levels required by the com-

munity, nowadays a large number of existing concrete dams are outdated [1]. Therefore, the 

evaluation and the mitigation of the seismic risk of concrete dams is a task of primary im-

portance for our society [2].   

Structural Health Monitoring (SHM) is a powerful tool both to control the structural be-

haviour (Diagnosis phase) and to predict the remaining life expectancy of the dam (Prognosis 

phase) [3]. In this context, one or more Quantities of Interest (QI) of the dam are monitored in 

order to detect abnormal behaviour of the structure. Predictive models, which reproduce the 

selected QI, must be defined in order to forecast the dam behaviour considering the effects of 

the uncertainties and those of the errors [4]. Numerical models are the only way to investigate 

the dynamic behaviour of concrete dams. Indeed, as discussed by Hall [5] there are no case 

histories on concrete dams failed after seismic events.  

Numerical models commonly used in dam engineering field are particularly complex due 

to the presence of three different interacting domains, dam, basin and soil. In this context, De 

Falco et al. [6–8] showed the influence of modelling strategy on the solution of dynamic anal-

yses of concrete dams. Once a deterministic model has been defined, the uncertainties related 

to the model parameters lead to a biased result, which must be quantified (UQ) and reduced as 

much as possible in order to perform a reliable numerical model of the dam. All available in-

formation must be used for this purpose. In particular, the observations recorded by the moni-

toring system can be used to calibrate the model parameters and not only to control the health 

state of the structure.  

The largest part of existing concrete dams is equipped by static monitoring systems, which 

record the displacements of few points on the structure and the environmental conditions, i.e. 

reservoir level, air and water temperatures. De Falco et al. [9] showed how to use information 

coming from the static monitoring system to update the mechanical parameters of the model 

materials in a Bayesian framework. Despite static SHM can provide useful information both 

for the structural control during normal operations and for the calibration of the model param-

eters, dynamic monitoring systems seem to be more appropriate when the seismic behaviour 

of a structure is investigated. With the aim to perform a permanent dynamic SHM system the 

only practicable choice is the registrations of ambient vibrations [10]. The observations rec-

orded by a dynamic monitoring system based on ambient vibrations can be directly used in 

the updating process or elaborated through Operational Modal Analysis (OMA) [11] in order 

to obtain the modal characteristics of the system, i.e. frequencies and mode shapes. In this lat-

ter case, the updating process is defined with regard to the modal characteristics of the system, 

which are then the QI of the problem. The use of modal characteristics as QI is the commonly 

adopted approach in civil engineering field, because it leads to a simplification from the nu-

merical point of view. Indeed, in this way, modal analyses are used within the updating pro-

cess, instead of transient ones needed in the case of the direct use of ambient vibrations.  

In dam engineering field dynamic SHM systems are very rare, even though some applica-

tions are available in the literature [12]. Most of the available research works aim to verify the 

feasibility of the installation of dynamic monitoring systems on concrete dams, but they do 

not discus the use of the observations for structural control or model calibration purposes. The 

numerical complications in the modal analysis of concrete dams, related to the SSI, has led to 

a broader use of static SHMs rather than dynamic ones.  
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In this paper, the effects of the uncertainties related to the mechanical parameters of the 

materials on the dynamic behaviour of concrete dams are investigated and discussed. Subse-

quently, the hierarchical Bayesian procedure for the updating of dynamic model parameters, 

proposed by Sevieri et al. [13], is applied in order to verify its effect on real cases. The numer-

ical problems, discussed next, are solved by using a modified version of MCMC which allows 

both selecting and reordering the numerical mode shapes. A large concrete gravity dam, lo-

cated in the centre of Italy, is used to investigate these two topics. 

2 DAM DESCRIPTION 

In this work, a large Italian concrete gravity dam is used as benchmark for the quantifica-

tion of the effects of the epistemic uncertainty on the modal behaviour, and for the application 

of the hierarchical procedure to reduce them. The dam, showed in Figure 1, is composed by 

26 monoliths for a total crest length around 450 m, and a maximum height of 65 m. The mon-

oliths are connected each other through vertical contraction joints, which show an opening-

closing movement during the year. This behaviour, recorded by the static monitoring system, 

is related to the variation of the environmental conditions, and in particular that of tempera-

tures. Despite this movement has quasi-static nature, and then it cannot be directly used as 

source of information for dynamic properties updating, it must be considered in the updating 

procedure. 

              

Figure 1: Dam drawing and FE model. 

The mechanical parameters of the materials have been deduced from the experimental 

campaigns conducted in the past. The values of specific weight  , Young modulus E, Pois-

son’s ratio  , compressive and tensile strength, ft and fc, of the concrete and the soil (subscript 

C and S, respectively) are reported in Table 1. 

 

 
C

  

[kg/m3] 
EC  
[MPa] 

C
 ft,C  

[MPa] 
fc,C  
[MPa] 

S
  

[kg/m3] 
ES  
[MPa] 

 S
 ft,S  

[MPa] 
fc,S  
[MPa] 

mean  2500.0  25000.0  0.20 1.85 15.3 2600.0 15000.0 0.22 1.7 51.2 

s. d.  87.5  5875.0  0.069 0.629 3.443 725.4 7185.0 0.105 0.613 19.661 

 

Table 1: Mechanical parameters of the materials. 

3 UQ IN THE MODAL ANALYSIS OF A CONCRETE DAM 

In this section the effect of the uncertainties related to the mechanical parameters of the 

materials on the modal characteristics of the dam are investigated. There are only few re-

search works on the Uncertainty Quantification (UQ) in dam engineering field [14,15], but 
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none of them addresses the problem of the concrete gravity dam modal characteristics consid-

ering the SSI and the FSI. FE models which consider SSI and FSI are characterized by a high 

computational burden, so the use of probabilistic procedure for UQ could be prohibitive. In 

this application, the computational burden is strongly reduced by using the general Polynomi-

al Chaos Expansion (gPCE) [16,17] to approximate both numerical frequencies FEM
f  and 

mode shapes FEM
Φ . Only the uncertainty related to the elastic parameters are considered in this 

application due to the elastic nature of the modal analysis. The elastic parameters of the mate-

rials are collected in 
elθ , while deterministic measurable variables, e.g. the basin level, are col-

lected in x , that is ( )FEM

el,x θf  and ( )FEM

el,Φ x θ . The uncertain output of the FEA can be 

described in a probabilistic space defined by the triplet ( ), , F : where   is the space of all 

events,  F  is the  -algebra and  the probability measure. Assuming that ( )FEM

el,x θf  and 

( )FEM

el,Φ x θ  are smooth enough to be represented in terms of simple random variables ( )el θ  

corresponding to the Askey scheme [18], they can be approximated through the gPCE,  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

el el

el el

ˆ , ,

ˆ , , .

















= 

= 





I

J

x θ x θ

x θ x θ

ff


 (1) 

In the previous equations ( )el
ˆ ,x θf  and ( )el

ˆ ,x θ  are the gPCE approximations, ( )
  and 

( )  are the multivariate orthogonal polynomials with finite multi-index sets I and J , while 

( )
f  and 

( )  are the polynomials coefficients. Assuming that the dam concrete and the foun-

dation soil are isotropic and heterogeneous, their elastic tensors  are fully described by the 

bulk modulus K and the shear modulus G [19]. A parametrization of the forward problem in 

K and G is more convenient than the use of Young modulus E and Poisson’s ratio  , because 

 is linear in K and G. The prior distributions of K and G are defined starting from Table 1 

by assuming them log-normally distributed as reported in Table 2. 

 

 KC [MPa] GC [MPa] KS [MPa] GS [MPa] 

distribution LN LN LN LN 

mean  14880.0  10424.0 19210.0 10446.0 

s. d.  5824.3  2520.5 19590.0 5203.0 

 

Table 2: Prior distributions of 
elθ . 

The only measurable variable in this application is the basin level, which oscillates be-

tween 29 m and 63 m, which are respectively the minimum and maximum regulation level. 

The opening-closing behavior of the vertical contraction joints can be investigated in modal 

analysis by considering two limit cases:  

• the vertical joints are completely closed, then the contacts between monoliths are mod-

eled as “bonded”;  

• the vertical joints are decompressed and by assuming that the monoliths can have relative 

displacements, the contacts are modeled as “frictionless”. 

In both cases the contacts are defined as relationship among two surfaces, then the two FE 

models have the same numbers of elements and nodes. Starting from the orography of the soil 

and the structural drawings of the dam, a 3D model of the system dam-soil-basin was import-
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ed from a CAD program to ABAQUS® v 6.14 [20]. The FE model (Figure 2) is composed by 

40638 quadratic tetrahedral mechanical elements C3D10 for the soil, 14397 quadratic tetrahe-

dral mechanical elements C3D10 for the dam body, 28707 linear tetrahedral acoustic elements 

AC3D4 for the basin and 1550 linear hexahedral one-way infinite elements as boundary con-

ditions for the soil domain. An acoustic impedance is placed at the end of the reservoir in or-

der to avoid the reflection of incident waves [8]. 

The solutions are calculated for different sets of the mechanical parameters, whose values 

are sampled from the prior distributions. They are used to train the gPCE of the “bonded” case, 

i.e. ( )b el
ˆ ,x θf  and ( )b el

ˆ ,x θ , and the “frictionless” one, i.e. ( )f el
ˆ ,x θf  and ( )f el

ˆ ,x θ . 

         

Figure 2: Mesh of the FE model. 

The outputs of 350 analyses, for each model, are used to determine the gPCE coefficients, 

by using the approach proposed by Rosić and Matthies [16], while the polynomial expansion 

degrees are selected in order to minimize the errors in terms of mean and variance. The atten-

tion has been focused on the frequency range 2-20 Hz, where the fundamental modes of the 

system can be found. The presence of the SSI leads to a large number of numerical modes re-

lated to the soil mass. In this work, we refer to this issue as “coherence problem of the numer-

ical modes”, and in the context of the forward problem the order of numerical modes could 

change, due to the variation of the mechanical parameters set. 

In this paper, the coherence problem has been tackled by reordering three fundamental 

numerical modes before they are used in the gPCE coefficients calculation. The Modal Assur-

ance Criterion (MAC) [21] is used for this purpose. Let’s consider two mode shapes 
i  and 

j , 

the MAC coefficient which allows measuring the difference between them is defined as  

 ( )
( )( )

2
*

* *
MAC , ,=

T

i j

T T

i i j j

i j
 

   
 (2) 

where T and * indicate the transposed vector and the complex conjugated vector respec-

tively. The MAC coefficient is always a real number, ranging from 0, in the case of no corre-

lation, to 1 in the case of full correlation. 

Only the modes related to the dam body are significant from the updating point of view, 

because experimental modes are usually recorded on the structure. In this paper, the 3 first 

modes which mobilize the largest amount of dam mass (Figure 3) are chosen as reference for 

the forward problem. 

Hermite polynomials are used as basis functions, the relative relationships between errors 

and expansion degree are shown in Figure 4. In the end, a 5th order expansion degree is cho-

sen for both frequencies and mode shapes, in order to have a small error both in terms of 

mean values and variances. 
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Figure 3: Reference modes for the UQ of bonded model (first line) and frictionless model (second line). 

 

    
    a) “B”/Frequencies: error of the mean values                      b) “B”/Frequencies: error of the sd 

    
    c) “B”/Mode shape: max error of the mean values            d) “B”/ Mode shape: max error of the sd 

    
    e) “F”/ Frequencies: error of the mean values           f) “F”/ Frequencies: error of the sd 

    
    g) “F”/Mode shape: max error of the mean values       h) “F”/Mode shape: max error of the sd 

Figure 4: Meta model errors. B = bonded model; F = frictionless model. 
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Figure 5 shows the distributions of the frequencies of both models. In the “bonded” case 

the mean values of the first three frequencies are in the range 5-6 Hz, while in the “friction-

less” one they are in the range 3-4 Hz. The lack of stiffness of the “frictionless” model, due to 

the absence of the interaction among monoliths in U-D direction, leads to smaller frequencies 

values. In both cases the standard deviations increase toward higher frequency and they are 

relatively smaller in the “frictionless” case. 

The gPCE based meta models ( )b el
ˆ ,x θf , ( )b el

ˆ ,x θ , ( )f el
ˆ ,x θf  and ( )f el

ˆ ,x θ  are used instead 

of the FE models to solve the inverse problem. In this way, the computational burden is 

strongly reduced, thus making possible the solution of the inverse problem without needing 

High Performance Computing (HPC). 

 

 

   
a) “Bonded” model               b) “Frictionless” model 

Figure 5: Distributions of the first three frequencies. 

4 HIERARCHICAL BAYESIAN PROCEDURE FOR DYNAMIC MODEL 

PARAMETERS UPDATING 

In this Section, the procedure proposed by Sevieri et al. [13] for the dynamic model pa-

rameters updating is applied to the case of study. The procedure, defined in a hierarchical 

Bayesian framework, allows solving the inverse problem by using experimental modal char-

acteristics of the system determined through the elaboration of ambient vibrations with OMA.  

Let’s consider the meta models previously defined (Section 3), the relationships between 

the i-th observation of the k-th experimental frequency 
k,if  and the corresponding numerical 

prediction ,
ˆ
k if  is expressed by a multi-variate additive probabilistic model [22] 

 ( )( ) ( )( )
,, el , el

ˆln , , ln , . = +x θ Σ x θ
k k ik i f k i f ff f  (3) 

All entries in Equation 3 have been already defined except for 
,

 
k k if f  which is the error 

term composed by random variables normally distributed 
,


k if  and their standard deviations 


kf

, while Σ f  is the covariance matrix. The logarithmic function is used to stabilize the vari-

ance and to satisfy the homoskedasticity assumption [23]. 

Let’s consider q modes of a system characterized by m dynamic d.o.f. (q ≤ m). The corre-

sponding mode shapes matrix 
T

, , , , =  Φ 1 k q    (m x q dimension), can be reorganized in 

only one column vector, thus obtaining total  with dimension m·q x 1. Finally, by defining a 
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global index h such that 1 ≤ h ≤ m·q, the relationship between the i-th observation of the h-th 

component of total , i.e. ,h i , and its corresponding numerical simulation ,̂h i  can be expressed 

as 

 ( ) ( )
,, el , el

ˆ, , , ,     = +x θ Σ x θ
h h ih i h i  (4) 

where Σ  is the covariance matrix and 
,  

h h i
 is the error term composed by a normally 

distributed random variable 
, h i
 and its standard deviation  h

.  

Despite the use of the gPCE based meta models, the computational burden could be still 

very high due to the large number of random variables. Indeed, both the elastic parameters 
elθ  

and the terms of the covariance matrices, Σ f  and Σ , are updated. However, by assuming 

that only the components of a same mode are correlated, the number of variables considerably 

decreases, that is 

 
 

 

2

2

2

1

2

0 0

0 0

0 0

.







 
 
 

=  
 
 
 

 
 
 

=
 
 

    

Σ

Σ

1

2

q

f

f

f

f

q

B

B

B

 (5) 

In this way, Σ  assumes a block form, as indicated in Equation 5, where each block indi-

cates the covariance matrix of each mode, otherwise the terms are zero. The computational 

burden could be further reduced by assuming a covariance function for each block  kB . In 

this application, two components r  and s  of the same mode k are correlated through an ex-

ponential covariance function of the Euclidean distance 
r s, d  

 ( ) ( ),

1
COV , exp .  


= −

r sr s k

k

w d  (6) 

In this way, the terms of each block  kB  are described by two coefficients k  and 
kw , 

which are respectively collected in the vectors   and w . 

The procedure proposed by Sevieri et al. [13] is based on a hierarchical Bayesian model  

[24] with two levels. This particular architecture of the Bayesian process allows updating both 

mean values and standard deviations of the random variables and inserting information on 

more than one level. These two features are particularly advantageous in the prognosis phase 

of a dynamic SHM. The first level is represented by the hyper-parameters 
el , i.e. mean val-

ues and standard deviations, of the elastic random variables 
elθ . Whereas, the second level is 

composed by the elastic parameters 
elθ  themselves and the terms of the covariance matrix Σ f , 

in the case of frequencies, or the coefficients   and w , in the case of mode shapes. For the 

sake of simplicity, let’s collect the parameters of the second level in the vector  . Once a set 

293



G. Sevieri and A. De Falco 

of new observations y  is available, the prior distribution ( ) ( ) ( )el el el, |=    p p p  can be up-

dated through the likelihood function ( )el, ,x y  L , thus obtaining the posterior distribution 

( )el, y  p  

 ( ) ( ) ( ) ( )el el el el, , , | .=y x yp L p p          (7) 

In the previous Equation,  is the normalizing factor. By exploiting the large amount of 

data, which will be available due to the integration of the present procedure within a SHM 

system, and the Central Limit Theorem, the likelihood function can be written as 

 ( )
( ) ( )1

el el el el

el el

1

1
exp , , , ,

2
, , , ,

| 2 |

−

=

 
− 
 




r x θ Σ r x θ

x θ Σ
Σ

 



Tf f

i f il

f

i f

L  (8) 

in the case of frequencies, and as 

 ( )
( ) ( )1

el el el el

el el

1

1
exp , , , ,

2
, , , ,

| 2 |

 







−

=

 
− 
 




r x θ Σ r x θ

x θ Σ
Σ

 



T

i il

i

L  (9) 

in the case of mode shapes. All entries in Equation 8 and 9 have been already defined ex-

cept for r
f

i and 
ri  which are respectively the residuals of the frequencies and of the mode 

shapes. The residuals are the difference between the i-th observation and the corresponding 

prediction. 

In the context of inverse problem, the coherence problem, previously mentioned (Section 

3), is faced by modifying the numerical algorithm Markov Chain Monte Carlo (MCMC) [25] 

by introducing a reordering step based on the MAC matrix. More specifically, once the de-

terministic model, or its approximation, is solved (i-th step), the resulting numerical mode 

shapes are used with the experimental observations to calculate the i-th MAC matrix. There-

fore, the numerical results are reordered coherently with the experimental ones, thus moving 

the highest MAC coefficients on the diagonal. The reordered numerical results are used to 

compute the residuals and to solve the inverse problem. In civil engineering field, the coher-

ence between experimental and numerical modes is usually guaranteed by defining suitable 

objective functions or by using the concept of system mode shapes [26]. However, in the for-

mer case the predictive model of the modal characteristics can not be explicitly defined, while 

in the latter case numerical modes related to the soil are not discarded. Therefore, the modifi-

cations of MCMC, proposed by Sevieri et al. [13] seems to be more efficient in dam engineer-

ing field. The hyper-prior distributions (Table 3) are defined by using the material test results 

(Table 1). The distributions of the mean values are directly derived from Table 1, while for 

those of the standard deviations a C.o.V. equal to 10% is assumed. Non-informative prior dis-

tributions [22] are used for the terms of Σ f  and the coefficients collected in   and w , since 

no information about them are available. In this case of study, since no records of ambient 

vibrations are available, a high-fidelity model is used to simulate the experimental behavior of 

the dam. In this application, the high-fidelity model is a more refined version of the “bonded” 

one presented in Section 3. It is composed by 81276 quadratic tetrahedral mechanical ele-

ments C3D10 for the soil, 28794 quadratic tetrahedral mechanical elements C3D10 for the 

dam body, 57414 linear tetrahedral acoustic elements AC3D4 for the basin and 3100 linear 

hexahedral one-way infinite elements as boundary conditions for the soil domain. The elastic 

parameters of the high-fidelity model are reported in Table 3. 
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 KC [MPa] GC [MPa] KS [MPa] GS [MPa] 

s. d.  16667.0  15217.0 21930.0 22321.0 

 

Table 3: Elastic parameters of the high-fidelity model. 

The Bayesian procedure is applied separately for frequencies (Equation 3) and mode 

shapes (Equation 4), both in the case of “bonded” and “frictionless” model. The results in 

terms of comparisons between prior and posterior distributions of the parameters 
elθ  are 

shown in Figure 6. In the case of “bonded” model the updating leads to the same values as-

sumed for the high-fidelity model, either using frequencies or mode shapes predictive models. 

In the “frictionless” case the use of different predictive models leads to different results which 

are in contrast with the correct one, because of the lack of stiffens due to the absence of inter-

action between adjacent monoliths. These results highlight the need to perform predictive 

models which consider the state of the vertical contraction joints, i.e. close or open. An idea is 

to model the state of each vertical joint as random variable, and to correlate these states with 

the environmental conditions, i.e. reservoir level and temperatures. 

 

 

   
a) Kc                   b) Gc 

   
c) Ks                   d) Gs 

Figure 6: Comparison between prior and posterior distributions. 
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5 CONCLUDING REMARKS 

Dynamic SHM systems, based on ambient vibrations, are powerful tools to control the 

health state of the structures and to reduce the uncertainties in the predictive models. However, 

due to the amount of uncertainties and the numerical complications which affect the FE mod-

els of concrete dams, dynamic SHM system are very rare in dam engineering field. Indeed, 

the dam-soil-reservoir interaction as well as the epistemic uncertainties lead to a large number 

of numerical modes with no experimental correlations.  

In this paper, an Italian concrete gravity dams is used first to investigate the effect of the 

epistemic uncertainties on the modal behavior of the structure and then to apply a hierarchical 

Bayesian procedure to reduce them. Particular attention has been placed on the contribution of 

the vertical contraction joints behavior which must be considered in order to perform a relia-

ble predictive model of the structure. Indeed, the opening-closing movement of the vertical 

contraction joints during the year leads to a strong variation of the modal behavior of the dam, 

which cannot be neglected. This paper shows how a hierarchical Bayesian framework, if inte-

grated within a dynamic SHM of concrete dams, can successfully improve the performance of 

the SHM itself. 
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Abstract 

In the mid-term future, climate change could determine significant alterations of the frequen-

cy and magnitude of climate extremes, so affecting the design of new structures and infra-

structures, and the reliability of existing ones designed according to the provisions of present 

or past Codes.  

In this work, a Bayesian hierarchical model for the characterization of climate extremes un-

der non stationary climate conditions is presented starting from the analysis of an ensemble 

of future climate projections. The Bayesian Hierarchical Model is formulated through the 

classical three-level formulation, in which the standard extreme value representation at each 

site is combined with a spatial latent process, and collects the main sources of uncertainties 

regarding climate projections.  

A Metropolis Hastings algorithm within a Gibbs sampler is implemented to update model pa-

rameters, and from the posterior probability density functions of the extreme value distribu-

tion parameters, return levels that serve as basis for structural design are estimated. The 

implementation of the model in different time windows combined with the Bayesian frame-

work allows the probabilistic assessment of time evolution of extreme value parameters and 

return levels.  

The results obtained for a relevant case study demonstrate the possibilities of the proposed 

methodology to describe climate extremes under climate change and to provide guidance for 

potential amendments in the current definition of climatic actions on structures. 

 

 

Keywords: Climate Change, Climatic Actions, Structural Design, Bayesian Hierarchical 

Model, MCMC algorithm. 
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1 INTRODUCTION 

In the mid-term future, climate change could determine significant alterations of the fre-

quency and the magnitude of climate extremes. Since structural design is often governed by 

climatic actions such as thermal, wind, snow and ice loads, alteration of them caused by cli-

mate change could significantly affect the design of new structures and infrastructures as well 

as the reliability of the existing ones designed in accordance to the provisions of current or 

past Codes [1]. Indeed, the current definition of climatic actions on structures is based on the 

extreme value analysis of the underlying natural phenomena (daily temperatures, ground 

snow load, wind velocities) under the assumption of stationary climate conditions [2].   

As consequence of global warming this assumption is becoming more and more arguable 

and a better evaluation of climate extremes and their evolution over time is needed to evaluate 

the potential consequences for infrastructures and buildings.  

Dealing with climate extremes, generally recorded at a spatial scale, a key strategy in ex-

treme value analysis to overcome difficulties caused by the scatter of data is the spatial mod-

elling [3]. The main advantage in spatial modelling is the pooling of information but it can be 

also useful for interpolation to sites where little or no data may have been collected. Then, the 

implementation in a Bayesian framework, enables inferences and predictions to incorporate 

uncertainties in process variation and parameter estimates. 

In order to characterize the spatial behavior of the extreme value process, a Bayesian hier-

archical model for climate extremes derived from the analysis of Regional Climate Model 

(RCM) output is proposed. The model is able to incorporate physical and spatial information 

through covariates and random effects and is implemented on different time windows of forty 

years long to assess the time evolution of extreme value parameters. From the posterior PDFs 

of extreme value parameters, the characteristic values of climatic loads, used for structural 

design, are evaluated assessing their changes with time and considering the uncertainty in the 

predictions. 

The proposed methodology will be presented showing the results obtained for extreme 

ground snow loads in the Italian Mediterranean region [4], considering an ensemble of six dif-

ferent RCMs for the period 1951-2100 and two different emission scenarios. 

2 METHODOLOGY  

There has been considerable recent interest in spatial hierarchical models to characterize 

the spatial behavior of climate data. Aim of these models is to describe how the marginal dis-

tribution of a quantity of interest varies with its location. The key idea is that rather than ap-

plying a spatial model directly to the data, it is assumed that there is a latent spatial process 

characterized by a spatial model for the parameters of the marginal distributions at each loca-

tion. An extensive review of such models for spatial data can be found in [5]. 

Hierarchical spatial modelling for extremes has begun to be studied recently, one of the 

first work in this field is found in [3], while successive developments and applications are 

available in [6] for extreme precipitations and in [7] for extreme precipitations obtained by 

regional climate models. They are increasingly used for the capability to borrow strength from 

neighboring locations when estimating parameters in extreme value analysis, usually charac-

terized by small amount of data. The Bayesian Hierarchical Model is formulated through what 

has now become the standard three-level hierarchical formulation [8]: 

• Data Layer, which is the base layer where data, e.g. the yearly maxima of the investi-

gated climate variables, are modelled at each location according to the Extreme Value 

theory; 
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• Process Layer, where the latent process that drives the extremes for the study region is 

formulated; 

• Prior Layer, where information about the parameters controlling the latent process are 

given in terms of prior distributions. 

The model is flexible and able to incorporate covariate information, variability due to spa-

tial effects and micro-scale variability due to climate model uncertainty. Each layer of the 

model will be fully described in the next paragraphs. 

2.1 Data Level 

At data level, series of yearly maxima derived from the analysis of climate projections 

provided by each RCM r, are available for each cell i in the study region. In order to evaluate 

the evolution in time of the extreme value process, data are divided in subsequent time win-

dows of 40 years shifted by ten years, thus obtaining eleven time window t (1951-1990, 1961-

2000,..., 2041-2080 and 2051-2090). The time window length is set to 40 years to be con-

sistent with the actual definition of climatic loads on structural codes, which is based on the 

analysis of observed data series of climate extremes of about forty years [9], while the shift of 

ten years is defined to properly evaluate the evolution in time of climatic loads.  

For each time window t, N=40 yearly maxima are thus given at each cell i in the study re-

gion and assuming an Extreme Value Distribution Type I as marginal distribution, the random 

variable Yitr is described by the cumulative distribution function F(y) 
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and the probability density function f(y) is  
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where μi,t,r and σi,t,r are the location and scale parameter for cell i, time window t and RCM 

r. The first level of the hierarchical model structure, for each climate model r, will be de-

scribed by 

 t t( ) | EVI( (s, ),exp(log( )(s, )))t tY s θ µ ω σ ω∼  (3) 

with 

Yt(s)            are the yearly maxima of climate data at the location s in the study region for 

the time window t; 

θt                  are the random parameter of the model in the time window t; 

μt(s,ω)        is a random field describing the spatial variation of location parameter of EV 

Type I distribution in the time window t, where ω ∈ Ω express the random 

event; 

log(σt)(s,ω)   is a random field describing the spatial variation of the log-scale parameter of 

EV Type I distribution in the time window t, where ω ∈ Ω express the random 

event. 

If Yi,t is a vector of the yearly maxima in the investigated time window t for the cell i in the 

study region and Yt = (YT
1,t, ..., Y

T
D,t) contains all the maxima for the D cells in the region, 

then assuming the conditional independence of Yi for all location, common assumption in hi-

erarchical modelling [5], starting from eq. 2 the likelihood function becomes 
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2.2 Process Level 

In the hierarchical model, at the process level, the latent spatial process is formulated by 

constructing a structure that relates the parameter of the data level to the characteristics of the 

region. In particular, a Gaussian random field is proposed to model spatial variation of loca-

tion and log-scale parameters according the following formulas 

 2

, , ,( , ) ( ( , ), )t t t ts N X W sµ µ µµ ω β ω τ+∼  (5) 

 2

, , ,log( )( , ) ( ( , ), )t t t ts N X W sσ σ σσ ω β ω τ+∼  (6) 

with 

Wμ,t(s,ω)     is a spatial random effect described by a zero mean Gaussian random field 

N(0,∑μ(lμ,t, sμ,t)) with covariance matrix ∑μ . 

Wσ,t(s,ω)     is a spatial random effect described by a zero mean Gaussian random field 

N(0,∑σ(lσ,t, sσ,t)) with covariance matrix ∑σ .  

X                  is a matrix of covariate information; 

βμ,t and βσ,t   are vectors of regression coefficients for μt and σt given X; 

τμ
2 and τσ

2    are precision terms for the location and the log-scale fields 

Different models may be set for the covariance structure, considering stationarity or non 

stationarity in the covariance function as described in [10]. In this work an exponential model 

with parameter correlation length lμ,t and sill sμ,t has been considered. ; 

Covariate information are spatially-varying, physical features or observable quantities that 

can either be collected at all prediction locations of interest or in some way interpolated from 

nearby observations [11] (for example, elevation, or geographical feature such latitude or lon-

gitude but also wind speed or direction). 

The precision terms, τμ,t
2 and τσ,t

2 in eq. 5 and 6, can be viewed as a noise associated with 

replication of measurements at location s, and in this case represents the variability of the data 

related to internal climate model uncertainty. However, the availability of few realizations of 

climate model run, often only one, due to the enormous computational demand doesn’t allow 

a direct assessment of this source of uncertainty.  

A possibility to assess the uncertainty related to the RCM internal variability is the meth-

odology described by the authors in [12], where an ad hoc weather generator is proposed able 

to generate new consistent climate projections directly from RCM output. Analyzing the gen-

erated series, an evaluation of the noise associated to the EV parameters becomes possible and 

the constant precision terms τμ,t
2 and τσ,t

2, associated at each investigated climate model r, de-

pending on the cell i and the time window t, are defined. 

2.3 Prior Level 

Prior distribution are finally assigned to the hyperparameters of the model at each time 

window t, θt(βμ,t, βσ,t, lμ,t, sμ,t, lσ,t, sσ,t). Where possible, uninformative priors are assigned to 

these parameters and conjugate priors are used to facilitate the use of Gibbs sampling in the 

model implementation.  

Normal distribution with mean defined as the mean of the point estimates of parameters in 

the region and large variance are set for the intercept terms of the regression coefficients (β0,μ 
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and β0,σ), while normal distribution with zero mean and large variance are set for the other 

regression coefficients β. 

However, informative priors are generally needed for the sill (sμ,t, sσ,t) and correlation 

length (lμ,t, lσ,t) parameters to avoid improper posteriors [5]. Since these parameters are not 

observable quantities, a preliminary analysis should be carried out to characterize the behavior 

of the experimental semi-variogram for μ and σ. Following the procedure proposed in [13] 

maximum likelihood estimates of μ and σ are computed at each location in the study region, 

and prior distributions for the parameters are chosen to define a wide envelope around the ex-

perimental semi-variogram given by the ML estimates.  

2.4 Implementation of the model 

In order to update each parameter θt of the described model a Metropolis–Hastings algo-

rithm within a Gibbs sampler has been implemented. This hybrid MCMC algorithm [14] con-

sists of a Gibbs sampler where a Metropolis step is used in order to sample from conditional 

distributions which are not known. Parameters of the model, which will be implemented for 

each time window t, are collected at each step i of the algorithm in the vector θt
(i)(βμ,t

(i), βσ,t
(i), 

lμ,t
(i), sμ,t

(i), lσ,t
(i), sσ,t

(i)). Then, applying the Gibbs sampler, we partition the sampling for loca-

tion μ and log-scale log(σ) parameters and the next point in the chain i + 1, is generated in the 

following steps: 

• Updating of correlation length parameter; 

• Updating of sill parameter; 

• Updating of regression parameters; 

• Updating of EV parameter at each site; 

• Repetition of the previous four steps for log-scale parameter. 

A complete description of each step of the algorithm can be found in [15]. The algorithm is 

iterated checking the convergence for each parameters and finally, posterior densities of pa-

rameters θt are obtained. Implementing the model in the subsequent time windows t, the varia-

tion over time of posterior densities can be easily assessed, especially for EV parameters and 

consequently for return levels. In particular, for the definition of climatic actions on structures, 

we are interested in the evaluation of climate change impact on characteristic values ck, i.e. 

value having a probability of 2% to be exceeded in one year (mean return period of 50 years) 

[16]. Therefore, posterior samples are easily computed for ck according to 

 [ ]{ }, log log(1 0.02)i i i

k t t tc µ σ= + − − −  (7) 

and updated return level maps for characteristic loads can be easily drawn evaluating 

changes in the different time windows. 

3 APPLICATION FOR GROUND SNOW LOADS 

3.1 Study area and dataset 

This section shows an application of the methodology presented in the previous section, on 

extreme ground snow loads considering the Zone 3-4 of the Italian Mediterranean climatic 

region defined by the Annex C to EN1991-1-3 [4]. The study region is shown in Figure 1 and 

comprises D=272 cells at which climate projections are provided by the highest resolution 

Regional Climate Models developed by the EUROCORDEX initiative [17].  
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Figure 1: Investigated region. 

Climate projections provided by an ensemble of r=6 RCMs for the period 1951-2100 have 

been analyzed, considering a medium emission scenario RCP4.5 and the highest emission 

scenario RCP8.5 [18]. The main characteristics of the investigated climate projections are re-

ported in Table 1.  

 

Institute RCM  GCM Period  Experiment 

DMI HIRHAM5  EC-EARTH  1951-2100  Historical,RCP4.5,RCP8.5 

CLMcom 
CCLM4-8-17  

CNRM-CM5-

LR  
1951-2100  

Historical,RCP4.5,RCP8.5 

CLMcom CCLM4-8-171  EC-EARTH  1951-2100  Historical,RCP4.5,RCP8.5 

KNMI RACMO22E  EC-EARTH  1951-2100 Historical,RCP4.5,RCP8.5 

MPI-CSC REMO2009 MPI-ESM-LR 1951-2100 Historical,RCP4.5,RCP8.5 

IPSL-INERIS WRF331F CM5A-MR 1951-2100 Historical,RCP4.5,RCP8.5 

Table 1: Overview on the analyzed climate projections and their main characteristics. 

3.2 Implementation and results 

In order to derive ground snow loads from regional climate models output such as daily 

temperatures and precipitation, the procedure described in [1] and [15] has been implemented 

deriving series of N=140 yearly maxima snow load for each cell in the study region. 

Among possible covariate information, altitude shows most significant influence on ex-

treme snow loads, it has been then considered as the only covariate and a quadratic model has 

been chosen as defined in the Eurocode EN1991-1-3 [4] for characteristic ground snow load 

in Mediterranean region. Then, covariate matrix X and the vectors of regression coefficients 

βμ,t and βσ,t in eq. 5 and 6 become 
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The model have been implemented for each time window t, and the MCMC algorithm has 

been iterated 40 000 times, obtaining posterior densities of random parameters θt(βμ,t, βσ,t, lμ,t, 

sμ,t, lσ,t, sσ,t). As an example in Figure 2 the results in terms of posterior densities of location μ 

and scale σ EV parameters, but also qk, are presented for one cell, i=160, in the study region 

in different time windows (t = 1, 4, 8, 10) according to one of the investigated climate model 

(first RCM in Table 1). 

 

Figure 2: Changes in posterior PDFs of μ , σ and qk with time t. 

The hierarchical model combined with the Bayesian approach enables a direct assessment 

of the uncertainties affecting the extreme value process using the posterior distribution of pa-

rameters and return values, as shown in Figure 2. Moreover, the implementation of the model 

in subsequent time window allows a direct estimation of the effect of climate change on ex-

treme ground snow loads by means of the analysis of changes in posterior densities of EV pa-

rameters and return values. 

The spatial pooling of the data provides an added value in comparison with classical ap-

proach based on maximum likelihood estimates at point level leading to more precise and less 

variable estimates [3]. The reduced uncertainty in the estimation is shown in Figure 2 where 
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qk estimates obtained by the presented spatial model are compared with the classical site by 

site analysis according the maximum likelihood method, for some cells at increasing distance 

in the study region. The results in terms of 95% confidence interval clearly show the reduced 

uncertainty for the illustrated spatial model confirming the advantages of spatial pooling for 

tail estimation. 

 

Figure 3: qk estimates by maximum likelihood method (MLM) and Bayesian hierarchical model (BHM) with 

95% confidence intervals. 

3.3 Return level and Factor of Change Maps 

Return level maps can also be drawn from the posterior samples of qk obtained according 

the investigated climate models and scenarios. However, more information about climate 

change impact can be derived by the definition of factors of change (FC) as the difference or 

the ratio of predictions from RCM in the future period and the historical period.   

The factor of change approach has a long history in climate change impact studies, it is 

based on the assumption that changes in the observed climate variables form present to future 

are the same than changes predicted by the climate models not requiring to apply bias correc-

tion methods.   

Factor of change maps represent a good solution for the assessment and the visualization of 

future trends in climatic actions since the estimated changes can be easily applied to the cur-

rent version of climatic load maps in structural Codes.  

Therefore, from the posterior samples of qk, mean and standard deviation for FC are com-

puted  

 ,

,

,

, ( )

,1 ,1

( ) ; k t

k t

qk t

k t FC q

k k

q
FC q

q q

σ
σ= =  (8) 

As an example maps for mean FC and standard deviation are reported in Figure 4 and 5 re-

spectively, considering t=8 (2021-2060) and the six RCMs in Table 1 run according the 

RCP4.5 scenario.  
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Figure 4: Posterior mean of qk Factor of Change for 2021-2060 w.r.t. 1951.1990 according to the climate models 

in Table 1, Scenario RCP4.5. 

 

Figure 5: Posterior standard deviation of qk Factor of Change for 2021-2060 w.r.t. 1951.1990 according to the 

climate models in Table 1, Scenario RCP4.5. 

The results obtained for the different climate models can be finally combined considering 

each climate model of the ensemble as an equally likely representation of future climate. In 

this way, a complete probabilistic description of future changes in characteristic loads is ob-

tained providing guidance for potential amendments of the current version of climatic load 

maps in structural Codes.  

In Figure 6, the results in terms of factor of change maps for characteristic ground snow 

load qk are presented in a bivariate map, which consider the 25-75% prediction interval for FC, 

for three time windows (1991-2030, 2011-2050, and 2031-2080) according the RCP4.5 and 

RCP8.5 scenario (second and third row respectively). In the same Figure, on the top row, the 

current snow load map for the study region, obtained implementing the load altitude relation-

ship given in the Annex C of EN1991-1-3 [4] and based on the results of the European Snow 

Load Research Project[19], which analyzed observed data series of ground snow loads in the 

period 1951-1990, is also reported. 
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Figure 6: Factors of Change for qk - Confidence interval [25-75%] Map (Scenario RCP4.5). 

4 CONCLUSIONS  

In order to estimate future changes in climatic actions on structures, a methodology based 

on the construction of a Bayesian hierarchical model for the characterization of climate ex-

tremes derived from the analysis of high-resolution climate model output has been presented.  

The model is formulated through the classical three-level formulation, in which the stand-

ard extreme value representation at each site is combined with a spatial latent process, and it 

is implemented in different time windows to assess climate change effects on the extreme 

value process. 

An application on ground snow loads has been carried out to illustrate the capabilities of 

the proposed methodology. The results shows that the Bayesian framework enables a direct 

assessment of the uncertainties affecting the prediction of the extreme value parameters and 

return levels. Moreover, the spatial pooling of the data leads to more precise and less variable 

estimates with respect to classical approaches based on maximum likelihood estimates at 

point level.  

Finally, combining the results obtained for each climate model, suitable factors of change 

uncertainty maps are drawn providing guidance for potential amendments of the climatic load 

maps in structural Codes. 
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Abstract. Combination of low-tensor rank techniques and the Fast Fourier transform
(FFT) based methods had turned out to be prominent in accelerating various statistical
operations such as Kriging, computing conditional covariance, geostatistical optimal de-
sign, and others. However, the approximation of a full tensor by its low-rank format can
be computationally formidable. In this work, we incorporate the robust Tensor Train (TT)
approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-
based Kriging. It is shown that here the computational complexity of Kriging is reduced
to O(dr3n), where n is the mode size of the estimation grid, d is the number of variables
(the dimension), and r is the rank of the TT approximation of the covariance matrix.
For many popular covariance functions the TT rank r remains stable for increasing n and
d. The advantages of this approach against those using plain FFT are demonstrated in
synthetic and real data examples.
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1 Introduction

Kriging is an interpolation method that makes estimates of unmeasured quantities
based on (sparse) scattered measurements. It is widely applied in the estimation of some
spatially distributed quantities such as daily moisture, rainfall intensities, temperatures,
contaminant concentrations or hydraulic conductivities, etc. [40, 22]. Kriging is also used
as a surrogate of some complex physical models for the purpose of efficient uncertainty
quantification (UQ), in which it estimates the model response under some random per-
turbation of the parameters. In the first case the estimation grids are usually in two or
three dimensions [60, 9, 18] or four dimensions in a space-time Kriging [3, 34, 21], while in
the latter the dimension number could be much larger (equals to the number of uncertain
parameters). When considering finely resolved estimation grids (which is often the case
for UQ jobs), Kriging can easily exceed the computational capacity of modern computers.
In this case estimation variance of Kriging or solving the related geostatistical optimal de-
sign problems incurs even higher computational costs [41, 43, 55]. Kriging mainly involves
three computational tasks. The first is solving a N ×N system of equations to obtain the

310



Sergey Dolgov, Alexander Litvinenko, and Dishi Liu

Kriging weights, where N is the number of measurements. Despite its O(N3) complexity
this task is better manageable since N is usually much smaller than the number of esti-
mates on a fine grid, N̄ = n̄d, d the dimensionality, especially when the measurement is
expensive like for complex physical models. The second task is to compute the N̄ Kriging
estimates by multiplying the weights vector to the N̄×N cross-covariance matrix between
measurements and unknowns. The third task is to evaluate the N̄ estimation variances as
the diagonal of a N̄ × N̄ conditional covariance matrix. If we take the optimal design of
sampling into account, there is an additional task to repeatedly evaluate the N̄ × N̄ con-
ditional covariance matrix for the purpose of a high-dimensional non-linear optimization
[32, 54, 51].

Remarkable progress had been made in speeding up Kriging computations by Fast
Fourier transform (FFT) [11]. The low-rank tensor decomposition techniques brought a
further possible reduction in the time cost, since d-dimensional FFT on a tensor in low-
rank format can be made at the cost of a series of 1-dimensional FFT’s, as exemplified
in [59] by using canonical, Tucker and Tensor Train formats of tensors. The work in
[44] brought a significant further reduction of computational cost for the second and third
Kriging tasks as well as the task for the optimal design of sampling by applying a low-rank
canonical tensor approximation to the vectors of interest.

In this paper, we enhance the methodology proposed in [44] by employing a more
robust low-rank Tensor Train (TT) format instead of the canonical format. We apply
the TT-cross algorithm for efficient approximation of tensors, which is a key improvement
compared to the method introduced in [44] where the low-rank format of the covariance
matrix was assumed to be given. We also consider a more broad Matérn class of covariance
functions.

The current work improves the applicability of the use of low-rank techniques in the
FFT-based Kriging. We achieve a reduction of the computational complexity of Kriging
to the level of O(dr3n̄), where r is the considered TT rank of the approximation, and n̄
is the number of grid points in one direction, such that N̄ = n̄d is the total number of
estimated points.

We assume second-order stationarity for the covariance function and simple Kriging on
a rectangular, equispaced grid parallel to the axes.

We also discuss possible extensions to non-rectangular domains and to general (scat-
tered) measurement points. In such cases, the tensor ranks may significantly increase,
up to the full rank. For the cases when FFT technique is not applicable the authors
of [52, 37, 35, 29] applied the hierarchical matrix technique (H-matrices). A parallel
implementation of Kriging was done in [50].

1.1 State of the art for FFT-based Kriging

Let us assume that the covariance function is second-order stationary and is discretized
on a tensor (regular and equispaced grid) mesh with N̄ = n̄d points. Then the N̄ × N̄
auto-covariance matrix of the unknowns has a symmetric (block-) Toeplitz structure (Sec-
tion 3.1), which can be extended to a (block-) circulant matrix by a periodic embedding
in which the number of rows and columns is enlarged, for example, from N̄ to Ň = 2N̄+1
[49, 22, 31]. It is known [11] that only the first column of the circulant matrix has to be
stored. This reduces the computing cost from quadratic to log-linear [61] in N̄ . The key
in the FFT-based Kriging is the fact that the multiplication of a circulant matrix and a
vector is a discrete convolution which can be computed swiftly through FFT algorithm
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so that the quadratic computational complexity is also reduced to a log-linear one [12].
If the measurements are given on a regular equispaced grid, the first Kriging task is

solving a system also with a symmetric positive-definite Toeplitz matrix [11, 4]. Further
development of methods handling measurements that are on a subset of a finer regular
grid have been made in [49, 11].

The work in [44] combined the power of FFT and the low-rank canonical tensor decom-
position. It was assumed that the covariance matrix and the vector of interest (of size Ň)
are available in a low-rank canonical tensor format which is a sum of r Kronecker products
of vectors of size ň each, with ňd = Ň . Separable covariance functions (e.g. Gaussian,
separate exponential) can be decomposed exactly with r = 1. For smooth non-separable
covariance functions, a small r value can usually give a good approximation.

The canonical tensor representation can not only greatly reduce the memory stor-
age size of the circulant matrix, but also speed up the Fourier transform since the d-
dimensional FFT applied on the Kronecker product of matrices can be implemented by
computing the 1-dimensional FFT on the first direction of each matrix. This reduces the
complexity to O(drň log ň). For r � ň this is a significant reduction from the complexity
of FFT on the full tensor, which is O(dňd log ň).

1.2 Goals, approach and contributions

However, converting a full tensor to a well approximating low-rank tensor format can
be computationally formidable. Simply generating the full tensor itself might be beyond
the memory capacity of a desktop computer. To make the low-rank FFT-based method
practical, we need an efficient way to obtain a low-rank approximation directly from the
multi-dimensional function that underlies the full tensor. It could be a challenging task
though to approximate the first column of the Toeplitz (circulant) matrix in the canonical
tensor format for d ≥ 3. This is due to the fact that the class of rank-k canonical tensors is
a nonclosed set in the corresponding tensor product space (pp 91-92 in [28]). The Tucker
format tensor decomposition [27, 17, 15] adopted in [36] could be too costly to use for
problems with d ≥ 3.

In this paper, we adopt an alternative tensor format, namely, the Tensor Train (TT)
format [47, 17] (introduced in Section 4.1) which can be obtained from a full tensor in a
stable direct way by a sequence of singular value decompositions of auxiliary matrices, or,
more importantly, it can be computed iteratively by the TT-cross method [48] which has
the complexity in the order of O(dr3n̄), see Section 4.2 for more details. Often this is the
most time-consuming stage of Kriging operations. Once the tensors are approximated in
the TT format, the FFT can be carried out with a modest O(dr2n̄ log n̄) complexity. This
makes the overall low-rank FFT-based Kriging practical for high dimensions. We test the
efficiency of the method in terms of computational time and memory usage in Section 5.

Thus, our paper is novel in three aspects: (i) we approximate the covariance matrix
in the low-rank TT tensor format using only the given covariance function as a black
box (this part was missing in [44]), (ii) we extend the methodology to Matérn, exponen-
tial and spherical covariance functions (in addition to Gaussian functions), and (iii) we
demonstrate that the low-rank approach enables high-dimensional Kriging.
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1.3 Notation

We denote vectors by bold lower-case letters (e.g., c, u, ξ) and matrices by bold upper-
case letters (e.g., Css, M, H). Letters decorated with an overbar represent the size of
the tensor grid of estimates. Embedded matrices, vectors and their sizes are denoted
by letters with a check accent (e.g., Č, č, ň, ňi). F [d] stands for d-dimensional Fourier
transform (FT), Fi for one-dimensional FT along the i-th dimension. F [−d] and F−1

i are
their inverse operators.

2 Kriging and geostatistical optimal design

Like in [44], we work with the function estimate form [30, 31] of Kriging (introduced
in Section 2.2). We take simple Kriging in which the estimates are assumed to have zero
mean.

2.1 Matérn covariance

A low-rank approximation of the given function or a data set is a key component of
the tasks formulated above. Among of the many covariance models available, the Matérn
family [39] is widely used in spatial statistics and geostatistics.

The Matérn covariance function is defined as

Cν,`(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν

Kν

(√
2νr

`

)
. (1)

Here r := ‖p1 − p2‖ is the distance between two points p1 and p2 in Rd; ν > 0 defines the
smoothness. The larger is parameter ν, the smoother is the random field. The parameter
` > 0 is called the covariance length and measures how quickly the correlation of the
random field decays with distance. Kν denotes the modified Bessel function of order ν.
It is known that setting ν = 1/2 we obtain the exponential covariance model. The value
ν =∞ corresponds to a Gaussian covariance model.

In [36], the authors provided the analytic sinc-based proof of the existence of low-rank
tensor approximations of Matérn functions. They investigated numerically the behavior
of the Tucker and canonical ranks across a wide range of parameters specific to the family
of Matérn kernels. It could be problematic to extend the results of this work to d > 3,
since one of the terms in the Tucker decomposition storage cost O(drn + rd) is growing
exponentially with d.

2.2 Computational tasks in Kriging and optimal sampling design

The computation of a simple Kriging process and optimal sample design involve mainly
these tasks:

Task-1. Let y denote a N -size vector containing the sampled values, Cyy denote the
auto-covariance matrix. If the measurements are not exact and the covariance matrix R
of the random measurement error is available, R is to be added to Cyy. The first task is
to solve the below system for the Kriging weights ξ:

Cyyξ = y (2)

Task-2. With the weights ξ we can obtain the Kriging estimates ŝ (sized N̄ × 1 ) by
a superposition of columns of the cross-covariance matrices Csy (sized N̄ ×N ) weighted
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by ξ, i.e. the Kriging estimate ŝ is given by [31]:

ŝ = Csyξ . (3)

Task-3. The variance σ̂2
s of the estimates ŝ is to be obtained from the diagonal of the

conditional covariance matrix Css|y:

σ̂2
s = diag(Css|y) = diag

(
Css −CsyC

−1
yy Cys

)
= diag (Css)−

N∑
i=1

(Csyζi)
◦2 , (4)

where ζi is the i-th column of L−T with L the lower triangular Cholesky factor matrix of
Cyy, and the superscript ◦2 denotes Hadamard square.

Task-4. The goal of geostatistical design is to optimize sampling patterns (or locations)
for y. There two most common objective functions to be minimized, which are also called
A- and C- criteria of geostatistical optimal design [41, 43, 5]:

φA = N̄−1 trace
[
Css|y

]
φC = z>Css|yz = z>(Css −CsyC

−1
yy Cys)z , (5)

where z is a data vector [43].

3 Interface from Kriging to FFT-based methods

In this section we give a brief introduction to the basics of FFT-based Kriging [11].
We assume that the measurement points are a subset of the estimate grid points. The
simplest version of Kriging is a direct injection: the estimated values are set equal to
the measurement values at the corresponding locations, and to zeros at all other points.
Equivalently, we say that we inject a (small) tensor of measurements into a (larger) tensor
of estimations.

For the FFT-based Kriging we use a regular, equispaced grid which leads to a (block)
Toeplitz covariance matrix that can be augmented to a circulant one (Section 3.1). An
embedding operation augments the injected tensor to the size that is compatible with
the circulant covariance matrix. The (pseudo-)inverse of embedding is called extraction
(Section 3.2).

3.1 Embedding Toeplitz covariance to circulant matrices

A Toeplitz matrix is constant along each descending diagonal (from left to right). A
block Toeplitz matrix has identical sub-matrices in each descending diagonal block and
each sub-matrix Toeplitz. If the covariance function is stationary and the estimates are
made on a d-dimensional regular, equispaced grid, the covariance matrix Css is symmetric
level-d block Toeplitz [2]. Since submatrices are repeating along diagonals the required
storage could be reduced from O(N̄2) to O(N̄) elements [61, 23].

A circulant matrix Č is a Toeplitz matrix that has its first column č periodic. This type
of matrices come from covariance functions that are periodic in the domain. A circulant
matrix-vector product can be computed efficiently by FFT [57]. The eigenvalues of Č can
be computed as the Fourier transform of its first column č [58, 2, pp. 350-354]. These
properties lead us to the fast FFT-based kriging methods.
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A Toeplitz matrix Css can always be augmented to a circulant matrix Č. This process
is called embedding. Let C(:, 1) be the first column of Css. Embedding is often done by
appending the second through the last but one element of C(:, 1) to the end of C(:, 1) in
reverse order, which makes a periodic vector č. For the cases d > 1, this augmentation
has to be done recursively in every level for the d-level Toeplitz covariance matrix. An
equivalent way of doing this is to augment the domain (to be 2d times larger) and extend
the covariance function to be periodic on the domain, as illustrated in [33, 45]. In [42, 6, 45]
the authors have addressed the issue of the minimum embedding size.

3.2 Injection, embedding and extraction of data tensors

Suppose we obtained the Kriging weights ξ for the measurements by solving (2). The
injection of ξ means to insert it in a larger all-zero tensor that has the same size of the
estimate tensor, i.e. the injected tensor has non-zero entries only at the measurement
sites.

Suppose we have N measurements indexed by j = 1, · · · , N , each associated with
a weight ξj and a site index vector `j, then the injection of ξ results in a tensor ξ̄ ∈
Rn̄1×n̄2×···×n̄d with entries:

ξ̄(i1, i2, · · · , id) =

{
ξj if i = `j,∀j ∈ [1, · · · , N ]
0 otherwise

. (6)

We denote the injection operation by H : ξ → ξ̄.
Embedding an injected weight tensor enhances its mode size from n̄ to ň = 2n̄ by

padding zeros to the extra entries so that the tensor is of 2d times the original size. The
embedded weight tensor ξ̌ ∈ Rň1×ň2×···×ňd has entries:

ξ̌(i1, i2, · · · , id) =

{
ξ̄(i1, i2, · · · , id) if i` ≤ n̄`, 1 ≤ ` ≤ d
0 otherwise

. (7)

We denote the embedding operation by M : ξ̄ → ξ̌.
The extraction is the inverse operation of embedding, we denoted it byM†. ByM†(η)

we take only the first half of η in every dimension, which results in a new tensor of only
1
2d

of the size of η.

3.3 Matrix-vector multiplication via FFT

With the circulant covariance matrix Č obtained as explained in Section 3.1, the Task-
2 in (3) becomes a discrete convolution which can be computed by using FFT[57], this is
written as (e.g., Fritz, Nowak and Neuweiler, [11]):

Csyξ = CssH(ξ) =M†ČM(H(ξ))

=M†F [−d]
(
F [d] (č) ◦ F [d]

(
ξ̌
))

. (8)

where the operation M(H(·)) injects and embeds ξ into ξ̌. The F [d] is evaluated by
the Fast Fourier Transformation (FFT) [10]. Without using tensor approximations the
computational complexity for Kriging is reduced to O

(
Ň log Ň

)
, and the storage size

reduced to O
(
Ň
)
.

For the variance estimation (Task-3) in (4) the FFT method also applies. We first need
to do a Cholesky decomposition Cyy = LLT , and inject and embed each column ζi of
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L−T to get the corresponding ζ̌i. Then (4) can be computed as

σ̂2
s = σ2

s1N̄ −
∑N

i=1

[
M†F [−d]

(
F [d] (č) ◦ F [d]

(
ζ̌i
))]◦2

, (9)

where σ2
s is the prior variance, 1N̄ is a N̄ -length vector of all ones.

4 FFT-based Kriging accelerated by low-rank tensor decomposition

In addition to the efficient FFT-based method enabled by the Teoplitz structure of co-
variance matrices, the Kriging process can be further sped up by low-rank representations
of the embedded covariance matrices. Since the covariance functions are usually smooth,
large covariance matrices could be well approximated by a low-rank tensor format. A
literature survey of low-rank tensor approximation techniques is available in [27, 15].

In this section, we approximate the first column of the circulant covariance matrix in
tensor train (TT) format and then rewrite 8 also in the TT format. We start with a brief
reviewing of the TT technique.

4.1 TT decomposition

We assume that the data vectors (c, ξ, etc.) can be associated to a function discretised
on a structured grid in d dimensions, for example, if ξ(x, y, z) is sampled on a Cartesian
3-dimensional grid,

ξ = {ξ(xi1 , yi2 , zi3)}
n1,n2,n3

i1,i2,i3=1 . (10)

Then we can enumerate the entries of the vector via sub-indices i1, i2, . . . , id, thereby seeing
it as a tensor with elements ξ(i1, . . . , id). We approximate such tensors, and, consequently,
associated data vectors, in the Tensor Train (TT) decomposition [47],

ξ(i1, i2, . . . , id) ≈ ξ̃(i1, i2, . . . , id) :=

r0,...,rd∑
α0,...,αd=1

ξ(1)
α0,α1

(i1)ξ(2)
α1,α2

(i2) · · · ξ(d)
αd−1,αd

(id). (11)

Here ξ(k), k = 1, . . . , d, are called TT blocks. Each TT block ξ(k) is a three-dimensional
tensor of size rk−1 × nk × rk, r0 = rd = 1. The efficiency of this representation relies on
the TT ranks r0, . . . , rd being bounded by a moderate constant r. For simplicity we can
also introduce an upper bound of the univariate grid sizes nk ≤ n. Then we can notice
that the TT format (11) contains at most dnr2 elements. This is much smaller than the
number of entries in the original tensor which grows exponentially in d. Using Kronecker
products, one can rewrite (11) as follows,

ξ̃ =

r0,...,rd∑
α0,...,αd=1

ξ(1)
α0,α1

⊗ ξ(2)
α1,α2

⊗ · · · ⊗ ξ(d)
αd−1,αd

,

i.e. we see each TT block as a set of vectors of length nk.
Of course, one can think of any other scheme of sampling a function, e.g. at random

points, but the TT decomposition requires independence of sub-indices i1, . . . , id, and
therefore the Cartesian product discretisation. The rationale behind using this, on the
first glance excessive, scheme, is the fast convergence of the approximation error ε with
the TT ranks. If ξ(x, y, z) is analytic, the TT ranks often depend logarithmically on ε
[56, 26, 53]. Combining the TT approximation with collocation on the Chebyshev grid,
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which allows to take n = O(| log ε|) for analytic functions, one arrives at O(d| log ε|3)
overall cost of interpolation or integration using the TT format. This can be significantly
cheaper than the O(ε−2) cost of Monte Carlo quadrature or Radial Basis function inter-
polation. Moreover, TT ranks depend usually very mildly on the particular univariate
discretisation scheme, provided that it can resolve the function. We can use any uni-
variate grid in each variable instead of the Chebyshev rule. For example, a uniform grid
yields Toeplitz or circulant covariance matrices, which are amenable to fast FFT-based
multiplication/diagonalisation.

However, it is difficult to obtain sharp bounds for the TT ranks theoretically. Therefore,
we resort to robust numerical algorithms to compute a TT approximation of given data.

4.2 TT-cross approximation

A full tensor can be compressed into a TT format quasi-optimally for the desired
tolerance via the truncated singular value decomposition (SVD) [47]. However, the full
tensor might even be impossible to store. In this section we recall the practical TT-cross
method [48] that computes the representation (11) using only a few entries from ξ. It is
based on the skeleton decomposition of a matrix [14], which represents an n×m matrix
A of rank r as the cross (in Matlab-like notation)

A = A(:,J )A(I,J )−1A(I, :) (12)

of r columns and rows, where I and J are two index sets of cardinality r such that
A(I,J ) (the intersection matrix) is invertible. If r � n,m, the right-hand side requires
only (n+m− r)r � nm elements of the original matrix.

In order to describe the TT-cross method, we introduce the so-called unfolding matrices
Ξk = [ξ(i1, . . . , ik; ik+1, . . . , id)], that have the first k indices grouped together to index
rows, and the remaining indices grouped to index columns. Let us now consider Ξ1 and
apply the idea of the matrix cross (12). Assume that there exists a set of r1 index tuples,
I>1 = {iα1

2 , . . . , i
α1
d }

r1
α1=1, such that the I>1-“columns” of the original tensor ξ(:, I>1) form

a “good” basis for all columns of Ξ1. The reduction (12) may be formed for r1 rows at
positions I<2 = {iα1

1 }r1α1=1, which are now optimized by choosing the r1 × r1 submatrix
ξ(I<2, I>1) such that its volume (modulus of determinant) is maximal. This can be done
by the maxvol algorithm [13] in O(nr2

1) operations. Now we construct the first TT block
ξ(1) as the n× r1 matrix ξ(:, I>1)ξ(I<2, I>1)−1. In a practical algorithm, the inversion is
performed via the QR-decomposition for numerical stability. Next, we reduce the tensor
onto I<2 in the first variable, and apply TT-cross inductively to [Ξ>1(α1, i2, . . . , id)] =
[ξ(iα1

1 , i2, . . . , id)].
In the k-th step, assume that we are given the reduction Ξ>k−1(αk−1, ik, . . . , id), a

“left” index set I<k = {iαk−1

1 , . . . , i
αk−1

k−1 }
rk−1

αk−1=1, and a “right” set I>k = {iαk
k+1, . . . , i

αk
d }

rk
αk=1.

The rk−1n × rk reduced unfolding matrix [Ξ>k−1(αk−1, ik; I>k)] is again feasible for the
maxvol algorithm, which produces a set of row positions `k = {ααk

k−1, i
αk
k }

rk
αk=1. The next

left set I<k+1 is constructed from `k by replacing αk−1 with the corresponding indexes
i
αk−1

1 , . . . , i
αk−1

k−1 from I<k. Continuing this process until the last variable, where we just

copy ξ(d) = Ξ>d−1, we complete the induction.
This process can be also organized in a form of a binary tree, which gives rise to the

so-called hierarchical Tucker cross algorithm [1]. In total, we need O(dnr2) evaluations of
ξ and O(dnr3) additional operations in computations of the maximum volume matrices.
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Algorithm 1 TT cross algorithm with rank adaptation.
Require: Initial index sets I>k, rank increasing parameter ρ ≥ 0, stopping tolerance

δ > 0 and/or maximum number of iterations itermax.
Ensure: TT blocks of an approximation (11) to ξ.

1: while iter < itermax and ‖ξ̃iter − ξ̃iter−1‖ > δ‖ξ̃iter‖ do
2: for k = 1, 2, . . . , d do . Forward iteration
3: (Optionally) prepare an auxiliary enrichment set Iaux>k .
4: Compute the rk−1n× rk unfolding matrix ξ(I<k, ik; I>k).
5: Compute I<k+1 by the maxvol algorithm and (optionally) truncate.
6: end for
7: for k = d, d− 1, . . . , 1 do . Backward iteration
8: (Optionally) prepare an auxiliary enrichment set Iaux<k .
9: Compute the rk−1 × nrk unfolding matrix ξ(I<k ; ik, I>k).

10: Compute I>k−1 by the maxvol algorithm and (optionally) truncate.
11: end for
12: end while

The TT-cross method requires some starting index sets I>k. Without any prior knowl-
edge, it seems reasonable to initialize I>k with independent realizations of any easy to
sample reference distribution (e.g. uniform or Gaussian). If the target tensor ξ admits an
exact TT decomposition with TT ranks not greater than r1, . . . , rd−1, and all unfolding
matrices have ranks not smaller than the TT ranks of ξ, the cross iteration outlined above
reconstructs ξ exactly [48]. However, practical tensors can usually only be approximated
by a TT decomposition with low ranks. Nevertheless a slight overestimation of the ranks
can deliver a good approximation, if a tensor was produced from a regular enough function
[1, 7].

However, it might be necessary to refine the sets I<k, I>k by conducting several TT
cross iterations, going back and forth over the TT blocks and optimizing the sets by the
maxvol algorithm. For example, after computing ξ(d) = Ξ>d−1, we “reverse” the algorithm
and apply the maxvol method to the columns of a rd−1 × n matrix ξ(d). This gives a
refined set of points I>d−1 = {iαd−1

d }. The recursion continues from k = d to k = 1,
optimizing the right sets I>k, while taking the left sets I<k from the previous (forward)
iteration. After several iterations, both I<k and I>k can be optimized to the particular
target function, even if the starting sets were inaccurate.

This adaptation of points can be combined with the adaptation of ranks. If the initial
ranks r1, . . . , rd−1 were too large, they can be reduced to quasi-optimal values for the
desired accuracy via SVD. However, we can also increase the ranks by computing the un-
folding matrix

[
ξ(I<k, ik; iαk

k+1, . . . , i
αk
d )
]

on an enriched index set: we take {iαk
k+1, . . . , i

αk
d }

from I>k for αk = 1, . . . , rk, and also from an auxiliary set Iaux>k for αk = rk+1, . . . , rk+ρ.
This increases the k-th TT rank from rk to rk + ρ. The auxiliary set can be chosen at
random [46] or using a surrogate for the error [8]. The pseudocode of the entire TT cross
method is listed in Algorithm 1, where we let I<1 = I>d = ∅ for uniformity. Empowered
with the enrichment scheme, we are not limited to just truncating ranks from above. In-
stead, we can start with a low-rank initial guess and increase the ranks until the desired
accuracy is met.
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4.3 TT representation of general and structured matrices

Let us now consider how the TT format (11) can be generalised to matrices C ∈ Rnd×nd
,

such as the Css matrix from (4). Using sub-indices i1, . . . , id, we can think of a matrix as
a 2d-dimensional tensor with elements C(i1, . . . , id; j1, . . . , jd). However, most matrices in
our applications have full ranks, and a straightforward 2d-dimensional TT decomposition
would be inefficient. Instead, we consider a permuted, or matrix TT decomposition [47]:

C(i1, . . . , id; j1, . . . , jd) =

R0,...,Rd∑
β0,...,βd=1

C
(1)
β0,β1

(i1, j1)C
(2)
β1,β2

(i2, j2) · · ·C(d)
βd−1,βd

(id, jd), (13)

or in the Kronecker form,

C =

R0,...,Rd∑
β0,...,βd=1

C
(1)
β0,β1
⊗ C(2)

β1,β2
⊗ · · · ⊗ C(d)

βd−1,βd
. (14)

The identity matrix can be trivially represented in matrix TT format Ind = In⊗· · ·⊗Id
with R0 = · · · = Rd = 1. Furthermore, we can quickly assemble block Toeplitz and
circulant matrices if their first column/row is given in the TT format [24]. Let us introduce
the operation T : R2n → Rn×n which assembles a Toeplitz matrix from a vector of its first
column and row stacked together, and the operation C : Rn → Rn×n which assembles a
circulant matrix from its first column. Assume that a vector c of size (2n)d or a vector č
of size nd are given in the TT format (11),

c =

r0,...,rd∑
α0,...,αd=1

c(1)
α0,α1

⊗ · · · ⊗ c(d)
αd−1,αd

, č =

r0,...,rd∑
α0,...,αd=1

č(1)
α0,α1

⊗ · · · ⊗ č(d)
αd−1,αd

(15)

Then the block Toeplitz or circulant matrix, respectively

C =

(
d⊗

k=1

T

)
c, Č =

(
d⊗

k=1

C

)
č,

can be written in the matrix TT formats (13) with the same TT ranks,

C =

r0,...,rd∑
α0,...,αd=1

(
T c(1)

α0,α1

)
⊗· · ·⊗

(
T c(d)

αd−1,αd

)
, Č =

r0,...,rd∑
α0,...,αd=1

(
Cč(1)

α0,α1

)
⊗· · ·⊗

(
Cč(d)

αd−1,αd

)
.

Similarly we can apply the multivariate Fourier transform without changing TT ranks:(
d⊗

k=1

F

)
c =

r0,...,rd∑
α0,...,αd=1

(
Fc(1)

α0,α1

)
⊗ · · · ⊗

(
Fc(d)

αd−1,αd

)
, (16)

where F : Rn → Rn is the univariate FFT. This reduces the complexity of FFT from
O(N logN) = O(dnd log n) to O(dr2n log n).

In general, the TT format allows to represent the product of any matrix given in (13)
and a compatible vector given in (11) in another TT format [47] with multiplied ranks,

Cξ =

(r0R0),...,(rdRd)∑
γ0,...,γd=1

(
C

(1)
β0,β1

ξ(1)
α0,α1

)
γ0,γ1
⊗ · · · ⊗

(
C

(d)
βd−1,βd

ξ(d)
αd−1,αd

)
γd−1,γd

, (17)

where γk = αk + (βk − 1)rk, k = 0, . . . , d.
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4.4 Kriging operations in TT format

To rewrite the Kriging estimation (8) in low rank format, we first find a TT approx-
imation (15) of c by using the TT-cross algorithm introduced in Section 4.2. With the
rest of the operations we can proceed in two ways.

4.4.1 Small number of scattered samples

If we assume N to be small, the Task-1 of computing Kriging weights, Cyyξ = y, can
be computed directly at low cost. Now we inject the scattered values into a TT tensor
of desired size as introduced in (6). Suppose `j ∈ Nd is the position of the jth sample,
j = 1, . . . , N, we can define

Hj =
d⊗

k=1

e
(k)
j , where e

(k)
j (ik) =

{
1, ik = `j(k)
0, otherwise,

i.e. the injection operation (6) per sample. Now the injected tensor is written in the CP
format as

ξ̄ =
N∑
j=1

ξjHj, (18)

which can be converted to TT format directly by the formula in [16, pp. 380] or using
the Alternating Least Squares (ALS) [19] approximation.

Similarly, we can use the direct truncation or the ALS method for summing columns
of Csy with the weights ζi in (4), as well as the summation of different vectors (Csyζi)

◦2.
Embedding operation (7) is simpler and more efficient: we just need to pad every TT

block with zeros. Assuming we are given a vector ξ in the form (11), we construct the
following new TT blocks of a vector ξ̌:

ξ̌(k)
αk−1,αk

(ik) =

{
ξ

(k)
αk−1,αk(ik), ik = 1, . . . , n̄k,

0, ik = n̄k + 1, . . . , nk,
k = 1, . . . , d. (19)

Similarly, Extraction operation is performed by truncating the range of ik in each TT
block from nk back to n̄k. Most importantly, embedding and extraction can be performed
very efficiently without changing the TT ranks, similarly to FFT (16).

Finally, we need to compute the Hadamard products of TT tensors, e.g. F [d](č)◦F [d](ξ̌)
in (8). The Hadamard product can be constructed exactly via (17) by noticing that

s := c ◦ ξ = Cξ, for C = diag(c),

or approximately by applying the TT-Cross algorithm to a tensor given elementwise by
the formula s(i1, . . . , id) = c(i1, . . . , id)ξ(i1, . . . , id). The direct multiplication requires
O(dnR2r2) operations, and the truncation afterwards has an even higher cost O(dnR3r3).
In contrast, the TT-Cross approach needs computing O(dnr2) samples of the target tensor
s, which means taking samples of the TT decompositions for c and ξ and multiplying them.
Sampling another TT tensor requires in total O(dnR2r) operations, which, assuming that
the ranks are comparable, R ∼ r, results in a total of O(dnr3) operations in the TT-Cross
computation of Hadamard products, which is thus preferred in this paper.

For geostatistical optimal design (Task-4) we need to compute the trace of Css|y. Since
in the Task-3 we obtain already the diagonal of Css|y in the TT format, the trace can be
evaluated swiftly by computing a dot product with the all-ones tensor.
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4.4.2 Large number of structured samples

When N is large, the summation (18) can be a difficult operation in the TT format,
potentially leading also to the TT ranks being in the order of N . However, a large number
of samples usually means that these samples are distributed fairly uniformly in the domain
of interest. In this case, we switch to the TT computations even before Task-1 in equation
(2). First, we interpolate the given samples onto a uniform Cartesian grid with the mesh
interval being in the order of the average distance between the original samples. In the
remaining operations, we assume that y is structured in this way, i.e. it can be seen as a
tensor y(i1, . . . , id), ik = 1, . . . , m̄k, k = 1, . . . , d. Thus, we can approximate y in the TT
format.

The solution for weights (2) becomes a rather difficult operation for a large N . However,
given the TT decompositions for y and Cyy, the linear system can be solved more effi-
ciently by employing ALS and similar tensor algorithms [19, 8]. Similarly, we can compute
C−1
yy Cys for (4) by treating Cys as the right hand side, and expanding Cyy accordingly.
If we interpolate y onto a periodic uniform Cartesian grid, the matrix Cyy becomes

circulant, similarly to Č. In this case we can approximate only its first column in the TT
format, perform the Fourier transform to obtain the eigenvalues, and apply again the TT-
Cross method to approximate the pointwise division F [d](y)(i1, . . . , id)/F [d](c)(i1, . . . , id).

5 Numerical tests

We used the Matlab package TT-Toolbox ( https://github.com/oseledets/TT-Toolbox)
for Tensor Train algorithms. The codes used for numerical experiments are available at
https://github.com/dolgov/TT-FFT-COV. All computations are done on a MacBook
Pro produced in 2013, equipped with 16GB RAM and an 2.7 GHz Intel Core i7 CPU.

We consider three test cases: 1) a 2-dimensional problem with N =
∏2

i=1 ni = 6002 (it
is easy to visualize); 2) a 3-dimensional problem with N = 1015 and 3) 10-dimensional
problem with N =

∏10
i=1 ni = 10010. One of these parameters could be, for example, time.

The daily soil moisture data set, used below, is taken from [20, 37, 38], where only one
replicate, sampled at N locations, is used.

5.1 Kriging of daily moisture data

Numerical models play important role in climate studies. These numerical models
are complicated and high-dimensional, including such variables as pressure, temperature,
speed, and direction of the wind, level of precipitation, humidity, and moisture. Many
parameters are uncertain or even unknown. Accurate modeling of soil moisture finds
applications in the agriculture, weather prediction, early warnings of flood and in some
others. Since the underlined geographical areas are usually large and high spatial resolu-
tions are required, the involved data sets are huge. This could make the computational
process in dense matrix format unfeasible or very expensive. By involving efficient low-
rank tensor calculus, we can increase the spatial and time resolution and consider more
parameters. It is clear that utilization of the rank k tensor approximation introduces an
additional numerical error in quantities of interest (QoIs). By increasing tensor ranks we
reduce this approximation error.

We consider high-resolution soil moisture data from January 1, 2014, measured in the
topsoil layer of the Mississippi River basin, U.S.A (Fig. 1).

Figure 2 shows an example of daily moisture data. On the left picture we used 2000
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Figure 1: The area where the daily soil moisture data were measured, Mississippi River basin, U.S.A.

points (x, y, v)Ni=1, N = 2000 for interpolation, and on the right 4000 points. The third
picture shows two set of locations: one with 2000 points, marked with the blue symbol +
and with 4000 points, marked with red dot.

Figure 2: Daily moisture data. Interpolated from (left) 2000 and (center) 40000 measurement points.
(right) Two sets of sampling points, 2000 and 4000.

The spatial resolution is 0.0083 degrees, and the distance of one-degree difference in this
region is approximately 87.5 km. The grid consists of 1830× 1329 = 2.432.070 locations
with 2.000.000 observations and 432.070 missing values. Therefore, the available spatial
data are not on a regular grid.

The tensor product Kriging is performed as described in Sec. 4.4.2. First, we interpo-
late the given measurements (Fig. 3, left) onto a (coarse) Cartesian grid with the mesh
interval being approximately equal to the average distance between the measurements.
Specifically, we ended up with a 65×65 grid (Fig. 3, center). Then the tensor of values on
this coarse grid is approximated into a TT decomposition. Finally, the Kriging estimate
(2)–(3) on a fine grid with 257× 257 points (Fig. 3, right) is computed in the TT format
using FFT and TT-Cross algorithms.

5.2 High-dimensional field generation: computational benchmark

To generate the following 2D, 3D and 10D random fields we used the Matlab script
test generate y tt.m in https://github.com/dolgov/TT-FFT-COV.
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Figure 3: (left) 64000 measurements of the moisture; (center) regression on a coarse 65 × 65 Cartesian
mesh; (right) TT-Kriging approximation on a fine mesh.

2D example. In this example we generated a high-resolution 2-dimensional Matérn
random field in [0, 2000]2. One realization is presented in Fig. 4. The smoothness of the
Matérn field is ν = 0.4, covariance lengths in x and y directions (1, 1) and the variance
10. This realization is computed by the following formula in the TT format

u′ = C1/2ξ =

√
1

n
F>Λ1/2ξ =

√
1

n
F−1(λ1/2 ◦ ξ), (20)

where the inverse Fourier F−1, the square root of eigenvalues λ1/2, and tensor product
ξ of two Gaussian random vectors are approximated in the TT format. Particularly,
ξ = ξ1 ⊗ ξ2 is a tensor product of two Gaussian vectors. The size of the first column č of
Č is 3200× 3600 and the computing time was 1 sec. With TT procedures one can create
very fine resolved random fields in large domains. For instance, generation of a random
field in the domain [0, 1.000.000]2 with 1.600.000 × 1.800.000 locations takes less than 1
minute.

3D example. This example is very similar to the previous 2D example. The difference
is only that the domain is [0, 100.000]3 and the size of the first column of C is 160.000×
180.000× 160.000 = 4.608 · 1015. The computing time was 3 minutes.

10D example. In this example, we generated a 10-dimensional Matérn random field.
One of the dimensions could be time, for example. Table 1 contains all model parameters
and the number of unknowns in (hypothetical) full tensor and in the TT decomposition
of the final field ŝ. In this example we computed TT approximation of the first column
of the multilevel circulant covariance matrix (cf. [24, 25]). Then we diagonalized this
circulant matrix via FFT and computed square root of diagonal elements. After that
we generated a random field by multiplying the square root with a random vector of the
following structure ξ :=

⊗10
ν=1 ξν , where ξν is a normal vector. We note that we never

store the whole vector ξ explicitly, but only it’s tensor components ξν . Also, note that ξ
is not Gaussian.

The TT approximation tolerance is set to 10−4. In the 10-dimensional case above the
maximal rank was 143, and the total computing time 118 sec. In the similar 8-dimensional
case the maximal rank was 138, and the total computing time 96 sec. Of course, one should
observe tensor ranks not only of ŝ, but of other steps such as the TT approximation of
the measurement vector and of the first column of the covariance matrix. These TT ranks
were smaller than the TT ranks of the final solution though.
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Figure 4: High-resolution realization of 2D Matérn random field, computed with TT tensor format in
[0, 2000]2.

Table 1: Parameters of the 10-dimensional problem.

parameter value
variance of model 10
vector of correlation length in x1, . . . , x10-direction [1, 5, 10, 15, 20, 25, 30, 35, 40, 45]
length of domain in x1, . . . , x10-direction [10, 50, 100, 150, 200, 250, 300, 350, 400, 450]
number of elements in x1, . . . , x10-direction [100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
number of elements in original tensor 10010 = 1020

number of elements in TT tensor 107

6 Discussion and Conclusions

In this paper, we proposed an FFT-based Kriging that utilizes a low-rank Tensor Train
(TT) approximation of the covariance matrix. We apply the TT-Cross algorithm to
generate a low-rank decomposition avoiding full tensors which could be well beyond the
memory capacity of a desktop PC.

The low-rank format reduces the storage of the embedded circulant covariance matrix
from exponential to linear in the number of variables. The circulant matrix can be di-
agonalized by FFT. Furthermore, due to the linearity of the Fourier transform, the TT
format allows to implement the d-dimensional FFT at the cost of O(dr2) one-dimensional
FFT operations.

We then use the same technique to generate large Matérn random fields since the diag-
onalized covariance matrix gives eigen pairs for the spectral expansion of the underlying
random field. We show in numerical examples that this method can generate very large
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random fields with a commonly affordable computational resource.
We demonstrated how to utilize the TT tensor format to speed up such geostatistical

tasks as the generation of large random fields, computing kriging coefficients, kriging es-
timates, conditional covariance, and geostatistical optimal design. We used the fact that
after discretization on a tensor grid the obtained matrix could be extended to a circulant
one. Then, much expensive linear algebra operation could be done via d-dimensional FFT.
From the definition, one can see that FFT has tensor rank 1. After approximating the
first column of the circulant matrix in the TT format (we assumed that such approxima-
tion exists) we were able to apply efficient TT tensor arithmetics and speedup expensive
calculations even more. Utilizing TT format in FFT calculus allowed us to decrease com-
putational cost and storage from O(N̄ log N̄) to O(dr3n̄), where r ≥ 1 is the tensor rank,
d the dimensionality of the problem and n̄ is the number of points along the single longest
edge of the estimation grid.

The presented numerical techniques have memory requirements as low as O (dn̄r2).
Thus, we achieved log-complexity in the total number of lattice points. The resulting
methods allow much better spatial resolution and significantly reduce the computing time.

The fundamental assumptions are: the covariance matrix is separable or has a TT-rank
r � n, the interpolation grid is a rectangular tensor grid, and the measurements also lie
in the tensor grid. The random vector used to generate the random field is a Kronecker
product of smaller random vectors.
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[55] G. Spöck and J. Pilz. Spatial sampling design and covariance-robust minimax pre-
diction based on convex design ideas. Stochastic Environmental Research and Risk
Assessment, 24:463–482, 2010.

[56] E. E. Tyrtyshnikov. Tensor approximations of matrices generated by asymptotically
smooth functions. Sbornik: Mathematics, 194(6):941–954, 2003.

[57] C. F. van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM
Publications, Philadelphia, PA, 1992.

[58] R. S. Varga. Eigenvalues of circulant matrices. Pacific J. Math., 4:151–160, 1954.
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C. Pepi1, M. Gioffré2, M.D. Grigoriu3, and H.G. Matthies4

1,2Dept. of Civil and Environmental Engineering, Univ. of Perugia
via G. Duranti 93, 06125 Perugia, Italy

e-mail: {chiara.pepi,massimiliano.gioffre}@unipg.it

3 Dept. of Civil and Environmental Engineering, Cornell University
363 Hollister Hall, Ithaca, NY 14853

e-mail: mdg12@cornell.edu

4 Institute of Scientific Computing, Technische Universität Braunschweig
Braunschweig, 38106 - Germany

e-mail: wire@tu-bs.de

Keywords: Cable stayed footbridge, Bayesian Inference, Uncertainty Quantification, Polyno-
mial Chaos Expansion, Surrogate Models.

Abstract. The topic of model updating has been the focus of intensive research since it is
a useful mean for reliable predictions of the structural performance of dynamic systems. The
differences between the output of the Finite Element (FE) model and the modal parameters
estimated using Ambient Vibration Tests (AVT) can be due to both model and measurement
uncertainties. The need for taking uncertainties into account has been widely recognized and
several approaches have been developed by the two main schools of probability interpretations:
the frequentist and the Bayesian interpretation. In the latter, probability is not interpreted as the
relative occurrence of a random phenomena but as the plausibility of an hypothesis. The main
scope of the interpretation of probability in the Bayesian context leads to the fact that the reason
of uncertainty of the structural parameters is seen in the incomplete available information/data.
In this work, the Bayesian updating of cable stayed footbridge model parameters using dynamic
measurements is discussed. The quantification of model uncertainties is carried out by means
of the prediction error when the numerical model updating is performed using two different ref-
erence Data Sets: the first one consists in the experimental natural frequencies and the second
one consists in both natural frequencies and corresponding modal vectors. In practice, when
incomplete measurements of vibration modes are available, including the modal vectors in the
reference data set is not an easy task. For this reason, the Modal Assurance Criterion (MAC)
is used in order quantify the modal vector prediction error. In addition, the numerical model
output is replicated by means of Polynomial Chaos (PC) based surrogate model in order to
reduce the computational burden related to the posterior distribution evaluation at each step of
Markov Chain Monte Carlo sampling.
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1 INTRODUCTION

A physical model may be described by a forward problem, which predicts some Quantities
of Interest (QoI) of the system given a set of unknown/uncertain input set of parameters [1, 2].
The corresponding inverse problem consists in estimating the set of these parameters from a set
of measured/observed data, taking into account that in realistic applications the data are noisy,
incomplete and characterized by a significant level of uncertainty [3].

A classical inverse problem in structural engineering is Finite Element (FE) model updat-
ing aiming to invert the standard forward relation between the unknown parameters and the
predicted response of a model using experimentally observed data. Usually, incomplete modal
data (e.g. natural frequencies and vibration modes) are used to calibrate model parameters
in order to minimize the distance between the model predictions and the observed quantities
[4, 5, ?].

The FE model updating can be divided into two main approaches: deterministic and proba-
bilistic model updating [7]. The former is well established in literature with several successful
applications to strategic and historic structures. In practice, the modal data identified from the
measurements are very sensitive to measurement noise, environmental conditions and level of
excitation occurring during the tests. Furthermore, the numerical model is always a simplified
representation of a real structure and therefore a large number of uncertainties arise because of
uncertain geometry, material properties, boundary conditions as well as for simplifications and
idealizations.

Therefore the role of measurement and model uncertainty in model updating is crucial and
probabilistic FE model updating methods such as Bayesian methods have become popular al-
lowing for explicitly accounting for all the sources of errors involved in the updating process
[7, 8, 9]. In the Bayesian updating framework the unknown model input parameters are taken
to be uncertain and modeled as Random Variables (RVs) described by their posterior marginal
distributions, obtained from prior information and measurements of QoIs that are observable
and depend on the unknown parameters. The main limitation of Bayesian updating is the high
computational cost related to the posterior distributions computation especially when several
updating parameters are modified during the process or when a large data set is used as target.
The acceleration of the Bayesian updating framework can be achieved with surrogate models
able to reproduce the numerical FE solution with the surrogate solution [3, 10].

In this paper, a Bayesian robust framework for the calibration of a FE numerical model
describing an actual steel cable-stayed footbridge in Terni (Umbria Region) is defined using
dynamic incomplete modal data (natural frequencies and vibration modes) obtained via Ambi-
ent Vibration Tests (AVT). Two updating parameters are selected whose effects on both natural
frequencies and vibration modes are significant. The evaluation of the posterior marginal dis-
tributions is carried out using Markov Chain Monte Carlo (MCMC) method [11, 12].

The deterministic solution at each step of the chain replaced by the solution obtained via
Polynomial Chaos (PC) based surrogate models for reducing the high computational costs [13,
14, 15].

When mode shape are used as reference the formulation of the Bayesian updating framework
is not an easy task since mode shape matching is usually required. For this reason the Modal
Assurance Criterion (MAC) is used for ensuring mode shape matching and to represent the
mode shape vector prediction error as the difference between the measured and the predicted
modal data.

Section 2 introduces the general probabilistic model while Section 3 briefly reviews the
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Bayesian updating framework with a special focus on the computational aspects and on the
likelihood function formulation. Section 4 briefly reviews the PC expansion method and finally
the procedure is applied to the cable-stayed footbridge case and the main results are presented
and discussed.

2 UNCERTAINTY IN FINITE ELEMENT MODEL PARAMETER ESTIMATION

A numerical FE model M : RN → RM provides a mapping from the parameters Θ =
{Θ1, ...,ΘN} ∈ RN to an output vector u = {u1, ..., uM} ∈ RM so that:

u =M(Θ) (1)

In the ideal case, the model output u corresponds perfectly to the true system output D, i.e.
D =M(Θ). This latter equality is the starting point for the deterministic FE model parameter
estimation using incomplete modal data, where the main objective is to estimate the model
parameters Θi, i = 1, ..., N for a given set of measured system output.

Actually, a numerical mechanical model is not able to perfectly reproduce the real behavior
of the true structural system [16]. Therefore, a modeling error eM defined as the difference
between the real behavior of the true system and the model predictions, i.e. eM = D−M(Θ),
is always present. Since the measurements are in practice always disturbed also a measurement
error eD determine a difference between the true system output and the actual observed data D,
i.e. eD = D−D.

Eliminating the unknown true system behavior D form the error equations, the total predic-
tion error e can be obtained as the sum of the modeling and measurement error:

e = eM + eD = D−M(Θ) (2)

Equation 2 represents the main starting point for the Bayesian method.

3 BAYESIAN METHOD

In the Bayesian updating framework the model parameters are gathered in the real valued
input random vector Θ = {Θ1,Θ2, ...,ΘN} ∈ RN and modeled as independent RVs defined
according to some probability space {Ω,F ,P} where Ω is the probability space, F is the σ-
Field and P is the probability measure. If each Θi is described by the Probability Density
Function (PDF) πi(θi), the joint PDF is given by the product of the N densities.

In the Bayesian approach the updated probabilities of the unknown parameters Θ when data
D becomes available is quantified by a joint PDF which is known as posterior distribution and
it is expressed by [17]

p(Θ|D,M) = c−1p(D|Θ,M)p(Θ|M) (3)

The term p(D|Θ) - called likelihood function - expresses the probability of the data condi-
tional to the unknown/adjustable vector Θ. The term p(Θ|M) is the prior distribution, which
quantifies the initial plausibility of the vector of parameters Θ associated with the model class
M . The normalizing constant c = p(D|M) is called the evidence of model class M. This nor-
malization makes the integration over the parameter space of the posterior PDF in (3) equal to
one. The c constant is given by the multidimensional integration over the parameter space

c = p(D|M) =

∫
p(D|Θ)p(Θ|M)dΘ (4)
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When a single set of incomplete modal data are used as target, the vector D consists of the
extracted modal data from measured acceleration time histories, namely

D = {f̂1,j, ..., f̂M,j, Φ̂1,j, ..., Φ̂M,j} (5)

where f̂i,j and Φ̂1,j are respectively the ith natural frequency and the ith mode shape vector
in the jth data set; M is the total number of observed modes.

3.1 Likelihood function

The likelihood function can be interpreted as a measure of the accuracy of the model in
describing the measurements. The likelihood function can be obtained according to the Total
Probability Theorem as the convolution of the measurement and modeling errors, eD and eM .

In this study no information is available on the individual errors and the effects of both mod-
eling and measurement errors are considered by using the the total prediction error in Equation
2. The error of the i-th natural frequency efi is defined as:

efi = fi(Θ)− f̂i (6)

The error of the i-th mode shape vector eMi is defined by means of Modal Assurance Criterion
(MAC) [18]. The MAC coefficient is used in order to measure the correlation between the
measured (Φ̂i) and the numerically computed (Φi(Θ)) mode shape vectors. Taking into account
that MAC coefficient assumes values between 1 and 0 respectively for perfect match and no
correlation its complement 1−MAC can be considered as the residual error for mode shape

eMS
i = 1− |Φ̂iΦi(Θ)|

(Φ̂iΦ̂T
i )(Φi(Θ)Φi(Θ)T )

(7)

The uncertainty in efi and eMS
i are modeled as Gaussian vector with zero mean and unknown

variance σ2 therefore the likelihood function is formulated basing on the PDFs of the errors in
6 and 7

p(D|Θ) ∝ exp

(
−1

2
eTΣ−1e

)
(8)

where e is a [2M × 1] vector of the total error

e =

[
ef

eMS

]
(9)

and Σ is a [2M × 2M ] total error covariance matrix.
When both natural frequencies and mode shape vectors are considered in the reference data

set D mode pairing should be properly carried out ensuring that the comparison of modal prop-
erties obtained from the measured data and FE model should be made only when they corre-
spond to the same dynamic mode.

3.2 Computational aspects of posterior distribution

When the prior PDF and the likelihood function are determined, Equations 3 and 4 allow
for the updating of the PDFs of the model parameters Θi based on experimental observations
of the structural system. If the number of parameters and data space dimension is large, the

333



C. Pepi, M. Gioffré, M.D. Grigoriu and H.G. Matthies

multidimensional integration in Equation 4 cannot be solved analytically and sampling methods
such as the Markov Chain Monte Carlo (MCMC) and its derivatives are used. The term MCMC
refers to all procedure based on stationary chains of samples to approximate the parameter
distributions.

In particular the Metropolis Hastings (MH) algorithm, as an MCMC simulation method, is
used in this study [12]. This algorithm is based on generating samples from any target distri-
bution of the uncertain parameters Θi. The proposed parameter sample Θ∗ are generated by a
proposal density q(Θt|Θ∗) depending on the current state of the chain. The candidate sample
Θ∗ has a probability of ρ(Θt|Θ∗) to be accepted as next state of the chain Θt+1 = Θ∗; there-
fore the probability for the candidate sample to be rejected is 1− ρ(Θt|Θ∗). If the candidate is
rejected, the current sample is treated as the next sample. The specification of the acceptance
probability ρ allows generating a Markov chain with desired target density.

This approach can be computationally prohibitive since it requires the computation of the FE
model deterministic solution at each step of the chain and usually it requires about 105 samples
generations to have solution convergency. In order to obtain a significant reduction of the com-
putational burden an effective method based on the functional approximation of the forward
model response in Equation 1 is used. To this end the Polynomial Chaos (PC) representation
method [19] is used to a obtain an analytical representation of the model itself as a function of
the main random input random parameters leading directly to a surrogate model in the form of
response surface. This means that the posterior sampling via MCMC can be carried out directly
from the response surface without the need to solve the analytical model for all the samples.

4 POLYNOMIAL CHAOS REPRESENTATION

Let Θ be a non Gaussian RN -valued random vector withN independent components defined
by

Θ = g(ξ) (10)

where g is a deterministic nonlinear function, g : RK → RN , ξ ∼ N(0, I) is a Rk-valued
vector of k independent and identically distributed, zero mean, unit variance Gaussian RVs and
I denotes the identity matrix having dimension (k × k).

The solution of the physical model in (1) becomes

u = G(ξ) (11)

where G : RK → RM . Considering a N -variate input and a univariate output, i.e. M = 1,
and assuming that the model response is a finite variance RV, the structural response can be
approximated as

ũ = G̃(ξ) =

NP−1∑
α≥0

ûαΨα(ξ) (12)

where Ψα(ξ) represents the multivariate orthogonal polynomials with finite multi-index set and
ûα are the polynomial coefficients. If p indicates the maximum polynomial order, then NP is
given by

NP =

(
K + p
p

)
=

(K + p)!

K!p!
(13)
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The polynomial order have to be chosen to guarantee results accuracy. Several different
approaches are available for the estimation of the polynomial deterministic coefficients ûα [20,
13].

Using this approach a model sensitivity analysis can be performed in a straight forward
manner basing on the orthogonality condition at the base of the mathematical setting of the PC
representation since all the statistics of the QoIs can be estimated from the deterministic coeffi-
cients statistics. In this paper a Global Sensitivity Analysis (GSA) based on Sobol’ coefficients
[21] is carried out to determine the influence of each input random model parameter on the final
results, assessing the importance of using a proper reference data set in the Bayesian updating
framework.

5 NUMERICAL EXAMPLE: A CABLE STAYED FOOTBRIDGE

In order to test the performance of the proposed algorithm for the probabilistic Bayesian
updating of a FE model parameters using incomplete modal data, a cable stayed footbridge in
Terni (Umbria Region, central Italy) is taken as case study. The footbridge has a total length
of 180 m and has two main parts: a curved shape one with a total length of 120 m, which
is supported by an asymmetric array of cables connected to a 60 m tall inverted tripod tower
through a pair of circular rings; a straight 60 m span with two bowstring arches.

The initial three dimensional FE model was built using the commercial code SAP2000 [22].
Different mechanical characteristics (Table 1) have been selected for the structural components
and each stay is modeled with a nonlinear element describing bot tension - stiffening and large
deflections.

A pre stress modal analysis was carried out starting from the equilibrium condition under
dead load and cable pre tension in order to consider the nonlinear behavior mainly due to cable
sag and large deflection. Natural frequencies calculated from the initial FE model are shown in
Table 2: seven mode shapes are identified in the range of frequency of interest.

5.1 Dynamic system identification

The footbridge dynamic characterization in terms of natural frequencies and corresponding
vibration mode shapes has been obtained from full scale measurements in operating conditions
using fourteen uniaxial accelerometers. The obtained acceleration time histories have been used
to identify vertical, horizontal and torsional vibration modes with Enhanced Frequency Domain
Decomposition (EFDD) method [23].

A single data set with 400 Hz sampling rate was recorded with time lengths 926 s. Re-
liability of results was investigated using different order of decimation and different type of
filters. Seven modes have been clearly identified in the range of frequency of interest. Table
3 summarizes the minimum, fmin, and the the maximum, fmax, values of the identified natu-
ral frequencies considering different signal sampling parameters (e.g. decimation order, filters,

Table 1: Mechanical properties used in the initial FEM.

Material E Mass density
GPa KN/m3

Steel S355 210 78
Cables 160 77

Concrete C32/40 33.345 25
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Mode fFEM Mode’s type
Hz

1 1.030 Vertical
2 1.514 Lateral
3 1.774 Torsional
4 2.184 Vertical
5 2.365 Lateral
6 2.982 Vertical
7 3.153 Vertical

Table 2: Modal features obtained
from initial FE model.

Mode fEXPmin fEXPmax Mode’s type
Hz Hz

1 1.11 1.13 Vertical
2 1.67 1.69 Lateral
3 1.79 1.80 Torsional
4 2.40 2.47 Lateral
5 2.58 2.59 Vertical
6 3.30 3.31 Vertical
7 3.35 3.40 Vertical

Table 3: Range of identified natural
frequencies from data sets #1 and #2.

frequency resolution of the output power spectral density spectrum). Initially the natural fre-
quencies of the initial FE model were mostly higher than the measured natural frequencies.

The MAC was used to identify the modal shapes from the experimental data set. In the
following, two different MAC matrices will be estimated: the auto-MAC matrix and the MAC
matrix. The first is estimated from the measured mode shapes while the second is computed
pairing one experimental with one numerical mode shapes. The diagonal terms in the auto-MAC
matrix are all equal to one meaning that each mode shape is paired with itself. The MAC matrix
is estimated from the experimental mode shapes and the FE analysis mode shapes showing
that the matrix diagonal terms are higher than 0.80 indicating a good correlation between the
experimental and numerical modal vectors.

5.2 Selection of the updating parameters

The selection of the updating parameters is a key issue in the model updating procedure
since they have to be strictly and directly related to the measurement results used as target. A
preliminary deterministic sensitivity analysis is thus carried out in order to provide information
for an efficient selection.

In particular the sensitivity of the natural frequencies and the mode shapes (in terms of di-
agonal MAC values) to variation of structural steel and cable Young’s moduli, cable tension
stiffening, model mass density and stiffnesses of rotational and translational springs used for
modeling the soil - structure interaction (Figure 1). It has been found that the variation in the
each cable and in the spring stiffness describing the soil - structure interaction has negligible
effects on the numerical model eigenfrequencies and eigenvectors. On the contrary, eigenfre-
quencies and eigenvectors are very sensitive to variations in the steel elastic moduli and the
model mass density. It is worth noting that variations in cable elastic moduli provide significant
variations in the eigenvectors and small variations in the eigenfrequencies.

Assuming that the model mass density does not vary significantly along the deck only two
updating parameters are defined for the Bayesian framework: the deck and cable stiffnesses
described by the steel, Esteel, and cable, Ecables, elastic moduli, respectively. Therefore, the real
valued random vector Θ ∈ R2 has independent components: Θ1 = Esteel and Θ2 = Ecables.

5.3 Surrogate Model

In this case study, the six experimental natural frequencies and the six corresponding mode
shape vectors f̄EXPi and M̄EXP

i with i = 1, ..., 6 are used as reference while the corresponding
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Figure 1: Eigenfrequencies and diagonal MAC values variations with changes in the mechanical
parameters (upper panels and lower panels respectively): (a,d) steel modulus of elasticity; (b,e)
cables modulus of elasticity; (c,f) model mass density.

six numerical model frequencies and mode shape vectors fFEMi andMFEM
i with i = 1, ..., 6 are

set as QoIs. Since the MAC coefficient complement 1−MAC is used in order to evaluate the
prediction error eMS as in Equation 7 and considering that the MAC coefficient is very sensitive
to small variation of the single eigenvector component, each of the fourteen component of the
considered six mode shape vectors are set as QoIs.

The PC expansion in Equation 12 is thus used in order to build a surrogate model for each of
the selected QoIs (Figure 2). Two normal distribution has been assumed for the two component
of the input random vector Θ1 and Θ2 to build the 90 different response surfaces. The initial
mechanical characteristics of the two different material used for the deck and cables in Table 1
are used as PDFs mean values; the coefficient of variation (c.o.v.) is assumed in order to avoid
unfeasible samples in the simulation procedure. The resulting two PDFs are used also as prior
distribution in the Bayesian updating framework (Figure 4).

The maximum polynomial degree p has been set equal to 5 and a complete basis has been
built requiring (p + 1)N = 36 analyses. The deterministic coefficients in Equation 12 are
evaluated using least square minimization method [24] and a full tensor grid scheme. Once
that accurate surrogate models have been built, the variance of the NP polynomial coefficients
uα is estimated for each QoI and used to evaluate the first order Sobol’ indices, which give
information on the influence of the uncertain parameters Θ1 and Θ2 on each QoI, e.g. the first
six natural frequencies and the 84 eigenvector components of the first six mode shape vectors
(Figure 3).
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Figure 2: Example of a surrogate model: natural frequency (a) and eigenvector component (b) .

5.4 Bayesian inverse problem solution

Setting D̄1 = {f1, ..., f6} and D̄2 = {f1, ..., f6,Φ1, ...,Φ6} as two different reference vector
and replacing the numerical model in Equation 1 with the surrogate model in Equation (12), the
posterior marginal PDF of the two dimensional random vector Θ = {Θ1,Θ2} can be estimated.
In particular, the MCMC MH algorithm is applied requiring the evaluation of the deterministic
solution 150,000 times in both cases in order to ensure convergency. It is important to point
out that when D̄1 is used as reference data set, the MCMC MH algorithm is modified using
the diagonal MAC coefficients as constraints in order to guarantee the natural frequency/mode
shape matching at each step of the chain.

The results of the Bayesian updating procedure are shown in Figure 4. The posterior distri-
bution of Θ1 has mean values equal to 266GPa and 273GPa - about 1.25 and 1.30 times the
mean value of the prior PDF - when D̄1 and D̄2 are used as reference vector respectively.

The posterior distribution of Θ2 is very similar to the prior PDF when D̄1 is used as reference,
indicating that D̄1 is non informative with respect to this random parameter. This result was
expected since the natural frequencies are mainly influenced by the stiffness of the deck, Θ1,
as shown by the Sobol’ indices in Figure 3. On the contrary the posterior distribution of Θ2

is characterized by an evident maximum at the posterior mean value equal to 184MPa, about
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Figure 3: First order Sobol indices: natural frequency (a) and eigenvector component of the 3rd

and 5th numerical mode shape (b and c, respectively).
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Figure 4: Prior and posterior marginal distributions: (a) deck stiffness; (b) cables stiffness.

1.15 times the mean value of the prior PDF.
Finally, Figure 5 (a) compares the natural frequencies estimated from the experimental data

to those obtained with the initial numerical model and the updated model using the posterior
mean value of Θ when D̄1 and D̄2 are used as reference data set. Before the Bayesian updating
procedure the differences between the experimental and the numerical eigenfrequencies were
greater than 8%, with the only exception of the 3rd numerical mode shape for which the error
was lower than 1%. After the update carried out using the two considered reference data sets
these errors are reduced to values lower than 1% with the exception of the 3rd mode shape for
which the error is equal to 8%.

Figure 5 (b) compares the numerical and experimental mode shapes before and after the
updating procedure in terms of diagonal MAC values. The initial experimental and numerical
mode shapes are characterized by high values of the MAC number. After the update carried
out using D̄1 as reference, the most significant increase of the MAC values, from 73% to 92%,
occurs for the 3rd mode shape (torsional). On the contrary the diagonal MAC value decreases
for the 5th and 6th mode shape. After the update carried out using D̄2 as reference the diagonal
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Figure 5: FEM responses before and after the updating Bayesian procedure:(a) natural frequen-
cies; (b) diagonal MAC values.

MAC values increase for each considered mode shape, especially for the 3rd, the 4th and the 5th

mode shape, the most influenced by the stiffness of cables, Θ2.

6 CONCLUSION

In the present work, a robust updating procedure for the calibration of a FE numerical model
has been set up in a probabilistic Bayesian framework. The proposed approach is based on
dynamic incomplete modal data (natural frequencies and vibration modes) obtained via AVTs
and on a functional approximation of the system random response.

First, the initial three dimensional FE model of a cable-stayed footbridge was set up and a
sensitivity analysis was carried out both in a probabilistic and deterministic setting in order to
select in an efficient manner the most significant parameters to be used in the Bayesian updating
procedure targeting the measured natural frequency and mode shape vectors. Second, surrogate
models based on the PC representation of the structural system dynamic response were built in
order to significantly reduce the computation cost related to the posterior densities estimates by
means of MCMC MH procedure. Finally, the updating procedure was carried out using two
different reference data set: the first one consists in the experimental natural frequencies and
the second one consists in both natural frequencies and corresponding vibration modes. When
mode shape are used as target the modal vector prediction error is quantified by means of MAC
as the distance between actual correlation and perfect correlation.

The proposed approach overcome the main drawback of the whole Bayesian updating frame-
work related to the unfeasible computational costs making it suitable for real time Structural
Health Monitoring (SHM) applications. Furthermore, results demonstrated the importance of
using a proper informative data set.
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Abstract. Performing a reliability analysis on engineering applications usually result in a
huge number of calls to numerical models especially in the context of low failure probabilities.
Combining reliability methods with metamodeling has gained interest in order to reduce the
computational burden. Several kinds of metamodels exist, each based on some mathematical
assumptions and prior choices regarding their parameters. However, no type and no tuning
is optimal in all conditions. It has been shown that combining individual metamodels in the
form of a weighted average metamodel can sometimes enhance the accuracy of predictions.
This approach is known as Ensemble of Metamodels (EM). The existing EM strategies can be
split into two groups, namely local EM and global EM. The later has unchanged weight factors
in the design space unlike local EMs. In this paper, the relevance of using ensembles as a
substitution for the performance function to estimate the failure probability is investigated. In
a first attempt, ordinary Kriging metamodels are solely considered as EM individuals. The
focus is rather put on the choice of the kernel. The contribution therefore consists in using
EMs, composed of Kriging metamodels with different kernels, in order to study their efficiency
for the estimation of failure probabilities. The Active learning reliability method combining
Kriging and Monte Carlo Simulation, namely AK-MCS, is here considered for the estimation of
failure probabilities. A new learning function is proposed in this work. Two academic examples
are studied in order to investigate the potential benefits of such an approach. An analysis
of the results is performed in terms of computational cost and prediction accuracy of failure
probability.
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1 INTRODUCTION

In a reliability approach, a failure mode is usually expressed by means of a performance
function g. The structure fails when g is negative or equal to zero, i.e. g(x) ≤ 0, where
x = (x1, ..., xn) denotes the vector of random inputs variables. g(x) > 0 means that the structure
is safe for the input vector x. The limit between the two configurations, i.e. g(x) = 0, is called
the Limit State Function (LSF). The failure probability is defined as the integral of the joint
density function (pdf) fX(x) over the failure domain Ωf for any x such as g(x) ≤ 0:

Pf =

∫
Ωf

fX(x)dx (1)

where dx = dx1...dx2. Analytical and numerical solutions based on usual integration schemes
became unfordable, especially in high dimensions, when low failure probabilities are expected
and when the performance function is nonlinear and costly-to-evaluate. Several methods exist
in the literature to approximate this integral. The reference method relies on Monte Carlo
simulation (MCS). The corresponding failure probability estimator is given by:

P̂f =
1

NMC

NMC∑
i=1

I{g(x(i)) ≤ 0} (2)

where NMC is the sample size and I{.} stands for the indicator function. The MCS method is
simple and easy to implement, however it requires a huge computational effort for small failure
probabilities. An accurate estimate P̂f of the unknown failure probability is obtained only if the
sample size is sufficiently large. The coefficient of variation (C.O.V) of P̂f can be estimated as
follows:

C.O.VP̂f
'

√
1− P̂f
NMCP̂f

(3)

More advanced methods have been developed in order to reduce the number of calls to the
performance function. Metamodeling-based simulation methods are the most common and rel-
evant ones. Metamodels are used in reliability analysis to mimic the input-output relationship
of the performance function. They consist in simplified mathematical models much less expen-
sive to evaluate. Among metamodels, Polynomial Response Surfaces (PRS), Polynomial Chaos
Expansion (PCE), Artificial Neural Networks (ANN) and Support Vector Regression (SVR)
have been used in the framework of reliability analysis, see [1, 2, 3, 4, 5, 6, 7, 8] and refer-
ences therein. Kriging has also appeared appealing for solving reliability problems because of
its usual interpolating nature and the straightforward estimation of the local variance of the pre-
diction [9, 10, 11]. Even though metamodeling based reliability approaches have proven their
ability to adress complex problems, some issues regarding their tuning remain and may affect
their efficiency. In Kriging for example there is no consensus or even criteria for the upstream
choice of the kernel and trend functions. An inappropriate decision could result in undesired
properties as shown in [12]. So, picking the most appropriate metamodel for a given problem is
still a challenging task for users. In order to prevent such a risk, an alternative consists in mixing
metamodels in an approach known as Ensemble of Metamodels (EM). It has been shown that
the accuracy of EM predictions can sometimes be better then those obtained from individual
metamodels [13, 14, 15, 16].
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While most researchers have primarily been interested in the use of ensembles of metamodels
in optimization , there has been relatively very little work about their use in reliability analysis
[17, 12]. In this work, the relevance of using ensembles as a surrogate for the performance
function to estimate the failure probability is investigated. The paper is organized as follows.
Section 2 introduces strategies available in the literature for mixing metamodels. The Active
learning reliability method combining Kriging and Monte Carlo Simulation (AK-MCS) [10] is
briefly recalled at the beginning of Section 3. In the same section, the proposed approach which
combines AK-MCS and EMs is presented. A modified learning function is introduced for such
a purpose. Then, two academic examples are performed in Section 4 to highlight the benefits
of this approach.

2 ENSEMBLE OF METAMODELS

Surrogate predictions may differ significantly from the true responses, whose properties are
unknown, depending on the assumptions made or in case of unrepresentative design of exper-
iments (DoE) used for their calibration. For the purpose of model tunning, the usual strategy
consists in calibrating a set of metamodels and then electing the one with the best metric, e.g.
with the minimal cross validation error [18] or root mean square error [19]. Their major draw-
back is the waste of effort spent on the discarded metamodels calibration. To take advantage
of the prediction ability of more than one metamodel, a weighted average metamodel has been
proposed in [20]

ŷens(x) =
m∑
i=1

wi(x)ŷi(x) (4)

where ŷens(x) is the EM prediction at any given input vector x, m is the number of metamodels
used in the EM, wi is the weight factor of the ith metamodel reflecting the model relative predic-
tive contribution in the ensemble and ŷi(x) is the ith metamodel prediction. It should be noted
that the weight factors sum must be equal to one (

∑m
i=1wi = 1) in order to have an unbiased

response prediction. In the literature, there are two kinds of strategies for determining weights,
namely the global EM and the local EM.

2.1 Global EMs

The weight factors in the global EM approaches are constant over the entire design space.
Their values do not depend on the prediction point location, i.e. wi(x) = wi,∀x. In this work
three global EMs have been investigated. The Bayesian model averaging proposed in [21], here
named BMA. The heuristic formulation proposed by Goel et al in [13], here named EG. The
optimized weight factor of Acar and Rais-Rohani in [14], here named EME.

Bayesian model averaging (BMA)

BMA combines different model predictions in a Bayesian framework. It could also be used
for metamodels, which is the case here. Let M be a set of metamodels, where M = {Mi; i =
1, ...,m}. For a given data set D, the posterior distribution of the EM prediction using BMA is
given by:

P (ŷens(x)|D) =
m∑
i=1

P (Mi|D)P (ŷi(x)|Mi, D) (5)
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where P (ŷi|Mi, D) is the pdf of the ith metamodel prediction. P (Mi|D) represents the posterior
probability masses of metamodelsMi, and therefore sum to one. They can be viewed as weights
[22] and by analogy with Eq. (4), P (Mi|D) = wi. They are given, in [21], by:

P (Mi|D) =
P (D|Mi)P (Mi)∑m
l=1 P (D|Ml)P (Ml)

(6)

where

P (D|Mi) =

∫
P (D|θi,Mi)P (θi|Mi)dθi (7)

is the integrated likelihood of the metamodelMi, θi denotes the model parameter vector, P (θi|Mi)
is the a priori PDF of θi conditionally to Mi, P (D|θi,Mi) is the likelihood of the data given the
metamodel Mi and its parameters θi and P (Mi) corresponds to the prior probability mass of
metamodel Mi which usually equals 1/m.

Heuristic proposed by Goel et al. (EG)

The strategy of selecting weights proposed by Goel et al. [13] is based on generalized mean
square error GMSE, which is an estimation of the mean square error by leave-one-out. It is
formulated as follows:

wi =
w∗i∑
iw
∗
i

, w∗i = (Ei + αEavg)
β (8)

Eavg =

∑
iEi
m

, α < 1 and β < 0

Ei =
√
GMSE =

√√√√ 1

N

N∑
k=1

(y(k) − ŷ(k)
i )2

where y(k) is the true response at a given point x(k), ŷ(k)
i is its prediction from the ith metamodel

calibrated from all the DoE except the data pair (x(k), y(k)) and N is the size of the DoE. α and
β are parameters that should be specified beforehand. For instance, α = 0.05 and β = −1 is
used in the work of Goel and al [13]. A study of the effect of those parameters have also been
performed [13].

Optimization problem proposed by Acar et al. (EME)

The weight factors are here solutions of the minimization of a global error. The influence
of the error metric choice is studied in [23]. In their original paper, Acar et al. [14] select the
GMSE as a metric defined by:

GMSEŷens =
1

N

N∑
k=1

(y(k) − ŷ(k)
ens)

2 (9)

where y(k) is the true response evaluated at x(k) and ŷ(k)
ens is its prediction by using EM calibrated

from all the DoE points except the data pair (x(k), y(k)). Then, the weight factors are solutions
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of the following optimization problem:

min
w

GMSEŷens (10)

s.t.
m∑
i=1

wi = 1

2.2 Local EMs

Unlike the global EM, weight factors are here function of the prediction point location. They
are varied over the design space. According to Acar [15], this strategy may lead to more accurate
results. However, an unsuitable weights estimation may lead to an ineffective identification of
the locally accurate prediction of an individual metamodel [24].

Variance-based local EM proposed by Zerpa et al. (EV)

Under the assumption of unbiased and uncorrelated predictions, weights in [20] are selected
as follows, in order to reduce the variance of the EM:

wi(x) =

1
Vi(x)∑m
j=1

1
Vj(x)

(11)

where Vi(x) is the prediction variance of the ith metamodel Mi at point x.

Spatial local EM proposed by Acar (EA3)

Acar [15] proposes four approaches to compute the weights of Eq. (4) based on the cross
validation error and the distance between data points and prediction points. Only the third one
is considered here. A weight equal to one is set to the metamodel which minimizes the cross
validation error, while other weights are set to zero. The weight at a prediction point is assigned
to the weight of its closest data point. This approach is formulated as follows:

wi(x) =
N∑
k=1

wikIk(x) (12)

Ik(x) =

{
1 if x(k) is the closest DoE point to x
0 else

where wik is the weight assigned to the metamodel Mi at the DoE point x(k).

3 KRIGING ENSEMBLE FOR AK-MCS RELIABILITY ANALYSIS

3.1 AK-MCS

Echard et al. [10] has combined adaptative Kriging metamodeling to Monte Carlo simula-
tion. The main idea of this method is to iteratively enrich a Kriging surrogate so that it allows a
sufficiently accurate classification of a MC population into a safe or failure domain. A learning
function, called U , is evaluated over the whole NMC points in order to determine the next best
point to add to the initial DoE. The method is summarized here. Readers may refer to [10] for
a more detailed version.
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1. Generation of the NMC points in the standard design space, where all the random vari-
ables u are normally distributed and uncorrelated. This required an appropriate transfor-
mation from the physical space of x. It should be noted that the performance function g
is not evaluated at all those points but only at a few candidates if the adaptive enrichment
requires it.

2. Selection of the initial design of experiments (DoE) using one of the techniques described
in [25].

3. Calibration of the Kriging model based on the DoE (D = (ui, gi), i = 1, ..., N).

4. Identification of the next best point u∗ to enrich that minimizes the U learning function
assessed for each point of the MC population.

U(u∗) = min
i=1,...,NMC

U(u(i)) (13)

where

U(u(i)) =
|µĝ(u(i))|
σĝ(u(i))

(14)

and µĝ(u(i)) and σ2
ĝ(u(i)) respectively denote the Kriging mean prediction and variance.

5. Check of the stopping criterion defined as:

U(u∗) ≥ 2 (15)

If the stopping criterion is satisfied, the algorithm stops. The metamodel is considered to
be accurate enough. Otherwise, the DoE is updated by evaluating g at point u∗. Then, the
algorithm goes back to step 3.

6. Estimation of the failure probability according to Eq. (2), where ĝ replaces g.

The simple calculation and implementation of the U learning function makes this method
very popular. Improvements have been made by Lelièvre et al. in [11]. In this work, the U
learning function is adapted in order to propose an AK-MCS method based on an ensemble of
Kriging metamodels.

3.2 Proposed Uens learning function

The natural idea when resorting to AK-MCS based on EM prediction is to use Eq. (14), such
that:

µĝens(u) =
m∑
i=1

wi(u)µĝi(u) (16)

σĝens(u) =

√√√√ m∑
i=1

m∑
j=1

wi(u)wj(u)Cov[ĝi(u), ĝj(u)] (17)
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where ĝi(u) and ĝj(u) are predictions from metamodels Mi and Mj respectively. The variance
estimation is here problematic because of the covariance terms Cov[ĝi(u), ĝj(u)]. According
to Ginsbourger et al. [26], handling a sum of Kriging predictors results in a tricky problem
for estimating the covariance terms. A tractable solution will require us to make an assumption
such as full independence. Hence, they proposed to use mixture of statistical distributions to ad-
dress the variance estimation problem [26]. By mixing the Kriging distributions, a Kriging EM
density function is here estimated and used to define a new learning function named hereafter
Uens.

The Kriging conditional distribution of ĝens(u), noted fĝens(u), is expressed as the sum of the
Gaussian conditional distributions of ĝi(u), where i refers to the ith metamodel Mi:

fĝens(u)(.) =
m∑
i=1

wi(u)fĝi(u)(.) (18)

Hence, ĝens(u) is a stochastic process of Gaussian mixtures with mean given in Eq. (16). Let
S be the event ´́ the point u of MC population is misclassified by ĝens`̀ . The probability of
occurrence of S can be deduced from Eq. (18):

Pens(S) =
m∑
i=1

wi(u)Φ(−Ui(u)) (19)

where Φ(−Ui(u)) is the probability of misclassifying the point u using the Kriging metamodels.
By introducing a conceptual index Uens on the event S, we can write:

Fĝens(u)(−Uens(u)) =
m∑
i=1

wi(u)Φ(−Ui(u)) (20)

where Fĝens(u) defines the unknown cumulative density function (CDF) of ĝens(u). By analogy
with AK-MCS, we consider here the standard normal CDF Φ. From that, Uens reads:

Uens = Φ−1

(
m∑
i=1

wi(u)Φ(Ui(u))

)
(21)

The active learning process is performed in this paper with this new Uens learning function.

4 ACADEMIC VALIDATION

The proposed method is applied to two numerical examples considering ordinary Kriging
(OK) with two kernel functions: the Gaussian kernel and the Matern ν = 3

2
kernel. Their

calibration is carried out with the OPENTURNS toolbox [27]. They are combined through
global EMs and local EMs techniques described in Section 2. Crude MCS is used as a reference
method. In what follows, M1 corresponds to an OK with a Gaussian kernel and M2 refers to
an OK with a Matern ν = 3

2
kernel. The AK-MCS method is carried out with the individual

metamodels M1 and M2 with the basic U -function. The Uens-function is applied in the learning
process of AK-MCS when EM is considered as a surrogate model.

4.1 Example 1: 2D illustrative example

The first example is a symmetric limit state function, with respect to x and y axes, with two
standard normal random variables. The performance function is:

g(u1, u2) = u2
1 −

u2
2

2
+ 2 (22)
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where u1 and u2 are standard normal random variables. The example is interesting because
it has two disjoint failure regions that may be difficult to identify. AK-MCS is tested with
individual metamodels and EMs. The reference failure probability is 0.025, it is estimated
using a MCS with 104 samples. The proposed Uens-function is applied and Table 1 gives the
results, where Ncall is the number of calls to the performance function.

Method Ncall Pf Miss-classified points
Monte Carlo 104 0.025 /

AK-MCS+M1 13 0.025 0
AK-MCS+M2 41 0.025 0

AK-MCS+BMA 13 0.025 0
AK-MCS+EG 13 0.025 0

AK-MCS+EME 13 0.025 0
AK-MCS+EV 14 0.025 0

AK-MCS+EA3 23 0.025 0

Table 1: Results of failure probability and miss-classified points in example 1.

The results show that the failure probability prediction is the same for all the combinations,
whereas the total number of calls to the performance function varies. It is observed that M1
converges faster than M2 and the EMs exhibit an intermediable convergence rate. Most EM
strategies perform equally well as the failure probability is always estimated accurately and
moderate variations of the numerical efforts are observed. Global EMs converge as fast as
the best individual metamodel since they quickly distinguish the best metamodel. Local EMs
take a little bit more time to converge compared with the best metamodel. Indeed, M2 may
be identified as the best emulator for some points, which reduces the convergence rate. The
global LSF approximation might be badly influenced by the worst metamodel in those points.
Furthermore, EA3 method has the highest number of calls to the performance function. This
might be explained by the fact that M2 is selected as the best metamodel in some points of the
DoE, and consequently chosen for the closest samples. But M2 has higher prediction variance
and therefore small values of U and slow convergence of the method.

Figure 1 shows the evolution of the highest weights as the method is applied. All EM strate-
gies succeed in identifying M1 as the best metamodel. Figure 2 shows the real LSF and its
prediction using individual metamodels and each of EMs mentioned above. There is a perfect
fit between the true response and EMs approximations. Metamodels also approaches well the
LSF with a slight difference between the true response and M2 prediction. The initial DoE
and the enriched points are also plotted. The later are close to the limit state function which
indicates the ability of the Uens-function to concentrate the search in the vicinity of the LSF. So
the proposed Uens-function can perform an efficient classification since the selected points for
the learning process are all close to the LSF with zero miss-classified points for all the EMs.
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Figure 1: Variation of weights in example 1

Figure 2: Approximation by AK-MCS combined to individual and EM metamodels in example 1

4.2 Example 2: series system with four branches

The second example is a series system with four branches. Its failure probability was calcu-
lated in [10] and is defined as:

g(u1, u2) = min


3 + 0.1(u1 − u2)2 − (u1+u2)√

2

3 + 0.1(u1 − u2)2 + (u1+u2)√
2

(u1 − u2)− 7√
2

(u2 − u1)− 7√
2

(23)

where u1 and u2 are standard normal random variables. This example is more challenging
than the previous one as the LSF function is less regular. The reference failure probability
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is 2.231 × 10−3 and it is estimated using MCS with 106 samples. The results of different
combinations of AK-MCS with individual metamodels and with EMs are given in Table 4.2.

Method Ncall Pf Miss-classified points
Monte Carlo 106 2.231× 10−3 /

AK-MCS+M1 87 2.230× 10−3 1
AK-MCS+M2 59 0.472× 10−3 1759

AK-MCS+BMA 82 2.231× 10−3 2
AK-MCS+EG 127 2.231× 10−3 0

AK-MCS+EME 93 2.231× 10−3 0
AK-MCS+EV 70 2.231× 10−3 0

AK-MCS+EA3 105 2.231× 10−3 0

Table 2: Results of failure probability and miss-classified points in example 2.

The first observation is that M2 fails to converge towards the reference failure probability.
This result can also be observed in Figure 3, where M2 approximation is far from the LSF in
two branches. In fact, the size of the initial DoE and the corresponding positions affects badly
the performance of M2. Despite the failure of M2 to approximate the LSF, EMs are capable
to approach it, thus, predicting an accurate probability of failure. It is slightly better than the
best individual estimation. The number of calls to the performance function differ from an EM
strategy to another since they are based on different approaches. The EG method is the most
computationally demanding. This is probably due to the α and β parameters choice since these
values are problem-dependent and their tunning is empirical [13]. EA3 method also needs more
iterations to converge compared with the best individual. As shown in Figure 4, M2, which has
a higher prediction variance, is selected for more than 80% of the prediction points by the end
of the learning process, which explains the slow convergence. Though M2 is the most selected
in EA3, this EM approaches well the limit state function as we can see in Figure 3, where two
corners among four are well captured. In the EME method, the best metamodel is immediately
selected, based on GMSE, and adding points to the DoE do not influence the choice. BMA
and EV are capable to slightly enhance the failure probability estimation and give a better
approximation to the LSF with less iterations than the best individual metamodel. Finally, the
modified learning function of AK-MCS has also proven its efficiency in classification in this
example. The selected points for the learning process are all in the vicinity of the limit state
function as shown in Figure 3. Furthermore, all the samples are well classified with EMs, which
is not the case with the individual metamodels.
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Figure 3: Approximation by AK-MCS combined to individual and EMs metamodels in example 2

Figure 4: Variation of weights in example 2

5 CONCLUSIONS

In this work, we consider a reliability analysis based on metamodels in order to diminish
the computational burden. In fact, advancements in computer science make the performance
functions more complicated since complex finite element models are involved. The variety
in metamodels types and tunings make choice very difficult to users. Hence, ensembles of
metamodels (EM) is an approach to avoid a priori choices of metamodels. This approach is
combined to AK-MCS, where a modified learning function of the AK-MCS method is proposed.

In the present paper, two ordinary Kriging metamodels are considered, with different kernel
functions (Gaussian and Matern ν = 3

2
). They are combined to form global and local EMs. The

results show that the modified learning function of AK-MCS performs an efficient classification
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of points with all EM strategies. The failure probability estimated by EMs is equal to the refer-
ence MCS failure probability. The local variance based method (EV) and the global Bayesian
model averaging (BMA) have reached the MCS failure probability with less number of calls to
the performance function than the best metamodel. The heuristic of Goel (EG) and the weights
optimization problem (EME) enable an accurate estimation of the failure probability but more
iterations were required to reach the reference failure probability. The spatial local EM (EA3)
has the same results as the two later methods. We were expecting that this method would yield
better results, as it should better account for local behavior of the performance function. Sur-
prisingly, this method does not perform better than the other strategies. This may be explained
by the higher variance of the second metamodel

The results obtained so far point out the potential efficiency of ensemble of metamodels
in reliability analysis. In fact, EM is not influenced by an inadequate a priori choice of a
metamodel or by a poor metamodel that results from a certain choice of design of experiments
as is the case in Example 2. However enhancement should be done for the weights calculation
especially for EA3 method. Other validation examples should be performed with more than
two Kriging models and in higher dimensions. A priori selection of the individual metamodels,
based on an error metric, should be performed in order to discard the worst individuals, thus
avoiding the slow convergence. Finally, when the best metamodel is not known beforehand,
using EM seems to be a suitable strategy to perform metamodel selection and to enhance the
performance of the AK method.
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Abstract. Surrogate modelling has become an important topic in the field of uncertainty
quantification as it allows for the solution of otherwise computationally intractable problems.
The basic idea in surrogate modelling consists in replacing an expensive-to-evaluate black-box
function by a cheap proxy. Various surrogate modelling techniques have been developed in the
past decade. They always assume accommodating properties of the underlying model such as
regularity and smoothness. However such assumptions may not hold for some models in civil
or mechanical engineering applications, e.g., due to the presence of snap-through instability
patterns or bifurcations in the physical behavior of the system under interest. In such cases,
building a single surrogate that accounts for all possible model scenarios leads to poor pre-
diction capability. To overcome such a hurdle, this paper investigates an approach where the
surrogate model is built in two stages. In the first stage, the different behaviors of the system
are identified using either expert knowledge or unsupervised learning, i.e. clustering. Then
a classifier of such behaviors is built, using support vector machines. In the second stage, a
regression-based surrogate model is built for each of the identified classes of behaviors. For
any new point, the prediction is therefore made in two stages: first predicting the class and
then estimating the response using an appropriate recombination of the surrogate models. The
approach is validated on two examples, showing its effectiveness with respect to using a single
surrogate model in the entire space.
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1 INTRODUCTION

The surrogate modelling of computer simulations has become paramount in many engineer-
ing applications that rely heavily on high-fidelity models. Surrogate models indeed allow for an
inexpensive approximation of the model input-output relationship, thus making computation-
ally intensive analyses, such as design optimization or uncertainty quantification, affordable.
In the common setting, the underlying surrogated model is assumed to exhibit accommodat-
ing properties such as smoothness and continuity. However, numerous engineering problems
involve non-smooth functions, e.g. crash simulation in the automotive industry. Indeed the
original model may exhibit some sharp localized features and discontinuities may occur when
a bifurcation or an instability appears in the solution path. In general, the functions of interest
in this work exhibit different behaviors which can be mapped to certain combinations of the
input parameters. The transitions between these domains may be non-smooth, often featuring
discontinuities. In mechanical engineering, typical examples are buckling and snap-through
characterized by sudden behavior changes (See [3] for instance). Approximating such models
with a traditional smooth surrogate model leads to large errors. In this work, we consider a two-
stage approach where the different behaviors are first localized and classified and then locally
approximated. A similar approach was investigated in [1] and [8], albeit without approximation
of the model responses as the latter were used as constraints in an optimization setting where
only feasibility of a given design is of interest. In this paper, the general workflow of the pro-
posed methodology is first introduced. This is followed by a brief description of the different
blocks of the algorithm. Finally, two application examples are used to show the effectiveness of
the proposed approach.

2 PROPOSED APPROACH

2.1 Workflow of the method

The proposed approach for handling non-smooth functions consists of multiple steps as de-
scribed in the flowchart of Figure 1. Let us consider an experimental design which consists
of N uniformly sampled points

{
x(1), . . . ,x(N)

}
and their corresponding model evaluations{

y(1) =M
(
x(1)

)
, . . . , y(N) =M

(
x(N)

)}
. To build the predictor, the following steps are un-

dertaken:

1. Clustering: This is the first step of the approach when the analyst attributes to each ob-
servation y(i), i = {1, . . . , N} a class which corresponds to an identified behavior of
the system. In the ideal case, this can be done manually using expert knowledge. In the
general case though, it is more convenient to rely on an automated approach where the
classes are directly learned from the data using unsupervised learning.

2. Classification: Once the classes are clearly identified, they are mapped to the input space
which is then partitioned accordingly. This step is carried out using support vector ma-
chines for classification as detailed in the next section.

3. Regression/Interpolation: Eventually, the dataset is split into the different groups identi-
fied in the previous two steps. For each group, a local surrogate model

{
M̂k, k = 1, . . . , K

}
is built.

Once the local models are built, it is necessary to recombine them when evaluating a new point.
As shown on the right side of Figure 1, this is achieved in three steps:
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LEARNING

1. Clustering

2. Classification

3. Regression

PREDICTING

1. Identification

2. Evaluation

3. Recombination

Figure 1: Illustration of the surrogate modelling approach.

1. Identification: The very first step is to predict to which class belongs the new point. The
previously built support vector classifier can be used in that respect.

2. Evaluation: The new point is then evaluated using the different surrogate models.

3. Recombination: The final approximation is obtained by combining the different predic-
tions as follows:

M̂ (x) =
K∑
k=1

wk (x)M̂k (x) , (1)

wk (x) are weight functions defined such that
∑K

k=1wk (x) = 1. Two different types
of weight functions are considered in this work as explained in the next section. In the
sequel, we first describe briefly the two surrogate model types used here, namely support
vector machines and Kriging.

2.2 Support vector machines for classification basics

Support vector machines are a powerful learning technique developed by Vapnik ([11]) for
classification (SVC) and regression (SVR) problems. Let us consider a dataset
C =

{(
x(i), `(i)

)
, i = 1, . . . , N

}
, wherex(i) areM -dimensional input points and `(i) = {−1, 1}

are the corresponding labels, in the particular case of binary classification considered here.
The support vector classifier is a function of the following form ([9]):

MSVC (x) =
N∑
i=1

αi `
(i) k

(
x(i),x

)
+ b, (2)

where αi and b are coefficients to calibrate and k () is the so-called kernel function. The coeffi-
cients of the expansion are actually found by solving the following optimization problem ([9]):

min
α

1

2
αT
(
K̃Y Y T

)
α+ cTα

subject to: αTY = 0, αi ≥ 0, i = {1, . . . , N} ,
(3)

where c = {−1, . . . ,−1} is a column vector of size N and K̃ = K + 1/CIN . In the latter
equation, K is the so-called Gram matrix whose components read Kij = k

(
x(i),x(j)

)
for

i, j ∈ {1, . . . , N}, IN is the identity matrix of size N and C is a penalty coefficient which acts
as a regularization term against overfitting.

In this work, we consider the Matérn 5/2 kernel which reads:

k (x,x′) =

(
1 +
√

5
‖x− x′‖

γ
+

5

3

‖x− x′‖2

γ2

)
exp

(
−
√

5
‖x− x′‖

γ

)
, (4)
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where γ > 0 is a parameter that needs to be calibrated. Together with the penalty term C, they
constitute the set of hyperparameters θ = {C, γ} whose proper calibration is crucial for the
accuracy of the trained SVC model. Here they are calibrated by minimizing the span estimate
of the leave-one-out error ([10]).

After setting up the model, the predicted boundary between the two classes is defined by{
x ∈ X :MSVC (x) = 0

}
while the class of a prediction is given by sign

(
MSVC (x)

)
.

2.3 Kriging basics

Kriging a.k.a. Gaussian process modelling is a surrogate modelling technique where the
function to approximate is considered to be the realization of a stochastic Gaussian process
which reads ([6, 7]):

M (x) =

p∑
j=1

βjfj (x) + Z (x) , (5)

where fj and βj are a set of p regressors and their corresponding coefficients and Z (x) is
a second-order zero-mean stationary Gaussian process whose covariance reads Cov [x,x′] =
σ2R (x,x′;γ). In the latter equation, σ2 is a constant variance of the process and R is an
auto-correlation function with parameters γ.

The auto-correlation function encodes assumptions made about the function to approximate,
e.g. smoothness, derivability, etc. In this work, we consider the Matérn 5/2 auto-correlation as
in Eq. (4). The training of the Kriging model is a two-step process. First, the coefficients of the
regression together with the process variance are estimates using least-square or equivalently
maximum likelihood minimization. Second, the optimal parameters of the auto-correlation
function are estimated using cross-validation or maximum likelihood. Once the estimates of
the hyperparameters

{
β̂, σ̂2, γ̂

}
are set, the prediction for a new point is assumed to follow a

Gaussian distribution whose mean is the actual Kriging predictor and reads:

µM (x) = fT (x) β̂ + rT (x)R−1
(
y − F T β̂

)
, (6)

whereR is the Gram matrix defined such thatRij = R
(
x(i),x(j); γ̂

)
, r (x) =

{
R
(
x,x(i); γ̂

)
,

i = 1, . . . , N} is a cross-correlation vector,F =
{
Fij = fj

(
x(i)
)
, i = 1, . . . , N, j = 1, . . . , p

}
and y =

{
yi =M

(
x(i)
)
, i = 1, . . . , N

}
are the observations in the experimental design.

2.4 Models recombination using SVC

In the second step of the approach, an SVC model is used to partition the space. In this paper,
only cases with two possible behavior scenarios are considered. Let us assume now that the two
sub-regions of the space corresponding to the negative and positive labels of the classifiers are
respectively denoted by R1 and R2. As explained above, the experimental design D is split in
two subsets Dk =

{(
x(i), y(i)

)
∈ D : x(i) ∈ Rk

}
, k = {1, 2}. Using the subset D1 (resp. D2),

a Kriging model denoted by M̂1 (resp. M̂2) is built.
Let us now consider a new point x to evaluate. As described above, we first predict its class,

sign
(
MSVC (x)

)
, using the classifier. This point is then evaluated using the local surrogate

models which are eventually recombined following Eq. (1). Two recombination schemes are
considered here:
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Binary approach
In this case, only the model built over the region in which x is predicted to belong to is used

([2, 4]). The weight function is therefore a simple indicator function, i.e. :

wk (x) = 1Rk
(x) =

{
1 if x ∈ Rk,
0 otherwise, (7)

For the case with only two possible scenarios considered here, Eq. (1) can then be simplified
into:

M̂ (x) = 1R1 (x)M̂1 (x) + 1R2 (x)M̂2 (x) . (8)

This is a simple approach but it may yield large errors when the classification of the new point
is wrong. The next approach tackles this issue by considering the uncertainty related to the
support vector machine classifier.

Weighting approach
In this case, weights associated to each model are computed using the SVC prediction. The

more likely a point is to belong to a class, the higher the corresponding weight and vice-versa.
To compute the weight, the output of the classifier is post-processed into posterior probabilities
using the following parametric sigmoid ([5]):

P
(
` (x) = 1|MSVC (x)

)
=

1

1 + exp (AMSVC (x) +B)
, (9)

where A and B are parameters that are fit using maximum likelihood estimation on the exper-
imental design. The final prediction is then obtained by setting these probabilities as weights,
i.e. :

w1 (x) = 1− P
(
` (x) = 1|MSVC (x)

)
and w2 (x) = P

(
` (x) = 1|MSVC (x)

)
. (10)

3 APPLICATIONS

We consider two applications to illustrate the proposed methodology, namely a two-dimensional
mathematical function and a snap-though mechanical problem.

3.1 Two-dimensional mathematical function

Let us consider the two-dimensional mathematical function defined by:

M (x) =

{
sin(x1) + 7 sin(x2)

2 if (x1 − π)2 + (x2 − π)2 − 2π2 ≥ 0,
x1 − 2x2 − 10; otherwise, (11)

where x ∈ [−π, π]2.
Figure 2a illustrates the function which consists of two distinct regions over which different

behaviors of the model can be observed. On one side, the function is highly non-linear whereas
on the other, the function is linear and nearly flat. To approximate this function, we use an
experimental design of size 100. The two classes are identified using K-means clustering and
the input space is partitioned as illustrated in Figure 3 by support vector machines. In this figure,
the training points that belong to the flat and highly non-linear regions are shown in blue circles
and red squares respectively. With a 100-point training set, the classifier, shown by the black
curve, is close enough to the true one, shown by the magenta curve. After building surrogates in
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(d) Approximation: Weighted recombination

Figure 2: Two-dimensional mathematical problem: original vs. surrogate models

each region, the two recombination schemes are applied. Figures 2c and 2d show the resulting
approximations. The binary case produces a very accurate representation of the model, the only
error being the position of the discontinuity. The weighted recombination scheme produces a
smooth transition in the margin between the two regions. Finally, using one single surrogate
model leads to the approximation shown in Figure 2b where spurious curvatures are added in
the vicinity of the discontinuity.

For a quantitative comparison of the different approaches, the following two errors metrics
are considered:

NMSE =

Nval∑
i=1

(
Yi − Ŷi

)2
/

Nval∑
i=1

(
Yi − Ȳ

)2
,

MAE =

Nval∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ /N, (12)

where NMSE and MAE respectively stand for normalized mean square error and mean ab-
solute error. In these equations, Y and Ŷ are responses of the original and surrogate models on
a validation set of size Nval = 10, 000. Table 1 shows the resulting errors where cases #1, #2
and #3 respectively stand for single surrogate, binary recombination and weighted recombina-
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Figure 3: Two-dimensional mathematical problem: classification of the input points using sup-
port vector machines

tion. The proposed approach improves the prediction considering any of the two metrics. It is
not clear though which of the two recombination schemes is more effective.

Case #1 Case #2 Case #3
NMSE 0.0911 0.0530 0.0346
MAE 1.0124 0.2048 0.2436

Table 1: Two-dimensional mathematical problem: comparison of the resulting errors

3.2 Truss structure subject to snap-through

The second example addresses the problem of a geometrically non-linear two-bar truss struc-
ture with a snap-through behavior as illustrated in Figure 4. When loaded, such a structure often
behaves linearly with small displacements. However, when a critical limit is reached, the struc-
ture becomes unstable and undergoes a sudden large displacement by snapping through another
equilibrium point. In this example, we approximate the displacements w of the tip of such a
structure considering the random parameters shown in Table 2.

Figure 4: Illustration of the truss structure subject to snap-through

It can be shown that the load at a deformed position follows a relationship given by:

P = −2EA tan (α) (cos (α0)− cos (α)) (13)
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Parameter Distribution Mean C.o.V.
Load (P in N) Gumbel 430 0.20

Young’s modulus (E in GPa) Lognormal 210 0.10
Cross sectional area (A in cm2) Gaussian 10 0.05

Table 2: Truss snap-through problem: probabilistic input model

where α0 and α are the inclination angles of the bars at the initial and deformed positions. The
corresponding displacement of the tip of the truss then reads:

w = l0 cos (α0) (tan (α0)− tan (α)) . (14)

In this example, we set l0 = 5 m and α0 = 10◦. Using an experimental design of 100 points
drawn following the distribution in Table 2, the displacements are computed and shown in
Figure 5. We can clearly observe the two behaviors that lead to entirely different displacements.

0 20 40 60 80 100

0

0.5

1

1.5

2

Figure 5: Truss snap-through problem: experimental design model responses

The proposed approach is applied to this experimental design. Figure 6 and Table 3 show the
results for comparison. When using a single surrogate model, the instability is not captured and
displacements are predicted continuously over the two extreme cases. The proposed approach
allows to accurately locate and isolate the input sub-regions that lead to each of the scenarios.
The binary approach produces extremely accurate results as long as the class is correctly pre-
dicted by the SVM model. The weighted recombination scheme yields locally less accurate
results but behaves better than the binary one close to the discontinuity.

Case #1 Case #2 Case #3
NMSE 0.2478 0.0803 0.0670
MAE 0.2714 0.0390 0.0399

Table 3: Truss snap-through problem: comparison of the resulting errors
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Figure 6: Truss snap-through problem: original vs. predicted responses

4 CONCLUSION

This paper presents a two-stage approach for the approximation of functions with non-
smooth outputs. Focus is given to the particular case when multiple behaviors of the function
can be observed. The proposed approach consists in first identifying such behaviors and then
classifying them using support vector machines. The resulting prediction is obtained by build-
ing local surrogates in each region and then recombining them using two different schemes.
Two application examples show the efficiency of the approach with respect to using a unique
global surrogate model. The accuracy of the resulting predictions however relies on the accu-
racy of the classification step. The latter can be increased by using adaptive sampling scheme
in order to more accurately define the boundaries between the two regions. Furthermore, the
proposed scheme is limited to binary problems and will be extended to the more general case
when more than two behaviors of the system can be observed.
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Abstract. Virtual approaches to manufacturing processes are a common tool in developing
components today. Simulations are always containing uncertainties like simplifying assump-
tions in computer aided modelling, material deviations, fluctuating external loads or other
known and unknown influences. To integrate such uncertainties in an early design stage, the
input parameters should be defined as intervals, because insufficient data may be available at
this stage to provide probability distributions. To consider such epistemic uncertainties, a large
number of intervals can be merged into a fuzzy number. For each interval a membership value
is assigned which depends on the interval limits and an expert estimation. However, this inter-
val modelling leads to a very high number of expensive evaluations, which is not feasible for a
high number of uncertain input parameters. To reduce the calculation time, surrogate models
are used. Here, the full model is evaluated only at some grid points and the system response
is approximated by mathematical approaches. Design and Analysis of Computer Experiments
(DACE) offers a suitable surrogate model based on the Kriging method. The system model
substituted in this way can be evaluated in an efficient way, but in addition to the uncertain
simulation results, the approximation error dependent on the surrogate model has to be consid-
ered. Investigations of first prototypes lead to new knowledge that can be used to improve the
surrogate model. Measurements, however, also include errors that are composed of systematic
and random errors. The systematic measurement errors are specific errors for each measuring
system and task, which are usually corrected during the measurement. However, an estimation
of the random measurement error, which represents the precision of the measurement can be
taken into account. Two methods are presented. Either an additional constant term is imple-
mented in the standard Kriging or a superposition of two standard Kriging models, which are
based on the simulation data and the measurement data, is used. As an application example a
cold forging process of a steel gearwheel is employed.
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1 Introduction

The tasks of developing components and defining their tolerances are part of the design
process. Due to increased requirements and shorter development times, the manufacturing pro-
cesses are designed using computer aided simulations These simulations play an important
role in manufacturing processes and are therefore often used [1]. While simulations are repro-
ducible, real processes are subject to fluctuations, such that a virtual model can never reproduce
a real-world setting and tolerance limits are necessarily needed, to ensure the functions of the
developed components.

The origin of the fluctuations are caused by epistemic uncertainties as well as aleatoric un-
certainties [2]. Epistemic uncertainties result from insufficient information and can be elimi-
nated by additional effort. Aleatoric uncertainties are systemdependent deviations that cannot
be prevented. These uncertainties have to be taken into account in the process design. Varying
parameters are a common way of doing this. Therefore, many evaluations are needed to calcu-
late a simulation for different parameter combinations. The system used in this manuscript is a
cold forging process to build gearwheels [3].

Due to the complexity of the simulation and the frequently required evaluations, the system
is approximated using a surrogate model. This is done in section 2 using Design and Analysis
of Computer Experiments (DACE). The surrogate model should reproduce the computer sim-
ulation with sufficient accuracy. Subsequent measurements of real parts in section 3 provide
verification of the surrogate model. It can be seen that the surrogate model approximates the
simulation well, but the simulation does not match with the results of the real measurements. In
section 4, the measurement data is then used to discuss two methods to optimize the simulation
results. Considering the measurement method and its measurement uncertainty, the possibility
of optimization is limited, which is shown in section 4.3 discussing an exclusively measurement
based surrogate model. A first approach to integrate the measurement uncertainty into the dis-
cussed surrogate models is shown in section 4.4. At the end there is a short summary and an
outlook in section 5.

2 Surrogate model

In general, a surrogate model is an approximation to the output function f̂(p) ≈ f(p) at the
parameter combination p. Each vector p = {p1, p2, ..., pk}T consists of k entries. The number
of entries k results from the number of input parameters. In order to create a surrogate model,
the system is approximated by using a few sampling points

P = {p1,p2, ...,pn}T . (1)

Here we use an interpolation, such that the relationship f̂(pi) = f(pi) applies to the sam-
pling points pi.

2.1 Cold forging process simulation

In the following, the function f represents a finite element simulation of a cold forging
process. In this process, a cylindrical blank with diameter d is extruded forward into a gear
die by a punch. The process runs at room temperature (the blank is also not heated, there-
fore cold forming) and using suitable lubricants, which have a significant influence on the
friction force between the blank and the die [4]. Two parameters, the diameter d = p1 ∈
[0.019169 m, 0.019589 m] and friction coefficient µ = p2 ∈ [0.08, 0.18] are considered as un-
certain. This setup is simulated in the commercial software Simufact Forming. This tool is
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well suited for massive forming processes [5, 6]. Fig. 1 (a) shows the experimental setup in the
simulation environment. Because of symmetry it is sufficient to simulate only a quarter of the
whole model.

(a) finite element setup for cold forging process (b) result plot for the effective plastic strain
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(c) 2D cut of the result plot for one cog with a fitting curve for the left involute

Figure 1: Simulation data from the cold forging process simulation

The simulation results, as can be seen in Fig. 1 (b) for the effective plastic strain, were
explained in [3]. The quantity of interest for a tolerance analysis in gear meshing is the cog
involute (see Fig. 1 (c)). To obtain the involute, the STL file of the formed blank is exported
from the simulation and a cut is made in the middle of the blank, perpendicular to the flow
direction. The nodes located in the immediate vicinity of the cut then describe the 2D shape of
the deformed blank, the cogs. The involute can be determined using the standard in [7]. The
finite element mesh is designed such that about 16 points are located on the involute.

2.2 DACE model

For the surrogate model f̂ exist different approaches, see e.g. [8]. The surrogate model used
here is the DACE model. This form of surrogate model is based on the Kriging model developed
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by D.G. Krige [9]. It contains a random process Z(p), which influences the surrogate model
depending on the distance of the evaluation point to the sampling points [10]. This random
process Z(p) is assumed to have zero mean and covariance between Z(pi) and Z(p), which
results in

E[Z(pi),Z(p)] = σ2R(θ,pi,p), (2)

with σ2 as process variance and R(θ,pi,p) as correlation function. For the point correlation

R(θ,pi,p) =
nc∏
j=1

Rj(θ, p
(i)
j − pj) (3)

holds and a correlation matrix and a covariance matrix can be obtained. For the correlation
function the cubic approach,

Rj(θ, p
(i)
j , pj) = 1− 3ξ2 + 2ξ3 with ξ = min{1, θ|p(i)

j − pj|} (4)

is used, which contains a weighting factor θ, defining the importance of the parameters.
Calculation of optimal values for θ corresponds to a maximum likelihood estimation, for more
details see [11].

In addition to the correlation context, the DACE method consists of a regressions model. It is
a linear combination of nc functions r1(p)...rnc(p) with regression parameters βi. Regression
model and random process results in the DACE approach

F̂(p) =
nc∑
i=1

βiri(p) + Z(p). (5)

This model is applied using the MATLAB toolbox following [11, 12]. In the upcoming
chapters a first degree polynomial is used as regression model and the weighting factor θ ∈
[0.001, 10].

The model is build with a three-level full factorial design for the two parameters (diameter d,
friction coefficient µ), resulting in n = 32 sampling points. The influence of other sampling
strategies is not considered in this document, but will be the topic of future research.

2.3 Model for the involute

As already mentioned in section 2.1, the involute is the quantity of interest. More precisely
the left involute of the first cog serves as result function y(x). The first cog is defined as the
upper cog intersected by the y-axis of the coordinate system (coordinates y > 0, xmin < 0 <
xmax).

Due to high numerical costs of the finite element simulations, a surrogate model for the
involute is needed for parameter studies. If the discrete representation of the involute as given
by the finite element result is directly approximated, a large number of parallel surrogate models
are required for each individual point. Moreover, a comparison of two involutes is then difficult
because the points lie not necessarily in the normal direction of the underlying cog surface and
do not allow a determination of the distance between the two involutes. For this reason, the
points of the finite element mesh from the simulation are approximated by a polynomial of the
form

y(x) = c4x
4 + c3x

3 + c2x
2 + c1x+ c0 (6)
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and a surrogate model ŷ(p, x) is build, where the coefficient c0−4 of the polynomial are
directly approximated by individual DACE models ĉi(p), as presented in section 2.2. Thus, the
involutes from the surrogate model can be compared with the mesh points of the simulation and
later also with the measurement points of the real measurement. The root mean squared error
(RMSE), which is generally defined by

RMSE =

√∑n
i=1(ŷi − yi)2

n
(7)

is used for that comparison, where yi = y(xi).
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Figure 2: Comparison of involute from surrogate model and simulation

The number of points n in Eq. 7 is for the simulations about 16. Each parameter combina-
tion p has its own involute and thus its own RMSE value. The mean value is then calculated
from these RMSE values to determine the global error of the surrogate model over all parameter
combinations. Fig. 2 shows one configuration of an involute from the surrogate model and the
associated simulation. An evaluation of the RMSE results in a value of 0.004, which is satisfac-
tory. Before we discuss the results of the measurements in comparison to the surrogate model,
the next chapter will show how measurement data originate.

3 Measuring Data

Every real measurement is associated with a positive, non-zero measurement error. That
means that any measurand can only be determined up to a certain limitation regarding accuracy
and precision. Measurement errors are categorized into systematic and random error contribu-
tions, which are described as ”component of measurement error that in replicate measurements
remains constant or varies in a predicable manner” and ”component of measurement error that
in replicate measurements varies in an unpredictable manner”, respectively [13].

The measurement uncertainty of a measurement can be calculated by the determination of
those mentioned contributions. The application of different measurement methods and mea-
surement objects in combination with numerous environmental influencing factors usually have
an effect on the achieved measurement uncertainties. Usually, the measurement uncertainty is
determined and associated with a certain standard geometry element (e.g. plane, cylinder). At
the Institute of Manufacturing Metrology, the instrument ”single point uncertainty” was intro-
duced and used to locally determine the measurement uncertainty with regard to a geometrically
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finely resolved reference measurement [14, 15]. The uncertainty contributes are obtained by sta-
tistical evaluation of the local distances of repeated measurements to numerous sampling points
on the reference geometry.

Figure 3: Different sampling strategies to determine the single point uncertainty from repeated measurements [15]

Different sampling strategies are possible to obtain the distances dn, this contribution uses
the ”shortest distance” sampling method, see Fig. 3. The mean intersection distances for each
sampling point SPk represent the systematic measurement error, while the random measure-
ment error is represented by the standard deviation of the intersection distances. If no reference
(”quantity value used as a basis for comparison with values of quantities of the same kind”
[13]) geometry is available, the precision of a measurement can be estimated nonetheless by
using the nominal geometry (e.g. CAD) instead. That means that the calculated mean inter-
section distances then represent the combination of the systematic measurement error and the
work piece deviations. The ”single point uncertainty” framework allows the determination of
the components of the measurement uncertainty with respect to numerous single points on a
geometry, which is well suited for numerous application scenarios [16], including the supply of
parameterized descriptions of the local measurement uncertainty [17].

In order to achieve the random measurement error several repeated measurements (n = 20)
of a very precisely manufactured steel gear wheel were performed using the tactile coordinate
measurement machine (CMM) ”Zeiss UPMC 1200 CARAT S-ACC” in scanning mode in com-
bination with a rotatory stage. The measurements took place in a controlled environment with
a constant air temperature of 20 ◦C ± 0.2 K and relative air humidity of 45 % ± 10 %. The
operating software ”Zeiss GEAR PRO” was utilized to define and evaluate the measurement
task. Because of the repeated measurement of the same measurement object under constant
conditions, the scatter of the measurement system traversing the complete measurement chain
can be observed in the measurement results.

At the beginning of the measurement, the CMM is defining the work piece coordinate sys-
tem by the determination of the rotation axis of the gear wheel in combination with a centring
operation at a single tooth root, in order to resolve the rotation symmetry. After that, two per-
pendicular line scans are performed for each tooth flank. The line scans representing a complete
gear wheel measurement (2 line scans for each gear wheel flank of each tooth) were geomet-
rically registered against the nominal geometry of the gear wheel (CAD) in order to obtain a
stable and convenient coordinate system for the subsequent measurement data evaluations. This
step was repeated for each of the repeated measurements (n = 20). For each repeated line scan,
the mean starting contour (tactile measurement coordiantes are given in combination with the
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associated machine probing vector and the distance from the CAD starting contour to the mea-
surement coordiante in the direction of that associated probing vector) was calculated using a
least squares procedure, from which the measurements were then sampled. Because of the fact,
that the work piece was manufactured very accurately and no superior measurement device was
available to determine a reference measurement for the CMM system, the subsequent uncer-
tainty evaluations only consider the random measurement errors, thus the observed ”systematic
measurement errors” are regarded as work piece deviations.

4 Measuring Data included in DACE

A comparison of the data determined in section 3 from the measurements with the simula-
tions shows significantly greater deviation than the comparison of surrogate models and simu-
lations in section 2.3, which can be seen exemplary in Fig. 4.
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Figure 4: Comparison of involute from surrogate model, simulation and measurement

At first, the evaluation of single gear wheel measurements is discussed without taking the
measurement precision (random measurement error) into account. The RMSE between the
surrogate model and the simulation is, as we already know, about 0.004, while the RMSE
between measurement and simulation is in the order of 0.029. With regard to Fig. 4 it is obvious,
that the deviation between measurement and simulation is systematic and not a stochastic error,
which leads to the conclusion, that the simulation model is not perfectly fitted. One possibility
for optimization would be to improve the simulation, but it would be very time-consuming to
further optimize the finite element model. Two alternatives, discussed in the following, are
either to integrate the measurement results into the simulation based surrogate model or to
construct a separate surrogate model based on measurement data.

4.1 Concept of constant error

The fastest and therefore cheapest approach is extending the DACE model. Eq. 5 is sup-
plemented by a further factor ∆Measure. This factor contains information about the absolute
distance of the result variables between surrogate model and measurement values. Assuming
that the simulation correctly reproduces the tendency of the parameter variations and thus the
surrogate model deviates at each parameter constellation by approximately the same amount, it
is sufficient to determine a constant value for ∆Measure. With
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∆Measure = FMeasure(pm)−
nc∑
i=1

βiri(pm)− Z(pm) (8)

the constant error value is calculated, where FMeasure(pm) is the measurement result for pa-
rameter combination pm. It is already sufficient to carry out a single measurement on any
parameter constellation. The evaluation in Tab. 1 for different constellations shows that the pa-
rameter combinations hardly plays a role. However, a parameter constellation that is as central
as possible in the parameter space should be preferred, since possible effects at the edges are
avoided.

- const.1 const. 2 const. 3 const.4 const. 5

RMSE 0.0078 0.0079 0.0076 0.0076 0.0078

Distance to space center
52 36 29 23 2

(in % of the parameter space)

Table 1: RMSE for different constellations including ∆Measure

A disadvantage of the method is a risk to integrate the error of a single measurement into the
whole model. For this reason, this risk can be greatly minimized by forming an average value.

4.2 Concept of superposed surrogate models

If measurements are available or possible, the question arises whether a surrogate model
based exclusively on the measurement data makes more sense. However, it has to be considered
that measurements are very expensive and they should be avoided as far as possible. Therefore,
in the following, a hybrid method is presented, which uses the simulation based surrogate model
from section 2 and generates another surrogate model on the measurement data. For the mea-
surement based surrogate model we assume, that the number of sampling points is significantly
smaller than the number of sampling points of simulation based model, |PMeasure| << |PSim|.
Since the simulation based model for the cold forging example has only nine sampling points,
the measurement based model is here limited to only three sampling points. For both surrogate
models Eq. 5 is used.

The linear combination of the models

F̂hybrid(p) = b1F̂sim(p) + b2F̂Measure(p), (9)

defines a hybrid method. By the factors b1 and b2 with b1 + b2 = 1 the influence of the
respective surrogate model can be adjusted depending on the quality of the simulation and the
measurements. In case of a lack of knowledge there should be a 50/50 ratio.

With the first column in Tab. 2 it becomes clear that the measurement based model using only
three sampling points already has a better significance than the simulation based model using
nine sampling points. Nevertheless, the hybrid model shows an optimum between 1

10
< b1 <

1
3
,

where the influence of the simulation based surrogate model is nearly 25%. A disadvantage of
this method comes up with consideration of the measurement uncertainty in section 4.4.
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b1 0 1
10

1
4

1
3

1
2

9
10

b2 1 9
10

3
4

2
3

1
2

1
10

RMSE 0.0064 0.0058 0.0057 0.0060 0.0073 0.0122

Table 2: RMSE for different constellations including hybrid model

4.3 Comparison of the different methods

Since it was shown in the last section that the accuracy of the measurement based surrogate
model is higher than the accuracy of a simulation based model, a surrogate model based only on
the measurements is to be generated as a reference, which has as many sampling points as the
simulation based model. It must be taken into account that the measurement data cover only a
part of the parameter space and therefore no full factorial design is possible. Nine constellations
are selected so that the distance between the evaluation points is as large as possible. The RMSE
for this surrogate model is 0.0078 and thus also in the order of magnitude of the concept with
constant error ∆Measure. Fig. 5 shows the involutes of the five different variants for one parameter
constellation.
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Figure 5: Comparison of all variants

This corresponds approximately to the results of the RMSE evaluation. It is quite surprising
that the measurement based surrogate model is not able to convert the much larger information
content into accuracy. This circumstance is due to the measurement uncertainty and perhaps the
location of the sampling points, which were fixed due to experimental restrictions.

4.4 Integration of measurement uncertainty

As already mentioned in section 3, the locally resolved estimation of the measurement pre-
cision results in a distribution (random measurement error), whose standard deviation must be
taken into account. This leads to a range of measurement results. Thus, if a measurement is
performed only once, the result is subject to uncertainties. A consideration of the measure-
ment uncertainty can therefore be generated by using fuzzy numbers. The fuzzy numbers form
intervals, but their values are not necessarily a complete part of the interval. For each value,

375



Thomas Oberleiter, Andreas Michael Müller, Tino Hausotte and Kai Willner

a membership function is assumed whose values are between zero and one. A membership
function of one means that the value is in the interval, while a membership function of zero
means that the value is definitely not in the interval. In contrast to classical set theory, where
the values only have a membership function of zero or one, values in the fuzzy interval can also
have a value in between. Thus, all kinds of uncertainties can be described with fuzzy quanti-
ties. Fuzzy arithmetic contains many characteristic features, which are shown e.g. in [18, 19].
Fuzzy numbers can be discretized with α-cuts, where classical intervals are formed with a fixed
membership function value.

If the measurement uncertainty is applied to the surrogate model by means of such α-cuts,
bands, whose boundaries according to the tolerance for risk, are formed. For the width of the
bands in Fig. 6 applies w(µ = 0) = 3σ. The other bands for µ > 0 are automatically generated
based on the selected fuzzy number. In Fig. 6 a truncated gauss fuzzy number is used. The crisp
value (µ = 1) is the involute of the surrogate model with the concept of constant error.
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Figure 6: Measurement uncertainty implemented with fuzzy numbers

For the concept of constant error, the result is finally

˜̂
F∆ err(p) = F̂Sim(p) + ∆̃Measure. (10)

The uncertainty in the result is only due to the measurement uncertainty and can therefore
be handled very easily. This is different with a uncertainty analysis of the hybrid model. Here

˜̂
Fhybrid(p) = b1F̂Sim(p) + b2

˜̂
FMeasure(p) (11)

shows, that the uncertainty is integrated in the surrogate model itself. A crisp value at µ = 1
does not exist, instead it must already be assumed, that the involute for µ = 1 is uncertain. This
cannot be verified exactly.
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5 Conclusions

The deviations between simulation and surrogate model, which is based exclusively on these
simulations, are significantly smaller than the deviations between simulation and real measure-
ments. An optimization of the simulation based surrogate model has no significant influence
and therefore remains unconsidered.

Forming a new surrogate model based exclusively on the measurement data improves the
accuracy, but the effort is significantly higher than one of the presented methods in section 4.
However, if the simulation is good enough, only a few measurements can be sufficient, since the
simulation can correctly map the trend. It is shown that the accuracy does not increase with the
number of measurements, since the measurement error only consists of a random contribution,
because the systematic contribution is regarded as zero. This uncertainty is reflected in the result
functions and is taken into account by means of a band around the surrogate model results. For
that case the concept of constant error is easier to handle in contrast to the hybrid concept.

A classification of such surrogate models in tolerance management is a special challenge. In
addition to the measurement uncertainty, the tolerance has to be considered. This makes it even
more difficult to distinguish between good and bad parts. An estimation under almost 100%
coverage of the measurement uncertainty and the tolerance results in a narrow band and can
lead to many rejects or tight tolerances. It is at the discretion of the designer to choose suitable
tolerances .

The methods presented here make it possible to approximate a process by means of simu-
lation and measurements and to take the measurement uncertainty into account. It was shown,
that it is possible to generate a ”good” surrogate model with simulation based models and few
measurement data.
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Abstract. Multiphase flows are described by the multiphase Navier-Stokes equations. Numer-
ically solving these equations is computationally expensive, and performing many simulations
for the purpose of design, optimization and uncertainty quantification is often prohibitively
expensive. A simplified model, the so-called two-fluid model, can be derived from a spatial
averaging process. The averaging process introduces a closure problem, which is represented
by unknown friction terms in the two-fluid model. Correctly modeling these friction terms is a
long-standing problem in two-fluid model development.

In this work we take a new approach, and learn the closure terms in the two-fluid model from
a set of unsteady high-fidelity simulations conducted with the open source code Gerris. These
form the training data for a neural network. The neural network provides a functional relation
between the two-fluid model’s resolved quantities and the closure terms, which are added as
source terms to the two-fluid model. With the addition of the locally defined interfacial slope
as an input to the closure terms, the trained two-fluid model reproduces the dynamic behavior
of high fidelity simulations better than the two-fluid model using a conventional set of closure
terms.
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1 INTRODUCTION

The simulation of multiphase flow of gas and liquid in a pipeline is a problem of interest in
the oil and gas industry. The two fluids can have complex interactions leading to different flow
regimes, such as smoothly stratified flow, wavy stratified flow, and slug flow. Predicting the
transition from stratified flow to slug flow in dynamic simulations is a difficult problem [21],
for which we consider different computational models. We restrict ourselves in this paper to
incompressible 2D channel flow, as a simplified representation of 3D circular pipe flow.

A general model which can describe the flow regimes mentioned above is formed by the
well-known Navier-Stokes equations. These can be solved numerically, using for example a
volume-of-fluid (VOF) method [19] for the treatment of the interface. However, when many
model evaluations are needed, such as in uncertainty quantification, solving the full Navier-
Stokes equations is too computationally expensive.

We therefore consider a simplified model which is computationally less expensive, the so-
called two-fluid model [3]. The 1D two-fluid model is obtained by averaging the Navier-Stokes
equations for each fluid, over the respective cross-sections. This spatial averaging process in-
troduces a closure problem; the shear stresses in the flow become unknowns with a priori no
direct relation to the averaged quantities present in the two-fluid model. Relations between the
averaged quantities and the stresses need to be postulated; these relations are called ‘closure
terms’.

Conventionally, these closure terms for the two-fluid model are obtained from correlations
with experimental data for steady state pipe flow. A pressure difference is applied to a section of
the pipe and the resulting volumetric fluxes and liquid holdup (fraction of the total pipe cross-
section occupied by the liquid) are measured. These are related to the stresses via the steady
state balances for both fluids and via assumptions on the relations between the different stresses,
to form the closure terms. On this principle, for example, the widely used Taitel and Dukler
[40] closure terms are based.

Alizadehdakhel et al. [1] and Osgouei et al. [32] used physical experimental data to train
neural networks to predict pressure drops in two-phase pipe flow. They related the superfi-
cial velocities to the spatially and temporally averaged pressure drop, like in the conventional
approach, but used a neural network to construct the relation.

For bubbly flow in a vertical channel, Ma et al. [26, 27], introduced a more general approach.
They conducted 3D unsteady Navier-Stokes DNS (with front tracking), the results of which
can be related to the averaged quantities present in their low-fidelity 1D model, at any point
along the 1D model’s spatial axis and at any point in time. A neural network was employed to
learn the relation between the two. They report satisfactory results, and emphasize the general
applicability of their approach: no prior knowledge is needed on the relation between known
quantities and the quantities requiring closure. Ma et al. refer to earlier work by Lu et al. [24,
25], who trained a neural network with data from micro-scale DNS simulations of a gas-solid
mixture under influence of a shock, to provide closure relations for the particle-particle and
gas-particle interactions, for use in coarse macro-scale simulations. Besides these references,
in multiphase flow, the literature on machine learning for closure terms is sparse.

However, in the field of turbulence closure modeling, neural networks have already proved
their worth, when applied to specific cases. Sargini et al. [38] used a neural network to create a
subgrid scale (SGS) model for a Large Eddy Simulation (LES), which reproduces the dynamics
of LES using an expensive SGS model (Bardina’s scale similar (BFR) SGS model), at a lower
computational cost. A similar approach was taken by Tracey et al. [42] for air flow in a data
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center. Gamahara and Hattori [16] recently used DNS directly to obtain a functional relation for
the SGS tensor which shows performance close to that of a Smagorinsky SGS model. Ling et
al. [23] learned RANS stress tensors similarly, choosing the inputs and neural network structure
such that Galilean invariance is incorporated in the expressions directly.

Motivated by the success of machine learning in the field of turbulence closure modeling, we
continue the application of machine learning to multiphase flow, taking inspiration from Ma et
al. [26, 27]. We make two new contributions:

• We extend the methodology to more generic neural networks.

• We study a different physical situation (stratified flow versus bubbly flow), with a different
low-fidelity model, and different unclosed terms.

Compared to the conventional literature on closure terms for the 1D two-fluid model, the nov-
elties of this work are:

• We base closure terms on the results of fully resolved unsteady 2D Navier-Stokes simu-
lations (for channel flow), which we refer to as our high-fidelity simulations.

• We employ an artificial neural network to find the relation between the two.

• The preceding two points make it straightforward to add non-local, non-instantaneous in-
put variables to the closure relations; in this work we have added the streamwise derivative
of the interface height.

The differences between our approach and the conventional approach mean that:

• Closure terms can be constructed for specific cases (specific duct geometries or flow
regimes), as long as accurate high-fidelity simulations are available.

• Unsteady behavior may be reproduced more accurately by the low-fidelity model.

With our approach, it is our aim to use high-fidelity simulations to improve the accuracy of
low-fidelity simulations, with the promise to reach the accuracy of the high-fidelity model at
the cost of the low-fidelity model.

The structure of the paper is as follows. The physics and numerics of the high- and low-
fidelity models are discussed in section 2. This leads us to an explanation of the required
closure terms, and the fundamental limitations imposed by the model averaging process, which
are not fixable by improving closure terms of the considered form.

In section 3 we tune the neural network, and show that closure terms based on steady state
flow are unsatisfactory for the case of wavy unsteady flow. We then describe the training of
the tuned neural network on wavy unsteady flow data. Finally, section 4 presents the results of
applying the trained neural networks as closure terms in the low-fidelity simulations. Here the
agreement between the high-fidelity model and the enhanced low-fidelity model is evaluated.

2 HIGH- AND LOW-FIDELITY MODEL DESCRIPTION

Our approach is shown schematically in Figure 1. We have a 2D high-fidelity model for
channel flow, with horizontal and vertical velocity components u and w, being functions of the
coordinates s and h. The low-fidelity model is 1D and as such only knows velocities uL and uG,
which are averaged over the portions of the channel containing liquid and gas respectively, so
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that they are only functions of s (as is the interface height hint). From the 2D high-fidelity field
results we calculate these averaged quantities and their corresponding stresses. These represent
inputs and desired outputs to a neural network, respectively, between which the neural network
is given the task to find a relation. The resulting functions can be fed as closure terms to the
low-fidelity model.

High-fidelity model h

s

u

w

M = 1

M = 0

g

Neural network

Training data

Closure terms

∂hint
∂s

...
uL

hint

...

...

τint

τG

τL

Low-fidelity model H

s

uL

uGτG

τint

τL hint

g

Figure 1: An outline of the approach for learning closure terms from high-fidelity simulations.

2.1 High-fidelity model

The high-fidelity model that we use to generate the training data is the open source code
Gerris [33, 34]. It is based on the one-fluid formulation for multiphase flow. This entails the
solution of the Navier-Stokes equations for incompressible flow:

∇ · u = 0, (1)
∂u

∂t
+ u ·∇u =

1

ρ

(
−∇p+ ∇ ·

[
µ∇u + µ(∇u)T

])
+ g, (2)
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with velocity field u = u(s, h, t) and pressure field p = p(s, h, t) encompassing the entire
domain, gravitational acceleration g, density ρ, and viscosity µ (see Figure 1).

Gerris discretizes these equations spatially with a finite volume method on a colocated grid,
with central interpolation and the Van Leer generalized minmod limiter with θ = 2 for the face-
centered gradient calculation. We do not make use of Gerris’ capability to adaptively refine the
grid at different levels.

For temporal discretization Gerris uses a second order projection method [11], in which a
multilevel Gauss-Seidel iterative method is used to solve the pressure Poisson equation. The
velocity advection term is discretized according to the second order unsplit upwind scheme of
Bell et al. [4], and for the diffusion term a Crank-Nicolson discretization is employed.

In the one-fluid approach for multiphase flow, the density ρ and viscosity µ are functions of
the spatial coordinates, via a marker function M = M(s, h, t):

ρ = ρ(M), µ = µ(M).

This marker function M , typically 1 in the liquid and 0 in the gas, is advected by the velocity
field. We make the assumption of sharp interfaces [43, p. 22] and disregard phase transition, so
that the advection of the marker function can be described by

DM

Dt
=
∂M

∂t
+ u ·∇M = 0. (3)

Gerris advects the marker function numerically using the volume-of-fluid (VOF) method. In
the VOF method [19], the marker function is averaged over the grid cells to define the color
function

Ci =
1

Vi

∫
Vi

M dV. (4)

The color function is a function which gives the volume fraction of the reference fluid in a grid
cell. The material properties in grid cells i can then be expressed as functions of this color
function. We use the expressions

ρi = Ciρ1 + (1− Ci)ρ0, (5)

µi =

(
Ci
µ1

+
1− Ci
µ0

)−1
. (6)

with ρ1 and µ1 the density and viscosity of the fluid indicated by M = 1 and ρ0 and µ0 the
fluid indicated by M = 0. For the viscosity we do not use an arithmetic mean but rather
the harmonic mean [14], which improves the accuracy of the velocities and stresses at a flat,
horizontal interface.

Prior to the actual advection step, the interface is reconstructed from the color function using
the PLIC method [47]. The color function is then advected geometrically by the velocity field.

We use most of the standard Gerris settings, except that we lower the tolerance of the pro-
jection steps from 1 · 10−3 to 1 · 10−6. After a convergence study, the grid spacing ∆s = ∆h is
set to H/64, and the time step is set so that the maximum value of

CFL =
|u|∆t
∆s

(7)

anywhere in the simulation is 0.8. However, there is an additional constraint that in mixed VOF
cells the maximum value should be 0.5. We do not filter the color function (i.e. averaging over
multiple cells), to keep the interface relatively sharp.
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We choose the one-fluid formulation for multiphase flow with the VOF interface advec-
tion method for its conservative properties, its simplicity, and its similarity to our low-fidelity
model. Alternative interface advection methods for the one-fluid formulation of multiphase
flow include the front tracking [46] and level-set methods [39], but these are not naturally mass
conservative.

2.2 Low-fidelity model

Our low-fidelity model is known as the 1D two-fluid model. It is obtained by considering
control volumes in a channel, separate for liquid and gas, as pictured in Figure 2. The limit δs→
0 is taken, while the control volumes fill the full channel height. Since we do not consider phase
change, the velocities are continuous at the interface. The stresses tangential to the interface, the
shear stresses, must be continuous, and since we assume hydrostatic balance (without surface
tension) the pressure should be continuous along the vertical direction, as well as the stresses
along the vertical direction.

s

δs

Hh

hint

nG nG

nL nL

nL

nG

VG

VL
u

g

φ

nL

nG t

Figure 2: Two small (δs � H) control volumes for two-phase pipe flow. At the top and bottom the
control volume is bounded by impenetrable no-slip boundaries. The interface separates the two control
volumes.

We obtain one equation for mass balance and one for momentum balance for each fluid. In
channel flow these take the following form:

∂

∂t
(ρLhint) +

∂

∂s
(ρLuLhint) = 0, (8a)

∂

∂t
(ρG(H − hint)) +

∂

∂s
(ρGuG(H − hint)) = 0, (8b)

∂

∂t
(ρLuLhint) +

∂

∂s

(
ρLu

2
Lhint

)
= − ∂pint

∂s
hint + LGL + FL

− ρLhintg sin (φ),

(8c)

∂

∂t
(ρGuG(H − hint)) +

∂

∂s

(
ρGu

2
G(H − hint)

)
= − ∂pint

∂s
(H − hint) + LGG + FG

− ρG(H − hint)g sin (φ),

(8d)
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with uL and uG the averaged velocities of the liquid and gas respectively, ρL and ρG likewise for
the densities, hint the interface height, pint the interfacial pressure, and φ the channel inclination.
Here the stresses are bundled into closure terms

FL = τL − τint, FG = τG + τint, (9)

and the level gradient terms represent

LGL = − ∂

∂s

[
1

2
ρLg cos (φ)h2

int

]
, LGG =

∂

∂s

[
1

2
ρGg cos (φ) (H − hint)

2

]
. (10)

The equations are of the same form as those for pipe flow in circular cross-sections, but with
different relations between the cross-sections, perimeters, and interface height (see e.g. [36]).

In this research the ‘Rosa’ code developed by Sanderse et al. [35, 36, 37] is employed for
solving the incompressible form of (8).

The code discretizes the equations using a finite volume method on a staggered grid. This
allows for a strong and straightforward coupling between pressure and velocity. Interpolation
is needed for the convective scheme: here we employ a central interpolation, which ensures
second order spatial accuracy.

After the system is discretized spatially, the time stepping is considered. We use the constraint-
consistent time integration framework for the incompressible two-fluid model presented in [36],
with the three-stage, third order strong-stability preserving Runge-Kutta method referenced in
[37], which follows Gottlieb et al. [17].

2.3 Closure terms

The liquid wall stress τL, gas wall stress τG, and interfacial stress τint, which appear in (9),
represent the stresses acting in the streamwise direction:

τ = (τ · n) · ŝ, (11)

with τ the stress tensor and ŝ the unit vector along the s-axis. Accounting for the no-slip
boundary conditions, assuming hydrostatic balance and horizontal length scales far larger than
the vertical length scale, they are related to the velocity profile via

τL = −µL
∂u

∂h

∣∣∣∣
h↓0

, τG = µG
∂u

∂h

∣∣∣∣
h↑H

, τint = −µG
∂u

∂h

∣∣∣∣
h↓hint

= µL
∂u

∂h

∣∣∣∣
h↑hint

, (12)

in which x ↑ y and x ↓ y are limits from below and from above respectively (see [10] for a
more detailed discussion).

These stresses are a priori unknown in the 1D two-fluid model, since in this model the ve-
locities are not resolved in the transverse direction, meaning that the stresses cannot be cal-
culated according to (12). Conventionally, steady state experiments are employed to correlate
the stresses to the averaged quantities through the steady state balance, essentially implying a
streamwise and temporally averaged description of the flow. This yields relations of the form1

τL, τG, τint = f(hint, uL, uG, ρL, ρG, µL, µG, H), (13)

1Expressions for the stresses based on the body forces as opposed to the averaged velocities do not close the
steady state equations [13], and cannot generalize to unsteady flow.
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in which all the variables on the right-hand side are known in the 1D two-fluid model.
Many experiments are needed to obtain good relations, and therefore it may be difficult to

find closure terms in the literature which generalize well to the case at hand. Furthermore,
when considering wavy flow, with this method of generation of closure terms only the averaged
(positive) effect of waves on the interfacial friction can be taken into account; local effects are
averaged out.

For the strongly simplified case of laminar, flat interface, fully developed, steady channel
flow, Ullmann et al. [45] have derived analytical solutions for the stresses of the form (13).
They are given by

τL = −1

2
fLρLuL|uL|F ∗L, τG = −1

2
fGρGuG|uG|F ∗G, τint = −1

2
fGρG (uG − uL) |uG|F ∗int,G,

(14)
with friction factors

fL =
3

2

16

ReL
, fG =

3

2

16

ReG
, (15)

depending on Reynolds numbers

ReL =
ρL|uL|DL

µL
, ReG =

ρG|uG|DG

µG
, (16)

based on hydraulic diameters

DL = 2hint, DG = 2(H − hint). (17)

F ∗L and F ∗G are the two-phase correction factors for the wall friction:

F ∗L =
1 + 1

2
uG
uL

[
µL
µG

uL
uG

H−hint
hint

− 1
]

1 + µL
µG

H−hint
hint

, F ∗G =
1 + 1

2
uL
uG

[
µG
µL

uG
uL

hint
H−hint

− 1
]

1 + µG
µL

hint
H−hint

, (18)

and F ∗int,G that for the interfacial friction:

F ∗int,G =
1

1 + µG
µL

hint
H−hint

. (19)

These closure terms form a reference, with which we benchmark our solvers for the case of
steady flow, and to which we compare the new neural network closure terms.

2.4 Closure term limitations

By using closure relations of the form (13), we introduce a fundamental limitation. The
averaged velocities cannot be translated back uniquely to velocity profiles, the slopes of which
determine the stresses; information is lost in the averaging process. The consequence of this
uniqueness problem is that for collections of very different velocity profiles, with the same
averaged velocities, the closure relations will predict the same stresses, while the actual stresses
can in reality be very different. In most of the literature [2, 5, 12, 15, 20, 40, 44] the analysis is
therefore limited to fully developed steady state flow, for which the stresses are uniquely related
to the averaged velocities.

There is a second limitation to the degree to which the low-fidelity model can be made to
reproduce results of the high-fidelity model in this framework. Closure terms of the form (13)
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are introduced as source terms in the low-fidelity model, and cannot be expected to resolve the
entire difference in dynamics introduced by the averaging process and the associated assump-
tions. The difference between the dynamics of the high- and low-fidelity models, in absence of
friction (equivalent to taking the homogeneous part of the equations for the two-fluid model at
zero inclination), can be illustrated by performing a linear stability analysis of the two models.
Results of this are shown in Figure 3, based on the parameters from Table 1.

Figure 3: Dispersion relations ω(k) with k = 2π/λ, for the 1D two-fluid model without friction terms
[22], and for inviscid 2D potential flow [29]. The parameters are given in Table 1, with the steady state
solution given in Table 2.

Table 1: Test case parameters.

Parameter Symbol Value Units

Background pressure gradient ∂p/∂s −1 kg m−2 s−2

Liquid density ρL 998 kg m−3

Gas density ρG 1.2 kg m−3

Channel height H 0.01 m
Initial interface height hint 0.3H m
Liquid viscosity µL 1.002 · 10−3 kg m−1 s−1

Gas viscosity µG 1.82 · 10−5 kg m−1 s−1

Acceleration of gravity g 9.81 m s−2

Pipe inclination φ 0 degrees

With the analytical solution given by [6] and [45], the corresponding averaged velocities and
stresses (for the steady state) can be calculated. These are given in Table 2.

It is observed that the dispersion relation of the 1D model only converges to the dispersion
relation of the 2D model at large wavelengths. The cross-sectional averaging of the equations,
and the associated assumption of hydrostatic balance, implicitly implies the long wavelength
assumption [30].
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Table 2: Test case steady state solution, for the parameters given in Table 1.

Parameter Symbol Value Units

Averaged liquid velocity uL 0.00818 m s−1

Averaged gas velocity uG 0.232 m s−1

Liquid wall stress τL −0.00646 kg m−1 s−2

Gas wall stress τG −0.00354 kg m−1 s−2

Interfacial stress τint −0.00346 kg m−1 s−2

Liquid Reynolds number ReL 48.9 -
Gas Reynolds number ReG 214 -
Liquid Froude number FrL 0.00114 -
Gas Froude number FrG 0.391 -

2.5 Stress extraction

By extracting stresses from high-fidelity simulations via (12), it is possible to consider local
and unsteady effects. We can take any position along the s-axis in the simulations and calculate
the stresses, and the corresponding averaged variables uL, uG, hint, at that point. We can cal-
culate additional, local, quantities, which are not defined in a streamwise averaged description
— the streamwise derivatives of the averaged variables — and relate these to the stresses as
well. Since we can extract the averaged variables and stresses at any point in time in the un-
steady simulations, the same holds for temporal derivatives. Because we use a neural network,
such new inputs can easily be added to the closure relations, without prior information on the
complex relation between them and the stresses.

The stresses are determined practically by fitting cubic splines to the velocity profiles of the
liquid and gas separately and taking their analytical derivatives. For the final determination of
the interfacial stress, the stresses at the interface as calculated from the liquid and gas profiles
are averaged. For more details, see [10].

3 NEURAL NETWORKS

A neural network is used to construct a relation of the form (13), using the high-fidelity
model data. For laminar steady state flow the analytical solution can be used to train the neural
network instead of the high-fidelity solution (since they are equal). This simple case, for which
conventional closure terms are exact, is used to tune the neural network hyper-parameters (in
subsection 3.1 and subsection 3.2). Afterwards (in subsection 3.3 and subsection 3.4), the tuned
neural network is applied to the more difficult case of unsteady, wavy flow.

3.1 Neural network settings

The network is a multilayer perceptron network (MLP), implemented in the MATLAB Deep
Learning Toolbox [41]. It is tuned mainly by comparison of training data error and validation
data error as measured by a mean squared error cost function

C =
1

N

N∑
i=1

(yi − ŷi)2, (20)

where yi is the data for a set of input variables i and ŷi is the model prediction for these inputs.
The final value of the cost function is the average of (20) over the three stresses τL, τG, τint.
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The result is a network with 4 hidden layers with 18 nodes each, each with a hyperbolic
tangent activation function, and no regularization term in the cost function (given the size of
our training data set). The network is trained using the Levenberg-Marquardt training algorithm
[18], an efficient algorithm for smaller networks. A small percentage of the training data (15%)
is taken apart and not used for the training; the optimization is stopped if the error on this
validation data does not decrease. The training inputs and outputs are mapped to the range
[−1, 1] (the same translation and multiplication is later applied to unseen data).

We tested the effect of random initialization via the Nguyen-Widrow algorithm [31] and
found that different random initializations yield very similar final values of the validation data
error. We also verified the convergence of the training and validation errors with increasing
amounts of data. These results are available in [10].

3.2 Performance of networks trained on steady state data

Training the network with steady state data is useful for the network tuning. However, Fig-
ure 4 shows that networks trained on steady state data have little predictive capacity for stresses
found in wavy unsteady simulations. On the horizontal axis stress values observed in high fi-
delity simulations are set out, and on the vertical axis the neural network predictions for the
same hint, uL, uG, ... are given. We show the squared correlation coefficient

R2 = 1−
∑N

i=1 (ŷi − yl,i)2∑N
i=1

(
ŷi − (1/N)

∑N
i=1 ŷi

)2 , (21)

with a range between 0 and 1. In this definition, ŷi is the model prediction. We construct a
linear fit of the model prediction ŷi as a function of the data and call it yl. The value yl,i is the
value of the linear fit at the data point yi, corresponding to prediction ŷi.

Figure 4: Regression plots for τL, τG, and τint with a neural network trained on steady state data as the
model, tested on the wavy unsteady high-fidelity simulation data.

The poor performance shown in Figure 4, particularly for the strongly oscillatory liquid
stress, could have been expected, as the analytical stresses with which we train the network are
derived for steady state flow, while the actual flow is wavy unsteady. Similar poor results are
observed when using the analytical stresses as the model directly. This motivates training on
unsteady data.
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3.3 Generation of wavy unsteady data

We consider 2D channel flow with periodic boundaries left and right under a constant body
force in the form of a background pressure gradient ∂p/∂s. No-slip boundary conditions are
applied at the top and bottom walls. A sine wave perturbation with wavelength λ and amplitude
∆ĥint is applied to the interface between liquid and gas.

We generate data by running the high fidelity code Gerris 60 times, with varying input pa-
rameters randomly selected from the ranges given in Table 3. The parameters are selected from
these ranges using Latin Hypercube Sampling [28], ensuring a space-filling sampling, without
repetition of parameter values. The material properties, channel height, and the channel in-
clination are kept at the values given in Table 1. This limits the required amount of (costly)
simulations, while allowing practical application to an unsteady flow in a specified pipe and
with specified fluids.

The wavelength of the perturbation is fixed at λ = L = 0.12 m, where L is the length of the
domain.

Table 3: The ranges of the parameters of the unsteady high fidelity simulations used as training data.

Initialization hint [H] ∂p/∂s [Pa/m] ∆ĥint [H] Number of simulations

zero wavy [0.05, 0.95] [0,−3] [0.00, 0.04] 30
developed wavy [0.05, 0.95] [0,−3] [0.00, 0.04] 30

The simulations are initialized from two different initial conditions:

• ‘zero wavy’: the velocities in the entire domain are zero,

• ‘developed wavy’: the velocities are initialized at their (flat interface) steady state values
(determined analytically [6]),

and then run from t = 0 to t = 10 seconds. With these initial conditions and the given parame-
ters, we get slowly traveling standing waves (see Figure 9), initially approximated by

∆hint(s, t) = 2∆ĥint cos(ks− δωt) cos(ω0t). (22)

These waves are formed as the superposition of two waves traveling in the opposite direction
with wave velocities

c1 =
ω0 + δω

k
, c2 =

−ω0 + δω

k
, (23)

with δω � ω0 due to the small Froude numbers (see Table 2). Later, nonlinear and damping
effects become important; in most cases the waves are largely damped out at t = 10.

Note that the parameter ranges in Table 3 are chosen such that the perturbations damp out in
time, avoiding a transition to (near-) slug flow and problems of ill-posedness in the 1D two-fluid
model (see e.g. [7]).

3.4 Neural network training

At each time step and at each grid point along s the quantities given in (13) are extracted
from the Gerris simulations, yielding many data points, which may not all provide distinct
information. The networks are therefore trained on small random subsets of the data.

Neural networks are trained on different portions of the data:
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• ‘zero wavy net’: networks trained on data with the ‘zero wavy’ initial condition.

• ‘developed wavy net’: networks trained on data with the ‘developed wavy’ initial condi-
tion.

• ‘zero + developed wavy net’: networks trained on a combination of the data with the ‘zero
wavy’ initial condition and with the ‘developed wavy’ initial condition.

Per item in the above list, we sample the data with replacement to get five different data sets,
each a small percentage of the total data set2. We train (randomly initialized) networks on each
of these subsets of the data. The final prediction for the stresses is obtained by averaging the
predictions of each of the five networks, for a given set of inputs. This averaging procedure is
called ‘bagging’ and has been shown to improve accuracy for learning algorithms sensitive to
changes in the training data [9]. This technique was also employed by Ma et al. [27].

An extra input is added compared to those given by equation (13): the interface slope
∂hint/∂s. The interfacial slope can easily be added to the neural network as an input. This input
does not fit in conventional closure terms which are calculated for the fully developed steady
state, since it is a locally defined variable3. If fully developed flow is assumed, or similarly the
effect of the wavy interface is averaged out over a length of pipe (as is done by e.g. Andritsos
and Hanratty [2]), the average interface slope will be zero (for a flow with a wavy perturbation)
and cannot be used to differentiate stresses at different phases of the wavy perturbation.

With this addition, and the given selection of variable parameters, the neural network takes
the form shown in Figure 5.

Input Layer

∂hint
∂s

uG

uL

hint

Hidden Layers

...

...

...

...

Output Layer

τint

τG

τL

Figure 5: A schematic of the neural network trained in subsection 3.4, and tested in section 4, with four
variable inputs, four hidden layers (with 18 nodes per layer), and three outputs.

2The percentages of the data sets taken per individual training are 5% for the ‘zero wavy net’ and ‘developed
wavy net’, and 10% for the ‘zero + developed wavy net’

3An exception is Brauner and Moalem Maron [8], who modified conventional closure terms (based on Taitel
and Dukler [40]) to add a dependency of the interfacial stress on the interfacial slope, by matching experimentally
observed and theoretically calculated stability boundaries (the latter of which depends on the closure terms). The
advantage of our method is that the interfacial slope is included in the correlation from the beginning, in the same
straightforward manner as the other inputs.
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Resulting regression plots for a ‘zero + developed wavy net’ are shown in Figure 6. The
correlation is satisfactory, considering the variation in flow patterns found in the data. The
influence of the extra input parameter ∂hint/∂s is illustrated by comparison of Figure 6 to Fig-
ure 7, where in the latter figure results are shown if this parameter is left out. Apparently the
interfacial slope is an important piece of information for the determination of the stresses. This
parameter allows the stress prediction to vary based on the wave’s amplitude and local phase,
and allows distinction between fully developed and unsteady flow, alleviating the uniqueness
issue discussed in subsection 2.4.

Figure 6: Regression plots for a neural network trained on the data combined for both initial conditions
of Table 3 (‘zero + developed wavy net’).

Figure 7: Regression plots for a neural network trained on the data combined for both initial conditions
of Table 3 (‘zero + developed wavy net’) excluding the interface slope ∂hint/∂s as an input.

4 RESULTS

The true test of the learned closure terms lies in their application to the low-fidelity model
Rosa, and comparison of the resulting predictions to high-fidelity model Gerris predictions
(presumed to be the truth). At each stage in the Runge-Kutta time integration scheme, the
variables as given in (5) are fed to the trained neural networks to arrive at values for the stresses
τL, τG, and τint. The current MATLAB shallow neural network implementation significantly
slows down the Rosa code simulations, compared to when the analytical closure relations (14)
are used.
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In order to be able to compare Gerris and Rosa results (with different grid resolutions) quan-
titatively, cubic splines of the variables of interest are constructed, along the horizontal axis.
The resulting s-dependent Gerris result at t = ti is yi = yi(s), with ŷi = ŷi(s) the correspond-
ing Rosa result. We compute characteristic values yc for each variable of interest, based on
analytical solutions for laminar single phase flow. Table 4 shows the following relative error
measure for the difference between Gerris and Rosa results, termed the ‘normalized averaged
error’ (NAE):

NAE =
1

NT

NT∑
i=1

√
1

L

∫ L

s=0

(
yi − ŷi
yc

)2

ds. (24)

The parameter NT is the total number of time steps and L is the length of the domain.
This error is shown for simulations initialized from different initial conditions, and using

different closure terms. Analytical closure terms (14) are tested alongside closure terms learned
from the wavy unsteady data of Table 3, using neural networks. Where the neural network
assisted error is smaller than the analytical closure error, the error value is highlighted green in
Table 4.

Table 4: Normalized averaged errors (24) between Gerris and Rosa simulations, for different variables
of interest. Results are given for Gerris and Rosa simulations starting from different initial conditions,
with the Rosa simulations using either analytical or neural network closure terms. Where the neural
network closure terms outperform the analytical closure terms (for the same initialization), the result is
highlighted in green.

Case Normalized Averaged Error [10−3]

Initialization Closure hint uL uG τL τG τint

zero wavy analytical 1.05 84.6 13.9 212 7.33 26.4
zero wavy zero wavy net 0.31 754 4.22 283 26.2 38.5
zero wavy zero + developed wavy net 0.52 193 15.2 233 10.8 28.5
developed wavy analytical 1.09 75.5 12.2 215 7.56 18.2
developed wavy developed wavy net 0.42 385 3.52 215 5.07 18.7
developed wavy zero + developed wavy net 0.51 112 12.6 173 8.20 26.6

Overall, with error measure (24), the results with neural network closure terms do not show
a significant improvement, except perhaps for the interface height. However, this error measure
is crude and does not show how well the wave dynamics are reproduced.

We therefore study the values of hint, uL, uG, τL, τG, τint as a function of time in Rosa
simulations for the test case given by Table 1, at a point at the center of the domain (s =
0.06 m) (see Figure 8). The scale and form of the oscillations are captured better when using
the neural network closure terms; the wave damping behavior corresponds better to the high-
fidelity simulations. The interface height in the entire domain is shown in Figure 9 for a number
of time instants, with the shown Rosa simulations employing the neural network closure terms.

The problem with the analytical closure terms is highlighted in Figure 10, in which the same
simulation results are shown for later time instants (with the analytical closure). The waves
acquire a sharp wavefront, in the wake of which small spurious waves are formed. These effects
are unphysical and are not observed in the Gerris simulations. The neural network closure terms
do not suffer from these spurious effects, probably due to their better damping behavior.
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(a) Analytical closure. (b) Zero + developed wavy net closure.

(c) Analytical closure. (d) Zero + developed wavy net closure.

(e) Analytical closure. (f) Zero + developed wavy net closure.

Figure 8: Evolution in time of the velocities, stresses and interface height at the center of the domain.
Initialized with the ‘developed wavy’ initial condition.

394



Jurriaan Buist, Benjamin Sanderse, Yous van Halder, Barry Koren, and GertJan van Heijst

Figure 9: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in at
the interface (H = 0.01 m). Rosa results with a ‘developed wavy’ initialization and ‘zero + developed
wavy net’ closure.

Figure 10: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
at the interface (H = 0.01 m). Rosa results with a ‘developed wavy’ initialization and analytical closure.
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Training the neural network on unsteady simulation data allows the closure terms to capture
the unsteady (damping) behavior, differentiating them from conventional steady state closure
terms (including those closure terms that consider the streamwise averaged effect of a wavy
interface). The addition of the extra closure input parameter ∂hint/∂s, allows the closure terms
to apply the learned differences between steady state and unsteady flow patterns. By providing
information on the wave amplitude and local phase, this input parameter enables distinction
between steady state flow and increasingly unsteady flow during application in Rosa. This
allows the closure terms to provide different results for different phases of the wave damping
process. Similarly, the closure terms can produce different stresses at different points along
the wave (beyond the distinction made possible by the small differences in interface height and
averaged velocities).

One of the problems still visible in Figure 8 is a discrepancy in the steady state gas velocity;
this can be solved by further grid refinement of the Gerris simulations.

The remaining main difference between Gerris simulations and Rosa simulations using neu-
ral network closure terms is a discrepancy in the wave speed. The wave speed of the Rosa
simulations is slightly higher than that of the Gerris simulations, so that the two slowly drift out
of phase. This difference in wave speed between Gerris and Rosa simulations can be explained
by the fact that a discrepancy between the models remains that cannot be solved via modeling
the closure terms (see subsection 2.4). The inviscid dispersion relations for the test case, plotted
in Figure 3, indeed show a higher wave speed for the 1D model than for the 2D model.

5 CONCLUSION & OUTLOOK

In this work, we have explored a new approach based on neural networks to solve the long-
standing closure problem for stratified multiphase flow in channels. We have trained neural
networks on high fidelity simulation data to learn closure terms for the wall and interfacial
stresses in a low fidelity model; the 1D two-fluid model for stratified channel flow. An important
novelty in our work is the inclusion of the streamwise derivative of the interface height as
a feature in the neural network. With this addition, the dynamic wave-damping behavior of
high-fidelity simulations was reproduced better than with the conventional (steady state) set of
closure terms available in literature [45].

With the proposed framework, closure terms can be constructed for specific flow regimes and
duct geometries, as long as high-fidelity simulations are available. The addition of extra inputs
to the closure relations, which is straightforward in this framework, alleviates their inherent
uniqueness problem. An example of possible extra inputs, besides the interface slope, are the
spatial and temporal derivatives of the velocities.

We note that, even with a highly accurate closure model for the stresses, the 1D model will
generally not exactly reproduce the 2D results, because the stresses are not the only source
of discrepancy between the 1D and 2D model. In principle, it might be possible to eliminate
these discrepancies by modeling the difference between high- and low-fidelity model predic-
tions directly, and adjusting the low-fidelity model accordingly. But this approach would be
less physical, so that it might not generalize as well.

In the future we aim to improve the framework through closer inspection of the structure
of the learned closure terms, and possibly through the inclusion of physical constraints in the
network structure. This will open the door to more challenging cases, such as the prediction of
slug flow.
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Abstract. Multi-level surrogate modelling offers the promise of fast approximation to expen-
sive simulation codes for the purposes of uncertainty quantification (UQ). The hope is that a
large number of cheap samples from the simulator on coarse grids, can be corrected by a few
expensive samples on a fine grid, to build an accurate surrogate. Of the various multi-level
approaches, a correction-based method using Gaussian process regression (Kriging) is studied
here. In particular, we examine the “additive bridge-function” method, for which – although
widely applied – results on theoretical convergence rates and optimal numbers of samples per
level are not present in the literature. In this paper, we perform a convergence analysis for
the expectation of a quantity of interest (QoI), utilizing convergence results for single-fidelity
Kriging, as well as existing multi-level analysis methodology previously applied in context of
polynomial-based methods. Rigorous convergence and computational cost analyses are pro-
vided. By minimizing the total cost, optimal numbers of sampling points on each grid level
are determined. Numerical tests demonstrate the theoretical results for: a 2d Genz function,
Darcy flow with random coefficients, and Reynold-Averaged Navier-Stokes (RANS) for the flow
over an airfoil with geometric uncertainties. The efficiency and accuracy of this method are
compared with standard- and multi-level Monte Carlo. All the test cases show that using our
multi-level kriging model significantly reduces cost.
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1 INTRODUCTION

With the rapid growth of computational capacity and improvements in CFD simulation tech-
niques over the past two decades, CFD-based aerodynamic analysis and design have become
standard in industry. However, in any analysis of real-world systems there exist uncertainties
and errors, e.g.: discretization error, geometry uncertainty and turbulence model-form uncer-
tainty, which can cause the prediction of performance to be poor. Thus, it is necessary to
consider the effect of uncertainties on simulation predictions, i.e. which leads inexorably to
solving stochastic PDEs. Statistics of the solutions, such as the expectation of a Quantity-of-
Interest (QoI), E[y], can be straightforwardly estimated with Monte-Carlo or Taylor expansions,
however, due to the high computational cost of individual CFD simulations, the lack of reliable
derivatives, and strong nonlinearities, these methods are often impractical.

Surrogate-based methods on the other hand, can use a modest number of simulations to pro-
vide a fast approximation to E[y], provided the stochastic dimension is moderate. Some com-
mon surrogates in the literature use polynomial-chaos expansions (PCE) for interpolation or re-
gression (often with sparsity), radial basis-function (RBF) interpolation, and Kriging. Of these,
Kriging is notable for its high flexibility, thanks to its Bayesian roots – and has performed well
in practical applications. Multi-fidelity and multi-level variants have been developed, which use
additional low-cost simulations to assist in the estimation of E[y]. In multi-fidelity methods the
low-cost simulation uses a simplified model of the problem (e.g. Euler versus Navier-Stokes);
in multi-level the low-cost simulation is the same continuous model as the high-cost, but dis-
cretized at a coarser grid resolution. In the former case the correlation between high- and low-
fidelities is responsible for the cost reduction (if any); in the multi-level case we can use stronger
relationships given by the rate of (grid-)convergence of the PDE solver. Although multi-fidelity
and multi-level Kriging methods are widely applied in engineering, they are known to be unre-
liable, and do not consistently reduce costs in practice. This is at least partially a result of the
lack of the convergence analysis for these methods – and as a consequence, the lack of rules for
optimal sample selection.

There has been enormous work on multi-fidelity or multi-level surrogate modelling. Haftka
et al. [1] [2] developed a variable-fidelity kriging model, which uses a multiplicative bridge
function to correct the low-fidelity model to approximate the high-fidelity function. Gano et
al. [3] developed a hybrid bridge function method, which uses a kriging model to scale the
low-fidelity model. Han et. al. [4] improved variable-fidelity surrogate modeling via gradient-
enhanced kriging and a generalized hybrid bridge function, to realize a more accurate and robust
model. Cokriging was originally proposed in geostatistics community by Journel et al. [5]
and then extended to deterministic computer experiments by Kennedy and O’Hagan, called
KOH autoregressive model [6]. Han et. al. [7] proposed an improved version of cokriging,
which can be built in one step, and a hierarchical kriging model [8], which avoids the cross-
variance between low- and high-fidelity model thus is more robust. More recently, the multi-
fidelity/level models are introduced into the field of uncertainty quantification. Palar et al. [9]
developed a multi-fidelity non-intrusive polynomial chaos method based on regression, which
builds two PCEs for both the low-fidelity and correction functions, and then sum it up to provide
an estimation for the high-fidelity function. This method has been applied for flow around a
NACA0012 airfoil and a Common Research Model wing with flow condition uncertainties, e.g.
Mach number, angle of attack. Parussini et al. [10] proposed a recursive multi-fidelity cokriging
model and tested it by stochastic Burgers equation and the stochastic Oberbeck-Boussinesq
equations. Palar et al. [11] investigated the capability of a Hierarchical Kriging model for
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uncertainty analysis and further improve it by combining with PCE method. The application to
RAE2822 airfoil and CRM wing with flow condition uncertainty shows its high accuracy and
robust performance. Narayan et al. [12] proposed a multi-fidelity stochastic collocation method,
which leverage inexpensive low-fidelity models to generate surrogates for an expensive high-
fidelity model using a parametric collocation (nonintrusive) approach. Zhu et al. [13] present
a bi-fidelity algorithm for approximating the statistical moments of stochastic problems and
provide a basic error analysis.

In this paper, We choose multi-level rather than multi-fidelity [14], in order to make use
of stronger convergence results. The popularity of multi-level methods has increased dra-
matically in recent years, thanks to the success of Multi-Level Monte-Carlo (MLMC) meth-
ods [15, 16, 17]. By correctly choosing the number of Monte-Carlo samples per level, the cost
of solving the stochastic PDE can be reduced to a constant multiple of the cost of a single deter-
ministic solution, in the best case. Similar ideas were used by Teckentrup et al. [18] to devise
a multi-level stochastic collocation method, dramatically improving upon MLMC for moderate
stochastic dimension. This paper addresses the convergence of a particular multi-level method
known as Additive Bridge-Function-based multi-level Kriging [19, 20, 21] for estimation of
E[y]. We use the Kriging mean as response surface only, the Kriging variance is not used in our
analysis. Our work follows closely the outline of [18], but considering Kriging models rather
than polynomial models. We employ error bounds derived for RBF interpolation [22] to esti-
mate the interpolation error in the Kriging mean. Finally we provide expressions for optimal
number of samples per level to obtain minimum computational cost.

The structure of this paper is as following: in Section 2, the additive-bridge function multi-
level Kriging model is described, and in Section 3 it’s convergence properties are analysed and
computational cost estimates are provided. Section 4 briefly introduces the numerical test cases
used in this paper, and numerical results are presented in Section 5, and compared to standard
MC and MLMC.

2 METHODOLOGY

A single-fidelity ordinary kriging model is presented in Section 2.1, see also e.g. [23]; and
then we describe how to construct a multi-level Gaussian process model from multiple single-
level models in Section 2.2.

2.1 Single-fidelity ordinary Kriging

Consider a QoI y ∈ R, which (possibly via a PDE) is a function of (deterministic) variables
ξ ∈ RM . Ordinary Kriging represents y(ξ) by a Gaussian process Y of the form:

Y (ξ) = ρ+ Z(ξ), (1)

where ρ is an unknown constant and Z(ξ) is a stationary Gaussian random process with zero-
mean and covariance

Cov[Z(ξ), Z(ξ′)] = σ2R(|ξ − ξ′|). (2)

HereR : R+ → R is a positive-definite covariance kernel, so that the covariance of two points of
the process only depends on their Euclidean distance in ξ-space, and σ is the standard-deviation.

Given observations yΞ ∈ RN at a number of samples Ξ = (ξ1, . . . , ξN), we can construct
the conditional process Y | yΞ. Thanks to Gaussian assumptions, the mean of this process at an
unoberserved location ξ can be formulated as a linear combination of the observed responses:

ŷ = λ(ξ)TyΞ. (3)
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In particular by minimizing mean-squared error subject to unbiasedness constraints, the predic-
tor at any unsampled site is given by

ŷ = ρ+ rTR−1(yΞ − ρF ), (4)

ρ = (F TR−1F )−1(F TR−1yΞ). (5)

Here F := 1 ∈ RN , the covariance matrixR := R(Ξ,Ξ) ∈ RN×N , and finally r := R(Ξ, ξ) ∈
RN is the vector consisting of the covariance of the unobserved sample with respect to all
observed sample sites. Using this cheap surrogate, Eξ[y] can be evaluated with e.g. Monte-
Carlo to any desired accuracy.

2.2 Additive bridge function based multi-level kriging model (AMLK)

If y results from the solution of a PDE, then by varying grid resolution we can have a se-
quence of numerical approximations to y, denoted y0, . . . , yL, of increasing accuracy and in-
creasing computational cost. The heart of the additive bridge function based multi-level Kriging
model (AMLK) [19, 20, 21], is then to first write yL as the telescopic sum

yL =
L∑
l=0

δl, δ0 := y0, δl := yl − yl−1, l ∈ {1, . . . , L}, (6)

similarly to the MLMC method; and then approximate each δl with a single-level Kriging sur-
rogate δ̂l. An estimate of the expectation of the QoI can then be written:

Eξ[y] ' Eξ[ŷL] := Eξ

[
L∑
l=0

δ̂l

]
=

L∑
l=0

Eξ[δ̂l], (7)

where the expectations are then evaluated on the surrogate, independently of each other. This
decomposition is worthwhile because on the finest level L, the cost of the simulation is high, but
the absolute magnitude of δL is small, so surrogate modelling errors (δL− δ̂L) contribute little to
the total error in Eξ[y], and therefore sufficient accuracy can be achieved with few samples. In
contrast, on the coarsest level many samples are needed to reduce the surrogate modelling error
there, but these samples are very cheap to obtain. Potentially then, the total cost of estimating
E[y] at a given accuracy can be reduced compared to the single-level method. Whether or not it
is, in fact, reduced is investigated in the next section.

3 CONVERGENCE ANALYSIS OF AMLK

The error of using any surrogate model to estimate E[y] can be bounded by the discretization
error and the surrogate interpolation error separately:

|E[y − ŷL]| ≤ |E[y − yL]|︸ ︷︷ ︸
ε∆x

+ |E[yL − ŷL]|︸ ︷︷ ︸
εh

, (8)

where the former is a function of grid resolution ∆x > 0, and the latter depends on some
sampling parameter denoted h to be specified later.

In the multi-level case, assume that the grid resolution on level l is ∆xl, and further that there
exist constants α,Cd > 0 (independent of ∆x), such that for all fidelity levels l ∈ {0, . . . , L}:

ε∆x := |E[y − yl]| ≤ Cd∆x
α
l , (9)
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i.e. the discrete approximation of E[y] converges at a fixed rate, where α = 2 implies a 2nd-
order accurate discretization, etc.

Consider now the interpolation error εh. By analogy with radial-basis function (RBF) in-
terpolation [22], for a single-fidelity Gaussian process, the point-wise interpolation error in the
process-mean can be expressed in terms of a fill distance h, defined as

h = hΞ := sup
ξ∈Ω

{
min
ξi∈Ξ
‖ξ − ξi‖

}
.

Here Ω is the interpolation domain, and Ξ is the sample sites. Then h is the radius of the largest
(hyper-)sphere, whose center is contained in Ω, and which contains none of the samples. Given
approximation of an infinitely differentiable function, the convergence order is dictated by the
continuity of the covariance kernel (or radial basis function in RBF interpolation). For example,
when the so-called thin-plate spline R(r) := (−1)k+1r2k log r, with k ∈ N, r = |ξ − ξ′| ∈ R,
is used, the `∞-norm of the interpolation error will satisfy ε ∼ O(hk+1) [22]. For infinitely
differentiable covariance kernels, convergence in this norm will be spectral. In this article, all
derivations and numerical tests are based on the thin-plate spline with k = 1, though the results
can be extended to other correlation functions straightforwardly.

The interpolation error of an additive bridge based multi-level model can therefore be written

εh = |E[yL − ŷL]| ≤

∣∣∣∣∣E
[

L∑
l=0

δl −
L∑
l=0

δ̂l

]∣∣∣∣∣ (10)

≤
L∑
l=0

|E[δl − δ̂l]|

≤
L∑
l=0

CI∆x
µ
l h

β
l .

where hl is the fill distance on level l, and β is a constant depending on the correlation function
used in the Gaussian process (and the smoothness of the underlying function). Here, hβl comes
from the approximation properties of the surrogate, and ∆xµl describes the magnitude of the
interpolation error, which is proportional to size of the function being interpolated.

To limit the total error |E[y − ŷL]| to less than ε, we bound both the discretization error
and interpolation error by ε/2. First, we choose the finest level L large enough to satisfy
ε∆x = Cd∆x

α
L ≤ ε/2. For simplicity, we assume that ∆xl = η−l∆x0, i.e. that grid resolu-

tion is increased by a constant factor η on each level. By arbitrarily normalizing ∆x0 to 1, the
discretization error constraint becomes

Cdη
−Lα ≤ ε/2 =⇒ L =

⌈
1

α
logη(

2Cd
ε

)

⌉
. (11)

Similarly, to limit the interpolation error to ε/2, the infill distance of the surrogate must satisfy

hβl ≤
Cd∆x

α
L∆x−µl

(1 + L)CI
=

Cdη
lµ−Lα

(1 + L)CI
. (12)

Given which, the total error is bounded as

|E[y − ŷL]| ≤ 2Cd∆x
α
L. (13)
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3.1 Cost analysis for AMLK

Having found bounds on hl in (12), it remains to specify the optimal number of samples per
level Nl. Let the cost for a single sample of yl be Tl. Then the total computational cost is

T =
L∑
l=0

NlTl. (14)

To choose Nl optimally, we minimize T subject to the constraint on error. Treating Nl as a
continuous variables, we solve the optimization problem:

min
Nl∈R+

T, subject to
L∑
l=0

CI∆x
µ
l h

β
l = ε/2. (15)

Further assume that there exist constants Cc, γ ∈ R (independent of ∆xl), such that the cost of
a evaluation is

Tl = Cc∆x
γ
l , (16)

which is approximately true for typical PDEs solvers. Finally, as it is usually difficult to estimate
h (especially in high-dimensional spaces), we choose to treat the estimated error as a function
of N (to which we have direct access). So, for a specific sampling method, we assume there
exist constants Cs and ν, such that

hl = CsN
ν
l . (17)

Note that ν will vary with the stochastic dimension M , and depends also on the sampling
method. For tensor-product samples ν = − 1

M
can be seen immediately, i.e. the curse of dimen-

sionality. In terms of N, the convergence rate of the surrogate model method deteriorates with
an increasing of number of input variables. In terms of h, it is dimension-independent.

With assumptions (16) and (17), and formulating the constrained minimization problem (15)
in terms of a Lagrange multiplier λ, we obtain the equivalent problem, find Nl, λ such that:

∂f

∂Nl

= 0,
∂f

∂λ
= 0,

where

f(Nl, λ) =
L∑
l=0

NlCc∆x
γ
l + λ

(
L∑
l=0

CI∆x
µ
l (CsN

ν
l )β − ε/2

)
. (18)

Explicitly

∂f

∂Nl

= Cc∆x
γ
l + λCI∆x

µ
l C

β
s νβN

νβ−1
l = 0, (19)

∂f

∂λ
=

L∑
l=0

CI∆x
µ
l (CsN

ν
l )β − ε/2 = 0, (20)

whereupon solving for Nl gives

Nl =

⌈(
ε

2CIC
β
s S(L)

) 1
νβ

(∆xl)
γ−µ
νβ−1

⌉
, S(L) =

L∑
l=0

∆x
µ−γνβ
1−νβ
l . (21)
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With Nl determined, we now examine the complexity of the multilevel approximation:

Tε =
L∑
l=0

NlTl (22)

≤
L∑
l=0

[(
ε

2CIC
β
s S(L)

) 1
νβ

(∆xl)
µ−γ
1−νβ + 1

]
Cc∆x

γ
l

=
L∑
l=0

(
ε

2CIC
β
s S(L)

) 1
νβ

(∆xl)
µ−γ
1−νβCc∆x

γ
l +

L∑
l=0

Cc∆x
γ
l

=
L∑
l=0

(
ε

2CIC
β
s S(L)

) 1
νβ

Cc(∆xl)
µ−γνβ
1−νβ +

L∑
l=0

Cc∆x
γ
l

=

(
ε

2CIC
β
s

) 1
νβ

CcS(L)1− 1
νβ +

L∑
l=0

Cc∆x
γ
l

The cost analysis of the AMLK model follows that of multi-level stochastic collocation method
in [18]. First, let’s bound the second term on the right side. Recall (11), bounding the finest
level L by 1

α
logη(

2Cd
ε

) + 1, where η is the scaling parameter of ∆xl (∆xl = η−l), we have

L∑
l=0

Cc∆x
γ
l '

L∑
l=0

Ccη
−lγ (23)

= Cc
η−γL − 1

η−γ − 1

= Cc
η−γ(L−1) − ηγ

1− ηγ

≤ Ccη
−γ( 1

α
logη(

2Cd
ε

))

1− ηγ

=
Cc(2Cd)

−γ
α

1− ηγ
(ε)

γ
α .

Then, we provide a bound on the geommetric sum S(L). When µ 6= γνβ, we have

S(L) =
L∑
l=0

∆x
µ−γνβ
1−νβ
l '

L∑
l=0

η−l
µ−γνβ
1−νβ (24)

=
η−L

µ−γνβ
1−νβ − 1

η−
µ−γνβ
1−νβ − 1

=
η−(L−1)µ−γνβ

1−νβ − η
µ−γνβ
1−νβ

1− η
µ−γνβ
1−νβ

=
η−

µ−γνβ
1−νβ ( 1

α
logη(

2Cd
ε

)) − η
µ−γνβ
1−νβ

1− η
µ−γνβ
1−νβ

=
(2Cd)

− µ−γνβ
α(1−νβ)

1− η
µ−γνβ
1−νβ

(ε)
µ−γνβ
α(1−νβ) − η

µ−γνβ
1−νβ

1− η
µ−γνβ
1−νβ

;
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when µ = γνβ, we have

S(L) = L+ 1 =
1

α
logη(

2Cd
ε

) + 2. (25)

Finally, when µ 6= γνβ, the computation cost versus ε can be bounded by

Tε ≤
(

ε

2CIC
β
s

) 1
νβ

CcS(L)1− 1
νβ +

L∑
l=0

Cc∆x
γ
l (26)

≤ ε
1
νβ ε

µ−γνβ
α(1−νβ)

(1− 1
νβ

) + ε
1
νβ + ε

γ
α

= ε
1
νβ

+ γνβ−µ
ανβ + ε

1
νβ + ε

γ
α ;

when µ = γνβ,

Tε ≤ ε
1
νβ | logη(ε)|

(1− 1
νβ

) + ε
1
νβ + ε

γ
α . (27)

Consequently, we have

Tε ≤


ε

1
νβ if µ > γνβ,

ε
1
νβ | logη(ε)|

(1− 1
νβ

) if µ = γνβ,

ε
1
νβ

+ γνβ−µ
ανβ if µ < γνβ.

(28)

Usually, in terms of ∆x, the size of the difference between two consecutive level has the same
convergence rate with the discretization error, thus µ = α, which is also showed in the following
numerical test cases. When µ < γνβ, we have

Tε ≤ ε
1
νβ

+ γνβ−µ
ανβ (29)

= ε
1
νβ

(1− µ
α

)+ γ
α

≤ ε
γ
α .

3.2 Parameter estimation and practical details

A practical algorithm is given below. In the first step, a grid convergence study is needed to
provide an estimation for discretization error and determine the finest level L. The second step
is to estimate the constants assumed in the model of interpolation error.

Recalling (10), the interpolation error of AMLK model is assumed to be CI∆x
µ
l h

β
l . Again,

hβl represents the convergence properties of the surrogate model, and ∆xµl comes from the logic
that the magnitude of the interpolation error should be proportional to the size of the function
being interpolated, which is the difference between two consecutive levels. Here, β and µ are
both constants - which are assumed to be independent of level, and can be estimated separately.
The assumption of interpolatin error should ideally be numerically verified.

As already mentioned, it is difficult to estimate h in high-dimensional spaces, so we assume
that hl = CsN

ν
l , so that

CI∆x
µ
l h

β
l = CI∆x

µ
l (CsN

ν
l )β = CIC

β
s ∆xµl N

νβ
l ,

and instead of estimating β directly, we treat the error as a function of N and estimate νβ
together, as well as estimating the combined constant CICβ

s together. Remember that ν varies
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with the stochastic dimension M and also depends on the sampling method, so must be re-
estimated for each new problem.

To estimate these parameters, firstly, by quantifying the interpolation error for the cheapest
three levels using standard kriging model with a fixed, small number of sample points, an es-
timation for µ can be obtained. At the same time, the computational cost per sample on each
level is collected, which gives us an estimation of γ. Then, using the coarsest level only, νβ
and CICβ

s can be estimated by varying the number of sampling points. With these estimated
constants, the optimal number on each level is determined. Through the algorithm below, UQ
with the multi-level kriging model can be conducted.

Algorithm: AMLK to estimate E[y] with error < ε

Determine the finest level L from (11) interpolation error is ε/2.
Use the cheapest three levels l = 0, 1, 2 to estimate CICβ

s and γ, νβ, µ.
for l = 0 : L do

Calculate the optimal number of samples Nl using (21);
Generate Nl sample points Ξl, with e.g. Latin hypercube sampling;
Evaluate yl(Ξl) and yl−1(Ξl) with the PDE solver (note y−1 ≡ 0);
Evaluate δl(Ξl) := yl(Ξl)− yl−1(Ξl);
Construct a kriging model for δl;
Evaluate E[δ̂l] on surrogate model response surface using e.g. Monte Carlo;

end

Evaluate result E[ŷL] =
L∑
l=0

E[δ̂l] ;

4 TEST CASES

4.1 Oscillatory Genz function (M=2)

To quickly verify basic properties of AMLK, we consider an almost-trivial analytic test-case
based on the osciallatory Genz function in 2d [24]. The basic function is

y(ξ) := cos (π + 5ξ1 + 5ξ2) , (30)

where ξ1, ξ2 ∼ U(0, 1) i.i.d. To simulate multi-level analyses we introduce an artificial mesh-
dependent term:

yl(ξ) := y(ξ) + sin(|ξ|)∆x2
l , (31)

where ∆xl = 2−l∆x0, ∆x0 = 1
2
, and L = 4. Note that δl(ξ) has the same form on every level,

with only a scale difference. Two hundred random uncertainty samples are used to estimate the
discretization error, shown in Figure 1a, which shows quadratic convergence as we expected,
ε∆x = |E[y − yl]| ≤ Cd∆x

α
l ∼ ∆x2

l . To make a comparison with MLMC method, the variance
for the difference function is also estimated, and the rate of convergence is 4, double the rate of
convergence of the expectation, as expected in this case, shown in Figure 1b.
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(b) Variance of difference function

Figure 1: Performance plots of multi-level analyses for Genz case

4.2 Darcy flow with random coefficients (M=21)

The first PDE-based test-case is Darcy on D = (0, 1)d, d = 2, with both Dirichlet and
Neumann boundary conditions [17]:

−∇ · (k(x, ω)∇p(x, ω)) = 1, x ∈ D, (32)

p|x1=0 = 1, p|x1=1 = 0, (33)
∂p

∂n
|x2=0 = 0,

∂p

∂n
|x2=1 = 0, (34)

where k is a scalar-valued random field with

log k(x, ω) = Z(x, ω) = E[Z(x, ·)] +
∞∑
n=0

√
θnξn(ω)bn(x), (35)

where the Karhunen-Loeve expansion orginates from the covariance function

C(x,y) := σ2 exp

(
−‖x− y‖p

λ

)
, λ = 0.3, σ2 = 1, p = 1. (36)

where {θn}n∈N and {bn}n∈N are the eigenvalues and normalised eigenvectors of the covariance
matrix. The uncertain variables {ξn}n∈N are a sequence of independent, uniform random vari-
ables on [−1, 1]. In this problem, We use 21 terms in the K-L expansion (M = 21), which
includes 84% of the total spectral energy.

This PDE is solved with finite-volumes on a uniform Cartesian grid of m×m cells. Let ki,j
and pi,j denote the values of k, and p at a cell centre xi,j, (i, j = 1, . . . ,m). The discretization
used is

−k̄i,j− 1
2
pi,j−1 − k̄i− 1

2
,jpi−1,j − k̄i+ 1

2
,jpi+1,j − k̄i,j+ 1

2
pi,j+1 + 4pi,j k̂i,j = 0 (37)

where k̂i,j = (k̄i,j− 1
2

+ k̄i− 1
2
,j + k̄i+ 1

2
,j + k̄i,j+ 1

2
)/4. Here k̄i,j+ 1

2
is the value at the mid-point

of an edge, which is approximated by the arithmetic average of ki,j+1 and ki,j . At Dirichlet
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boundaries, the derivative is approximated by a one-sided difference. At Neumann boundaries,
the derivative is known explicitly, and k is approximated by ki,j . The quantity of interest is

y := −
1∫

0

k
∂p

∂x1

∣∣∣∣
x1=1

dx2 '
m∑
j=1

k
∂p

∂x1

∣∣∣∣
m+ 1

2
,j

, (38)

given all of which the discretization error is O(∆x2).
We choose a sequence of spatial grids with the cell size ∆xl = 2−l∆x0 and ∆x0 = 1

8
.

Six levels are used, i.e. L = 5. The computational cost per sample is measured to be Cl =
Cc∆x

γ
l ∝ ∆x−2

l , thanks to an efficient multi-grid solver. Taking the grid with ∆x = 1/512
as a reference, the discretization error is estimated using 200 samples per level and shown in
Figure 2a. Clean 2nd-order convergence is observed, so α = 2 in this case. The variance for
the difference function is estimated as an 4th-order convergence rate in terms of ∆x, shown in
Figure 2b.

(a) Discretization error of multi-level analyses (b) Variance of difference function

Figure 2: Performance plots of multi-level analyses for Darcy flow case

4.3 RANS flow over an airfoil with geometric uncertainties (M=10)

Finally, a more challenging test-case is considered: Reynolds Averaged Naiver Stokes (RANS)
for the RAE2822 airfoil at M∞ = 0.734, α = 2.79◦, and Re = 6.5 × 106. Manufacturing
variability of the aerofoil surface of approximately 0.2% of the chord length is modeled by a
Gaussian random fields with the correlation

C(s1, s2) := σ2 exp

(
−‖s1 − s2‖2

λ

)
, λ = 0.1, (39)

where s1 and s1 are two surface nodes, distance is the standard Euclidean norm, and the standard
deviation σ is assumed to be

σ =


(10− 10x)0.7 × 0.001 if 0.9 ≤ x ≤ 1.0,

0.001 if 0.1 ≤ x ≤ 0.9,

(10x)0.7 × 0.001 if 0 ≤ x ≤ 0.1.

(40)
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Similar to Darcy, the Gaussian-process is parametrized by independent standard Gaussian ran-
dom variables using Karhunen-Loeve:

G(s, ω) =
∞∑
k=0

√
θkξk(ω)bk(s). (41)

The eigenvalues are shown in Figure 3, and the first 10 K-L modes are used to parametrize the
perturbation. Figure 4 shows three realizations of the perturbation and corresponding pressure
distribution of the perturbed airfoils. The CFD solver used is finite-volume and nominally

Figure 3: Eigenvalues of K-L expansion for geometric uncertainty

(a) Three realizations of K-L expansion (b) Pressure distributions

Figure 4: Visualization of the geometric uncertainty in the airfoil surface and corresponding
pressure distribution of perturbed airfoils

2nd-order accurate, though this case exhibits a shock reducing the `2-norm of the solution to
1st-order. The QoI used in this case the lift coefficient, and is observed to converge at slightly
higher-order in practice.

In this final case, we define 5 grid levels, the parameters of which are given in Table 1. The
parameter of the reference computational grid is also shown in the last line. Discretization error
is estimated using 100 random samples, shown in Figure 6a. Note that in the Darcy case the
discretization error was estimated with respect to grid-cell size, but number of cells is used in
this case for simplicity. We have the discretization error |E[y − yl]| ≤ CdK

α ∼ K−1.35. The
variance for the difference function decreases at the rate of K−3.5 in terms of K, shown in
Figure 6b.
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Table 1: Grid parameters for RANS flow case

Level # cells I-cells J-cells # surface cells
0 18432 192 96 128
1 41472 288 144 192
2 73728 384 192 256
3 112896 504 224 336
4 165888 576 288 384

Ref 209952 648 324 432

Figure 5: Multi-level computational grids for RANS flow case

(a) Discretization error of multi-level analyses (b) Variance of difference function

Figure 6: Performance plots of multi-level analyses for RANS flow case
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5 RESULTS

5.1 2D ”Oscillatory” Genz funcion

First, the unknown constants in the model of interpolation error are estimated. Halton sample
sequence is used to generate uniformly-distributed random points in the parameter space. The
estimated interpolation error is shown in Figure 7. The left figure shows us that the magnitude
of the error decreases at a second order (µ = 2), and in the right figure, it can be seen that the
interpolation error from different levels collapses well to a single line when scaled by ∆x2. The
parameters estimated on the basis of these plots are given in Table 2. These figures confirms
our assumptions in the convergence properties of interpolation error. Following Algorithm 1:
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Figure 7: Approximation for interpolation error of AMLK for Genz case

Table 2: Estimated parameters for Genz case

parameters µ νβ CIC
β
s

Estimated value 2.0 -1.66 11.261

given accuracy requirement ε, L is determined by limiting the discretization error to ε/2. The
computational cost per sample is assumed as Tl = Cc∆x

γ
l ∼ ∆x−1

l . Then the optimal number
of sampling points on each level are determined using (21), the result of which is shown in
Figure 8a. For comparison, Monte-Carlo (MC) and Multilevel Monte-Carlo (MLMC) methods
are also applied to this case. For MC the number of points required for a certain accuracy is
simply N = σ2/ε2. For MLMC, the optimal points per level [17] is given by

Nl = ε−2(
L∑
l=0

√
VlCl)

√
Vl
Cl
,

and a comparison of total cost against MLMC and MC for this problem is shown in Figure 8b. In
this paper, standardized costs are presented always, which is scaled by the cost oper sample on
the coarsest level. From literature [17], the total computational costs of MC and MLMC should
be proportional to ε−2+γ/α and ε−2, if the variance V [yl − yl−1] decays faster than the increase
of Tl. We observe that the computational costs of MC and MLMC method grow along with
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the improvement of accuracy at the rate of ε−2.5 and ε−2, respectively, which agrees with the
theoretical result. In this case, we find µ is larger than γνβ, so that the limit of the convergence
of cost versus ε should be ε−1/1.66, according to (28). In Figure 8b, the cost of AMLK model
increases as ε−1/1.1, which is much slower than other methods, but faster than the theoretical
value. The reason is that the lower-order error terms in (26) is also influential. With the increase
of the required accuracy, more benefit can be gained by AMLK model.

(a) Optimal No. of points of AMLK (b) Computational cost versus error

Figure 8: Performance plots of AMLK for Genz case

5.2 Darcy flow with random coefficients

Halton sequences are also used in this case. The estimated interpolation error is shown in
Figure 9. These results confirms our assumptions again, but with different estimated parameters,
shown in Table 3. Based on the estimated parameters, the optimal number of sampling points
on each level are shown in Figure 10a, and the total cost are shown in Figure 10b, as well as that
of MLMC and MC. The results show that the total costs of MC and MLMC achieve an error of
O(ε) is ε−3 and ε−2. Same as the first case, Figure 10b also indicates the cost of AMLK method
grows as ε−1/0.61, which is a bit faster than theoretical value ε−1/0.75, but is slower than MC and
MLMC methods.

MC is seen to be completely impractical for very low ε but highly comparative for high er-
rors (especially given its simplicity and use of a single grid). Despite MLMC achieving optimal
rates, at low ε it is soundly beaten by AMLK. This result is not surprising, as similar perfor-
mance was observed for polynomial surrogates in [18]. It does however rely on the regularity of
the underlying response y(ξ), which the MC-based techniques do not. It is therefore instructive
to proceed to a case where regularity is not guaranteed, see next section.

Table 3: Estimated parameters for the Darcy case

Parameter µ νβ CIC
β
s

Estimated value 2.0 -0.75 8.3
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Figure 9: Approximation for interpolation error of AMLK for Darcy flow case
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Figure 10: Performance plots of AMLK for Darcy flow case

5.3 RANS flow over an airfoil with geometry uncertainties

In this final case, the interpolation error of the AMLK is assumed to be CIKµhβl , again
independent of level. Similarly to the first case, actually we estimate

CIM
µ
l h

β
l = CIK

µ
l (CsN

ν
l )β = CIC

β
sK

µ
l N

νβ
l .

The normally-distributed random samples are obtained by transferring the Halton samples based
on the probability integral property. The estimated interpolation error with respect to the number
of grid-cells and sampling points are shown in Figure 11 and the estimated parameters is present
in Table 4. Once more, the convergence of the interpolation is seen to be independent of the
grid level (under appropriate scaling), justifying the choice of level-independent parameters in
(10). The computational cost per sample on each level is estimated, shown in Figure 12, which
shows that Tl = CcK

γ
l ∼ K0.93.

From Figure 6a, we found that the discretization error on finest level is 0.00132, which
indicates that the grid is sufficiently accurate to resolve the lift coefficient to around 0.1 count,
which already meets the engineering requirement. However, the observed interpolation errors,
whose magnitude ranges from 10−4− 10−5, are much smaller than the discretization error. It is
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Table 4: Estimated parameters for RANS flow case

parameters µ νβ CIC
β
s

Estimated value −1.35 −1.12 2.639× 105

(a) Interpolation error versus grid size (b) Interpolation error versus No. of samples

Figure 11: Approximation for interpolation error of AMLK for RANS flow case

Figure 12: Computational time versus number of grid cells for RANS flow case

impractical to bound the discretization error and interpolation error equally. Therefore, in this
case, we fix the discretization error on finest level - 5 levels involved, and estimate the optimal
computational cost required to achieving a certain interpolation accuracy.

Based on the estimated parameters, the optimal number of sampling points on each level are
shown in Figure 13a, and the total cost are shown in Figure 13b. Both the total costs of MC
and MLMC grows at the rate of ε−2, which is consistent with the theoretical result when the
involved multi-level analyses are fixed. Meanwhile, as the multi-level analyses are fixed, the
cost of AMLK method grows as ε−1/1.12 exactly. In this practical application case, the same
convergence property of AMLK model is observed, which can save much computational cost
than MC and MLMC methods.
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(a) No. of sampling points of AMLK (b) Computational cost versus error

Figure 13: Performance plots of AMLK for RANS case

6 CONCLUSIONS

In this work, we performed theoretical convergence and cost analyses on the AMLK model,
utilizing convergence results for single-fidelity Kriging, as well as existing multi-level analysis
of stochastic collocation method. Three numerical test cases with different number of uncer-
tainty variables were utilized to demonstrate the effectiveness of proposed method. All the
numerical results verified the assumptions for the mathematical form of discretization error and
interpolation error. The comparisons of total computational cost showed that using multi-level
kriging model for UQ can significantly reduce the cost, compared with the MLMC and standard
MC method.

In this study, only the thin-plate spline was considered as the covariance kernel used in
kriging model. As we mentioned before, the convergence property of a kriging model is only
dependent on the smoothness of the covariance kernel. For finitely differentiable kernels, the
convergence and cost analyses results are analogous to this study. However, for infinitely dif-
ferentiable kernels, as it shows spectral convergence, the form of interpolation error can be
assumed as CI∆x

µ
l e
−c̃/hl and the convergence study could be conducted accordingly.

On the other hand, the theoretical convergence rate of kriging model was given with re-
spect to the fill distance h. However, it is very difficult to estimate the h, especially for high-
dimensional stochastic space. We defined h = CsN

ν for a specific sampling method and trans-
ferred the interpolation error in terms of N instead. In this way, the sampling method is also
essential for the convergence study of a surrogate model. In this study, we used the Halton
pseudo-random samples for convergence study, which are deterministic, of low discrepancy but
appear randomly. To estimate the interpolation error, we generated a series of sample data set
with increasing number of points and ensured that a smaller-size data set is always a subset of
a larger-size data set, such that the convergence study of interpolation error is consistent and
smooth. Nevertheless, it was still difficult to obtain a smooth estimation for the interpolation
error in E[y]. In fact, the error in E[y] is not equivalent to any norm of the point-wise error. We
used the mean of the `1-norm of the point-wise error to bound the error in E[y]. In Figure 7, 9
and 11, we can find that smooth estimations for interpolation error are obtained.

For the RANS flow case with geometric uncertainty, we chose the lift coefficient as quan-
tity of interest and gained good estimation of discretization error. As for the drag coefficient,
because of the existences of a strong shock, it was difficult to get a linear convergence of dis-
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cretization error. One of the largest difficulties we met in this case is that the magnitude of
the disretization error was much larger than that of the interpolation error. Thus, we could not
bound the two error terms equally, as we did in other two cases. However, even the accuracy on
the finest level meets the requirement of engineering application, so it is not necessary to further
improve the resolution of computation grid. Therefore, we fixed the finest level, and estimated
the minimal total computational cost needed in order to achieve a certain interpolation error.

Besides the additive-bridge function based multi-level kriging model, there are potential
models, such as multi-level hierarchical kriging model and cokriging. In future work, the con-
vergence analysis of these two models will be studied comparatively.
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Abstract. This work shows the application of Multi-fidelity Uncertainty Quantification to Wind
Engineering problems. As test case a rectangular shape is used, with a fillet radius, in order
to represent the geometrical variations that can affect buildings or other bluff bodies. The
rectangular cylinder used has a chord-to-thickness ratio 5:1. This rectangular shape is an
important basic shape for wind engineering tasks, e.g. in case of buildings or other bluff bodies
exposed to the flow. Moreover it is well investigated and documented.

Coarse and fine meshes are used as low and high fidelity models respectively. To perform
CFD simulations, the stabilized finite element methods are used in both the high and low fidelity
model with a CFD code developed by TUM and the International Center for Numerical Methods
in Engineering. The underlying UQ framework is based on a Sparse Arbitrary Moment Based
Algorithm (SAMBA) developed at ICL. In the formulation the number of simulations is reduced
using a Smolyak sparsity model.

The multi-fidelity extension, with application to wind engineering problems is discussed and
presented in this work. The overall goal of such formulation is to gain an accuracy of mixed low-
high fidelity simulations comparable to the ones obtained with only high fidelity simulations, at
a fraction of the computational cost.
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1 Introduction

For wind engineering problems, carrying out wind tunnel experiments is expensive. There-
fore it has been sought to use Computational Fluid Dynamics (CFD) simulations instead of
wind tunnel tests ([12]) for design process and in this purpose it is required to confirm re-
liability of simulations. Verification and Validation are known as procedures to confirm the
reliability of simulations. UQ can be used for the validation, especially for decision making
whether results of physical experiment (or observed field data) and computational models are
matching or not ([10]). A difficulty of UQ for CFD simulations is that UQ requires running
a deterministic simulation several times, while a deterministic simulation of CFD is already
computationally expensive. For example, Monte Carlo methods require running thousands of
deterministic simulations but one CFD simulation often takes several hours or even days. To
overcome this problem, the spectral methods have been used for UQ of CFD simulations ([9]).
There are several methodologies of the spectral methods([6]) and in this contribution the Non-
Intrusive Polynomial Chaos (NIPC) method is used. NIPC does not require rewriting existing
deterministic simulation codes. In order to further reduce the total computational cost of NIPC,
a hierarchy of model fidelity is considered ([5]). For computational simulations, there are often
several possible model selections and each model has a different accuracy and computational
cost. Let us focus on model sets, which have clear accuracy and computational cost hierarchy.
For example, considering a CFD model with a fine mesh and a coarse mesh. The fine mesh
gives more accurate result than the coarse mesh but the computational cost is higher with the
fine mesh than with the coarse mesh. In this case the model with the fine mesh is the high fi-
delity model and the model with the coarse mesh is the low fidelity model. In this contribution,
it is sought to get stochastic results which are as accurate as the results computed only by the
high fidelity models using a combination of the high and low fidelity models. By using not
only the high fidelity model but also the low fidelity model, the total computational time can be
reduced.
As a target CFD simulation, flow around a rectangular cylinder is investigated. The bluff body
shape is in high interest in civil engineering (e.g. bridge decks and high-rise buildings) and in
other engineering fields and well studied and documented.[2]

2 Flow around a rectangular cylinder

In this contribution flow around a rectangular cylinder with ratio of the chord length (Breadth)
to the thickness (Depth) B/D = 5 at Reynolds number 400 is investigated. The Reynolds num-
ber is computed based on the thickness of the rectangular cylinder. The CFD simulations are
solved by the software KratosMultiphysics which is developed by the Technical University of
Munich and the International Center for Numerical Methods in Engineering. It solves CFD by
the stabilized Finite Element Method and for stabilization, the variational multiscale method
(VMS) is used.[3] The CFD is solved in 2D, since it is known from [13] that the flow is two
dimensional at low Reynolds number as 400.
For performing multifidelity NIPC, a coarse mesh and a fine mesh is created. The meshes are
shown in Fig. 1. The coarse mesh has 7956 cells and 4133 nodes, and the fine mesh has 22313
cells and 11451 nodes. As time discretization, the Bossak time integration method, which is
one of the generalized α Newmark methods, is used. Time steps are determined by performing
convergence study, dt = 3.0[s] for the coarse mesh and dt = 1.5[s]. The simulations are carried
out until 30, 000[s] and time statistics are calculated by results after 15, 000[s]. About boundary
conditions, the inflow velocity is applied to left wall, no-slip condition at the cylinder surface
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(a) The coarse mesh (b) The fine mesh

Figure 1: Details of the fine and coarse meshes used

CFD model t− avr(Cd) t− std(Cl) St
Hourigan et al., 2001 1.12 0.216 0.55

Coarse mesh 1.03 0.0724 0.75
Fine mesh 1.00 0.206 0.56

Table 1: Comparison of time statistics of the aerodynamics coefficient and Strouhal number

and slip condition at far-field are imposed.
The resulted time statistics of aerodynamic coefficient Cd, Cl and the Strouhal number St are

compared with ones in [8]. In [8], the flow at Re = 400 is solved by the finite element method.
Cd, Cl are calculated as:

Cd =
2Fd

ρUinlet
2D

Cl =
2Fl

ρUinlet
2B

where Fd, Fl are the drag and lift force subjected to the structure, ρ = 1.225kg/m3 is the
density of the air, Uinlet is the applied inlet velocity, B is the chord length andD is the thickness
of the structure. The Strouhal number is calculated as St = fB/Uinlet, where f is the frequency
of the lift force coefficient. In Table 1 the time averaged Cd (: t − avr(Cd)) and time standard
deviation of Cl (: t − std(Cl)) are compared. It can be seen that the fine mesh gets very close
values as [8]. The coarse mesh also got very close value of Cd with the one from the literature
and the fine mesh, on the other hand there is more difference in Cl and St value between results
of the fine- and coarse mesh.
Angle of attack and the curvature at every corner of the structure are considered as uncertain

input parameters since they are often uncertain in wind tunnel tests[2]. The curvature is illus-
trated in Fig. 2 and a same value is applied to every corner. It is assumed that the angle of attack
has a normal distribution with mean 0.0◦ and standard deviation 3.0◦, and the curvature has a
half normal distribution with the location parameter 0.0 and the scale parameter 0.05.
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Figure 2: Definition of the curvature

3 The Non-Intrusive Polynomial Chaos methods(NIPC)

Let us consider a stochastic CFD problem. The unknown Quantity of Interest (QoI) Y is
expressed as follows.

Y = g(X) (1)

where X = [X1, X2, ..., Xd] is the input random variables and g is the CFD simulation. Here
the time averaged drag coefficient t−avr(Cd) and the time standard deviation of lift coefficient
t− std(Cl) are considered as QoI, and the angle of attack α and the curvature R are considered
as input random variables, that is X = [X1, X2].

3.1 The polynomial chaos expansion

Assuming that Y is second order (Y ∈ L2(s)) i.e. E[Y 2] < ∞, Y can be expressed with
orthogonal polynomials as follows.

Y =
∑
k∈Nd

akΨk(X) (2)

where Ψk(X) is linear combination of multivariate orthogonal polynomials. Let us think about
L(Si)p, the p-th order finite dimensional subspace of L(S). The p-th order polynomial chaos
approximation of Y is expressed as:

Y ≈ Yp =
P−1∑
k=0

akΨk(X) (3)

The total number of term P in the expansion is calculated as:

P =

p∑
q=0

(q + d− 1)!

q!(d− 1)!
=

(p+ d)!

p!d!
(4)

By applying the projection theorem, the deterministic coefficient ak in Eq.3 is computed as:

ak = E[g(X)Ψk(X)] (5)

423



M. Sakuma et al.

Assuming that the Probabilistic Density Function(PDF) of X is f(X), Eq.5 is computed by:

ak =

∫
Rd

g(X)Ψk(X)f(X)dX (6)

Applying the Gaussian quadrature rule to Eq.6, ak is approximated as:

ak ≈
q1∑
i1=1

...

qd∑
id=1

g(Xi1 , ..., Xid)Ψ(Xi1 , ..., Xid)wi1 ...wid (7)

where qk, k ∈ d is a number of quadrature points for each univariate quadrature rule, wik , k ∈ d
is the weight of each univariate quadrature. Here the number of input random variable d = 2,
therefore the Eq. 7 is written as:

ak ≈
q1∑
i1=1

q2∑
i2=1

g(X1,i1 , X2,i2)Ψ(X1,i1 , X2,i2)wi1wi2 (8)

CFD simulations are calculated at each quadrature points and the quadrature points are called
as collocation points.

3.2 Sparse Approximation of Moment-Based Arbitrary(SAMBA) Polynomial Chaos

In this contribution, the Sparse Approximation of Moment-Based Arbitrary(SAMBA) Poly-
nomial Chaos is used to compute the orthogonal polynomials and coefficients of the polynomial
chaos expansion in Eq. 3. The orthogonal polynomials are known for some classical distribu-
tion type of PDFs, for example, the Legendre polynomials for the uniform distribution and the
Hermite polynomials for the normal distribution. SAMBA [1] can compute the orthogonal poly-
nomials and Gaussian quadrature points and weights from a moment matrices of input random
variables using the theory described in [7], while often the orthogonal polynomials are deter-
mined by Askey scheme. SAMBA makes it possible to perform NIPC for any kind of PDFs of
input random distributions. In addition, as you can see in Eq. 7, computational cost increases
with increase of the dimension of random variables, which is called as curse of dimensionality.
To overcome the curse of dimensionality, the Smolyak formula is adapted for multiple Gaus-
sian quadrature rules in SAMBA. Fig. 3 shows collocation points for sparse grid level 1 to 3
calculated by SAMBA.

3.3 The multifidelity extension of NIPC

The multifidelity extension of NIPC is introduced in [4] and the additive correction is used
here. The idea is that by calculating the high fidelity model with lower sparse grid level and
the low fidelity model with higher sparse grid level, the total calculation cost is reduced to get
as good accuracy as stochastic results evaluated only by high fidelity model. Let ghigh(X),
glow(X) as system responses obtained by evaluating high- and low fidelity model respectively
and an additive correction as δ(X) = ghigh(X)− glow(X). ghigh(X) is approximated as:

ghigh(X) ≈ Sq,d[ghigh](X) (9)

where Sq,d[g] is the non-intrusive polynomial chaos expansion with the sparse grid level q and
the dimension of input random variables d. Then approximation of Sq,d[ghigh] by multifidelity
expansion can be written as:

Sq,d[ghigh](X) ≈ g̃high(X) = Sq,d[glow](X) + Sq−r,d[δ](X) (10)
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Figure 3: The collocation points for the sparse grid level 1 to 3

where r is a sparse level offset and r ≤ q. Substituting Eq.3 to Eq. 10, we get:

g̃high(X) =
∑
i∈Jq,d

alowiΨi(X) +
∑

i∈Jq−r,d

aδiΨi(X) (11)

where Jq,d is a set of multi-indices of the d-dimensional polynomial chaos expansion bases at
the level q. The polynomial chaos coefficients of Eq. 11 is calculated as follows.

alowi =

∫
RD

glow(X)Ψk(X)f(X)dX (12)

aδi =

∫
RD

{ghigh(X)− glow(X)}Ψk(X)f(X)dX (13)

Considering that CFD simulations contribute most of computational time and these integrals
are estimated by the Gauss quadrature rule with the Smolyak sparse grid method, it is important
for saving total computational time that the collocation points are nested. In this contribution,
the coarse mesh model and fine mesh model are considered as the low and high fidelity model
respectively.

4 Results

Fig.4 shows PDF outlines of t− avr(Cd) and t− std(Cl) computed by single fidelity model
of the coarse mesh with the level 3 and the fine mesh with the level 3, and the multifidelity
model of the coarse mesh with the level 3 and the additive correction with the level 1 and level
2 using Eq.11. As can be seen in Fig.4(a) the shape of the PDF of t − avr(Cd) computed by
the coarse mesh model is different from the one of the fine mesh model. Even with the additive
correction, the shape of PDF is not exactly same as the one of the fine mesh model but by using
additive correction, the shape of PDF gets closer to the one computed by the fine mesh model
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Figure 4: The PDF outlines of (a) t − avr(Cd) and (b) t − std(Cl) computed by the single fidelity model (the
coarse mesh level 3, the fine mesh level3) and the Multi-fidelity model (the coarse mesh level, the fine mesh level)
= (3,1),(3,2))

only. In Fig.4(b) the locations of the PDFs of t− std(Cl) are different between the ones of the
coarse mesh with level 3 and the fine mesh with level 3. By applying the additive correction,
location and shape of PDF gets similar as the PDF evaluated by the fine mesh only. In the case
of both t − avr(Cd) and t − std(Cl), it can be confirmed that by increasing the level of the
additive correction, the shape of PDF tends to converge to the shape of the PDF computed by
the fine mesh model only. On the other hand, it can be also seen that the multifidelity model is
not accurate especially at the upper end of the domain.
Figure 5 and 6 show the statistic moments, which are mean, standard deviation, skewness and
kurtosis, computed by the single fidelity model of the coarse mesh with the level 1 to level 3 and
the fine mesh with the level 1 to level 3 respectively, and the multifidelity model of the coarse
mesh with level 3 and the additive correction level 1 and level 2. The horizontal axis is the total
calculation time and the unit t0 is the calculation time of a coarse mesh deterministic simulation.
The ratio of calculation time of the fine mesh deterministic simulation to the one of the coarse
mesh deterministic simulation is 2, which is determined by averaging actual calculation time
of deterministic simulations. It can be seen that except skewness and kurtosis of t − std(Cl),
the statistic moments computed by the fine mesh model and the multifidelity model converge to
almost same value, while the ones of the coarse mesh converges to different value. Comparing
total calculation time of the single fidelity model of the fine mesh and the multifidelity model,
the convergence speed is faster by the single fidelity model of the fine mesh than by the multi-
fidelity model. It happens because in this case the computational time ratio of the fine mesh to
the coarse mesh is not very high.

For comparing deterministic results of the coarse mesh and the fine mesh, Table 2 shows
the correlation and the mean absolute relative error, which are calculated from 35 deterministic
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Figure 5: The moment convergence of t−mean(Cd)
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Figure 6: The moment convergence of t− std(Cl)
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t− avr(Cd) t− std(Cl)
Correlation 0.984 0.988

Mean Absolute Relative Error 0.0207 0.360

Table 2: The correlation and the mean absolute relative error between the coarse- and the fine mesh models

mean mean ± standard deviation Deterministic result
t− avr(Cd) 0.986 (0.940, 1.032) 1.03
t− std(Cl) 0.123 (0.101, 0.145) 0.206

Table 3: The comparison between the stochastic result and the deterministic result

results used for NIPC of the level 1 to 3. The correlation and the mean absolute relative error
are calculated as[11]:

Correlation =

 ∑N
i=1(ghighi − ghigh)(glowi

− glow)√∑N
i=1(ghighi − ghigh)2

√∑N
i=1(glowi

− glow)2


2

(14)

MeanAbsoluteRelativeError =
1

N

N∑
i=1

∣∣∣∣glowi
− ghighi
ghighi

∣∣∣∣ (15)

where N is the number of deterministic simulations and glow and ghigh is the mean of the N
observation data sets. From Table 2 it can be seen that t−avr(Cd) is predicted well by the coarse
mesh, while t− std(Cl) has 36.6% error. The correlation values are similar in t− avr(Cd) and
t−std(Cl). Even though the coarse mesh cannot predict t−std(Cl) well, the multifidelity NIPC
is able to get the similar PDF to the one computed by fine mesh only as discussed before. Fig.
7 shows the spectrum of polynomial chaos expansion coefficients of single fidelity model of the
coarse mesh and the fine mesh respectively, and the multifidelity model of the coarse mesh level
3 and the additive correction level 1 and level 2. From Fig. 7, it is found that for (a) t−avr(Cd)
the coefficients of the discrepancy is always smaller than the ones of the coarse mesh model,
while in (b) t − std(Cl) the coefficients of the discrepancy is smaller but the coefficient index
1. That is, about t − std(Cl) the discrepancy model is less complicated than the coarse mesh
model, since it has larger value at the low coefficient index 1.

Let us think about the results of the multifidelity model of the coarse mesh with level 3 and
the discrepancy model with level 1. Table 3 compares the stochastic result of the multifidelity
model and the deterministic result of the fine mesh with angle of attack 0.0◦ and the curvature
0.0. For t − avr(Cd), the result of deterministic simulation is close to the mean value of the
stochastic results. On the other hand, t− std(Cl) has different feature. The deterministic result
and the stochastic result are very different. In addition the standard deviation of the t− std(Cl)
is 17.7% of the mean value, that is t− std(Cl) has unignorable variation due to input uncertain
parameters, the angle of attack and the curvature. t − std(Cl) is caused by flow separation
at the leading- and trailing edges and it is physically understandable that the geometry of the
edges influences results of t − std(Cl). The stochastic results confirmed that uncertainty of
the curvature causes large variation of t − std(Cl) and it is important to take into account the
uncertainties in designing procedure. A problem of consideration of the curvature is that, the
flow phenomenon has large difference between without curvature and with a curvature even as
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Figure 7: The spectrum of coefficients of the polynomial chaos expansion

small as 0.01 which is the smallest curvature in the calculated collocation points. This results in
that t−std(Cl) calculated by the deterministic simulation with the curvature 0.0 is not included
in the stochastic result of t− std(Cl).

5 Conclusion

• The multifidelity NIPC of additive correction is applied to the flow around a rectangular
cylinder problem. By the additive correction, the shape of PDF of t−mean(Cd) and the
shape and position of PDF of t− std(Cl) are improved.

• By applying the additive correction, the statistic moments of QoIs converge to the sim-
ilar value as the ones calculated by the single fidelity model of the fine mesh, while the
statistic moments calculated by the single fidelity model with the coarse mesh does not
converge.

• The uncertainty of the angle of attack and the curvature causes unignorable variation to
time statistics of the lift- and drag coefficients, especially t− std(Cl).

6 Acknowledgement

TUM would like to thank the Deutscher Akademischer Austausch Dienst for funding. ICL
would like to acknowledge the financial support of EPSRC and Airbus to UQLab.

References

[1] R. Ahlfeld, B. Belkouchi, and F. Montomoli. “SAMBA: Sparse Approximation of Moment-
Based Arbitrary Polynomial Chaos”. In: Journal of Computational Physics 320 (Sept.
2016), pp. 1–16.

430



M. Sakuma et al.

[2] Luca Bruno, Maria Vittoria Salvetti, and Francesco Ricciardelli. “Benchmark on the
Aerodynamics of a Rectangular 5:1 Cylinder: An overview after the first four years of
activity”. In: Journal of Wind Engineering and Industrial Aerodynamics 126 (Mar. 2014),
pp. 87–106.

[3] Jordi Cotela Dalmau. “Applications of turbulence modeling in civil engineering”. PhD
thesis. Universitat Polit‘ecnica de Catalunya, 2016.

[4] Michael S. Eldred et al. “Multifidelity Uncertainty Quantification Using Spectral Stochas-
tic Discrepancy Models”. In: Handbook of Uncertainty Quantification. Ed. by Roger
Ghanem, David Higdon, and Houman Owhadi. Cham: Springer International Publish-
ing, 2015, pp. 991–1040.

[5] Roger Ghanem. Handbook of uncertainty quantification. New York, NY: Springer Berlin
Heidelberg, 2017.

[6] Roger G. Ghanem and Pol D. Spanos. Stochastic finite elements: a spectral approach.
New York, NY: Springer, 1991.

[7] Gene H Golub and John H Welsch. “Calculation of Gauss Quadrature Rules”. In: Math.
Comp. 23 (1969), pp. 221–230.

[8] K. Hourigan, M.C. Thompson, and B.T. Tan. “SELF-SUSTAINED OSCILLATIONS IN
FLOWS AROUND LONG BLUNT PLATES”. In: Journal of Fluids and Structures 15.3
(Apr. 2001), pp. 387–398.

[9] Gerhardus Joseph Alex Loeven. “Efficient uncertainty quantification in computational
fluid dynamics.” PhD thesis. 2010.

[10] William L Oberkampf and Timothy G Trucano. “Verification, Validation, and Predic-
tive Capability in Computational Engineering and Physics”. In: SAND REPORT (2003),
p. 92.

[11] Pramudita Satria Palar et al. “Global Sensitivity Analysis via Multi-Fidelity Polynomial
Chaos Expansion”. In: Reliability Engineering and System Safety (Oct. 22, 2017).

[12] Tetsuro Tamura, Kojiro Nozawa, and Koji Kondo. “AIJ guide for numerical prediction
of wind loads on buildings”. In: The Fourth International Symposium on Computational
Wind Engineering, Yokohama (2006).

[13] B. T. Tan, M. C. Thompson, and K. Hourigan. “Flow past rectangular cylinders: receptiv-
ity to transverse forcing”. In: Journal of Fluid Mechanics 515 (Sept. 25, 2004), pp. 33–
62.

431



UNCECOMP 2019
3rd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Crete, Greece, 24-26 June 2019

REDUCED MODEL-ERROR SOURCE TERMS FOR FLUID FLOW

Wouter Edeling1 and Daan Crommelin 1,2

1 Centrum Wiskunde & Informatica, Scientific Computing Group
Science Park 123, 1098 XG Amsterdam, The Netherlands

e-mail: {Wouter.Edeling, Daan.Crommelin}@CWI.nl

2 Korteweg-de Vries Institute for Mathematics, University of Amsterdam
Science Park 105-107, 1098 XG Amsterdam, The Netherlands

e-mail: D.T.Crommelin@uva.nl

Keywords: Model error, data-driven surrogate models, ocean flow

Abstract. It is well known that the wide range of spatial and temporal scales present in
geophysical flow problems represents a (currently) insurmountable computational bottleneck,
which must be circumvented by a coarse-graining procedure. The effect of the unresolved fluid
motions enters the coarse-grained equations as an unclosed forcing term, denoted as the ’eddy
forcing’. Traditionally, the system is closed by approximate deterministic closure models, i.e.
so-called parameterizations. Instead of creating a deterministic parameterization, some recent
efforts have focused on creating a stochastic, data-driven surrogate model for the eddy forcing
from a (limited) set of reference data, with the goal of accurately capturing the long-term flow
statistics. Since the eddy forcing is a dynamically evolving field, a surrogate should be able to
mimic the complex spatial patterns displayed by the eddy forcing. Rather than creating such a
(fully data-driven) surrogate, we propose to precede the surrogate construction step by a proce-
dure that replaces the eddy forcing with a new model-error source term which: i) is tailor-made
to capture spatially-integrated statistics of interest, ii) strikes a balance between physical in-
sight and data-driven modelling , and iii) significantly reduces the amount of training data that
is needed. Instead of creating a surrogate for an evolving field, we now only require a surrogate
model for one scalar time series per statistical quantity-of-interest. Our current surrogate mod-
elling approach builds on a resampling strategy, where we create a probability density function
of the reduced training data that is conditional on (time-lagged) resolved-scale variables. We
derive the model-error source terms, and construct the reduced surrogate using an ocean model
of two-dimensional turbulence in a doubly periodic square domain.
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1 INTRODUCTION

In the numerical simulation of coarse-grained turbulent flow problems one has to cope with
small-scale processes which cannot be resolved directly on the numerical grid. The effect of the
unresolved eddy field enters the resolved-scale equations as an unclosed forcing term, denoted
as the eddy forcing, which is highly complex, dynamic, and shows intricate spatio-temporal
correlations. Traditionally, the eddy forcing is approximated by deterministic closure models,
i.e. so-called parameterizations. In the context of geophysical flows, such parameterizations are
based on e.g. the work of Gent-McWilliams [6], or through the inclusion of a tunable (hyper)
viscosity term meant to damp the smallest resolved scales of the model [11].

It is well known that no parameterization scheme is perfect, and attempts have been made to
improve their performance. For instance, the authors of [15] analysed the transfer of energy and
enstrophy in spectral space for a number of parameterizations, and compared their performance
to a high-fidelity reference solution of a two-dimensional turbulent flow case. They proposed a
deterministic ’energy fixer’ scheme, based on adding a weighted vorticity pattern to the com-
puted vorticity field. Recently, data-driven techniques have been applied as well. For instance
the recent work of [10] used artificial neural networks to learn the eddy forcing from a set of
high-fidelity snapshots.

However, a general limitation of such deterministic approaches is their inability to repre-
sent the strong non-uniqueness of the unresolved scales with respect to the resolved scales
[1, 16, 12]. Since the resolved scales are generally defined as the convolution of the full-scale
solution with some filter, multiple unresolved states can correspond to the same resolved solu-
tion. Thus, in general there is no one-to-one correspondence between the resolved-scale state
and the unresolved-scale state, and yet deterministic parameterizations do assume such corre-
spondence. As a result, stochastic methods for representing the unresolved scales have received
an increasing amount of attention. Early contributions to this topic in the context of ocean mod-
elling includes the work of [1], where the eddy-forcing is replaced by a space-time correlated
random-forcing process. Other notable examples include the work of [9, 20, 7], who construct
probability density functions (pdfs) of the eddy forcing using a reference solution.

In this study, we also consider a stochastic surrogate method [17, 16], and as a performance
indicator we use the degree by which it is able to capture energy and enstrophy statistics. How-
ever, we refrain from an approach that is purely data-driven, i.e. one which attempts to learn the
eddy forcing directly from reference data. Instead, we replace the eddy forcing with a simpler
’model-error’ source term, which we parameterize based on physical arguments. Specifically,
we use the energy and enstrophy transport equations to derive a source term which tracks our
chosen target statistics. The only remaining unclosed part of our model-error term is repre-
sentative of the magnitude of these target statistics, i.e. scalars. As a result, the corresponding
surrogate model needs to represent only one (or a few) scalar quantities rather than the full eddy
forcing field. This amounts to a large dimension reduction (in this study, a reduction by four
orders of magnitude), and as a consequence a large reduction in the amount of required training
data, while retaining accuracy in the statistics.

The article is organised as follows. In Section 2 we describe the governing equations and
multiscale decomposition. The model-error source term derivation and the surrogate method
are outlined in Section 3. Initial results are shown in Section 4, and finally the conclusion and
outlook are given in Section 5.
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2 GOVERNING EQUATIONS

We study the same model as in [18], i.e. the forced-dissipative vorticity equations for two-
dimensional incompressible flow. The governing equations read

∂ω

∂t
+ J (Ψ, ω) = ν∇2ω + µ (F − ω) ,

∇2Ψ = ω. (1)

Here, ω is the vertical component of the vorticity, defined from the curl of the velocity field V
as ω := e3 · ∇ × V, where e3 := (0, 0, 1)T . The stream function Ψ relates to the horizontal
velocity components by the well-known relations u = −∂Ψ/∂y and v = ∂Ψ/∂x. As in [18],
the forcing term is chosen as the single Fourier mode F = 23/2 cos(5x) cos(5y). The system
is fully periodic in x and y directions over a period of 2πL, where L is a user-specified length
scale, chosen as the earth’s radius (L = 6.371 × 106[m]). The inverse of the earth’s angular
velocity Ω−1 is chosen as a time scale, where Ω = 7.292× 10−5[s−1]. Thus, a simulation time
period of a single ’day’ can now be expressed as 24 × 602 × Ω ≈ 6.3 non-dimensional time
units. Given these choices, (1) is non-dimensionalized, and solved using values of ν and µ
chosen such that a Fourier mode at the smallest retained spatial scale is exponentially damped
with an e-folding time scale of 5 and 90 days respectively. For more details on the numerical
setup we refer to [18]. Furthermore, our Python source code for (1) can be downloaded from
[4].

Finally, the key term in (1) is the Jacobian, i.e. the nonlinear advection term defined as

J (Ψ, ω) :=
∂Ψ

∂x

∂ω

∂y
− ∂Ψ

∂y

∂ω

∂x
. (2)

It is this term that leads to the need for a closure model when (1) is discretized on a relatively
coarse grid which lacks the resolution to capture all turbulent eddies.

2.1 Discretization

We solve (1) by means of a spectral method, where we apply a truncated Fourier expansion:

ωk(x, y, t) =
∑
k

ω̂k(t)ei(k1x+k2y),

Ψk(x, y, t) =
∑
k

Ψ̂k(t)ei(k1x+k2y). (3)

The sum is taken over the components k1 and k2 of the wave number vector k := (k1, k2)
T ,

and −K ′ ≤ kj ≤ K ′, j = 1, 2. These decompositions are inserted in (1), and solved for the
Fourier coefficients ω̂k, Ψ̂k by means of the real Fast Fourier Transform. To avoid the aliasing
problem in the nonlinear term (2), we use the pseudo spectral method, such that in practice the
maximum resolved wave number is K, where K ≤ 2K ′/3 [14]. 1

To advance the solution in time we use the second-order accurate AB/BDI2 scheme, which
results in the following discrete system of equations [14]

3ω̂i+1
k − 4ω̂ik + ω̂i−1k

2∆t
+ 2Ĵ ik − Ĵ i−1k = −νk2ω̂i+1

k + µ
(
F̂k − ω̂i+1

k

)
,

−k2Ψ̂i+1
k − ω̂i+1

k = 0. (4)

1We use N ×N grids, with an even N = 2p (e.g. p = 7), such that N = 2K ′ [14].
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Here, ∆t = 0.01 and Ĵ ik is the Fourier coefficient of the Jacobian at time level i, computed with
the pseudo spectral technique, and k2 := k21 + k22 .

2.2 Multiscale decomposition

As in [18], we apply a spectral filter in order to decompose the full reference solution into a
resolved (R) and an unresolved component (U), i.e. we use

ω̂Rk = PRω̂k, ω̂Uk = P U ω̂k, (5)

where the projection operators PR and P U are depicted in Figure 1. Note that the full projection
operator P := PR + PU also removes wave numbers due to the use of the pseudo spectral
method.

0 20 40 60

0

20

40

60

80

100

120

Full

0 20 40 60

0

20

40

60

80

100

120

Resolved

0 20 40 60

0

20

40

60

80

100

120

Unresolved

k1

k2

Figure 1: The spectral filter (black=1, white=0) of the full, resolved and unresolved solutions. Due to the fact that
we use the real FFT algorithm, only part of the spectrum is computed, as Fourier coefficients with opposite values
of k are complex conjugates in order to enforce real ω and Ψ fields [14].

Applying the resolved projection operator to the governing equations (1) results in the fol-
lowing resolved-scale transport equation

∂ωR

∂t
+ PRJ (Ψ, ω) = ν∇2ωR + µ

(
FR − ωR

)
(6)

As mentioned, the key term is the Jacobian (2), since due to its non linearity, PRJ (Ψ, ω) 6=
PRJ

(
ΨR, ωR

)
. We therefore write

J (Ψ, ω)− J
(
ΨR, ωR

)
=: r, (7)

such that r is the exact subgrid-scale term, commonly referred to as the ’eddy forcing’ [1]. The
resolved-scale equation (6) can now be written as

∂ωR

∂t
+ PRJ

(
ΨR, ωR

)
= ν∇2ωR + µ

(
FR − ωR

)
− r. (8)

We use the notation r := PRr for the sake of brevity. A snapshot of the resolved vorticity
ωR and corresponding resolved eddy forcing r is depicted in Figure 2. Notice the fine-grained
character of the eddy forcing compared to the vorticity field.
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Figure 2: A snapshot of the exact, reference vorticity field ωR and the corresponding eddy forcing.

2.3 Prediction of climate statistics

Ultimately, our goal is to integrate (8) in time, such that we can compute the long-term
climate statistics of the energy ER and enstrophy ZR densities, defined as

ER :=
1

2

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

VR ·VRdxdy = −1

2

(
ψR, ωR

)
, (9)

ZR :=
1

2

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

(
ωR
)2

dxdy =
1

2

(
ωR, ωR

)
. (10)

Here VR is the two-dimensional vector of the resolved velocity components in x and y direc-
tion. For conciseness, we use the short-hand notation

(α, β) =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

αβ dxdy, (11)

to denote the integral of the product αβ normalized by the area of the flow domain. The deriva-
tion of the last equality of (9) can be found in Appendix A.

3 EDDY-FORCING SURROGATE

We cannot integrate (8) since it is still unclosed (due to the ω and Ψ dependence of (7)), a
problem which we aim to solve by creating a data-driven surrogate of r, denoted by r̃. For our
present purpose, we define an ’ideal’ surrogate r̃ for the eddy forcing as one which satisfies the
following set of requirements:

1. Data-driven: In absence of a single ’best’ deterministic parameterization of r, we opt for
a model inferred from a pre-computed database of high-fidelity reference data.

2. Stochastic: In general, the resolved scales are defined as a convolution of the full solution
with some (spatial/spectral) filter. As a result there is no longer just a single unresolved-
scale field that is consistent with the resolved-scale solution. This ambiguity provides us
with the motivation for a stochastic model for the unresolved, small-scale fields.

3. Correlated in space and time: As demonstrated by Figure 2, the reference eddy forcing
shows complex spatial structures. A surrogate of the full eddy forcing would ideally
reflect these as well.
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4. Conditional on the resolved variables: The resolved and unresolved scales are in reality
two-way coupled. Hence, the eddy-forcing surrogate should not be independent from the
resolved solution.

5. Pre-computed & cheap: While the reference database can be computationally expensive
to compute, the resulting data-driven surrogate must be cheap.

6. Extrapolates well: To justify the cost of creating the reference database in the first place,
the data-driven model must be able to predict the chosen quantity of interest well, sub-
stantially beyond the (time) domain of the data.

As mentioned, we will measure the performance of a surrogate model by its ability to accu-
rately represent the statistics of (9)-(10). Thus, we do not expect from the resolved-scale model
forced by the surrogate the ability to produce individual flow fields which are in absolute lock-
step with the high-fidelity data, especially considering the stochastic nature of the surrogate.

One possible course of action, explored in e.g. [17, 10], is to directly create a full-field
surrogate r̃ (x, y; t) ∈ RN×N , using a database reference snapshots in time of the exact eddy
forcing (7). Here, N is the number of grid points in one spatial direction, typically 27, 28 or
higher. Constructing a full-field, dynamic surrogate of a quantity as complex as the eddy forcing
is a challenging task, and storing a potentially large amount of reference snapshots can lead to
high memory requirements [17]. We therefore propose to precede the surrogate construction
step with a procedure that significantly compresses the training data.

3.1 Reduced surrogate

Note that our statistical quantities of interest (9) and (10) are scalars. Instead of creating
a full-field N × N surrogate r̃ (x, y; t), we will first replace the exact r in (8) with a simpler
alternative, where the unclosed component is reflective of the size of the statistical quantities
we aim to approximate in the first place. A simple option is to specify

−r (x, y; t) = τ (t)ωR (x, y; t) , (12)

where τ (t) is an unknown, time-varying scalar. Clearly, this choice is arbitrary, and (12) will
not match the eddy forcing (7). Instead, we think of (12) as an example of a ’model-error term’,
meant to correct the unparameterized (r = 0) model in some sense. In our case, a deviation
from the exact eddy forcing does not pose a problem because of the freedom that integrated
quantities-of-interest give us, such that we only need our ωR and ΨR fields to approximate the
truth in the weak sense of (9) and (10). We can examine the effect of (12) on the evolution equa-
tions of ER and ZR, and subsequently combine physical insight with a data-driven approach
to find the time series of τ that constrains their evolution to the reference values. A reduced
surrogate now only needs to be constructed from this scalar time series, instead of from the
full-field evolution of (7).

The evolution equation of ER (see Appendix A) satisfies

dER

dt
= −

(
ψR,

∂ωR

∂t

)
= −2νZR − 2µUR − 2µER +

(
ψR, r

)
, (13)

where we denote the integral
(
ΨR, F

)
/2 as UR. If we insert (12) into (13), the last term on the

right-hand side becomes (
ψR, r

)
= −τ

(
ψR, ωR

)
= 2τER. (14)

437



Wouter Edeling and Daan Crommelin

3.0 3.2 3.4 3.6 3.8 4.0 4.2
energy 1e 4

reduced
reference
unparam.

0.7 0.8 0.9 1.0 1.1 1.2 1.3
enstropy 1e 2

reduced
reference
unparam.

Figure 3: The pdfs of the energy (left) and enstrophy (right), of the reduced (r = τωR), reference (r given by (7))
and unparameterised (r = 0) solution.

The last equality follows from the definition (9). Thus, the physical insight is that (12) leads
to the additional term 2τER, which either acts to produce or dissipate ER depending on the
sign of τ . Let us denote the difference between the projected reference energy and ER as
∆E := E − ER, where E := −

(
PRΨ, ω

)
/2. Any quantity without superscript, e.g. E or

ω, is a reference quantity computed from (1). Now, for the data-driven determination of the τ
time series, we require τ to be positive when ∆E > 0, i.e. to increase production when ER is
too low, and to dissipate energy when ∆E < 0. We parameterize τ via an analytic relationship
which reflects this property:

τ := τmax tanh

(
∆E

ER

)
. (15)

Here, τmax is a user-specified constant, which we set to one for now. During the training period,
we can compute (15) every ∆t, building up a reference time series.

To test the validity of our approach, we run the system (8) for a simulation period of 8 years.
Besides τ , at every ∆t we also sample the energy and enstrophy of the reference, reduced and
unparameterised solution, i.e. using r given by (7), (12) and zero respectively2. The energy and
enstrophy probability density functions (pdfs) generated from those samples can be found in
Figure 3. By virtue of (15), the energy pdfs of the reference and the reduced solution practically
overlap. This demonstrates that it is possible to obtain statistically-equivalent energy solutions
using training data reduced by a factor of N2 compared to the full-field surrogate case3.

However, we have two quantities of interest, and (12) also has an effect on the ZR equation
(a term 2τZR appears). Since we train τ to track PRE, we cannot expect a perfect ZR pdf, and
in fact, Figure 3 shows that the situation does not improve upon the unparameterised model,
which displays a large bias in ZR values. Rather than trying to construct a different τ which is
some compromise between accuracy in ER and ZR, we opt for two separate time series, each
of which acts on either the energy or enstrophy evolution equation alone.

2Note that no surrogate is used yet, we are generating a large set of training data.
3In the example of Figure 3, N2 = 1282 = 16384.
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3.2 Orthogonal patterns

We replace our initial simple choice (12) with

−r = τEΨ′ + τZω
′, (16)

where Ψ′ and ω′ are patterns of the resolved vorticity and stream function. We choose Ψ′ such
that τEΨ′ only acts on theER equation, and produces no additional source term in the enstrophy
equation. The converse must be true for the τZω′ term. This will allow us to train τE on ∆E
alone, and τZ only on ∆Z := Z − ZR. Since the ER and ZR evolution equations are forced
by −

(
ΨR, ∂ωR/∂t

)
and

(
ωR, ∂ωR/∂t

)
respectively (see (13) and appendix A), this suggests

a Gram-Schmidt type of approach to make Ψ′ orthogonal to
(
ωR, ·

)
and likewise for ω′ and(

ΨR, ·
)
. Setting:

Ψ′ = ψR −
(
ψR, ωR

)
(ωR, ωR)

ωR and ω′ = ωR −
(
ψR, ωR

)
(ψR, ψR)

ψR, (17)

yields (
ωR, τEΨ′

)
= 0 and

(
ψR, τZω

′) = 0. (18)

The additional source term in the ER equation now becomes

−
(
ψR, τEΨ′

)
= −τE

(
ψR, ψR

)
+ τE

(
ψR, ωR

)2
(ωR, ωR)

= 2τE

[(
ER
)2

ZR
− SR

]
:= 2τES

′ (19)

Here, we defined the integrated square stream function as SR :=
(
ψR, ψR

)
/2. Since

(
ER
)2
/ZR−

SR has the dimension of the squared stream function, we introduce the final shorthand notation
S ′ :=

(
ER
)2
/ZR − SR in (19). In a similar vein, (16) produces the following source term in

the ZR equation:

2τZZ
′ with Z ′ := ZR −

(
ER
)2

SR
. (20)

We parameterise τE and τZ using the same procedure as in Section 3.1, only now we need to
incorporate the sign of S ′ and Z ′ to correctly activate either the production or dissipation of ER

and ZR, i.e.

τE := τE,max tanh

(
∆E

ER

)
· sgn(S ′) and τZ := τZ,max tanh

(
∆Z

ZR

)
· sgn(Z ′). (21)

Again, we leave the proper estimation of parameters for a later study, and simply set τE,max =
τZ,max = 1. Furthermore, sgn(X) = 1 when X ≥ 1 and −1 otherwise. Repeating the sim-
ulation of Section 3.1, inserting (16) in (8) yields the results depicted in Figure 4. Now, both
pdfs match the reference well. Only a very small discrepancy in the ER pdf can be observed,
which might fixed by tuning τE,max. The corresponding τE , τZ reference time series are shown
in Figure 5.
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Figure 4: The pdfs of the energy (left) and enstrophy (right), of the reduced (r = τEΨ′ + τZω
′), reference (r given

by (7)) and unparameterised (r = 0) solution.
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Figure 5: Training time series of τE and τZ over 500 days. Note that there seems to be a negative correlation
between the two time series.
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3.3 Surrogate construction

We will build on the resampling stategies as developed by [16, 2]. In general, these methods
model the unresolved term at time ti+1 by sampling from the conditional probability distribution
of the reference data. In our case, we keep the functional forms of (21), such that ∆E and ∆Z
can be chosen as the unresolved terms in need of a surrogate model:

∆̃Ei+1 ∼ ∆Ei+1 | Ei, Ei−1, · · ·
∆̃Zi+1 ∼ ∆Zi+1 | Zi, Zi−1, · · · (22)

Here, ∆̃Ei+1 denotes the data-driven resampling surrogate at time ti+1, whereas as ∆Ei+1 rep-
resent actual reference data from the training run, and likewise for ∆̃Zi+1. The set of ’condi-
tioning variables’ Ei,Zi etc contain variables from the resolved model. They can be (functions
of) ER, S ′ or any other (scalar) quantity, as long as we also have access to it outside the training
period. Examples of these conditional distributions are ∆Ei+1 | ERi and ∆Zi+1 | ∆̃Zi, Z

R
i .

We could assume a Markov property (∆Ei+1 | Ei), or build in a larger memory. Note that by
design, (22) already satisfies many of the properties listed in Section 3, e.g. it is data-driven,
stochastic and conditioned on resolved variables.

The main challenges with this approach are twofold. Clearly, the first challenge concerns
the actual formation of the conditional distribution, i.e. how to map the observed conditioning
variables to plausible subsets of ∆Ei+1 and ∆Zi+1 samples from which ∆̃Ei+1 and ∆̃Zi+1

can be randomly sampled. The second challenge concerns the proper choice of conditioning
variables, which is somewhat reminiscent of the choice of ’features’ in a machine-learning
context.

3.4 Building the distribution

We will illustrate the approach using ∆E, the same procedure applies for ∆Z. To map Ei to
some subset of plausible ∆Ei+1 values we use the so-called ’binning’ approach of [16]. First,
consider a snapshot sequence of ∆E

∆ES
1 = {∆E1,∆E2, · · · ,∆Ei, · · · ,∆ES}, (23)

where i is the time index. In addition, we also have snapshots of corresponding conditioning
variables

ES
1 = {E1, E2, · · · , ES}. (24)

Let C be the total number of time-lagged conditioning variables used in (22). We then proceed
by creating C-dimensional disjoint bins4, each bin spanning a unique conditioning variable
range, and containing a number of associated ∆E values, see Figure 6. Note that not all bins
may contain samples, especially if two or more conditioning variables are used. If during pre-
diction an empty bin is sampled, the data of the nearest bin (in Euclidean sense) is used instead.
Once a bin is selected by Ei, the resulting subset of ∆E values can be sampled randomly, or one
might sample from the local bin average instead, leading to a deterministic prediction.

4We used equidistant bins, but this is not a hard requirement.
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(a) Low correlation between ∆Ei+1 and Ei. (b) High correlation between ∆Ei+1 and Ei.

Figure 6: Two binning objects, with the reference ∆Ei+1 data on the vertical axis and the conditioning variable Ei
on the horizontal axis. Vertical lines separate the different bins, and the black dots represent the local bin means.

3.5 Choice of conditioning variables

Ideally we would like the conditioning variables of (22) to display some correlation with
∆Ei+1 and ∆Zi+1. In this case, the range of plausible reference values in the selected subset is
smaller. Consider the two bins depicted in Figure 6, each with 1 conditioning variable (∆Ei+1 |
Ei). The binning object of Figure 6(a) shows considerable less correlation between Ei and
∆Ei+1 than its counterpart in Figure 6(b). As a result, each bin contains a larger spread in
possible ∆E values, leading to more noisy ∆̃Ei+1 predictions.

We continue by drawing up a list of candidate conditioning variables, and computing the
temporal correlation coefficients

ρ (∆Ei+1, Ei) =
Cov [∆Ei+1, Ei]
σ (∆Ei+1)σ (Ei)

and ρ (∆Zi+1,Zi) =
Cov [∆Zi+1,Zi]
σ (∆Zi+1)σ (Zi)

(25)

from a reference time series of 500 days. Here Cov (·, ·) is the covariance operator and σ (·)
is the standard deviation. Specifically, we will select individual source terms from the ER and
ZR equations as candidate Ei and Zi, the rationale being that these will also (in part) drive the
evolution equations of ∆E and ∆Z. The complete list, including the correlation coefficient
values, is shown in Table 1. Previously undefined conditioning variables (occurring in the ZR

equation), are V R :=
(
ωR, F

)
/2 and OR :=

(
∇2ωR, ωR

)
/2. This strategy for selecting

candidate conditioning variables is reasonable, as many show substantial correlation with the
reference data, hovering around the ±0.5 mark. Clear exceptions are ER (which correlates
much less), and τES ′, τZZ ′, which show very high correlation.

4 RESULTS

This section contains the initial exploratory results of the methodology outlined in the pre-
ceding sections. For validation and training purposes we ran the reference model (1) for a
simulation period of 8 years, storing reference data and conditioning variables every ∆t. Here,
is amounts to roughly 1.8 × 106 snapshots per variable. When predicting, the training data
must be stored in memory to allow for fast resampling. If the reference snapshots are full field,
this can lead to high memory requirements [17]. Subsampling the reference data reduces the
memory constraints, although this leads to a surrogate with an intrinsic time step that is larger
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Ei, Zi ρ (∆Ei+1, Ei) ρ (∆Zi+1,Zi)
ZR :

(
ωR, ωR

)
/2 0.4017 0.336

ER : −
(
ψR, ωR

)
/2 0.1401 0.0951

UR :
(
ψR, F

)
/2 0.5497 0.598

SR :
(
ψR, ψR

)
/2 -0.5091 -0.4857

V R :
(
ωR, F

)
/2 -0.5467 -0.5965

OR :
(
∇2ωR, ωR

)
/2 -0.4993 -0.4394

τES
′ : τE

((
ER
)2
/ZR − SR

)
0.9484 0.8876

τZZ
′ : τZ

(
ZR −

(
ER
)2
/SR

)
0.8915 0.999

Table 1: Correlation coefficients.

than the ∆t of (4), and thus can only be updated after a certain number of ∆t time cycles [2]. A
clear advantage of our current surrogate approach, is that we can store the full 8 year reduced
training set in memory, without the need for subsampling.

We subdivide the results into tests of increasing complexity:

T1: A one-way coupled simulation where the resolved equation (8) provides the conditioning
variables, without replacing r = τE (∆E) Ψ′ + τZ (∆Z)ω′ in (8) with the surrogate
r̃ = τE(∆̃E)Ψ′ + τZ(∆̃Z)ω′. The surrogates ∆̃E and ∆̃Z are not extrapolated, i.e. they
are constructed using the full 8 year reference data set, so no simulation outside the time
period of the training data takes place.

T2: A two-way coupled simulation, still without surrogate extrapolation.

T3: A two-way coupled simulation with surrogate extrapolation.

4.1 Results T1

T1 serves as a verification of our code, as in this case the exact ∆E and ∆Z are still used
in (21) to compute τE and τZ . Now, if implemented correctly, surrogates such as ∆̃Ei+1 ∼
∆Ei+1 | (τES

′)i and ∆̃Zi+1 ∼ ∆Zi+1 | (τZZ
′)i, must follow the reference data closely, given

the high correlations displayed in Table 1. This is confirmed by the results of Figure 7.

4.2 Results T2

T2 is the first real test of the surrogate method due to its two-way coupled nature. As a
result, trajectories of ∆̃E and ∆̃Z can no longer be expected to follow the reference data.
Discrepancies between the exact (reduced) eddy forcing (16) and its surrogate will cause the
model forced by the surrogate to develop its own dynamics. We reiterate here that our goal
is to predict the time-averaged flow statistics, which might still be feasible if we are not in
absolute lockstep with ∆E and ∆Z. Even two full-scale simulations with slightly different
initial conditions will diverge from each other (due to their turbulent nature), yet can converge
in a statistical sense.

We tested a variety of surrogates, which differed through the set of selected conditioning
variables. All were Markovian in character, conditioned on variables from the previous time
step alone. Thus far, almost all considered surrogates improved upon the ZR bias of the un-
parameterized model, although they showed some varying performance amongst each other.
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Figure 7: T1 time series for ∆E and ∆Z and their corresponding surrogates over a 50 day period. The ∆̃E
surrogate is noisier due to the lower correlation with its conditioning variable (see Table 1).
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Figure 8: The pdfs of the energy (left) and enstrophy (right), of the reduced surrogate (r̃ = τE

(
∆̃E

)
Ψ′ +

τZ

(
∆̃Z

)
ω′), reference (r given by (7)) and unparameterised (r = 0) solution. The surrogates were both condi-

tioned on ZR, ER, UR, SR of the previous time step.

For brevity, we only show a representative sample of results. Consider the results of Fig-
ure 8, which shows the pdfs obtained using the surrogates ∆Ei+1 | ZRi , ERi , URi , SRi and
∆Zi+1 | ZRi , ERi , URi , SRi , with 10 bins per conditioning variable. As expected, the pdfs do
not show the same (near) perfect overlap with the reference compared to the training case
of Figure 4, but the match is still accurate. Surrogates conditioned on e.g.

(
ZR, ER, UR

)
or(

ZR, UR, SR
)

showed fairly similar results. Somewhat degraded performance (although over-
all still better than r = 0), is obtained when conditioning on

(
ER, UR, SR

)
, see Figure 9. While

the ZR bias is still corrected for, the pdfs of the surrogate underestimate the variance. The only
exception, which did not improve upon the unparameterized model, was when conditioning on
τES

′ and τZZ ′, despite the high correlations of Table 1. A possible cause is that, when predict-
ing, we are forced to condition on τE(∆̃E)S ′ instead of τE (∆E)S ′, as the latter is not available
outside the training period. Perhaps using conditioning variables such as τES ′ and τZZ ′ should
be viewed as some form of overfitting, leading to a surrogate which is unlikely to generalize
well beyond the training set. A possible remedy might be to increase the time lag [17].
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Figure 9: The pdfs of the energy (left) and enstrophy (right), of the reduced surrogate (r̃ = τE

(
∆̃E

)
Ψ′ +

τZ

(
∆̃Z

)
ω′), reference (r given by (7)) and unparameterised (r = 0) solution. The surrogates were both condi-

tioned on ER, UR, SR of the previous time step.
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Figure 10: The pdfs of the energy (left) and enstrophy (right), of several extrapolated reduced surrogates (r̃ =

τE

(
∆̃E

)
Ψ′ + τZ

(
∆̃Z

)
ω′), reference (r given by (7)) and unparameterised (r = 0) solution. The surrogates

were both conditioned on ZR, ER, UR, SR of the previous time step.

4.3 Results T3

Predictive capability outside the training set should be the goal of any data-informed numer-
ical simulation tool. In our case, this goal concerns prediction outside the time interval covered
by the training set. We take tentative steps in this direction by incrementally reducing the time
interval of the training set for the ∆Ei+1 | ZRi , ERi , URi , SRi and ∆Zi+1 | ZRi , ERi , URi , SRi
surrogates, while keeping the simulation time Tsim fixed to 8 years. Figure 10 shows the
resulting pdfs, obtained using a training set spanning the first Ttrain = αTsim years, with
α ∈ {0.9, 0.8, 0.7, 0.6, 0.5}. No significant deviation from the unextrapolated T2 test case is
observed, which demonstrates the predictive capability of the surrogate method.

Finally, we note that all results can replicated via the source code and corresponding input
files, available for download at [3].
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5 CONCLUSION & OUTLOOK

We presented a method to create a stochastic surrogate model, conditioned on time-lagged
observable variables, from a set of training data of a multiscale dynamical system. The novelty
of our approach is found in the derivation of model-error source terms designed to track chosen
spatially-integrated statistics of interest. We denote these as ’reduced’ model error terms, as
they lead to a significant reduction in the amount of training data. Although using less data
might seem counter productive, we argue that this leads to an easier surrogate construction.
Furthermore, our reduced framework allows us to step away from a fully-data driven, physics-
blind, surrogate, and inform part of our model-error term based on the transport equations of
the target statistics.

Future work includes further testing the extrapolative capability of the method. Another in-
teresting research option would be to contrast the performance of our conditional time-lagged
surrogate with machine-learning alternatives, such as random forests or neural nets. Recent
relevant work also considered a combination of both approaches[13]. Finally, a further inter-
esting avenue of future research is the a-priori incorporation of constraints from mathematical
physics. For instance, when rewriting the eddy forcing in tensor format, certain constraints on
the tensor shape can be found [19]. Such an approach opens up the possibility for efficient,
physics-constrained uncertainty quantification, see e.g. [5] for examples in steady flow prob-
lems or [8] for large-eddy simulations.

ACKNOWLEDGEMENTS

This research is funded by the Netherlands Organization for Scientific Research (NWO)
through the Vidi project ”Stochastic models for unresolved scales in geophysical flows”, and
from the European Union Horizon 2020 research and innovation programme under grant agree-
ment #800925 (VECMA project).

We also thank W.T.M. Verkley for making his vorticity equation source code available to us.

REFERENCES

[1] P.S. Berloff. Random-forcing model of the mesoscale oceanic eddies. Journal of Fluid
Mechanics, 529:71–95, 2005.

[2] D. Crommelin and E. Vanden-Eijnden. Subgrid-scale parameterization with conditional
markov chains. Journal of the Atmospheric Sciences, 65(8):2661–2675, 2008.

[3] W.N. Edeling. Tau ez - uncecomp branch (github repository). https://github.com/
wedeling/TAU_EZ/tree/uncecomp, 2019.

[4] W.N. Edeling. vorticity-solver (github repository). https://github.com/
wedeling/vorticity-solver, 2019.

[5] W.N. Edeling, G. Iaccarino, and P. Cinnella. Data-free and data-driven rans predictions
with quantified uncertainty. Flow, Turbulence and Combustion, 100(3):593–616, 2018.

[6] P.R. Gent and J.C. Mcwilliams. Isopycnal mixing in ocean circulation models. Journal of
Physical Oceanography, 20(1):150–155, 1990.

[7] I. Grooms and L. Zanna. A note on ’toward a stochastic parameterization of ocean
mesoscale eddies’. Ocean Modelling, 113:30–33, 2017.

446

https://github.com/wedeling/TAU_EZ/tree/uncecomp
https://github.com/wedeling/TAU_EZ/tree/uncecomp
https://github.com/wedeling/vorticity-solver
https://github.com/wedeling/vorticity-solver


Wouter Edeling and Daan Crommelin

[8] L. Jofre, S.P. Domino, and G. Iaccarino. A framework for characterizing structural uncer-
tainty in large-eddy simulation closures. Flow, Turbulence and Combustion, 100(2):341–
363, 2018.

[9] P. Mana and L. Zanna. Toward a stochastic parameterization of ocean mesoscale eddies.
Ocean Modelling, 79:1–20, 2014.

[10] R. Maulik, O. San, A. Rasheed, and P. Vedula. Subgrid modelling for two-dimensional
turbulence using neural networks. Journal of Fluid Mechanics, 858:122–144, 2019.

[11] J.C. McWilliams. The emergence of isolated coherent vortices in turbulent flow. Journal
of Fluid Mechanics, 146:21–43, 1984.

[12] T. Palmer and P. Williams. Stochastic physics and climate modelling. Cambridge Univer-
sity Press Cambridge, UK, 2010.

[13] S. Pan and K. Duraisamy. Data-driven discovery of closure models. SIAM Journal on
Applied Dynamical Systems, 17(4):2381–2413, 2018.

[14] R. Peyret. Spectral methods for incompressible viscous flow, volume 148. Springer Sci-
ence & Business Media, 2013.

[15] J. Thuburn, J. Kent, and N. Wood. Cascades, backscatter and conservation in numerical
models of two-dimensional turbulence. Quarterly Journal of the Royal Meteorological
Society, 679(140):626–638, 2014.

[16] N. Verheul and D. Crommelin. Data-driven stochastic representations of unresolved fea-
tures in multiscale models. Commun. Math. Sci, 14(5):1213–1236, 2016.

[17] N. Verheul, J. Viebahn, and D. Crommelin. Covariate-based stochastic parameterization of
baroclinic ocean eddies. Mathematics of Climate and Weather Forecasting, 3(1):90–117,
2017.

[18] W.T.M. Verkley, P.C. Kalverla, and C.A. Severijns. A maximum entropy approach to the
parametrization of subgrid processes in two-dimensional flow. Quarterly Journal of the
Royal Meteorological Society, 142(699):2273–2283, 2016.

[19] S. Waterman and J.M. Lilly. Geometric decomposition of eddy feedbacks in barotropic
systems. Journal of Physical Oceanography, 45(4):1009–1024, 2015.

[20] L. Zanna, P. Mana, J. Anstey, T. David, and T. Bolton. Scale-aware deterministic and
stochastic parametrizations of eddy-mean flow interaction. Ocean Modelling, 111:66–80,
2017.

A ENERGY AND ENSTROPHY EQUATIONS

For convenience, we reproduce certain relevant derivations regarding the ER and ZR trans-
port equations from [18]. The energy (density) is defined as

ER :=
1

2

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

VR ·VRdxdy, (26)
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where VR is the vector containing the velocity components in x and y direction. It can be
rewritten as ER = −

(
ψR, ωR

)
/2 via

VR ·VR = ∇ψR · ∇ψR = ∇ ·
(
ψR∇ψR

)
− ψR∇2ψR = ∇ ·

(
ψR∇ψR

)
− ψRωR (27)

The first equality follows from the definition VR :=
(
−∂ψR/∂y, ∂ψR/∂x

)T , while the second
stems from the product rule of a scalar (ψR) and a vector (∇ψR):

∇ ·
(
ψR∇ψR

)
= ∇ψR · ∇ψR + ψR∇2ψR. (28)

Finally, the last equality of (27) simply follows from the governing equations (1). The term
∇ ·

(
ψR∇ψR

)
disappears when integrated over the spatial domain, after application of the

divergence theorem in combination with the doubly periodic boundary conditions. This leaves
ER = −

(
ψR, ωR

)
/2. To obtain the energy equation, start with

dER

dt
=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

∂

∂t

[
1

2
VR ·VR

]
dxdy =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

VR · ∂VR

∂t
dxdy.

(29)

Similar to the analysis above, we use the relation VR ·VRt = ∇ ·
(
ψR∇ψRt

)
− ψRωRt (where

the subscript t denotes ∂/∂t) to obtain

dER

dt
= −

(
ΨR,

∂ωR

∂t

)
=(

ψR, PRJ
(
ψR, ωR

))
− ν

(
ψR,∇2ωR

)
− µ

(
ψR, F − ωR

)
+
(
ψR, r

)
(30)

Using integration by parts and the periodic boundary conditions it can be shown that the first
term on the right-hand side satisfies

(
ψR, PRJ

(
ψR, ωR

))
=
(
J
(
ψR, ψR

)
, ωR

)
= 0, since the

Jacobian of two equal arguments is zero [18]. Furthermore, using the self-adjoint nature of the
Laplace operator, we have

(
ψR,∇2ωR

)
=
(
∇2ψR, ωR

)
=
(
ωR, ωR

)
. This leads to

dER

dt
= −ν

(
ωR, ωR

)
− µ

(
ψR, F

)
+ µ

(
ψR, ωR

)
+
(
ψR, r

)
, (31)

which equals (13). Using the same procedure, the evolution equation for the enstrophy reads

dZR

dt
=

(
ωR,

∂ωR

∂t

)
= ν

(
ωR,∇2ωR

)
+ µ

(
ωR, F

)
− µ

(
ωR, ωR

)
−
(
ωR, r

)
. (32)
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Abstract. Communication networks have evolved to a level of sophistication that requires
computer models and numerical simulations to understand and predict their behavior. A net-
work simulator is a software that enables the network designer to model several components
of a computer network such as nodes, routers, switches and links and events such as data
transmissions and packet errors in order to obtain device and network level metrics. Network
simulations, as many other numerical approximations that model complex systems, are subject
to the specification of parameters and operative conditions of the system. Very often the full
characterization of the system and their input is not possible, therefore Uncertainty Quantifica-
tion (UQ) strategies need to be deployed to evaluate the statistics of its response and behavior.
UQ techniques, despite the advancements in the last two decades, still suffer in the presence of a
large number of uncertain variables and when the regularity of the systems response cannot be
guaranteed. In this context, multifidelity approaches have gained popularity in the UQ commu-
nity recently due to their flexibility and robustness with respect to these challenges. The main
idea behind these techniques is to extract information from a limited number of high-fidelity
model realizations and complement them with a much larger number of a set of lower fidelity
evaluations. The final result is an estimator with a much lower variance, i.e. a more accurate
and reliable estimator can be obtained. In this contribution we investigate the possibility to
deploy multifidelity UQ strategies to computer network analysis. Two numerical configurations
are studied based on a simplified network with one client and one server. Preliminary results
for these tests suggest that multifidelity sampling techniques might be used as effective tools for
UQ tools in network applications.
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1 INTRODUCTION

Uncertainty quantification (UQ) is a field of study drawing from statistics, mathematics, and
computational science [37] [29] [6]. Simulation models for engineering and physics applica-
tions are often developed to help assess a design or performance requirement. The past few
decades have seen an unprecedented increase in the complexity and sophistication of compu-
tational simulation models due to improvements in computer architectures/processors as well
as in advanced software frameworks. Typically, one does not run a simulation model just once
but multiple times, to explore the effects of different parameters and scenarios. The capability
to quantify the effects of uncertainty when using a model to inform a scientific or regulatory
decision is critical. There have been a number of large-scale regulatory assessments performed
using uncertainty quantification on computational models. Notable examples include the per-
formance of geologic repositories for the disposal of nuclear waste [20], computational fluid
dynamics for aircraft design, and climate model predictions [38].

The basic framework for uncertainty quantification is identifying and characterizing uncer-
tain input parameters, representing the input uncertainty (typically in the form of probability
distributions), propagating uncertainties in the inputs through the model (typically by drawing
samples of the uncertain parameters from their respective distributions and running the model
at those sample values to create an ensemble of model runs), and analyzing the output to de-
termine statistics on the output quantities of interest. A number of activities related to UQ that
can inform the UQ process include sensitivity analysis [36], verification and validation [32],
and dimension reduction [4]. There are many related issues and research directions in UQ
which include sample design (e.g. how does one choose the input samples at which to run the
model), inclusion of other uncertainties (e.g. numerical uncertainties, uncertainties in observa-
tional data used to calibrate models, model form uncertainty), and types of uncertainties (e.g.
aleatory, epistemic, interval uncertainties). The scientific computing community has endeav-
ored to develop methods which are as efficient as possible to perform UQ on computationally
expensive simulation models. In this paper, we present one particular class of UQ methods
called multifidelity methods that we feel is well suited for the analysis of network and cyber
modeling. Multifidelity UQ techniques have gained popularity in the last decade or so when the
need for UQ of high-fidelity numerical simulations led to the design of techniques capable of
containing the overall computational burden. In this contribution, the focus in on multifidelity
sampling strategies given the features of the network applications. In a broad sense, it is pos-
sible to include the so-called multi-level and multi-index approaches [15, 16, 19], multifidelity
MC [33, 34], multilevel-multifidelity techniques [11, 7, 14] and approximate control variates
[17] in this class of approaches. Multifidelity UQ strategies have been successfully used in a
variety of context ranging from turbulent-laden flows in a radiative environment [22], aerospace
applications [14] and cardiovascular flows [9]. Our goal in this work is to explore these methods
in the context of UQ on computer network applications.

Network models can aid network operators and designers when making decisions. For in-
stance, network operators can use models to understand the potential impacts of changes to
their network before affecting the operation system. Network designers can use models to un-
derstand design trade-offs before network creation. These models can drastically reduce the
cost and risk of deployment. The terminology of network modeling generally designates two
distinct choices: simulations and emulations. Simulations are similar to their physics-modeling
counterparts: they use a deep understanding of the underlying processes to simulate network
components and interactions in software. Emulations, on the other hand, run the real software
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on virtualized hardware which allows them to capture unknown or poorly understood behaviors.
This realism comes at the cost of increased computational cost.

The reasons for performing uncertainty quantification on network models is similar to that
of engineering models: to understand how uncertainty in inputs (such as device and network
configuration, threats, and network topology) propagates to network outputs (such as network
availability, traffic loads, etc.) In this exploratory study, the focus is on multifidelity sampling
UQ strategies which has the potential to naturally treat system responses with noise, bifurca-
tions, or discontinuities in the presence of a large number of uncertain parameters. This scenario
is expected to be particularly relevant for network simulations and emulations.

The remainder of the manuscript is organized as it follows. In Section 2 the network mod-
eling approach is described and, in particular, two network softwares are described, namely a
simulator ns-3 and an emulator minimega. Section 3 introduces some generalities on the
multifidelity sampling approaches. Numerical examples are presented in Section 4. Conclu-
sions close the paper in Section 5.

2 NETWORK MODELS

As stated earlier, there are generally two types of network modeling: network simulation and
network emulation. Network simulators rely on careful implementations of how “real systems”
respond to inputs and the processes that drive them which makes them useful to study well-
understood behaviors of systems but not necessarily emergent behaviors. Depending on what
the model is being used for, this could require a very in-depth understanding of the system that
we wish to model. Simulations can even aid designers that wish to understand the trade-offs in
the underlying processes when the real software has not been created yet. On the other hand,
network emulation runs the real software on virtualized hardware which decreases the semantic
gap between the model and the operational system.

Comparing simulations and emulations, we find that they have different strengths. Simula-
tions can be fast to develop and capture the core behavior of well-understood system. Since
they control the clock, simulations can run faster than real time. Additionally, multiple network
simulations can run in parallel because they are not timing dependent or reliant on virtualized
hardware which may be limited. This means that we can run many instances of our network
simulation for every emulation. Emulations, which run the real software, should more closely
match the real systems. In our multifidelity UQ, we aim to leverage the strengths of both forms
of modeling. We can use the inexpensive network simulation as our low-fidelity model and the
emulation as the high-fidelity model.

In addition to network modeling, network operators and designers may also use physical
testbeds in order to understand their systems. Physical testbeds are costly to build and maintain
and may not be suitable for all types of tests. Related work has compared network emulation to
physical testbeds to discover where and how they differ [5]. In future work, we could expand
upon our levels of multifidelity to include results from a physical testbed (or even an operational
network) as the highest fidelity.

2.1 The ns-3 network simulator

ns-3 [21] is a discrete network simulator for Internet Protocol (IP) and non-IP networks. It
has been widely used by the academic community to understand existing and emerging network
designs and protocols [8, 31, 35, 39]. ns-3 allows users to construct simulations from reusable
components to configure nodes, topologies, and applications.
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Interestingly, ns-3 supports leveraging code from real applications or kernels in the simula-
tor. For example, there are tests to incorporate the entire Linux kernel networking stack. This
hybridization of ns-3 likely increases its fidelity which benefits our multifidelity UQ approach
since the more correlated our low- and high-fidelity models are, the faster the convergence.

2.2 The minimega network emulator

minimega [28] is a toolset developed by Sandia National Laboratories to launch and man-
age virtual machines (VMs) to emulate networks. It wraps QEMU [3] and KVM [23] to launch
the VMs and Open vSwitch [10] to connect the VMs to virtual networks with user-defined
topologies. minimega includes a scriptable interface that includes many APIs to support the
experimentation lifecycle such as capturing data and running services.

3 MULTIFIDELITY UNCERTAINTY QUANTIFICATION

In this section a multifidelity sampling approach is described. For this particular application,
it is reasonable to assume that the high-fidelity (HF) model is unbiased and that lower accuracy
network representations are generated and added to a limited number of HF evaluations in order
to decrease the variance of the sampling estimator, i.e. increasing its reliability from an user
perspective. This is a slightly different scenario than, for instance, a classical multilevel MC
application where usually it is possible to control the accuracy (bias) of the high-fidelity model
in order to balance the full mean square error of the estimator [16]. For a generic quantity of
interest (QoI) of the system,Q : Rd 3 Ξ→ R, e.g. the number of requests per second processed
by a server, the goal is to compute some statistics. In this work, the expected value E [Q] of
the QoI is considered, but an extension to higher-order moments it is also possible. The Monte
Carlo (MC) estimator for E [Q] can be written as

E [Q] =

∫
Ξ

Q(ξ)p(ξ) dξ ≈ Q̂MC
N =

1

N

N∑
i=1

Q(ξ(i)) =
1

N

N∑
i=1

Q(i), (1)

where N realizations of the vector of random input ξ ∈ Ξ are drawn according to the joint
probability distribution p(ξ). For each realization of the vector of random input ξ, the value
of the QoI Q(i) = Q(ξ(i)) is evaluated by performing a network simulation and extracting
the desired quantity. Q̂MC represents a random variable itself and, if Q has finite variance
Var [Q] <∞, it is possible to show that the estimator is unbiased, i.e. E

[
Q̂MC

]
= E [Q] and

Var
[
Q̂MC
N

]
=

Var [Q]

N
. (2)

A classical result, that follows from the central limit theorem, states that for N → ∞ the er-
ror Q̂MC

N − E [Q] is distributed as a normal distribution with zero mean and variance equal to
Var

[
Q̂MC
N

]
. It follows that the root mean square error (RMSE) is equal to Var 1

2 (Q) /
√
N ,

from which it follows the well known rate of convergence of O(N−1/2) for the MC estima-
tor. The inspection of the RMSE reveals important features of the MC estimator that make it
particularly suited for the network applications considered in this work. Albeit the slow rate
of convergence corresponds to a limit in obtaining accurate statistics with a limited number of
realizations of the QoI (i.e. network simulations), it is also possible to note that neither the
dimensionality of the system or the smoothness of Q appear in the RMSE. This situation is dif-
ferent from other quadrature rules in which the rate of convergence is ultimately related to the
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order of continuous derivatives of the integrand and the number of dimensions. The MC estima-
tor is therefore a convenient, and very often the only practical choice, when one deals with both
noisy responses and possibly bifurcations/discontinuities of the system response. Both cases
are common in network simulations. Moreover, it is reasonable to imagine that for a realistic
network topology the number of uncertain parameters, d, might easily reach order hundreds
of parameters, thus preventing the efficient use of other UQ techniques like spectral methods,
i.e. Polynomial Chaos expansions (PC) [27]. Given the prohibitive computational cost required
for each network simulation, which limits the maximum affordable number N , in order to de-
crease the RMSE of the estimator the only viable solution is to change the problem in a way
that reduces Var 1

2 (Q) while keeping the value of E [Q] unaltered. It is important to note that,
whenever a computationally cheaper evaluation of Q might be obtained without sacrificing the
overall numerical accuracy, this possibility should be considered. In this work, every model
introduced to alleviate the computational burden is assumed to introduce a non-negligible bias
with respect to the target network system (which in this work is considered the truth system).

The pivotal idea of the multifidelity sampling strategies is the following. A small set of
evaluations of the high-fidelity system is used to guarantee the convergence of the estimator to
its statistics; in addition to this set, a larger number of evaluations from inaccurate but more
computationally efficient systems (e.g. ns-3 network simulations as opposed to high-fidelity
minimega emulations) is aggregated with the high-fidelity set in order to obtain an estimator
with the lowest variance given a prescribed computational budget. The so-called optimal control
variate (OCV) method can be used for this scope [24, 26, 25]. In the OCV estimator, a MC
estimator based on N high-fidelity evaluation, Q̂HF,MC

N , is extended to include weighted sums
of contributions based on M lower-fidelity models for which we consider their expected value
to be known a priori

Q̂OCV = Q̂HF,MC
N +

M∑
i=1

αi

(
Q̂i − µi

)
, (3)

where Q̂i and µi represent a MC estimator and the exact mean of the ith low-fidelity model,
respectively and the weights α = [α1, . . . , αM ]T ∈ RM are introduced as optimization parame-
ters. For simplicity and without loss of generality, the number of the Ni evaluations of the ith
low-fidelity model is assumed proportional to the number of high-fidelity simulation N through
a coefficient ri, i.e. Ni = driNe. By means of simple manipulations it is possible to show that
such estimator is unbiased, i.e. E

[
Q̂OCV

]
= E

[
Q̂HF,MC
N

]
= E [Q] for any choice of the vector

α. Under this framework, once the covariance matrix C ∈ RM×M amongst Qi and the vector
of covariances c between Q and each Qi are defined, the optimal weights α? are obtained as

α? = argmin
α

Var
[
Q̂OCV

]
= −C−1c, (4)

and the corresponding variance is

Var
[
Q̂OCV

]
=

Var [Q]

N

(
1− cTC−1c

Var [Q]

)
=

Var [Q]

N

(
1−R2

OCV

)
. (5)

It is evident that R2
OCV = cTC−1c

Var[Q]
represents a positive quantity and 0 ≤ R2

OCV ≤ 1, there-
fore the variance of the OCV estimator is always lesser or equal than the corresponding MC
variance (based on high-fidelity realizations only). It is also important to note that if the OCV
estimator is obtained as an extension of a MC estimator based onN high-fidelity simulations by
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adding Ni low-fidelity simulations for i = 1, . . . ,M , its overall cost would naturally be higher
than MC. An optimal sample allocation between models is in general needed in order to obtain
an efficient OCV estimator given a prescribed computational cost. Although the OCV method
provides an elegant mathematical solution to decrease the RMSE of a plain MC estimator, in a
practical computational settings it is necessary to estimate the values of µi which are unknown
at the beginning of the computations, e.g. in this work it is not even known a priori the ex-
pected value of the ns-3 QoI. In order to address this limitation, it is possible to partition the
set of low-fidelity evaluation in two (possibly overlapping) subsets and using each of them to
compute the term Q̂i and an approximation of µi, µ̂i, respectively. Interesting properties and
analogy between this approach and other multifidelity approaches discussed in literature can
be drawn for this framework, called Approximate Control Variate [17], however this is beyond
the scope of the present work. We only note here that for particular choices of the low-fidelity
simulations partitioning, it is possible to show that these estimators might exhibit an higher
variance reduction than an OCV estimator with only one low-fidelity model, OCV-1 (although
the final variance of the estimator would ultimately depend on the possibility to approach the
theoretical variance reduction without incurring in a overwhelming low-fidelity cost). On the
contrary, this possibility is prevented in more classical recursive schemes for which it is possible
to demonstrate that the variance reduction is lesser than the one corresponding to OCV-1 [17].

In the present work, the goal is to demonstrate that is indeed possible to use the multifidelity
sampling idea in the context of network simulations, therefore the extension to the most effi-
cient partitioning scheme of the low-fidelity evaluations Ni is left for a future work. Given this
narrower focus, here the case of a single low-fidelity model is explicitly addressed. For the case
of a single low-fidelity model two possible choices of partitioning for the low-fidelity simula-
tions are available. The set can be split in both overlapping or independent sets of simulations
(by construction we assume that the cardinality of the set adopted to evaluate µ̂i is larger than
the one corresponding to the set used for Q̂i). In both cases, the performances of the estimator
(in term of its variance) are equivalent (the difference is limited to a dissimilar value for the
optimal coefficient α1), therefore in this work the case of fully overlapping partitioning is con-
sidered. Under these assumptions the ACV-1 estimator is equivalent to the multifidelity Monte
Carlo (MFMC) estimator adopted in [33, 30, 34], i.e. the term Q̂i is computed by means of N
evaluations (shared with the HF model) whereas the approximation µ̂i is evaluated by adding
another set of N1−N = (r1− 1)N independent evaluations. The final form of the estimator is

Q̂ACV−1 =
1

N

N∑
i=1

Q(i) + α1

(
1

N

N∑
i=1

Q
(i)
1 −

1

N1

(
N∑
i=1

Q
(i)
1 +

N1−N∑
j=1

Q
(j)
1

))
. (6)

Simple manipulations lead to an optimal coefficient selection where

α?1 = −C−1c = − (Var [Q1])−1
(
ρ1Var

1
2 (Q1) Var

1
2 (Q)

)
= −ρ1

Var 1
2 (Q)

Var 1
2 (Q1)

,
(7)

where ρ1 denotes Pearson’s correlation coefficient. This coefficient choice corresponds to a
minimum variance for the multifidelity estimator (ACV-1) equal to

Var
[
Q̂ACV−1

]
=

Var [Q]

N

(
1− r1 − 1

r1

ρ2
1

)
. (8)
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It is important to note that, for the case of one single low-fidelity model, the OCV estimator
reduces to OCV-1 and its variance reduction term is R2

OCV−1 = ρ2
1, thus the factor r1−1

r1
< 1

stems from the need for estimating µ̂1 in the ACV setting. The optimal sample allocation for the
generic ACV estimator can be obtained in closed form only in the case of a single low-fidelity
model, and again corresponds to the solution previously discussed in literature [33, 30, 34]: the
optimal number of low-fidelity simulations to obtain a prescribed variance for the estimator, i.e.
Var

[
Q̂ACV−1

]
= ε2, corresponds to a value of r1 equal to

r?1 =

√
C
C1

ρ2
1

1− ρ2
1

, (9)

where C and C1 corresponds to a measure of the computational cost (for instance the runtime of
a simulation) for the high-fidelity and low-fidelity model, respectively. For particular choices of
the low-fidelity partitioning that are based on imposing a recursive sampling scheme as noted
in [17], a solution in closed form can be obtained also for M > 1 and this case is the MFMC
introduced in [34], however in this latter case the variance reduction would always beR2

MFMC <
ρ2

1. The corresponding number of required high-fidelity simulations to obtain a variance equal
to ε2 is obtained as

N? =
Var [Q]

ε2

(
1− r?1 − 1

r?1
ρ2

1

)
=

Var [Q]

ε2
Λ(r?, ρ2

1), (10)

where the function Λ = Λ(r, ρ2) =
(
1− r−1

r
ρ2
)

is introduced for compactness. The previous
equation is also useful to quantify the computational cost reduction that might be obtained
through the ACV-1 estimator. A MC estimator based on NMC would have a variance equal to
Var [Q] /NMC , therefore for obtaining an ACV-1 estimator with equivalent variance the total
number of high-fidelity simulations would be equal to NMCΛ(r?, ρ2

1) and its total cost

Ctot = N?

(
1 +
C1

C
r?
)

= NMCΛ(r?, ρ2
1)

(
1 +
C1

C
r?
)
. (11)

The ACV-1 estimator would be more efficient as the product Λ(r?, ρ2
1)
(
1 + C1

C r
?
)

decreases. It
should be noted that this term depends only on the efficiency of the low-fidelity model, i.e. C1C ,
and its correlation with the high-fidelity model, i.e. ρ2

1. To summarize, in a practical setting a
multifidelity estimator as ACV-1 might be used to obtain slightly different objectives. Given a
target accuracy for the estimator, the computational burden can be optimally distributed between
the high- and low-fidelity model to guarantee that only the minimum possible computational
cost is required. Alternatively, given a MC estimator based on high-fidelity simulations, an
additional set of low-fidelity evaluations can be added to obtain the most efficient estimator
given the computational effort invested in the high-fidelity realizations and the characteristics
of the low-fidelity model, i.e. computational efficiency and correlation.

4 NUMERICAL EXAMPLES

In this section two numerical tests are conducted. A simple network topology consisting
of a server and a client is studied under different operative conditions (see below for details).
Two multifidelity test cases are considered in the following. In the first test, both high- and
low-fidelity models are defined in the ns-3 network simulator. This test case has also served
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Figure 1: Simple network configuration used in this work for testing the multifidelity UQ ap-
proaches.

to test the coupling between ns-3 and the Sandia National Laboratories’ UQ software Dakota
[1, 2]. In contrast, for the second demonstration problem, the high-fidelity model is defined
in minimega whereas the low-fidelity model is based on ns-3. For both test cases, the per-
formance of two possible low-fidelity models are considered to provide a preliminary indica-
tion about the achievable trade-off between correlation and computational efficiency. For the
minimega/ns-3 case, the use of both low-fidelity models at the same time is also considered
as an exploratory investigation of the efficiency of the OCV strategy (which uses more than one
low-fidelity model) compared to OCV-1 (which is based on a single low-fidelity model).

4.1 Experiment workload

For our numerical examples, we study a simple network topology consisting of a server and
a client as depicted in Figure 1. The topology consists of two endpoints, one of which runs
an HTTP server and the other of which runs an HTTP client. We will attempt to model the
interactions between the client and server in this topology using both simulation and emulation.

The primary QoI in our scenario is the number of requests the client completes per second.
We use multifidelity UQ to study the affects of several uncertain parameters such as the size of
the HTTP response (ResponseSize), the delay introduced by the switch (Delay), and the speed
of the switch (DataRate).

For the minimega emulation, we leveraged the models that we constructed during previous
work [5]. Since this is an exploratory study, we do not attempt to vary design parameters such
as the virtual network interface type as done in the previous work. In this work, we use e1000
network drivers and 1 virtual CPU.

For the ns-3 simulations, we created a topology to match Figure 1. We modified the built-in
HTTP server and client implementations to better match the behaviors of the HTTP server and
client used in the emulation (protonuke, a traffic generation tool in the minimega [28] toolset,
and ApacheBench, a server benchmarking tool, respectively). Specifically, we modified the
built-in simulated client to close and re-establish TCP connections after each request. We made
this modification because the keep-alive behavior has been shown to have significant effects
on HTTP performance [18]. In future work, we could explore how the correlation between
the high- and low-fidelity models changes based on this modification. ApacheBench also sup-
ports keep-alives, creating yet another possible experiment. To match the emulation, we also
parameterized the number of requests to perform and the response size in ns-3.
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4.2 A simplified network topology in ns-3

The first demonstration is based on ns-3 simulations for both the high- and low-fidelity mod-
els. The goal of the UQ analysis is to quantify the expected value for the number of requests per
second in a scenario in which a total of 100 requests are exchanged between client and server
with a payload of 16MB. The case of two uncertain network parameters is considered: the
DataRate is considered uniformly distributed between 5 and 500 Megabits per second (Mbps),
whereas the Delay is uniformly distributed between 1 and 3 milliseconds. The uncertain param-
eters and their distributions are reported in Table 1.

Uncertain variable Disribution
DataRate U(5, 500)Mbps

Delay U(1, 3)ms

Table 1: Uncertain parameters and their distribution for the first demonstration case.

Two low-fidelity models are considered for this test case. The first low-fidelity model is
obtained by reducing the payload from 16MB to 1MB, this model is dubbed simply LF. The
second low-fidelity model is generated by both reducing the payload from 16MB to only 500B
and the number of requests from 100 to 10 in an attempt to obtain a very fast simulation;
this latter model is named LF?. The computational runtime for the three models and their
computational cost normalized with respect to the high-fidelity model (HF) are reported in
Table 2.

Model runtime [s] Normalized Cost
HF 1200 1
LF 50 0.0417
LF? 0.15 0.000125

Table 2: Runtime and computational cost for the models used in the first demonstration.

The responses of the three models are shown in Figure 2 for reference.
As a first result, a total of 700 high-fidelity simulations has been obtained for the high-

fidelity model. Afterwards, a subset of the high-fidelity simulations has been extracted and
paired with an equivalent number of low-fidelity simulations in order to estimate the correlation.
Once the correlation between the high- and low-fidelity model has been evaluated, the optimal
number of low-fidelity realizations has been computed by resorting to Eq. (9) and the (r1−1)N
additional number of independent low-fidelity evaluations has been obtained. The total cost of
the estimator, expressed in term of equivalent HF network simulations, is evaluated by resorting
to Eq. (11) and the corresponding variance is computed with Eq. (8). In Figure 3a the value
of the standard deviation of the ACV-1 estimator is reported with respect to the equivalent
computational cost. Note that the convergence of all the estimators is roughly order N−1/2,
whereas their constant reflects the reduced variance achieved by introducing the low-fidelity
evaluations as control variate.

From a practical standpoint, a reduced variance/standard deviation corresponds to a tighter
confidence interval for the estimation of the expected value of the QoI. In order to demonstrate
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(a) HF (b) LF

(c) LF?

Figure 2: Responses for the three models of the first demonstration case. The qualitative be-
havior is similar for the three cases, however the values of requests/s predicted by the two
low-fidelity model is much higher than the HF model.
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mator (a). The 99.7% confidence interval for the MC and ACV-1 (LF?) estimator values (b). In
both figures, the QoI is the number of requests/s for which the expected value is desired.
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this, Dakota has been coupled with ns-3 and several estimator evaluations have been obtained
by targeting several estimator variances. The values of the 99.7% confidence intervals for MC
and ACV-1 based on LF? are reported in Figure 3b. It is possible to observe that the ACV-1
estimator produces much more reliable estimations for the expected value of the QoI for a very
limited computational cost: a very tight confidence interval can be obtained with a computa-
tional cost that corresponds to approximately only 100 HF network simulations. A comparable
confidence interval cannot be obtained with even 450 HF simulations when using a plain single
fidelity MC estimator.

4.3 Extension to minimega/ns-3 multifidelity analysis

The second experiment has a more realistic flavor and consists in the analysis of the same
network configuration presented in Figure 1 by means of emulations based on minimega.
Therefore, in this scenario minimega represents the unbiased high-fidelity model. The com-
putational cost and resources needed to pursue a UQ study based of a network emulation model
is generally prohibitive, thus a ns-3 simulation model is introduced as low-fidelity model. The
goal of the UQ analysis is to compute the expected value of the number of requests per seconds
for an operative conditions in which 100 requests are exchanged between server and client. For
this test case, two uncertain parameters are considered. Consistently with the previous example
the DataRate has been considered uniformly distributed between 5 and 500 Mbps. The second
uncertain parameter has been chosen to be the payload, i.e. ResponseSize which is assumed to
be log-uniformly distributed between 500B and 16MB. The uncertain parameters are reported
in Table 3.

One of the main difference with respect to the previous test case is that the simulations in
minimega are intrinsically stochastic, i.e. distinct repetitions of the same network configu-
ration are expected to produce slightly different results. This is a product of emulation being
subject to real-world timing in the virtual (and underlying physical) hardware and not running
off a simulated clock. For this simple configuration it has been observed that a limited num-
ber of repetitions, of the order of 10 repetitions, was sufficient to characterize in average the
response of a system for a fixed set of uncertain parameters. Complex network configurations
might require the adoption of more sophisticated techniques to control the overall error induced
on the statistics by the variability in minimega, however this is beyond the scope of the ex-
ploratory study conducted here and it is left for subsequent studies.

Uncertain variable Disribution
DataRate U(5, 500)Mbps

ResponseSize lnU(500, 16× 106)B

Table 3: Uncertain parameters and their distribution for the second demonstration.

Two low-fidelity models are defined by using ns-3. The first low-fidelity model has been
obtained by reducing the number of requests from 100 to 10. Additionally, the parameter Delay,
which does not have a counterpart in minimega, has been chosen as 50ms by observing its
impact on the response. In the future, in the presence of more complex network configurations
and a large set of parameters, a formal calibration process might be performed. Hereinafter,
this low-fidelity model is referred as LF. The second low-fidelity model has been obtained by
reducing the number of requests to the extreme case of a single request and the parameter Delay
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has been fixed at the value of 5ms. The runtime and the normalized computational cost for the
three models used in this numerical experiment are reported in Table 4.

Model runtime [s] Normalized Cost
HF 2680 1
LF 42.88 0.016
LF? 5.36 0.002

Table 4: Runtime and computational cost for the models used in the second demonstration.

It is important to note that in the following numerical experiments the computational cost is
measured in terms of equivalent runtime for a serial execution. This is not necessarily the case
when the low-fidelity simulations (as ns-3 in this case) might be potentially evaluated in paral-
lel. In this latter case, the LF computational cost normalized by the HF cost would have been
smaller (i.e. more efficient LF model) than the normalized cost reported in Table 4. Nonethe-
less, since the serial execution is expected to provide the worst case scenario, this is the chosen
metric for the performance comparison in the following. Another advantage stemming from
this choice is that the results might be seen as hardware independent, in contrast to the parallel
execution scenario in which the results would be only relative to the particular configuration
adopted, i.e. the number of parallel threads available.

The responses of the three models for the second test case are also reported in Figure 4 for
reference. A total of 500 network emulations has been obtained for minimega and several
realizations of a MC estimator have been obtained for an increasing number of simulations.
From the set of 500 HF runs, a sequence of subsets with increasing number of runs, has been
extracted to serve as a basis for the ACV-1 estimators. These subsets are first used to compute
corresponding LF simulations and their correlation with the HF. Afterward, the oversampling
ratio r1 is estimated from Eq. (9) and the corresponding set of (additional) LF runs is evaluated
in ns-3. Finally, the ACV-1 estimator is evaluated by resorting to Eq. (6). In Figure 5a the
performance of the different estimators are reported in term of their standard deviation. The
expected rate of convergence for all the sampling estimators, O

(
N−1/2

)
is also observed.

The 99.7% confidence interval on the expected value for the number of requests per second
is also reported in Figure 5b to demonstrate the increased reliability of the MF estimators. The
ACV-1 estimator based on the LF? model exhibits the highest performance. However, the ACV-
1 estimators based on both LF show similar performance and they can be clearly seen as more
efficient than the plain MC estimator based on high-fidelity evaluations only.

4.4 Exploring the potential of including multiple low-fidelity models

In order to explore the possibility to obtain an additional variance reduction by introducing
more than one low-fidelity model, the performance of the OCV estimator (which assumes the
low-fidelity statistics known) based on the simultaneous use of LF and LF? is compared to the
OCV-1 estimator (where one single low-fidelity model is used). These results are meant to serve
only as an indication of the potentiality of an ACV estimator (in which multiple LF models are
used simultaneously but their expected values are unknown) as described in [17] because the
final performance of the algorithm would need to include the cost of the low-fidelity models.

First, the correlation matrix for this test case is reported in Table 5. Both low-fidelity models
are very well correlated with the high-fidelity model, which is an indication that the multifidelity
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(a) HF (b) LF

(c) LF?

Figure 4: Responses for the three models of the second demonstration case. For this case the two
low-fidelity models (ns-3) are very similar between them, whereas the HF model minimega
exhibits a much higher number of request/s.

(a) Estimator Standard Deviation for the first test
case.

(b) 99.7% confidence interval for the estimator
value.

Figure 5: Estimator standard deviation for the simple MC and two variants of the ACV-1 es-
timator (a). The 99.7% confidence interval for MC and ACV-1 based on both the low-fidelity
estimators are reported (b). In both figures, the QoI is the number of requests/s for which the
expected value is desired.
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HF LF LF?

HF 1 0.86 0.90
LF 0.86 1 0.99
LF? 0.90 0.99 1

Table 5: Correlation matrix for the models used in the second test cases.

Estimator (low-fidelity models) Var
[
Q̂OCV
N

]
/Var

[
Q̂MC
N

]
Var

[
Q̂ACV
N

]
/Var

[
Q̂MC
N

]
Multifidelity (HF-LF) 0.26 0.39
Multifidelity (HF-LF?) 0.19 0.23

Multifidelity (HF-LF-LF?) 0.08 N/A

Table 6: Variance Reduction obtained by several estimators based on the three models HF, LF
and LF? for the second test case.

estimator might be very effective. Moreover, the two low-fidelity models are almost perfectly
correlated between them.

In Table 6, the three multifidelity estimators are reported in term of their normalized variance,
i.e. the ratio between their variance and the one for a plain MC estimator with the same number
of HF simulations. In the first column the normalized variance for the case of known low-fidelity
statistics (OCV) is reported. The use of both LF models simultaneously achieves the greatest
variance reduction exhibiting only 8% of the variance of the corresponding MC estimator. The
estimation of the LF statistics, as explained in Section 3, reduces the effectiveness of the OCV
estimators as can be observed in the second column of Table 6 where for the ACV-1 estimator
the normalized variance is reported. In general, the ACV estimator based on multiple LF models
requires the specification of the LF partitioning scheme (see [17]) and a numerical optimization
to obtain the sample allocation in closed form. The accurate quantification of the performance of
this estimator are left for a future study, however it is promising to observe a variance reduction
gap between OCV-1 and OCV which might translate to a similar gap between ACV-1 and ACV.

5 CONCLUDING REMARKS

In this work, multifidelity uncertainty quantification has been performed for network appli-
cations. Two approaches have been considered for the network computations: a simulation
approach based on the network simulator ns-3 and the network emulator minimega. The UQ
tool of choice has been a multifidelity sampling approach based on a control variate which is
capable of maximizing the variance reduction whenever multiple low-fidelity models are avail-
able. A simple network configuration consisting of a server and a client has been configured
and two possible test cases have been addressed. The first case is a simulation only case where
both the high- and low-fidelity model are evaluated in ns-3. The second case is more realistic
and based on minimega as high-fidelity model and ns-3 as low-fidelity one. For both test
cases, the multifidelity sampling approach has been demonstrated to be more efficient than a
plain MC estimator. Albeit the results obtained in this work are promising they would need
to be verified for more complex network configurations where the topology exhibits a higher
degree of complexity and the number of uncertain parameters is much larger. Additional care
would also need to be devoted to the representation of discrete variables which are very natural
when dealing with networks and strategies to automatically create lower fidelity models given a
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particular (possibly large) network topology. Future work will also focus on understanding and
mitigating the degradation of the correlation amongst network models in the presence of dis-
similar input parametrizations following what has been done for computational science models
in [13, 12].
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Abstract. OpenTURNS is an open source library for uncertainty propagation by probabilistic
methods. Developed in a partnership of five industrial companies (EDF, Airbus, Phimeca,
IMACS and ONERA), it benefits from a strong practical feedback. Classical algorithms of UQ
are available : central dispersion, probability of exceedance, sensitivity analysis, metamodels
and stochastic processes. Developed in C++, OpenTURNS is also available as a Python module
and has gained maturity thanks to more than 10 years of development.

However, there are situations where the engineer in charge of performing an uncertainty
study does not want to use a programming language such as C++ or Python. In this context,
providing a graphical user interface (GUI) may allow to greatly increase the use of Open-
TURNS and, more generally, of the UQ methodology.

In this paper, we present a basic tutorial of OpenTURNS in Python and will review the new
features in the library, which include new incremental statistical estimators. In the second part,
we review the new features in the open source GUI will be presented.
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1 Introduction

OpenTURNS is a C++ library for uncertainty propagation by probabilistic methods. Open-
TURNS is also available as a Python module and has gained maturity thanks to more than 10
years of development. However, there are situations where the engineer in charge of performing
an uncertainty study does not want to use a programming language such as C++, Python (e.g.
OpenTURNS) or Matlab. In this context, providing a graphical user interface (GUI) may allow
to increase the use of OpenTURNS and, more generally, of the UQ methodology.

2 OpenTurns

OpenTURNS[2, 3, 5] is an open source software, available as a C++ library and a Python in-
terface. It works under the Linux and Windows environments. The key features of OpenTURNS
are the following:

• open source initiative to secure the transparency of the approach,

• generic to the physical or industrial domains for treating of multi-physical problems,

• high performance computing,

• includes a variety of algorithms in order to manage uncertainties in several situations,

• contains complete documentation.

OpenTURNS is available under the LGPL license.
The main features of OpenTURNS are uncertainty quantification, uncertainty propagation,

sensitivity analysis and metamodeling.
Moreover generic wrappers allows to link OpenTURNS to any external code G.
OpenTURNS can be downloaded from www.openturns.org which offers different pre-

compiled packages specific to several Windows and Linux environments. It is also possible to
download the source files from the Github server and to compile them within another environ-
ment: the OpenTURNS Developer’s Guide provides advices to help compiling the source files.
Finally, most Python users use conda or pip to install OpenTURNS.

3 A tutorial example : the flooding model

3.1 Introduction

In this paper, we illustrate our discussion with a simple application model that simulates the
height of a river. The figure 1 presents the dyke that protects industrial facilities. When the
river height exceeds the one of the dyke, flooding occurs. This academic model is used as a
pedagogical example in [8]. The model is based on a crude simplification of the 1D hydro-
dynamical equations of SaintVenant under the assumptions of uniform and constant flowrate
and large rectangular sections. It consists of an equation that involves the characteristics of the
river stretch:

Y = Zv +H with H =

 Q

BKs

√
Zm−Zv

L

0.6

, (1)

where Y is the maximal annual overflow, H is the maximal annual height of the river, B is the
river width and L is the length of the river stretch. In this paper, we set the values of L and B
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Figure 1: The flood example: simplified model of a river.

Input Description Unit Probability distribution
Q Maximal annual flowrate m3/s Gumbel G(scale = 558,mode = 1013)
Ks Strickler coefficient - Normal N (30, 7.5)
Zv River downstream level m Uniform U(49, 51)
Zm River upstream level m Uniform U(54, 56)

Table 1: Input variables of the flood model and their probability distributions.

parameters :
L = 5000, B = 300.

The other four input variables Q, Ks, Zv and Zm are defined in Table 1 with their probability
distribution. The randomness of these variables is due to their spatio-temporal variability, our
ignorance of their true value or some inaccuracies of their estimation. We make the hypothesis
that the input variables are independent.

The goal of this study is twofold:

• we want to estimate the mean river height E(Y ),

• we want to perform the sensitivity analysis of the model, i.e. we want to rank the inputs
Q, Ks, Zv and Zm with respect to their contributions to the variability of the output Y .

3.2 Define the random vector

In this section, we present the Python script which allows to define the output random vector
in OpenTURNS.

We begin by importing the required modules.

from o p e n t u r n s . v i e w e r import View
import o p e n t u r n s as o t
from math import s q r t
import p y l a b as p l

We first define the function through which we want to propagate the uncertainties with the
def operator.
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def f u n c t i o n F l o o d (X) :
Hd = 3 . 0
Zb = 5 5 . 5
L = 5 . 0 e3
B = 3 00 . 0
Zd = Zb + Hd
Q, Ks , Zv , Zm = X
a l p h a = (Zm − Zv ) / L
H = (Q / ( Ks∗B∗ s q r t ( a l p h a ) ) ) ∗ ∗ ( 3 . 0 / 5 . 0 )
Y = H + Zv
re turn [Y]

Then we convert this Python function into an OpenTURNS function with the Python-
Function class.

i n p u t _ d i m e n s i o n = 4
g = o t . P y t h o n F u n c t i o n ( i n p u t _ d i m e n s i o n , 1 , f u n c t i o n F l o o d )

Now we create the distributions for the input variables.

• There are several ways to set the parameters of the Gumbel distribution for theQ variable.
Here the parameters are defined with the scale and mode parameters, which corresponds
to the GumbelAB class.

• The Q and Ks variables must remain positive (a negative value is not compatible with the
physical model). For this reason, we must truncate the distribution with Truncated-
Distribution.

myParam = o t . GumbelAB ( 1 0 1 3 . , 5 5 8 . )
Q = o t . P a r a m e t r i z e d D i s t r i b u t i o n ( myParam )
otLOW = o t . T r u n c a t e d D i s t r i b u t i o n .LOWER
Q = o t . T r u n c a t e d D i s t r i b u t i o n (Q, 0 , otLOW)
Ks = o t . Normal ( 3 0 . 0 , 7 . 5 )
Ks = o t . T r u n c a t e d D i s t r i b u t i o n ( Ks , 0 , otLOW)
Zv = o t . Uniform ( 4 9 . 0 , 5 1 . 0 )
Zm = o t . Uniform ( 5 4 . 0 , 5 6 . 0 )

We set the descriptions of the random variables: they are used for the graphics.

Q. s e t D e s c r i p t i o n ( [ "$Q (m^ 3 / s ) $ " ] )
Ks . s e t D e s c r i p t i o n ( [ " $Ks (m^ { 1 / 3 } ) / s ) $ " ] )
Zv . s e t D e s c r i p t i o n ( [ " Zv (m) " ] )
Zm. s e t D e s c r i p t i o n ( [ "Zm (m) " ] )

The drawPDF method plots the the probability distribution function of the variable.

Q. drawPDF ( )

The previous session produces the figure 2. When we closely look at the PDF of Q, we see a
small increase of the density for Q = 0, because of the truncation of the distribution.

Then we create the input random vector inputvector: by default, the copula is indepen-
dent. Finally, we create the output random vector Y.
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Figure 2: The probability density function of the variable Q.

X = o t . C o m p o s e d D i s t r i b u t i o n ( [ Q, Ks , Zv , Zm] )
inputRV = o t . RandomVector (X)
Y = o t . RandomVector ( g , inputRV )

These steps are typical of probabilistic programming: we have defined the random variables
involved in the problem without having generating a sample so far.

4 Estimating the mean with an incremental algorithm

4.1 Theory

In this section, we present the principles that are used in a new incremental algorithm in
OpenTURNS 1.12; the goal of this algorithm is to estimate the mean of a random variable.
Moreover, we would like to let the user as free as possible from the internal details of the
algorithm and get the best possible performance on a supercomputer.

Assume that the output Y ∈ RnY is a random vector and that we want to estimate the mean
E(Yi) for i = 1, ..., nY .

The Monte Carlo method is based on the the sample mean:

µi =
1

n

n∑
j=1

y
(j)
i

for i = 1, ..., nY where n is the sample size and Y (i)
j are i.i.d. outcomes of the random output.

The algorithm is based on the fact that the sample mean is asymptotically gaussian:

µi → N
(
E(Yi),

V (Yi)

n

)
.

for i = 1, ..., nY where V (Yi) is the variance of the i-th output and n is the sample size.
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In general, most users set the sample size n in advance and estimate the precision afterwards.
Let si be the (unbiased) sample standard deviation of the output Yi:

si =

√√√√ 1

n− 1

N∑
j=1

(
y
(j)
i − µi

)2
for i = 1, ..., nY . The absolute precision of the estimate µi can be evaluated based on the sample
standard deviation of the estimator:

σi =
si√
n

for i = 1, ..., nY . If µi 6= 0 and E(Yi) 6= 0, the relative precision can be estimated based on the
coefficient of variation σi/µi for i = 1, ..., nY .

Instead, suppose that we set the absolute precision in advance and wish to determine the
smallest sample size n that achieves this precision. If the variance V (Yi) is known (which rarely
happens in practice), we can set the value of n so that the standard deviation

√
V (Yi)/

√
n is

small enough. In the case where we want to set the relative precision, we can consider the

coefficient of variation of the estimator
√
V (Yi)

E(Yi)
√
n

as a criterion (if E(Yi) 6= 0). However, we
generally do not know the values of neither E(Yi) nor V (Yi). This is why setting the sample
size n in advance is not an easy task for the user in general.

The purpose of the algorithm is to increase the sample size n incrementally until a stop-
ping criteria is met. At each iteration, we approximate the values of E(Yi) and V (Yi) by their
empirical estimators, which allows to evaluate the stopping criteria.

In order to get the best possible performance on distributed supercomputers and multi-core
workstations, the size of the sample increases by block. For exemple, if the block size is equal
to 100, then the sample size is equal to 100, 200, etc... On each block, the evaluation of the
outputs can be parallelized, which allows to improve the performance of the algorithm. More
details on this topic are presented in the section 6.4.

Since there are in general several outputs, i.e. nY ≥ 1, we use a stopping criteria which is
based on a operator. There are three mathematical stopping criteria available:

• through an operator on the coefficient of variation σi
µi

(relative criterion),

• through an operator on the standard deviation σi (absolute criterion),

• on the maximum standard deviation per component: σi ≤ maxi=1,...,nY
σi (absolute crite-

rion).

By default, the maximum coefficient of variation is used, i.e. the operator is the maximum so
that the algorithm stops when:

max
i=1,...,nY

σi
µi
≤ maxCOV .

4.2 Tutorial

In this section, we present how to use the ExpectationSimulationAlgorithm class
in the tutorial flooding example.

We set the maximum number of iterations with the setMaximumOuterSampling so
that we use at most 1000 iterations. In order to evaluate the function with blocks of size 10,
we use the setBlockSize method. In this simulation, we use a relative stopping criteria and
configure the maximum coefficient of variation to be equal to 0.001.
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a l g o = o t . E x p e c t a t i o n S i m u l a t i o n A l g o r i t h m (Y)
a l g o . setMaximumOuterSampling ( 1 0 0 0 )
a l g o . s e t B l o c k S i z e ( 1 0 )
a l g o . s e t M a x i m u m C o e f f i c i e n t O f V a r i a t i o n ( 0 . 0 0 1 )

The computationnaly intensive part of the simulation is associated with the run method.

a l g o . run ( )

Once the simulation is done, the getResult method allows to access the results.

r e s u l t = a l g o . g e t R e s u l t ( )
e x p e c t a t i o n = r e s u l t . g e t E x p e c t a t i o n E s t i m a t e ( )
cv = r e s u l t . g e t C o e f f i c i e n t O f V a r i a t i o n ( ) [ 0 ]
p r i n t ( "Mean = %f " % e x p e c t a t i o n [ 0 ] )
p r i n t ( " Number o f c a l l s t o G = %d " % g . ge tCa l l sNumber ( ) )
p r i n t ( " Coef . o f v a r .=%.6 f " % ( cv ) )

The previous session prints the following output.

Mean = 52 .520729
Number o f c a l l s t o G = 500
Coef . o f v a r . = 0 . 0 0 0 9 9 4

The estimate of the mean has a known asymptotical gaussian distribution, which can be re-
trieved with the getExpectationDistribution method. We emphasize that the out-
put of the getExpectationDistribution method is a Distribution in the Open-
TURNS sense: the whole information is available, not just a part of it, making the output as
programmatically meaningful as possible.

e x p e c t a t i o n D i s t r i b u t i o n = r e s u l t . g e t E x p e c t a t i o n D i s t r i b u t i o n ( )
e x p e c t a t i o n D i s t r i b u t i o n . drawPDF ( )

The previous script produces the figure 3. The figure shows that we have an accurate estimate
of the mean, up to approximately 2 significant digits.

5 Estimate sensitivity indices with an incremental algorithm

5.1 Theory

In this section, we present the principles that are used in a new incremental algorithm in
OpenTURNS 1.12 which computes the Sobol’ sensitivity indices.

In [9] the authors derive a method to estimate the Sobol’ sensitivity indices ; one of the
advantages of the new estimator is that it is associated with an asymptotic distribution, which
is derived thanks to the so called "delta"-method [16]. Based on a suggestion by R.Lebrun, A.
Dumas [4] used the same theoretical method in order to derive the asymptotic distribution of
Sobol’ sensitivity indices already available in OpenTURNS.

5.1.1 Overview

Let us denote by X ∈ RnX the input random vector. Suppose that Y = G(X) ∈ RnY is the
corresponding output random vector, where G is the computer code. In this case the algorithm
operates on aggregated indices. In order to simplify the discussion, let us make the hypothesis
that there is only one output, i.e. nY = 1.
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Figure 3: The probability density function of the estimate of the mean of the river height.

The Sobol’ first order Si and the total order sensitivity indices Ti are defined by

Sk =
V (E(Y |Xi))

V (Y )
, Tk = 1− V (E (Y |X−i))

V (Y )
,

for k = 1, ..., nX , where −i is the set of indices which are different from i. In the remaining of
this section, we focus on the first order sensitivity indice and let the reader consider [4] for the
total order indices. Moreover, the derivation is the same for all input variables so that we omit
the indice i in order to simplify the notations.

5.1.2 Asymptotic distribution

The algorithm is based on the fact that the estimators of the first and total order Sobol’
sensitivity indices asymptotically have the gaussian distribution. This gaussian distribution can
be derived from the so called "delta"-method.

Indeed, assume that the Sobol’ estimator is

S = Ψ
(
U
)

where Ψ is a multivariate function, U is a multivariate sample and U is its sample mean. Each
Sobol’ estimator can be associated with a specific choice of function Ψ and vector U . Therefore,
the multivariate delta method implies:

√
n
(
U − µ

)
→ N

(
0,∇ψ(µ)TΓ∇ψ(µ)

)
where µ is the expected value of the Sobol’ indice,∇ψ(µ) is the gradient of the function Ψ and
Γ is the covariance matrix of U . An implementation of the exact gradient ∇ψ(µ) was derived
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for all estimators in OpenTURNS. In the algorithm, the unknown value µ is replaced by its
estimator in order to compute the covariance matrix.

Each available estimator in the library provides its own distribution, namely the Saltelli,
Mauntz-Kucherenko, Jansen and Martinez estimators.

5.1.3 Stopping criteria

Let us denote by ΦF
k (resp. ΦT

k ) the cumulated distribution function of the asymptotic gaus-
sian distribution of the first (resp. total) order sensitivity indice of the k-th input variable, for
k = 1, ..., nX . We set α ∈ [0, 1] the level of the confidence interval and ε ∈ (0, 1] the length of
the confidence interval. The algorithms stops when, on all components, one of the two following
conditions are satisfied :

• first and total order indices have been estimated with enough precision or

• the first order indices are separable from the total order indices.

The precision is said to be sufficient if the 1− 2α confidence interval is smaller than ε :

(ΦF
k )−1(1− α)− (ΦF

k )−1(α) ≤ ε

and
(ΦT

k )−1(1− α)− (ΦT
k )−1(α) ≤ ε

for k = 1, ..., nX . The first order indices are separable from the total order indices if

ΦF
k (1− α) ≤ ΦT

k (α)

for k = 1, ..., nX . This criteria allows to stop when the algorithm has detected an interaction
between input variables with sufficient precision.

5.2 Tutorial

In this section, we present how to use the SaltelliSensitivityAlgorithm classe
in the tutorial flooding example.

We first set the parameters of the algorithms. The alpha variable is set so that a 90%
confidence interval is used. In order to get confidence intervals which are not greater than 0.1,
we set the variable epsilon variable accordingly. The block size corresponds to the size of
the Sobol’ design of experiment generated at each iteration. Finally, the batchsize variable
contains the number of points evaluated simultaneously by the model.

a l p h a = 0 . 0 5 # 90% c o n f i d e n c e i n t e r v a l
e p s i l o n = 0 . 1 # C o n f i d e n c e i n t e r v a l l e n g t h
b l o c k s i z e = 50 # S i z e o f Sobo l e x p e r i m e n t a t each i t e r a t i o n
b a t c h s i z e = 16 # Number o f p o i n t s e v a l u a t e d s i m u l t a n e o u s l y

Then we create the algorithm and configure it so that it uses the previous variables. Moreover,
we use the setMaximumOuterSampling method so that the algorithm uses at most 100
iterations.
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e s t i m a t o r = o t . S a l t e l l i S e n s i t i v i t y A l g o r i t h m ( )
e s t i m a t o r . s e t U s e A s y m p t o t i c D i s t r i b u t i o n ( True )
a l g o = o t . S o b o l S i m u l a t i o n A l g o r i t h m (X, g , e s t i m a t o r )
a l g o . setMaximumOuterSampling ( 1 0 0 ) # number o f i t e r a t i o n s
a l g o . s e t B l o c k S i z e ( b l o c k s i z e )
a l g o . s e t B a t c h S i z e ( b a t c h s i z e )
a l g o . s e t I n d e x Q u a n t i l e L e v e l ( a l p h a ) # a lpha
a l g o . s e t I n d e x Q u a n t i l e E p s i l o n ( e p s i l o n ) # e p s i l o n
a l g o . run ( )

Once that the algorithm has run, the results can be retrieved and estimates of first and total
order indices can be printed.

r e s u l t = a l g o . g e t R e s u l t ( )
fo = r e s u l t . g e t F i r s t O r d e r I n d i c e s E s t i m a t e ( )
t o = r e s u l t . g e t T o t a l O r d e r I n d i c e s E s t i m a t e ( )
p r i n t ( " F i r s t o r d e r = %s " % ( s t r ( fo ) ) )
p r i n t ( " T o t a l o r d e r = %s " % ( s t r ( t o ) ) )

The previous script produces the following output.

F i r s t o r d e r = [ 0 . 5 7 5 9 6 2 , 0 . 2 2 5 7 6 3 , 0 . 3 5 7 7 4 3 , 0 . 0 2 1 6 3 0 8 ]
T o t a l o r d e r = [ 0 . 4 9 5 4 8 9 , 0 . 1 7 6 6 6 8 , 0 . 3 3 1 7 0 8 , 0 . 0 0 6 0 0 3 8 3 ]

These estimates required 30 000 evaluations of the computer code.
We can obtain the asymptotic distribution of the first and total order indices. For example,

the following script extracts the first component of the asymptotic distribution of the first order
indice (which corresponds to the variable Q) and plots it.

d i s t _ f o = r e s u l t . g e t F i r s t O r d e r I n d i c e s D i s t r i b u t i o n ( )
d i s t _ f o _ i = d i s t _ f o . g e t M a r g i n a l ( 0 )
g raph = d i s t _ f o _ i . drawPDF ( )
g raph . s e t T i t l e ( " S0 " )
g raph . s e t X T i t l e ( " S0 " )

The previous script produces the figure 4.
In order to get a more compact view of the first and total order indices along with their

confidence intervals, we often represent the 90% confidence intervals with a vertical bar. The
figure 5 presents the Sobol’ indices with asymptotic confidence intervals. We observe that the
confidence intervals are relatively small, as expected.

6 New features in the graphical user interface

6.1 Introduction

There are situations where the engineer in charge of performing an uncertainty study does
not want to use a programming language such as C++ or Python. In this context, providing a
graphical user interface (GUI) may allow to greatly increase the use of OpenTURNS and, more
generally, of the UQ methodology.

This is why we develop since 2016 a graphical user interface (GUI) of OpenTURNS, which
is integrated within SALOME [6]. This GUI is developed with the OpenSource LGPL license,
which is the same as OpenTURNS and SALOME. SALOME binaries for the Linux platform
are provided at the following URL:
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Figure 4: Asymptotic distribution of the first order Sobol’ indices for the Q variable.

https://www.salome-platform.org/contributions/edf_products

The figure 6 presents the main window of the graphical user interface. The left pane contains
the tree view which prints the opened studies and the main objects in each study. The right pane
displays the main features of the interface, which makes the whole process easier for new users
who might be unfamiliar with the uncertainty quantification methodology. The bottom pane is
a Python console which allows to program the interface.

Each box in the right pane represents a single step in the global methodology ; the whole
process is presented as a tree. Stop signs represent a method that cannot be used because a
step must be fully completed before. When a new study is created, most boxes are greyed out,
except the leftmost “Model definition” box, which require to define either a physical model (i.e.
a computer code) or a data model (i.e. a CSV data file). Each time a step is completed, the
corresponding steps which are then available are activated which allows the user to progress.

Details on the main features and the internal architecture of the GUI were already presented
in [3], this is why this paper focuses on the new features.

6.2 Dependency structures

The GUI allows to define advanced dependency structures, based on copulas. The figure 7
presents the dialog box in which the copulas can be selected and configured.

The principle is to create sub-groups within the input variables. Within a given sub-group,
we can select the copula and configure its parameters. Seven copulas are available: independent,
Gaussian, Ali-Mikhail-Hak, Clayton, Farlie-Gumbel-Morgensten, Frank or an inference result.

For example, the figure 7 considers the situation in which the model has five inputs named
X0, X1, X2, X3 and X4. In this particular model, the sub-group [X0,X1] is associated with
the Gaussian copula while the sub-group [X3,X4] is associated with the Gumbel copula. The
variable X2 remains independent from the others in this model.

Moreover, any multivariate sample can be used to estimate the parameters of a copula. In
this case, the results of an inference can be reused in a dependency model.
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Figure 5: Sobol’ indices with asymptotic confidence intervals.

6.3 Screening with the Morris method

The qualitative sensitivity analysis based on Morris’s method [11] aims at selecting the sig-
nificant input variables in a costly computer code which may have a large number of inputs.
The GUI performs the screening analysis based on the OpenTURNS otmorris module [1].

The method makes use of a number of levels ` of levels, which is set by the user. Let ∆i > 0
be the step for the i-th input variable in the physical space, for i = 1, ..., nX . This increment is
computed from the number of levels L and the range of the i-th input variable.

The second parameter of the method is the number r of trajectories used in the design of
experiment.

The k-th computed elementary effect associated to the i-th input marginal is the finite differ-
ence:

eki =
G
(
x
(k′)
i

)
−G

(
x
(k)
i

)
∆i

for i = 1, ..., nX and k = 1, ..., r. In the previous equation, the input points x(k)i and x(k
′)

i are
two points which differ from ∆i in the physical input space. These points are computed based
on a design of experiment which aims at grossly sampling the input space, generally with a
rather large value of ∆i.

The method computes µi, µ∗i and σi, respectively the mean, absolute mean and the standard
deviation of the elementary effects:

µi =
1

r

r∑
k=1

eki , µ∗i =
1

r

r∑
k=1

|eki |, σi =

√√√√1

r

r∑
k=1

(eki − µi)2,

The goal of this method is to set the inputs variables into three classes, based on µ∗i and the
ρi =

µ∗i
σi

factors:

1. if µ∗i is close to zero, the i-th variable has no effect,
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Figure 6: Main window of OpenTURNS’ graphical user interface.
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Figure 7: Managing a copula in the OpenTURNS GUI.

2. if ρi ≤ 0.5 the i-th variable has almost linear effects,

3. if ρi ≥ 1 the i-th variable has non-linear and non-monotonic effects

The figure 8 presents the dialog box which contains the parameters of the algorithm. The
user can set the number of trajectories and the number of levels for each variable. The dialog
box automatically computes the corresponding number of simulations and prints it in the bottom
of the dialog box.

Once the simulations are performed, the figure 9 presents the results associated with a phys-
ical model which has 20 input variables. The main figure presents the mean and standard de-
viations of the elementary effects. A table (not shown in the figure) containing the list of input
variables allows to see in which category fall each variable. A default classification is done by
the GUI, but can be modified by the user.

6.4 Easy high performance computing

Within SALOME, users can access the remote high performance computing resources avail-
able at EDF R&D. Based on 16 100 cores, the Porthos supercomputer (2014) for example, can
perform as high as 600Tflops (peak) [15]. The latest supercomputer at EDF R&D, Gaïa (2019),
can perform as high as 3 052 Tflops (peak) [14] thanks to its 41 000 cores.

Within the GUI, the user can run simulations which are executed on a remote supercomputer
with a minimum amount of configuration. The figure 10 presents the dialog box which is dis-
played in the context of a central tendency study based on a Monte-Carlo simulation. Enabling
the Parallelize status checkbutton allows to select the computing resource available in the user’s
environment. The number of processes can be chosen by the user according to the hardware
available and the amount of computing required by the simulation. Each job is associated with
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Figure 8: Performing screening with Morris’s method in the GUI.

Figure 9: Results of the screening with Morris’s method in the GUI.
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a time limit which defines the maximum duration of one job. In most practical situations ex-
tra input files are used by the computer code (e.g. the mesh), which can be configured in the
dialog box as well. The job submission is based on SLURM, but the user does not have to
configure these low-level parameters which are handled automatically by the algorithms, with
the principles which we now present.

The key point is to exploit the maximum possible amount of parallelism in the computations.
However, between the start of the simulation and the end (which might take minutes, hours or
days in the longest situations), most users want to regularily have a feedback on the execution of
the simulation. For these reasons, the algorithms are performed based on blocks, which define
a sub-sample on which the parallel computation can take place. At the end of each block, a
progress bar is updated along with statistics which shows the number of executed simulations,
the elapsed time and the value of the stopping criteria (e.g. the coefficient of variation of the
mean estimator). A Stop button allows to interrupt the simulation.

Consider for example the situation presented in the figure 11, where a design of experiments
involving 24 points must be evaluated. The parameters configured by the user in this example
is the size of the block, which is set to 12, and the number of processors, which is set to 4. In
this case, the simulation starts with a first job (e.g. a SLURM job) involving the points with
indices from 1 to 12, and ends with a second job involving the points with indices 13 to 24. In
both jobs, each processor is in charge of the evaluation of three points.

6.5 Perspectives: one-dimensional stochastic processes

In this section, we present the current developments of the GUI, which focuses on the man-
agement on stochastic fields.

Indeed, there are various situations in which the simulator through which we propagate the
uncertainties produces a stochastic process. This happens for example in the case where the
simulator produces a time series or a one-dimensional spatial field.

The figure 12 presents a sample of trajectories in the GUI. In general, the sample size is large
and this graphics does not convey much information, because the trajectories overlap and hide
each other.

Obviously, this situation is more complex than the classical output random vector that many
engineers are used to and require more advanced probabilistic methods. The most common
way of managing such a situation is to use a dimension reduction method such as the functional
principal component analysis or the Karhunen-Loève decomposition [12].

This is why Ribes et al [13] developed a new visualization tool in Paraview [10], based on
a work by Kitware funded by EDF. This tool is the functional bag chart, also known as the
highest density region plot in the bibliography [7]. The figure 13 presents the functional bag
chart of a sample set of trajectories. This graphics allows to plot a functional boxplot in the
sense that it plots a functional 95% confidence region. The graphics also allows to detect outlier
trajectories, i.e. trajectories which achieve a low density in the reduced space.

The future version will extend these functional analyses to higher dimensions, including 2D
stochastic fields.
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Figure 10: Launching a parallel computation within the GUI.
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Figure 11: A block-based simulation performed on a supercomputer. We assume that we want to evaluate a design
of experiments made of 24 points ; these points are numbered 1, 2, ..., 24. We consider a block size of 12 and a
number of processors equal to 4. In this case, the block-based simulation uses two jobs.
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Figure 12: A sample of trajectories in the GUI.
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Figure 13: The functional bag chart of Paraview to plot a functional boxplot and detect outlier trajectories.
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Abstract. Although engineers often recognise the advantages of applying uncertainty analysis
to their complex simulations, they often lack the time, patience or expertise to undertake that
analysis. We describe a software tool, named puffin, that takes existing code and converts in to
uncertainty aware code in the same language making use of intrusive uncertainty propagation
techniques. It can work either automatically or with user specification of the uncertainties
involved in the system.
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1 INTRODUCTION

Modern engineering is all about numerical calculation, with the inexorable growth of com-
puter power more of these calculations are being undertaken with ever more complex computer
simulations. These developments means that new technologies, as digital twins [1], have begun
to be explored. Engineers need to make calculations even when there is uncertainty about the
quantities involved.

There are two types of uncertainty aleatory and epistemic with in the numerical calculations
essential to engineering. Aleatory uncertainty arises from the natural variability in dynamical
environments and material properties, errors in manufacturing processes or inconsistencies in
the realisation of systems. Aleatory uncertainty cannot be reduced by empirical effort. Epis-
temic uncertainty is caused by measurement imperfections or lack of perfect knowledge of a
system. This could be due to not knowing the full specification of a system in the early phases
of engineering design.

Imperfect scientific understanding of the underlying physics or biology involved, would
cause uncertainty in the future performance of a system even after the design specifications have
been decided. If uncertainties are small they can often be neglected or swept away by looking at
the worst-case scenarios. However, in situations where the uncertainty is large, or would affect
an engineering decision, this approach is suboptimal or impossible. Instead, a comprehensive
strategy of accounting for the two kinds of uncertainty is needed that can propagate imprecise
and variable numerical information through calculations.

Many engineers work with legacy computer codes that do not take full account of uncertain-
ties. Because analysts are typically unwilling to rewrite their codes, various simple strategies
have been used to remedy the problem, such as elaborate sensitivity studies or wrapping the
program in a Monte Carlo loop. These approaches treat the program like a black box because
users consider it uneditable. However, whenever it is possible to look inside the source code, it
is better characterised as a crystal box because the operations involved are clear but fixed and
unchangeable in the mind of the current user.

Strategies are needed that automatically translate original source into code with appropri-
ate uncertainty representations and propagation algorithms. We have developed an uncertainty
compiler for this purpose, named Puffin1, along with an associated language. It handles the
specifications of input uncertainties and inserts calls to an object-oriented library of intrusive
uncertainty quantification (UQ) algorithms. We use ANTLR [2], a parser/lexer generator, and
Python to translate uncertainty näive code into code with a full account of uncertainty in the
same language. In theory, the approach could work with any computer language. We currently
support Python and later versions will handle FORTRAN, C, R and MATLAB languages.

2 PUFFIN LANGUAGE

In order to develop Puffin it was first essential to build an uncertainty language. Puffin
language enables users to specify the uncertainties involved in their code before compiling it
into pre-existing scripts. Currently enables uncertainty analysis with five types:

• Interval (unknown value or values for which sure bounds are known), [3]

• Probability distribution (random values varying according to specified law such as nor-
mal, lognormal, Weibull, etc., with known parameters),

1In ornithology puffins belong to the family auks, as we are making an automatic uncertainty compiler (auc)
puffin seemed like a fitting name
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• P-box (random values for which the probability distribution cannot be specified exactly
but can be bounded),[4]

• Confidence box (confidence structure that is a representation of inferential uncertainty
about a parameter compatible with both Bayesian and frequentist paradigms), [5]

• Natural language expressions (such as about 7.2 or at most 12)

We are also planning other . For each language that the compiler is to support a library of intru-
sive UQ code is required that will allow these types of numbers to be freely mixed together in
mathematical expressions to reflect what is known about each quantity. Such libraries already
exist for MATLAB and R and a python equivalent is currently in active development.

In Puffin language, if compiling into languages with immutable values and editable variables,
-> will be used for immutable values and = for editable variables, in languages where this isn’t
the case they can be used interchangeably. # are used for comments. Guillemets surround code
snippits from the target language. Both single and double quotation marks can be used in Puffin,
although if the target language is pernickety about which one is used then the user will have to
be aware of this themselves.

2.1 Intervals

An interval is an uncertain number representing values obeying an unknown distribution over
a specified range, or perhaps a single value that is imprecisely known even though it may in fact
be fixed and unchanging. Intervals thus embody epistemic uncertainty. Intervals can be speci-
fied by a pair of scalars corresponding to the lower and upper bounds of the interval. Interval
arithmetic computes with ranges of possible values, as if many separate calculations were made
under different scenarios. However, the actual computations the software does are made all
at once, so they are very efficient. As shown in Figure 1, there are several different formats
for specifying intervals. All types of intervals are defined using square brackets, this simplest
definition is for the lower bound and upper bound to be comma separated within the square
brackets. Plus minus intervals can be defined with either a positive number or a percentage.
They can also be defined by a single number within the brackets in which case the significant
digits are used for the bounds of the interval. There may sometimes be uncertainty about the
endpoints, this can be specified using nested intervals such as shown in line 5

[1] a -> [1,2]
[2] b -> [1±2]          #[-1,3] 
[3] c -> [1±2%]         #[0.98,1.02]
[4] d -> [1.0]          #[0.95,1.05]
[5] e -> [[0,1],[2,3]]  #[0,3] 

Figure 1: Syntax for defining intervals in Puffin language, ± can be substituted with +- or -+. The comments show
what the interval is taken to be when compiling.

2.2 Distributions and P-Boxes

Probability distributions are specified by their shape and parameters, such as gaussian(5,1),
uniform(0,9), or weibull(3,6). A non-exhaustive list of distributions available in the langauge
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is shown in table 1, however we are planning to add more. As with all keywords in Puffin
they can be defined in either all caps, all lower or sentence case. For distributions with com-
mon short names then these will also be accessible, for example N for the normal distribution.
P-boxes can be specified as probability distributions with intervals for one or more of their pa-
rameters. If the shape of the underlying distribution is not known, but some parameters such
as the mean, mode, variance, etc. can be specified (or given as intervals), the software will
construct distribution-free p-boxes whose bounds are guaranteed to enclose the unknown distri-
bution subject to constraints specified.

Bernoulli beta binomial Cauchy
chi-squared delta empirical distributions exponential

F distribution Frechet gamma geometric
Gaussian Gumbel Laplace logistic
lognormal logtriangular normal Pareto

Pascal Poisson power function rayleigh
reciprocal Simpson Student-t trapzoidal
triangular uniform Wakeby Weibul

Table 1: Some of the distributions available in the uncertainty language

Probability bounds analysis integrates interval analysis and probabilistic convolutions which
are often implemented with Monte Carlo simulations. It uses p-boxes, which are bounds around
probability distributions, to simultaneously represent the aleatory uncertainty about a quantity
and the epistemic uncertainty about the nature of that variability. Probability distributions are
special cases of p-boxes, so one can do a traditional probabilistic analysis with the add-in as
well. The calculations the software does are very efficient and do not require Monte Carlo
replications.

Figure 2 shows several difference distribution and p-box assignments.

[1] a -> t(1,2)     #student-t distribution 
[2] b -> beta(2,3)         
[3] c -> normal([0±0.5],1)
[4] d -> U([1,2],3) #Uniform distribution 

Figure 2: Syntax for defining p-boxes in Puffin language

2.3 C-Boxes

Confidence boxes (c-boxes) are imprecise generalisations of traditional confidence distribu-
tions, which, like Student’s t–distribution, encode frequentist confidence intervals for parame-
ters of interest at every confidence level. They are analogous to Bayesian posterior distributions
in that they characterise the inferential uncertainty about distribution parameters estimated from
sparse or imprecise sample data, but they have a purely frequentist interpretation that makes
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them useful in engineering because they offer a guarantee of statistical performance through
repeated use. Unlike confidence intervals which cannot usually be used in mathematical cal-
culations, c-boxes can be propagated through mathematical expressions using the ordinary ma-
chinery of probability bounds analysis, and this allows analysts to compute with confidence,
both figuratively and literally, because the results also have the same confidence interpretation.
For instance, they can be used to compute probability boxes for both prediction and tolerance
distributions. C–boxes can be computed in a variety of ways directly from random sample data.
There are c-boxes both for parametric problems (where the family of the underlying distribution
from which the data were randomly generated is known to be normal, lognormal, exponential,
binomial, Poisson, etc.), and for nonparametric problems in which the shape of the underlying
distribution is unknown. Confidence boxes account for the uncertainty about a parameter that
comes from the inference from observations, including the effect of small sample size, but also
the effects of imprecision in the data and demographic uncertainty which arises from trying to
characterise a continuous parameter from discrete data observations.

In Puffin language, c-boxes can be defined using dot notation shown in Figure 3. All distri-
butions that work with p-boxes are also available in c-box form.

[1] a -> cbox.uniform([0,1],[2,3])      
[2] b -> cbox.beta(2,3)  
[3] c -> cbox.edf(X,Y)       

Figure 3: Syntax for defining c-boxes in Puffin language. Line 3 shows the definition from an empirical distribution
function where X and Y would represent arrays of data

2.4 Hedge Words

In order to make uncertainty analysis as simple as possible for the end user Puffin language
allows for users to be able to input their uncertainties using natural language expressions such as
about or almost. Table 2, lists some the allowed hedge words and their possible interpretations.

Hedge words can be interpreted as intervals [6] or or c-boxes. [7]
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Hedged Numerical Expression Possible Interpretation
about x [x± 2× 10−d]
around x [x± 10× 10−d]
count x [x±

√
x]

almost x [x− 0.5× 10−d, x]
over x [x, x+ 0.5× 10−d]
above x [x, x+ 2× 10−d]
below x [x− 2× 10−d, x]
at most x [0, x]
at least x [x,∞]
order x [x/2, 5x]
between x and y or

[x, y]
from x to y
x out of y cbox.beta(a,b)

Table 2: Hedge expressions and their mathematical equivalent. Note: d is the number of significant figures of x

2.5 Dependence assumptions

By default, the language assumes that each newly specified probability distribution or p-box
is stochastically independent of every other. Users can change this assumption by specifying
nature of the dependence using the syntax shown in Figure 4.

In addition, Puffin language automatically tracks calculations that were used to compute un-
certain numbers and will modify the default assumption of independence if appropriate. For
instance, an increasing monotone function (such as log, exp, and sqrt) of a distribution creates
an uncertain number that is perfectly dependent on the original distribution. Reciprocation cre-
ates an uncertain number that is oppositely dependent on the original distribution. When the
function that transforms an uncertain number is complex and the relationship between the origi-
nal distribution and the result cannot be educed, the two are assigned the unknown dependence.
If the two later are used in a calculation, Fréchet convolution, which makes no assumption about
the dependence between the arguments, is used to combine them. Fréchet convolution must be
used because an assumption of independence would be untenable, because one argument is a
direct function of the other. Generally, Fréchet convolution creates p-boxes from precise prob-
ability distributions, or widens the results from p-boxes relative to convolutions that assume
independence or some other precise dependence function. The extra width represents the addi-
tional uncertainty arising from not knowing the dependence function. Users can countermand
the languages automatic tracking of dependence and specify the assumption to be used in any
particular convolution.Âż

[1] a -> uniform(0,1) !dep(b)      
[2] b -> normal(2,3) !dep(c)
[3] c -> normal(4,5) !dep(a,b)      

Figure 4: Syntax for adding dependance between variables in Puffin Language
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3 PUFFIN COMPILER

The process for taking the uncertainty naive code and adding in appropriate uncertainty
analysis can be done in two different ways: the automatic approach and the second is to specify
the uncertainty using the language described above. Currently the compiler can only be used
from the terminal or command line. We are planning on developing a user interface for the
compiler that is based on the open source winmerge2 software. It will allow the user to be able
to see the differences between the original and uncertainty code.

To be perhaps more useful the second method allows the end user to specify the uncertainty
manually using the uncertainty language described above. It is possible to generate the Puffin
langauge file by running the –getpuffin command when using the compiler, this will parse over
the file and get all the variable declarations within the script. Figure 5 shows an example of
using the compiler.

[1] a = 1
[2] b = 2.5
[3] c = 3 
[4]  
[5] d = a*b+c
[6] print(d) 

Input Script
[1] a -> normal(1,0.1)
[2] b -> [2.4,2.6]
[3] c -> about 3 

UQ Script

[1] a = normal(1,0.1) 
[2] b = interval(2.4,2.6) 
[3] c = interval(2.8,3.2) 
[4]  
[5] d = a*b+c
[6] print(d) 

Output Script

Figure 5: The result of using the compiler whilst defining the uncertainty in Puffin langauge on a simple pseu-
docode script.

3.1 Automatic Uncertainty Analysis

The automatic approach takes the significant figures of the assignments and uses that infor-
mation as a proxy for the uncertainty for an example see Figure 3.1. When using this mode the
compiler will need to tread carefully around mathematical constants such as π or e for which
there is no uncertainty. For example if the variable had value equal to 3.14159 then it would be
pretty clear that it is referring to the mathematical constant however if the value was 3.1 then it
could be ambiguous. 3.141 could also cause problems, the correct rounding of π to 3 decimal
places is 3.142 however 3.141 is so ubiquitous as the start of π that it would be a simple error

2winmerge.org/
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for an analysis to make when creating code.

[1] a = 1
[2] b = 2.5
[3] c = 1.0 
[4]  
[5] d = a*b+c
[6] print(d) 

[1] a = interval(0.5,1.5)
[2] b = interval(1.45,2.55)
[3] c = interval(0.95.1.05) 
[4]  
[5] d = a*b+c
[6] print(d)

Output Script

Input Script

Figure 6: The result of using the compiler in automatic mode on a simple pseudocode script.

3.2 Direct Compiler

Once Puffin language has been fully developed we are intending to create a direct compiler
that allows creation of scripts in the code. Initially the compiler will turn the Puffin code directly
into Python 3 code. Figure 7 shows direct translation from Puffin language to Python.
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[1] a -> 3
[2] b -> [1,2]
[3] c -> normal(0,1)
[4]  
[5] d = a*b + c
[6] print d 

[1] import uq 
[2]  
[3] a = 3
[4] b = uq.interval(1,2)
[5] c = uq.normal(0,1)
[6]  
[7] d = a*b + c
[8] print(d) 

Figure 7: Direct translation from Puffin language to Python 3

4 REPEATED VARIABLE PROBLEM

A limitation of using the Puffin compiler to incorporate uncertainty analysis into numerical
calculations arise from multiple occurrences of an uncertain variable in a mathematical expres-
sion. Let a = [1, 2], b = [−1, 1] and c = [3, 4]. Applying interval arithmetic naively gives

ab+ ac = [1, 10] (1)

but also
a(b+ c) = [2, 10] (2)

One would expect that the results of equation 1 and equation 2 would be the same as, alge-
braically, ab + ac ≡ a(b + c) however the distributive law of real numbers does not generally
hold for uncertain numbers. In the case of intervals, the expression with repeated uncertain
quantities may be wider than the one with no such repetitions, even when they would be equiv-
alent for real values, the uncertain number appearing twice in the first formulation means, in
effect, the uncertainty it represents is entered twice into the resulting calculation.

This problem besets most uncertainty quantification methods, although an advantage of
Monte Carlo methods is that they can escape this problem. This uncertainty inflation would
also occur if a calculation is conducted in multiple steps. For instance, if the first term ab in the
example above is calculated on one line and on a new line ac is calculated before the final sum
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is calculated in a third line, the uncertainty of a will have been introduced into the final result
twice leading to the inflated uncertainty shown in equation 1.

If possible, the number of repetitions of uncertain variables should be reduced by algebraic
manipulation to avoid possible inflation of the uncertainty. This would apply whether the un-
certain parameter is an interval, distribution, p-box or c-box. It should be noted that only the
repeated variable matters when reducing the expression because other variables can be as ar-
bitrarily complex, with as many repeats required. For instance if x is the only uncertain in
equation 3 then the fact that b is repeated five times is irrelevant.

(a+ bx)n(c+ dx)n =

(
(2bdx+ ad+ bc)2 − (ad+ bc)2 + 4abcd

4bd

)n

(3)

Unfortunately, it is not always possible to reduce all multiple occurrences. For example, equa-
tion 4 cannot be reduced to a single instance of x. In such cases, special or ad hoc strategies
must be devised, even partial solutions improve calculations.

x3 + x2 + x+ 1 (4)

When computing with intervals, we are guaranteed that the result of a computation with
repeated variables will have width no smaller than the correct answer. Therefore, even if mul-
tiple occurrences of the variable cannot be reduced, a conservative estimate of the final value
can still be calculated. In risk assessment such an estimate may meet the practical needs of an
analysis. For probability distributions and p-boxes, this guarantee holds when using FrÃl’chet
convolutions, however it does not extend to cases where independence has been assumed or
precise dependancies have been specified between the variables. The size of any error cause by
repeated variables is dependant on the particulars of the mathematical expression as well as the
quantities involved

A useful extension to the compiler would be to automatically detect and simplify mathe-
matical expressions with repeated uncertain variables, even over multiple lines, in a way that
reduces the repetitions of parameters containing uncertainty or in situations where they cannot
be simplified then display a warning to the user. An example of how this might look when
generating the Puffin langauge file form a script is show in Figure 8. Although this problem is
known to be NP-hard in general, software strategies can be designed to find expressions with
fewer repetitions of the same variable. In instances where no solution could be found then
the compiler should issue appropriate warnings to the user. We are exploring a strategy that
repeatedly applies mathematical identities that reduce the number of appearances of uncertain
parameters. There are many such reducing templates. The approach is to parse an expression
into a binary tree, and search for matches with a reducing template in each subtree. The search
is iterated over all the templates and over all subtrees, and it is repeated until no further reduc-
tion occurs. To shorten the list of reducing templates, the matching algorithms automatically
test multiple rearrangements of the subtree that are implied by associativity and commutativity
of basic operators.
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#! Automatically reduced number of repetitions
#! of variable x in line:
x = x*a+x*b -> x = x*(a+b)
 
#! Automatically reduced number of repetitions
#! of variables x and y in line: 
z = (x+y)/(1-xy) -> z = tan(arctan(x)+arctan(y))
 
#!! Can't find repeated variable reduction for x
#!! in line: 
z = (a+x)/(b+x)
#!! May cause artificial uncertainty inflation 

Figure 8: Example Puffin syntax showing how a generated Puffin file could highlight repeated variables to the user
and automatically reduce where possible
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Abstract 

The capability of learning from accidents as quickly as possible allows preventing repeated 

mistakes to happen. This has been shown by the small time interval between two accidents with 

the same aircraft model: the Boeing 737-8 MAX. However, learning from major accidents and 

subsequently update the developed accident models has been proved to be a cumbersome pro-

cess. This is because safety specialists use to take a long period of time to read and digest the 

information, as the accident reports are usually very detailed, long and sometimes with a diffi-

cult language and structure. 

A strategy to automatically extract relevant information from report accidents and update 

model parameters is investigated. A machine-learning tool has been developed and trained on 

previous expert opinion on several accident reports. The intention is that for each new accident 

report that is issued, the machine can quickly identify the more relevant features in seconds – 

instead of waiting for some days for the expert opinion. This way, the model can be more quickly 

and dynamically updated. An application to the preliminary accident report of the 2018 Lion 

Air accident is provided to show the feasibility of the machine-learning proposed approach. 

 

 

Keywords: Bayesian network updating, accident reports, Uncertainty Quantification, ma-

chine-learning, Boeing 737-8 MAX. 
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1 INTRODUCTION 

The industry should learn from past accidents to design and manage safer industrial instal-

lations, which is described by the ‘learning from incidents’ concept. There are some industrial 

recommended practices on how companies should use this concept [1] and research on how 

they are actually using it [2] or how it could be used [3]-[4]. The most acknowledged practice 

is the risk assessment, where a multi-disciplinary team revise the design according to infor-

mation about past accidents, components reliability and human reliability. 

Comprehensive risk assessments include human, organizational and technological factors 

[5], where human error probability is the likelihood of an individual to initiate or trigger a se-

quence of events that can lead to an accident. However, human behaviour is highly variable and 

depends not only on the individual but also on the organizational and technological factors – 

all of them sources of aleatoric and epistemic uncertainties. To obtain these probabilities opti-

mizing the ‘learning from incidents’ concept, Morais et al. have developed an approach that 

uses human factors data from major accidents and a probabilistic tool that accommodates those 

uncertainties [6]. Bayesian networks were chosen to model human errors due to the possibility 

of updating the model and its outputs with new evidence for each new accident report that is 

issued [7]. Reading an accident report and extracting the necessary information required to up-

date the probabilities of the human errors require significant efforts and the availability of a risk 

specialist [8], resources that are not always available.  

In the paper, a machine learning tool based on text recognition and supporting vector ma-

chine is proposed to automatically extract relevant information from accident reports. Previous 

works have used machine-learning to classify textual narratives for aviation and railway into 

defined (taxonomy) or dynamic (ontology) categories [9]-[10]. The main differences is that 

they have used a tanomy/ontology not entirely relevant for the human error model, and they 

have used voluntarily submitted reports, where the model needed inputs from investigation re-

ports. 

The proposed procedure also allows creating a “virtual risk expert” trained on using prede-

fined taxometry. The “virtual expert” is than able to process accident reports and extract rele-

vant information in real-time.  The proposed methodology is applied to analyse the accident 

report of the 2018 Lion Air accident [11] is provided to show the feasibility of the machine-

learning proposed approach. The approach proposed allows also to understand how the same 

type of error is perceived and classified in different sectors. 

 

2 METHODOLOGY 

2.1 A Bayesian network to predict human error in complex industries 

To build a model of human error in complex industries the Bayesian networks proposed by 

by some of the authors has been used [6]. Bayesian Networks are a probabilistic tool that can 

be presented in the form of a directed acyclic graph made of nodes (variables) connected by 

links. The open source Bayesian Network toolbox [12] implanted in OpenCossan [12]-[14] has 

been used to analyse and evaluate the developed model. The probability values denoting the 

degree of dependency within the nodes are stored in a conditional probability table, thus each 

state of the child is provided given each of the states of the parents. The product of all the 

conditional and unconditional probabilities specified in the network is governed by the chain 

rule for Bayesian networks [15]. 

 In [6], to build the structure of the Bayesian network the authors have used the dependency 

among the variables proposed in [8]. This arrangement of parents and children nodes connected 
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by links allows predictive and diagnostic calculations. Therefore, not only human error proba-

bilities can be predicted but also the factors that contribute to those error can also be further 

investigated. A simplified version of the originally developed model is shown in Figure 1 where 

the nodes are related to the CREAM taxonomy (Cognitive reliability and error analysis method) 

for human errors and organisational, technological and individual factors [16]. The CREAM’s 

features adopted in the model are shown in Table 1. The probability values for each node are 

based on MATA-D (Multiattribute Technological Accidents Dataset), a dataset created by ex-

perts (risk analysts) [3], after reading accident reports and classifying them as boolean values 

(0 for absent, 1 for present) according to the features described in Table 1. 

 

 
Figure 1 – Simplified representation of the model for Human error derived from [6]. 

 

 

 
Table 1. CREAM features of human factors adoped in the proposed Human error model. 

Organisational Factors Technological Factors  Individual factors Human Errors 

Communication failure Equipment failure Permanent related Cognitive Errors 

Missing information  Software fault Functional impairment Observation missed  

Maintenance failure Inadequate procedure  Cognitive style  False Observation  

Inadequate quality control Access limitations Cognitive bias Wrong Identification  

Management problem Ambiguous information Temporary Faulty diagnosis  

Design failure Incomplete information Temporary related Wrong reasoning  

Inadequate task allocation Access problems Memory failure Decision error  

Social pressure  Mislabelling Fear  Delayed interpretation 

Insufficient skills  Distraction Incorrect prediction 

Insufficient knowledge   Fatigue Inadequate plan  

Adverse ambient conditions   Performance Variability Priority error  

Excessive demand  Inattention Execution Errors 

Inadequate work place layout  Physiological stress Wrong time  

Irregular working hours  Psychological stress Wrong type  

   Wrong Object  

   Wrong place 
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2.2 Updating Bayesian network probabilities via a machine-learning approach 

In an ideal situation, the Bayesian network is updated every time a new accident report is re-

leased. Hence, human error probabilities are updated with changes in organizational and tech-

nological factors. However, each report has two hundred pages on average, and the reading and 

classification into a taxonomy is a time-consuming task. Therefore, it was idealised that a 

trained machine could help on this cumbersome task. A semi-supervised training algorithm 

could automatically classify the report supporting the analysis of an analyst.  

 

Figure 2 - Conceptual approach to update a human error probability model. 

A semi-supervised approach is proposed to analyse accident report and update human error 

probabilities in the proposed model. The concept of the machine-learning approach is summa-

rised in Figure 2. For this study, the Matlab text analytics toolbox based on the bag of words 

model [17] is used for extracting text strings from PDF files and preparing the data for the 

machine-learning algorithm. The Matlab statistics and the machine-learning toolbox is used for 

transforming text inputs into binary classification adopting Support Vector Machine [18]. A 

brief background on the models for text selection and machine-learning is here provided.  

A bag-of-words model is a way of extracting features from the text,  representing it by the 

vocabulary of known words and a measure of their occurrence. However, it does not provide 

any information about the order or structure of words – the reason that it is called a “bag” of 

words. To apply it to a collection of documents, first the data is collected from the text files. 

Then a vocabulary is prepared by making a list of all the words in the text. To improve the 

results and save computational time and memory the model ignores case, punctuation, and other 

frequent words that do not contain relevant information, such as stop words (e.g. ‘a’, ‘the’, ‘of’). 

To score the words in each document the presence of known words is marked as a boolean 

value (0 for absent, 1 for present). Thus, using the list of words previously prepared, the new 

document is analysed and converted into a binary vector. To extract the features from the doc-

uments, the ordering of the words is discarded [17]. 

The Support Vector Machine is the machine-learning algorithm used, popular due to the 

little need for adjustments. In the simplest case – when the data has exactly two classes – the 

Support Vector Machine classifies data by finding the "maximum-margin hyperplane" hyper-

plane that separates the data points of one class (type 1, represented in the Figure 3 as +) from 

those of the other class (type -1, represented on Figure 3 as - ). Any hyperplane can be written 

as the set of points x satisfying:  

 

w·x – b = 0                           (Equation 1) 

 

where w is the normal vector to the hyperplane. The parameter b/||w|| determines the offset of 

the hyperplane from the origin along the normal vector w as shown in Figure 3. The hyperplanes 

that defines the classes are can be described by the following equations: 
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w·x – b = 1                             (Equation 2) 

w·x – b = -1                            (Equation 3) 

The support vectors are the data points that are closest to the separating hyperplane; these points 

are on the boundary of the slab. As it is a supervised learning model the Support Vector Machine 

has to be trained first and then cross-validate the classifier. After that, the trained machine can 

be used to predict or classify new data. In addition, to obtain satisfactory predictive accuracy, 

various Support Vector Machine kernel functions can be used. 

 
Figure 3 – Conceptual illustration of the support vector machine [19] 

 

2.3 Machine-learning tool overview 

 The proposed machine-learning approach is trained using accident reports classified before-

hand by experts according to CREAM taxonomy with the aim of being able to predict automat-

ically the features of similar accident reports. A simplified workflow of the proposed approach 

is shown in Figure 4.  

 

Figure 4 - Simplified workflow of the proposed approach 

In the first module of the tool, accident investigation reports are used as inputs. In this study, 

the documents were in PDF (portable document format). It is important to use an Optical Char-

acter Recognition (OCR) software on accident reports that were shared as image files, in order 
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to convert them in text files. After this pre-treatment, the accident reports are scanned and rel-

evant sections are identified for the sake of efficiency. In the current implantation, the semi-

supervised approach selects the recommendation, lessons learned, and advice sections of the 

incident reports. Using a scoring system, the most likely starts and ends of the target sections 

are identified, and the sections’ texts are sent to later code. 

The second module of the tool aggregates the aforementioned section texts with the MATA-

D dataset information needed to begin machine learning. This dataset contains human factors 

features to be used as desired outputs for machine-learning. Using another scoring system, the 

tool takes each accident report’s file name and finds the most likely corresponding entry in the 

MATA-D dataset (as each report listed in the dataset has a correspondent PDF file). This gives 

the machine-learning component the desired output (i.e. the correct categories) for each incident 

report. This module’s output is a combination of selected section texts and the known human 

factors features of them. 

In the third and last module, the machine-learning model based on support vector machine 

is trained and tested using the data input from the previous two modules. The section texts are 

converted into BagOfWords objects as X. The features extracted from the MATA-D data serves 

as the Y. The module partitions the X and Y data into a training set (90% of total) and a testing 

set (10% of total). For each CREAM feature, an SVM model is trained using training X and Y 

sets, then it is tested using the testing X and Y sets. At the same time, run information is rec-

orded and overall accuracy of all test sets in all categories is calculated.  

2.4 Accuracy of the machine-learning model created 

Each accident report was treated as a document, and the set of accident reports of one specific 

investigation body was treated as a corpus of documents, The current collection of reports 

comes from different organizations with considerably different formats and vocabularies. The 

formats range from a few concise pages in Chemical Safety Board reports to a 200-page letter 

to the US president on the BP oil spill. In this paper, two corpora used were: the US National 

Transportation Safety Board (NTSB), that investigates aviation accidents, and the U.S. Chem-

ical Safety and Hazard Investigation Board (CSB), that investigates industrial chemical acci-

dents. 

If the machine-learning model is only trained with the NTSB reports, the overall accuracy 

of the test sets is approximately 85%. If the model is trained with US Chemical Safety and 

Hazard Investigation Board reports, the accuracy is approximately 91%. This is possibly due to 

the different number of training data for both corpus; the MATA-D dataset had classified 39 

CSB reports and 13 NTSB reports, among a total of 238 accident reports from different industry 

sectors. However, 85% is considered an equally good result for the classification of narrative 

reports into a taxonomy, especially if considered that the inter-rater reliabilities within experts 

are considered acceptable if the label accuracy is above 70% [9]. 

 

3 CASE-STUDY – 2018 ACCIDENT WITH BOEING 737 MAX 8 AIRCRAFT 

On 2018, an accident with a Lion Air plane has lead to 188 fatalities (two pilots, five flight 

attendants and 181 passengers) [11]. Five months later, in 2019, an Ethiopian Airlines plane 

has crashed minutes after take-off, killing all 157 people on board [20][20]. The fact that both 

planes were the same model, a Boeing 737-8 MAX, concerned civil society and safety regula-

tors about the possible common flaws on all planes within the same model, resulting in all 387 

Boeing 737 Max 8 planes grounded globally [21]. This illustrates the importance of learning 

from accidents before making informed decisions. 
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For this research the preliminary accident report of the Lion Air Aircraft flight [11] has been 

tested with the newly developed and trained machine-learning tool, after training the machine 

with two different training sets: a set with only aviation accident investigation reports and a set 

with only with chemical industries accident investigation reports. All of the documents were 

previously classified by an expert within the CREAM human factors taxonomy as shown in 

Table 1. 

3.1 Major findings 

The results obtained by the machine after being trained by NTSB (aviation) and CSB (chem-

ical) accident reports can be compared in Table 2 for human errors and Table 3 for the factors 

that might trigger them. The performance of the machine-learning based tool depends on the 

quality of the training data. For instance, if the machine learning tool is trained only with avia-

tion reports, it classify four types of human errors against only one if it is trained by chemical 

accident reports. Also, among the three types of factors (organizational, technological and in-

dividual) that may trigger human errors, the machine results after being trained by aviation 

reports focus much more on individual factors than when trained with chemical reports – giving 

more weight on the human responsibility upon the system, than the system upon the human. 

This trend can be better identified in Figure 5, after joining the 53 features into their four highest 

levels. There are some possible reasons why the training provided by the chemical accident 

reports are more emphatic on organisational factors, but one is important to discuss: the results 

on the preliminary report of Lion Airlines flight accident might be describing more about the 

training corpus them about the actual report. This means that chemical industries might have 

much more organisational factors initiating accident events than in aviation. This is certainly 

true in the case of the  ‘maintenance failure’ factor. It is possible that a maintenance error initi-

ates an event on a flight, but in chemical industries the probability is much higher as mainte-

nance tasks can be executed while the system operates. Accordingly, it is understandable why 

human errors and individual factors are much more explored in aviation accident reports than 

in chemical plants. In aviation, the investigation is focused in the cockpit, on the crew perfor-

mance. On the other hand, it is not clear to which extent investigators are not digging more to 

the organisational and technological factors that are triggering the human errors of the crews.  

 
Table 2 – Human errors identified  

   Trained with aviation 

reports (NTSB) 

Trained with chemical 

accident reports (CSB) 

Human 

errors 

Execution 'Wrong Time' Yes Yes 

'Wrong Type' 0 0 

'Wrong Object' 0 0 

'Wrong Place' Yes 0 

Observation 'Observation Missed' 0 0 

'False Observation' 0 0 

'Wrong Identification' Yes 0 

Interpretation 'Faulty diagnosis' Yes 0 

'Wrong reasoning' 0 0 

'Decision error' 0 0 

'Delayed interpreta-

tion' 

0 

0 

'Incorrect prediction' 0 0 

Planning 'Inadequate plan' 0 0 

'Priority error' 0 0 
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Table 3 – Organizational, Technological and Individual factors that may trigger human errors 

   Trained with avia-

tion reports  

Trained with chemical 

accident reports  

O
rg

a
n

is
a
ti

o
n

a
l 

fa
ct

o
rs

 

Communica-

tion 

'Communication failure' Yes 0 

'Missing information' 0 Yes 

Organisation 'Maintenance failure' 0 Yes 

'Inadequate quality control' Yes Yes 

'Management problem' 0 Yes 

'Design failure' 0 Yes 

'Inadequate task allocation' 0 Yes 

'Social pressure' 0 0 

Training 'Insufficient skills' 0 Yes 

'Insufficient knowledge' 0 0 

Ambient Con-

ditions 

'Temperature' 0 0 

'Sound' 0 0 

'Humidity' 0 0 

'Illumination' 0 0 

'Other' 0 0 

'Adverse ambient conditions' 0 0 

Working 

Conditions 

'Excessive demand' 0 0 

'Inadequate work place layout' 0 0 

'Inadequate team support' 0 0 

'Irregular working hours' 0 0 

T
ec

h
n

o
lo

g
ic

a
l 

fa
c-

to
rs

 

Equipment 'Equipment failure' 0 Yes 

'Software fault' 0 0 

Procedures 'Inadequate procedure' Yes 0 

Temporary 

Interface 

'Access limitations' 0 0 

'Ambiguous information' 0 0 

'Incomplete information' 0 Yes 

Permanent 

Interface 

'Access problems' 0 0 

'Mislabelling' 0 0 

In
d

iv
id

u
a
l 

F
a
ct

o
rs

 

Temporary 

Person  

Related  

Factors 

'Memory failure' 0 0 

'Fear' 0 0 

'Distraction' Yes Yes 

'Fatigue' Yes 0 

'Performance Variability' Yes 0 

'Inattention' Yes 0 

'Physiological stress' 0 0 

'Psychological stress' 0 0 

Permanent 

Person  

Related  

Factors 

'Functional impairment' 0 0 

'Cognitive style' 0 0 

'Cognitive bias' Yes 0 
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Figure 5 - Observed features after the machine is trained in different types of report 

 

Another important aspect to be considered is the comparison of the present results to what 

is being communicated by the media and specialists in the area. Although recent news from 

media (e.g. [21]) and specialists opinion (e.g. [22]) accounts for the possible inadequacy of the 

software installed on the plane, the developed machine-learning tool has not identified the fea-

ture ‘software fault’ of the taxonomy. Some possible reasons for the lack of ‘software fault’ 

identification by the machine are described below: 

• The document tested is a preliminary investigation report for the accident occurred to 

Lion Airlines (on 28 October 2018). There are few mentions to ‘AoA’ sensor but they 

do not state a definite problem with it, as illustrated by this sentence extracted from the 

report: “The investigation will perform several tests including the test of the ‘AoA’ sen-

sor and the aircraft simulator exercises in the Boeing engineering simulator. The inves-

tigation has received the QAR data for flight for analysis”. Thus, as the data was not yet 

evaluated and a final report was not issued, the software problem pointed by the media 

is not official – and it was possible to be perceived as one of the causes only after the 

accident occurred to Ethiopian Airlines (on 10 March 2019).  

• The points stated about the sensors, on this preliminary report, use lots of acronyms or 

field-specific words possibly not yet related in other accident investigation reports. This 

could be tackled by training the machine also in the acronyms and specific words for 

each field, such as those reported in the Aviation Safety Reporting System (ASRS). This 

might also be improved by using a machine-learning strategy that accounting for the 

order of the words. 

• The model and machine-learning tool developed has not yet achieved 100% accuracy. 

If it was, maybe could detect the software problem on the preliminary report. It is cur-

rently achieving 85% accuracy (if the machine is trained with aviation NTSB reports) 

and 91% accuracy (if trained with Chemical CSB reports).  
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4 CONCLUSIONS  

This study shows the feasibility of implementing a machine-learning tool to update the 

Bayesian network probabilities by scanning new reports without the necessity of the time con-

suming and expensive approach required by the traditional task. The proposed approach is 

based on text-recognition and text-classification, combined with support vector machine for 

classifying text according to predefined taxonomy to create a “virtual risk expert”.  This allows 

a real-time update of the model parameter available and it can be of fundamental importance to 

identify main causes of patterns across accidents.   

The case study about the Boeing 737 MAX-8 plane accident has been presented showing that 

new evidence can be included in the Bayesian network proposed and new human error proba-

bilities can be generated. The results of the analysis show that human factors are revealed when 

the model is trained using data from the chemical industry and not only from aviation, indicat-

ing the importance of cross-discipline knowledge transfer. 

ACKNOWLEDGEMENTS  

We would like to acknowledge the efforts of Jack Tully and Hao Xu, final year undergraduate 

students of the University of Liverpool that have contributed to improve and test the code. This 

research has been supported by ANP, the Brazilian Oil & Gas Regulator, and by EPSRC under 

the grant EP/R020558/1. 

REFERENCES  

[1] Center for Chemical Process Safety (CCPS), 2010. Guidelines for Risk Based Process Safety. 

John Wiley & Sons. 

[2] Drupsteen, L., Groeneweg, J. and Zwetsloot, G.I., 2013. Critical steps in learning from incidents: 

using learning potential in the process from reporting an incident to accident prevention. Interna-

tional journal of occupational safety and ergonomics, 19(1), pp.63-77. 

[3] Moura, R.; Beer, M.; Patelli, E.; Lewis, J. and Knoll, F., 2017. Learning from accidents: interac-

tions between human factors, technology and organisations as a central element to validate risk 

studies. Safety Science, 99, pp.196-214. DOI: 10.1016/j.ssci.2017.05.001 

[4] Moura, R.; Beer, M.; Patelli, E. &amp; Lewis, J. 2017 Learning from major accidents: graphical 

representation and analysis of multi-attribute events to enhance risk communication. Safety Sci-

ence, 99, 58-70 DOI: 10.1016/j.ssci.2017.03.005 

[5] Zio, E., 2018. The future of risk assessment. Reliability Engineering & System Safety, 177, 

pp.176-190.  

[6] Morais, C., Moura, R., Beer, M., Patelli, E., 2019 (in press) Analysis and estimation of human 

errors from major accident investigation reports. ASCE-ASME Journal of Risk and Uncertainty 

in Engineering Systems, Part B: Mechanical Engineering.  

[7] Estrada-Lugo  H.D., Tolo S.,  de Angelis M. and Patelli, E.  2019 (in press) An inference method 

for bayesian networks with probability intervals ASCE-ASME Journal of Risk and Uncertainty 

in Engineering Systems Part B: Mechanical Engineering 

[8] Moura, R., Beer, M., Patelli, E., Lewis, J. and Knoll, F., 2016. Learning from major accidents to 

improve system design. Safety science, 84, pp.37-45. DOI: 10.1016/j.ssci.2015.11.022 

507



C. Morais, K. Yung and E. Patelli 

 

[9] Robinson, S., 2018. Multi-label classification of contributing causal factors in self-reported safety 

narratives. Safety, 4(3), p.30. 

[10] Van Gulijk, Coen; HUGHES, Peter; FIGUERES-ESTEBAN, Miguel. The potential of ontology 

for safety and risk analysis. In: Proceedings of ESREL 2016. CRC Press, 2016. 

[11] Transportasi, K.N.K., 2018. Preliminary KNKT.18.10.35.04 Aircraft accident investigation re-

port, PT. Lion Mentari Airlines, Boeing 737-8 (MAX). Ministry of Transportation, Indonesia, 

Report.  

[12] Tolo, S., Patelli, E. and Beer, M. 2018, An open toolbox for the reduction, inference computation 

and sensitivity analysis of Credal Networks. Advances in Engineering Software, 115, 126-148. 

DOI: 10.1016/j.advengsoft.2017.09.003  

[13] Patelli, E., 2016. COSSAN: a multidisciplinary software suite for uncertainty quantification and 

risk management. In Handbook of uncertainty quantification, pp.1-69. DOI: 10.1007/978-3-319-

11259-6_59-1 

[14] Patelli, E.; George-Williams, H.; Sadeghi, J.; Rocchetta, R.; Broggi, M. and de Angelis, M. 2018, 

OpenCossan 2.0: an efficient computational toolbox for risk, reliability and resilience analysis 

Proceedings of the joint ICVRAM ISUMA UNCERTAINTIES conference, http://icvra-

misuma2018.org/cd/web/PDF/ICVRAMISUMA2018-0022.PDF  

[15] Tolo, S. and Patelli, 2015, A computational tool for Bayesian network enanched  with reliability 

methods, Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification 

in Computational Sciences and Engineering Crete Island, Greece, 25-27 May 2015, Eccomas 

Proceedia ID: 4316, 908-923 

[16] Hollnagel, E., 1998. Cognitive reliability and error analysis method (CREAM). Elsevier. 

[17] Brownlee, Jason Brownlee. “A Gentle Introduction to the Bag-of-Words Model.” Machine Learn-

ing Mastery, https://machinelearningmastery.com/gentle-introduction-bag-words-model/, web-

site visited on 1st May 2019 

[18] Malab documentation. Support Vector Machines for Binary Classification.  

https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html. 

Website visited on 1st May 2019 

[19] Wikipedia https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_ mar-

gin.png.  

[20] BBC News. https://www.bbc.co.uk/news/business-47523468. Website visited on 3rd April 2019 

[21] BBC News. https://www.bbc.co.uk/news/business-48038026?intlink_from_url= 

https://www.bbc.co.uk/news/topics/c2g0x3qg9q1t/boeing-737-max-8&link_location=live-re-

porting-story. Website visited on 25th April 2019. 

[22] Gregory Travis Specialist opinion on Boeing 737 MAX-8 failures. IEEE Spectrum. 19 April 

2019. Available at: https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disas-

ter-looks-to-a-software-developer . 

508

http://icvramisuma2018.org/cd/web/PDF/ICVRAMISUMA2018-0022.PDF
http://icvramisuma2018.org/cd/web/PDF/ICVRAMISUMA2018-0022.PDF
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html
https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_%20margin.png
https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_%20margin.png
https://www.bbc.co.uk/news/business-47523468
https://www.bbc.co.uk/news/business-48038026?intlink_from_url=%20https://www.bbc.co.uk/news/topics/c2g0x3qg9q1t/boeing-737-max-8&link_location=live-reporting-story
https://www.bbc.co.uk/news/business-48038026?intlink_from_url=%20https://www.bbc.co.uk/news/topics/c2g0x3qg9q1t/boeing-737-max-8&link_location=live-reporting-story
https://www.bbc.co.uk/news/business-48038026?intlink_from_url=%20https://www.bbc.co.uk/news/topics/c2g0x3qg9q1t/boeing-737-max-8&link_location=live-reporting-story
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer


UNCECOMP 2019
3rd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Crete, Greece, 24-26 June 2019

RECOMMENDER TECHNIQUES FOR SOFTWARE WITH RESULT
VERIFICATION

Ekaterina Auer1 and Wolfram Luther2

1University of Applied Sciences Wismar,
D-23966 Wismar, Germany

e-mail: ekaterina.auer@hs-wismar.de

2 University of Duisburg-Essen
D-47048 Duisburg, Germany
e-mail: luther@inf.uni-due.de

Keywords: software, scientific recommender systems, initial value problem, ordinary differen-
tial equations.

Abstract. Methods with result verification such as interval analysis or affine arithmetic have
been used successfully at least since the 1970s not only for dealing with the automated proofs
that simulation results obtained using computers are correct, but also for taking into account
the influence of bounded uncertainty in the input on the outcome of a simulation. There are
many packages developed for providing basic arithmetic computations on different platforms,
for example, filib++ in C++1, PyInterval in Python2, or such exotic implementations as Juli-
aIntervals in Julia programming language3, and this is only a small choice of tools for interval
arithmetics. Moreover, there are packages for higher level algorithms such as solving ini-
tial value problems for ordinary differential equations (e.g., VNODE-LP), global optimization
or linear/nonlinear systems of equations (e.g., inside C-XSC Toolbox). However, despite this
abundance of software solutions, set-based methods with result verification are rarely used by
an ordinary engineer for dealing with bounded uncertainty. In our opinion, one reason for this
unpopularity is that engineers do not have time to compare the existing tools and choose the
package that is most suitable for their task. To address this problem, we suggest using automatic
recommendations.

In this paper, we focus on software for solving initial value problems since it is important in
many application areas such as biomechanics or automatic control. We show how modern con-
cepts from the area of recommender systems can be employed to obtain an automatic suggestion
about what tool to use for a given application and what prerequisites are necessary to be able
to do so. We discuss in general what kind of data, metadata, quality criteria, metrics, and visu-
alizations are required to be able to compare and recommend software with result verification.
Finally, we present algorithms for recommendation and illustrate their functionality.

1www2.math.uni-wuppertal.de/˜xsc/software/filib.html
2pypi.org/project/pyinterval
3github.com/JuliaIntervals
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1 INTRODUCTION

Digital assistance becomes more and more ubiquitous in everyday private and working life.
Therefore, topics with applications to ambient intelligence and smart environments are of par-
ticular interest in the field of information science. Research trends focus on cross-cutting issues
such as standardization, verification and validation assessment, or development of formal test-
ing and quality criteria concerning, for example, reliability, performance and user satisfaction,
which makes devising versatile metrics and agreeing on unified vocabularies across disciplines
especially important. As demonstrated in [8], new software engineering priorities are in such
technologies as search engines, recommender systems, and general data mining techniques.

The goal of recommender systems (RS) [2] is to aid consumers while they select from a
variety of products, mostly with the aim to increase product sales (e.g., for online shops) or
otherwise promote a given business (e.g., for social networks). Depending on the intended
application, a number of other – operational or technical – goals can be set concerning, for
example, relevance, novelty or diversity of recommendations. For generating suggestions, it is
assumed that meaningful rules can be discerned about the way the consumers (users) select the
products (items) or, vice versa, about the products most suitable for (a group of) customers. To
achieve the mentioned goals, RS might take into account such characteristics as the intended
product use, customer behavior, or product ratings and try to compile a ranked list from the
multitude of offers (or predict a user’s rating for a given item) according to criteria specified
beforehand. Beyond the classical application in the area of e-commerce, RS are also in high
demand for digital products, for media (including such different aspects as movies, news, or
scientific publications), for healthcare, learning, or artificial-intelligence-based services. This
new perspective requires novel, formally described standards, quality criteria and metrics [66]
to determine the ranking in the sense of a multi-criteria optimization supported, if possible, by
test environments (e.g., for software tools) and evaluation guidelines for recommendations.

Whereas evaluation of recommendations is a fairly well-known topic (cf. [2], Chapter 7),
the related notions of testing and test environments might require a further explanation. Their
obvious goal is direct certification of a RS, as, for example, in case of the data set and precise test
descriptions provided in the context of the Netflix prize 4. On the other hand, their development
might be motivated by human factors: While some consumer groups might make decisions
taking into account just the quality criteria, fulfillment of requirements, known benchmarks
results, or recommendations from peers, other consumer groups, in particular, professionals,
might want to parameterize and try out different digital products in a common test environment
themselves to find the right product or the right solution in a given situation and for a specified
task. A new research direction is therefore scientific RS (SRS) for digital products supported
by test environments.

In our view, a scientific RS should possess the following characteristics:

1. It is a recommender for scientists providing a ranked list of items (e.g., software tools)
suitable for the user’s task.

2. It is usually knowledge based, context aware and multi-criteria; its item ratings evolve
with time (e.g., requirements for software quality, its usability and the degree of interac-
tion might evolve with time).

3. It provides recommendations which are relevant for a given user with respect to prede-
fined (or inferred) criteria.

4www.netflixprize.com
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4. It is flexible in the sense that (groups of) items or users with new attributes can be added
easily to the set-up.

5. It is reliable, for example, is based on formally described criteria, uses reliable algo-
rithms, provides explanations of recommendations for credibility and traceability of deci-
sions, and takes care of good provenance of data (e.g., through common test conditions).
Trustworthiness is supported through recommendation rating by users.

6. It can be supported by a test environment, which can take care of the cold-start problem
and active learning.

By contrast, such RS subgoals as novelty, surprise, or diversity (cf. [2], page 3) need not be
considered. Although context-aware, SRS does not necessarily need to take into account such
domain-specific challenges as location and the social component. Social media for scientists
such as www.academia.edu or www.researchgate.net belong to the general class
of social RS such as www.facebook.com and might contain subcomponents which can be
classified as SRS (e.g., recommending project partners).

In this paper, we apply the general principles and techniques of (scientific) recommendation
in a specific context of verified software. After giving a brief overview of the state of the art
in SRS along with suggestions of how it can be employed for our purposes (Section 2), we
illustrate the concepts summarily in Section 2.2 using the application area of visual analytics,
where automatic choosing of the appropriate visualization technique is a common software fea-
ture (often without the name of recommendation). Our focus is on recommending techniques
for verified solution of initial value problems (IVPs) for ordinary differential equations (ODEs),
an area where we would like to offer users similar options. In Section 3 we point out what is
necessary to recommend a scientific tool in general. In Section 4, we describe first the available
verified IVP solvers along with the necessary conditions and rules to be able to give a recom-
mendation. Moreover, we provide and illustrate a specific algorithm using a small data set.
Finally, we point out possible improvements and further research directions. Conclusions are in
the last section.

2 SCIENTIFIC RECOMMENDER SYSTEMS

The purpose of scientific RS is to recommend an item (a ranked list of k items) to a scientist
in a broad sense (e.g., engineer, researcher, teacher, student). This item can be a digital product,
for example, a software tool or a technique, from various application areas such as visualization
or education.

One classical formulation of a recommender problem is to determine a list of recommenda-
tions (for items) based on preferences and needs of a user (group), which we see as the most
relevant formulation for a scientific recommender. Three general RS techniques are collabo-
rative filtering (using information about user-item interaction), content-based methods (using
information about attributes of users and items), and knowledge-based methods (using explicit
information about user requirements). SRS recommend items for scientific tasks that fulfill pre-
defined requirements and constraints and make use of all of the mentioned general techniques
where necessary. To establish a list of recommendations, SRS often rely on object or case-based
approaches accompanied by filtering and learning algorithms, similarity measures to compare
items (cases), quality criteria and metrics to select and rate suggestions, and intelligent algo-
rithms to match users’ quality criteria with product properties/descriptions or to find people
with similar interests/profiles and expectations for the product.

In this section, we identify the most common SRS topics first. After that we describe the
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subtopic of visual analytics in more detail. Note that our literature review is not supposed to
be complete and has a narrow focus. For general overviews of RS and their research topics,
see, for example, [2, 32], and for SRS [22, 25, 53, 58, 59, 49], which are mainly about RS in
education and paper recommending. In [50, 14, 26], the state of the art is described for aspect-
based RS which make personalized recommendations taking into account the users’ opinions
about aspects of the rated items extracted from their reviews.

2.1 Topics for scientific recommendation

Below, we identify research topics in scientific recommendation (in capital letters) and exem-
plify them by (a) relevant publication(s). The considered SRS mainly use a case database with
benchmarks for problems and their solutions; retrieve similar tasks; reuse, adapt and revise so-
lutions and retain new cases and new user preferences. That is, they can be classified as mostly
knowledge-based and employ appropriate quality criteria and metrics. Case-based and feature-
based SRS continue to evolve by including new user groups, their tasks and environments as
shown in [39].

SRS-SE recommend relevant activities for software engineering (SE) tasks and support de-
velopers during programming of software components by providing “information items esti-
mated to be valuable for a software engineering task in a given context” [56]. Specifically,
SRS-RE offer help in the area of requirements engineering (RE) considered to be “one of the
most critical places in software development” [22] by employing the whole range of recom-
mender techniques from collaborative filtering to social media related algorithms.

SRS-P make a choice of relevant papers (P) from a specified scientific field. Scientific paper
recommender systems are extensively described in [59], supplemented by several new metrics
and a comparative/contrasting definition of various recommendation tasks. An important sub-
task is to extract semantic relations between keywords from scientific articles in order to support
users in the process of browsing and searching for content in a meaningful way [38]. SRS-E
help students and teachers to make choices (e.g., of suitable courses) in the educational (E) con-
text [23]. Further tasks for SRS-E are given in [4], where the authors describe an RS that can
be applied for finding experts in academia, for example, supervisors for students’ qualifications
or research, reviewers for conferences, journal or project submissions, or partners for R&D
proposals. SRS-STI, that is, RS for scientific and technical information (STI), are addressed
in [48]. Here, a more general point of view is adopted by combining the angles of SRS-P (e.g.,
scientific libraries), SRS-E (e.g., e-learning) and others. The privacy issues and the cold start
problem are addressed and several algorithms for the generation of behavior-based recommen-
dations are explored there.

The next topic is the one of the most relevant w.r.t. the goal of this paper. SRS-PSE provides
recommendation for problem-solving environments (PSE) [28, 27, 67]. In [67], the project CB-
Matrix is described – an early development in the area of devising “intelligent recommender
components” to assist scientists in choosing and applying scientific tools. The developers of
the project PYTHIA [28, 27] start out by recommending software/methods for partial differ-
ential equations and then extend their methodology to enable users to prototype their own rec-
ommenders on the basis of their own databases and specifications for interaction with under-
lying execution environments. The resulting customizable web-based platform MyPYTHIA
does not seem to be freely accessible online anymore5. MyPYTHIA leaves the problem of a

5The service swMATH http://swmath.org, which is a SRS-P itself and provides information on mathe-
matical software based on the analysis of publications [9], only supplies links to papers for the keyword
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common test environment out of consideration [27]. SRS-R (SRS for reliable (R) or verified
software/hardware) and SRS-VA (SRS for visual analytics, VA), which are in the focus of this
paper, can be considered as subtopics within this general setting. Even if it is not explicitly
termed as a RS in such publications as [7], the mechanism behind choosing visualization tech-
niques based on optimization of a metric w.r.t. quality criteria can be seen as such. More
information about this topic is in Section 2.2. SRS-R deal with reliable hardware and software
components, use reliable algorithms and include evaluation strategies for the system outcome,
even if ground truth to assess accuracy is missing. This topic is described in detail in Section 4.
Finally, SRS-AS, RS for assistive software (AS) [24], enable existing interoperability architec-
tures to automatically select the most suitable assistive software for a given interaction with a
specific electronic target device taking into account the user’s benefit and disabilities.

Knowledge-based RS often employ ontologies (constructed beforehand in a ’intelligence’
step, e.g., from user reviews) for generating recommendations. Ontologies provide a structured
framework for modeling concepts and relationships between scientific domains of expertise.
They are a prerequisite for development of domain knowledge metadata bases for modeling,
communicating and sharing knowledge among people (or problem-solving applications). A lot
of work has been done in this field, also from the angle of artificial intelligence. For example,
PROTEGE-II [62] is an implementation of a methodology for building knowledge-based and
domain specific knowledge acquisition systems. The tool provides protocol-based decision sup-
port in a specific medical domain. Another tool, CEDAR OnDemand [11] allows users to enter
ontology-based metadata conveniently through existing web forms from their own repositories.
The web page contents is analyzed to identify the text input fields and associate them with auto-
matically recommended ontologies. Finally, there are modeling languages based on ontologies.
For example, the publication [17] shows how to employ the unified problem-solving method
development language (UPML) as a comprehensive framework for modeling libraries of meth-
ods. UPML provides a hierarchy of concepts to specify knowledge components. In particular,
the description of a method includes a competence (defined by a set of input and output role
descriptions as well as preconditions and postconditions, e.g., formulas for inputs and outputs),
a separate method ontology (definitions of the concepts and relationships of a method) and its
associated operational description.

2.2 Recommending a visualization

A publication on scientific recommenders would not be complete without mentioning the
field of visualization, which is a very extensive topic. A lot of work has been done on choosing
the right visualization for the problem at hand, often without explicitly calling it a recommen-
dation. In this section, we mention the most important publications in this area from our point
of view and describe an application of such techniques in the field of steel production.

2.2.1 Short overview of recommender tools in visualization

The general goal of SRS-VA is to automatically suggest a visualization providing insight
about the data under consideration, ideally taking into account their characteristics and domain
as well as individual user preferences. Accordingly, approaches to visualization recommenda-
tion can be classified loosely into four categories [34]: RS based on data characteristics, RS
(additionally) using representational goals, RS employing domain knowledge to improve rec-
ommendations, and RS relying on explicit interaction with users to infer their preferences. The
first group can be considered as the most widely spread one since it was explored long before
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the term RS had been applied to VA. The others appeared as a result of cross-cutting research in
such areas as RS, data science, information visualization, and artificial intelligence. The bound-
aries between groups are not sharp so that there are methods using (parts of) techniques from
the other groups. Below, we exemplify the concepts with appropriate RS references. For more
information, see [34].

In the first group, the authors of [40, 60] suggest encoding ordered sets of user-specified data
and metadata descriptors by visual variables (e.g., size, texture, color, shape). They develop a
compositional algebra to enumerate the space of encodings and apply a set of visual integrity
criteria to prune and rank the set of visualizations. This approach resulted in algebraic specifi-
cation language VizQL with the help of which both the structure of a view and the complying
queries can be specified and used to fill the structure with data. Moreover, the module Show
Me [40] introduces a set of heuristics to extend automatic presentation to the generation of tables
of views (small multiple displays) and recommend chart types. This research is implemented
in a commercial tool Tableau6. An example of a free tool from the same class is the web ap-
plication Voyager [68, 69]. The Voyager approach uses statistical and perceptual measures for
finding out interesting relationships between data and transformations and allows for automatic
generation and interactive steering of views as well as refinement of multiple recommendations.

One of the research goals in the second class of SRS-VA is automating generation of user
tasks from natural language descriptions instead of creating them manually [34]. In the latter
case, there is a connection with formal modeling methods for user interfaces/interaction. In the
former case, advanced linguistic techniques are necessary. An example here is the tool Impro-
vise7. The tool SemViz8 [46] belongs to the third group and uses knowledge ontologies from
the semantic web for adaptive semantics visualization. Similarly, a knowledge base of various
ontologies is used in [65] to recommend visualizations. Here, the whole range of techniques
from the previous classes is employed: Although rule-based and functional requirements gov-
ern discovering and ranking of potential mappings, such factors as device characteristics, data
properties and descriptions of tasks influence the pre-selection and the final ranking. Finally,
tools like VizRec [45] or VizDeck [35] belong to the last class and employ information about
perceptual guidelines and explicit feedback about user preferences.

The publication [7] gives a comprehensive overview of metrics to compute the quality of
a visualization which have been introduced and discussed for different information visualiza-
tion techniques in recent years. The quality-metric-driven automation layer added to the visual
analytics pipeline can serve directly as the basis for making data characteristic oriented rec-
ommendations, which is (implicitly) suggested to be done by multi-criteria optimization. In
particular, the authors cover node-link diagrams and matrix representations for relational data;
parallel coordinates and pixel-based techniques for multi-dimensional data; scatter plots and
scatter matrices for high-dimensional data; TreeMaps for hierarchical data; radial visualizations
when focusing on one dimension (e.g., a person); glyphs, line and bar charts for uncertainty vi-
sualization; and, finally, typographic visualizations and tag clouds for visual representation of
text data. Additionally, geo-spatial data visualizations are examined separately as a case of
special purpose visualization. As the authors explain, the selection focuses on fields in which
quality criteria and quality metrics along with their underlying concepts, tasks and evaluation
efforts are (semi-)formally described and can be examined analytically. Moreover, they present
a high-level overview of visual exploration goals supported by the majority of metrics, for ex-

6www.tableau.com
7www.cs.ou.edu/˜weaver/improvise
8knoesis.org/semviz
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ample, clutter reduction filtering out noisy views, identifying data groups and partition clusters,
establishing relations between dimensions, filtering out outliers, or preserving original data
properties in the mapping process while reducing the number of dimensions. However, no user
studies are conducted that compare the different metrics for different tasks and different data
characteristics from a human-centered point of view.

2.2.2 Challenges in visualization recommender research

The directions of research in SRS-VA are aimed towards stronger involvement of human fac-
tors (e.g., higher interactivity) and domain specifics in generation of recommendations which
might necessitate higher use of formal languages, standards or ontologies (e.g., for encoding
tool and task categories). Filters concerning user experience and further (better) quality criteria
and metrics to rank recommendations remain topics of interest [57]. A further challenge is that
there exist many tools and methodologies for visualization, which requires possibly expensive
filtering, which in turn influences the efficiency. Besides, finding competent users is necessary
for selecting the right quality parameters out of a large number and for specifying optimiza-
tion goals. Finally, although extensive research in this direction exists [7], it is a challenge
to devise computable quality measures for optimization. For that, representative situations and
datasets, users, tasks, and quality criteria are necessary. Quality measures could be derived from
evaluation studies concerning task categories, user experience and interaction styles; concern-
ing visualization tools (with the focus on performance, accuracy, usability, result presentation
readability, integrity); and concerning data and metadata quality.

2.2.3 An application to steel production

In the previous subsections, we described recommendation methods relying heavily on for-
malizing different concepts in visualization. It is also possible to approach the task empirically,
which overlaps somewhat with the class of RS based on explicit user interaction. For example,
users are urged to explore a small number of parameter variants using large singles and small
multiples as alternative views in [21], allowing for efficient data analysis.

A similar approach is adopted by the inclusion processing framework viewer IPFViewer
2.0, developed under guidance of the second author and employed in the area of steel produc-
tion for analyzing (big) data collected about non-metallic inclusions and other defects in steel
samples [61]. Extensive interviews were conducted with experts after the initial version 1.0 had
appeared, during which alternative visualization concepts (i.e., various forms of multiple views)
had been shown to users. IPFViewer was adapted to the outcome of the survey in its version
2.0, which in turn was evaluated again by the same experts. That is, a number of visualization
recommendations (for highly specialized experts) were generated and evaluated comparatively
through user feedback w.r.t. their suitability.

IPFViewer 2.0 takes into account process parameters such as intentional settings or measure-
ments taken during monitoring of various steel grades and their metadata, defect parameters,
descriptors and volume data for each defect, isoperimetric shape factors (e.g., volume or sur-
face area), sample parameters (e.g., milling machine slices of the steel surface), and statistical
descriptors of the defects (e.g., the sample cleanliness). It performs 3D reconstruction of cracks,
non-metallic inclusions or pores. The tool can analyze the ensemble data set in various ways,
for example, detect outliers to identify samples that differ from the others by position, size, type
and number. To rate steel quality, it carries out trend analysis to study the influence of different
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process parameters on the steel samples and variance analysis to examine natural fluctuations
within the samples and desired variations that result from process parameters. When required,
IPFViewer relies on incremental, approximate analysis techniques to ensure the responsiveness
of the application while sufficient precision is guaranteed for queries with fast response times.

The steel production facility workers are now able to quickly and interactively analyze data
with millions of data rows. The resulting data tree is visualized as a huge grid in a scrollable
area. Each grid cell incorporates a multiple view system with such standard visualization tech-
niques as scatter plots, bar charts and trend graphs. Steel experts examine the histogram about
defect diameter and the largest found defects to evaluate a sample quickly without having to
analyze each defect manually. They can also scroll through all the samples and compare them,
create and save various layouts that visualize different aspects of the data in order to confirm or
refute hypotheses.

3 WHAT IS NECESSARY TO RECOMMEND A SCIENTIFIC TOOL?

In Figure 1, three general steps most SRS have to undergo to generate a recommendation
are shown. The purpose of the first one is to extract information which describes a given user’s
request for a recommendation. This retrieval can be automatic (e.g., identifying keywords from
texts), interaction-based (e.g., asking users to enter keywords) or manual (e.g., rigidly fixing the
keywords). Here, the base data/metadata set is produced. In the next step, new information is
generated, for example, taking into account similarity measures or based on ontologies, possibly
including machine learning algorithms. This produces candidates for recommendation. Finally,
the candidates are ranked according to predefined criteria or metrics and the resulting list of
recommendations is conveyed back to the users. An important additional step is evaluation of
the produced recommendations. For example, if there is a common testing environment for
the items of interest, the recommendation can be validated additionally and the feedback about
these validation results reused at the intelligence step. There are also other possibilities for
evaluation such as user studies, see [2], Chapter 7.

‘Intelligence’ step

info extraction
(automatic/manual)

Users

Request

‘Knowledge’ step

info generation
(ontology, similarity,

learning)

seed data/metadata

‘Ranking’ step

info preference
prediction

(optimization etc.)

enhanced data

Recommendation

Evaluation

Figure 1: General stages in RS. Steps strictly belonging to a RS are shown in blue.

To illustrate these steps and to see what is necessary to implement a scientific recommender,
let us consider a relatively simple example from [67]. The task of the RS from [67] is to rec-
ommend data structures (e.g., block matrices) for solving large sparse linear systems based on
previously solved use cases. At the first step, features of matrices are determined (e.g., number
of non-zeros, degree of bandedness) and a database of past information on pairs “matrix”-“data
structure” is created. Possibly, the data have to be normalized beforehand. At the next step,
a predefined similarity metric is used to be able to determine matrices similar to a given new
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one. To improve similarity detection, tests based on genetic algorithms can be carried out here
to automatically determine a ‘good’ set of feature weights. At the third step, the most suitable
data structures for these similar matrices are determined and ranked for the recommendation
according to a ‘measure of goodness’ (i.e., performance in flops). The recommendations are
evaluated in cross-validation tests. As shown in [27], such principles can be generalized and
used to generate recommenders themselves.

Since the goal of a SRS is to provide a ranked list of tools best suited for a given user task
as explained earlier, we describe a possible approach to choosing the most suitable item (or a
list of them) and relate it to the scientific tool context. An interesting ranking method based on
keywords is introduced in [51, 52]. A more sophisticated ranking algorithm is described in [70].
For textbook approaches in network context, see [2], Chapter 10.

As already explained in relation to VA, multi-objective optimization can play an important
role as an RS technique and be seen independently of visualization context. A quality function
q and the associated algorithm A are defined in dependence on the problem-solving tool v, sev-
eral descriptors (e.g., those pertaining to data, users, and tasks) and some side conditions. As
proposed in [7], the algorithm A has to solve a multi-objective optimization problem in order to
find a problem-solving instance v (or a ranked list L of such tools v) to maximize (minimize)
q. The choice of parameters to optimize and their ranges depends on the task definition, re-
quirements, equality and inequality constraints, valid standards or measurements/experiments
for validation. This choice can be made by trial and error, searching or filtering. The function q
is characterized by quality criteria and quality metrics defined in the context of the user group
and its profile, the task and its model, the data, metadata and data types mapped to the tool v be-
longing to a predefined set of computer-based problem solvers, the hardware and its interfaces.
The quality criteria encompass performance of the task completion including effectiveness and
efficiency, reliability criteria for the input data that need to be mapped by v to the outcome
space accurately and efficiently. If the optimization problem can be solved automatically, then
the problem solving tool v or tool selection and its/their quality metric parameters fulfill the
requirements and side conditions and can be recommended to the user (group) for drawing con-
clusions and making decisions. Typically, requirements concern the solution or its enclosure
under uncertainty in parameters. The success of this approach depends on whether an effective
and efficient implementation A of the target function q and its computation can be provided.

In order to produce L, a strategy similar to [59] can be employed. There, a similarity-based
diversity metric mdiv is considered for a set P of scientific papers pi as a normalized sum

1−mdiv := c−1 ·
∑
i6=j

msim(pi, pj) ∈ [0, 1], where c = (|P |(|P |−1))·max
i6=j

msim(pi, pj) , (1)

which can be adapted to scientific tools. That is, such tools can be seen as similar if their values
for a given quality measure differ only slightly on a set B of benchmark problems. Further, the
term ‘coverage’ is introduced in [59] as “the extent to which all important aspects and subtopics
of a scientific field are covered by a set of papers”. It is an open research topic to develop a
method to similarly cover a given problem space with a small number of scientific tools that
solve the benchmark problems w.r.t. given requirements, constraints and quality criteria, for
example, performance, accuracy, and usability. That means describing the problem space as
a multidimensional space T depending on problem descriptors and compiling a small number
of tools in a list L that clusters the space T . This can be done by using an average similarity
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distance

Av(dsim(L)) :=

∑
i6=j

dsim(vi, vj)

|L|(|L| − 1)
(2)

for a set L ⊆ T of scientific tools vi and the similarity distance dsim by constructing a sequence
Av(dsim(Li)) with further tools vi+1 ∈ T as far as possible from the already taken item set
{v1, v2, . . . , vi} ⊆ T . For this, we arrange the distances according to their value in descending
order and start with two most distant items v1, v2. The process can be terminated if the last
distance d(Li, vi+1) falls below a certain limit c. Then for each v ∈ T there is at least one item
vi ∈ L with dsim(vi, v) = c.
To summarize, what is needed for SRS is the following.

Database User features, item features, user-item information
Information generation strategies Classification, ontology
Metrics Means for establishing similarity and goodness (quality criteria, weights to reflect

situational context)
Ranking algorithms based on metrics such as the similarity-based diversity metric (1) or the

the cosine metric (6)
Common test environment (optional): Database generation, evaluation.
Generalization (optional): Means to decouple a recommender from the actual feature vector

or metric/criteria instantiation

4 A SCIENTIFIC RECOMMENDER FOR IVP SOLVERS

In this section, we describe an algorithm to recommend verified initial value problem solvers
(IVPS) for ODEs and its possible generalizations. Verified methods [44] are constructed in such
a way as to provide a mathematical guarantee that a solution obtained on a computer is correct.
IVPS generate numerical sets that are mathematically proved to contain exact solutions. They
are useful in different contexts, for example, for computer-assisted proofs [63, 64] or for prop-
agating bounded uncertainty through systems [54]. There are many free libraries implementing
verified IVPS techniques, which we describe in some more detail in Subsection 4.1. However,
an average engineer is disinclined to use them, main reason being the difficulty to choose the
right method for a given problem without having the full knowledge about the subject. Some
verified methods might be too simple to be used for an advanced application leading to very
conservative or pessimistic results; other methods might be too prohibitive computationally.
This led us to the idea of implementing a common web-based environment for testing such
verified IVPS, which can serve as a basis for a recommender [6].

As far as we know, there are no comparable recommenders for non-verified, normal floating-
point arithmetic based IVPS. Such recommendation portals as MyPYTHIA [27] could prob-
ably have been used for that purpose but does not seem to be online anymore. Note that the
MyPYTHIA application to partial differential equations described in [27] could serve as a good
basis for the appropriate IVPS recommender. There are several web platforms for gathering
benchmarks, testing and comparing traditional non-verified IVPS, most notably TEST SET
at pitagora.dm.uniba.it/˜testset/ building on research from DETEST [29] and
similar. Besides, the service swMATH [16] semi-automatically manages the existing Web in-
formation about mathematical software. However, verified IVPS have to be compared based on
different criteria: for example, they always produce “correct” solutions, that is, the reliability of
the results does not need to be tested. After describing available software for verified solution of
IVPs and our testing environment VERICOMP, we analyze existing literature concerned with
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testing and comparing them to identify possible quality criteria and problem classification in
Subsection 4.2. The rest of this section is devoted to our recommender algorithm (including an
illustration) and possible improvements.

4.1 Verified IVP solvers and VERICOMP

A number of most widely known IVPS are summarized in Table 1 along with some of the
newer tools. Some of these IVPS are also suitable for computing solutions for hybrid sys-
tem dynamics (e.g., Flow*), algebraic-differential equations (CORA) or Poincaré maps (Is-
abelle), some of the tools additionally provide non-verified solutions (e.g., CAPD) or the use of
multiple-precision arithmetic (e.g., kv).

It can be seen from the table that the IVPS are based on very different algorithms (Col-
umn 4) with different data structures implemented in different programming languages (Col-
umn 2) using different verification concepts (Column 3). A further point is that their perfor-
mance often depends on the right choice of their settings, which should be preferably tuned
to the given problem by their respective developers (Column 5). For the sake of presenta-
tion clarity, we only show parameters which are important in our opinion. The time span
for the simulation, that is, the initial and the final integration time, is also an important set-
ting and can be specified within all IVPS. Although most of the solvers use only result veri-
fication, a lot of effort has been devoted to formal verification of solvers’ codes [31, 41] re-
cently. VNODE is a tool relying on the concept of literate programming [37, 47] for code
verification. Literate programming allows a human expert to assess in a comfortable way if
a code is correct. The list of solvers is not complete, for more software consult, for exam-
ple, cps-vo.org/group/ARCH/ToolPresentations.

A forum for comparing software for verification of continuous and hybrid dynamical systems
is offered by the workshop ARCH [1] and its friendly competition9. One of the aims is to
establish a curated set of benchmarks submitted by academia and industry. This extensive
information service gathers and makes accessible benchmark problems, tool presentations, and
experience reports in form of papers. However, the approach has shortcomings. The workflow
of the competition is to join a group first, then determine the set of problems from the ARCH pdf
repository, perform the tests, and, finally, prepare a report. This workflow is not automatized,
the responsibility for the correct implementation and testing with the benchmarks for given
tools lies with the user/developer, there is no common testing environment, and the results
from different reports are not immediately reusable since stored in papers and not in any kind
of a common database precluding an automatized recommendation. The long-term goal of our
web-based platform VERICOMP [6] is to provide such a common, automatized, recommender-
enhanced comparison environment.

VERICOMP is a service for actually comparing verified initial value problem solvers for
systems of ordinary differential equations using common comparison conditions. One possibil-
ity to employ it is for developers of new IVPS in order to relate their tool to the state of the art.
Another possibility is to employ it to decide what solver is the best for a given problem. For
users be able to do so at a glance, VERICOMP uses work-precision diagrams, solution plots,
and text tables. Here, developing further VA strategies for representing these heterogeneous,
large data is our future work. The gathered information is stored in a MySQL database.

The tests with verified IVPS might take considerable time. Therefore, a recommenda-
tion should be provided based on similar problems from the database. The RS results can

9cps-vo.org/group/ARCH/FriendlyCompetition
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be additionally validated by actually performing the available tests. Three solvers Vnode-LP,
ValEncIA-IVP, and RiOT with various parameters were provided for testing in the old version
of VERICOMP under vericomp.inf.uni-due.de, the service of which is unfortunately
discontinued. VERICOMP 2.010 taking into account generalizing features from Section 4.4
is under construction. At the moment, only the feature of adding IVPs to the database and
browsing them is accessible. We work on implementing the functionalities discussed in Sec-
tions 4.2,4.3.

It is our long-term goal to provide a common environment for testing all the verified solvers
mentioned above, which means that a semi-automatic procedure for adding a new solver to
VERICOMP is needed. However, this is extremely difficult due to differences in interfaces,
concepts, programming languages and platforms. Therefore, we concentrate on the intermediate
goal of providing a database which needs to be filled by IVPS’ developers themselves. This
leads to the lesser challenge of providing the set of problems in the form well suited for running
tests with them with different software, which we work on at the moment. This requires a
survey on opinions of expert users.

4.2 Existing comparisons and quality

Emerging and old verified software is permanently being tested and compared with some
standard benchmarks. For example, VERICOMP’s problem database was used as a benchmark
for new IVPS in [18, 19]. More tests are described and made available through papers at ARCH.
However, every paper presenting a new solver (e.g., [31], [41]) features tests and comparisons
according to some criteria relevant for the authors and using benchmarks the authors consider
appropriate. To be able to have an overview over the whole range of available possibilities,
it is necessary to standardize the comparison criteria and the tests as well as devise various
benchmark problem sets. In this subsection, we analyze the publications [12, 19, 20, 31, 33,
18] from Table 1 with the goal to establish a common set of quality criteria and testing aims.
Besides, we name the problems most commonly used as benchmarks.

The quality criteria can concern performance, accuracy, efficiency, or usability. Usability
is often of a minor significance in IVPS tests, which is not entirely justified since such factors
as the ease of interfacing an IVPS with a given application might play a crucial role in prac-
tice. In verification context, accuracy means the degree of pessimism in the resulting enclosure
(e.g., overestimation). Overestimation is not always easy to characterize: the width of the re-
sulting enclosure is only a good indicator for that if all problem parameters are crisp and do
not contain any uncertainty [6]. More research on overestimation characterization for tests is
necessary. Statistics on the following quality criteria were actively gathered by the old version
of VERICOMP:

C4 wall clock time (tc) at a predefined integration time tout (performance),
C5 user CPU time tus w.r.t. overestimation eus at tout (efficiency), and
C6 time to break-down (tbd, accuracy), possibly bounded from above by a certain limit tmax.

Here, eus is mainly (but not always) assumed to be characterized by the resulting enclosure
width [5]. These criteria allowed us to produce quite accurate recommendations using the
algorithm from Section 4.3, see [5]. Besides, the following further criteria can make sense [30]:

C1 Number of arithmetic operations at a time step

10vericomp.fiw.hs-wismar.de
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C2 Number of function/ Jacobian, etc./ inverse matrix evaluations
C3 Overhead (the overall user CPU time minus the user CPU time for function evaluations [30])
C7 Total number of steps and the number of accepted steps

Besides C4 and C6, the most widely used quality characteristics concerning performance, ac-
curacy, and efficiency, resp., in publications from Table 1 are

C8, C9 User CPU time and the width of the enclosure at tout
C10 CPU time to achieve a certain prescribed enclosure width over the time span [0, tout]

As the eleventh criterion C11, usability based on empirical (online) studies should be intro-
duced. The testing aims in the considered papers are to characterize a given solver w.r.t. the
state of the art. However, users also like to find a good IVPS for their given application (cf.
experience reports at ARCH). This goodness can be characterized by various scenarios, for ex-
ample, an offline simulation with very high accuracy (e.g., for particle colliders) or fast online
verified simulation over short time spans (e.g., for control).

Problems (P)IVPs for DAEs, etc.

IVPs for ODEs (P.IV)stiff (P.IV.II)

non-stiff (P.IV.I)

linear (L) non-linear (NL)

difficult (C)moderate (B)simple (A) moderate (B)simple (A) difficult (C)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

Figure 2: Classification of benchmark problems for verified IVPS [6].

The most common benchmarks used for solver characterization in the considered papers are
the Lorenz system, the Rossler system, (Lotka-)Volterra equations, the oil reservoir problem,
the harmonic oscillator as well as problems from the DETEST benchmarks. Several papers
use old VERICOMP version benchmarks, one difficulty being that the problem IDs changed in
the new version. Besides, the benchmark set consisting of over 73 problems needs structuring.
For example, automatically extractable, distinct problem benchmark sets for asserting common
ground (e.g., the five problems mentioned above), for advanced testing, or for practice-oriented
testing can be devised. For more details about the form of the mentioned test problems, see
VERICOMP under vericomp.fiw.hs-wismar.de. For the benchmarks, we suggest us-
ing the classification in Figure 2. The main classes of linear and non-linear problems have three
subclasses: simple (possibly with exact expressions for solutions), moderate (w.r.t. their dimen-
sion, order, etc.) and complex or difficult problems. In each of these subclasses, we differentiate
between problems with uncertain and crisp parameters. The use of this classification was jus-
tified in [5]. Further problem classes such as ODEs with delays or non-smooth right sides as
well as hybrid systems or systems of differential-algebraic equations can be incorporated into it.
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However, the classification needs to remain flexible to be able to reflect factors which interest
users at a given moment, for example, chaoticity or cooperativity.

The considered papers mostly use tables and trajectory plots to present comparison results.
Only [18] uses other visual aids (spider diagrams) for that purpose. Occasionally, just one set of
IVPS parameters (cf. Table 1, Column 5), which additionally varies from example to example
sometimes, is employed and the strategy behind the choice of settings is not always clear. A
comparison using these settings consistently would be more interesting from the point of view
of finding out and recommending such settings automatically.

4.3 A recommender for IVPS for ODEs in VERICOMP

We can think of the following tasks a recommender for IVPS might be required to solve:

1. Recommend a solver (a ranked list of solvers) for a new user problem under consideration
of their specific tasks (online/offline simulation, etc.)

2. Find a coverage set L for a problem set B

In this subsection, we describe a formal basis for such a IVPS recommender. We plan to make
it accessible in the near future.

Following [36], we define a SRS for IVPS as a 6-tuple < U, T, L,K, P, S >, where U
represents the user, T is the entity set (of items) , L ⊆ T is the set of recommended items,
K = K(P, T, S) is the context, P stands for the user profile and S for the situation. To produce
a recommendation, we maximize a certain utility function χ depending on the user, the context,
and the set of recommended items.

To solve the recommendation tasks mentioned above, we identify U with the problem a user
wants to solve. Therefore, P coincides with the problem characteristics defined by the classifi-
cation in Figure 2. T contains solvers characterized by their specific settings and S is described
by the type of application the users have in mind for their problems (e.g., online/offline simu-
lation). Note that the context K is independent of T , because the number of solvers does not
change during a session. The utility function can be a weighted sum of normalized values for
each criterion C1,. . .,C11:

χ(v, u) =
m∑
i=1

ωin(Ci(v, u)), v ∈ T, u ∈ U,
m∑
i=1

ωi = 1, m = 11, (3)

where ωi are the weights, n(·) a normalizing function, and Ci(v, u) a function returning the
value of the criterion i for solver v and problem u, for example, as shown in Eqs. (5). Note
that we assume that v is not merely one of the solvers, but rather a solver with certain settings
(e.g., ValEncIA with the stepsizes of 0.025, 0.0025 is represented by two separate items in T ).
To produce a recommendation, we use the multiattribute utility collaborative filtering with the
given criteria and weighting according to the situation s ∈ S [43]. The first step in the process
of filtering is to establish similarity to a (group of) problem(s) u from the database U with the
help of a measure µ(u). In our case, we can define a simple µ(u) := µ(l(u), c(u), f(u)) as
depending on the linearity l : U 7→ {L,NL}, complexity c : U 7→ {A,B, C}, and the presence
of uncertainty f : U 7→ {U ,NU}. It returns all problems from the class uniquely defined by
the values l(u), c(u), f(u):

µ : U 7→ 2U

µ(u) := {ũ ∈ U |l(ũ) = l(u), c(ũ) = c(u), f(ũ) = f(u)} .
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The set µ(u) constitutes the user profile P . The next step is weighting: according to the situation
s, a vector with weights (ω1, . . . , ωm) is determined by the function ν as

ν : S 7→ [0, 1]m

ν(s) := (ω1, . . . , ωm) .

The third step is finding the appropriate neighborhood for the problem u. In our case, this
neighborhood coincides with P . In the final step of the recommending process, we rate the
available solvers v ∈ T with the help of the normalizing function

n : R+ → [0, 1], nk1,k2(x) =
1

1 + e1−(x−k1)/k2
, k1, k2 ≥ 0 , (4)

with k1 and k2 being real heuristic parameters depending on the data, and the function χ from
Eq. (3). We use k1 = 40 and k2 = 10 in the following.

To see how the recommendation work, consider the following example. Let an engineer
be interested in simulating a non-linear, simple problem with uncertainty in a verified way.
Suppose the similarity measure µ returns a set consisting of two problems u1 (ẋ = −1

2
x3,

x(0) = [0.5, 1.5]) and u2 (ẋ1 = 1, ẋ2 = x2 cos (x0), x1(0) = 0, x2 = [0.9, 1.25]) belonging
to the class P .IV .I.NL.A.U . Suppose further that the data concerning the quality criteria C4,
C5, and C6 shown in Table 2 for three solvers RiOT, Valencia, and VNODE with three different
settings are recorded for these problems in the database. Finally, suppose that the engineer’s
goal is to simulate the problem online over short time intervals, which defines the situation s.
If we restrict ourselves to the three criteria for which the data are recorded, the wall clock time
(C4) and the relation of user CPU time to overestimation (C5) are equally important, whereas
the time to break-down and the width of the enclosure there (C6) do not play much of a role.
Accordingly, the assigned weights for i = 4, 5, 6 are 0.4, 0.4, 0.2, resp., and zero otherwise.
The neighborhood is the set {u1, u2}.

Now we are ready to rate the solvers. A pre-normalization requirement is that bigger criterion
values should correspond to better performance. Therefore, they are computed as follows for a
solver v and a problem u:

C4(v, u) = 1/tc
C5(v, u) = 1/(eus · tus), (5)
C6(v, u) = tbd/ebd .

The ratings obtained using these definitions in formula (3) are shown in the last column of Ta-
ble 3 (rounded). A higher rating (0 ≤ χ(v, u) ≤ 1) indicates better performance. Note that the
problem was not actually simulated to make the recommendation. From Table 3, it is clear that
the criterion values are always the highest for VNODE with the 15th order of Taylor expansion
in the situation s, a recommendation in good accordance with the data in Table 2. The averaging
order plays a role: The criterion values can be computed as given in Eqs. (5) for each problem
and averaged. This value can be then used in the formula for the rating χ. Alternatively, ratings
χ(vi, ui) can be computed for each benchmark ui and averaged afterwards, which usually pro-
vides a better separation between the ratings (therefore, our formula for χ is given such that this
dependence is recorded directly). The main difficulty is to find a good normalizing function for
the broad range of criterion values (5). Users can validate the recommendation by running the
standard test on the problem u. Note that recommendations depend greatly on the information
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in the data base. Besides, they are produced for a problem class and not for a particular prob-
lem, making a flexible classification procedure a must. Our further work includes improving
this recommender principle through the use of better metrics (e.g., (1),(6)), averaging (e.g., (2))
and normalizations.

4.4 Improvements

Recommendations depend significantly on problem and solver features. The problem fea-
tures in VERICOMP are the right side of the IVP, initial conditions, the integration time interval,
parameters, the exact solution (if available), the assignment to a problem class and a textual de-
scription concerning, for example, the origin of the problem. It is obvious from Section 4.3
that the set of these features and the classification must be as flexible as possible. A topic for
our future work is to investigate if a finer theoretical classification (or set of features) similar
to that for partial-differential equations from [27] is also useful (and not too inefficient) in our
context. In [27], not as much attention is paid to solver-oriented features as to problem-centric
ones. However, we also aim to recommend specific solver settings, which makes a careful
study of IVPS characteristics necessary. At the moment, solvers are characterized mainly by
their names, parameters (cf. Column 5 from Table 1) with their default values, and a textual
description of their methods.

Our long-term (and somewhat ideal) goal is to provide a common environment for testing
and recommending IVPS under the same conditions. This goal necessitates development of a
semi-automatic procedure for adding a new solver to the solver database, which is a complex
task for verified solvers since they lack common interfaces and are very different in their under-
lying concepts. A more manageable task would be to provide (template of) a solver database to
be filled by an IVPS developer, which would leave common test conditions out the considera-
tion. A useful feature in this case would be to convert the available benchmark sets (common
ground, application or practice-oriented, see Section 4.2) into the syntax supported by a given
solver or, at least, easy to use with it. Similar converters exist, for example, for hybrid systems
(cf. HyST11). However, they seem to develop a new converter for each new solver. A more
interesting approach would be to automatize this process along with the database generation
itself, for example, through the use of XML specifications.

If we have a large (and extendable) set of solvers and want to adapt the problem classification
in an easy way if necessary, we can consider descriptions in form of keywords. An approach
retrieving information from relational and unstructured data might be useful as a filtering and
structuring pre-step for the SRS routines described in Section 4.3. Following [51, 52], we
assume that each request r for a solver v is defined by a keyword vector r = (r1, . . . rJ)

T

and a corresponding numeric vector u = (u1, . . . , uJ)
T, where uj = 1 for each j-th keyword

constituting the request r, j = 1 . . . J . Each tool v has a profile represented by a feature vector cr
built from keywords si and their weights ωki , i = 1, . . . , I , k = 1, . . . , K. The weights influence
the rating of the tool v w.r.t. each descriptor si and incorporate various factors (benchmarks,
actuality, fitting to the problem dimensions). For example, they can reflect the degree of belief
in si according to its provenance. The weights are normalized and aggregated over k = 1 . . . K
to an average weight ωi(v) only if si is equal to a keyword from the request, si = rj , resulting
in J such weights. Those are used in the cosine similarity measure

11www.verivital.com/hyst/
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dv :=

∑J
j=1 uj · ωj√∑J

j=1 ω
2
j ·

√∑J
j=1 u

2
j

, (6)

that describes the similarity between the request vector r and the feature vector cr characterizing
the qualification of the tool v to solve the task. The final ranking is a descending list sorted
according to dv.

Consider a small illustration for this algorithm in our context. Suppose we are interested in
the subset of seven items (solvers with their settings) from Table 212. Assume further that we
want to find a good solver for linear IVPs applicable in real time. That is, r consists of two
keywords r1 =“linear”, r2 =“online” and u = (1 1)T. Let the database on the seven items
contain the information shown in Table 4. Here, the weights ω1

i ∈ [0, 1] reflect how relevant or
good the solver is w.r.t. the meaning of a given keyword, whereas the weights ω2

i ∈ [0, 1] show
the degree of confidence in this assessment according to its provenance. For example, ω2

i can
be set to one if tests were performed using a common environment (e.g., VERICOMP); to some
other number less than one if the assessment is supplied by the developer of the tool; and still
a smaller number if it is based on information extracted (automatically) from publications or
similar. Accordingly, the weights ω2

i for RiOT with the order 11 are less than one since the tests
for this setting were not carried out in VERICOMP. Suppose there is no information about how
well Valencia 0.025 performs with linear systems. The last column of Table 4 shows the ratings
obtained using formula (6). For example, the average weight for the keyword “linear” for RiOT
5 is 0.6+1

2
= 0.8 (we can omit normalization here), the weight vector consists of two components

(0.8 0.6)T and dRiOT 5 =
1.4√

0.82 + 0.62 ·
√
2
= 0.9899 (truncated). Since a keyword is missing

from the description of Valencia 0.025, no rating is generated. According to Table 4, the suitable
solvers are Valencia with the stepsize 0.025 and VNODE with orders of Taylor expansion 15
and 20. This smaller set of solvers can be chosen for actual test runs, from the results of which
recommender algorithms both from this section and Section 4.3 can profit. Better results can be
achieved with more sophisticated normalizing and weighting strategies. Keywords and actual
values of weights for them can be assigned on the basis of the previously computed quality
criteria or such linguistic descriptions as ‘good’ or ‘bad’ extracted from papers. The results can
be fed back to run tests and update the database.

5 CONCLUSIONS

In this paper, we presented the state of the art in the field of scientific recommender systems
with a focus on visual analytics and problem-solving environments. We identified concepts,
components and approaches necessary to recommend a scientific tool. Finally, we described in
detail a possibility to recommend a solver for initial value problems depending on a user’s prob-
lem, partially supported by a testing environment VERICOMP accessible online. In particular,
we discussed various quality criteria, metrics, problem classifications and problem/solver fea-
tures based on an extensive literature study. The recommender algorithm was illustrated using
a small example.

Our future work concerns implementing the discussed options in the common test environ-
ment VERICOMP. The possibility of manual filling of VERICOMP’s database with simulation
results for a new solver by a registered user is under construction in its new version. More-
over, we plan to make the recommender available in the near future. Our middle-term goals

12Obviously, this pre-step makes more sense if there are many more solvers in the database
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are to make the database construction more flexible by allowing it to be generated from XML-
like descriptions and to provide templatized converters of benchmark sets to respective solvers’
syntaxes.

REFERENCES

[1] ARCH17. 4th International Workshop on Applied Verification of Continuous and Hybrid
Systems, 2017.

[2] Ch. C. Aggarwal. Recommender Systems: The Textbook. Springer Publishing Company,
1st edition, 2016.

[3] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verifi-
cation for Continuous and Hybrid Systems, 2015.

[4] M. Angelova, V. Devagiri, V. Boeva, P. Linde, and N. Lavesson. An expertise recom-
mender system based on data from an institutional repository (DiVA). In Proc. ELPUB,
Toronto, Canada, 2018.

[5] E. Auer. Result Verification and Uncertainty Management in Engineering Applications.
Verlag Dr. Hut, 2014. Habilitation Monograph.

[6] E. Auer and A. Rauh. VERICOMP: a system to compare and assess verified IVP solvers.
Computing, 94(2):163–172, Mar 2012.

[7] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady, J. Fuchs, D. See-
bacher, A. Diehl, U. Brandes, H. Pfister, T. Schreck, D. Weiskopf, and D. A. Keim. Quality
metrics for information visualization. Computer Graphics Forum, 37(3):625–662, 2018.

[8] B. W. Boehm. Some future software engineering opportunities and challenges. In The
Future of Software Engineering, pages 1–32. Springer, Berlin, Heidelberg, 2011.

[9] S. Bönisch, M. Brickenstein, H. Chrapary, G.-M. Greuel, and W. Sperber. swMATH - A
new information service for mathematical software. In Intelligent Computer Mathematics
- MKM, Calculemus, DML, and Systems and Projects 2013, Part of CICM 2013, Bath,
UK, July 8-12, 2013. Proceedings, pages 369–373, 2013.

[10] O. Bouissou and M. Martel. A Runge-Kutta method for computing guaranteed solutions
of ODEs. In 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics, SCAN’06, Duisburg, Germany, 2006.

[11] S. A. C. Bukhari, M. Martı́nez Romero, M. J. O’Connor, A. L. Egyedi, D. Willrett,
J. Graybeal, M. A. Musen, K.-H. Cheung, and S. H. Kleinstein. CEDAR OnDemand:
A browser extension to generate ontology-based scientific metadata. BMC Bioinformat-
ics, 19(1):268:1–268:6, 2018.
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IVPS Lang. VC Main method Main parameters
Valencia [55] C++ RV Picard iteration, exponen-

tial extension
stepsize

VNODE [47] C++ RV
LP

Taylor series (TS),
Hermite-Obreschkoff
method (HO)

method/ order/ toler-
ances/ min.stepsize/
stepsize control

CAPD [13] C++ RV TS, explicit-implicit HO method/order/tolerances
COSI-VI [42] FORTRAN RV Taylor models TM order/ stepsize/ tol-

erances/ preconditioning/
shrink wrapping

RiOT [20] C++ RV Taylor models (TM) TM order/ bounding
method/ stepsize control/
tolerances/ sparsity

verifyode [12] INTLAB RV Taylor models TM order/
bounder/stepsize control/
tolerances/shrink wrap./
sparsity

Flow* [15] C++ RV Taylor models TM order/stepsize con-
trol/ tolerances/no.steps
with symbolic re-
mainders/ remainder
estimation bound

kv [33] C++ RV Power series and affine
arithmetics

method/ma precision

[19] C++ RV TM, Chebyshev function
enclosures

method/ order/ sparsity/
tolerances

DYNIbex [18] C++ RV affine arithmetic, Runge-
Kutta

RK variant/ order/ step-
size/ tolerances

GRK [10] OCaml RV Runge-Kutta, multipreci-
sion arithmetics

stepsize control/ toler-
ances

CORA [3] MATLAB RV Reachability analysis
with zonotopes/ poly-
topes

(polynomial) zonotope
order/ tolerances

Isabelle [31] PolyML FV
RV

Affine arithmetic/ zono-
topes, Runge-Kutta

max. zonotope or-
der/ stepsize control/
tolerances/ ma precision

[41] Coq FV
RV

antiderivatives of rigor-
ous polynomial approxi-
mations, adaptive domain
splitting

ma precision/ target error
bound

Table 1: Verified IVPS. ‘VC’ means verification concept, with possibilities ‘RV’ (result verification), ‘LP’ (literal
programming), ‘FV’ (formal verification). The abbreviation ‘ma’ means ‘machine arithmetic’, usually floating
point.
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Solver u1 u2

tc tus eus tbd ebd tc tu eu tbd ebd
RiOT 5 3.270s 3.197s 0.448 10 0.130 3.597s 3.466s 0.811 10 0.20
RiOT 10 13.030s 12.763s 0.443 10 0.057 0.860s 0.842s 0.811 10 0.20
RiOT 15 40.883s 40.607s 0.443 10 0.055 0.918s 0.886s 0.811 10 0.20
V 0.025 0.045s 0.042s 2.987 1.300 5.85 0.260s 0.257s 0.850 10 309.55
V 0.0025 0.287s 0.282s 2.905 1.17 3.69 1.528s 1.521s 0.815 10 249.32
V 0.00025 2.794s 2.780s 2.897 1.19 3.77 1m30.844s 1m30.726s 0.812 10 243.87
VNODE 15 0.014s 0.009s 0.887 6.36 151.77 0.047s 0.041s 0.811 10 0.203
VNODE 20 0.014s 0.007s 0.987 3.81 218.18 0.047s 0.042s 0.811 10 0.203
VNODE 25 0.015s 0.009s 1.138 2.59 270.42 0.046s 0.039s 0.811 10 0.203

Table 2: Test run data on the problems u1, u2 from the database of the old version of VERICOMP. V stands for
Valencia. C4 is defined by tc, C5 by tus and eus, and C6 by tbd and ebd. Besides, tout = 1s and tmax = 10s.

vi C4(vi, ui) (u1/u2) C5(vi, ui) (u1/u2) C6(vi, ui) (u1/u2)
χ(vi,u1)+χ(vi,u2)

2

RiOT 5 0.007/0.007 0.007/0.007 0.936/0.500 0.149
RiOT 10 0.007/0.008 0.007/0.008 0.999/0.500 0.155
RiOT 15 0.007/0.007 0.007/0.008 0.999/0.500 0.155
V 0.025 0.058/0.009 0.014/0.010 0.007/0.007 0.020
V 0.0025 0.009/0.007 0.008/0.007 0.007/0.007 0.007
V 0.00025 0.007/0.007 0.007/0.007 0.007/0.007 0.006
VNODE 15 0.89/0.05 0.99/0.11 0.01/0.48 0.462
VNODE 20 0.89/0.05 0.99/0.11 0.01/0.48 0.461
VNODE 25 0.84/0.05 0.99/0.13 0.01/0.48 0.453

Table 3: Recommendation process with three criteria and nine solvers, based on the problems u1 and u2, using the
normalizing function n40,10 and rating averaging.

Solver Keyword ω1
1 ω2

1 Keyword ω1
2 ω2

2 Keyword ω1
3 ω2

3 Rating
RiOT 5 linear 0.6 1 nonlinear 0.8 1 online 0.2 1 98.99
RiOT 10 linear 0.5 1 nonlinear 0.9 1 online 0.1 1 98.83
RiOT 11 linear 0.5 0.6 nonlinear 0.95 0.6 online 0.1 0.6 97.61
V 0.025 nonlinear 0.2 1 online 0.6 1 –
V 0.0025 linear 0.6 1 nonlinear 0.2 1 online 0.56 1 99.99
VNODE 15 linear 0.9 1 nonlinear 0.7 1 online 0.7 1 99.84
VNODE 20 linear 0.95 1 nonlinear 0.8 1 online 0.6 1 99.51

Table 4: Solver descriptions in terms of feature vectors cr. Ratings are multiplied by the factor 100 for better
presentation.
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Abstract. This contribution deals with an efficient model-based uncertainty-propagation scheme
in possibility theory using models of different fidelity. The aim is to enable a possibilistic de-
scription of polymorphic uncertainty and its propagation through large-scale, complex and
computationally expensive real-world applications. The possibilistic uncertainty description
not only provides bounds for the response statistics of the model, but can also model and process
incomplete knowledge and ignorance. For the proposed multi-fidelity scheme, the functional de-
pendency between the costly, but accurate high-fidelity model and the much cheaper, but less
accurate low-fidelity model are exploited in such a way that only a few expensive high-fidelity
evaluations are needed to correct the potentially poor low-fidelity approximation. Finally, the
approach is applied to an automotive car crash scenario, highlighting its potentials regarding
uncertainty quantification in real-world applications.
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1 Introduction

The numerical quantification and propagation of uncertainty described through possibility
theory [1] entails tremendous computational costs if the model to be investigated is of high
complexity and large scale. Typically, in mechanical and civil engineering a model is described
by partial differential equations (PDEs) and needs to be evaluated several times if uncertainty in
the model parameters is to be considered additionally. This repeated evaluation of the determin-
istic model renders uncertainty analysis nearly infeasible in the case of expensive, large-scale
applications unless appropriate steps are taken to reduce the computation time.
In the context of uncertainty quantification using probability theory, multi-fidelity schemes have
emerged over the past decades [2], yielding impressive results [3]. Only recently, as a possi-
bilistic counterpart, a novel strategy for model-based propagation of possibilistic uncertainty
has been introduced, using models of different fidelity [4]. In this context, the low-fidelity mod-
els can be derived directly from the high-fidelity model by, for example, applying simplification
of the geometry or idealization of the physical properties. The possibilistically described un-
certain quantities of interest of the low-fidelity model, which might be rather poor estimations,
are then corrected by exploiting the dependency between the high- and low-fidelity model in a
possibilistic way. This results in a highly flexible and efficient strategy for propagating possi-
bilistic uncertainty through large-scale systems, as illustrated by the automotive crash example
presented in the sequel.

2 Possibilistic Uncertainty Description

A possibility measure Π : 2Ω → [0, 1] is a mapping from the universe of discourse onto the
unit interval, which can be expressed by a set of nested confidence intervals and can be inter-
preted as an upper probability bound [5]. Thus, possibility theory can account for probability
distributions with ill-known properties in the context of imprecise probability. A possibility
measure fulfills Π(∅) = 0, Π(Ω) = 1 and Π(A∪B) = max(Π(A),Π(B)) in an axiomatic way.
Moreover, a possibility distribution Πξ, associated with an uncertain variable (or vector) ξ :
Ω → R is a set function whose range is in [0, 1] and can be expressed by its possibility density
function πξ via

Πξ(U) = Π({ω : ω ∈ Ω, ξ(ω) ∈ U}) = sup
x∈U

πξ(x) ∀U ⊆ R, (1)

reflecting the possibility of ξ taking a value in U . In contrast to probability theory and as a
result of the maxitivity property of the possibility measure, a second measure, the necessity N,
is introduced in order to fully characterize the uncertainty of ξ ∈ U . It can be derived from the
possibility measure via Nξ(U) = 1− Πξ(Ω\U).

3 Efficient Numerical Propagation of Possibilistic Uncertainty

The numerical propagation of possibilistic uncertainty is realized by the extension principle
introduced by Zadeh [6]. Let ξ be an uncertain input variable with its corresponding possibility
density function πξ. The possibility density function of the uncertain output variable ζ , obtained
by propagating ξ through a model h : X ⊆ Rn → Z ⊆ R, which maps the input x ∈ X onto
an output z ∈ Z , is given by

πζ(z) = sup πζ(h
−1({z})) = sup

x∈h−1({z})
πξ(x) ∀z ∈ Z (2)
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under the condition that the supremum of the empty set is zero. The model h is called high-
fidelity model if it provides the output zhi ∈ Z with the necessary accuracy for the task at hand.
The optimization problem involved in Eq. 2 requires a repeated evaluation of the high-fidelity
model which results in tremendous computational effort if it is expensive to evaluate.

3.1 Surrogate Modeling

In possibilistic uncertainty quantification, the expensive high-fidelity model is usually re-
placed by a surrogate model which, for example, can be constructed by an interpolation or
regression scheme yielding h(x) ≈

∑
i νiφi(x) =: s(x), with φi denoting the basis functions

and νi the respective coefficients of the chosen scheme. The surrogate model does not have
any physical meaning since it merely reflects the input/output behavior of a high-fidelity black-
box model. By the use of the surrogate s(x), the possibility density function of the uncertain
quantity of interest ζ can be approximated as

πζ(zhi) ≈ sup
x∈s−1(zhi)

πξ(x) ∀zhi ∈ Z. (3)

If a surrogate model is available, the actual uncertainty analysis is rather inexpensive because it
is only based on interpolation. However, the construction of an appropriate surrogate, i.e. the
computation of νi, can still be computationally costly, especially if the underlying high-fidelity
model is non-linear, discontinuous, or exhibits a strongly oscillating behavior.

3.2 Multi-Fidelity Modeling

For the possibilistic multi-fidelity approach, low-fidelity versions of the high-fidelity model,
which are significantly cheaper to evaluate but also yield less accurate results, can be achieved
according to the strategies presented in [7]. In the following, the low-fidelity model is defined
by the mapping g : X ⊆ Rn → Z ⊆ R, which maps an input x ∈ X onto an output zlo ∈ Z ,
and its possibility density function reads

πη(zlo) = sup
x∈g−1({zlo})

πξ(x) ∀zlo ∈ Z, (4)

with η as the corresponding possibilistic low-fidelity output variable. If there exists a strong
functional dependency between high- and low-fidelity model, as exemplified in Figure 1a, then
the high-fidelity output can be written in the form of

zhi = f(zlo) = f(g(x)), (5)

where the function f captures the potentially unknown functional dependency between the high-
and the low-fidelity models. Inserting Eq. (5) in Eq. (2) yields

πζ(zhi) = sup
x∈h−1(zhi)

πξ(x) = sup
x∈g−1(f−1(zhi))

πξ(x), (6)

which means that for a given f the entire uncertainty analysis can be carried out entirely on
the low-fidelity model. The functional dependency can be identified by applying regression or
interpolation schemes that use only few high-fidelity model evaluations, resulting in f(zlo) ≈
I(f(zlo,i)). In practice, however, it is difficult to derive low-fidelity models which exhibit a
strong functional dependency with the associated high-fidelity model.
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Figure 1: Different degrees of dependency between high- and low-fidelity model outputs.

In general, the pointwise evaluation of the two models using the same values of the input
parameters xi describes the dependency as zhi,i = f(zlo,i) + δi where δi denotes some non-
random perturbation, as exemplarily shown in Figure 1b. Consequently, the dependency can
be captured by the conditional possibility density function πζ | η. According to [8], the marginal
density function of the high-fidelity solution πζ can then be computed by the conditional density
function and the marginal density function of the low-fidelity model πη via

πζ(zhi) = max
zlo

(
min

(
πζ | η(zhi | zlo), πη(zlo)

))
. (7)

As in the strongly dependent case, the conditional density function, which represents the func-
tional dependency in a possibilistic way, is to be learned using a number of high- and low-
fidelity model evaluations. For example, the linear combination of Gaussian basis functions

f(x, zlo) ≈
m∑
j=1

aj(x)e−bj(x)(cj(x)−zlo)2 (8)

can be used as a non-parametric approach, where the coefficients {aj, bj, cj} are additionally
considered as possibilistic variables and need to be determined. Consequently, the conditional
possibility distribution can be estimated by

πζ | η(zhi | zlo) = sup
x:zhi=f(x,zlo)

πξ(x) (9)

using the approximation in Eq. (8). The coefficients of the basis function can be obtained
by solving an optimization problem to determine the most specific solution of the conditional
density function which, at the same time, coincides with the constraints derived in [4]. For this
purpose, the density functions of the uncertain variables can be parameterized using a number
of independent shape parameters (three in case of a triangular distribution) as design parameters
for the optimization.
Equation (6) is perfectly consistent with the formulation in Eq. (7). Hence, the description
of the functional dependency in a possibilistic manner is a generalization that comprises the
deterministic formulation as a special case, as shown in the following. Let ξ be an uncertain
input variable, and η and ζ be the uncertain output variables of the low- and high-fidelity model,
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respectively. Furthermore, let there exist a strong functional dependency between the high- and
low-fidelity output quantities, i.e. zhi = f(x, zlo) = f(zlo). Then, it holds

πζ(zhi) = max
zlo

(
min

(
πζ | η(zhi | zlo), πη(zlo)

))
= max

zlo

(
min

(
sup

x:zhi=f(x,zlo)

πξ(x), sup
x∈g−1(zlo)

πξ(x)

))

= max
zlo

(
min

(
sup

x:zhi=f(zlo)

πξ(x), sup
x∈g−1(zlo)

πξ(x)

))

= max
zlo

 sup
x∈g−1(zlo)

πξ(x) ∀zlo ∈ f−1(zhi),

0 else.

= sup
x∈g−1(f−1(zhi))

πξ(x).

(10)

In summary, rather than approximating the deterministic input-output behavior h(x) ≈ F(h(xi)),
which then can be used within the extension principle, the multi-fidelity scheme directly ap-
proximates the possibilistic quantities of the model response πζ(zhi) ≈ F(πη(zlo,i)) depending
on the low-fidelity solution. However, this approach fails if the corresponding high- and low-
fidelity models are functionally independent.

4 Applications

The following chapter illustrates the proposed multi-fidelity approach by two applications.
While the first one deals with an academic example and assumes a strong functional depen-
dency between the high- and the low-fidelity model, the second one deals with a real-world
example, namely the possibilistic investigation of an automotive crash scenario, and illustrates
the application of the multi-fidelity approach in the case of a weak functional dependency.

4.1 Example 1: Academic Example (Strong Dependency)

Let g be a mapping g : R→ R which describes an arbitrary low-fidelity model whose output
is given by zlo = g(x) = (x − 1

2
)2 − 1, and let h : R → R be an unknown and expensive to

evaluate high-fidelity model. The possibility density function of some uncertain input variable
ξ shall be given by

πξ(x) =

{
1− |x| ∀x ∈ [−1, 1],

0 else.
(11)

Consequently, the possibility density function of the uncertain output variable η associated with
the low-fidelity model can be computed by

πη(zlo) = sup
x∈g−1(zlo)

π(x) =

{
1− |1

2
−
√
zlo + 1| ∀zlo ∈ [−1, 5

4
],

0 else
(12)

when applying the extension principle in Eq. (2), see Figure 2b. The low-fidelity solution
is considered as a poor approximation of the output quantity of the more sophisticated, but
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Figure 2: Functional dependency of the high- and low-fidelity model and respective output
possibility density functions.

expensive high-fidelity model h. In the following, a strong cubic dependency between the two
models shall be assumed. Evaluating the low-fidelity as well as the high-fidelity model using
the same (arbitrary) input parameters xi, i = 1, . . . , 4, enables the fitting of a cubic polynomial
resulting in zhi = f(zlo) = z3

lo + 1, see Figure 2a. The estimated solution for the uncertain
variable ζ associated with the high-fidelity model can then obtained using the multi-fidelity
approach in Eq. (6) as

π̂ζ(zhi) = sup
x∈g−1(f−1(zhi))

πξ(x) =

{
1− |1

2
−
√

(zhi − 1)
1
3 + 1| ∀zhi ∈ [0, 189

64
],

0 else
(13)

which is shown in Figure 2b and which is in this case identical to the high-fidelity solution πζ .

4.2 Example 2: Automotive Crash Example (Weak Dependency)

In the following, an automotive, non-overlapping, frontal crash scenario is investigated in or-
der to emphasize the potential of the presented possibilistic multi-fidelity approach. The crash-
worthiness of vehicles, i.e. their passive safety, is the deciding factor in protecting the driver
and the passengers during and after the frontal impact. Accordingly, the passive safety systems
have to be designed for the different types of collision that can occur. In case of a frontal crash,
the crumple-zone structure of the car plays a vital role in passenger safety. Thanks to its plastic
deformation, the kinetic energy of the car can be absorbed and the acceleration acting on the
passengers can be reduced. This lifesaving function requires the design of the crumple zone to
be accomplished with reasonable care. Against this background, several car safety programs
have been established all around the world over the past decades, defining the current safety
standards for automotive crash scenarios. The countries of the European Union established the
Euro New Car Assessment Program (Euro NCAP), which defines a set of standardized car crash
scenarios to be passed by new cars. The Euro NCAP, however, only defines a small number of
scenarios which do not coincide with the numerous imaginable scenarios in reality.
In the following, the energy-absorbing capabilities of the crumple-zone structure are numeri-
cally investigated with respect to only partial knowledge about potential passengers, loading
and initial velocity. For this reason, the mass of the co-driver, the mass of loading in the trunk
as well as the velocity are modeled in terms of uncertain variables with a triangular shape. The
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masses of the co-driver and the loading together exhibit a worst-case interval of [0, 300] kg as
well as a nominal value of 100 kg. The velocity varies within [30, 50] km/h with a nominal value
of 36 km/h. The finite element model used for the investigation has been developed by The Na-
tional Crash Analysis Center (NCAC) of The George Washington University under a contract
with the FHWA and NHTSA of the US DOT. However, it has been completely remeshed and
additionally modified in order to increase its numerical robustness and to achieve better results.
The finite element simulation was executed in parallel on several local computing platforms us-
ing the commercial finite element code LS-DYNA. The model, which in the following will be
referred as the high-fidelity model, consists of 47,232 deformable elements, and a single deter-
ministic model evaluation on a computing platform with Intel Xeon CPU E5-2667 processors
takes around 9,141 s. A low-fidelity version of this model is derived by, first, using extensive
mass-scaling to increase the critical time step for a stable simulation and, second, by converting
deformable parts at the backside of the car into rigid bodies, reducing the number of deformable
elements to 27,287. Consequently, the solution time of a single deterministic model evaluation
of the low-fidelity model decreases to 1,514 s, which is about six times cheaper than the respec-
tive high-fidelity evaluation. Note that the crumple-zone structure remains unchanged.
As the possibilistic quantity of interest, the maximum energy absorption Uffr of one of the front
frame rails is chosen, which is an essential part of the crumple-zone structure and shown in
Figure 3a. The possibilistic density functions of the absorbed energy of the low-fidelity model,
i.e. πη, and of the high-fidelity model, i.e. πζ , which acts as the reference solution, are both
calculated using a sampling approach according to [4] with 5,000 model evaluations each. The
functional dependency between the low- and the high-fidelity model, identified on the basis
of 100 model evaluations, is shown in Figure 3b. There exists only a weak functional depen-
dency between the two models; thus, the approach in Eq. (7) is used, in which the conditional
density function πζ | η needs to be estimated using Eq. (8). The obtained solutions using the low-
fidelity model, the high-fidelity model, as well as the multi-fidelity approach are summarized in
Figure 4a. Apparently, the low-fidelity solution is only a poor approximation and in the deter-
ministic case only of limited use. However, by applying the presented multi-fidelity scheme and
exploiting the dependencies between the low- and high-fidelity models, the obtained solution
is in excellent agreement with the high-fidelity solution, using overall only few high-fidelity
evaluations.

(a) Front frame rail (ffr) of the car model

3 4 5 6
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3

4

lo-fi – Uffr [kJ]

hi
-fi

–
U

ff
r

[k
J]

(b) Functional dependency of the low- and high-
fidelity solution

Figure 3: Investigated part of the car and functional dependency between the high- and the
low-fidelity model.
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Figure 4: Results of the proposed multi-fidelity approach for the automotive crash example.

Often, one is interested in whether an uncertain output surpasses or falls below a specific value.
Especially in reliability analysis, this is a frequently asked question. In this example, like in the
context of robust design, one is interested in the possibility and the necessity of the absorbed
energy Uffr surpassing a given threshold u0 which is, for example, specified by the development
engineer. The corresponding possibility distribution can be directly derived from Eq. (1) for a
given possibility density function and is shown for the high-fidelity and multi-fidelity solution
in Figure 4b. According to [9], the possibility/necessity pair defines a family of probabilities
and can be interpreted as lower and upper bounds of the probability of the event.

5 Conclusion and Outlook

In this work, an efficient possibilistic multi-fidelity framework is presented. It enables the
propagation of possibilistically modeled uncertainty through large-scale models. For the pre-
sented approach, several a-priori assumptions have been made, representing starting points for
further investigations. First, the number of points selected to establish the functional depen-
dency was chosen somewhat arbitrarily. It would be useful to determine the most appropriate
amount of high-fidelity evaluations required for this task because it strongly affects the compu-
tation time needed for the multi-fidelity approach. Second, the approximation of the conditional
density function is carried out using only Gaussian basis functions. Potentially there exist more
appropriate strategies for this estimation. Moreover, for the low-fidelity version, an even more
simplified model can be used. In the authors’ opinion, low-fidelity models which are up to 100
times cheaper than the high-fidelity models should be achievable while still being able to exhibit
a sufficient functional dependency for successfully applying the multi-fidelity approach.
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Abstract. In the stochastic structural analysis of composite structure, the probabilistic knowl-
edge of the uncertain parameters are essential. Variability of the manufacturing process of the
composite structure introduces the uncertainty to the elastic parameters. It is easier to iden-
tify the uncertainty of the material parameters using stochastic inverse process. An efficient
stochastic inverse identification of the elastic parameters of laminated composite plate using
generalized Polynomial Chaos (gPC) theory is presented in this paper. A data set of measured
eigen frequencies and mass density are used for stochastic inversion processes. Stochastic iden-
tification of the elastic parameters of composite plate transforms into estimation of determin-
istic coefficients of gPC expansion for the elastic parameters. A robust optimization technique
by minimization of the quadratic difference between statistical moments is used to estimate the
deterministic coefficients of the gPC expansion. These coefficients can effectively construct the
distributions of the uncertain elastic parameters. Evaluation of the deterministic coefficients by
higher order statistical moments minimization, can efficiently simulate the randomness of the
experimental eigen frequencies.
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1 INTRODUCTION

Knowledge of material parameters of a structural system are essential before inserting into
the forward model to asses the structural responses of the dynamic system. The values of the
material parameters of composite structure in terms of elastic moduli, shear moduli, Poisson’s
ratio and mass density are often described by the manufacturer. Prior to inserting these material
parameters into realistic forward simulation, effect of uncertainty should be accounted. A real
dynamic system consists of two fundamental uncertainties such as parameter uncertainty and
model uncertainty. Parameter uncertainty for the composite structure propagates to the system
due to inherent randomness of the elastic moduli, Poisson’s ratio and mass density. The random
fiber orientations, variation of the thickness and variation of the fabrication procedure introduce
the parameter uncertainty to the dynamic system of the composite structure. Whereas, bound-
ary conditions in the mathematical model, using homogenized theory, to evaluate the effective
elastic moduli of the composite material are responsible for modeling uncertainty of the system.
Direct measurement of the uncertainty of the elastic parameters are not able to represents these
variabilities efficiently. The elastic parameters can be evaluated by inverse identification based
on the concept of error minimization of the experimental responses and simulated responses.
The deterministic inverse problems [1, 2, 3] are involved in identifying the elastic parameters
of the composite plate from a single experimental modal data, based on various optimization
algorithms. Single measurement is not sufficient to capture the uncertainty and variability asso-
ciated with the parameters and the model. The reliable prediction of overall dynamic behavior
of the composite structure is possible by incorporating the uncertainty of the material parame-
ters within the finite element (FE) framework.

Uncertainty of elastic parameters can be evaluated by establishing stochastic relation be-
tween uncertain elastic parameters and set of measured responses. A well suited FE based
stochastic inverse method is employed to identify the variability of the elastic parameters of
the composite structure. Rikards et al. [4] presented various methods to identify the elastic
properties of laminated material using experimental data. Lauwagie [5] discussed various opti-
mization techniques adopted for material properties identification of laminated composite ma-
terials in inverse process. Stochastic inverse technique involved to identify the probabilistic
parameters such as mean and variance, of the elastic constants of laminated composite structure
based on probabilistic representation of modal responses. Bayesian inverse updating method
offers a wide range of flexibility to multi-parameter model identification from a sufficient num-
ber of experimental data sets. Basically, posterior distribution of the material parameters are
inferred from assumed prior by evaluating the likelihood of the elastic parameters. In recent
years, several applications [6, 7, 8] of Bayesian inference technique in inverse problem have ap-
peared. The evaluation of the integral is the most challenging part in multi-parameter Bayesian
inverse inference. However, Markove Chain Monte Carlo (MCMC) became an efficient al-
ternative to determine the posterior density without evaluating the integral. Various sampling
based approaches such as, Metropolis-Hasting (M-H) algorithm and Gibbs sampler [9, 10] have
developed for the improvement of MCMC algorithm. However, sampling based inverse iden-
tification often suffer due to computational efficiency. Nagel [11] discussed Bayesian inverse
problems with a direction to overcome the limitations of sampling based technique for determin-
ing the posterior probability density functions of the system parameters. In recent years, spec-
tral stochastic formulation has been proposed in combination with the Bayesian inference [12].
Rosić et al. [13] proposed a linear Bayesian estimation of the unknown parameters in combina-
tion with the Karhunen-Loève and Polynomial Chaos expansions without using any sampling
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technique such as, MCMC. This method can effectively update non-Gaussian uncertainties.
The introduction of Galerkin projection technique using generalized Polynomial Chaos (gPC)
theory [14, 15] transfer the inverse problem as a deterministic one which involves to identify
the unknown gPC coefficients instead of probabilistic parameter of the quantity. Sepahvand and
Marburg [16, 17] have efficiently estimated the elastic parameters of the orthotropic material via
stochastic inverse method using non-sampling based gPC expansion technique. Non-Gaussian
experimental modal data are used to identify elastic parameters. Literature review described the
application of the stochastic non-parametric identification for the laminated composite structure
and efficiency of the inverse algorithm to predict the wide range of uncertainty in the case of
laminated composite structure.

This paper aims to identify the uncertainty of the elastic moduli and shear modulus for lam-
inated composite plate using experimental modal frequencies. The method involves to evalu-
ate the deterministic coefficients of the uncertain elastic parameters through minimization of
statistical moments, calculated from measured eigen frequencies and corresponding statisti-
cal moments derived from simulated eigen frequencies, using gPC expansion method. More-
over, present paper also reported the efficiency of parameter identification by implementation of
higher order statistical moments minimization technique. The in-situ randomness of the mass
density of the composite material is determined and is considered as an input to the stochastic
inverse model.

2 FE MODEL OF LAMINATED COMPOSITE PLATE

In the present formulation of the forward model of laminated composite plate, the classical
thin plate theory [19] is assumed . The assumption neglects the effect of transverse shear defor-
mation. The relation between stress σ′ and strain ε′ for orthotropic layer with reference to the
principal material axes (1, 2, 3) are presented by the generalized Hooke’s law as

σ′ = Cε′. (1)

Here, C is the stress-strain relationship matrix along the principal material axes of the kth

lamina. The elements of the C matrix for the kth layer is expressed as
σ1
σ2
σ12
σ23
σ13


k

=


C11 C12 0 0 0
C12 C22 0 0 0
0 0 C33 0 0
0 0 0 C44 0
0 0 0 0 C55



ε1
ε2
ε12
ε23
ε13


k

, (2)

whereC11 = E11/(1−ν12ν21), C12 = ν21E11/(1−ν12ν21), C22 = E22/(1−ν12ν21), C33 = G12,
C44 = G23 andC55 = G13. Here, Eii,Gij and νij are the set of elastic constants such as Young’s
moduli, shear moduli and Poisson’s ratio of the laminated composite plate, respectively. The
stress σ and strain ε relationship is redefined with reference to the laminate axes (x, y, z) of the
composite plate as

σ = Qε, (3)

in which

Q = T −1CT , (4)

545



S. Chandra, K. Sepahvand, C.A. Geweth, F. Saati, and S. Marburg

and T is transformation matrix [20] to relate the principal material axes and laminate axes. The
element stiffness matrix of the laminated composite plate takes the form

Ke =

∫
Ae

BTDBdAe, (5)

in which B is the strain-displacement matrix written as

ε̄ = Bδ. (6)

Here, ε̄ is the strain and curvature vector and δ is the nodal displacement vector of the composite
plate. The mid-plane stress resultant σ̄ and strain ε̄ of the laminate are related by stiffness
matrix D [19] as

σ̄ = Dε̄, (7)

where

D =

 Am Ac 0
Ac Ab 0
0 0 As

 . (8)

In the above matrix, sub-componentsAm,Ac,Ab andAs represent membrane stiffness, membrane-
bending coupling stiffness, bending stiffness and shear stiffness, respectively. Here,

Ai =
l∑

j=1

∫ zk

zk−1

(Qi)
k(1, z, z2)dz, i = m, c, b (9)

Ai =
l∑

j=1

∫ zk

zk−1

κ(Qi)
kdz, i = s, κ = 5/6 (10)

where κ is shear correction factor [21] and l is numbers of orthotropic layers in composite plate.
The elemental mass matrix is written as

Me =

∫
Ae

NTρNdAe, (11)

where N is interpolation matrix and ρ is the inertia matrix. The global stiffness matrix K
and the global mass matrix M are developed after assembling the elemental stiffness and mass
matrices, Ke and Me, respectively. Therefore, undamped modal analysis involves the solution
of

[λ2iM +K]φi = 0, i = 1, 2, ..., n (12)

to extracts the modal frequency λi and mode shape φi of the laminated composite plate with n
numbers of degrees of freedom (DOF) in FE model. Generalized forward model of the com-
posite plate can be defined as

d = G(m). (13)

Herein, m denotes vector of elastic parameters of the model and d is set of simulated data for
ideal case. The forward model operator G predicts the model output data set d in terms of eigen
frequencies as a function of model parameters m. In the present paper, model parameters are
Eii and Gij and the forward model yield the data output in the form of modal frequency λi.
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3 POLYNOMIAL CHAOS EXPANSION

Assume a probability space (Ω, U , P) in which Ω is the sample space, U is the σ-algebra
over Ω, and P is the probability measure on the sample space U . Consider a random parameter
X (ω) with random outcome ω ∈ Ω. Such random parameter can effectively be presented by
gPC expansion method by projecting it onto a stochastic space spanned by a random orthogonal
polynomials. The random parameter X :Ω → R with finite variance possess the following
representation in compact form [15]

X (ω) =
P∑
i=0

aiΨi(ξ), (14)

where ai are unknown deterministic coefficients and Ψi(ξ) are the multivariate orthogonal basis
functions given by the product of the corresponding univariate polynomial form. Total number
of terms in the n dimensional pth order truncated gPC expansion is (P + 1), where

P + 1 =
(n+ p)!

n!p!
. (15)

One-dimensional orthogonal polynomial can be represented by standard normal random vector
ξ = {ξi}, i = 1, 2, ....N in a particular sample space such, that ξi ∈ Ωi. The orthogonal
relationship of the multidimensional polynomial function Ψ={Ψi(ξ)} is written as

E[Ψi, Ψj] = E[Ψ 2
i ]δij = p2i δij , i, j = 0, 1, 2, ....N , (16)

in which δij represents Kronecker delta and p2i is the norm of the polynomial. Due to the
orthogonal properties of the gPC expansion, the unknown coefficients ai can be calculated by
projecting onto the orthogonal set of polynomial chaos, such that

ai =
〈X (ω)Ψi〉
〈Ψ 2

i 〉
, (17)

where 〈Ψ 2
i 〉 denote the inner products in the Hilbert space in the L2 norm. This orthogonal

projection minimizes the error on the space spanned by {Ψ}Pk=0 and evaluate the determinis-
tic coefficient ai. Once, ai is known, statistical properties of the uncertain parameters can be
evaluated. For instance, the expected value µX and variance σ2

X are evaluated as

µX = a0 , σ2
X =

P∑
i=1

a2i p
2
i . (18)

Identification of the statistical properties of the uncertain parameters require calculation of the
gPC coefficients. Therefore, stochastic inverse method is employed to obtain the orthogonal
basis function of uncertain parameters via uncertainty propagation of the measured structural
responses. The technique of inverse stochastic identification of uncertain parameters from mea-
sured modal data is discussed in the next section.

4 STOCHASTIC INVERSE MODEL

For identifying probabilistic properties of the elastic parameters of the dynamic system, sta-
tistical informations of the modal responses are known a priori. Assume that, probabilistic
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measure of the system parameters m are represented by gPC expansion. Therefore, calcula-
tion of statistical properties of the elastic parameters m is transferred into evaluation the finite
set of unknown gPC coefficients mi using statistical properties of the measured modal data d.
An optimization procedure is adopted to evaluate the unknown gPC coefficients mi as a design
variable. Experimental modal frequencies are represented in the form of gPC expansion as

d(ξ) =
N∑
i=0

diΨi(ξ). (19)

The deterministic coefficient di of the gPC expansion is estimated by minimization of statistical
moments calculated from measured frequencies and gPC expansion. The stochastic inverse
problem can be defined with reference to the Eq. (13) as

N∑
i=0

miΨi(ξ) = G−1
( N∑

i=0

diΨi(ξ)

)
. (20)

Here,G−1(·) is the inverse structural operator in terms of FE model. Moreover, direct evaluation
of the inverse operator is impossible and leads the inverse problem to an optimization problem
with mi as a design variable. The optimization function F is defined as the sum of the quadratic
difference between the central moments calculated from the simulated stochastic modal data and
measured modal data as

F =
1

2

neig∑
j=1

[
(µDj

− µexp
j )2 +

k∑
r=1

{
E[Dj − µDj

]r − γjr
}2]

. (21)

In this equation, µDj
is the expected value of the simulated j th modal frequency, E[·]r is the rth

order central moment of the simulated modal frequency and γjr is the rth order central moment
of measured j th modal frequency. The number of eigen modes is denoted by neig.The expected
value of the j th modal frequency is described by µexp

j . The stochastic representation of the
simulated j th eigen frequency with reference to the gPC expansion of uncertain parameters and
forward structural operator is presented as

Dj = G

( N∑
i=0

miΨi(ξ)

)
j

. (22)

The Eq. (21) is rewritten with reference to the Eq. (22) as

F =
1

2

neig∑
j=1

[
(µDj

− µexp
j )2 +

k∑
r=1

{
E

[
G

( N∑
i=0

miΨi(ξ)

)
j

− µDj

]r
− γjr

}2]
. (23)

The optimization algorithm determines the best solution for the gPC coefficients mi of the
system parameters by the functional minimization of cost function F .

5 NUMERICAL PROCEDURE

The proposed solution procedure for inverse identification of uncertain elastic parameters
from experimental modal frequencies involves estimation of deterministic coefficients of gPC
expansions for the parameters using a stochastic inverse model. A FE model is developed to
evaluate the structural responses of the composite plate and considered as a forward structural
operator. The detailed procedure of numerical simulation is summarized herein.
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• Measure the eigen frequencies for each sample of composite plate.

• Measure weight of each sample of composite plate and derive mass density of composite
material.

• Evaluate the deterministic coefficients for the measured eigen frequencies and mass den-
sity based on minimization of the error function between statistical moments of the mea-
sured data and the same is derived from the gPC expansion of the quantity.

• Construct the probability distribution functions (PDFs) of the eigen frequencies and mass
density based on gPC expansion method and compare with the measured distributions.

• Construct the truncated gPC expansion for the identifiable parameters with the initial
approximation of deterministic coefficients.

• Estimate the gPC coefficients of the eigen frequencies employing the stochastic FE for-
ward model by using initial values for the unknown coefficients of the parameters.

• Evaluate the error function between the rth order central moments calculated from gPC
expansion coefficients of the eigen frequencies and corresponding central moments cal-
culated from the experimental data.

• A constrained optimization procedure is adapted to update the initially approximated un-
known coefficients of the identifiable parameters by minimization of the cost function.

• Construct the PDFs of elastic parameters using the updated coefficients of the gPC ex-
pansion.

6 NUMERICAL RESULTS

A set of modal frequencies of 100 numbers, 12 layers glass-fiber epoxy composite plate
with identical dimension of 250× 125× 2 are measured in free-free boundary condition. Each
plate is suspended using two thin elastic wires to approximate the free-free boundary condition.
The composite plate is excited by impulse hammer and responses are collected at 35 points of
each plate by an accelerometer. A post-processing software is employed to derive the modal
responses i.e., eigen frequencies, mode shapes and modal damping ratios. The weight of each
plate is measured precisely to evaluate the uncertainty of the mass density. First 4 modes of
the eigen frequencies are considered for identification of the elasticity moduli E11 and E22 and
shear modulus G12 of the composite plate. To avoid modal coupling and corresponding error
only first 4 eigen frequencies are considered for the identification process. The initial 6 rigid
modes are neglected in the analysis. The uncertainty of the mass density is also considered
in the identification process. The PDFs of the measured eigen frequencies and corresponding
stochastic representations are shown in Figure 1. Third order gPC expansion, employing one di-
mensional Hermite polynomial Hi, is used to construct the experimental eigen frequencies [18]
as

d(ξ) =
3∑

i=0

diHi(ξ). (24)

The gPC coefficients dj for first 4 eigen frequencies are estimated by minimization of the statis-
tical moments derived from experimental data and gPC expansion via an optimization procedure
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and is presented in Table 1. The reconstructed PDFs as shown in Figure 1 using gPC expansion
are fitted well with the experimental distributions. Third order gPC expansion is well suited to
represent the nature of variability of the experiential eigen frequencies. Nine set of collocation
points (0, ±0.742, ±2.334, ±1.3556, and ±2.875) are selected from the roots of the 4th order
and 5th order Hermite polynomials. To check the Gaussian nature, the best fitted normal dis-
tribution are plotted against each experimental eigen frequencies. It is observed that first and
third experimental eigen frequencies are Gaussian in nature whereas, other two measured eigen
frequencies are non-Gaussian. However, 3rd order gPC expansion using Hermite polynomial
can efficiently described the non-Gaussian nature of the eigen frequencies. Experimental mass
density is represented by 3rd order gPC expansion and shown in Figure 2. The deterministic co-
efficients representing 3rd order gPC expansion for the mass density are 2.1143, 0.0540, 0.0075,
and 0.0023, respectively. The deterministic coefficients for the uncertain elastic parameters

Eigen freq. d0 d1 d2 d3
λ1 115.489 4.536 0.366 0.011
λ2 144.805 5.771 0.231 0.4828
λ3 275.165 8.761 1.083 0.338
λ4 395.763 14.867 0.465 1.311

Table 1: The gPC coefficients of the first 4 eigen frequencies (Hz) from experimental measurement
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Figure 1: Stochastic representation of the experimental eigen frequencies (Hz) and comparison with the normal
distribution

are estimated by employing 3rd order gPC expansion by minimization of the cost function as
stated in Section 5. The representation of the identified material parameters m in terms of gPC
expansion is

m(ξ) =
3∑

i=0

miΨi(ξ), m = {E11, E12, G12}. (25)

Two cases of optimization procedure are adopted herein. The cost functions for the two cases
are developed to minimize of errors: upto 3rd order central moment and upto 4th order cen-
tral moment. The identified deterministic coefficients of the elastic moduli E11, E22 and shear
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Figure 2: Stochastic representation of the experimental mass density (gm/cm3)

modulus G12 are listed in Table 2. The first coefficient m0 of the gPC expansion represents the
expected value of the elastic parameters for the epoxy based glass-fiber reinforced composite
laminated plate. The standard deviation of the elastic parameters are also calculated in Table 2
referring Eq. (18). The PDFs of the uncertain elastic parameters are constructed using gPC
expansion and are presented in Figure 3. To check the accuracy of the gPC constructed PDFs,
PDFs of the first 4 eigen frequencies are reconstructed with the application forward stochastic
model and are shown in Figure 4. The histograms of the experimental eigen frequencies are
depicted in this Figure. The reconstructed PDFs of the eigen frequencies considering identified
gPC coefficients can well represent the uncertainty of experimental eigen frequencies. More-
over, gPC coefficients calculated by minimization of error functions derived from 4th order
central moments represent better accuracy over the 3rd order moments minimization. The gPC
coefficients evaluated from the higher order statistical moment minimization technique can pre-
dict the uncertainty of the eigen frequency with reasonably higher accuracy. The non-Gaussian
nature of the 2nd and 4th eigen frequencies are well estimated by the identified coefficients using
higher order statistical error minimization technique specifically near the tail region.

Parameters m0 m1 m2 m3 σ
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en
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m
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at
io

n E11 (GPa) 69.398 6.514 0.837 0.158 6.632
E22 (GPa) 27.141 3.023 0.381 0.017 3.071
G12 (GPa) 6.117 0.576 0.080 0.022 0.589

U
pt

o
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h

or
de

r
ce

nt
ra

l
m

om
en

t
m

in
i-

m
iz

at
io

n E11 (GPa) 68.714 7.041 0.684 0.898 7.440
E22 (GPa) 27.401 2.681 0.655 0.080 2.843
G12 (GPa) 6.122 0.578 0.078 0.010 0.589

Table 2: The gPC coefficients of the uncertain elastic parameters

7 CONCLUSIONS

The identification of stochastic behavior of the elastic parameters of the laminated composite
plate using non-sampling based stochastic inverse process is presented in this paper. Colloca-
tion based non-intrusive gPC expansion method is used to identify the randomness of the elastic
parameters. The identification of uncertainty of the elastic parameters transforms into the iden-
tification of the unknown deterministic coefficients of the elastic moduli and shear modulus for
the laminated composite plate. The experimental distribution of the first 4 eigen frequencies and
mass density of the composite plate are used as inputs for the stochastic inverse identification
algorithm. An optimization technique is adopted to estimate the deterministic coefficients of the
uncertain elastic parameters by minimization of the cost function. The cost function is devel-
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Figure 3: PDF of the identified elastic parameters
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Figure 4: Reconstruct the PDFs of the eigen frequencies (Hz) from the identified gPC expansions of the elastic
parameters

oped by summing up the quadratic difference between experimental statistical moments of the
eigen frequencies and the simulated statistical moments of the eigen frequencies derived using
the gPC expansion method. The use of Hermite polynomial in the gPC expansion method can
efficiently inferred the distributions of the elastic parameters from the combination of Gaussian
and non-Gaussian experimental eigen frequencies. The accuracy of the inverse identification
is increased with the incorporation of the higher order statistical moments in the optimization
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process. The reconstructed PDFs of the eigen frequencies can efficiently predict the uncertainty
of the experimental eigen frequencies, specifically with the application of the higher order sta-
tistical moment optimization.
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Abstract. A solution to non-Gaussian likelihood problems for Gaussian Process (GP) re-
gression is proposed. The present contribution aims to address the scenario where data has
been corrupted with noise whose distribution has heavier tails than a Gaussian. A variant of
the Expectation-Maximisation (EM) algorithm and a GP are used in a complementary fash-
ion to develop a model that captures the behaviour of such data, by eliminating the effects of
‘non-Gaussian components’ in GP predictions.

We model the likelihood function with a mixture of Gaussian distributions which allows us
to use a variant of the EM algorithm to classify the observations. The classification outcomes
are later used to assemble a sparse dataset which is corrupted only by Gaussian noise. Finally,
a GP is trained on the sparse dataset and its predictive distribution is used to simulate the
process under study. The behaviour of the proposed model has been evaluated using, synthetic
and benchmark datasets, providing comparisons between a standard GP and a GP that assumes
an input-dependent noise model (i.e. a Heteroscedastic GP).
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1 INTRODUCTION

A Gaussian Process (GP) is a widely used Machine Learning regression technique which
aims to mimic and predict the behaviour of a system, quantifying the uncertainties associated
with its predictions. Machine Learning regression methods use noisy observations of a process
to infer knowledge about a true underlying function. In a standard GP approach, it is assumed
that the data has been corrupted with Gaussian noise. However, in real applications, this con-
dition is not always satisfied and data can be corrupted with different sources of noise. Thus, a
non-Gaussian distribution may be induced over the set of observations. Under this scenario, a
GP is not always able to simulate the actual process, because it is reliant on the assumption of a
Gaussian noise model.

Previous works have addressed this problem using, for example, a Mixture of Gaussian Pro-
cess (MGP), [1, 2], which is a variant of the Mixture of Experts (ME) model [3]. The MGP
assumes that each observation has been corrupted independently by Gaussian noise whose vari-
ance is constant only across separate regions of input space. Hence, a single GP is assigned
to each of these regions and a gating function activates the corresponding GP to interpolate
between the given inputs. As part of this solution, some MGP models have adopted the well-
known Expectation Maximisation (EM) algorithm to aid classification (E-step) and parame-
ter estimation (M-step) tasks. In [4, 5], accuracy was increased by implementing a so-called
‘heuristic parameter estimation’ approach in the M-step. Alternatively, Chen et al. [6] derived
a precise hard-cut EM algorithm, where sparse datasets were assembled and later used to train
a MGP, demonstrating reduced computational cost without compromising the accuracy of the
resulting model.

Although these methods estimate the behaviour of a process using data affected by noise
whose variance is not constant over the input space, they must implement and train more than
one GP, which increases the complexity of the model compared to a standard GP. An example
of an approach that, instead, uses a mixture of GPs that globally act over the entire input space is
given in Lazaro-Gredilla et al. [7], where a variational approach is used to identify trajectories
in multi-object target tracking problems.

The present contribution uses a Mixture of Gaussians to create a noise model with heavier
tails than a Gaussian. We apply a variant of the EM algorithm that allows us to learn the noise
mixture parameters exclusively from the data, without dividing the input space into separate
regions. From the classification task, the labelled observations are used to assemble a sparse
dataset that is affected with noise from a single Gaussian distribution. A standard GP is trained
with the sparse dataset and its predictive distribution is used to estimate values of the underlying
system.

2 A BRIEF DESCRIPTION OF GAUSSIAN PROCESSES

2.1 A Gaussian noise model

In a regression problem, data is arranged as a set of input-output pairs {xn, yn}Nn=1, also
known in Machine Learning as the training dataset. Each observation, yn is considered to be
a noisy instance of the system under study, f(xn), at a given input xn. With a standard GP
approach it is assumed that the noise corrupting each observation is sampled from a Gaussian
distribution, such that

yn = f(xn) + εn εn ∼ N
(
εn|0, σ2

)
(1)
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Equation (1) induces a normal distribution over the set of observations {yn ∈ y |1 ≤ n ≤
N}, conditional on the system’s inputs

{
xn ∈X |xn ∈ RD and 1 ≤ n ≤ N

}
, easing the ap-

plication of a Bayesian approach when a GP prior is defined over f , where fn ≡ f(xn). This
procedure provides analytic expressions that ease the parameter estimation process and calcula-
tions of the GP’s mean predictions and predictive uncertainties. For these reasons, the assumed
noise model in equation (1) is central to the application of a standard GP. These concepts are
detailed and clarified in the following subsection.

2.2 Standard GP models

The set of observations y is a realisation of the stochastic process defined by equation (1).
With the true function, f , uncertain, we may choose to define a probability distribution describ-
ing what forms f could take. Here, we define a multivariate zero-mean Gaussian prior over
f :

p(f) = N (f |0,K) (2)

whereK is a covariance matrix. Our aim is then to use a Bayesian approach to infer a posterior
distribution p(f |X,y), once the training data has been observed [8].

When introducing K, we must assure that it is a valid covariance matrix. For this reason
each element of the matrix will be described by a positive definite function, also called the
kernel function, such as

k(xi,xj) = σ2
f exp

{
(xi−xj)

2

2`2

}
(3)

Equation (3) is the well-known Square Exponential (SE) kernel. It ensures thatK is symmetric
and positive-semidefinite [9]. Moreover, it assigns correlations that depend on the closeness of
the inputs (xi−xj) (a property that can loosely be called smoothness). The kernel in equation
(3) is a function of:

σ2
f : Vertical Length Scale.
` : Horizontal Length Scale.

To determine a posterior distribution, we first define the probability of witnessing y given f :

p(y |f) = N
(
y |f , I σ2

)
(4)

where, I is the identity matrix and σ2 is the variance of the Gaussian noise that corrupted the
observations y. Marginalising, we can obtain

p(y) =

∫
p(y |f)p(f)df (5)

From equations (2) and (4), we can write

p(y) =

∫
N
(
y |f , I σ2

)
N (f |0,K) df
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such that, solving the integral 1, we find that

p(y) = N (y |0,C) (6)

where C is,

C =K +Iσ2 with C(xi,xj) = k(xi,xj) + δijσ
2 (7)

As σ performs an analogous role as a kernel parameter, we can define θ = {σf , `, σ} as the
set of parameters to be estimated. Stated explicitly, the likelihood of θ is therefore

p(y |θ) = N (y |0,C) (8)

Equation (8) describes how probable it is to witness y, conditional on the kernel parameters,
θ, that parameterises C. By using a GP, we are defining a relationship between θ and the
underlying function f , which is not subject to a specific parametric family. For this reason,
a GP is not considered a parametric model. Consequently, even though θ may be thought
of as ‘model parameters’, they are usually referred to as hyperparameters (to specify that the
regression method is not restricted to a specific parametric family).

Taking the logarithm of equation (8), the log-likelihood of a standard GP is

ln p(y |θ) = −1

2
ln |C | − 1

2
yT C y−N

2
ln (2π) (9)

The process of finding the parameters, θ, that maximises the log-likelihood function is called
Maximum Likelihood Estimation (MLE)2. Noting that equation (9) can be evaluated relatively
easily, hyperparameter estimates can be realised using a MLE procedure with Gradient Based
Methods [10].

2.3 GP predictions

Using the estimated optimum hyperparameters, θ, probabilistic predictions at new inputs can
then be generated. For the case where we wish to make a prediction at a single new input x∗, it
can be shown that

p(y∗|x∗,X,y) = N
(
y∗ |kT∗ C−1 y, k∗∗ − kT∗ C−1 k∗

)
(10)

where, k∗ = [k(x∗,xi), ..., k(x∗,xN)] and k∗∗ = k(x∗,x∗) (for a detailed derivation of the GP
predictive density, please refer to [8]).

This concludes the description of a standard GP in which the noise model, equation (1), was
key to obtaining the required closed-form equations.

3 A NON-GAUSSIAN NOISE MODEL

To obtain a model that can predict the behaviour of a process when the data has been cor-
rupted with non-Gaussian noise, we propose a noise model that can describe non-Gaussian
distributions. To this end, and given that our aim is to preserve the closed-form solutions that
are associated with Gaussian distributions, a noise model consisting of a linear superposition of

1Working in proportionality and using the completing the square procedure.
2The likelihood indicates the probability of witnessing an observation / set of observations as a function of the

parameters in the regression model. Choosing parameters that maximise the likelihood function (i.e. ‘maximum
likelihood’) is a standard optimisation criterion for GPs.
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Gaussians is considered. By changing the number of Gaussians used in the superposition (or
‘mixutre’), their variance and the location of their means, a wide range of different probability
distributions can be represented. Figure 1 shows the superposition of two Gaussians with the
same mean µ1 = µ2 = 0, but different standard deviation σ1 = 0.1, σ2 = 1. This combination
produces a non-Gaussian distribution (with heavy tails), represented by the magenta line.
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0

0.2

0.4

0.6

0.8

1

1.2

Gaussian 1
Gaussian 2
Gaussian Sup.

Figure 1: Non-Gaussian PDF formed by the superposition of two normal distributions.

To model a non-Gaussian noise distribution from the mixture of Gaussians, we first assume
that the noise corrupting each observation has been generated from one of K Gaussian distri-
butions. Therefore, binary vectors, zn ∈ RK , n = 1, ..., N , where each zn is defined such that
{znk ∈ {0, 1} |

∑K
k=1 znk = 1}, are introduced to identify which of theK Gaussian distributions

was used to generate the sample of interest. Specifically, znk = 1 indicates that the observation
yn was corrupted by noise drawn from the kth Gaussian.

With this representation, it is now convenient to write the probability that znk = 1 as

Pr(znk = 1) = πk satisfying
K∑
k=1

πk = 1 (11)

where π1, ..., πK are known as the mixture proportionalities [11].
Marginalising the joint distribution Pr(zn)p(εn| zn) over the possible states of zn we obtain

a probability distribution over εn:

p(εn) =
∑
zn

Pr(zn)p(εn| zn) ≡
K∑
k=1

Pr(znk = 1)p(εn|znk = 1) (12)

This allows us to write the new noise model as follows:

yn = f(xn) + εn, εn ∼
K∑
k=1

πk N
(
εn|0, σ2

k

)
(13)

Notice from equation (13) that, at each measurement yn, the random variable εn is now
sampled from a mixture of K Gaussians and thus a non-Gaussian distribution is induced over
the full set of observations y.
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4 A NON-GAUSSIAN LIKELIHOOD

Having defined a noise model in previous section, a corresponding likelihood function is
now defined. We start by computing the joint probability that an observation yn, corrupted by
noise drawn from the kth Gaussian distribution, is witnessed. To this end, the product rule can
be applied to realise

p(yn, znk = 1) = Pr(znk = 1)p(yn|znk = 1) (14)

From equations (11) and (13) we can write

p(yn, znk = 1|fn) = πkN
(
yn|fn, σ2

k

)
(15)

Marginalising over all the possible states of znk we obtain

p(yn|fn) =
K∑
k=1

πkN
(
yn|fn, σ2

k

)
(16)

Finally, assuming that the noise corrupting each observation is independent and identically dis-
tributed (iid), we can write,

p(y |f) =
N∏
n=1

K∑
k=1

πkN
(
yn|fn, σ2

k

)
(17)

To explicitly state the parameters that influence the likelihood shown in equation (17), we
first associate f with the parameters in the GP kernel, θ, such that f ≡ f(θ). We then write

p(y |Θ) =
N∏
n=1

K∑
k=1

πkN
(
yn|fn, σ2

k

)
(18)

where Θ = {π,σ,θ} with , σ = {σk|1 ≥ k ≥ K} and π = {πk|1 ≥ k ≥ K}, grouping the
GP kernel parameters and the parameters in the non-Gaussian likelihood together.

As described in the following section a variant of the EM algorithm is used to maximise
equation (18) with respect to Θ.

5 THE ERROR-BASED EM ALGORITHM

Of the K Gaussian distributions in equation (13), the standard deviation of the ‘narrowest’
Gaussian is defined as σs = min {σ1, ..., σK}. Observations corrupted with noise drawn from
N (0, σ2

s) can be used to form a sparse training dataset {xs, ys}Ss=1. The data {xs, ys}Ss=1 can
therefore be used to train a standard GP, where the ‘high noise’ effects of the non-Gaussian
distribution in equation (13) are eliminated from the estimates of θ. Hence, we aim to derive a
variant of the EM algorithm that performs the following specific tasks:

• E-step: classify each observation as being corrupted by noise drawn from one of the K
Gaussians in equation (13).

• M-step (1): use the E-step outcome and the full dataset to realise MLE estimates of
π and σ.

• M-step (2): use the E-step outcome to assemble a sparse training dataset, {xs, ys}Ss=1, that
when used in the MLE of a GP gives us estimates of the kernel parameters θ.
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5.1 The Expectation step

From Bayes Theorem, the conditional distribution p(zni|yn) can be written as,

Pr(zni = 1|yn) =
Pr(zni = 1)p(yn|zni = 1)

p(yn)
(19)

Knowing from equation (11) that p(zni) = πi, we aim to determine an expression for
p(yn|zni). We first note that p(yn|zni = 1) = N (yn|fn, σ2

i ), where the mean of this distri-
bution is equal to fn. On the other hand, the conditional probability of witnessing yn given the
Gaussian label zni = 1, is equal to the conditional probability N (εn|0, σ2

i ), one can describe
the likelihood p(yn|zni = 1), in terms of the error, as follows,

p(yn|zni = 1) = N
(
εn|0, σ2

i

)
(20)

Now we can use equation (11) as the prior and equation (20) as the likelihood, to write the
posterior distribution (19), as

Pr(zni = 1|yn) =
πiN (εn|0, σ2

i )

p(yn)
(21)

When marginalising equation (20) for all the states of zn, an expression for p(yn) is obtained,
allowing us to rewrite (21) as,

γ(zni) ≡ Pr(zni = 1|yn) =
πiN (εn|0, σ2

i )∑
k πkN (εn|0, σ2

k)
(22)

Equation (22) is called the responsibility [11] By applying equation (22) to each of theN ob-
servations, we probabilistically classify each observation according to the Gaussian distribution
that generated the corresponding corrupting noise.

From equation (22) we see that, the observation residual εn is needed and that this cannot
be measured without knowing the actual system response, fn. Consequently, this variant of the
EM algorithm requires an initial estimate of the function f . As there are no restrictions on how
to compute the residual, any regression method can be used to initialise f . In this work, we use
a standard GP to define, f ≈ GP(X,y), which produces the required residual, ε = f −y. In
fact, as is detailed in the following sections, f is re-estimated recursively as part of the training
procedure.

5.2 The Maximisation step (1)

Now that we have realised an estimate for the responsibilities we aim to identify MLE esti-
mates of the hyperparameters π and σ by maximising

ln p(ε) = ln

[
N∏
n=1

K∑
k=1

πk N
(
εn|0, σ2

k

)]
(23)

where equation (23) follows from equations (18) and equation (20). In the subsequent sections,
we describe how, using equation (23), closed-form solutions for the MLE estimates of π and σ
can be reaslied.
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5.2.1 Maximising with respect to the mixture standard deviations

Taking the partial derivatives of equation (23) with respect to σ gives

∂

∂σ
ln p(ε) =

N∑
n=1

∂

∂σ
ln

[
K∑
k=1

πk N
(
εn|0, σ2

k

)]
(24)

With respect to σi (the standard deviation of the ith Gaussian), we therefore have

∂

∂σi
ln p(ε) =

N∑
n=1

1∑K
k=1 πkN (εn|0, σ2

k )

∂

∂σi

K∑
k=1

πk N
(
εn|0, σ2

k

)
(25)

Setting equation (25) equal to zero and recalling the definition of the ‘responsibilities’ (equation
(22)), we can write

0 =
N∑
n=1

γ(zni)
[
ε2nσ

−2
i − 1

]
(26)

Finally, solving for σi gives

σi =

√∑N
n=1 γ(zni)ε

2
n

Ni

(27)

where Ni =
∑N

n=1 γ(zni).

5.2.2 Maximising with respect to the proportionalities

We now aim to estimate the optimum π that maximises equation (23). When finding the
MLE of the proportionalities, the constraint

∑K
k=1 πk = 1 has to be considered. The opti-

misation procedure is therefore achieved using Lagrange multipliers. From the log-likelihood
equation (23) the Lagrangian is

L(ε, λ) = ln p(ε) + λ

(
K∑
k=1

πk − 1

)
(28)

Evaluating the partial derivative, ∂L(ε,λ)
∂πi

, and setting the resulting expression equal to zero,
we find that

0 =
N∑
n=1

πiN (εn |0, σ2
i )∑K

k=1 πkN (εn |0, σ2
k )

+ λ (29)

where the responsibility,

γ(zni) =
πiN (εn |0, σ2

i )∑K
k=1 πkN (εn |0, σ2

k )
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can be identified and substituted into equation (29) to obtain ,

0 =
N∑
n=1

γ(zni) + λ (30)

Multiplying equation (30) by πi and rearranging, it can be shown that λ = −N . Recalling
that, Ni =

∑N
n=1 γ(zni), we then find that

πi =
Ni

N
(31)

Notice that, in both equations, (27) and (31), the responsibility term is required, which sug-
gests a recursive solution where the E-step outcome is later used in the M-step. These steps
form an optimisation technique that maximises a lower bound (of the log-likelihood function)
at each iteration of the EM algorithm. Eventually the method will converge to a local or global
solution after a finite number of iterations. The EM algorithm proof of convergence is beyond
the scope of this work and for further insight please refer to [11].

5.3 The Maximisation step (2)

Once estimates of the hyperparameters π and σ have been realised, the remaining hyperpa-
rameters, θ, can then be estimated.

As stated in Section 5, from the K Gaussians in equation (13), the ‘narrowest’ distribu-
tion was defined as having standard deviation σs = min {σ1, ..., σK}. Then, the observations
corrupted with the Gaussian noise zns = 1 are found through the responsibility (22), as follows,

γ(zns) =
πsN (εn |0, σ2

s)∑K
k=1 πkN (εn |0, σ2

k )
(32)

Hence, the new training data can be ensemble by the threshold function.

t(γ(zns)) =

{
(xs, ys) = (xn, yn) if γ(zns) > 1

K

No action otherwise
(33)

Therefore, using the sparse dataset {xs, ys}Ss=1 in the standard GP log-likelihood (9), we find
that,

ln p(y(S) |θs) = −
1

2
ln |C(S) | −

1

2
yT(S)C(S) y(S)−

N

2
ln (2π) (34)

where y(S) is the vector of sparse observations and C(S) is the covariance matrix formed by
applying our GP kernel to the set of sparse inputs (i.e. X(S)).

We can now apply a MLE to equation (34), where the high noise effects within the full set of
observations are eliminated from the estimated hyperparameters θs. We define this procedure
as the M-step(2).

5.4 Making predictions

The EM algorithm variant described in the previous section, not only provides estimates
for the hyperparameters Θ, but in addition, it classifies the observations during the E-step.
Once training is complete, the estimated kernel parameters θs, can be used in the predictive
distribution of a standard GP to make new predictions.
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From equation (10), it is straightforward to show that

p(y∗|x∗, {xs, ys}Ss=1) = N
(
y∗ |kT∗ C−1(S) y(S), k∗∗ − kT∗ C−1(S) k∗

)
(35)

where, k∗ = [k(x∗,xs), ..., k(x∗,xS)] and k∗∗ = k(x∗,x∗).
A set of new predictions can be calculated using the predictive mean of equation (35), given

by

µ∗ =K
T
∗ C

−1
(S) y(S) (36)

Consequently, the absence of non-Gaussian noise components in the training dataset {xs, ys}Ss=1

allows us to use the predictive mean of a standard GP to make new predictions. Recalling fro the
E-step that an estimate of ε1, ..., εN is required to start a new iteration of the training algorithm,
we can use equation (36) to estimate f(x) at the N required positions. In other words, once a
new estimated of f has been realised, a new estimate of the residuals is readily obtained. With
this, ε can then be used in a new iteration of the EM procedure.

This concludes the modelling section of the proposed method.

6 EXPERIMENTS

In this section, the model performance is accessed using two separate cases.
Case 1: a synthetic dataset was generated to assess the suitability of the approach when

the noise model truly is represented as a mixture of Gaussians. Knowing the function from
which the observations are generated, we investigated the model’s predictive performance us-
ing the Mean Squared Error (MSE). We compared its performance with a standard GP and a
Heteroscedastic GP (HGP - a GP which allows the variance of the noise model to be input-
dependent) 3. The synthetic data allowed us to evaluate the proposed algorithm’s ability to
perform classification, as the latent variable, znk from each observation were known. Finally,
the classification performance was determined simply by counting the number of labels that had
been correctly identified.

Case 2: we test the models behaviour when using a training dataset whose observations have
been corrupted with noise whose variance is input-dependent. This second case is interesting as
it highlights a scenario where the proposed mixture of Gaussians noise model is erroneous and,
in fact, a HGP should be more suitable.

6.1 Case 1

In this experiment 100 realisations of the function, f(x) = 1
2
x sin(x), were corrupted follow-

ing the noise model described in equation (13). To study the model performance when using
data corrupted by non-Gaussian noise whose distribution has heavy tails, K = 2 sources of
noise are used. The Gaussian mixture parameters were set as follows:

Proportionalities: π1 = 0.7, π2 = 0.3
Standard Deviations: σ1 = 10, σ2 = 90

The observations obtained from the corrupted sine function were used to train the proposed
model, where results of the regression and classification performances are shown in the left and

3The Heteroscedastic GP used in this analysis is a MLE variant of the model proposed by Goldberg in [12], as
suggested by Kersting [13].
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right sides of Figure (2), respectively. The miss-classified observations are shown in red. In this
case, 2 out of the 100 observations were incorrectly classified.
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Figure 2: Case 1. The proposed regression model (left) and classification performance (right). In the left-panel the
green points correspond to observations corrupted with ’low noise’, σ1 = 10, and the black points corresponds to
observations corrupted with ’high noise’, σ2 = 90.

To quantify the model’s ability to replicate the true sine function, we made 100 predictions
at inputs omitted originally from the training data and calculated the MSE with respect to the
values of the true underlying function. Comparisons of the MSE between a standard GP and
a HGP are shown in Table 1, where the lowest value corresponds to the proposed model. In
addition, a visual comparison of the models regression performance is shown in Figure 3. It is
clear that the standard GP and the HGP were affected by the high noise observations; deviating
their predictive mean from the trajectory of the true underlying function.

Case 1: Mean Square Error
GP 0.04945

HGP 0.06541
Proposed GP 0.00231

Table 1: MSE of 100 predictions at inputs that were not used as training data.

The inferred noise-model parameters, π and σ, are compared in Table 2 with the original
noise parameters. It can be seen that the parameter estimates are close to the true values.

Case 1: Noise Parameters
Calculated Original

Gaussian noise: 1 2 1 2
Proportionalities : 0.7097 0.2902 0.70 0.30
Std. Deviations : 12.340 85.7299 10 90

Table 2: Comparison between the noise parameters that the model calculated and the ones used to generate the
non-Gaussian noise.
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Figure 3: Case 1. Comparisons of the predictions made by the proposed regression model, a standard GP (left) and
a heteroscedastic GP (right).

6.2 Case 2

This experiment aimed to asses the regression performance of the proposed method when
using data corrupted with noise whose variance is input-dependent. The well-known benchmark
data from Silverman et at. [14] was used. This data was collected from research concerning
motorcycle helmet efficacy in a crash accident. It consists of 133 observations, corresponding
to accelerometer readings that have been taken through a motorcycle crash time line.

It is known from previous works, such as [15], that the motorcycle data from Silverman can
be accurately modelled as being heteroscedastic. Furthermore, from [15] and [14] we know that
the ‘low noise’ portion of the data is only found in the first region of the domain (from 0 to 10
ms), as Figure 4 shows. As with case 1, we assume a noise model with K = 2 Gaussians. The
classification results of the proposed method are shown in Figure 4 (left) and its regression per-
formance is shown in Figure 4 (right). Figure 4 (left) shows how our model classified the data
that was corrupted with high-variance noise as outliers and how the remaining sparse observa-
tions provided enough information to make reasonable predictions of the system’s behaviour.
Figure 4 (right) shows that our model follows a similar trajectory as the HGP at values≤ 30ms.
After this value the model tries to go through the sparse observations, deviating its trajectory
from the HGP. The calculated noise parameters for the motorcycle data experiment are shown
in Table 3.

Case 2 illustrates an example where, even though the Mixture of Gaussians noise model is
being applied to a scenario where a heteroscedastic noise model is thought to be more appro-
priate, the proposed method functions relatively well. This is encouraging as it illustrates that,
potentially, the proposed method may be relatively robust even when applied to scenarios where
the Mixture of Gaussians noise model is, in fact, erroneous. A more-thorough exploration of
this property is a topic of future work.

Case 2: Noise Parameters
Gaussian noise: 1 2

Proportionalities : 0.5590 0.4409
Std. Deviations : 10.406 30.019

Table 3: Calculated noise parameters.
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Figure 4: Classification and regression performances of the proposed model.

7 CONCLUSIONS

The current paper explores the situation where Gaussian Process (GP) regression is being
performed on a dataset, where observations of the true underlying function have been corrupted
with non-Gaussian noise. A method is proposed which, by using a noise model that consists
of a mixture of Gaussians, is able to address such a scenario while preserving closed-form ex-
pressions for the GP predictions. The approach uses a variant of the Expectation-Maximisation
(EM) algorithm whereby, to aid parameter estimation, observations corrupted with high levels
of noise are treated as outliers.

Two case studies were investigated. Case 1 concerned data generated from the proposed
noise model, while case 2 concerned data where an input-dependent noise model is known
to work well. Encouragingly, the model performed well for both bases, indicating that the
proposed algorithm may be applicable to a wide-variety of cases where data has been corrupted
with non-Gaussian noise.
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Abstract. In this paper, a modular spring-damper system that is integrated into a space
truss structure is considered that was developed in the collaborative research centre SFB 805
“Control of Uncertainty in Load-Carrying Structures in Mechanical Engineering” at the Tech-
nische Universität Darmstadt. An idealized two degree of freedom (2DOF) model serves as
a mathematical model to describe the dynamical system behaviour, yielding a system of two
coupled ordinary differential equations (ODE) of second order. Previous own research already
addressed the dynamic behaviour of the suspension system as regression curves from exper-
iments for both stiffness and damping behaviour. Combining the regression models with the
system equations of a 2DOF model of the modular spring-damper system yielded several model
candidates to describe the dynamic behaviour.

The resulting model form uncertainty is addressed in the framework of a model selection pro-
cess. The approach employed in this paper uses a simplified form of the Kennedy and O’Hagan
framework. Assuming that all models incorporate a model error, measurements of a system can
be expressed as a the sum of the simulation model output, a discrepancy function and measure-
ment noise. The discrepancy function gives information about the accuracy of the simulation
model. It can therefore be used to compare model candidates and thus assess model form un-
certainty. Among the approaches to model the discrepancy function, Gaussian processes (GP)
have proofed to be suitable due to their versatility. Hence, for each model candidate, a GP rep-
resentation for the discrepancy function can be determined based on experimental data. This
paper shows the comparison and evaluation of the model candidates’ discrepancy functions.
Characterization of the underlying GP with regard to its confidence intervals is employed as a
measure to select models that represent the dynamic behaviour of the modular spring-damper
system most adequately.
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1 INTRODUCTION

In engineering science, mathematical models are of utmost importance to predict the dy-
namic behaviour of structures or to improve structural design. The necessity for an accurate
model stems from the need to assess dynamic performance under all environmental and possi-
ble operating conditions for stability evaluation, designing robust structures or for appropriate
controller design.

During the modelling process, assumptions play a central role. Often, sufficient knowl-
edge about the underlying physics as well as the model parameters and state variables of a
system may be missing or the effort to build a more complex model is too high compared to
the expected accuracy gain. Therefore, assumptions and simplifications have to be made that
determine the form of a model. As a consequence, models may differ in complexity and the
underlying physics can be described by the aid of linear, non-linear as well as empiric or ax-
iomatic relations. The evaluation of competing models can be conducted by the quantification
of model form uncertainty that describes the uncertainty in model selection, when models differ
in their functional relationships. It is assumed that all models in the selection set are capable to
represent the relevant dynamic behaviour, however, their output differs. Model form uncertainty
has to be further differentiated form other types of uncertainty such as numerical uncertainty
that arise in simulation models, uncertainty in the parameters of a mathematical model and
experimental uncertainty that is due to variability in measurements [1].

Multiple approaches in literature exist to assess model form uncertainty, for example in the
framework of verification and validation [2]. In general, verification means inspection of a
mathematical model for matching sufficiently with numerical results of a simulation model,
while validation addresses the comparison of a mathematical model with measurement gained
from the real structure. Validation is typically accompanied by calibration, that is called the
process of fitting the mathematical model to the observed data by adjusting its parameters [5].
Recently, model form uncertainty has gained momentum as a research topic and methodological
approaches such as using nested sampling [3], a Bayesian inference approach [4] or random
matrices [9] have been presented.

This paper builds upon the Kennedy and O’Hagan framework in the context of model form
uncertainty quantification and model selection. The concept was published in 2001 [5] and
introduced a broadly accepted representation for measurement data of a system

yn � ηpθ,xnq � δpxnq � εn (1)

where yn P R, pn � 1, . . . , Nq denoted the n-th of a total of N measurements, η is a simulation
model output with inputs xn P Rd and calibration parameters θ like damping coefficients, δ is
the discrepancy function and εn represents zero-mean normally distributed measurement noise
for each measurement n. In contrast to the original paper [5], the models in this paper are
assumed to be calibrated, so that θ can be omitted and the simulation model in (1) simplifies to
ηpxnq. Measurements yn and respective simulation model evaluations ηpxnq for selected input
values xn can now be used to construct a GP to model the sum of the discrepancy function and
the measurement error, that are denoted by the difference

zn :� δpxnq � εn � yn � ηpxnq. (2)

A GP is a generalization of the Gaussian probability distribution. Whereas a probability
distribution describes random variables that are scalars or vectors, a stochastic process such as
a GP governs the properties of functions [8]. A GP constitutes of a so called mean function µp�q
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and a covariance function cp�, �q. The mean function is a linear combination of basis functions
that are often assumed zero or one and weights, while the covariance function specifies entries
of the covariance matrix for the respective input. Both mean function and covariance function
have adjustable parameters, called hyperparameters [8]. This notion was adopted due to the
non-parametric characteristic of GP1. For example in the case of a constant mean function
µp�q � β, the constant β is a hyperparameter. For chosen mean and covariance functions,
the hyperparameters fully determine a GP. The comparison of confidence intervals of the GP
describing the response behaviour of discrepancy functions thus yields a measure to compare
competing models when model form uncertainty is present.

This paper is organized as follows: The structural system considered in this paper is pre-
sented in section 2 that covers modelling and simulation as well as the model candidates based
on regression studies of a previous publication are introduced. Section 3 briefly introduces GP
and their specifications and section 4 describes the model selection using confidence intervals
of the model discrepancy function.

2 MAFDS AND MATHEMATICAL MODEL

The modular active spring damper system and space truss (German acronym MAFDS) in
Fig. 1a is a suspension system that was designed with similar specifications and requirements
as an air plane landing gear, although it is not a landing gear substitute. It was developed in
the collaborative research centre SFB 805 at the Technische Universität Darmstadt in order to
investigate data and model form uncertainty in a load-bearing structural system when predicting
the dynamic response. It’s main components are an upper truss structure 1©, a lower truss
structure 2© with an elastic foot 5©, guidance links that enable relative translation of the truss
structures in z-direction 3© and a spring-damper component 4© [4]. The upper truss of the
MAFDS is fixed on a frame 6© that can translate along guidance rails in z-direction. Dynamic
drop tests are carried out similar to landing gear testing with a drop height h. Additional weights
madd can be added to the frame 6©.

1While in nonparametric models such as GP, the number of parameters grows with the number of training
samples, in parametric models such as polynomial models the number of parameters is fixed before training [8].
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Figure 1: a) The MAFDS with its components and measured forces Fsd and Fef of the spring
damper and foot as well as the measured relative displacement zr. b) 2DOF model of the
MAFDS: k denotes the stiffness and b denotes the damping of the spring-damper-component
4©, kef denotes the stiffness of the elastic foot 5© and h and madd identify drop height and added

mass, respectively. The spring and damper force are denoted Fs and Fd respectively. The whole
structure is subject to the gravitation g [4].

2.1 Mathematical model

In previous research, the dynamic behaviour of the MAFDS was captured using a 2DOF
model, see Fig. 1b. The upper truss, the upper part of the spring-damper component, the frame
and the added mass constitute the upper mass mu of the 2DOF model, the lower truss, including
the foot and the lower part of the spring damper component are modelled by the lower mass
ml in the 2DOF model. The position of both the upper and lower mass is determined by the
coordinates zu and zl of the 2DOF model, where zr � zu � zl denotes the relative displacement
of upper and lower mass. The system equations are given as:�

mu 0
0 ml


�
:zu

:zl



�
�
bp 9zrq �bp 9zrq
�bp 9zrq �bp 9zrq


�
9zu

9zl



�
�
kpzrq �kpzrq
�kpzrq kpzrq � kef


�
zu

zl




�
�pmu �maddqg

ml g



� 0.

(3)

The detailed derivation of the system of coupled ODEs has been omitted here, for further
details see [6] and [4]. The model parameters of the system are given in accordance with [4] in
Tab. 1.
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Table 1: Model parameters

parameter symbol value SI unit
mass of upper structure mu 185 kg
mass of lower structure ml 41 kg

elastic foot stiffness kef 22.1 � 104 N/m

2.2 Model candidates

Previous research on the dynamic behaviour of the MAFDS focused on the investigation
of the static and dynamic system properties of the spring-damper component [6]. Different
regression models were developed for the stiffness function kpzrq and the damping function
bp 9zrq from experiments to describe the respective forces the spring damper component exercises
on the upper and lower mass. For the suspension stiffness regression models (a) and (b), and
for the damping function regression models (c) and (d) were defined.

• In regression model (a) the stiffness curve was approximated by piecewise linear polyno-
mials

kapzrq �
#
ka,1 � ka,2zr, zr ¤ 0.068m
ka,3 � ka,4zr, zr ¡ 0.068m. (4)

The regression parameters are given in Tab. 2.

Table 2: Coefficients ka,� for the piecewise first-order polynomial regression model of stiffness

coefficient value SI unit
ka,1 28 kN/m
ka,2 73 kN/m2

ka,3 �1.58 kN/m
ka,4 516 kN/m2

• In regression model (b) a cubic polynomial form was assumed for the stiffness function

kbpzrq � kb,1 � kb,2zr � kb,3z
2
r � kb,4z

3
r . (5)

The regression parameters can be found in Tab. 3.

Table 3: Coefficients kb,� for the cubic polynomial regression model of stiffness

coefficient value SI unit
kb,1 23 kN/m
kb,2 601 kN/m2

kb,3 �1.49 � 104 kN/m3

kb,4 1.24 � 105 kN/m4
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• Regression model (c) assumes piecewise power functions

bcp 9zrq �
#
bc,1 9zr, 9zr ¤ 0m/s
bc,2 9zr, 9zr ¡ 0m/s (6)

for the damping function. The regression coefficients under assumption of the respective
regression model for the stiffness function, indicated by upper-case letters p�qa, p�qb, are
given in Tab. 4.

Table 4: Coefficients ba
c,�, b

b
c,� for the piecewise first-order polynomial regression model of damp-

ing

coefficient value SI unit
ba

c,1 24.81 kNs2{m
ba

c,2 1.09 kNs2{m
bb

c,3 4.92 kNs2{m
bb

c,4 1.08 kNs2{m

• Model (d) describes a cubic polynomial approach for the damping function

bdpzrq � kd,1 9zr � bd,2 9z
2
r � bd,3 9z

3
r . (7)

Table 5: Coefficients ba
d,�, b

b
d,� for the cubic polynomial regression model of damping

coefficient value SI unit
ba

d,1 3.05 kNs2{m2

ba
d,2 �5.24 kNs2{m3

ba
d,3 2.67 kNs2{m4

bb
d,1 3.16 kNs2{m2

bb
d,2 �5.81 kNs2{m3

bb
d,3 3.09 kNs2{m4

For the subsequent analysis, the system (3) and the stiffness and damping functions intro-
duced in this section form a set of P � 4 simulation model candidates that are given in Tab. 6.

Table 6: Stiffness and damping functions for the four model candidates

model number p stiffness function damping function
1 kapzrq ba

cp 9zrq
2 kbpzrq bb

cp 9zrq
3 kapzrq ba

dp 9zrq
4 kbpzrq bb

dp 9zrq
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2.3 Initial conditions

For the drop tests, the structure is lifted up by a drop height h. When the system is dropped,
it is assumed that the relative displacement zr approaches zero and the two masses have equal
velocities v0 �

?
2gh at the moment of impact. A simulation study has shown that this assump-

tion leads only to a negligible error. Therefore, the initial conditions (8) can be adopted. The
simulation was carried out in Matlab and a standard ODE solver for non-stiff ODEs (ode45)
was utilized.

zup0q � 0 9zup0q �
a
2gh (8a)

zlp0q � 0 9zlp0q �
a
2gh (8b)

2.4 System inputs and outputs

Inputs to a simulation model such as η in (1) can be parameters and initial conditions and
excitations that are needed to run the simulation model. Calibration parameters θ can also be
varied in the simulation model, but are fixed for the experiment [5]. In this paper, it is assumed
that the calibration parameters are known such that the simulation model in (1) simplifies to
ηpxnq. Inputs for the drop tests of the 2DOF Model of the MAFDS are set to be the drop height
h and additional weight madd that can be added to the frame 6© in Fig. 1a. In analogy of the
MAFDS to an aircraft landing gear, the additional weight madd can for example account for
additional payload.

xn � phn,madd,nqJ (9a)

X � px1, . . . ,xNqJ (9b)

are the input vector xn P R2 in (1) and the p40� 2q input matrixX for N � 40 measurements.
For the 2DOF model of the spring damper system, the outputs were chosen to be the maximum
relative compression zr,max, the maximum force in the elastic foot Fef,max and the maximum
force on the spring damper system Fsd, max, in accordance to [4]. The respective quantities are
calculated as

zr � zu � zl (10a)
Fsd � Fs � Fd � kpzrqzr � bp 9zrq 9zr (10b)
Fef � kefzl, (10c)

with the spring force Fs and the damping force Fd depicted in Fig. 1b. The relative displacement
zr is set to be zero in a system state where the spring damper component is not deflected. The
four model candidates specified in Tab. 6 are simulated for the inputs xn specified in X . The
simulation output vectors denote

hp,zr � pηp,zr,maxpx1q, . . . , ηp,zr,maxpxNqqJ (11a)

hp,Fef � pηp,Fef,maxpx1q, . . . , ηp,Fef,maxpxNqqJ (11b)

hp,Fsd � pηp,Fsd,maxpx1q, . . . , ηp,Fsd,maxpxNqqJ, (11c)

where the index p � 1, . . . , P with P � 4 indicates the model number and ηp,zr,max , ηp,Fef,max ,
ηp,Fsd,max denote the maximum outputs of the respective simulation model. A simulation of model
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1 in Tab. 6 for a drop test with inputs x � p0 kg, 0.09 mqJ as an example yielded maximum
output values η1,zr,maxpxq, η1,Fef,maxpxq, η1,Fsd,maxpxq that are depicted in Fig. 2 as horizontal lines.
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Figure 2: Outputs from a simulated drop test: (a) maximum relative compression zr,max, (b)
maximum force in the elastic foot Fef,max and maximum force on the spring damper system
Fsd, max.

For the measurement of the relative displacement zr, displacement sensors were attached
between the upper and lower truss. Fig. 1a indicates the locations of the force sensors. The
measured output vectors with the quantities in (10) of all N measurements denote

yzr
� pzr,max,1, . . . , zr,max,NqJ (12a)

yFsd
� pFsd,max,1, . . . , Fsd,max,NqJ (12b)

yFef
� pFef,max,1, . . . , Fef,max,NqJ. (12c)

2.5 Training data for the GP

The input matrixX (9b) contains the input values specified in Tab. 7 for which the measured
output vectors from the drop tests yzr

, yFsd
, yFef

(12) and the simulation output vectors hp,zr ,
hp,Fef , hp,Fsd (11) were obtained.
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Table 7: Input configurations and number of drop tests

weight in kg height in m number of drop tests
0 0.09 6

10 0.07 6
20 0.05 6
40 0.03 6
60 0.05 6
80 0.03 5

100 0.01 5°
= 40

The sum of the discrepancy term and the measurement error z (2) for all three outputs and
all P � 4 model candidates is now represented by the difference vectors

zp,zr � yzr
� hp,zr � pδp,zrpx1q � εp,zr,1, . . . , δp,zrpxNq � εp,zr,NqJ (13a)

zp,Fef � yFef
� hp,Fef � pδp,Fefpx1q � εp,Fef,1, . . . , δp,FefpxNq � εp,Fef,NqJ (13b)

zp,Fsd � yFsd
� hp,Fsd � pδp,Fsdpx1q � εp,Fsd,1, . . . , δp,FsdpxNq � εp,Fsd,NqJ (13c)

where δp,zr , δp,Fef , δp,Fsd denote the discrepancy functions of each model p for the respective
output and and εp,zr , εp,Fef , εp,Fsd denote measurement noise. The input vector X and each of
the twelve difference vectors in (13) constitute the data set to train GPs using the methodology
described in the next section. For the sake of simplicity, the vector z refers to any difference
vector in the following section.

3 GAUSSIAN PROCESS MODEL

The aim of this section is to give a brief introduction to the modelling of the discrepancy
function and measurement noise comprised in the vectors defined in (13) using a GP. A GP is the
generalization of the normal distribution in the function space as it describes a distribution over
functions.A visual explanation of this can be found in [8]: Thinking of a function as an infinite
long vector with each entry representing a function value fpxq of an input x, a GP describes a
multivariate normal distribution over a arbitrary finite number of these vector entries.

Given a set of input valuesX � px1 . . .xNqJ as in (9b) and the difference vectors as training
outputs z � pz1 . . . zNq given in (13) where the zn P R are assumed realizations of a stochastic
process f , a GP representation for the data yields the multivariate normal distribution

f � N pµpXq,Kq (14)

where µ denotes the mean function andK P RN�N denotes the covariance matrix. The covari-
ance matrix is built up element-wise by the covariance function c : R2 � R2 ÞÑ R

Kpk, lq � cpxk,xlq, (15)

where xk,xl with k, l � 1 . . . N denote the input vectors (9a). The mean function µpxq and
the covariance function c chosen in this paper are defined and further elaborated in the follow-
ing. In a Bayesian framework for regression, the GP given by (14) can be regarded as a prior
distribution.
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3.1 Mean function

The mean function µ models the expectation of the GP. Especially when prior knowledge
about the process is available, the mean function can be selected to fit the form of the expected
mean. Quite often, the mean function is set to zero. However, since the elements of vectors z in
(13) appear to be all negative, it seems reasonable to assume the mean function to be a constant
β P R

µpxq � β. (16)

3.2 Covariance function

The covariance function c essentially determines the smoothness of the GPs response. There
are several possible covariance functions, each of them cater specific requirements for the data
to fit. In this paper we will utilize the squared exponential covariance function, that is suitable
to describe smooth behaviour of functions. It is defined as

cpxk,xlq � σ2
f exp

�
�1

2
pxk � xlqJMpxk � xlq



� σ2

nδkl (17)

where xk,xl with k, l � 1 . . . N denote the input vectors (9a) and δkl denotes the Kronecker
delta. The matrix M is set to M � I`�2 with unity matrix I P R2

�
R2 and length scale

` ¡ 0 [8]. The signal variance σf ¡ 0 determines how much the function values deviate from
the mean value. Larger values for the signal variance lead to larger deviation of the function.

Measurement noise is accounted for by the noise level parameter σn in the covariance func-
tion (17). It is assumed to be an additive, independent identically distributed Gaussian noise
with variance σ2

n [8].

3.3 Hyperparameter optimization

In summary, the vector of hyperparameters that governs the behaviour of the GP can be
written as θhyper � pβ, `, σf, σnqJ. In order to represent the data set with input matrix X and
training outputs z most adequately with a GP, the optimal set of hyperparameters θhyper,opt is
typically determined by maximizing the log marginal likelihood [8]

θhyper,opt � argmax
θhyper

logpppz|X,θhyperqq. (18)

In this paper, a Bayesian optimization scheme is used for the optimization (18). The objective
of the Bayesian optimization is to minimize an expensive objective function when stochastic
noise in function evaluations is present [11]. The Bayesian approach allows for tracking down
potential optima as well as to explore the hyperparameter space in a way that can be customized
by an acquisition function [10]. In this paper, optimization of the hyperparameters θhyper,opt

was carried out in Matlab using the function bayesopt with the ’Expected Improvement’
acquisition function and yielded an optimal set of hyperparameters θhyper,opt.

4 MODEL SELECTION USING CONFIDENCE INTERVALS

This section presents the results of of the GP model’s training according to the methodology
presented in section 3. For the P � 4 models and three outputs in twelve training data sets
each with input matrix X and respective training output vectors z given in (9b) and (13) the
respective set of optimal hyperparameters θhyper,opt (18) was obtained. Subsequently, confidence
intervals for the respective prior GP are constructed and serve as a measure to assess model
form uncertainty in a model selection process.
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4.1 Confidence intervals for prior Gaussian process models

As mentioned earlier, a GP is fully determined by its hyperparameters. With the mean and
covariance functions (16) and (17) its 95%-confidence interval can be specified with the hyper-
parameters of the GPs describing the response behaviour of the discrepancy terms δp,zr , δp,Fef , δp,Fsd

(13). For the twelve sets of optimal hyperparameters θhyper,opt � pβopt, `opt, σf,opt, σn,optqJ, the
lower and upper confidence bounds Cl and Cu respectively are calculated as

Cl � βopt � 2σf,opt (19a)
Cu � βopt � 2σf,opt. (19b)

Measurement noise εp,zr , εp,Fef , εp,Fsd (13) is neglected in the calculation of the confidence
interval for the discrepancy functions. It is assumed that it has been fully captured in the noise
level parameter σ2

n in the covariance function (17). The values for σn are given in Tab. 8.

Table 8: Values of noise level parameter σn for the GP models

noise level parameter σn

output model 1 model 2 model 3 model 4
zr,max 0.001m 0.001m 0.001m 0.001m
Fef 69.6596 N 68.3976 N 61.3605 N 37.8121 N
Fsd 51.8532 N 69.7893 N 4.0560 N 99.9499 N

4.2 Model selection

Fig. 3 shows the confidence intervals according to (19) for the GP prior for all three outputs
and all P � 4 model candidates. In this paper, the confidence interval shall provide a measure
to compare models by the maximum absolute value of the confidence bounds (19) of the GP
describing the discrepancy functions for the respective output δp,zr , δp,Fef , δp,Fsd (13)

Cmax,δp,zr
� maxp|Cl,δp,zr

|, |Cu,δp,zr
|q (20a)

Cmax,δp,Fef
� maxp|Cl,δp,Fef

|, |Cu,δp,Fef,
|q (20b)

Cmax,δp,Fsd
� maxp|Cl,δp,Fsd

|, |Cu,δp,Fsd
|q. (20c)

The lower Cmax, the better the model captures the dynamic behaviour of the system with regard
to the respective outputs zr,max, Fef,max and Fsd,max. It can therefore be interpreted as a measure
of model adequacy and will be used as a metric to compare the P � 4 model candidates in the
following.

Comparing the confidence intervals in Fig. 3a it can be seen that all models overestimate
the maximum relative compression zr,max as the confidence bounds for all models are located
in the negative domain. Model 2 and model 4 have similar confidence bounds and the values
of Cmax,δ2,zr

Cmax,δ4,zr
are highest, while the value of Cmax,δ3,zr

for model 3 is lowest. Therefore,
according to the proposed metric, model 3 appears to be the most adequate model with respect
to the output zr,max.

In Fig. 3b all models overestimate the maximum elastic foot force Fef,max and the maximum
force in the spring damper component Fsd,max, as again the confidence intervals for the discrep-
ancy functions δp,Fef , δp,Fsd are located in the negative domain. For the outputs Fef,max and Fsd,max,
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model 1 is unequivocally the most adequate, as the values of Cmax,δ1,Fef
and Cmax,δ1,Fsd

are clearly
lowest. In comparison to model 1, model 3 and especially model 2 and 4 exhibit substantially
higher values for Cmax,δ3,Fef

, Cmax,δ3,Fsd
, Cmax,δ2,Fef

, Cmax,δ2,Fsd
, Cmax,δ4,Fef

, Cmax,δ4,Fsd
, respectively,

indicating a higher level of model inadequacy.
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Figure 3: Mean scale β and confidence intervals (19) for the discrepancy function δ for the
P � 4 model candidates: (a) for model output zr,max, (b) for model outputs Fef and Fsd.

Overall, there is no model that consistently ranks first for all regarded outputs after appli-
cation of the proposed metric. However, model 3 and model 1 showed the highest level of
adequacy for the outputs zr,max in Fig. 3a and Fef,max, Fsd,max in Fig. 3b, respectively. In a model
selection process, both models could be pre-selected. In order to advance a model selection
it would be advisable to repeat this investigation for supplementary outputs. Also, individual
technical requirements should also play a role in the selection process, as this might give more
relevance to the results for one or the other output.

The fact, that the discrepancy function exhibits a trend that all models overestimate the dy-
namic load of the system could be an indication that the initial conditions (8) used to simulate
the system are inadequate and do not coincide sufficiently with the initial excitation the system
actual experiences during measurements. Friction effects between the frame and the guidance
rails (Fig. 1a), that have not been modelled, could lead to a reduction the velocity v0 at impact,
which would shift the simulated outputs zr,max, Fef,max, Fsd,max closer to the observed values and
thereby moving the confidence bounds of the discrepancy δp,zr,max , δp,Fef,max , δp,Fsd,max closer to zero.
Additional measurements are required to verify this presumption.

5 CONCLUSION

A measure to assess model form uncertainty to assist in the selection of competing models
systems is presented. First, GP are fitted to the difference between model outputs and mea-
surements. With the hyperparameters of the GP, confidence intervals for the discrepancy are
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constructed and compared. Preference is given to the models with the smallest maximum abso-
lute value of the confidence bounds.
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Abstract. Identifying the source of any discrepancies between a numerical model and experi-
mental data can be a time consuming and costly undertaking. Individual input parameters of a
numerical model can only be determined experimentally. Out of the input parameters usually
required for computer-aided structural dynamical models, damping is one of the most challeng-
ing ones to obtain. It cannot be measured directly and has to be derived from other measured
values in the post-processing. Obtained damping value can be sensitive to the method uti-
lized during the post-processing [1, 2]. Furthermore, boundary conditions which are common
in numerical models like ideally free-free or fixed support, can be merely approximated in an
experimental setup [3]. As a consequence, the influence of a chosen type of support on the
damping of the test specimen cannot be neglected. In this study, the influence of different types
of support on the obtained damping values are investigated. For this purpose, the structural
dynamical behaviour of several test specimens, each being under several boundary conditions
is measured with a laser scanning vibrometer. Each specimen under each boundary condition
has been performed out several times in order to identify the reliability and reproducibility of
the measurement. From the insights gained in the course of these investigations, suggestions
are proposed for the reduction of the measurement effort in damping measurements
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1 INTRODUCTION

The purpose of a numerical model in the field of engineering is to predict the behaviour of
a real structure. Hence, the reliability and precision of the model are keys for the usefulness
of a numerical model. In order to improve the quality of a numerical model, geometrical and
material properties describing the structure in question should have a sufficient precision. Mi-
nor changes in the geometry can lead to a noticeable difference in the natural frequencies [4].
Fortunately, several different methods are described in the literature [5, 6] which allow to deter-
mine the actual geometry quite reliable. Furthermore, it is relatively easy to determine the mass
of a structure for normal problems in engineering with a more than sufficient precision. In case
of a homogeneous isotropic material, a realistic density value can be calculated.

In comparison to the accuracy weighing and geometrical measurements, the uncertainty in
measuring the Young’s modulus is quite large. This even applies to techniques which are known
as highly accurate like ultrasonic measurements [7, 8] or inverse modal analysis [9, 10]. The
magnitude of uncertainties has been investigated in the recently published literature by Langer
et.al [11]. He stated that the margin of error in measuring the Young’s modulus of steel speci-
mens is about ±2.3% and the uncertainties in determining the Poisson’s ratio is about ±3.2%.
In comparison, he stated that the averaged measured uncertainty in determining the density is
only ±0.171%.

All of the above-mentioned margins of errors can be assumed to be relatively small in com-
parison to uncertainties regarding damping of structures. In the past, a vast amount of research
has been published on this topic. Besides the commonly known viscous damping which was in-
troduced by Rayleigh [12], several different approaches on the energy dissipation due to damp-
ing emergered in the literature [13, 14, 15, 16, 17, 18]. Experimentally determined damping
values can be influenced, due to joint damping [19], by the applied type of support [20]. A
common way of supporting a specimen during testing is to approximate free-free boundary
conditions by utilising thin elastic strings [3]. The measurements and results in this publication
focus on the influence of the mounting position of strings.

This paper is structured as follows: In section 2, the used specimen is introduced as well as
the experimental setup and the applied post processing. The results obtained from the measure-
ments are shown in section 3. The final section contains the conclusions drawn from the results
and an outlook for future work.

2 MEASUREMENT

The measurements in this study were performed on an aluminium plate. For the purpose
of these measurements, the specimen has been suspended at different points to identify any
influence of positioning the suspension on the natural frequency as well as on the obtained
damping values. Furthermore, the structural response has been recorded at several positions
on the specimen. In order to obtain a-priori knowledge about the anticipated mode shapes and
natural frequencies of the plate, a FE-Model has been implemented in Abaqus CAE version
6.14.

2.1 Specimen

Several sets of measurements were performed on the above-mentioned plate made out of
aluminium alloy AlMg4,5Mn0,7. This plate has a size of 355mm x 255mm x 13mm. Around
the edge of the plate are a total of 44 holes with an M10 thread. The used alloy was chosen
because the material properties are well known and the structural dynamical behaviour of the
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homogeneous isotropic material is less inflicted with uncertainties than most anisotropic mate-
rials. In order to reduce influences of residual stresses, the plate was milled from a solid block
of aluminium.

Figure 1: Geometry of the Plate; AP := Point of Excitation; MP := Measurement Point

In figure 1 the schematics of the plate are displayed. The point ’AP’ is marking roughly
the position of the point of excitation, while the points MP1 to MP3 are marking the positions
where the structure’s surface velocity has been measured. The blue numbers under the threaded
holes are marking different points at which the strings for mounting were attached. Hereinafter,
the mounting positions are denoted with the two numbers of the holes, e.g.: ’44’ means the
strings were attached at the two holes marked with a 4.

2.2 Experimental Setup

While choosing an appropriate method of excitation, two key requirements were specified.
Firstly, the dynamical behaviour of the specimen should be changed as little as possible by the
method of excitation, hence, connecting a shaker to the structure was not an option. Secondly,
the excitation should be reproducible and not inflicted by human errors. Since both requirements
are fulfilled by an automated impact hammer, the SAM1 produced by NV-Tech-Design was
utilised in these measurements [21, 22]. The point of excitation has been placed, as shown in
figure 2, in the lower right corner on the back side of the plate. This point has been chosen
since the numerical simulations suggested that none of the first ten modes has a nodal line in
this point.

Since no additional mass or damping should be added to the specimen, a Laser-Scanning-
Vibrometer (Polytec PSV500) was set up to measure the structural response on the impact.
Although it is possible to directly transform the measured time data to the frequency domain
with the PSV500, this option was consciously disabled.

585



Christian A. Geweth, Patrick Langer, Ferina Saati, Kheirollah Sepahvand and Steffen Marburg

Figure 2: Experimental setup

2.3 Post-Processing

The obtained time data were imported into MATLAB R© 2018a. Here, the measured data
were checked for possible double-hits or other irregularities in the measurement. Following that,
the data were transformed to the frequency domain using the ’fft’ function in MATLAB R© and
exported as *.mat-file. In the second part of the post-processing, these files were imported
into ME’SCOPE R©. The natural frequencies as well as the damping values were obtained by
performing a modal analysis. In order to analyse the influence of the mounting points on the
obtained natural frequencies and damping, only the modes which could be clearly identified
were further analysed. Hence, in the following chapter, only the modes 2, 3, 6, 7, 8 and 10 are
investigated. The damping values and natural frequencies from the three measurement points
has been averaged. Unfortunately, the measurement files for the mounting position ’33’ were
corrupted, as a result those are not included in the follow section.

3 RESULTS

The natural frequncies and damping values listed in table 1 are the average values over all
measured mounting points for each investigated mode. The natural frequencies of the elastic
mode are way higher than the frequencies of the rigid body modes, which could be observed by
the naked eye. Furthermore, it is noticeable that the damping of the specimen is quite low.

Mode Natural frequencies [Hz] Damping [%]
2 546.2 0.0092
3 1077.5 0.0146
6 1202.8 0.0701
7 1506.4 0.0495
8 2203.0 0.0721

10 2908.4 0.0576

Table 1: Average natural frequency and damping for each investigated mode

The deviation for each mounting position from the average value is calculated for the natural
frequencies by equation 1 and for the damping by equation 2. In those two equations, fnn and
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ξnn describe the natural frequency and damping respectively for each mounting point. In figure
3 ∆f and ∆ξ are multiplied by 100 in order to display the deviation in percentage.

∆f =
fnn − fmean

fmean

(1)

∆ξ =
ξnn − ξmean

ξmean

(2)

As can been seen in the left graph of figure 3 the natural frequencies for the six investigated
modes deviate by less than ∆f < ±0.05%. Even in case of Mode 3, which has the largest differ-
ences between the highest obtained natural frequency 1077.9Hz at mounting position ’44’ and
the lowest obtained eigenfrequency 1077.1Hz at mounting position ’11’ could be considered
negligibly small.

11 22 33 44 55 66 77
−4

−2

0

2

4

·10−2

Mounting Point

D
ev

ia
tio

n
of

ei
ge

nf
re

qu
nc

ie
s

∆
f

[%
]

11 22 33 44 55 66 77
−20

−10

0

10

20

30

Mounting Point

D
ev

ia
tio

n
of

D
am

pi
ng

∆
ξ

[%
]

Mode 2
Mode 3
Mode 6
Mode 7
Mode 8
Mode 10

Figure 3: Deviation of eigenfrequencies (left) and damping (right)

The deviation of the obtained damping values, which are displayed in the right graphic of
figure 3, variates less than ∆ξ < ±30%. Since the only parameter changed between the mea-
surements were the mounting positions of the strings for the ’free-free’ boundary condition, one
way of interpreting these results would be that the damping of a structure is highly sensitive to
the applied boundary conditions. This would mean, that the necessary effort to experimentally
determine realistic damping values would be quite large in comparison to the effort necessary
for the natural frequencies. Furthermore, this would mean that especially for light weight struc-
tures, it is impossible to identify reliable damping values with sensors, which are mounted
directly onto the specimens, i.e. accelerometers. Since aluminium from which the investigated
structure has been made from is known to be only lightly damped [23], the previous statements
cannot necessarily be transferred on structures with a higher damping.
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Another way of interpreting the obtained results is that the observed deviations of the ob-
tained damping values is within the scope of the uncertainties of the applied post-processing.
Previous research on simplified models using the same methods as in this paper, showed that
the applied post-processing is able to produce reliable results [1]. Nevertheless, the question
of the reliability of damping value for each mounting position remains interesting in order to
quantify the influence of the applied type of support.

4 CONCLUSIONS and OUTLOOK

In this paper, the influence of slightly different approaches to approximate free-free boundary
conditions in experiments on the obtained natural frequencies and damping is investigated. For
that purpose, an aluminium plate has been suspended with the same strings at different points
on the plate. The obtained results suggest that natural frequencies are hardly influenced by the
mounting position of the strings. In contrast, the obtained damping values seemed to be quite
sensitive to the mounting position.

Future research focus on the reproducibility and variance of measured damping values for
a single mounting position. As a result, it could be possible to quantify the influence of the
chosen position for mounting a specimen during experiments.
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Abstract. In recent times, the scientific community paid great attention to the influence of inher-
ent uncertainties on system behavior and recognize the importance of stochastic and statistical
approaches to engineering problems [21]. In particular, statistical computational methods may
be useful to the constitutive characterization of complex materials, such as composite mate-
rials characterized by non-periodic internal micro-structure. Random porous media exhibit a
microstructure made of randomly distributed pores embedded into a continuous matrix. They
can be modelled as a bi-material system in which circular soft inclusions (pores) with random
distribution and variable diameters are dispersed in a stiffer matrix. A key aspect, recently
investigated by many researchers, is the evaluation of appropriate mechanical properties to be
adopted for the study of their behaviour. Differently from classical homogenization approaches,
in the case of materials with random microstructure it is not possible to ‘a-priori’ define a
Representative Volume Element (RVE), this being an unknown of the problem. Statistical ho-
mogenization procedures may be adopted for the definition of equivalent moduli able to take
into account at the macroscale the material properties emerging from the internal microstruc-
ture with random distribution [26]. Here, a Fast Statistical Homogenization Procedure (FSHP)
based on Virtual Element Method (VEM) approach for the numerical solution – previously de-
veloped by some of the authors [13] has been adopted for the definition of the Representative
Volume Element (RVE) and of the related equivalent elastic moduli of random porous media
with different volume fraction, defined as the ratio between mechanical properties of inclusions
and matrix. In particular, FSHP with virtual Elements of degree 1 [2] for modelling the inclu-
sions provides reliable results for materials with low contrast.
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1 INTRODUCTION

The characterization of porous materials is increasingly attracting the attention of researchers
and engineers due to the widespread use of this class of materials in different fields and indus-
tries, including aerospace, automotive, energy, construction, electronics and biomedical. Fo-
cusing the attention on porous metals, porous ceramics and polymer foams, the main common
features are low density, large specific surface and a range of novel properties ranging from
physical, mechanical, thermal, electrical up to acoustical fields [10]. In addition, a distinctive
characteristic of such heterogeneous materials is the random distribution of voids within a dense
solid. This results in a composite two-phase material whose overall elastic properties depend
both on the geometrical nature of the pores - shape and size - and on the value of porosity.
Different approaches have been proposed in literature to handle the study of porous materials,
among others we refer to generalized continua in which voids or microcracks are modelled as
additional degrees of freedom [22, 28, 27, 20], multifield [14, 6, 7, 8, 19] and/or multiscale
descriptions [25, 26].
This paper is devoted to the investigation of porous materials within the framework of linear
elasticity. A fast statistical homogenization procedure (FSHP) is adopted to grasp the global
elastic behaviour of such a random composite, as in [13]. In FSHP the statistical procedure,
proposed in [26], is automatized and integrated in a completely in house specifically developed
code implemented to quickly and efficiently perform a high number of parametric analyses.
The material is modelled considering disk shaped soft inclusions randomly distributed within a
base stiffer matrix. A first order computational homogenization procedure is exploited within
the very recent Virtual Element Method (VEM) [4, 5, 13, 12] that allows us to reliably model
porous material and to efficiently solve high number of simulations as required in homogeniza-
tion techniques applied to random materials [15, 1, 3]. The main point of the procedure is to
approach the so–called Representative Volume Element (RVE) using finite–size scaling of Sta-
tistical Volume Elements (SVEs). To this end properly defined Dirichlet and Neumann-type
boundary value problems are numerically solved on the SVEs defining hierarchies of constitu-
tive bounds.
A set of materials with different porosity is analysed to characterize overall mechanical param-
eters of porous materials and to investigate their sensitivity to porosity. It emerges that, on the
one hand FSHP provides reliable results for the homogenization of porous materials. On the
other hand, the choice of virtual elements of degree 1 is perfectly suitable to the case at hand,
as shown in [13]. Moreover, both homogenized values of bulk modulus and Poisson coefficient
decrease as the porosity increases.

2 FAST STATISTICAL HOMOGENIZATION PROCEDURE

We consider a two–dimensional linear elastic framework and describe, at the microscopic
scale, the heterogeneous porous material as a bi–phase system. In two-phase materials it is
useful to define the material contrast as the ratio between the elastic moduli of inclusions, Ei,
and matrix, Em, c = Ei/Em. When 0 < c < 1 (c = 1 being the case of a homogeneous
material) inclusions are softer than the matrix and we refer to low contrast materials, that are
suitable to properly represent porous media [18]. The pores are modelled as circular inclusions
of diameter d dispersed into continuous matrix. Furthermore a scale parameter δ = L/d is
introduced, that is the ratio between the side of a square test window L, and the diameter d of
the inclusions.

The homogenization procedure for defining the constitutive response of random heteroge-
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neous material requires the definition of the size of a Representative Volume Element (RVE)
larger than the microscale characteristic length, corresponding to the diameter of inclusions,
d. According to the approach presented in [26], that is based on the approach proposed in
[9, 11], the presented procedure requires the statistical definition of a number of realizations,
called Statistical Volume Elements (SVEs), of the possible microstructure, sampled in a Monte
Carlo sense, which allows determining series of scale–dependent upper and lower bounds for
the overall elastic moduli and to approach the RVE size, δRV E , using a statistical criterion to
stop the procedure when the results in terms of average elastic moduli do not change within
the selected tolerance interval. All the steps of the homogenization procedure are completely
integrated in the so–called Fast Statistical Homogenization Procedure (FSHP), based on the sta-
tistical homogenization procedure previously developed in [26]. See [13] for details on FSHP
procedure.
The convergence criterion is fulfilled when the values of the homogenized constitutive coeffi-
cients are distributed around their averages with a vanishing variation coefficient. This means
that the RVE size is achieved. The effective constitutive moduli are consistently estimated as
the mean values between the Dirichlet (upper) and Neumann (lower) bounds at the conver-
gence window (RVE). This circumstance also corresponds to reaching the minimum window
size δRV E for which the estimated homogenized moduli remain constant, within a tolerance
interval less than 0.5% for both the Dirichlet and Neumann solutions. The minimum number
of simulations, N lim, and the tolerance parameter, Tol, are chosen in order to define a narrow
confidence interval for the average and to obtain a reliable convergence criterion. The choice
is discretionary, values are assumed depending on the data dispersion. All these details are
specified in [26].

It is worth noting that FSHP permits the automatic cutting of the inclusions over the limit
of the windows’ edges, accounting for the presence of inclusions that randomly cross the win-
dows’ edges, as required by the randomness of the medium. It is worth noting that to neglect
the presence of inclusions that intersect the windows’ edges, a less realistic hypothesis widely
used in literature, provides results significantly different from the results obtained by taking
into account cut inclusions at the windows’ edges [25]. Furthermore, the mesh corresponding
to each realization of the microstructure has been optimized using VEM methodology, that per-
mits to adopt single virtual element for the inclusions (reduction of degrees of freedom) and
triangular virtual elements for the matrix. In order to take into account the stress gradients in
the so–called ’hard core regions’, the mesh is fine near the inclusions and coarse away from the
inclusions. The FSHP allow us to very efficiently solve the series (hundred) of BVPs and to
rapidly converge to the RVE solution.

3 VIRTUAL ELEMENT METHOD

In this section we briefly recall the weak formulation of the classical 2D linear elastic prob-
lem and describe the related virtual element space [4, 5], as well as the construction of the
bilinear form resulting from the weak form. The vectorial notation is adopted in the following,
that is suited to the proposed formulation.
We consider a body immersed in the two–dimensional space R2, where the Cartesian coordinate
system (O, x, y) is introduced. The body is subjected to the volume force, represented by the
vector f ∈ (L2(Ω)) 2, f = {f1, f2}T (within the standard Lebesgue space), and given boundary
conditions. In the sake of simplicity we use homogeneous Dirichlet boundary conditions and
consider the Sobolev space, V := (H1

0 (Ω))
2, of the admissible displacement fields, represented

by the vector v.

592



M. Pingaro, E. Reccia, P. Trovalusci and M.L. De Bellis

Furthermore we represent the strain, under the hypothesis of small deformations, as the
vector ε = {ε11, ε22, ε12}T associated to the displacement field vector u = {u1, u2}T :

ε(u) = S u with S =

 ∂x 0
0 ∂y
∂y ∂x

 , (1)

where ∂(·) denotes the partial derivative with respect to the (·)-coordinate.
The weak form of the linear elastic problem reads:{

Find u ∈ V such that :
a(u,v) =< f ,v > ∀v ∈ V

(2)

where:
a(u,v) =

∫
Ω ε(v)TC ε(u) dΩ =

∫
Ω (Sv)T C Su dΩ ,

< f ,v >=
∫

Ω fT v dΩ ,
(3)

and C = C(x) is the plane elastic tensor (uniformly positive) and possibly depending on the
position vector x = (x, y)T ∈ Ω.
In order to approximate the solution of the problem (2) we consider a decomposition Th of the
domain Ω into non overlapping polygonal elements E. In the following, we denote by e the
straight edges of the mesh Th and, for all e ∈ ∂E, ni denotes the outward unit normal vector
to ei (Fig. 1(a)). The symbol ne represents the number of the edges of the polygon E, that
coincides with the number of the element vertices.

(a) (b) (c)

Figure 1: Example of virtual element, E, with six edges and seven vertices: relative nodes and edges numeration
(a) and degrees of freedom of the virtual element of degree 1 (b) and 2 (c).

Let k be an integer ≥ 1. Let us denote by Pk(Ω) the space of polynomials, living on the set
Ω ⊆ R2, of degree less than or equal to k.

By the discretization introduced, it is possible to write the bilinear form (2), as in the finite
element methodology, in the following way:

a(u,v) =
∑
E∈Th

aE(u,v) ∀v ∈ V . (4)

The discrete virtual element space, Vh, is:

Vh :=
{
v ∈ V : v |E∈ Vh|E ∀E ∈ Th

}
, (5)
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where Vh|E :=
(
Vh|E

)2
and the local space Vh|E is defined as

Vh|E :=
{
vh ∈ H1(E) ∩ C0(E) : 4vh ∈ Pk−2(E), vh |e∈ Pk(e) ∀e ∈ ∂E

}
. (6)

By the definition of the local space (6), we can observe that, in contrast to the standard finite
element approach, the local space Vh|E is not fully explicit, in fact Vh|E contain all the polyno-
mials of degree ≤ k, plus other functions that, in general, will not be polynomials. Moreover
vh is a polynomial of degree k on each edge e of E and globally continuous on ∂E.

The related degrees of freedom for the space Vh|E (Figs. 1(b),1(c)) are:

• 2ne point–wise values vh(υi) i = 1, 2, . . . , ne, where υi is the i-th corner of E;

• 2ne(k − 1) point–wise values vh(yej ), where
{
yej
}

, i = 1, . . . , k − 1 are the edge internal
nodes;

• k(k − 1) scalar moments of the unknown field over the element (i.e. 1
|E|
∫
vh, where | E

is the area of the element), not associated with a specific location over E.

The global dimension of the space Vh|E then is m = dim(Vh|E) = 2nek + k(k − 1)
The problem (2) restricted to the discrete space Vh becomes:{

Find uh ∈ Vh such that
ah(uh,vh) =< f ,vh > ∀vh ∈ Vh ,

(7)

where ah(·, ·) : Vh × Vh → R is the discrete bilinear form approximating the continuous form
a(·, ·) and, < f ,vh > is the term approximating the virtual work of external load.

The discrete bilinear form is constructed element by element as:

ah(uh,vh) =
∑
E∈Th

aEh (uh,vh) ∀uh, vh ∈ Vh . (8)

The local stiffness matrix can be derived, consistently with [5], after introducing the local pro-
jector operator Π∇E : Vh(E) → (Pk(E))2. The details on the construction of the local stiffness
matrix are presented in [13], while are here omitted for the sake of brevity.

4 NUMERICAL SIMULATION: SENSITIVITY TO POROSITY

In this section, the Fast Statistical Homogenization Procedure (FSHP) based on the low order
virtual elements is applied to the analysis of porous materials, modelled as a two–dimensional
two–phase material in which circular soft inclusions are randomly embedded in a stiffer contin-
uous matrix.

FSHP with virtual element of degree k = 1 is particularly suitable for analysing low contrast
materials [13], and in this work a very low value of contrast (c→ 0) is adopted, with the purpose
of simulating a material with randomly distributed voids. Referring to the properties adopted in
[18], an high value of Poisson coefficient has been adopted for the inclusions. All the mechan-
ical properties are reported in Table 1, where Em and νm are Young and Poisson modulus for
the matrix, and Ei and νi are Young and Poisson modulus for the inclusions, respectively.

By exploiting the opportunities provided by FSHP, several parametric analyses have been
performed by varying the porosity, ρ, of random porous media in the range 0% ÷ 40% (Fig.
2). The purpose is twofold: on one hand for identifying the RVE size,δRV E , and its changes in
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Em Ei c νm νi
10000 1 10−4 0.30 0.49

Table 1: Mechanical properties adopted

Figure 2: Realizations of micro-structure for different levels of porosity

relation of porosity; on the other hand, to evaluate the sensitivity to porosity of the mechanical
properties of homogeneous equivalent continuum materials. The performed analyses allowed
us to identify RVE size, δRV E , and the corresponding material properties. As the homogenized
material has found to be essentially isotropic, we focus the attention only on the bulk modu-
lus, as representative material parameter. The results of the parametric analyses performed are
reported in the following figures.

Basing on the works [16] and [23] we define, the following constitutive scaling measures
are:

fK
δ =

K
D
δ

K
N
δ

− 1 , (9)

where K
D
δ and K

N
δ are the average of the bulk moduli obtained by solving the boundary value

problems (BVPs) by adopting Dirichlet and Neumann–type boundary conditions (BCs), respec-
tively.

Fig.(3(a)), provides a qualitative and quantitative information about the convergence trend
of the solution,fK

δ , by varying the window size, δ, and the pore density, ρ. The differences in
terms of convergence trend between the two BC solutions depend on the different dispersion of
results, as shown in Fig. 3(b), where the Coefficient of Variation, CV , is also plotted for several
values of porosity ρ for Dirichlet and Neumann BVPs. Fig. 4(a) summarizes the results of the
parametric analyses in term of convergence bulk modulus K, both for Dirichlet and Neumann
BVPs, versus the porosity ρ.

As expected, the value of K decreases as the porosity increases [15]. Apparently the two
bounds tend to become closer as ρ increases, however the percentage difference between the
bounds and the mean value remains almost constant.

Fig. 4(b) reports the values of RVE size obtained for δ = δRV E plotted versus the different
values of porosity ρ. It is worth noting that in the case of ρ = 0 the material is homogeneous,
starting from ρ ≥ 0 it is necessary to determine a RVE and, as expected, as porosity increases
larger δRV E are needed. However, it has been found that the δRV E rapidly increases in the range
of porosity 1 ÷ ρ ÷ 20, while slowly decreases up to ρ = 25 and then remain almost constant
in the range 25÷ ρ÷ 40. The results in terms of RVE size, δRV E , are synthesized and reported
in As previously noticed, Dirichlet BVP need smaller windows with respect to Neumann BVP,
that has to be considered to define δRV E for porous material.
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(a) Scaling measures (b) CV

Figure 3: (a) Convergence trend of the bulk modulus scaling measure, fK
δ , for different levels of porosity, ρ. (b)

Coefficient of Variation CV for Dirichlet and Neumann boundary conditions

(a) Bulk modulus K (b) δRV E

Figure 4: Normalized average bulk modulus K and window size δRV E for different levels of porosity ρ .

5 CONCLUSIONS

The present work is an application of the Fast Statistical Homogenization Procedure (FSHP)
[13] to the homogenization of random porous materials. The model adopted within the FSHP
framework is the bi–phase material in which disk shaped soft inclusions are randomly dis-
tributed in a stiffer matrix. FSHP uses the Virtual Element technique to model the inclusions
with one element, this permit to reduce the number of degrees of freedom with consequently
increasing the computational efficiency. FSHP permits to solve high number of simulations
as required in homogenization techniques applied to random materials [25, 26, 24, 17]. Fur-
thermore, FSHP permits to analyse a series of materials with different porosity and to rapidly
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identify the relative RVE size and the overall effective moduli of the equivalent homogeneous
material. Virtual Elements of degree one, adopted in this work, well fits the behaviour of porous
materials. The approximation of constant stress and strain, using lower virtual element, in fact
does not influence the homogenization procedure [13, 12]. For porous materials the Representa-
tive Volume Element (RVE) as a function of the porosity has strongly non–linear behaviour and
the RVE increases when the porosity increases, but for higher level of porosity the RVE slightly
decreases and then remains constant up to the value ρ = 40%, which is the maximum value of
porosity. Furthermore, as expected, the homogenized values of the elastic moduli decrease as
the porosity increases.
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Abstract. This paper proposes to apply multi-fidelity learning for reliability-based design op-
timisation of a ducted propeller. Theoretically, the efficiency of a propeller can be increased
by placing the propeller into a duct. The increased efficiency makes the ducted propeller an
appealing option for electrical aviation where optimal electricity consumption is vital. The
electricity consumption is mainly dictated by the required power to reach the required thrust
force. Recent design optimisation techniques such as machine learning can help us to reach
high thrust to power ratios. Due to the expensive computational fluid dynamics simulations
a multi-fidelity learning algorithm is investigated here for the application of ducted propeller
design. The limited number of high-fidelity numerical experiments cannot provide sufficient in-
formation about the landscape of the design field and probability field. Therefore, information
from lower fidelity simulations is fused into the high-fidelity surrogate using the recently pub-
lished recursive co-Kriging technique augmented with Gaussian-Markov Random Fields. At
each level the uncertainty can be modelled via a polynomial chaos expansion which provides
a variable-fidelity quantification technique of the uncertainty. This facilitates the calculation
of risk measures, like conditional Value-at-Risk, for reliability-based design optimisation. The
multi-fidelity surrogate model can be adaptively refined following a similar strategy to the Effi-
cient Global Optimisation using the expected improvement measure. The proposed combination
of techniques provides an efficient manner to conduct reliability-based optimisation on expen-
sive realistic problems using a multi-fidelity learning technique.
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1 INTRODUCTION

Ducted Propellers are theoretically operating with higher efficiency than open propellers
[1, 2]. This fact makes the ducted propeller a potential candidate for the propulsion of an elec-
trical aircraft where optimal thrust to power ratio is vital. The performance and efficiency of
a ducted propeller can be obtained through models and experiments of various fidelity rang-
ing from cheap analytic formulas to expensive Computational Fluid Dynamics (CFD) simu-
lations. Most of the optimisation procedure require a high number of performance analyses
to find an optimal design particularly when the uncertain nature of the problem is also con-
sidered. This fact makes it difficult to employ high-fidelity performance predictors like CFD
simulations throughout the entire optimisation workflow. One traditional way to tackle this
difficulty is to use surrogate models [11, 12] which can efficiently replace the expensive CFD
simulations. A surrogate model is trained on the available high-fidelity simulations and in the
optimisation workflow this surrogate is used instead of the expensive high-fidelity simulation.
This surrogate-based optimisation is very efficient; however, it is highly dependant on the qual-
ity of the surrogate model. The quality can be increased by increasing the number of training
points. Unfortunately, in case of expensive CFD simulations, the increase of the training data-
set quickly consumes the computational budget. Therefore, multi-fidelity learning techniques
have been invented to fuse information of analyses of different fidelities [8, 9, 10, 13].
The information content of the surrogate at design locations where high-fidelity analyses are not
available can be increased by conducting low-fidelity analyses. At locations where both low-
and high-fidelity analyses are available the degree of trustfulness of our low-fidelity model can
be automatically learned by calculating the cross-correlation of the fidelities.
In this work, the co-Kriging technique [9, 10, 13] is used to construct a multi-fidelity surrogate.
The main drawback of Kriging based techniques is that they require to invert the covariance
matrix of the observation locations which matrix is dense. This numerical issue is commonly
resolved by applying various decomposition techniques [14]. However, this paper investigates
an alternative solution to the issue. Namely, Gaussian-Markov Random Fields (GMRF) are ap-
plied to construct the inverse of the covariance matrix, the so-called precision matrix, directly
[15, 16]. The paper is organised as follows. Section 2 introduces the employed propeller anal-
ysis codes: the Blade Element Momentum Theory for low-fidelity calculations and the Ducted
Fan Design Code for high-fidelity calculations. Section 3 derives the used multi-fidelity learn-
ing technique: GMRF-co-Kriging. Section 4 describes the conditional Value-at-Risk reliability
measure and its application in the in the optimisation workflow. A simple training data-set
strategy based on the expected improvement is presented in Section 5. Some characteristics
of the GMRF-co-Kriging technique is discussed in Section 6; as well, this section presents
the performance of the proposed multi-fidelity learning technique on a simple propeller blade
optimisation problem. Finally, Section 7 concludes the work conducted in this paper.

2 DUCTED PROPELLER

Ducted propeller is a propulsion unit similar to free propellers, but the propeller is placed
inside a duct which increases the mass flow through the propeller. The theoretical calculations
credits this increased mass flow to a reduced slipstream contraction [1, 2]. However, for higher
Mach numbers, the slipstream contraction decreases anyway and the drag induced by the duct
increases. This mitigates the advantages of ducted propellers for high speed aircraft [3].
Remaining in the low speed regime allows to benefit the most from the increased efficiency
of a ducted propeller propulsion unit. Therefore, ducted propellers can be applied to small
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Figure 1: Blade Element velocities and forces

scale aircraft which operate at lower speeds. The increased propulsion efficiency makes ducted
propellers promising candidates for electrical aircraft where the ratio of thrust and electricity
consumption must be highly optimised.
In this work the performance analysis of the propulsion unit is investigated by two different
solvers. Blade Element Momentum Theory (BEMT) [4, 5, 6] is presented in Section 2.1 and a
potential flow solver, the Ducted Fan Design Code (DFDC) [7] presented in Section 2.2.

2.1 BLADE ELEMENT MOMENTUM THEORY

Blade Element Momentum Theory (BEMT) combines the Blade Element Theory (BET) and
Actuator Disk Theory (ADT) into an iterative solver [4, 5, 6]. In both BET and ADT, the
propeller blade is discretised with a given number of annuli. The effect of the actual blade
elements are averaged over time. Each annulus is characterised by their local velocities and
forces. At each radial station the velocity state is given by Eq.(1):

Vx = V∞(1 + a), (1)
Vθ = ωr(1− b), (2)

V =
√
V 2
x + V 2

θ , (3)

where V∞ is the free stream velocity, Vθ is the angular velocity and V is the local velocity seen
by the blade. r is the radius of the annulus and ω is the angular velocity of the propeller. a
and b denote the induced axial and angular inflow factor respectively. The velocity vectors and
resulting forces are depicted in Figure 1.
By knowing the induced velocities a and b, BET can determine the thrust and power of each
blade element with Eqs. (4), (5):

δT =
1

2
ρV 2c(Cl cos(ϕ)− Cd sin(ϕ))Bdr, (4)

δP =
1

2
ρV 2c(Cd cos(ϕ) + Cl sin(ϕ))rωBdr, (5)

where the ρ is the fluid density, c is the chord length and B is the number of blades. Cl and
Cd are the 2D lift and drag coefficients of the blade element section. The lift Cl(α) and drag
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Cd(α) are functions of the angle-of-attack α. Following the angle orientations in Figure 1, the
angle-of-attack can be calculated by the following equations:

ϕ = tan
Vx
Vθ
, (6)

α = θ − ϕ, (7)

where ϕ is the relative flow angle seen by the blade and θ is the geometrical twist of the blade
element.
The induced velocities, however, are not known and their direct calculation would be a tedious
work. Therefore the thrust and power are alternatively calculated according to the ADT:

δT = ρ4πrV 2
∞a(1 + a)dr, (8)

δP = ρ4πr3V∞b(1 + a)ω2dr, (9)

The Eqs. (4), (5) and (8), (9) are equated respectively in BEMT and the a and b induced
velocity factors are calculated by iteratively minimising the deviation between the two theory.
By considering that V = Vx

sinϕ
= V∞(1+a)

sinϕ
and the blade solidity is σr = Bc

2πr
, the problem to be

solved iteratively can be reduced to Eqs. (10), (11):

a

1 + a
=

σr
4 sin2(ϕ)

(Cl cos(ϕ)− Cd sin(ϕ)), (10)

b

1− b
=

σr
4 sin(ϕ) cos(ϕ)

(Cd cos(ϕ) + Cl sin(ϕ)). (11)

2.2 DUCTED FAN DESIGN CODE

The DFDC software is based on the lifting-line theory of propeller blades and it is tailored
to design axisymmetric ducted propellers. The software includes the loss effects due to non-
uniform loading. Moreover, the effects of the shrouded tip and presence of centre body are also
incorporated in the flow field calculation [7]. The code requires the operational conditions, the
geometrical and aerodynamic properties of the blade elements, and the geometry of the centre
body and duct as an input. The output of DFDC includes the resulting flow conditions and both
the total and spanwise forces acting on the rotor and the duct. The fidelity of the code is higher
than classical BEMT but it is still lower than Navier-Stokes solvers.

3 MULTI-FIDELITY MODEL

3.1 Definitions

A random field (or stochastic field), X(s, ω), s ∈ D ⊂ Rd, ω ∈ Ω is a random function
specified by its finite-dimensional joint distributions

F (y1, . . . , yn; s1, . . . , sn) = P (X(s1) ≤ y1, . . . , X(sn) ≤ yn)

for every finite n and every collection s1, . . . , sn of locations in D. To simplify the notation,
one often writes X(s), removing the dependency on ω from the notation.

A Gaussian random field X(s) is defined by a mean function µ(s) = E(X(s)) and a covari-
ance function ς(s; t) = Cov(X(s);X(t)). It has the property that, for every finite collection of
points s1, . . . , sn,

x ≡ (X(s1), . . . , X(sn))T ∼ N (µ,Σ) ,
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where Σij = ς(si; sj). For existence of a Gaussian field with a prescribed mean and covariance
it is enough to ensure that ς is positive definite. A function ς(s; t) is positive definite if for any
finite set of locations s1, . . . , sn in D, the covariance matrix

Σ =


ς(s1, s1) ς(s1, s2) . . . ς(s1, sn)
ς(s2, s1) ς(s2, s2) . . . ς(s2, sn)

...
... . . . ...

ς(sn, s1) ς(sn, s2) . . . ς(sn, sn)


is non-negative definite: zTΣz ≥ 0 for all real valued vectors z. The inverse of the covariance
matrix Q = Σ−1 is called precision matrix.

A random vector is called a Gaussian Markov random field (GMRF) with respect to a graph
G = (V,E) with mean µ and precision matrix Q > 0, if its density has the form

π(x) = (2π)−n/2 |Q|1/2 exp
(
−1

2
(x− µ)T Q (x− µ)

)
,

where V and E are the set of nodes in the graph, and the set of edges in the graph, respectively.

3.2 Kriging

Denote a real-valued spatial process in d dimensions by z(s) : s ∈ D ⊂ Rd, where s is the
location of the process z(s) and s varies over the index set D.

In Kriging theory, the response z(s) is considered as a realisation of a multivariate Gaussian
process Z(s). Z(s) is assumed to be the sum of a deterministic regression function m(s),
constructed by observed data, and a Gaussian process Y (s), constructed through the residuals:

Z(s) = m(s) + Y (s). (12)

The trend function m(s) is assumed to be m(s) = h(s)β, where h(s) is a set of p covariates
associated with each site s and β is a p-dimensional vector of coefficients. Y (s) is the Gaus-
sian process with zero mean and covariance function Σij = ς(si, sj) = σ2c(si, sj;θ), where
σ2 is a scale parameter, called the process variance, and c is a positive function with param-
eters θ, called the correlation function. Usual covariance functions are Gaussian, Matérn and
exponential (where Gaussian and exponential covariances are particular cases of Matérn family
covariance).

Let us suppose that z(n) are observed values of z(s) at n known locations D̂ = (s1, . . . , sn)T ⊂
D. For many cases, we do not have direct access to the function to be approximated but only
to a noisy version of it. Let us consider this more general noisy case, assuming an independent
Gaussian observation noise with zero mean and variance σ2

ε (s). This is usually referred as the
nugget effect. So, z(n) are realisations of the Gaussian vector Z(n) = Z(D̂) + E(n), where
Z(D̂) is the random process Z(s) at the points D̂ and E(n) = (σε(s1)E1, . . . , σε(sn)En)T is the
white noise with Ei=1,...,n independent and identically distributed with respect to a Gaussian
distribution with zero mean and variance one.

We use the information contained in Z(n) to predict Z(s) considering the joint distribution
of Z(s) and Z(n): (

Z(s)
Z(n)

)
∼ N

((
h(s)β
Hβ

)
,

(
ς(s, s) ςT (s)
ς(s) Σ + σ2

ε I

))
, (13)
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where H = h
(
D̂
)

is the n × p model matrix, Σ is the n × n covariance matrix between the

observation points D̂, ς(s) is the n-dimensional covariance vector between the prediction point
s and the observation points D̂, σ2

ε is considered constant for simplicity.
Then, the conditional distribution

[
Z(s)

∣∣Z(n),β, σ2, σ2
ε ,θ
]

is Gaussian with mean and vari-
ance:

m̂Z(s) = h(s)β + ςT (s)
(
Σ + σ2

ε I
)−1 (

z(n) −Hβ
)
, (14)

ŝ2Z(s) = ς(s, s)− ςT (s)
(
Σ + σ2

ε I
)−1

ς(s). (15)

In order to estimate the parameters (β, σ2, σ2
ε ,θ), the Maximum Likelihood Estimation

(MLE) is a very popular method. The multivariate normal assumption for z(n) leads to the
following likelihood:

f
(
z(n)

∣∣β, σ2, σ2
ε ,θ
)

=
1

(2π)n/2
√
|Σ + σ2

ε I|

exp

(
−1

2

(
z(n) −Hβ

)T (
Σ + σ2

ε I
)−1 (

z(n) −Hβ
))

. (16)

Given:
β̂ =

(
HT

(
Σ + σ2

ε I
)−1

H
)−1

HT
(
Σ + σ2

ε I
)−1

z(n), (17)

which is the MLE of β corresponding to its generalised least squares estimate, the MLEs of σ2,
σ2
ε and hyperparameters θ are identified by minimising:

L
(
σ2, σ2

ε ,θ
)

=
(
z(n) −Hβ̂

)T (
Σ + σ2

ε I
)−1 (

z(n) −Hβ̂
)

+ log
(∣∣(Σ + σ2

ε I
)∣∣) , (18)

which is the opposite of the log-likelihood up to a constant.
When there is no measurement error, the observed values z(n) are free-noise realisations of

the Gaussian vector Z(n) = Z(D̂) and Eqs.(14) and (15) reduce to:

m̂Z(s) = h(s)β + cT (s)C−1
(
z(n) −Hβ

)
, (19)

ŝ2Z(s) = σ2
(
1− cT (s)C−1c(s)

)
, (20)

where C is the n × n correlation matrix between the observation points D̂ and c(s) is the
n-dimensional correlation vector between the prediction point s and the observation points D̂.

For the parameter estimation, the following likelihood:

f
(
z(n)

∣∣β, σ2,θ
)

=
1

(2πσ2)n/2
√
|C|

exp

(
−1

2

(
z(n) −Hβ

)T
C−1

(
z(n) −Hβ

)
σ2

)
(21)

has to be maximised.
Given the MLE of β, β̂ =

(
HTC−1H

)−1
HTC−1z(n), in a free-noise case, a closed form

expression for the estimate of σ2 can be derived:

σ̂2 =
1

n

(
z(n) −Hβ̂

)T
C−1

(
z(n) −Hβ̂

)
. (22)
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The MLE of hyperparameters θ of the correlation function c are identified by minimising the
opposite of the log-likelihood

L (θ) = n log
(
σ̂2
)

+ log (|C|) . (23)

When there is no measurement error, Kriging is an exact interpolator, meaning that if you
predict at a location where data has been collected, the predicted value is the same as the mea-
sured value. However, when measurement errors exist, you want to predict the filtered value,
which does not have the measurement error term. At locations where data has been collected,
the filtered value is not the same as the measured value.

3.3 GMRF

With Gaussian models, such as Kriging, the primary difficulty is dimension, which typically
scales with the number of observations. The basic complexity of Gaussian processes is O(N3)
where N is the number of data points, due to the inversion of an N × N matrix. This is the
reason to introduce GMRF models, assuming that a random variable associated with a region
depends primarily on its neighbours.

A random field is said to be a Markov random field if it satisfies Markov property. A stochas-
tic process has the Markov property if the conditional probability distribution of future states of
the process (conditional on both past and present values) depends only on the present state; that
is, given the present, the future does not depend on the past. A Markov random field extends
this property to two or more dimensions or to random variables defined for an interconnected
network of items.

Let the neighbours Ni of a point si be the points {sj, j ∈ Ni} that are close to si. The random
field X(s) that satisfies

p(Xi|X−i) = p(Xi| {Xj|j ∈ Ni}), (24)

where Xi = X(si) and X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn), is a Markov random field.
A Gaussian random field X(s) ∼ N(µ,Q−1) that satisfies (24) is a GMRF. In that case the

full conditionals are Gaussian with means and precisions:

E(Xi|X−i) = µi −
∑
j:j∼i

βij (xj − µj) , (25)

Prec(Xi|X−i) = V ar(Xi|X−i)−1 = κi > 0, (26)

where βij and κi are parameters satisfying βijκi = βjiκj for all i and j and with precision
matrix Q positive definite:

Qij =

{
κi, i = j
κiβij, i 6= j

. (27)

The joint density function for X(s) is Gaussian and of the form

f(X) = (2π)−n/2 |Q|1/2 exp
(
−1

2
XTQX

)
. (28)

In most cases if the total number of neighbours is O(n), only O(n) of the n × n terms in
Q will be non-zero. So numerical algorithms for sparse matrices can be exploited to construct
GMRF models.
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Given the Gaussian vector X(n) = (X1, . . . , Xn)T containing the values of the random pro-
cess X(s) at the points in the experimental design set D̂ = (s1, . . . , sn)T ⊂ D, considering the
joint distribution of: (

X(s)
X(n)

)
(29)

with mean: (
µ(s)
µ(n)

)
(30)

and precision: (
Q(s, s) Q(s, D̂)

Q(s, D̂)T Q(D̂, D̂)

)
, (31)

the conditional expectation is:

E(X(s)|X(n)) = µ(s)−Q(s, s)−1Q(s, D̂)
(
X(n) − µ(n)

)
(32)

with conditional precision:

Prec(X(s)|X(n)) = Q(s, s). (33)

We are interested in GMRFs where the precision matrix Q is the numerical discretisation of
a diffusion operator. We focus on finite element discretisations.

Gaussian random fields with Matérn covariances

C (‖u‖) = σ2 21−ν

Γ (ν)
(χ ‖u‖)ν Kν (χ ‖u‖) (34)

with ‖u‖ the distance between two points, are solutions to a Stochastic Partial Differential
Equation (SPDE) [19, 20]: (

χ2 −∆
)α/2

X(s) = W (s), (35)

where W (s) is white noise, ∆ =
∑

i
∂2

∂s2i
is the Laplacian operator and α = ν + d/2, the

parameter ν controls the smoothness and the parameter χ controls the range. So, according to
the Whittle characterisation of the Matérn covariance functions, we get a Markovian random
field when α is an integer. The solution can be constructed as a finite basis expansion:

X(s) =
∑
k

ϕk(s)xk, (36)

with a suitable distribution for the weights {xk}. A stochastic weak solution to the SPDE is
given by: 〈

ϕj,
(
χ2 −∆

)α/2
X(s)

〉
= 〈ϕj,W 〉 ∀j. (37)

Replacing X(s) with the finite basis expansion (36) gives:∑
i

〈
ϕj,
(
χ2 −∆

)α/2
ϕi)
〉
xi = 〈ϕj,W 〉 ∀j. (38)

With the opportune choice of basis functions the Gaussian random field X(s) will result into
a GMRF. The piecewise linear basis gives (almost) a GMRF. Indeed, using a piecewise linear
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basis, only neighbouring basis functions overlap. Increased smoothness of the random field
induces a larger neighbourhood in the GMRF representation. The choice of test functions,
in relation to the basis functions, governs the approximation properties of the resulting model
representation. For α = 1 the correct choice is φk = (χ2 −∆)

1/2
ϕk which is the least squares

finite element approximation, for α = 2 the correct choice is φk = ϕk which is the Galerkin
finite element approximation. For α ≥ 3, φk = ϕk if we let α = 2 on the left-hand side of
equation and replace the right -hand side with a field generated by α − 2. So in practice this
generates a recursive Galerkin formulation.

Defining the matrices:

Mij = 〈ϕi, ϕj〉 , (39)
Sij = 〈∇ϕi,∇ϕj〉 , (40)
Kij = χ2Mij + Sij, (41)

then the precision matrix for weights x for α = 1, 2, . . . is:

Q1 = K, (42)
Q2 = KM−1K, (43)
Qα = KM−1Qα−2M

−1K. (44)

M and S are both sparse given the choice of piecewise linear basis, so that K is sparse too. But
M−1 is dense, which makes the precision matrix dense as well, losing the Markov property. The
matrix M is replaced by a diagonal matrix M̃ where M̃ii = 〈ϕi, 1〉 which makes the precision
matrix sparse with a small approximation error.

Although the approach does give a GMRF representation of the Matérn field on the discre-
tised region, it is an approximation of SPDE solution. Using standard results from the finite
element literature, it is also possible to derive rates of convergence results.

3.4 GMRF-Kriging

As in section 3.2, denote a real-valued spatial process in d dimensions by z(s) : s ∈ D ⊂ Rd

where s is the location of the process z(s) and s varies over the index set D.
The response z(s) is considered as a realisation of a linear latent variable model Z(s):

Z(s) = ϕT (s)X + E(s), (45)
X ∼ N(µx,Q

−1
x ), (46)

E(s) ∼ N
(
0, σ2

ε (s)
)
, (47)

where ϕT (s)X is a spatial basis expansion with k basis functions with local (compact) support.
The latent variables X are a GMRF, where Qx is derived from an SPDE construction with
parameters θ [15]. µx is usually zero, but for now let us consider the more general case. E(s)
is white noise, with constant variance σ2

ε for simplicity.
Let us suppose that z(n) are observed values of z(s) at n known locations D̂ = (s1, . . . , sn)T ⊂

D. z(n) are realisations of the random vector Z(n) = ΦTX + E(n), where Φ is the k × n matrix
(ϕ1(D̂), . . . , ϕk(D̂))T containing the values of the basis functions in D̂ and E(n) is the vec-
tor (σεE1, . . . , σεEn)T with Ei=1,...,n independent and identically distributed with respect to a
Gaussian distribution with zero mean and variance one.
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We can write the hierarchical model

X ∼ N(µx,Q
−1
x ), (48)(

Z(n)
∣∣X) ∼ N (ΦX,Q−1ε ) , (49)

where Q−1ε = σ2
ε I is the n× n covariance matrix of observations.

The joint distribution for the observations and the latent variables X is given by:(
X

Z(n)

)
∼ N

((
µx

Φµx

)
,

[
Qx + ΦTQεΦ −ΦTQε

−QεΦ Qε

]−1)
. (50)

The conditional distribution for X given Z(n) is
(
X|Z(n)

)
∼ N

(
mX|Z(n) ,ΣX|Z(n)

)
, with:

mX|Z(n) = µx + Q−1
X|Z(n)Φ

TQε

(
Z(n) −Φµx

)
, (51)

ΣX|Z(n) = Q−1
X|Z(n) , (52)

QX|Z(n) = Qx + ΦTQεΦ. (53)

The variance can be computed as s2
X|Z(n) = diag

(
Q−1

X|Z(n)

)
. Note that the elements of mX|Z(n)

are the basis function coefficients and covariate effect estimates in the Kriging predictor:

m̂Z(s) = ϕ(s)mX|Z(n) (54)

with squared error
ŝ2Z(s) = diag

(
ϕ(s)ΣX|Z(n)ϕT (s)

)
. (55)

The method to estimate it hyper-parameter θ is the MLE.
The likelihood for X given the parameters θ is:

π (X|θ) =
1

(2π)
m+p

2

√
|Qx|

exp

(
−1

2
(X− µx)T Qx (X− µx)

)
(56)

so that the log-likelihood is:

log π (X|θ) = −m+ p

2
log (2π) +

1

2
log |Qx| −

1

2
(X− µx)T Qx (X− µx) . (57)

For known X = x̂, the likelihood for z(n) given the parameters θ is:

π
(
z(n)
∣∣θ) =

π
(
θ| z(n)

)
π (θ)

=
π (X|θ) π

(
z(n)
∣∣θ,X)

π (X|θ, z(n))

∣∣∣∣∣
X=x̂

(58)

so that the log-likelihood is:

log π
(
z(n)
∣∣θ) = log π ( x̂|θ) + log π

(
z(n)
∣∣θ, x̂)− log π ( x̂|θ, z(n)

)
=

−m+ p

2
log (2π) +

1

2
log |Qx| −

1

2
(x̂− µx)T Qx (x̂− µx)

−n
2
log (2π) +

1

2
log |Qε| −

1

2

(
Z(n) −Φx̂

)T
Qε

(
Z(n) −Φx̂

)
+
m+ p

2
log (2π)− 1

2
log

∣∣QX|Z(n)

∣∣+
1

2

(
x̂−mX|Z(n)

)T
QX|Z(n)

(
x̂−mX|Z(n)

)
.

(59)
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In practice the likelihood for z(n) given the parameters θ is evaluated for x̂ = mX|Z(n) , so that:

log π
(
z(n)
∣∣θ) = −n

2
log (2π) +

1

2
log |Qx|+

1

2
log |Qε| −

1

2
log

∣∣QX|Z(n)

∣∣
−1

2

(
mX|Z(n) − µx

)T
Qx

(
mX|Z(n) − µx

)
−1

2

(
Z(n) −ΦmX|Z(n)

)T
Qε

(
Z(n) −ΦmX|Z(n)

)
.

(60)

3.5 RECURSIVE CO-KRIGING

Recursive co-Kriging is a recursive framework which exploits multi-fidelity data coming
from sources with different reliability, building l independent Kriging problems [10].

In this case there are l levels of response (zt(s))t=1,...,l sorted by increasing order of fidelity
and modelled by Gaussian processes (Zt(s))t=1,...,l, with s ∈ D. zl(s) is the most accurate and
costly response and (zt(s))t=1,...,l−1 are cheaper versions of it, with z1(s) the least accurate.

An auto-regressive model can be formulated for t = 2, . . . , l:
Zt(s) = ρt−1(s)Zt−1(s) + δt(s),

Zt−1(s)⊥δt(s),
ρt−1(s) = gTt−1(s)βρt−1

,
(61)

where δt(s) is a Gaussian process, with mean fTt (s)βt and covariance function σ2
t ct(s, s

′), inde-
pendent of Zt−1(s), . . . , Z1(s) and ρt−1(s) represents a scale factor between Zt(s) and Zt−1(s).
gt−1(s) and ft(s) are vectors of polynomial basis functions and βρt−1

and βt are the vectors of
coefficients.

The Gaussian process Zt(s) modelling the response at level t is expressed as a function of
the Gaussian process Zt−1(s) conditioned by the values z(t−1) = (z1, . . . , zt−1) at points in the
experimental design sets (Di)i=1,...,t−1.

Considering the joint distribution of δt(s) = Zt(s) − ρt−1(s)Zt−1(s) and δt(Dt) = Z(t) −
ρt−1(Dt)� zt−1(Dt):(

Zt(s)− ρt−1(s)Zt−1(s)
Z(t) − ρt−1(Dt)� zt−1(Dt)

)
∼ N

((
ft(s)βt
Ftβt

)
,

(
ct(s, s) cTt (s)
ct(s) Ct

))
, (62)

we have for t = 2, . . . , l and for s ∈ D:[
Zt(s)

∣∣Z(t) = z(t),βt,βρt−1
, σ2

t

]
∼ N

(
m̂Zt(s), ŝ2Zt

(s)
)
, (63)

where:

m̂Zt(s) = ρt−1(s)m̂Zt−1(s) + fTt (s)βt + cTt (s)C−1t (zt − ρt−1(Dt)� zt−1(Dt)− Ftβt) (64)

and:
ŝ2Zt

(s) = ρ2t−1(s)ŝ2Zt−1
(s) + σ2

t

(
1− cTt (s)C−1t ct(s)

)
. (65)

The notation � represents the Hadamard product. Ct is the correlation matrix and cTt (s) is
the correlation vector. We denote by ρt−1(Dt) the vector containing the values of ρt−1(s) for
s ∈ Dt, zt−1(Dt) the vector containing the known values of Zt(s) at points in Dt and Ft is the
experience matrix containing the values of ft(s)T on Dt .
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The recursive framework of co-Kriging is clearly visible in Eqs.(64,65), where the mean and
the variance of the Gaussian process Zt(s) are functions of mean and variance of the Gaussian
process Zt−1(s) .

The mean µ̂Zt(s) is the surrogate model of the response at level t, 1 ≤ t ≤ l, taking into
account the known values of the t first levels of responses (zi)i=1,...,l. The variance ŝ2Zt

(s)
represents the mean squared error of the surrogate model of the response at level t. The variance
will be zero at known values of the first t levels of responses.

The parameters (θt) are estimated by minimising the opposite of the concentrated restricted
log-likelihoods at each level t:

log(|det(Ct)|) + (nt − pt − qt−1)log(σ̂2
t ) (66)

for t = 1, . . . , l.

3.6 RECURSIVE GMRF-CO-KRIGING

Similarly to the classical recursive co-Kriging there are l levels of response (zt(s))t=1,...,l

sorted by increasing order of fidelity.
An auto-regressive model using GMRF can be formulated for t = 2, . . . , l:

Zt(s) = ϕT (s)Xt + Et(s),
Xt = ρTt−1Xt−1 + δt,

Xt−1⊥δt,
(67)

where δt is a a GMRF with mean µxt and precision matrix Qxt derived from an SPDE con-
struction with parameters θt.

Let us suppose that z
(nt)
t are observed values of zt(s) at nt known locations D̂t ⊂ D. z

(nt)
t

are realisations of the random vector Z
(nt)
t .

We can write the hierarchical model

δt ∼ N(µxt ,Q
−1
xt ), (68)(

Z
(nt)
t

∣∣∣Xt

)
− ρTt−1 �ϕT (D̂t)Xt−1 ∼ N

(
Φtδt,Q

−1
εt

)
, (69)

where Q−1εt = σ2
εtI is the nt × nt covariance matrix of observations.

The joint distribution for the observations and the latent variables Xt is given by:(
Xt − ρTt−1Xt−1(

Z
(nt)
t

∣∣∣Xt

)
− ρTt−1 �ϕT (D̂t)Xt−1

)
∼

N

((
µxt

Φtµxt

)
,

[
Qxt + ΦT

t QεtΦt −ΦT
t Qεt

−QεtΦt Qεt

]−1)
.

(70)

The conditional distribution for Xt given Z
(nt)
t is

(
Xt|Z(nt)

t

)
∼ N

(
m

Xt|Z(nt)
t
,Σ

Xt|Z(nt)
t

)
,

with:

m
Xt|Z(nt)

t
= ρTt−1mXt−1|Z

(nt−1)

t−1

+ µ
Xt|Z(nt)

t
, (71)

Σ
Xt|Z(nt)

t
= ρTt−1ΣXt−1|Z

(nt−1)

t−1

ρt−1 + Q−1
Xt|Z(nt)

t

, (72)

µ
Xt|Z(nt)

t
= µxt + Q−1

Xt|Z(nt)
t

ΦT
t Qεt

(
Z

(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−Φtµxt

)
, (73)

Q
Xt|Z(nt)

t
= Qxt + ΦT

t QεtΦt. (74)
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Note that the elements of m
Xt|Z(nt)

t
are the basis function coefficients and covariate effect esti-

mates in the co-Kriging predictor at t level:

m̂Zt(s) = ϕ(s)m
Xt|Z(nt)

t
, (75)

with squared error:
ŝ2Zt

(s) = diag
(
ϕ(s)Σ

Xt|Z(nt)
t
ϕT (s)

)
. (76)

The method to estimate the hyper-parameter θt as is the MLE. In practice the likelihood for
z
(nt)
t given the parameters θt is:

log π
(

z
(nt)
t

∣∣∣θt) = −n
2
log (2π) +

1

2
log |Qxt |+

1

2
log |Qεt | −

1

2
log

∣∣∣Q
Xt|Z(nt)

t

∣∣∣
−1

2

(
µ

Xt|Z(nt)
t
− µxt

)T
Qxt

(
µ

Xt|Z(nt)
t
− µxt

)
−1

2

(
Z

(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−ΦT
t m

Xt|Z(nt)
t

)T
Qεt(

Z
(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−ΦT
t m

Xt|Z(nt)
t

)
.

(77)

4 RELIABILITY MEASURE FOR DESIGN OPTIMISATION

The design process of a ducted propeller aims to estimate the performance of the propulsion
system in various conditions. During the operation the loading of the blades can vary depend-
ing on the environmental conditions. Stemming from the manufacturing process, material and
geometrical imperfections can cause performance disturbances.
Generally, the uncertainties can be classified into two categories: aleatory and epistemic [21].
Aleatory uncertainty is an inherent property of a natural process. Epistemic uncertainty is the
impreciseness of our models stemming from the lack of knowledge. The latter type of uncer-
tainty is not considered in this work. The aleatory uncertainty is modelled with random variables
characterised by probability distributions. In the design optimisation context, the uncertainty on
system responses due to input random variables and parameters is not known. In this work it is
quantified with the Polynomial Chaos Expansion (PCE) which provides a sound mathematical
tool to efficiently quantify probabilistic uncertainty. The probability space is spanned by a set of
polynomials where the polynomial family depends on the probability distribution of the random
variables [22].

Modelling of the probability space with PCE, it makes computationally affordable to calcu-
late a risk measure for reliability-based optimisation using Monte Carlo sampling techniques. It
is desirable to use risk measures that possess the properties of coherence and regularity to avoid
the dependency on scaling and paradoxes. [23, 24]. Therefore, the conditional Value-at-Risk is
employed here which is indeed a coherent and regular risk measure.

4.1 CONDITIONAL VALUE-AT-RISK

The conditional Value-at-Risk (cVaR) is also called superquantile and given by the Eq. (78):

q̄α(Y ) =
1

1− α

∫ 1

α

qβ(Y )dβ, (78)

where Y is the random response and qα(Y ) = F−1(Y ) is the inverse cumulative distribution
function of Y . The parameter α is the degree of risk averseness and is set to zero when the
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risks are indifferent and expected performance is seeked, while α = 1 measures the worst-case
scenario. The calculation of the cVaR can be generalised as a convex minimisation problem
[23]:

q̄α(Y ) = min
c
c+

1

1− α
E [max(0, Y − c)] . (79)

5 TRAINING DATA-SET UPDATE STRATEGY

The optimisation workflow is constructed similarly to the Efficient Global Optimisation strat-
egy [25]. The Expected Improvement (EI) is calculated for the highest fidelity and new designs
are calculated with the high-fidelity solver at locations where the maximal improvement is ex-
pected.

5.1 EXPECTED IMPROVEMENT

The EI of a location x measures how much improvement can be achieved by evaluating a
new design at that location [26]. The formal representation assumes a minimisation problem of
a function f :

min f(x), (80)

where xεRn. The unknown function f is modelled by a Gaussian Process and the prediction
at x location is denoted Y (x). The current minimum of the function is ymin. An improvement
function can be defined as:

I(x) = max(ymin − Y (x), 0) (81)

The expected value of the improvement is:

EI(x) = E [max(ymin − Y (x), 0)] , (82)

which can be reformulated into its closed form:

EI(x) = (ymin − µ(x))Φ

(
ymin − µ(x)

σ(x)

)
+ σ(x)φ

(
ymin − µ(x)

σ(x)

)
, (83)

where Φ is the cumulative distribution function, φ is the probability density function and erf is
the error function:

Φ(z) =
1

2

[
1 + erf(

z√
2

)

]
(84)

erf(z) =
2√
π

∫ z

0

e−t
2

dt (85)

φ(z) =
1√
2π

exp

(
−z

2

2

)
(86)

6 RESULTS

6.1 ONE-DIMENSIONAL TEST CASE

A simple one-dimensional problem is investigated in this section. The test function for
multi-fidelity surrogates were presented in [13]. The high- and low-fidelity functions are the
following:

fhigh = (6x− 2)2 sin(12x− 4), (87)

flow =
1

2
fhigh + 10(x− 0.5)− 5. (88)
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Figure 2: Multi-fidelity learning compared to single fidelity surrogate

In this case four observation are available at the high-fidelity level Xhigh = {0, 0.4, 0.6, 1}
and eleven at the low-fidelity level Xlow = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The
surrogate built-on variable fidelity data is depicted in Figure 2. The result clearly shows that
single-fidelity learning technique is not able to capture correctly the function landscape due to
the limited number of observation points. The multi-fidelity learning technique is able to fuse
the information from the low fidelity function into the high fidelity approximation and thus pro-
vides an adequate approximation of the true function. The multi-fidelity learning technique with
GMRF is not able to properly learn the function landscape at the domain boundaries because
Neumann boundary conditions with value zero are assumed. This results in a slightly higher
approximation error compared to standard co-Kriging as it can be seen in Table 1.

co-Kr-low GMRF-co-Kr-low co-Kr-high GMRF-co-Kr-high
Mean Absolute Error 0.0389 0.0459 0.0852 0.1255

Table 1: Comparison of co-Kriging and GMRF-co-Kriging

6.2 SIMPLE DUCTED PROPELLER CASE

In this case study a design optimisation of a ducted propeller is considered. The problem is
highly simplified and only two design parameters are considered: namely, the twist at the root
and at the tip, see Figure 3. The geometry of the centre body and the duct is considered to be
constant.The chord length is considered to be constant along the blade but with a zero mean
Gaussian error. Also, the inflow velocity is loaded with a zero mean Gaussian error. These two
uncertainties are considered to represent the manufacturing and environmental uncertainties
respectively. The objective of the design problem is to maximise the expected efficiency (to get
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Figure 3: Design parameters of the propeller: twist at the root and at the tip.

the expected value the α parameter of the cVaR risk measure is set to zero):

max
θroot,θtip

E[η], (89)

where η is the total efficiency of the propeller and it is calculated as follows:

η =
TV∞
P

, (90)

where TV∞ is the useful power and P is the power absorbed.
For the low-fidelity calculations the Blade Element Momentum Theory (BEMT) is used and
the high-fidelity analyses are conducted with the Ducted Fan Design Code (DFDC). Due to the
inexpensiveness of the low-fidelity a full factorial data-set with 121 design are considered at
low-level. Each design is evaluated 10 times and a second order full PCE is built to model the
local probability space of the design. Clearly, DFDC is also an inexpensive solver compared to
CFD but in this simple design scenario the available high-fidelity observation data is assumed
to be limited. Only 4 design point are considered at the high-fidelity level. Similarly to the low-
fidelity, each design point is evaluated 10 times to build a PCE to model the local probability
space.
In this simple scenario the expected value is seeked which is exactly given by the first coefficient
of the PCE. The GMRF-co-Kriging model learns from both the low- and high-fidelity data-set
and constructs a surrogate model combining the information from both fidelities. From the
Gaussian Process variance of the GMRF-co-Kriging model the EI can be calculated for the
entire design space.
At the location of the maximal EI a new design point is evaluated and the GMRF-co-Kriging
model is re-trained. This procedure is repeated until the maximal EI arrives below a threshold
value ε. The optimisation workflow is depicted in Figure 4 and the learning history of the
landscape of the objective space of the optimisation problem is shown in Figure 5.

7 CONCLUSION

Multi-fidelity learning can provide more accurate surrogate models than their single-fidelity
counterparts. It is important to note that multi-fidelity learning is applicable only when the
low-fidelity models carry sufficient information to enhance the model on the highest fidelity. In
the field of aerospace engineering it is evident that many well-calibrated formula are available
for low-fidelity evaluations since aircraft were designed even before the spread of sophisticated
CFD techniques.
Kriging based multi-fidelity learning techniques are suffering from the fact that they require to
invert large ill-conditioned covariance matrices. This drawback can be overcame by exploiting
the link between Gaussian fields and Gaussian Markov random fields. This link allow us to
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Figure 4: The optimisation workflow of the ducted propeller design optimisation

approximate the inverse of the covariance matrix with a sparse precision matrix and the advan-
tages of finite element methods can be leveraged.
Currently, the authors are working on to include high-fidelity CFD simulations into the chain
of fidelity hierarchy and to explore how much computational saving can be realised through
multi-fidelity learning when real-world design problems are considered.
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Abstract. This paper seeks to analyze the imprecision associated with the statistical modelling
method employed in devising a predictive maintenance framework on a plasma etching cham-
ber. During operations, the plasma etching chamber may fail due to contamination as a result of
a high number of particles that is present. Based on a study done, the particle count is observed
to follow a Negative Binomial distribution model and it is also used to model the probability
of failure of the chamber. Using this model, an optimum threshold failure probability is de-
termined in which maintenance is scheduled once this value is reached during the operation
of the chamber and that the maintenance cost incurred is the lowest. One problem however is
that the parameter(s) used to define the Negative Binomial distribution may have uncertainties
associated with it in reality and this eventually gives rise to uncertainty in deciding the optimum
threshold failure probability. To address this, the paper adopts the use of Confidence structures
(or C-boxes) in quantifying the uncertainty of the optimum threshold failure probability. This
is achieved by introducing some variations in the p-parameter of the Negative Binomial dis-
tribution and then plotting a series of Cost-rate vs threshold failure probability curves. Using
the information provided in these curves, empirical cumulative distribution functions are con-
structed for the possible upper and lower bounds of the threshold failure probability and from
there, the confidence interval for the aforementioned quantity will be determined at 50%, 80%,
and 95% confidence level.
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1 INTRODUCTION

Predictive maintenance (PdM) is the technique which seeks to predict the time in which
a maintenance of an equipment is to be carried out through the monitoring of its operating
conditions in real-time. A key advantage of PdM over the conventional practice of preventive
maintenance (PM) is that PdM allows for the lowering of maintenance costs owing to the fact
that maintenance is conducted only when necessary instead of on a routine basis as observed in
the case of PM [1]. This is the basis on which the literature by Duc et al. [2] is written.

In this conference paper, a case-study based on this literature will be presented in section 2.1
with a study of the statistical modelling method employed in devising a PdM framework on a
plasma etching chamber. This devised framework seeks to determine an optimized threshold
failure probability (PrF) beyond which, maintenance is performed on the chamber. The statis-
tical model adopted, however, contains a parameter which was determined with a significant
degree of uncertainty. As such, the research methodology proposed in this literature aims to
investigate the effect of this uncertainty in determining the optimum PrF and the quantification
of its associated uncertainty. This is achieved using Confidence boxes (or C-boxes) to which
details will be provided in section 3.1. Using this tool, the 2-sided confidence interval of the op-
timum threshold PrF can be determined and it will be attained at 50%, 80%, and 95% confidence
level.

2 CASE-STUDY: PLASMA ETCHING CHAMBER

2.1 Background

In his paper, Duc starts off by highlighting the key reasoning behind the decrease in the
production yield of the plasma etching chamber, and therefore its reliability, being the presence
of particles on the wafer [3]. These particles are generated as by-product of the plasma etching
process [4] and its amount can be monitored via the Particle per Wafer Pass (PWP) method [5].
However, only particles exceeding a specified size are recorded in the total particle count.

Next, Duc identifies the stochastic nature associated with the total particle count based on
data obtained over 8-months of chamber operation and models it to follow a Negative Binomial
distribution [6] as shown below:

P (Y = y) =
Γ(y + r)

y! · Γ(r)
· pr · (1− p)y (1)

In Equation (1), y indicates the random variable for particle count, r indicates the number of
runs by the chamber in which the particle count is zero, p indicates the probability of the particle
count being zero within a single run, and Γ() represents the Gamma function [7]. According
to the literature, the value of r was determined to be 2.2608 (rounded down to 2) while that
of p was determined to be 0.039 (±30%) [2]. Based on these information, he then derives a
cumulative distribution function to model the PrF of the chamber. Here, failure is defined as the
event in which the particle count reaches or exceeds a certain threshold value, kt. As such, the
mathematical expression for the PrF is as follows:

P (Y ≥ kt) =
∞∑
k=kt

P (Y = k) (2)

To ensure cost-effectiveness, a threshold PrF has to be set such that upon reaching this value,
the plasma etching chamber undergoes a scheduled maintenance. This threshold value of PrF
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cannot take values which are either too small or too large. A small threshold value would
mean that maintenance would now have to be performed more frequently resulting in high
maintenance costs. A large threshold value, on the other hand, would imply that the chamber is
allowed to operate for a longer duration without maintenance but this increases the occurrence
of failure due to high particle count which leads to a loss in production yield and earnings.
As such, Duc proceeds to devise a method to determine the optimum value of threshold PrF
analytically.

2.2 Methodology

In the literature, he introduces a new quantity called the Cost-rate, g, which is defined to be
the mean total costs associated with maintenance and particle count failures, C, divided by the
total time between two successive scheduled maintenance, T . This value of T would depend
on the value of PrF that is set. Further details to the calculation of C and T can be found in
reference [2]. From there, Duc proceeds to tabulate the values of g for the respective values of
threshold PrF and plots a graph to illustrate the relationship between these two quantities. The
result is as shown in the next section.

2.3 Results

Figure 1: Graph of Cost-rate, g, against threshold PrF. Image obtained from [2].

Based on the results illustrated in Figure 1, the optimum threshold PrF corresponds to the
value at which the C is at a minimum. From this, the optimum threshold PrF is determined to
be 0.16 [2]. This implies that a scheduled maintenance is performed once the PrF of the plasma
etching chamber reaches 16% during its operation.
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3 PROPOSED FRAMEWORK

3.1 Concept of C-boxes

C-boxes are structures which serve to provide a generalized approach in producing confi-
dence distributions. They can be used as a tool to estimate values of fixed, real-valued quantities
obtained through random sampling and contains information of its Neyman-Pearson confidence
at every level of confidence [9]. Unlike traditional confidence intervals, C-boxes can be prop-
agated via mathematical calculations and can be used in calculations to produce results with
identical confidence interval interpretation. From there, it is able to reflect both the uncertainty
associated with the sampled quantity which stems from the process of inferring observations as
well as the effects of imprecision in the data and demographic uncertainty which comes from
the process of characterizing a continuous parameter based on discrete observations. One sig-
nificant advantage of C-boxes is that it can be constructed even if the distribution of the sampled
quantity is unknown [10] which makes it the favoured method to perform uncertainty quantifi-
cation for the purpose of this research. More details to the theory of C-boxes can be found in
reference [9].

A C-box can be constructed using one of the two forms of cumulative distribution functions
(CDFs): Continuous or Empirical. In this paper, the latter is used given that the distribution to
which the parameter p follows is unknown. Empirical CDFs can be described as a step-function
which jumps up by 1

n
unit of probability at each of the n data points where n is the total number

of data available [11]. Like continuous CDFs, the value of the cumulative probability increases
with the value of the data point. A simple illustration of an empirical CDF is provided below as
an example:

Figure 2: Empirical CDF curve obtained for x ∈ {0.1994, 0.2089, 0.2362, 0.4501, 0.4587, 0.6073, 0.6358, 0.6790,
0.7093, 0.9452}. As seen in the image, the cumulative probability, F (x), increases by 1

10 with each value of x.

For a set of data x with its associated uncertainty, each data consists of a lower bound,
x, and an upper bound value, x. Based on these information, the empirical CDF for the lower
bound values (the Belief function), F (x), and the upper bound values (the Plausibility function),
F (x), can be plotted simultaneously. This gives rise to an interval which exists between F (x)
and F (x), within which the empirical CDF of the actual value of x could possibly exist. This
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resulting plot is a C-box structure. To determine a two-sided confidence interval of a parameter
θ at 1− α confidence level, θ is such that F (θ) = α

2
while θ is such that F (θ) = 1− α

2
.

3.2 Methodology

The proposed methodology in this conference paper seeks to supplement the work by Duc et
al. by introducing some “noise” into a key parameter within the Negative Binomial distribution
model and then observing its effects in the determination of the optimum threshold PrF and its
associated uncertainty. As seen in Equation (1), the Negative Binomial distribution is defined
by two parameters: r and p, whose respective values can be found in section 2.1. Given that it
was mentioned that the value of p has an upper and lower bound of 30%, this provides a degree
of uncertainty in p which can be adopted to realize the outcome of this research.

To perform the investigation, 20 sets of values of threshold PrF and Cost-rate will first be
extracted from the Cost-rate vs threshold PrF curve in Figure 1 using the Getdata Graph Dig-
itizer software [8]. The obtained values of threshold PrF will serve as references to obtain the
approximate values of kt from the PrF function shown in Equation 2 with parameters r = 2 and
p = 0.039. This process is done using Wolfram Mathematica and the results are presented in
Table 1 of section 3.3.

Next, an assumption will be made that the Cost-rate, g, is only affected by kt. This is because
physically, it is the amount of particles which will determine the machine down-time due to the
duration of cleaning. In essence, the more particles there are, the longer time it takes to clean,
the longer the down-time and the higher the costs incurred due to failure (excluding the costs
from scheduled maintenance), thus increasing g. With this in mind, new threshold PrF values
will be obtained for the respective values of kt via Equation (2) for different values of p while r
is kept at 2. The values of p are chosen such that they are within the aforementioned upper and
lower bounds with respect to the derived value of 0.039. As such, p will take values ranging
between 0.028 to 0.050 in steps of 0.002. For each value of p, a graph of Cost-rate, g, vs
threshold PrF will be plotted in similar fashion to Figure 1. This would yield a family of curves
for all 13 values of p as shown in Figure 3 of section 3.3. From there, the optimum threshold
PrF for each of these curves and its range of values of the threshold PrF will be determined
graphically. The results are summarized in Table 2 of section 3.3.

Finally, to perform the necessary uncertainty quantification associated with the optimum
threshold PrF values, C-boxes will be constructed with empirical CDFs of the lower bounds,
upper bounds, and the optimum threshold PrF using the data presented in Table 2. The resulting
C-box diagram is illustrated in Figure 4 of section 3.3.

624



Adolphus Lye, Alice Cicirello, and Edoardo Patelli

3.3 Results

Threshold PrF kt Threshold PrF kt
0.05642 115 0.18401 78
0.06426 111 0.20825 73
0.07424 107 0.22607 71
0.08422 103 0.24817 67
0.09420 99 0.26955 65
0.10346 96 0.29735 61
0.11986 91 0.31731 59
0.13055 89 0.33299 57
0.14908 84 0.36365 54
0.16548 81 0.39644 51

Table 1: Results for kt and its respective values of threshold PrF for the default parameter values of r = 2 and
p = 0.039.

Figure 3: Graph of Cost-rate, g, against threshold PrF for different values of p. r is kept constant at 2.
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Value of p Optimum Threshold PrF Threshold PrF range
0.028 0.31552 [0.14756 0.58013]
0.030 0.27888 [0.12183 0.54516]
0.032 0.24572 [0.10026 0.51138]
0.034 0.21584 [0.08227 0.47887]
0.036 0.18879 [0.06732 0.44772]
0.038 0.16605 [0.05495 0.41798]
0.039 0.15484 [0.05000 0.40000]
0.040 0.14490 [0.04474 0.38966]
0.042 0.12559 [0.03635 0.36278]
0.044 0.10863 [0.02947 0.33732]
0.046 0.09361 [0.02385 0.31328]
0.048 0.08042 [0.01926 0.29062]
0.050 0.06898 [0.01553 0.26931]

Table 2: Results for optimum threshold PrF and the range of threshold PrF for the respective values of p.

Figure 4: Confidence structure (C-boxes) summarizing the data in Table 2.

626



Adolphus Lye, Alice Cicirello, and Edoardo Patelli

3.4 Discussion

Based on the C-box constructed, the confidence interval for the value of threshold PrF can
be determined at 50%, 80%, and 95% confidence level and the results are summarized in Table
3 below:

Confidence level Confidence interval of threshold PrF
50% [0.02947 0.47887]
80% [0.01926 0.54516]
95% [0.01553 0.58013]

Table 3: Confidence interval of threshold PrF for the respective level of confidence.

The results above could serve as a guide for the industry in the decision–making of suitable
value of threshold PrF under uncertainty and from there, devise and compare the numerous PdM
plan for the plasma etching chamber based on the range of threshold PdF chosen as well as the
respective maintenance costs associated with the respective PdM plan.

4 CONCLUSION

This paper has addressed the problem of quantifying the uncertainty associated with the
optimum threshold PrF as a result of the uncertainty in the determination of p which is a key
parameter of the Negative Binomial distribution model as seen in Equation (1). In summary,
the threshold PrF values are calculated for the respective values of kt using different values
of p whilst assuming that the Cost–rate is only affected by kt. From there, the Cost–rate vs
threshold PrF curves are plotted for the different values of p and the information illustrated in
the family of curves is then used to construct the C-box structure. Using the C-box structure,
the confidence interval of the optimum threshold PrF value is obtained at 50%, 80%, and 95%
confidence level.
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Abstract. Rupture of intracranial aneurysms often leads to irreversible disabilities or even
death. The investigation of hemodynamics increases the understanding of cardiovascular dis-
eases, this gain of knowledge can support physicians in outcome prediction and therapy plan-
ning. Hemodynamic simulations are restricted by modeling assumptions and uncertain initial
conditions, whereas PC-MRI data is affected by measurement noise and artifacts. To overcome
the limitations of both techniques, the current study uses a Localization Ensemble Transform
Kalman Filter (LETKF) to incorporate uncertain Phase-Contrast MRI data into an ensemble
of numerical simulations. The analysis output provides an improved state estimate of the three-
dimensional blood flow field. Benchmark measurements are carried out in a silicone phantom
model of an idealized aneurysm under user-specific inflow conditions. Validation is ensured
with high-resolution Particle Imaging Velocimetry (PIV) obtained from a vertical slice in the
center of the same geometry. Results show that even velocity peaks smaller than the PC-MRI
resolution can be reconstructed using the employed approach. The root mean square error
(RMSE) of the analysis state estimate is reduced by 27 % to 89 % in comparison to interpola-
tion of the PC-MRI data onto the PIV grid resolution.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) has been frequently used in past studies for the inves-
tigation of hemodynamics in intracranial aneurysms. Flow-dependent parameters, such as wall
shear stress or the oscillary shear index, are meant to have an influence on the growth and rupture
probability of aneurysms [1–3]. However, such simulations require accurate initial and bound-
ary conditions, and depend on the assumptions used in the numerical model [4–6]. Although
high temporal and spatial resolution can be reached, uncertainties lead to a limited clinical
acceptance of the simulation results [7–9]. Phase-Contrast Magnetic Resonance Imaging (PC-
MRI) in-vivo measures blood flow by encoding the velocities in the phase of the acquired MR
signal [10–12]. In addition to measurement noise and artefacts, the limited temporal and spatial
resolution impact clinically-relevant flow features in the measurement data. The present study
incorporates uncertain measurement data into numerical simulations by using data assimilation
to improve the accuracy and physical correctness of the measured velocity fields. An Ensemble
Kalman Filter technique samples the system state and covariance matrices by an ensemble of
model states. Thus, the covariance matrices are not calculated directly, but estimated through
an ensemble and replaced by the sample covariance. The background uncertainty is estimated
and the Ensemble Kalman Filter (EnKF) can be seen as a Monte-Carlo approximation of the
original Kalman Filter [13].

Several attempts have been made to improve the accuracy of intracranial velocity fields ac-
quired from PC-MRI data. Whereas de-noising techniques, as well as divergence-free filtering
approaches, improve the physical correctness of the velocity field, spatial and temporal reso-
lution remains low e.g. [14, 15]. Hence, data assimilation seems to be a promising remedy to
improve resolution while keeping constraints, such as incompressibility and conservation laws.
Variational data assimilation approaches in intracranial anerysms have been applied by D’Elia
et al. [16–18] and Funke et al. [19]. As an alternative to the Ensemble Kalman Filters they min-
imize the error between observations of a reference flow and a numerical estimation in terms of
a cost function. The need for linear and adjoint models increases computational complexity by
a factor of 50 to 100 in comparison to one simple model simulation. As a consequence, most
numerical studies on variational data assimilation in intracranial aneurysms currently addresses
steady-state flow and/or 2D geometries. Funke et al. [19] investigates transient 3D flow fields,
but to keep computational costs in an acceptable range, spatial resolution is decreased. Although
promising results have been achieved for other fluid dynamical applications e.g. [20, 21], little
attention has been payed to the sequential Kalman Filters in intracranial aneurysm modeling.
Bakhshinejad et al. implemented an Extended Kalman Filter for pulsatile cardiac flow [22].
Nevertheless, the lack of localization requires a large amount of ensemble members to ensure
filter convergence. The resulting high computational costs illustrate the need for a sequential
data assimilation technique that can gain convergence with a limited amount of ensemble sim-
ulations.

Although the current study deals with steady-state 3D flow, this is the first approach using
a Localization Ensemble Transform Kalman Filter to assimilate CFD and PC-MRI data for
improved flow prediction in intracranial aneurysm. The study comes along with a systematic
analysis of parameters inside the algorithm. Additional uniqueness is ensured with a high qual-
ity PIV measurement of the same geometry which enables proper quantitative validation of the
assimilation step.
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2 MATERIAL and METHODS

Underlying CFD and measurement data for the assimilation step are obtained from the same
silicon phantom model of an idealized intracranial aneurysm (figure 1a). Afferent and efferent
vessels have a diameter of 4 mm. The phantom model, consisting of two-component silicon
(Wacker RT 601, Burghausen, Germany), is well suited because it allows blood flow measure-
ments with the MR device, as well as optical based PIV measurements. A blood substitute,
which was required to match both the fluid-dynamical properties of real blood as well as the
refractive index of the silicone block (=1.4122 at 22◦C) for optimal optical conditions within
the validation PIV measurements, was formulated.

2.1 Experimental Set-Up

The flow data was acquired on a 7 Tesla whole-body MRI system (Siemens Healthineers,
Forchheim, Germany) in a 32-channel head coil (Nova Medical, Wilmington, MA) using 4D
phase-contrast magnetic resonance imaging (PC-MRI). Hereby, the acquisition sequence is
based on a rf-spoiled gradient echo with quantitative flow encoding in all three spatial dimen-
sions [23, 24]. A micro-gear pump (HNP Mikrosysteme, Schwerin, Germany), placed in the
control room of the MRI scanner, delivered a constant flow rate of Q=227 mL/min throughout
the measurements (figure 1b). This relatively low flow rate was chosen to ensure laminar flow
inside the aneurysm which was needed for accurate validation of the data assimilation param-
eters. A total scan time of approx. 9 minutes achieves a resolution of 0.57x0.57x0.57 mm in
the resulting phase difference images. The same measurement but without activated pump and
thus without flow inside the aneurysm-phantom was acquired for reference. The reference data
was subtracted from the flow data to obtain purely flow related phase differences. As the flow
information is encoded in the phase of the complex MR-Signal, a velocity encode parameter
(venc) is necessary to specify the highest velocitiy, encoded in one complete phase. For the
aquired data, this parameter was set to 0.6 m/s. As a consequence, the signal-to-noise SNR of
the acquired images was calculated using the mean of the signal inside the aneurysm and the
signal density of the background noise and was found to be SNR ≈ 55. The data was post
processed using MeVisLab 2.3.1 and the automated tool described in [25]. This includes noise
masking, antialiasing and conversion to the format of the commercial software package EnSight
(ANSYS Inc., Canonsburg, PA, USA).

2.2 Numerical Background

The ensemble boundary conditions for the CFD simulations are obtained from the MRI blood
flow measurements with a specific mean (228 ml/min) and variance (10 ml/min). A structured
hexaedral mesh is created using ANSYS IcemCFD (ANSYS Inc., Canonsburg, PA, USA) re-
sulting in approx. 171.000 cells. Ensemble simulations are carried out using the open source
software OpenFOAM 5.0 (OpenCFD Ltd., Bracknell, UK). Blood is treated as an isothermal,
incompressible fluid (1222 kg/m3) and Newtonian behavior with a constant dynamic viscosity
(4.03 mPa s) is assumed. The vessel walls are assumed to be rigid and no-slip boundary condi-
tions and a zero pressure outlet are implemented. Convergence was obtained when the scaled
residuals of pressure and momentum decreased below a value of 10−6.

2.3 Data Assimilation Algorithm

The Local Ensemble Transform Kalman Filter applied in this paper was originally introduced
by Harlim and Hunt [27, 28] in the field of meteorology and combines the localization method
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(a)
(b)

Figure 1: (a) Surface model of the idealized aneurysm used for phantom manufacturing and
CFD discretization; (b) MRI setup with the gear pump (1), wave guide through rf-shield (2),
flow meter (3), MR-scanner (4) and the 32-channel head coil with the phantom (5) [26].

of the Local Ensemble Kalman Filter (LEKF) of Ott et al. [29] and the Ensemble Transform
Kalman Filter (ETKF) of Bishop et al. [30]. The analysis ensemble is formed as a weighted
average of the background ensemble mean and the observations. Using background and obser-
vation uncertainties, the weights are determined in a way, such that the analysis ensemble mean
best fits the given background and observation probability distributions.

With the implementation of the localization, local analyses at each model grid point are
obtained. Only observations within a local region surrounding the grid point are accounted for
the desired local analysis. The localization scheme enables efficient parallel computation of the
analysis model state and limits the number of needed ensemble members. For the current data
assimilation experiment a localization radius of 3 mm was chosen.

The following section contains a short summary of the LETKF algorithm. The inputs of the
steps below are:

• m-dimensional velocity vectors describing the backgorund ensemble {xb(i) : i = 1, 2, ..., k}
at m grid points for k ensemble members. The ensembles are calculated by k different
CFD simulations.

• The s-dimensional observation vector yo in the form of a velocity vector obtained from
the PC-MRI measurement.

• An observational operator H to map the state variables from the m-dimensional simula-
tion space to the s-dimensional observation space. In the current data assimilation exper-
iment observations, as well as the background ensemble are velocity values. Therefore,
the current observation operator H is a spatial binning operator which downsamples the
ensemble velocity vectors to the MRI grid resolution.

• An s × s dimensional observation error covariance matrix R based on the noise charac-
teristics of the measurement data.

In a first step global transformations are performed with the background ensemble mem-
bers. Form {xb(i)} into an m × k dimensional matrix X and average the columns to get an
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m-dimensional vector x̄b. Substract this vector from each column of X to get Xb.

x̄b = k−1

k∑
i=1

X(i)

Xb(i) = X(i) − x̄b

(1)

By applying the spatial binning observational operator H to each column of X, the state vector
in the model space is transfered to the observational space, followed by a repetition of the
previous transformations (equation (1)) with the resulting matrix.

Y = Hl(X)

ȳb = k−1

k∑
i=1

Y(i)

Yb(i) = Y(i) − ȳb

(2)

From this point on local calculations at each model grid point j can be performed, which results
in faster convergence of the algorithm due to parallel computations. For each j observations are
chosen to be used in the local analysis of a certain grid point. The analysis error covariance
matrix P̃

a
(j) is calculated and used to compute the weight vector wa(j).

P̃
a
(j) =

[
(k − 1)I/(1 + r) +

[
Yb(j)

]T
R−1(j)Yb(j)

]−1

wa(j) = P̃
a
(j)

{[
Yb(j)

]T
R(j)−1

[
yo(j)−H(x̄b)(j)

]} (3)

The desired amount of multiplicative covariance inflation r = 1.05 is added to increase the back-
ground error. This avoids underestimating the background uncertainty with a small ensemble
size.

Wa(j) = [(k − 1)P̃
a
(j)]1/2

W(j) = Wa(j) + wa(j)
(4)

With the weight vector and perturbations, the analysis mean state can be calculated. In the
current study it provides an improved state estimate for the velocity field inside the idealized
aneurysm geometry. In addition to that, the analysis ensemble members are formatted, which
can be used as initial conditions for ensemble simulations in the subsequent step of a transient
data assimilation experiment.

x̄a
l (j) = x̄b

l (j) + Xb
l (j)w

a(j){
x
a(i)
l (j)

}
= Xb

n(j)X
b
l (j)W(j) + x̄b

l (j)
(5)

2.4 Validation

The generation of a quantitative gold standard is one of the main challenges in the formu-
lation of a suitable data assimilation experiment. High-resolution stereoscopic PIV measure-
ment [26] obtained from a vertical slice in the center of the idealized aneurysm geometry pro-
vide a unique possibility for validation. The resulting PIV based velocity fields are sufficiently

633



F. Schulz, C. Roloff and D. Stucht et al.

accurate to validate the data assimilation procedure. The Root-Mean Square Error (RMSE) be-
tween PIV and MRI or analysis, respectively is calculated. To further validate the calculated
analysis with respect to physical accuracy, the divergence of the velocity field is calculated. The
incompressible flow field inside the aneurysm should fullfill div(−→v ) = 0.

To enable reasonable comparisons between the different modalities, the resulting data were
registered with the implementation of an Iterative Closest Point (ICP) algorithm. Difficulties in
the registration process rises due to geometric distortions in the PC-MRI data. These artefacts
increase with the distance to the measurement center, which was chosen to be in the center of
the aneurysm sack. For registration purposes, the distorted parts of afferent and efferent vessels
are cut, which results in an improved registration of the volume of interest.

3 RESULTS

3.1 PC-MRI data

Figure 3a presents the flow field as well as divergence distribution at different slices acquired
from the PC-MRI data. Due to the chosen small flow rate (Q=227 mL/min) laminar flow is
ensured inside the aneurysm. The velocity fields suffer from acquisition noise and low spatial
resolution, both make an accurate definition of the geometric boundaries difficult. In a laminar,
incompressible flow field, the divergence should be zero. Data acquired by Phase-Contrast MRI
measurements does not automatically fullfill this constraint. Divergence calculated at different
slices in the aneurysm geometry highly differs from div(−→v ) = 0.

3.2 Data Assimilation

To ensure that the number of ensembles used to calculate the analysis is statistically repre-
sentative, the RMSE is calculated in dependency of different amounts of ensemble members
used in the data assimilation experiment. To suppress the influence of outliers at the geome-
try edges, different subvolumina are defined in which the RMSE values are compared (figure
2a). Outliers occur due to geometric misfits between MRI, CFD and PIV data, mainly caused
by acquisition based distortions of the MRI data. For the current assimilation experiment an
ensemble of 10 is chosen to be statistically representative.

Figure 3b represents the velocity fields and divergence of the analysis, the outcome of the
data assimilation step. A qualitative comparison between the calculated analysis and the MRI
based data reveals a reduction of noise and improvement of image resolution. The latter was
achieved by using the CFD grid resolution in the data assimilation algorithm to calculate the
analysis. The Navier-Stokes equations as the basis for the ensemble simulations fullfill con-
servations laws, which results in physically accurate calculated analyses. Divergence in the
velocity fields was significantly reduced after the assimilation step.

Figure 4 compares the MRI data and analysis with a vertical slice in the center of the ide-
alized aneurysm. MRI data and analysis are interpolated onto the PIV grid for the calculation
of the RMSE in the predefined subvolumina. The small velocity peak at the transition from the
aneurysm sack to the efferent vessel completely vanishes in the PC-MRI data. Although, the
velocity values are still underestimated by the calculated analysis, the assimilation step was able
to reconstruct the flow characteristics at the outlet more accurately. The qualitative investigation
is supported by the calculation of the RMSE in all three subvolumina. In two cases the RMSE
is significantly reduced by 38 % and 89 %, respectively, whereas for subvolume 2 the RMSE
only decreases by 27 %.

634



F. Schulz, C. Roloff and D. Stucht et al.

(a) Subvolumina for RMSE (b) RMSE in dependence of used ensemble mem-
bers

Figure 2: The RMSE in different areas of the aneurysm (a) is calculated in dependency of the
number of used ensemble members in the data assimilation algorithm. For the systematic vari-
ation of ensemble members, the entries of the observation error covariance matrix are increased
to better depict the influence of ensemble simulations

4 DISCUSSION

Flow investigation using Phase-Contrast MRI results in low resolution, noisy images. Optical-
based stereoscopic PIV measurements provide high-resolution velocity fields, but can not be
used for in-vivo applications. The current study uses PIV as a validation criteria for the in-
troduced data assimilation algorithm. An Ensemble Transform Kalman Filter improves the
flow prediction in the geometry of an idealized intracranial aneurysm. Although, measured and
assimilated flow fields qualitatively predict similar flow characteristics, acquisition noise and
artifacts disturb the MRI based velocity fields. Resulting flow fields are not divergence-free,
which reduces the physical correctness of the measured data. With the use of the assimilation
algorithm conservation laws are introduced into the measurement data, which moves the diver-
gence field closer to zero. By increasing the resolution of the velocity in the analysis, small
velocity peaks can be reconstructed that are low-pass filtered in the original measurement data.

In addition to the improvement of physical correctness, the assimilation step moves the ve-
locity field closer to the generated ground truth. The RMSE for the pre-defined subvolumina
is reduced by the data assimilation step. Nevertheless, MRI as well as analysis based velocity
fields seem to underestimate the general velocity values in comparison to the PIV data. This
phenomena also occurs in areas with a uniform velocity distribution, hence downsampling by
velocity averaging can not play a major role. These findings lead to the assumption, that it
is not only stochastic errors resulting in measurement noise that play a role in the PC-MRI
acquisition sequence, rather that systematic deviations also have an influence. Investigations
in previous studies, in which PC-MRI data generally underestimates the velocity values, sup-
port this fact [26]. Possible factors could be a distortion of the images caused by gradient
inhomogenities in the acquisition sequence. To further reduce the RMSE in the assimilated
velocity fields a correct quantification of the systematic error sources is essential, this can be
incorporated into the data assimilation algorithm. In a next step, the described data assimila-
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(a) PC-MRI data (b) Analyis

Figure 3: Velocity magnitude and divergence for PC-MRI data (a) and analyis (b) at different
cut planes through the underlying geometry.

tion approach is applied to a 3D pulsatile cardiac cycle. Here, specific focus will be payed
to the amount of ensemble members needed, which can hopefully be reduced in comparison
to [22] with the introduced localization procedure. For patient-specific considerations one of
the main difficulties is the accurate definition of geometric boundaries, which will also be a
main component in further studies. Incorporating uncertain boundaries of the geometry into the
assimilation algorithm could make it suitable for the clinical routine. Further ideas include the
projection onto a divergence-free subspace previous to the assimilation step or direct assimila-
tion of phase-difference data by mapping the simulated variables onto the observation space by
an inverse observation operator.

5 CONCLUSION

The current study assimilates the flow field in an idealized aneurysm by combining data from
numerical simulations together with measured PC-MRI velocity fields. The introduction of PIV
measurements originating from the same geometry ensures proper quantitative validation. For
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(a) velocity distribution

(b) RMSE

Figure 4: (a) Qualitative comparison of the velocity distribution between all three modalities in
PIV grid resolution; (b) RMSE calculation for measured MRI data and calculated analysis in
the predefined subvolumina.

the first time the LETKF was used for hemodynamic investigations, which enables the calcula-
tion of local analyses. The data assimilation algorithm successfully calculates a high resolution
divergence-free velocity field inside the aneurysm geometry. It was able to reconstruct small
velocity peaks that have been filtered out by the MRI measurement and reduced the RMSE of
the analysis state estimate in comparison to the PC-MRI data.
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Abstract. Heart failure (HF) is a severe cardiovascular disease, millions people are suffered
from HF worldwide. The ventricular assist device (VAD) can replace the function of failing
hearts, when there are no heart donations available, it is becoming a common daily practice
for the heart failure patients. U.S. Food and Drug Administration (FDA) Critical Path Initiative
(CPI) announced a benchmark study of a centrifugal blood pump few years ago in order to
improve current practices of applying computational fluid dynamics (CFD) to medical devices.

In our previous works, we developed our numerical model for the blood pump simulation
with the consideration of Uncertainty Quantification (UQ). We introduced a shear layer update
approach in order to facilitate and accelerate the moving mesh process in the framework of
High Performance Computing (HPC). The uncertainties in the parametric data and geometric
information are quantified with the Polynomial Chaos (PC) method, a Multilevel precondition-
ing technique is therefore proposed for expediting the linear solvers.

In this work, we show an instationary blood flow through a FDA blood pump configuration
with Galerkin Projection method, which is realized in our open source Finite Element library
HiFlow3. We consider the stress-based hemolysis model to demonstrate the blood damage dur-
ing the operation of the blood pump. Three uncertainty sources are considered: inflow boundary
condition, rotor angular speed and dynamic viscosity, the numerical results are demonstrated
with more than 45 Million degree of freedoms by using supercomputer.
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1 INTRODUCTION

There are more than 40 Million people worldwide suffering from the heart failure, the num-
ber of patients increases also every year due to the population ageing. There exist currently two
standard treatments for severe heart failure patients: the heart transplant and the heart implant.
The heart transplant is until now the golden standard for critical patients in regard to the life
quality and the survival rate. But, in general the patients have to wait for long time till one heart
donor is available, and the donor quality cannot be guaranteed. On the other hand, the heart
implant is available even for the emergency cases, the performance is rapidly improving since
last decade. Therefore, the ventricular assist devices (VADs), or blood pumps, play a more and
more important role in the field of health care [8, 22]. However, mechanical design has limits
due to the lack of knowledge about input parametric data, specially for numerical modeling.
Hence, the Uncertainty Quantification can be very useful for improving the performance of
such devices.

In our previous work in 2015 [24], we studied the steady state of incompressible Navier-
Stokes equations in the laminar regime within the blood pump chamber by using the Multi-
ple Reference Frame (MRF) method [12, 10, 18, 20]. The Multiple Reference Frame method
suggests to divide the computational domain into two adjacent parts: rotating and stationary
domains. In the stationary domain, the velocity and pressure fields are defined in the absolute
frame, it implies that the steady incompressible Navier-Stokes equations are applied, yet in the
rotating domain, the velocity field has to be considered in a relative frame. Therefore, two addi-
tional forces – Corilios force and centrifugal force – are introduced in the momentum equation
because of the transformation between the absolute frame and the relative frame. However, the
MRF model provides only the information in the steady state, the unsteady flow simulation is
required for obtaining further insight of the performance of blood pump.

The last publication [27] in 2017 presented our first unsteady blood flow simulation on a full
blood pump based on the residual-based Variational Multiscale method (VMS) [16, 5, 4, 17].
The blood pump geometry is provided by the U.S. Food and Drug Administration (FDA) under
the framework of Critical Path Initiative (CPI). This project intends to assess the accuracy of
the computational fluid dynamics (CFD) in biomedical devices [14]. In this work, we proposed
the shear layer update approach in order to realize the moving mesh procedure. This method
is designed based on the Shear-Slip Mesh Update Method (SSMUM) [6, 7], and it proposes to
generate two regular identical shaped layers in stead of only one, such that the solution update
step, once the mesh re-generation is required, can be accelerated, especially for the parallel
computing. The blood flow in the pump casing is subject to a strong external force from the
pump impeller. Due to the high rotation speed of the device, the fluid flow is impossible to be
maintained in the laminar regime. Therefore, we applied the residual-based Variational Multi-
scale method for simulating the turbulent flow. In addition to that, we employed the intrusive
Polynomial Chaos Expansion (PCE) to study the propagation of uncertainties caused by three
input parameters, i.e. inflow boundary, dynamic viscosity and rotating speed.

We here continue to apply the stochastic finite element method (SFEM) [15] for the blood
pump modelization. The shear layer update approach, which is introduced in [27], is employed
in this work for acquiring the moving mesh. The intrusive stochastic Galerkin approach is im-
plemented for quantifying the uncertainty introduced by three uncertain parameters, by means
of inflow velocity, rotation speed and dynamic viscosity. Our greater interest for this work is put
in the velocity and pressure fields in the chamber of the pump device. Furthermore, the shear
stress created by the high rotation speed can cause severe blood damage by means of destroying
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the red blood cells, such that the oxygen can not be transported into human body sufficiently.
Therefore, a study concerning the hemolysis is also presented by using the index of hemoly-
sis. The mean value and the standard deviation of the index hemolysis are showed in different
locations in the pump chamber.

The rest of this paper is organized as follow. In Section 2, the mathematical modeling is
introduced. It starts with a general formulation of the incompressible Navier-Stokes equations
for a rotating system, then the Variational Multiscale method is introduced in order to cope
with the turbulent flow. In Section 3, we discuss about the three sources of uncertainty in the
computation, as well as the stochastic Galerkin projection method. Section 4 is the numerical
results, the velocity and pressure fields within the pump chamber are presented with the mean
value and the standard deviation. In addition, the index of hemolysis is also calculated in order
to quantity the blood damage caused by the high shear rate of the rotor. We conclude our
contribution in Section 5.

2 MATHEMATICAL MODELING

2.1 Incompressible Navier-Stokes equations on the stationary and rotating domain

We consider the incompressible Navier-Stokes equations for modeling the blood flow within
the device. Let Ω ∈ R3 to be the spatial domain, Ω = Ωstat∪Ωrot, Ωstat∩Ωrot = ∅. The spatial
domain Ω consists of two subdomains: the rotating stationary domain Ωstat and the rotating do-
main Ωrot. The incompressible Navier-Stokes equations on the stationary and rotating domain
are stated as follow:

∂u

∂t
+ ((u− ur) · ∇)u− µ

ρ
∆u+

1

ρ
∇p = 0 , in Ω , (1a)

∇ · u = 0 , in Ω , (1b)
ur = d× ω , in Ωrot , (1c)
ur = 0 , in Ωstat , (1d)
u = g , on Γin , (1e)

(
µ

ρ
∇u− p1) = 0 , on Γout , (1f)

ur = d× ω , on Γrotor , (1g)
u = 0 , on ∂Ω\(Γin ∪ Γout ∪ Γrotor) . (1h)

Here, u and p are the velocity field and the pressure field respectively. ur is the rotating velocity
of the rotor, it is also the revolution velocity of the rotating domain Ωrot (Equation (1c)). Hence
ur is only defined on Ωrot (Equation (1c), Equation (1d)). ω describes the angular speed (rad/s)
of the impeller, d is the distance to the rotating axis. Furthermore, ρ is the density of the blood,
and µ is the dynamic viscosity.

Figure 1 shows the geometry of the pump device. The rotor consists of four blades and one
rub, and it is embedded in the pump casing. The rotor operates with a constant angular speed
ω, this rotation is conducted by an external motor, which is omitted in Figure 1. The flow is
induced by the inlet tube, which is located on the top of pump chamber. After entering the pump
chamber, the fluid is accelerated owning to the absorption of the rotational kinetic energy from
the rotor. The blood is further directed into the outlet, which connects to the aorta of the patient.
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Γin

Γout

Γrotor

ω

Figure 1: Illustration of the boundaries and the axis of rotation on the blood pump geometry.

On the inflow boundary Γin, we apply a Dirichlet boundary condition by using the Poiseuill
profile, which is defined as:

g =

 0
0

−Umax(1− l2/L2)

 , (2)

where L is the radius of circular geometry of Γin, l is the distance to the center point. Umax is
the maximum inflow velocity, which is a scalar value and positive, the inflow direction in our
figure is in −e3 = [0, 0,−1]T . Meanwhile, the angular velocity is defined as:

ω =

0
0
ω

 , (3)

the rotation axis is also e3. In addition, the boundary condition on the rotor’s surface Γrotor is
also described with ω as in Equation (1g). The outflow boundary condition is prescribed with
”do-nothing” boundary. The rest of rigid walls is governed by the ”no-slip” condition [23].

2.2 Variational Multiscale Method

As described in the introduction, we want to model the fluid flow in blood pump device. For
the centrifugal pumps, the Reynolds number is defined as [9]:

Re =
ρωD2

µ
. (4)

Here, ρ is the density, ω is the angular speed of the impeller, D is the diameter of the rotor, and
µ the dynamic viscosity. According to the simulation information provided by the Critical Path
Initiative [14], we have:

ρ 1035 kg/m3 ω 261.667 rad/s

D 52 mm µ 0.0035 kg/m/s

Table 1: Simulation information.

The Reynolds number for the blood pump simulation is approximately 210, 000. Therefore,
in order to overcome the difficulty of computing high Reynolds number flow, the Variational
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Multiscale Method comes into play. VMS provides a general framework of treating the subgrid
phenomena while dealing with the incompressible Navier-Stokes equations numerically, such
that the scale spectra can be handled adequately. The fundamental concept of VMS is to separate
the complete scale range into different scale ranges in order to treat them individually. For
demonstrating the our Variational Multiscale model, we illustrate first the discrete variational
formulation of the incompressible Navier-Stokes equations (Equation (1)):

Taking u ∈ V , p ∈ Q, such that:

∫
Ω

(
∂u

∂t
+ (u− ur) · ∇u) · v dx+

∫
Ω

µ

ρ
∇u : ∇v dx−

∫
Ω

1

ρ
p∇ · v dx = 0 ,∫
Ω

q∇vdx = 0 ,

∀v ∈ V , ∀q ∈ Q.
Here, V and Q are appropriate solution spaces for the velocity u and the pressure p on Ω. v

and q are the test functions for the velocity and pressure respectively. We omit the weak form
for the boundary conditions and the definition of ur for the sake of simplicity.

In this work, we consider two-scale residual-based Variational Multiscale model, it implies
that the velocity and pressure variables can be decomposed like:

u = uh + û , (6a)
p = ph + p̂ , (6b)

where uh and ph are resolvable solutions, û and p̂ are unresolvable solutions. According to
the decomposition of solution functions, the underlying function spaces V and Q can also be
separated by using the direct sump decomposition [1, 26], i.e.:

V = V h ⊕ V̂ , (7a)

Q = Qh ⊕ Q̂ , (7b)

V h and Qh represent the finite-dimensional subspace of resolved scales, V̂ and Q̂ represent the
infinite-dimensional subspace of unresolved scales. Under the Finite Element framework, the
resolvable space is chosen as the finite element space [3]. By this decomposition, the variational
formulation of the Navier-Stokes equations (Equation (5)) is decoupled into a resolved-scale
equation and an unresolved-scale equation:

A(u; (uh, ph), (vh, qh)) + A(u; (û, p̂), (uh, qh)) = 0 , ∀(vh, qh) ∈ V h ×Qh , (8a)

A(u; (uh, ph), (v̂, q̂)) + A(u; (û, p̂), (v̂, q̂) = 0 , ∀(v̂, q̂) ∈ V̂ × Q̂ . (8b)

If we write Equation (5) in the following fashion:
Find u ∈ V , p ∈ Q, such that:

A(u; (u, p), (v, q)) = 0 , ∀(v, q) ∈ V ×Q . (9)
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Therefore, the resolved-scale equation is not closed, the unresolved-scale contributions have
to be appropriately modeled. We apply the residual-based stabilization method in order to
model the velocity and pressure on the subgrid scale. The two-scale residual based Variational
Multiscale formulation is stated as below:

(
∂uh
∂t

,vh) + ((uh − ur) · ∇uh,vh) (10a)

+
µ

ρ
(∇uh,∇vh)−

1

ρ
(ph,∇ · vh)

+(τMrM , (uh − ur) · ∇vh) + (τCrC ,∇ · vh)
−(τMrM · ∇uh,vh)− (τMrM , τMrM · ∇vh) = 0 , in [0, T ]× Ω ,

(∇ · uh, qh) + (τMrM ,∇qh) = 0 , in [0, T ]× Ω . (10b)

Here, the spatial domain Ω is divided into nel finite element subdomains. V h and Qh are
the finite dimensional spaces for the discrete solutions uh and ph, respectively. vh and qh are
the test functions for the velocity and pressure. rM and rC are the residual of momentum and
continuity equation:

rM =
∂uh
∂t

+ uh · ∇uh −
µ

ρ
∆uh +

1

ρ
∇ph , (11a)

rC = ∇ · uh . (11b)

τM , τC are the stabilization parameters, which are defined in [26]

3 UNCERTAINTY MODEL

3.1 Uncertain inputs

According to [27], we consider three different sources of input uncertainty in our model: the
inflow boundary condition g, the angular speed ω and the dynamic viscosity µ. We employ the
generalized Polynomial Chaos Expansion (gPCE) [28, 25, 2] technique to model the uncertainty
propagation in the input parameters. We chose the ignorance mode, a Uniform distribution, to
model the input uncertainty, i.e. ξi ∼ U(−1, 1), i = 1, 2, 3. They read:

g = g0 + g1ξ1 , (12a)
ω = ω0 + ω2ξ2 , (12b)
µ = µ0 + µ3ξ3 , (12c)

where g0,ω0 and µ0 are the mean values for each random input. g1,ω2 and µ3 are the maximum
deviation with respect to the mean their value, which are defined as: g1 = σ1g0, ω2 = σ2ω0,
µ3 = σ3µ0 respectively. σi, i = 1, 2, 3 are the deviation factor, hence 0 < σi < 1. We also
define the multivariate random variable ξ := (ξ1, ξ2, ξ3). Accordingly, ξ allows us directly to
map the outcomes of an abstract probability space (Ω,A,P) to a subset T of R3. Afterwards,
we can express our stochastic solution immediately with the aid of ξ.
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3.2 Stochastic Galerkin projection

Two primitive variables velocity u and pressure p are expressed with Polynomial Chaos
Expansion technique [19]:

u(x, ξ) =
∞∑
i=0

ui(x)ψi(ξ) , (13a)

p(x, ξ) =
∞∑
i=0

pi(x)ψi(ξ) . (13b)

Here ψi(ξ) the orthogonal Chaos Polynomials, as we model the uncertain input parameters with
the standard Uniform distribution, ψi are practically the Legendre Polynomials. The orthogo-
nality of ψi with respect to the probability density function of ξ in this work can be written
as: ∫

[−11]3
ψi(ξ)ψj(ξ)

1

23
dξ = δij , (14)

where δij is the Kronecker delta function. However, working with a infinite series (Equa-
tion (13)) is numerically unpractical. We have to approximate u and p by truncating the infinite
sequence up to certain polynomial order N0, it gives:

u(x, ξ) ≈
P∑
i=0

ui(x)ψi(ξ) , (15a)

p(x, ξ) ≈
P∑
i=0

pi(x)ψi(ξ) , (15b)

where P + 1 = (M + N0)! /(M !N0! ) is the total number of Polynomial Chaos modes, M is
the number of random variables, in this study M = 3 [26].

Equation (15) are also valid for the discrete solutions uh and ph. We replace at first the
velocity and pressure by the Chaos Expansion (Equation (15)), then we multiply one Chaos
polynomial ψk, k = 0, ..., P on both side the equations. After that, we take the L2 inner product
on L2(T ). The procedure we describe above is called as the stochastic Galerkin projection.
Equation (10) can be rewritten as:

∂uk
∂t
vk +

P∑
i=0

P∑
j=0

((ui − uri ) · ∇)ujvkcijk +
P∑
i=0

P∑
j=0

µi
ρ
∇ui : ∇vjcijk +

1

ρ
pi∇ · vk (16a)

+τM((uk − urk) · ∇vk)[
∂uk
∂t

+
P∑
i=0

P∑
j=0

((ui − urj) · ∇)ujcijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆ujcijk +
1

ρ
∇pk] + (∇ · uk)τC(∇ · vk) , in Ω ,

qk∇ · uk (16b)
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τM∇qk[
∂uk
∂t

+
P∑
i=0

P∑
j=0

((ui − uri ) · ∇)ujcijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆ujcijk +
1

ρ
∇pk] , in Ω .

for k = 0, ..., P , and cijk :=< ψiψj, ψk >.
The Variational Multiscale formulation of the incompressible Navier-Stokes is showed un-

der the framework of moving mesh computation, especially for the blood pump modelization.
The three uncertain input parameters are modeled with a first-order expansion, the generalized
Polynomial Chaos Expansion is to use to quantify the uncertainty propagation.

4 NUMERICAL RESULTS

The nonlinear system (Equation (16)) is solved by the inexact Newton scheme, we applied
the Crank-Nicolson time stepping scheme with the strategy choice 1 of Eisenstat and Walker in
[13] with an initial forcing term equals to 0.5.

Inflow maximal speed (m/s) 0.5 Inflow speed variation (σ1) 0.1
Angular speed (rad/s) 261.8 Angular speed variation (σ2) 0.1
Dynamic viscosity (N · s/m2) 0.0035 Viscosity variation (σ3) 0.1
RPM 2500 Density (Kg/m3) 1035

Table 2: Model parameter values.

The spatial domain (Figure 1) is discretized with 2, 984, 859 elements, it gives 2, 274, 904
degrees of freedom (DOFs) for the deterministic problem. We set the polynomial degree to 3,
it results in total 20 Polynomial Chaos modes, it implies that the global stochastic system has
around 45.5 Millions DOFs. The full simulation is computed until the flow becomes stable, in
our case, we proceed the simulation till 5 rotations. Table 2 illustrates the model parameters are
used in the simulation, we set σi, i = 1, 2, 3 to 0.1, it means that the uncertainty in the three
input parameters are taken as 10% of their mean value. The full simulation is computed with
2048 processors, the total computational time is around 100 hours.

Figure 2 demonstrates the mean value of the velocity field and the pressure field on a cross-
section (6.5mm from the bottom) of blood pump at the 5th rotation, and Figure 3 shows the
standard deviation of the velocity and the pressure at the same location. In the pump cham-
ber, vortexes can be observed due to the strong rotation, and more larger vortexes occur in the
outlet (Figure 2d). For the velocity, only the velocity in y−axis direction contributes the most
uncertainties in the pump chamber (Figure 3b), but the uncertainty in the outlet is mainly dom-
inated (Figure 3d). However, the pressure in the chamber is almost asymmetrically distributed
(Figure 2e), strong uncertainties are located in the chamber and the outlet (Figure 3e). We also
observe that the pressure on the center of rotor is negative (Figure 2f) due to the suction effect,
the amount of uncertainty of pressure is relatively 10% of the mean value (Figure 3f), it could
be caused by the choice of the input uncertainty (Table 2).

Furthermore, the centrifugal pump can cause a non-negligible amount of hemolysis based
on the shear stress and the exposure time. Therefore, it is very important to assess the quantity
of the hemolysis under sever conditions in blood pump, such that there is still enough red blood
cells entering the body.
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 2: Mean value of velocity and pressure at the 5th rotation.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 3: Standard deviation of velocity and pressure at the 5th rotation.

One of widely used estimators for quantifying the amount of hemolysis is the index of hemol-
ysis (IH) [11, 21], which is defined as:

IH := (1− Hct

100
)
∆Hb

Hb
× 100 . (17)

Here, Hct is the hematocrit, which signifies the amount red blood cells (RBCs) in blood. Hb is
hemoglobin, and ∆Hb is the quantity of hemoglobin, which is released into blood plasma after
the shear stress and the exposure time both attain the critical magnitudes. Nevertheless, the ratio
between the released hemoglobin and the hemoglobin (∆Hb/Hb) has to be obtained by the
experiments in vivo, thus an empirical model is suggested to replace this part in Equation (17)
by using the power law:

∆Hb

Hb
= AHbσ

αHb
s t̃βHb . (18)
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AHb is the plasma-free hemoglobin, σs is the scalar shear stress, and t̃ is the exposure time [26].
In our model, the scalar shear stress is defined by:

σs := µGf = µ
√

2ε : ε , (19)

where Gf is the shear rate of blood flow, ε is the strain rate tensor:

ε :=
1

2
(∇u+∇uT ) , (20)

u is the velocity of the fluid.

(a) Mean value. (b) Standard deviation.

Figure 4: Index of hemolysis (IH) distribution (at 5th rotation).

(a) Mean value. (b) Standard deviation.

Figure 5: Index of hemolysis (IH) distribution (at 5th rotation).

Figures 4 and 5 demonstrates the index of hemolysis in the blood chamber. Figure 4 shows
the IH on a cross-section 6.5mm from the bottom. The index of hemolysis is very high next
to the outer part of the leading edge, it is caused by high shear stresses (Figure 4a). However,
the uncertainty of IH is high between the blades next to the trailing edge (Figure 4b). Figure 5
presents the IH on a cross-section close to the upper wall of the pump. In contrast to Figure 4a,
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the index of hemolysis is very high in the passages, it can be caused by the narrow space between
the upper wall and the blades, the blood is accelerated after going through this area (Figure 5a).
The uncertainty of IH is basically important at the locations, where the mean value is high
(Figure 5b).

5 CONCLUSION

This work is a following work of [27], which was focused on the solving techniques, i.e. the
Multilevel preconditioner, for dealing with the coupled large stochastic system. The numerical
algorithms have been showed the efficiency on the stochastic Galerkin system especially for
high performance computing. In this work, we apply the two-scale residual-based Variational
Multiscale method enables the possibility of computing high Reynolds number flow in the blood
pump. The intrusive stochastic Galerkin approach can be constructed systematically.

Three sources of uncertainty are considered in this application, i.e. the inflow boundary con-
dition, the rotational speed and the dynamic viscosity. We place our interest in the velocity and
pressure fields, quantitative comparison and analysis is showed in Section 4. Moreover, quanti-
fying the amount of blood damage induced by the blood handling device is also very important,
because it influences directly the quality of blood, which is inducted into the body. Therefore,
the index of hemolysis on two different locations are also presented, we observe the distribution
of hemolysis is remarkably different. By providing the access of the standard deviation of the
IH , we can access the confidence in the evaluation of uncertain input parameters on the blood
damage.
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Abstract 

The accumulated damage in aging Steel Structures, especially due to fatigue, is considered as 
a critical phenomenon that affects safety and serviceability of civil engineering structures. 
Although, fatigue damage is influenced by various parameters such as the frequency of load-
ing, sequence of load application, material properties, geometry, etc, in practice simplified S-
N curve is typically used for condition assessment. In order to mitigate risks of catastrophic 
failure resulting from fatigue brittle nature, even in normally ductile materials, researchers 
have generated several non-linear damage models to predict the remaining service life of the 
structure considered. These models are mainly based on the S-N curve, material dependent 
parameters and loading conditions. However, due to the complexity of the fatigue phenome-
non and expensive-long term full scale experimental testing, the models presented in litera-
ture have shown high degree of uncertainty due to simplifications of mathematical models, 
parametric uncertainties and varying loading conditions. Furthermore, the usage of S-N 
curve generated from experimental work is limited to identical loading mechanism and con-
stant boundary conditions. Therefore, this study presents a structural health monitoring ap-
proach to overcome the limitation and inaccurate estimation of damage quantification 
models. The suggested framework relies on fatigue damage prediction models incorporated 
with real time damage records. All sources of uncertainty are incorporated in the health mon-
itoring scheme to guarantee an optimal statistical identification of the state damage. The ac-
curacy and robustness of the presented scheme will be assessed through a set of controlled 
experiments and numerical simulation of real case scenario.  

Keywords: Data assimilation, Ensemble Kalman filter, Fatigue damage, Steel structures, Un-
certainty quantification.
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1 INTRODUCTION 

When designing steel structures, a significant attention must be paid for a critical pheno-
mena known as “material fatigue”. Fatigue means that the material can fail below its mono-
tonic strength when its subjected to repeated loading due to accumulated deterioration in its 
stiffness. In order to mitigate catastrophic structural failure due to brittle fatigue failure, accu-
rate prediction of the remaining service life is essential. Therefore, several nonlinear modeling 
attempts were made in [1 to 4], based on different well established fatigue fundamentals, yet 
their application requires modification of S-N curve parameters or the determination of ma-
terial properties. Recently, a new damage model is generated on the basis of S-N curve para-
meters without requiring neither additional parameters nor curve modifications [5]. The 
validity of the later model was checked for two steel materials of grades C45 and 16Mn and 
found to be satisfactory. However, in practice, several sources of uncertainty are identified 
once developing any damage detecting model, such as mathematical simplifications, experi-
mental errors and variability in loading conditions, that can yields non-satisfactory prediction 
accuracy [6]. 

 
In the light of what is presented, the aim of this research is to present a structural health 

monitoring framework to calibrate the predictive response of the fatigue damage model to mi-
tigate brittle failure. The presented framework is based on Ensemble Kalman filter and real 
time damage which updates the statistical characteristics of the selected model parameters. 
Therefore, to guarantee accurate statistical representation of the output response, all statistical 
input errors, such as initial guess errors, model errors and measurement errors are quantified 
and incorporated in the developed data assimilation technique. 

 
The accuracy of the presented scheme is assessed based on numerical and experimental ve-

rification. The importance of this developed strategy relies in its ability to significantly en-
hance the predicted model parameters to provide accurate determination of fatigue damage 
prior to any critical damage or sudden failure.  

2 FATIGUE DAMAGE MODELS: COMMON LIMITATIONS  

      The history of Cumulative fatigue damage started more than eighty years ago when Miner 
[7] suggested the concept known as “The Linear Rule”. In 1945, Miner displayed this concept 
in a mathematical form based on the summation of the ratio of number of cycles to the total 
number of cycles at failure under constant load amplitude. Due to the simplicity and easy ap-
plication of this rule, it has been adopted by several researchers and recommended by design 
codes such as Euro code [8]. However, it was obtained by several researchers that Miner’s 
rule may lead to unrealistic life estimation since it doesn’t consider the damage due to load 
sequence and interaction. As a result, improvements were done by Palmgren in the form of 
nonlinear Palmgren-Miner rule, yet the modified rule depends on fatigue testing to determine 
its parameters. Many other nonlinear models, such as [9], were developed based on material 
parameters that can be obtained only through extensive testing. Though these models have 
proven to provide satisfying agreement with experimental data, yet the necessity of material 
testing hindered their engineering applications. 
 
       In the 1999, efforts were paid to generate damage evolution curves for several materials 
that are based on experimental damage records versus the number of cycles to failure. As a 
result, several models were proposed to provide agreement with the tested experimental data 
of the damage curves, but it’s still limited to specific materials only. To overcome this issue, a 
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sequence law was generated and then applied in steel bridges [10] requiring only full range of 
S-N curve and provided excellent results. Similar to the case of previous concepts and mod-
els, this sequence law didn’t have wide implementation in engineering problems since it needs 
the availability of full range S-N curve, as well as, it can’t be applied for bilinear and trilinear 
S-N curves found in codes. 
 
     Therefore, although several fatigue prediction models are available nowadays, design 
codes and standards are still recommending Miner’s Rule due to its simplicity and indepen-
dency from extensive material testing.  
 

In this study, the fatigue prediction model presented in [5], and summarized below, will 
be adopted to simulate the material damage in the EnKF propagation. This model serves as a 
convenient candidate for its simplicity and significant prediction accuracy. Moreover, this 
model is based solely on one parameter which makes it an attractive option for data filtering 
techniques as it reduces the possibility of over fitting and inefficient filtering. The details of 
the adopted model are discussed in the next section.  

3 SELECTED FATIGUE DAMAGE MODEL  

      In data assimilation setting, the main concern is to rely on a forward predictive model that 
can be both accurate and guarantees convergence to optimal solution. Based on these condi-
tions, a fatigue damage model relying only on existing S-N curve parameters was selected. 
For instant, the accuracy of this model was verified for several applications and it possesses a 
simple parametric structure that ensures convergence in a data filtering setting. 

3.1 S-N Curve Overview  

The S-N diagram is the plot of nominal stress amplitude S versus the number of cycles to 
failure N. There are numerous testing procedures to generate the required data for a proper S-
N diagram. The S-N test data is often presented as log-log plot, with the actual S-N line de-
noting the mean of the data from several experimental tests. 

 
 In fact, the material response to applied stress is considered complicated since there are 

several factors that can alter the endurance limit which is displayed in figure 1. These factors 
include: surface finish, size, type of loading, temperature, corrosive, and other aggressive en-
vironments, mean stresses, residual stresses, and stress concentrations. Also, fatigue data must 
be obtained from specimens and used in design for structural safety as mentioned in design 
codes. However, this information is not often available, so approximations of the S-N curve 
must be made. To overcome the stated obstacle in the S-N curve, the Basquin model is se-
lected to be an approximation of the curve found in standards; besides endurance limit correc-
tions. What makes Basquin a proper selection is related to its simplicity and ability in 
providing accurate results as mentioned in the literature.  
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Figure 1: Typical S-N Curve of two Different Materials 
 

Basquin representation of S-N curve is demonstrated by Eq.1 
 

                                                            S=aNb                                                                              (1) 
 

Where, S is the applied stress ,N is the number of cycles at failure, a and b are coefficients 
related to the tested material. 

3.2 Damage Index    

       The chosen damage model [5] shown in Eq.2, is based only on one modal parameter that 
can be applicable to any design category including material discontinuity and stress concen-
trations. Consequently, this parameter overcomes the need of material testing and S-N curve 
modifications as it was the case in previous nonlinear models [9,11]. 
 

                                                              Di=1-[1-ni/Ni]
ẟi                                                                  (2) 

 

Where, ni is the number of cycles at specific stress amplitude, Ni is the total number of cycles 
at failure, and ẟi is the modal parameter calculated based on Eq.3. 
 

                                                              ẟi =-1.25/ln(Ni)                                                        (3)   
 

3.3 Applicability of the Selected Model  

        The presented damage model is extended under the concept of damage transfer to intro-
duce a new parameter, denoted by load interaction factor, to account for variable amplitude 
loading and load sequence along with the interaction between them. This new concept was 
verified with experimental results to give satisfactory estimation of the remaining fatigue life. 
Furthermore, unlike the case of most nonlinear models, the current model presented an appli-
cation section on butt and fillet welded joints and showed better prediction of fatigue damage 
compared to other models including Miner rule [5]. 

4 SEQUENTIAL DATA ASSIMILATION AND CASE STUDY 

   Sequential data assimilation is based on estimating unknown state variables based on the 
dynamic response of the structure besides the available observation data. Recently, sequential 
data assimilation has been popular in many engineering fields especially with the advances in 
monitoring technique and computer-based simulations [12,13].  A widely used sequential as-
similation filters are the Kalman filter family. The standard Kalman filter was initially derived 
based on minimum variance error for the system with linear dynamics and Gaussian errors. 
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However, several extensions were suggested later to overcome its limitation and to make it 
applicable on systems with nonlinear dynamics, leading to the formulation of the Ensemble 
Kalman Filter [14]. 

 The Ensemble Kalman filter was generated by Evensen 1994 [14] as an alternative of the 
extended Kalman Filter which is limited by statistical linearization and closure approximation. 
The EnKF propagates the state vectors of various samples forward in time so that they can be 
updated at each time increment of available measurements.  

In this study, the state vector is composed of S-N curve model parameters, maximum num-
ber of cycles N, damage index δ and the predicted damage level using damage model elabo-
rated in section 3. However, the observed quantity in this study is the material damage. In 
practice, material damage can be monitored through several destructive and non-destructive 
techniques, such as uniaxial or multi axial testing, vibration analysis, ultrasonic wave analysis, 
deflection response etc… 

5 UNCERTAINTY QUANTIFICATION 

         Upon developing a mathematical model to simulate the fatigue damage of steel mem-
bers, many sources of uncertainty are identified. First, the model input parameters have a wide 
range of variability. For instant, the endurance strength displayed by the S-N curve is influ-
enced by several parameters as previously discussed in section 3.1. Furthermore, additional 
uncertainty arises by the simplification of mathematical models adopted, as well as, field 
measurement errors and varying application conditions. Consequently, to accurately detect the 
fatigue damage in steel members, researchers are interested by Structural Health Monitoring 
(SHM) along with Ensemble Kalman Filter to accurately identify and minimize these uncer-
tainties. 

        In this research, all contributing sources of uncertainty are identified and incorporated in 
the EnKF framework.  The adopted damage prediction model is verified on several experi-
mental data and the average error was estimated to be around 9% and the maximum error is 
found to be around 20%. The statistical distribution of the error in the suggested model, based 
on all the presented experimental results in [5], can be statistically verified to be modeled as a 
normal distribution with zero mean and a standard deviation of 8% of the predicted value. The 
measurement noise is also considered in this study. Since measurement error depends on sev-
eral factors such as, human errors, type of measurement and scale of the project, in this exer-
cise it will be assumed a white noise with a standard deviation of 1.5% of the measured state.  
The initial parameters statistics of S-N curve are commonly represented by a lognormal dis-
tribution [6]. Therefore, a lognormal statistical distribution will be used to simulate the initial 
error statistics.  

6 NUMERICAL AND EXPERIMENTAL VERIFICATION 

  In the following section robustness and accuracy of the presented scheme will be assessed 
based on a simulated numerical example and experimental data.  

6.1 Numerical verification 

      In order to assess convergence and stability of the presented scheme, a set of simulated 
measurements based on the damage prediction model, presented before, are employed to 
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serve as the real time measurements for the calibration of the EnKF. True state S-N curve 
model parameters, a,b and N, are used to simulate the True state damage data. Moreover, to 
simulate a real case scenario, an 8% normal error perturbation is added to the simulated dam-
age data. Finally, for better resemblance of the measured data, this exercise also accounts for 
measurement errors by adding a white noise with 1.5% standard deviation of the measured 
response. Therefore, a measurement error will be added to the perturbed true damage data and 
will be considered as the measured data or measured state. A summary of the measured data 
simulation is presented in table 1. 

 
Variable Value 

aTrue 2738 
bTrue -0.241 
Stress 200 Mpa 

N (Maximum Cycles at 
stress=200MPa) 

5.4x104 Cycles 

Perturbed True state True state+8% error 
Measure data Perturbed True state+1.5% error 

 

Table 1 : Input for simulation of measured data 
 

      To initiate the EnKF framework, an initial set of parameters, model errors and measure-
ment were selected as discussed in the uncertainty quantification section. A large ensemble 
sample size equals to 20,000 sample was selected to accurately represent and integrate the 
time varying statistics of the state vector. The update frequency is 1350 cycles (2.5% of True 
life time cycles). Table 2 summarizes the initialization of the EnKF framework. 
 
 

Parameter Mean Standard deviation Distribution 
a  initial 3300 15% of mean Lognormal 
b initial 0.21 15% of mean Lognormal 

Model error 0 8% of predicted state Normal 
Measurement error 0 1.5% of measured state Normal 

 
 

Table 2:  EnKF framework statistical input 
 
      The simulated measurements are incorporated in the EnKF and serve as the real time data 
that calibrate the state vector. The measurements data, the EnKF mean prediction (mean pre-
diction with real time updates) and the initial mean prediction (mean prediction without EnKF 
updates) are presented in figure 2. It’s evident from figure 2 that the EnKF significantly im-
proves the prediction of the steel damage with time. It’s worth noting here that even less than 
20% error in the initial parameter estimation can drastically deteriorate the prediction poten-
tial of the damage model as compared to measured damage. The notable error in the initial 
prediction is attributed to the exponential nature of the damage prediction. The presented re-
sults serve as evidence on the power of the presented framework and emphasize the need to 
incorporate real time data with damage prediction models to render accurate and useful re-
sults.  
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Figure 2: EnKF mean damage prediction versus initial mean prediction versus synthetic data 
 

      The prediction capabilities of the suggested framework are further investigated in this 
study by predicting the damage using mean state vector estimates after different updates. Fig-
ure 3 shows the prediction of fatigue after 0, 1.08x104, 2.7x104, 3.78 x104 cycles that corres-
ponds to 0%, 20%, 50% and 70% of the life time of the structure. Figure 3 clearly shows the 
convergence of EnKF mean prediction to the true state as more measurements become availa-
ble. This figure confirms that EnKF significantly increases the accuracy of damage prediction 
starting from early life stage of the structure (after 20% of structure life) when compared to 
true state. Therefore, the presented framework can guide a well informed decision making 
analysis to early detect risks and to efficiently update maintenance schedules. 

 

 
 

Figure 3: EnKF mean damage prediction versus updates of number of cycles 

      An important variable of interest, in addition to damage factor, is the maximum number of 
cycles N, at a specified stress level, that can be safely carried by structure before failure. 
Therefore, the ability of the presented framework to predict N is also investigated. Table 3 
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summarizes the statistical prediction of N starting from different EnKF updates or after differ-
ent cycles. The presented results in table 3 reassure the ability of the framework to predict the 
damage starting from early life of the structure especially that the true state lies within one 
standard deviation from the mean estimate for all presented EnKF simulations. It’s also worth 
noting that the standard deviation decreases as more cycles or updates become available re-
flecting a more confident prediction especially after 50% of the structure life time (less than 
2% of predicted mean).  

 

Available Measurements  EnKF Predicted Mean life-
time (Cycles) 

Standard deviation (% of 
Predicted Mean) 

Up to 1.08x104 Cycles (20% 
of N) 

5.24 x104 8.86% 

Up to 2.7 x104 Cycles (50% 
of N) 

5.53 x104 1.91% 

Up to 3.78x104 Cycles (70% 
of N) 

5.50 x104 1.31% 

True value of lifetime cycles 5.4 x104 - 

 

Table 3:  EnKF statistical lifetime prediction versus updates or number of cycles 

6.2 Experimental verification 

To further investigate the accuracy of the suggested framework, an experimental data set 
presented in [5] is utilized for real time calibration of the employed damage model. A random 
initial distribution data was used as initial prediction of the damage. Figure 4 presents the ex-
perimental data versus initial mean prediction and the EnKF mean prediction. The presented 
results emphasize the robustness of the EnKF framework as all the experimental data points 
were predicted with less than 15% error, even when the initial prediction error exceeded 
100% of the measured value.  

 

660



 Nour A. Wehbi, and Wael G. Slika  

 

 
 

Figure 4: EnKF mean damage prediction versus initial mean damage prediction versus experimental data 

7 CONCLUSIONS AND FUTURE WORK 

    This study presents an EnKF framework for real time update of predicted damage and life-
time of steel structures in a statistical setting. The accuracy of the suggested framework was 
verified on numerical example and experimental data. The presented results showed signifi-
cant improvement over initial prediction whch motivates further investigation and testing of 
the framework on large scale and complicated steel projects. 
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Abstract 

The cables in a cable-stayed bridge are prone to fatigue damage and atmospheric corrosion, 
which directly affect the bridge safety. This study presents a framework for system reliability 
evaluation of in-service cable-stayed bridges subjected to cable degradation. The effect of ca-
ble strength degradation on the bridge reliability is demonstrated through simulation on a 
parallel-series system representation. Machine learning techniques are utilized to approxi-
mate the nonlinear and dynamic response surfaces of critical components due to cable rup-
ture, and the system reliability is finally evaluated from the event tree established by the β-
unzipping method. Both short-span and long-span cable-stayed bridges are selected as proto-
types to investigate the influence of cable degradation on the structural system reliability. 
System reliability of the bridge under ultimate limit state was analyzed. Numerical results 
show that: the intelligent algorithm is applicable in system reliability assessment of cable-
stayed bridges; the main failure sequence of the cable-stayed bridges is strength failure of 
cables in side-span followed by bending failure of towers in the cross section of tower and 
girder, and the second failure sequences is strength failure of cables in mid-span followed by 
bending failure of girders in root section;  Degradation of cables is the main factor to influ-
ence on system reliability of cable-stayed bridges. Compared with fatigue damage of cables, 
the corrosion of cables leads to a larger decline of system reliability indices. It is important 
for managers to provide maintenance and prompt replacement measures in order to insure 
the system reliability of cable-stayed bridges in operational period. 

Keywords: bridge engineering, system reliability, corrosion, fatigue, failure sequence. 
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1 INTRODUCTION 

Cable-stayed bridges are widely used to cross canyons and rivers because of their long-
span capacity and economic property. The long-span capacity of the cable-stayed bridge orig-
inates from the elastic support of the stay cables. However, the stay cables are vulnerable 
caused by the corrosion and the fatigue damage accumulation (Deeble et al. 2012; Yan, et al. 
2012). The failure of a stay cable can lead to the failure of another stay cables or girder, and 
then the propagation will lead to the collapse of the entire structure. Such collapses were gen-
erally summarized as the term of progressive collapse. Mehrabi et al. (2010) indicated that 39 
out of 72 cables of the Hale Bogges Bridge critically needed repair or replacement after 25 
years of service. In practice, the corrosion and fatigue damage will make a great contribution 
to the degradation of the cable strength resistance. This phenomenon results in a continuous 
declination of the strength resistance of the stay cable. Even through recommendations for 
robustness were provided in the design codes of cable-stayed bridges, the impact of degrada-
tion or loss of cables on the structural safety are still not clear. Thus, it’s extraordinarily nec-
essary and urgent to evaluate the safety of cable-stayed bridges with degenerated stay cables. 

Lots of achievements have been obtained on Mechanical property and dynamic property of 
cable-stayed bridges under the case of losing cables. Mozos and Aparicio (2011) studied the 
structural dynamic behavior of a cable-stayed bridge during the rupture of a stay cable. Wolff 
and Starossek (2010) studied the collapse resistance and collapse behavior of a cable-stayed 
bridge caused by loss of cables and recommended a robust design for avoiding the propaga-
tion of the cable loss. Wolff and Starossek (2009) examined the structural non-linear dynamic 
responses of a cable-stayed subject to the loss of a stay cable. However, most of the existing 
studies focused on the deterministic analysis without considering the structural uncertainties 
or utilizing a probability approach to assess the structural safety. 

Taking account of the structural uncertainties and the random loads, the failure of a stay 
cable is a probability and the propagation route is random. Thus, a reliability-based approach 
is needed for uncertainty induced safety assessment of in-service cable-stayed bridges. In par-
ticular, system reliability theory provides an appropriate solution for searching the failure se-
quence and evaluating the failure probability of the entire system. In the present, most 
research efforts were concentrated on developing an efficient algorithm for estimating the 
structural system reliability. The time demanding Monte Carlo simulation was proved to be 
not suitable for calculating the system reliability of bridges with an extremely low failure 
probability. The famous non-sampling method is theβ-bound method (Thoft Christensen, 
2012) and the branch-and-bound method (Lee and Song, 2011). In addition, the advanced re-
sponse surface method, article neural network, and other type of meta-model were presented 
to develop the efficiency or accuracy of the β-bound method. However, the application of the 
system reliability to the safety assessment of long-span bridges, such as cable-stayed bridges, 
is still insufficient. Bruneau (1992) utilized system reliability method to analysis the ultimate 
global behavior of a cable-stayed bridge and discovered 9 potential failure patterns for the ca-
ble-stayed bridge. Estes and Frangopol (2001) presented a system model by combining ulti-
mate and serviceability limit state of a highway bridge. Cheng and Xiao (2005) studied the 
serviceability reliability of cable-stayed bridges by utilizing the response surface method and 
finite element method and indicated that the cable sag had a major effect on the structural re-
liability assessment. Liu et al. (2016) developed an adaptive support vector regression ap-
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proach to assess structural system reliability. However, the degeneration of the cable strength 
was not considered in the above mentioned works. Li et al. (2012) utilized structural health 
monitoring data to evaluate the reliability of a long-span bridge. 

In view of the large complex structure, especially the research and application of reliability 
evaluation of structural system of cable bridge load-bearing structure c is relatively small. The 
main reason are: First of all, with the increase of bridge spans, the nonlinear increase of struc-
ture leads to the complex of limit state surface, leads to that the conventional first order two 
moment method (FOSM) and the MCS are no longer suitable for solving reliability index of  
the complicated structure directly;  The second, the complex structure results in the arge in-
crease of  failure mode and failure path. It makes the construction of structure system failure 
tree and the calculation system reliability index difficulties. So, there is an urgent need to de-
velop study on the reliability of the bridge structure system from the efficient intelligent algo-
rithm. 

This study aims at evaluating the system reliability of cable-stayed bridges with corroded 
stay cables. First, the mathematical modeling of potential failure pattern of the cable-stayed 
bridge and strength degradation of the stay cables was conducted. Subsequently, a computa-
tional framework integrating the intelligent learning machine technology and efficient search-
ing technology of failure sequences was proposed. Finally, a prestressed concrete cable-
stayed bridge was selected as a prototype to conduct the evaluation analysis. Main failure se-
quences of the cable-stayed bridge are identified. Influence of the strength degradation on the 
structural system reliability is studied. 

2 THEORETICAL BASIS 

2.1 Failure modes of cable-stayed bridges 

In order to introduce the general failure modes of cable-stayed bridges, consider a sample 
single tower cable-stayed bridge provided by Bromn (1992) shown in Fig. 1. The distances 
between the cable anchors in the girders or in the towers are 30m. More details regarding the 
material and sectional properties and performance functions can be found by Bruneau (1992). 
In general, the cables are considered as brittle since the rupture of a stay cable is momentary. 
The concrete girders and towers for long-span bridges are considered as ductile since the 
prstressed structures are allowed to be large deformation. The structural system failure is de-
fined by a plastic collapse mechanism. The plastic failure mechanism is identified by the plas-
tic-hinge locations and plastic capacities. The potential failure locations are shown in Fig. 1. 
Points A-E is defined as bending failure of girders due to negative moment plastic hinges. 
Points I-L is strength failure of brittle cables. Points M-R is the bending failure of girders due 
to positive bending moment. 

C1
C2

C4
C3

T1

T2
Plastic hange

Rapture

15m×12

15
m

×
2

25
m

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

 
Fig. 1 Dimensions and component number of a cable-stayed bridge 
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In this case, the structural mechanical behavior is assumpted as linear and elastic for a 
more simple illustration. A component reliaiblity analysis was performed to evaluate the 
failure probability of each identified strcutral candidate element. When the cable rupture 
occures, delete the cable directly and continue the next analysis. When the the bending failure 
occures in the girders, add a plastic hinge in the location and continue the next analysis. It is 
acknologed that the structural stiffness and resistance are changing at any modified step. This 
means the remaining structural elements reform a new structural system and need reanalysis 
at the next step. This process will be repeated for updating the structural behavior. The new 
performance functions and new failure probability will be obtained in each process. As the 
end of the processes, the progression along the failure sequrnces will be stopped in case of the 
failure propbability of the final component is expected to be extremely high. Note that the 
process should be stopped for saving computational effort in case that the structure still have 
the load carrying capability but the system is very instability. The falut tree of the cable-
stayed bridge are shown in Fig. 2. It is observed that the oritinal strcutural system reliaiblity 
index is beta=4.54, while with the consideration of the strengthend degradation of stay cables, 
the beta reduce to 3.5. Furthermore, the main failure sequence changed from the initial 
negative bending failure of girders to positive failure bending failure of girders followed by 
the failure of stay cables 

(a)  (b) 

Fig. 2 Event tree of the cable-stayed bridge: (a) original model; (b) with consideration of strength degradation rate of 20% for 

the cables 

As observed from Fig. 2, the following conclusions can be driven. Firstly, the failure prob-
abilities of the cables are increased. For instance, the failure probability of the C2 decrease 
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from 0.154×10-4 to 0.243×10-4. Secondly, the dominant failure mode changed, where the 
initial domain failure mode is Hinges at G10 and G2, while the new domain failure mode is 
the rapture of cable at C2 followed by the Hinge at G6. Finally, the failure probability of the 
structural system increase from 1.53×10-6 to 4.46×10-5. As elaborated above, the strength 
degradation of the stay cable not only impact the reliability of the stay cables, but also has a 
significant impact on the structural system reliability and the dominant failure mode. 

2.2 Geometrically nonlinear effects 

For the aforementioned simplified cable-stayed bridge, the structural nonlinear properties 
were not considered. However, as the span of modern cable-stayed bridges increases, the ge-
ometrically nonlinearity property become more obvious for the long-span cable-stayed bridge. 
Such nonlinearity mostly includes the cable slag effect, the beam-column effect and the large 
displacements effect. The cable sag effect is the most important one and the common solution 
is to use the Ernst method or modified elastic modulus for the cables. Considering a parabolic 
instead of a catenary shape for the cable, the modified modulus Eeq are written as (Freire et al. 
2006) 

2 2

3

1

1
12

eq
h

E E
q L

EA
T




(1) 

where, E is the Young modulus of the material, T is the cable tension, q is the unit self-weight 
per length, Lh is the horizontal component, A is the cable cross section. 

The beam-column effect is another feature for a typical cable-stayed bridge, because the 
prestress stay cables provide large axial force for the girders and towers. It is acknowledged 
that the beam-column interaction is a second-order effect and can be conveniently considered 
by utilizing stability functions. The interaction between the bending moments and axial force 
will modify the component stiffness coefficient and the internal forces. Assume a hollow rec-
tangular section, where the neutral axis in the ultimate stays within the webs, from the sample 
plastic analysis, the axial bending interaction curve can be defined as (Yoo et al., 2012) 

2 2

1
4P P x

M P A

M P wZ

 
   

 
(2) 

where, M is the applied moment, MP is the plastic moment capacity in the absence of axial 
loads, P is the applied axial force, PP is the plastic axial force capacity in the absence of ap-
plied moment, w is the web thicknesses, and Zx is the bending plastic modulus. 

2.3 Cable degradation modeling 

Cable degradation is a common phenomenon in existing cable-supported bridges. This 
phenomenon is mostly caused by lacks of construction quality and regular maintenance. 
Therefore, under the long-term affection of corrosion and cyclic stresses, the stay cables be-
came rusty and then fractured. In general, stay cables are supported by the steel 
strand or parallel wires. Liu et al. (2004) utilized a parallel-series model to establish the prob-
ability model of the steel wire cables during construction written as: 

( ) 1 exp[ exp( 1915)]XF x x    (3) 
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where, x is the strength (MPa) of a stay cable. It is observed that x follows an Extreme value 
distribution. With respect to the cable degradation, this study considers corrosion and fatigue 
effect.  

First, Taking into account the cable degradation due to corrosion and fatigue, Tang () es-
tablished the time varying model for cables of a cable-stayed bridge at Chongqing, China. The 
mean value and standard deviation of the degradation coefficient of the cables in 20 years are 
written as: 

3 2 5 3

3 2 5 3

( ) 0.97 0.0112 3.6 10 8 10

0.98 0.095 3.1) 7 0( 10 1

t

t

t t t

t t t





 

 

    

 



  





                                  (4) 

where, t is the service period (year) of a bridge, g(t) is the mean value of the degradation coef-
ficient for the cable, g’(t) is the standard deviation of the degradation coefficient. 

For fatigue-induced cable degradation, fretting-fatigue induced cable degradation is pro-
posed by Wang et al. (2010), and is written as: 
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4 2
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t t t

t t t t









     


     
                (5) 

With the aforementioned cable degradation equations, the probability model can be then 
derived. 

3 COMPUTATIONAL FRAMEWORK FOR STRUCTURAL SYSTEM 
RELIABILITY EVALUATION 

Due to the high order statically indeterminate of the long-span cable-stayed bridge, the 
structural system is complex and time-variant during the long-term service period. First, since 
the component failure probability is extremely small, the rough Monte Carlo Simulation 
(MCS) is time-consuming. The multi failure sequences of the bridge lead to national compu-
tational efforts. The popular reliability evaluation approaches, such as, First Order Second 
Moment (FOSM) and Response Surface Method, are not excellent for solving aforementioned 
issues. Therefore, based on the above formulations, this study utilizes an intelligent combined 
computational framework to carry out analysis. Fig. 3 plots the flowchart of the framework. 
The main procedures of the framework are estimating component reliability by RBF neural 
network approach, and the searching failure sequences based on beta-bound theory. Details of 
the main procedures are discussed below. 
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Fig. 3 Flowchart of the proposed computational framework 

Support vector regression (SVR) is a machine learning approach that is more effective and 
accurate in comparison to the response surface method and the neural networks. The applica-
tion of SVR in reliability evaluation is initially proposed. Subsequently, numerous advanced 
SVR approaches have been developed, such as least squares-SVR, particle filter-SVR, and 
Genetic algorithm-SVR (Dai et al. 2012; Zhang et al. 2012). This study utilized an adaptive 
support vector regression (ASVR) approach proposed by Liu et al. (2016) to estimate struc-
tural component reliability. Since the formulations can be found by Liu et al. (2016), the 
mainly steps are descripted below. 

The ASVR utilizes two updating procedures to calculate the system reliability. The first 
updating procedure is to update the design point via the genetic algorithm. With such design 
point, the reliability index can be calculated by an optimization equation. The second updating 
procedure is to update the support vectors under the condition that the potential failure com-
ponent is removed from the original structural finite element model. After the second updating 
procedure, a failure sequence is obtained. Continue to redo the above updating procedures, 
and all of the failure sequences will be found. Finally, the system reliability can be calculated 
by the parallel-serial approach with the established fault tree. 

A GUI-based program is developed based on the ASVR for an efficient calculation. In this 
program, there are mainly two commercial finite-element programs including Matlab and An-
sys. With respect to the cable-stayed bridge in the present study, there are some special steps 
for the system reliably estimation utilizing the ASVR approach. First, since the probability of 
failure of each component is extremely small, ranges of the variables in the first sampling de-
sign stage should be within μ-3σ and μ+3σ. After the first updating of support vectors, the 
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sampling range can be reduced to μ-σ and μ+σ. Second, ANSYS is recommended as the 
commercial FE program, because there is connection between ANSYS and MATLAB, and the 
entire computational framework will be more convenient. Third, at the second updating pro-
cedure, the stay cables can be removed directly when the stay cables are considered as a po-
tential failure component. The final failure mode of the cable stayed bridge is considered as 
the bending failure of the concrete girders and pylons components. Thus, the branching point 
of the flowchart in Fig. 4 is to check if the concrete girders and pylons is failed or close to 
failed. 

4 CASE STUDY 

4.1 Bridge details 

Hejiang bridge is a cable-stayed bridge corssing Yangzi River at Sichuang, China. The lay-
out and dimensions are shown in Fig. 4. According to the design documents, the material of 
girders and pylons is concrete, and the material of cables is steel strand. There are 4 traffic 
lanes in the opposite travelling directions. In Fig. 4, CBA34 denotes the serial number of the 
34th Cable in the Mountain-side of the North-pylon, GNR34 denotes the serial number of the 
34th Girder in the River-side of the South-pylon, T1 denote the first section of the pylon. 

 

 
Fig. 4. Layout and series number of a cable-stayed bridge(unit: cm) 
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This bridge is select herein as a prototype to evaluate the system reliably with considera-
tion of cable degradation utilizing the computational framework. The self-weight of initial 
cable force are considered. The live load is simplified as uniformly distributed load in the 
mid-span. The statistics of the random variables are shown in Table 1. 

Table 1. Statistics of the random variables 
Variable Distribution Mean value Standard deviation Remarks 

E1 Normal 3.64×104 3.64×103 Elastic modulus of girders 
E2 Normal 3.52×104 3.52×103 Elastic modulus of pylons 
E3 Normal 1.95×105 1.95×104 Elastic modulus of cables 
A1 Lognormal 20.846 1.042 Cross sectional area of girders
A2 Lognormal 24.694 1.235 Cross sectional area of pylons
A5 Lognormal 1.4×10-4 7.0×10-6 Cross sectional area of cables
γ1 Normal 26.56 1.33 Equivalent unit weight 
γ2 Normal 26.24 1.31 Equivalent unit weight 
γ3 Normal 78.5 3.93 Equivalent unit weight 
I1 Lognormal 18.598 0.930 Moment of inertia of girders 
I3 Lognormal 118.412 5.921 Moment of inertia of pylons 
q1 Normal 132 6.6 Secondary deck load 
q2 Extreme value 63.5 6.35 Live load 

4.2 Results and discussion 

In the platform of ANSYS, establishing the parametric finite element model of the bridge 
through APDL language, considering the geometric nonlinear of  cable element through 
equivalent elastic modulus. A total of 470 BEAM44  elements make up of the girder and tow-
er, along with the stay-cables consisting of 270 LINK10 elements. Assuming the final hanger 
force as the real force regardless of the shrinkage and creep effect.          

The appropriate simplified process is necessary when screening failure paths, with various 
failure paths and high correlation of the failure mode betwen the same components. The 
sytem reliability analysis was introduced from the angle of cable failure this paper. Condering 
Firstly the influence of bending moment, with respect to the key section of tower and beam, 
caused by successive failure of the north tower side span or medium span. Influence of pa-
rameters on the the bending moment of mid-span-point girder is shown in Fig. 5. 
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Fig. 5. Influence of structural parameters on the mid-span-point bending moment 
As illustrated before, the failure of  the side-span cable with a relatively large effect for 

bending moment on tower T2 section, while there appears big influence to the bending mo-
ment on girder caused by the failure of midspan cable. Therefore it is feasible to ignore 
branch events of beam bending failure and tower failure, caused respectively by the cable 
failure of side-span  and midspan. Three layers fault tree with four failure paths of the cable-
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stayed bridge is as shown in Figure 6, calculated in accordance with the flow chart of com-
bined intelligent algorithm. Figure 6 illustrates that, the range of system reliability index for 
cable-stayed bridge is from 7.24 to 7.38. It is the bending failure of tower resulting from side-
span cable failure that affects greatly the system reliability index. 

 
Fig. 6 Three-layer failure tree of the cable-stayed bridge 

There is great influence on the structure system reliability index for the reliability index of 
the cable, with the failure events of the cable-stayed bridge system all resulting from failure of 
two pairs of cable. The variation tendency of reliability index, as shown in Figure 7, with re-
spect to the two pairs of stay cables has been educed in 1~20 years, using function of force 
degradation resulting from the cable corrosion and fatigue. 
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Fig. 7. Influence of corrosion and fatigue damage of cables to reliability indices 

In Fig. 7, ECBA34 represents the failure event of the No. 34 cable on the north side, ECBA33｜
is the conditional probability event of the failure event of No. 33 cable, which follows the 
failure of  No. 34  cable. Figure 7 illustrates that cable resistance deterioration caused by cable 
corrosion makes greater effect on the reliability index of the stay cables over time, compared 
with fatigue effects. The reliability index of 34#cable and 33# cable would respectively be 2.6 
and 1.9 in 20 years, owing to mean resistance coefficient 0.42 of cable in 20th years according 
to the test data.  

With the cable corrosion and fatigue damage, system reliability index downward trend of 
the cable-stayed bridge is as shown in Fig. 8 within 20 years. 
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Fig. 8 Influence of corrosion and fatigue damage of cables to system reliability 

In Fig. 8, the two ends of vertical lines at each time point denotes the upper and lower limit 
of system reliability index. Downward trend curve of system reliability index could be ob-
tained connecting the mid-point of vertical lines. As Fig. 8 shows, it is the cable resistance 
degradation caused by the cable corrosion and fatigue damage that prompts the accelerated 
declination of system reliability index, considering resistance deterioration of the stay cables. 
The bound of mean reliability index respectively are 5.22 and 6.20 under the influence of 
these two factors in 20 years. Considering the great effect that cable corrosion makes on sys-
tem reliability index, the important factor causing the decline of the system reliability 
for cable-stayed bridge is resistance degradation of cable due to the rustiness. Ca-
ble maintenance and timely replacement has an important significance on guaranteeing sys-
tem security level of cable-stayed bridge in operation period. 

5 CONCLUSIONS 

Based on the failure characteristics of long-span cable-stayed bridge, this paper proposed 
the combined intelligent algorithm for reliability evaluation of structure system. The 
main failure paths for the cable-stayed bridge were investigated. The effect of cable degrada-
tion caused by corrosion and fatigue damage on the structural system reliability was investi-
gated. The conclusions obtained are shown as follows: 

(1) It is feasible to evaluate the system reliability of cable-stayed bridge accurately and ef-
ficiently by utilizing the combination of intelligent algorithm process. 

 (2) With respect to the concrete cable-stayed bridge of rigid frame system, the 
beam bending failure of cable tower, at the junction of tower and beam, caused by strength 
failure of the side-span cable is the main failure path. Secondly it is about the bending failure 
at the root section of girder caused by strength failure of the mid-span cable.  

(3)The important factor with respect to the system reliability for cable-stayed bridge is the 
cable resistance degradation. There appears a larger decline about the system reliability in op-
eration period caused by the cable corrosion, compared with the cable fatigue damage. Ca-
ble maintenance and timely replacement have significance on ensuring the security level of 
system reliability for cable-stayed bridge in operation period. 
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Abstract. In this article, we present application of kernel smoothing estimation and bootstrap
on real data. We possess statistically significant data set from experiments performed on com-
posite materials. These data form a random sample of observed variable. Probability distribu-
tion function (pdf) of such observed variable is estimated using kernel smoothing approach and
bootstrap. This estimation depends on a bandwidth of kernel smoother which is defined using
both reference density method and our empirical data. Parameters of typical parametric distri-
butions are also estimated from the same empirical data set. We apply methods such as mean
square error (MSE) and integrated square error (ISE) to address the uncertainty and vagueness
in pdf estimated by kernel smoothing.
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1 INTRODUCTION

In this paper, we present mathematical approaches in statistical comparison of various tools.
Theoretical background form kernel smoothing and bootstrap. Practical comparison is per-
formed on data which represent specific climatic tests of composite materials. The climatic test
means that the composites were exposed to thermal effects. In our case, we present outcomes
where freezing temperature and normal ambient temperature were applied. The composite ma-
terials used for comparison had either two, four or six layers while the layers are natural fibres
such as jute and linen.

Some attempts to study composites reliability can be found e.g. in [1, 2], where authors
deal with selected aspects of safety and reliability features of polymer composites with natural
fibres. These kinds of composites have been starting to be used quite widely in the technical
industry like automotive, aerospace, military etc. Authors present approaches for selection of
those properties and features of polymer composites which are to be used for an event cause
description. Selected mechanical properties and qualities which usually create the fundamental
point of view in terms of decision about the applicability of polymer composites are being
studied. The materials measures like strength, hardness and elasticity play vital role in terms of
physical in-situ applicability. Selection of some other attempts to evaluate composite reliability
and failure occurrence can be found e.g. in [3, 4, 5, 6].

2 THEORETICAL FRAMEWORK

A practical approach to deal with data uncertainties coming from inadequate information
and incomplete knowledge should be robust and statistically consistent across different scales
(global, local). Also it should be flexible enough to deal with the variety of data and obtain
the maximum information from the sample [7]. Most parametric methods do not meet all these
requirements. Therefore, we turn our attention to the nonparametric methods, namely the kernel
estimation and bootstrap.

The kernel density estimation is one of the nonparametric approaches to reconstruct the
underlying probability density function (pdf) from a given sample. Let a univariate random
sample X1, . . . , Xn come from a distribution with a continuous probability distribution with a
density f(x). The kernel density estimator fest is defined as a weighted average of observations
at a point x

fest(x) =
1

nh

n∑
i=1

K
(
x−Xi

h

)
, (1)

where K is a univariate function called a kernel, h is a smoothing parameter (h > 0) called a
bandwidth. Kernel K is usually taken to be a symmetric probability density function, which
ensures that the estimate itself is also a pdf [8].

The problem of choosing how much to smooth, i.e. what value of the bandwidth should
be used, is a crucial element in the kernel smoothing. The quality of the smoothing, i.e. the
closeness of the estimate to the true density, can be measured locally or globally [9]. A useful
local criterion is the mean square error (MSE) defined by

MSE(fest(x, h)) = E[fest(x, h)− f(x)]
2. (2)

As a global criterion, we consider the integrated square error (ISE), which is given by the
formula

ISE(fest(·, h)) =
∫
[fest(x, h)− f(x)]

2 dx. (3)
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The bootstrap is a computer-based method for assigning measures of accuracy to statistical
estimates – either parameters [10] or functions [11]. Bootstrap is viewed as a general tool
for confidence intervals and assessment of uncertainty. Like other nonparametric approaches,
bootstrap does not presume any specifications about the distribution of the sample. The only
major assumption behind the bootstrap is that the sample distribution is a good approximation
of the population distribution.

3 PRINCIPLES OF MATHEMATICAL EXPERIMENT

Into the mathematical experiment, we included parametric models to assess the performance
of the nonparametric estimate of the density. The parametric models for the simulated data are
as follows:

• Weibull distribution with the scale parameter b = 3 and the shape parameter k = 6, i.e.
W (3, 6). The Weibull distribution is used in reliability and lifetime modeling, and to
model the breaking strength of materials.

• Inverse Gaussian distribution with the scale parameter µ = 1 and the shape parameter
λ = 5, i.e. IG(1, 5). The inverse Gaussian is used to model nonnegative positively
skewed data.

• Normal (Gaussian) distribution with the mean value equal to five and the variance equal
to one, i.e. N(5, 1). Although normal distribution can take negative values, we decided
to include it into the experiment as well.

For the real data, we assumed that all models, i.e. nonparametric, Weibull, inverse Gaussian
and normal are possible. Parameters of the parametric models were calculated using Matlab
function fitdist, which uses maximum likelihood estimates of the parameters. For the kernel
estimate, we employed the standard Gaussian kernel and the bandwidth calculated according to
the so called normal reference rule [12].

The size of the simulated sample was inspired by the real data – we started with sample of
size 30. To show the performance of the used methods, we also included into the study the
samples of sizes 300 and 3000.

Bootstrap procedure was carried out according to the following steps [13, 14, 15]:

1. From the sample X = {X1, . . . , Xn} calculate its kernel density estimate fest.

2. Draw the resample X∗ = {X∗
1 , . . . , X

∗
n} from the sample X (with replacement).

3. Calculate the kernel density estimate f ∗
est of the resample X∗.

4. Repeat the steps 2 and 3 nB = 400 times.

5. Find 2.5% and 97.5% quantiles of the estimated densities f ∗
est and construct a pointwise

confidence band.

For the simulated data, the errors MSE and ISE were calculated using the repeatedly chosen
random samples from the simulated distributions. Number of repetition was set to be nrep =
100.
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4 RESULTS AND DISCUSSION

Firstly, we tested the proposed procedure on the real data set. Then, we supported the right-
ness of this idea by a simulation study.

4.1 Real data

For the graphical example of the real data, we randomly selected probes denoted as J4F.
It means that the set of probes is composed of four jute layers and was exposed to the freez-
ing effects. The data set and its density estimates – both nonparametric and parametric – are
displayed in Figure 1.

Figure 1: Real data (+) with estimated densities – kernel estimate (blue), Weibull (orange), inverse Gaussian
(yellow) and normal (purple).

In Figure 2, there are shown all considered models applied to the set of real data. Each panel
consists the estimate itself, either parametric or nonparametric, and the pointwise confidence
band calculated using bootstrap.

The standard Kolmogorov-Smirnov test did not reject the hypothesis that the data come from
the respective distributions. Therefore, one can choose any model we propose. However, using
the ISE, we can decide which one of the parametric models is the most likely original density.
The density which is believed to be the root form shall indicate the lowest values of ISE when
compared to kernel estimate, see Tables 1 and 2.

Data ISE
Jute Weibull InvGauss Normal
2 layers 0.002165 0.001460 0.001714
4 layers 0.001389 0.000693 0.000484
6 layers 0.003183 0.000913 0.001202

Table 1: Values of ISE when comparing parametric models to the kernel estimate for the set of probes with jute
fibres (with indicated number of layers) and freezing ambient temperature.
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Figure 2: Real data (+) with estimated densities and confidence bands – kernel estimate (left upper panel), Weibull
(right upper panel), inverse Gaussian (left lower panel) and normal (right lower panel).

As we can see from the Tables 1 and 2, the inverse Gaussian model would be the best from
parametric models regarding the probes with jute fibres. On the other hand, for probes with
linen fibres, the Weibull model seems to be the best parametric option. However, as we can
conclude from Figure 1, the decision is up to the user, since the models are close one to another.

4.2 Simulated data

As a typical instance of the data describing the bending strength, we select a data set coming
from the Weibull distribution and show graphical results of the study on this data set. Other
considered models are summarized in a text form later (see Table 3).

From the graphs in Figure 3, we can see that with the growing size of the sample, the uncer-
tainty of the functional shape of the density is smaller. Also the confidence bands are thinner;
however, we have to keep in mind that the confidence bands are constructed around the esti-
mated density fest. They may not completely cover the true density function f as we can see
on the middle graph in Figure 3.

In Figure 4, there are summarized mean square errors of all considered models. As we
can expect, the Weibull model has the smallest error, because the data came from the Weibull
distribution. The kernel estimate, as we can see, is a very good approximation of the data.
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Data ISE
Linen Weibull InvGauss Normal
2 layers 0.003191 0.001354 0.002057
4 layers 0.001485 0.000579 0.000466
6 layers 0.000810 0.003569 0.002032

Table 2: Values of ISE when comparing parametric models to the kernel estimate for the set of probes with linen
fibres (with indicated number of layers) and normal ambient temperature.

Figure 3: Data (+) coming from the Weibull distribution with density f (blue) and kernel estimate fest (orange)
accompanied by the bootstrap confidence interval (black).

The inverse Gaussian and normal models give the biggest error, which support the idea that
assuming the wrong parametric shape of the distribution behind the data can lead to results
burdened with uncertainty.

Figure 4: Mean square error (MSE) for the kernel estimate (K, blue), parametric estimates – normal (N, orange),
Weibull (W, yellow) and inverse Gaussian (IG, purple) based on the simulated data coming from the Weibull
distribution.

Similarly, in Figure 5, we can see that with growing size of the sample the integrated square
error is getting smaller. Also, we can see that the kernel density estimator is a good choice to
determine the shape of the data distribution while not assuming its shape beforehand.

Results of the rest of the simulation study are in Table 3, where the values of ISE, namely the
medians are summarized. Again, we can conclude that nonparametric approach is an excellent
complementary method to the parametric ones.
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Figure 5: Integrated square error (ISE) of the four used models – kernel estimate (K), normal (N), Weibull (W) and
inverse Gaussian (IG) – based on the simulated data coming from the Weibull distribution.

Model
Data Size Kernel Weibull InvGauss Normal

30 0.0193 0.0081 0.0398 0.0136
W (3, 6) 300 0.0039 0.0012 0.0327 0.0058

3000 0.0008 0.0001 0.0334 0.0056
30 0.0485 0.0579 0.0199 0.0797

IG(1, 5) 300 0.0095 0.0485 0.0014 0.0722
3000 0.0021 0.0480 0.0002 0.0722
30 0.0119 0.0083 0.0113 0.0060

N(5, 1) 300 0.0021 0.0026 0.0068 0.0006
3000 0.0004 0.0027 0.0066 0.0001

Table 3: Medians of ISE values of the respective simulated data sets and model used.

5 CONCLUSIONS

In this paper, we studied uncertainty evaluation which can be related to various mathematical
approaches. Nonparametric kernel smoothing and bootstrapping approaches have been studied
and later compared. Data from specific climatic tests of composite materials reinforced by
natural fibres were chosen as an application example.
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[1] A. Krzyżak, D. Vališ, Selected reliability measures of composites with natural fibres tested
in climatic environment. INTERNATIONAL CONFERENCE ON MILITARY TECHNOLO-
GIES (ICMT 2015), 81–87, 2015.
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Abstract 

Flow around bluff body largely depends on many uncertainties: inflow condition, boundary 

condition and numerical method. Particularly, in certain angle of inflow such as 14°, pres-

sure distribution on cylinder surface dramatically changes due to change of flow, and thus 

understanding stochastic behavior around certain angle causing drastic changes of pressure 

plays an essential role in designing civil structure. In the present paper, therefore, Uncertain-

ty Quantification (UQ) based on Non-Intrusive Polynomial Chaos (NIPC) has been carried 

out for flow around square cylinder and corner-rounded cylinder by Large Eddy Simulation 

(LES) by assuming that angle of attack and Reynolds number are uncertain parameters on 

both cylinders. These uncertainties follow uniform distribution, and angle of attack α [12°-

14°] and Reynolds number [1000-10000] are uncertain range on square cylinder, and  α [5°-

7°] and Reynolds number [1000-10000] on corner-rounded cylinder with curvature r/D=2/15. 

Time-statistics of aerodynamic forces on the surface are evaluated in this study. Moreover, 

Sensitivity analysis based on Sobol index is also performed to evaluate impact of uncertain 

parameters on uncertain output. As a result, both uncertainties considered in this study have 

a significant impact on dispersion of aerodynamic forces. On the windward side, angle of at-

tack results in large impact on time-averaged pressure coefficient, but in the case of corner-

rounded cylinder, Reynolds number has more impact than angle of attack. On the side surface, 

Reynolds number has large impact on both cylinders. 

Keywords: Uncertainty quantification, Square cylinder, Corner-rounded cylinder, Non- 

intrusive polynomial chaos, Large eddy simulation 
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1 INTRODUCTION 

Bluff body such as a square cylinder and corner-rounded cylinder is typical shape of civil 

structure. Even though those geometries are relatively simple, flow around cylinder is com-

plex. Flow around cylinder is separated at corner of cylinder, and it cause recirculation in 

wake and reattachment on side. Figure 1 illustrates Computational Fluid Dynamics (CFD) re-

sults of flow pattern visualized by vorticity contours around square cylinder at different condi-

tions. As a result of these flow phenomena, local severe suction on the surface can be 

appeared, and it cause strong wind forces to the structure. Therefore, it is important for civil 

structure to clarify the relationship between flow around cylinder and aerodynamic forces.  

So far, many numerical simulations and wind tunnel tests have been carried out to flow 

around bluff body, and those make a substantial contribute to develop wind resistant design 

and to understand physical meaning of flow structure. Especially, over the last several dec-

ades, CFD has become powerful tool to investigate flow because it is superior in terms of vis-

ualizing whole and detail flows. However, in numerical simulation, there are many 

uncertainty and errors due to numerical scheme, turbulence modeling, limitation of grid num-

ber and geometry of structure, and so on. In this context, considering those uncertainty and 

errors in CFD is essential to assess the reliability and validation of CFD as a next step.  

A. Mariotti et al. [1] studied impacts of uncertain parameters: grid resolution in spanwise 

direction and the weight of the explicit filter on aerodynamic characteristics of 5:1 cylinder 

surface by LES. It was shown that flow characteristics on side surface are largely impacted by 

the spanwise grid resolution and that the grid resolution of other direction and the amount of 

SGS dispersion also play an important role in catching dynamic small vortex. Moreover, A. 

Mariotti et al. [2] studied effects of inflow uncertainties on aerodynamic characteristics of 5:1 

cylinder surface by URANS. The angle of attack, the longitudinal turbulence intensity and the 

turbulence length scale were assumed to be uncertain parameters.  As a result of UQ study, 

the dispersion of average of time-average pressure coefficients is highly lower than that of 

BARC contributions, and it means the longitudinal turbulence intensity and the turbulence 

length scale do not affect in dispersion of pressure on cylinder.  

Above UQ studies in the literature mostly have been studied by assuming uncertain range 

that does not result in drastic change on flow, but from the engineering view point, it is im-

portant for design to clarify how much flow and pressure on the surface change, such as that 

rapid change of flow pattern and of surface pressure occur at angle of attack 13°~15° [3].    

To the author’s knowledge, there is no UQ analysis that subjects to the drastic range caus-

ing drastic changes on bluff body. Assuming drastic range of uncertainty, it should be kept in 

mind that convergent ratio is decreased, so assuming appropriate uncertain range is essential 

to obtain exact result. In the present study, thereafter, stochastic aerodynamic forces on two-

dimensional (2D) square cylinder and on 2D corner-rounded square cylinder are evaluated by 

NIPC. Angle of attack and Reynolds number are considered as uncertainty parameters with 

range of uniform distribution. Here, it is focused on time-statistics of aerodynamic forces.  

r/D=2/15
Re=5500
α=6°

r/D=0
Re=5500
α=14°

Figure 1. CFD of the flow pattern around square and rounded cylinder at a critical angle of attach 
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Figure 3. Average pressure coefficient 
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2 COMPUTATIONAL SET-UP 

2.1 Computational model and numerical validation 

Simulation is carried out for incompressible Navier-Stokes and continuity equation for 

flow around 2D square cylinder and 2D corner-rounded cylinder. Solver is finite-volume CFD 

code FrontFlow/Red HPC, and unstructured grid is employed. 

For calculation condition of LES, the total cell number is 6.5 million. The domain is 

shown in Fig 2. The height of the cell nearest to cylinder surface is determined by      

√            according to Tamura and Ono [4]. Grid resolution of surface of cylinder is 

B/100 approximately. The inlet condition is uniform flow inflow, and no-slip condition is 

used on cylinder surface. The spanwise end boundary condition is periodic. Top and bottom 

surface condition are free-slip.  

Spatial discretization is generally treated by the second order central difference. For dis-

cretization of convective term, 5% first-order upwind scheme is blended in order to eliminate 

the numerical oscillation in the region around cylinder. SMAC algorithm is used for the pres-

sure-velocity coupling. The implicit Euler method is applied for the time integration. The tur-

bulence model is dynamic Smagorinsky model [5], [6] and the ratio of test-filter scale and 

grid-filter scale is set to 2. The computational domain size and grid system are shown in Fig 2. 

Time increment is                             Simulation-time for statistical analy-

sis is at least 10 vortex-shedding cycles after flow becomes statistically stationary.  

Before conducting UQ study, validation study is performed to investigate the grid resolu-

tion is sufficient for drastic region such as angle of attack 14° by comparison with wind ex-

periment date [7], which is in range of uncertain parameters considered in this paper. Three 

LES simulations are carried out with different Reynolds number 5300, 8985, 20000. Figure 3 

shows average pressure coefficient. Difference between LES and EXP might be caused by 

Reynolds effect. Thus, 6.5 million
 
cell is sufficient to predict pressure correctly. 
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3 UNCERTAINTY QUANTIFICATION METHODOLOGY 

3.1 Uncertainty parameter 

In the present study, three uncertain variables for UQ are assumed: angle of attack α, 

Reynolds number (Fig 4). These uncertain parameters largely impact flow pattern and pres-

sure distribution, so the range of uncertain parameters should be carefully chosen to obtain 

fast convergent. There are two kind of uncertain ranges for both cylinders: in the case of 

square cylinder, uncertain ranges are angle of attack α [12°, 14°] and Reynolds number 

Re[1000, 10000], and in the latter case, angle of attack α [5°, 7°], Reynolds number Re [1000, 

10000]. The reason to choice the range of angle of attack α is based on experimental study [3]. 

According to [3], there is a discontinuity of aerodynamic forces by changing angle of attack α. 

In the case of square cylinder, discontinuity exists at 13°, and with the rounded corner 

r/D=2/15 discontinuity exists at 6°. Therefore, in the present study, to investigate stochastic 

behavior in range of drastic region, above uncertain range is used. By considering range of 

   , it represents difficulty that it is difficult to reproduce perfect angle of attack in wind tun-

nel test, and this slight different angle of attack largely impacts on aerodynamic forces, e.g. 

Lift coefficient. For the range of Reynolds number, to the author’s knowledge, there is few 

study considering Reynolds number as uncertain parameters. According to [8], recommended 

range of Reynolds number [                  does not have large effect on dispersion 

of    BARC contribution. In this study, therefore, sensitive region of Reynolds number is pur-

posely chosen to obtain large impacts as well as angle of attack     on aerodynamic forces. 

Other parameters are fixed. Since there is no prior knowledge about probabilistic distribution 

of above uncertain parameters, uniform distribution is considered to assume quite large range 

of variation.  

3.2 Non-Intrusive Polynomial Chaos 

Over the last decades, many UQ studies have been carried out, and one of the effective 

approaches to quantify uncertainty is Polynomial Chaos Expansion (PC) [9]. In the PC, sto-

chastic output is represented by  

 (   )   ∑   ( )    ( )

    

   

 (1) 

where   ( ) is deterministic coefficients, and   ( ) is the multidimensional orthogonal poly-

nomials, which is determined by Wiener-Askey Scheme [9]. In practical ways, Equation 1 is 

truncated to Np terms which is determined by  

   
(    ) 

     
(2) 

(a) Square cylinder (b) Corner-rounded cylinder 

Figure 4. Uncertain set-up 
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where nv is number of random variables (uncertain parameters) and d is polynomial order. PC 

is classified to two types: Intrusive PC (IPC) and Non-Intrusive PC (NIPC). IPC requires 

modification of code to conduct UQ study, so it is tough and time-consuming. On the other 

hand, NIPC is not required to modify code. In NIPC, simulation code is treated as black box, 

and thus it is easy to apply PC to any numerical study. In this study, therefore, NIPC is used 

to UQ study. 

     The important things in NIPC is to calculate deterministic coefficients   ( ). To obtain 

  ( ) in NIPC, it is required to do Np deterministic simulations. In this study, Regression 

method is used to obtain   ( ) as follows: 
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After calculating   ( ), mean and variance are easily evaluated by 

    (4) 

   ∑ (  
   

 )

    

   

 (5) 

In the present paper, random variable nv is two and polynomial order d is two, so the 

number of polynomial terms is six. These uncertain parameters are assumed to follow uniform 

distribution, and Legendre polynomial is used as multidimensional orthogonal polynomials. 

Since order of polynomial d is two, the number of deterministic simulation is determined by 

zeros of third order-Legendre polynomials. Theoretically, to solve Equation 3 at least Np de-

terministic simulations are sufficient. In this study, drastic region is chosen as uncertain range 

and parameters, so there is a possibility that some numerical error occur. To avoid influence 

of these error, Hosder et al. [10] suggest that many more points than minimum number of de-

terministic simulation to solve Equation 3 can make surrogate model robust, and about more 

than N/   =2 is desirable. Table 1 and Table 2 show sampling points for UQ and aerodynam-

ic forces obtained by deterministic simulations. 

3.3 PC based Sobol indies 

It is easy to calculate Sobol index by using PC decomposition [11]. Direct and combined 

Sobol indices mean how much each input parameters contribute to the total uncertainty. As 

mentioned above, total variance is evaluated and decomposed by Equation 6: 

  ∑   

   

∑    ∑              

        

(6) 

Where  

          ∫         
 (   

      )         
(7) 

corresponds partial variance. Then, the Sobol indices are defined as: 

          
         

 
(8) 

These Sobol indices allow to measure sensitivity of the contribution of single uncertain input 

(  ) and interactive contribution (             ). 
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4 UQ RESULTS AND DISCUSSIO 

Table 3 and Table 4 show mean and standard deviation of time-average and time-rms of 

Drag coefficient: t-ave(CD) and t-std(CD) and of Lift coefficient: t-ave(CL) and t-std(CL). As 

can be seen, with rounded corner, mean of t-ave(CD) and t-ave(CL) become small, and stand-

ard deviation become larger than square cylinder. For standard deviation of t-ave(CL), square 

cylinder has large dispersions. This simply attributes to change of angle of attack, while on 

corner-rounded cylinder the influence of change of angle of attack can be reduced. To evalu-

ate these stochastic values, it is necessary to compare with other numerical simulation and 

wind tunnel study, and this should be done as a future work.  

Figure 5 and Figure 6 show mean and standard deviation of distribution of time-average 

pressure coefficient and of time-rms pressure coefficient respectively. As can be seen from 

Figure 5 (a), there is dispersion at side and leeward side on square cylinder. Especially at CD 

side, dispersion of mean is larger than other side. At this side separation

Table 1 Sampling points of square cylinder based on Legendre polyno-

mials 

Table 2 Sampling points of corner-rounded cylinder based on Legendre polyno-

mials 

Table 3 Uncertain mean of forces 

Table 4 Uncertain standard deviation of forces 

case α Re t-ave(C D) t-std(C D ) t-ave(C L ) t-std(C L )

1 12.225 2014.315 1.625 0.151 -0.610 0.442

2 12.225 5500.000 1.702 0.150 -0.805 0.561

3 12.225 8985.685 1.626 0.130 -0.975 0.454

4 13.000 2014.315 1.696 0.198 -0.722 0.418

5 13.000 5500.000 1.638 0.138 -0.826 0.421

6 13.000 8985.685 1.636 0.155 -0.920 0.487

7 13.775 2014.315 1.694 0.293 -0.772 0.469

8 13.775 5500.000 1.666 0.181 -0.923 0.547

9 13.775 8985.685 1.812 0.233 -0.774 0.658

case α Re t-ave(C D) t-std(C D ) t-ave(C L ) t-std(C L )

1 5.225 2014.315 1.554 0.298 -0.206 0.816

2 5.225 5500.000 1.504 0.159 -0.307 0.636

3 5.225 8985.685 1.459 0.144 -0.392 0.633

4 6.000 2014.315 1.564 0.366 -0.418 0.816

5 6.000 5500.000 1.462 0.165 -0.381 0.608

6 6.000 8985.685 1.407 0.122 -0.417 0.487

7 6.774 2014.315 1.462 0.291 -0.329 0.651

8 6.774 5500.000 1.466 0.176 -0.345 0.579

9 6.774 8985.685 1.414 0.144 -0.445 0.549

t-ave(C D) t-std(C D ) t-ave(C L ) t-std(C L )

Square 1.672 0.174 -0.822 0.489

Corner-round 1.477 0.202 -0.365 0.635

t-ave(C D) t-std(C D ) t-ave(C L ) t-std(C L )

Square 0.003 0.004 0.022 0.009

Corner-round 0.004 0.011 0.007 0.016
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bubble, which is separated at corer of D and reattach on around corner C, occurs. This phe-

nomenon is extremely sensitive to change of angle of attack and Reynolds number, so large 

dispersion is appeared on CD side. However, for rms pressure coefficient from Figure 5 (b), 

dispersion is appeared on all side except wind ward side. Figure 6 shows mean and standard 

deviation of time-average pressure coefficient and time-rms pressure coefficient distribution 

on corner-rounded cylinder. For time-average pressure coefficient, large dispersion is not ap-

peared, while for rms pressure coefficient, significant dispersion is appeared. 

Figure 7 shows Sobol index of time-average pressure coefficient. As can be seen, Reyn-

olds number plays an important role in the dispersion on CD side where reattachment occurs 

of square cylinder and of corner-rounded cylinder. On the other hand, on the AB and BC side, 

angle of attack is dominant factor on square cylinder, but on corner-rounded cylinder Reyn-

olds number has large impact on those sides. 

For Sobol index of time-rms pressure coefficient, on AB side and BC side, angle of attack 

on square cylinder and Reynolds number on corner-rounded cylinder are dominant factor for 

uncertain output, but on CD side, dominant Sobol index is largely fluctuated. This means dis-

persion of CD side is sensitive to uncertainties considered in this study and its combination. 

At first glance, on AD side, fluctuation of Sobol index can be seen. However, these values 

do not have physical meaning because on AD side, stochastic dispersion cannot be seen in 

Figure 5 and Figure 6. 

Figure 5. Stochastic mean  ± standard deviation of pressure coefficient of square cylinder 

(a) Time-averaged pressure coefficient (b) Time-rms of pressure coefficient 

Figure 6. Stochastic mean  ± standard deviation of pressure coefficient of corner-rounded cylinder 

(a) Time-averaged pressure coefficient (b) Time-rms of pressure coefficient 
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Figure 7. Sobol decomposition of time-averaged pressure coefficient in time 
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Figure8. Sobol decomposition of rms pressure coefficient in time 
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5 CONCLUTION AND FUTURE WORK 

In this study, quantifying uncertain angle of attack and Reynolds number on aerodynamic 

forces of bluff body has been carried out by LES and NIPC, and it can be summarized as fol-

lows: 

1. On the region where flow is separated at corner and reattach on side surface, there are

large dispersion of mean of averaged pressure coefficient on square cylinder, while in

the case of corner-rounded cylinder, dispersion of mean of average pressure coeffi-

cient is smaller than that of square cylinder.

2. For rms pressure coefficient, corner-rounded cylinder has larger dispersion than that

of square cylinder.

3. On the square cylinder, Reynolds number has significant impact on dispersion of av-

erage pressure coefficient of side surface where reattachment occurs, while angle of

attack affects largely at dispersion of average pressure coefficient on another side and

windward surface.

4. On the corner-rounded cylinder, Reynolds number mostly has dominant influence on

time average and rms pressure distribution on all surfaces.
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Abstract. Tunnel construction in urban areas neccessitates not only a safe construction of the
tunnel itself, but also minimising the impacts on the environing infrastructure. Constructing a
tunnel always causes changes in the state of stress and deformations in the surrounding soil area
that can induce settlements, cracks, or even collapse in buildings at the ground surface. To plan
effective countermeasures, an adequate model is necessary that considers all relevant details
of the system. However, the main component of this system is the adjacent soil that cannot be
modified and which properties are highly uncertain. To reduce the high level of uncertainty,
in-situ measurements are preformed and used in a back-analysis to validate the existing model.
Reducing the uncertainty of the soil parameters allows more reliable predictions of the system
behaviour. However, initially only assumptions can be made what type of measurement might
be most suitable to reduce the parameter uncertainty most efficiently. Using the approach of
Bayesian optimal experimental design, the present study enables to find an arrangement of
sensors that provides data which is most likely to enable an accurate model validation. The
application of this approach is performed using a Finite-Element model of a residence building
that is underpassed by twin-tubed tunnel.
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1 INTRODUCTION

To meet the infrastructure requirements of modern societies, tunnel construction, especially
in urban areas, is essential. However, even after decades of experience an efficient and safe
construction is still challenging. One main issue is that the tunnel construction induces a set-
tlement trough at the ground surface which often causes severe damage at surface structures
which are located in the range of this trough. This is still the case when Tunnel Boring Ma-
chines (TBM) are employed that build the tunnel of prefabricated concrete segments what is
nowadays the mostly used method. When the interaction between tunnel construction process
and ground behaviour is well known, effective countermeasures can be initiated such as com-
pensation grouting or an adaptation of the face and grouting pressure of the TBM. However, this
requires accurate simulation models and precise knowledge of the surrounding ground proper-
ties. Nowadays, simulation of TBM advancement can be performed highly accurate using the
Finite-Element (FE) method with the possible drawback of long calculation time, as shown e.g.
in [4][8]. To increase the efficiency of this method, hybrid models, as introduced in [20], can
be employed to improve the accuracy while reducing the computational effort.
However, the most sophisticated model does not help if its employed parameters do not reflect
in-situ conditions. To receive such an overall understanding of the soil properties, laboratory ex-
periments are usually performed on samples taken in-situ. These tests provide accurate results,
but one should be aware that they cannot be representative for the whole considered domain, as
natural soils are often heterogeneous [16]. Besides, the in-situ conditions such as stress level
or degree of saturation might not be exactly reproducible in the laboratory. To overcome this
problem, the concept of the observational method, introduced in [14] can be efficient as in-situ
data is employed to validate an existing model. Thereby, a cost function is formulated that aims
to reduce the discrepancy between in-situ measurements and model response by varying the
properties of the soil as shown for applications from geotechnical engineering e.g. in [18], [9].
A usually neglected aspect is the question which type of measurement data should be employed
to allow an efficient and reliable parameter identification. This means among others what type
of measurements such as vertical displacements or excess pore water pressure, but also where
a measurement device should be placed and at what time and time frequency the data should
be obtained. Unlike geotechnical engineering, several other research field have addressed this
type of questions by the concept of the so-called Optimal Experimental Design (OED). In the
field of system biology e.g [17] investigated how an experiment should be designed to identify
growth parameters in a bioreactor, while in [1] an example from chemical engineering, namely
defining sampling intervals to determine reaction rates, is shown.
In geotechnical Engineering, recent works have shown the applicability of the concept to ex-
amples of a dike subjected to a rapid water drawdown [5] and a tunnel passing by an existing
building [6]. In these cases, the methods of global sensitivity analysis and Bootstrap resampling,
respectively, are employed to identify where and when sensors should be placed to record e.g.
displacements in order to identify the underlying soil properties. However, both approaches
have disadvantages as they were either inaccurate or highly time consuming. Therefore, in the
present study the concept of Bayesian OED is employed that refers to the basic Bayes’ theo-
rem, introduced in [2], that describes how conditional probabilities of events are combined. As
the objective of OED for parameter identification is in general to reduce parameter uncertainties
based on observed values, the Bayes’ theorem is a powerful tool to improve this process. There-
fore, the Bayes’ theorem is employed as shown in Eq. 1 where the uncertainty of the parameters
of interest θ are considered in the form of probability distributions P (θ). Measurement data ỹ
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contains the ”true” system response y, but is subjected to some measurement error e that cor-
responds to a known probability distribution. Therefore, obtained data is regarded as event of
probability P (ỹ). The conditional probability P (ỹ|θ) describes the probability that a certain
output results from a parameter combination, what is assumed to be known, while P (θ|ỹ) is the
value of interest that describes the probability of a set of parameters given a measured output
value.

P (θ|ỹ) =
P (ỹ|θ) · P (θ)

P (ỹ)
(1)

Within the process of Bayesian OED, it is investigated which measurement data has the highest
probability of reducing the initial uncertainty of the model parameters.

2 APPLICATION TO TUNNEL CONSTRUCTION EXAMPLE

The methodology described in the previous section shall be applied using an FE-model that
simulates the construction of a twin tunnel below an existing eleven storey building. A detailed
description of the model and to the simulated real construction site can be found in [4] includ-
ing detailed soil and process data. This model has been generated using the FE-code Plaxis 3D
(Version 2016 [15]) and it is shown without the soil clusters in Fig. 1. The two tunnel tubes with
diameter of 6.7 m are constructed one after another in a mean distance of 16.7 m in between and
a depth of 15 m below ground surface. The soil below the building consists mostly of gravelly
sand with a band of sandy loam in-between 20 and 25 m depth. Both soils’ constitutive be-
haviour is simulated using the Hardening Soil model with small strain stiffness (HSsmall) [3].
The tunnel tubes are subdivided into segments of 1.4 m in longitudinal direction, corresponding
to the employed concrete linings. To enable a realistic simulation of the stepwise construction,
the TBM is simulated consisting of the first seven segments, that advance in each phase of the
simulation by one segment. Between the TBM and the following concrete linings, one segment
is left out, only supported by a surface load to simulate the fresh grout mortar.
As the tunnel construction underpasses the building, a settlement trough develops which exact
shape can only be roughly estimated in advance, especially due to the offset position and load
distribution of the building, and the complex soil-building interaction. Preliminary to the present
work, detailed statistical evaluations, including global sensitivity analyses, a method success-
fully applied in geotechnical applications e.g. in [11], have been performed that show that
the parameters that influence mostly these settlements and the tilting behaviour of the building
are the secant stiffness Eref

50 (that is correlated with the tangent stiffness Eref
ur and unloading-

reloading stiffness Eref
ur ), the small strain stiffness modulus G0, and the volume loss factor

VL. Therefore, it is of highest interest to know the exact values of these parameters and it is
most promising to do this using back-analysis of measured data. Different types of sensors are
possible in case of such applications, e.g. inclinometer or pore water pressure, horizontal, and
vertical settlement transducers. As on the real construction site, vertical displacement monitor-
ing has been performed, in this study these are considered as model response. Consequently,
the question posed is where to perform measurements of vertical displacements to validate the
existing numerical model.

3 EMPLOYED CONCEPT OF BAYESIAN OED

To apply the intended concepts of OED and identify a Bayesian design, first of all a fast
model is needed that enables frequent calls to generate reliable distributions of model responses.
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20 m

5 m

5 m

16.7 m

Figure 1: View on the FE-model with removed soil elements

This is obviously not the case for the employed FE-model that needs more than eight hours for
one calculation run. For substitution, 100 samples of the input parameter vector θ (contain-
ing the aforementioned Eref

50 , Eref
ur , and Eref

ur ) are generated using Latin Hypercube sampling
(LHS) [13] and run in the FE-model. As results, the vertical settlements are obtained in an
evenly spaced grid at the surface of the model for each of the 100 runs. For each point of the
grid, the relationship between input parameter θ and model response y is approximated by a
second-order polynomial function. To test the accuracy of this approximation function, a sec-
ond set of 20 LHS-generated samples is run in the FE-model and the results are compared with
each other, having coefficient of determination 0.99. As the second step, to be able to access
all coordinates in between the grid points, a cubic interpolation is performed that does not use
discrete model outputs as input data, but the function defined to approximate y(θ). Using both
steps allows to obtain the settlement for any position and any combination of soil parameters. In
the present study, exemplary, only data of the 44th excavation step is employed that corresponds
to the end of the construction of the first tunnel tube. As afterwards the uncertainties in the
numerical model are reduced, the soil-building interaction can be predicted much more accu-
rately and the construction of the second tube can be executed in a safer manner. In practice,
the approach would be performed continuously, providing constantly updated soil parameters
or new suggestions for an optimal sensor arrangement.
As described in Sec. 1, the objective of OED is to reduce the uncertainty of the employed model

parameters. This uncertainty is described by the standard deviation σ(θ). The utility U(δ) de-
fines how a certain design δ reduces the uncertainty and is to be maximised. The identification
of the optimal design δ† is performed in this study by using artificially generated outputs ỹ that
are back-calculated using the aforementioned surrogate model, while validation of the final re-
sults can be done by comparison with in-situ measurement data. In this process, one should
be aware that besides the soil inhomogeneity, model uncertainty and measurement errors can
never be avoided and always influence the process of measurement based parameter identifica-
tion, making it an ill-posed problem. To take into account measurement uncertainty, artificial
noise is added to generated model outputs before back-calculation while in this study the model
uncertainty is neglected. Therefore, random output samples y are generated according to the
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Figure 2: Visualisation of the settlement shape of the surrogate model of one random combination of soil parame-
ters

defined initial distribution of the input parameter and the considered ”experimental design”, δ:

y = f(θ, δ) (2)

To account for the realistic case of measurement uncertainty, artificial Gaussian white noise
is added to the randomly generated output data (Eq. (3)), consisting of a random part and a
systematic part that is related to the value of y. By varying the ratio and values of e1 and e2,
sensors with different types of accuracy can be considered.

ỹ(θ) = y(θ) + y(θ) · ωsys · e1 + ωran · e2, ω ∼ N [0, 1] (3)

During back-calculation of this noisy data ỹ, the identified parameters θ̃ will most probably
deviate from the ”true” solution. Therefore, this parameter identification is repeated B times
such that it converges to mean value θ̄ that for good experimental designs will be equal to the
true value θ. The difference between different designs is the standard deviation of θ̃ and the
best design is consequently that where it is smallest.
In the framework of Bayesian OED this means we want to find that design that provides mea-
surements that allows to reduce most the probability range of the considered soil parameters θ.
The design variables that are considered in this study are the amount of measurement points and
the x- and y- coordinate of each of these points. The number of placed sensors is assumed to
be equal to six, but will be the subject of a subsequent study. As each new parameter increases
the dimensionality of the problem by two dimensions, identifying the OED becomes compu-
tationally too expensive, wherefore the so-called Approximate Coordinate Exchange (ACE)
algorithm is employed that was introduced in [12]. Later on, in [10] this algorithm was adapted
for Bayesian OED and implemented as a package in the software for statistical computing R.
Hereby, each dimension of the problem is considered individually in the optimisation process,
while the other parameters (here the coordinates of the sensors) keep fixed. For a random (or
predefined) initial design δ0 the utility u(δ,y,θ) is calculated for a numberB of parameter sam-
ples that is generated according to their initial distribution. The mean of these B evaluations
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gives the expected utility Ũ(δ) of this design (Eq. 4).

Ũ(δ) =
B∑
l=1

u(δ, yl, θl)/B (4)

By varying parameters of the current design δC (i.e. the coordinates of the sensors), a series
of utility values is obtained as:

Ũ(δ1|δiC(i)), ......, Ũ(δm|δiC(i)), (5)

where m referes to the dimension of the design (i.e. number of sensors times two) and i is
the control variable of the variations of the current design. The design δ†i that enables the
maximum value of the obtained utilities is replacing the current optimal design δCi (Eq. 6) and
the underlying probability distribution of θ is obtained according to Bayesian principle

δ†i = argmaxδi∈Di
Û(δ|δiC(i)) (6)

With the updated probability distribution and the current optimal design δ†i as start values the
previous steps are repeated until the algorithm converges.

4 OUTPUTS

The start design δ0 for the introduced problem in Sec. 3 is generated as LHS design of six
points on the ground surface of the numerical model, while the area where the building is located
is excluded of the design area. The utility function is defined in way that for each of the three
parameters of interest, two sensors are assigned to find the position where data can be obtained
to identify this parameter most accurately. The identified parameters are grouped together in
the vector of parameters θ̃ and are evaluated for each design according to Eq. 7.

Ũ(δ) =
B∑
l=1

(
−

m∑
i=1

|θ̃l(δi)− θ̄|+
1

detCθ(δi)

)
/B (7)

Using the deviation from the parameter mean |θ̃i(δ)− θ̄| and the inverse of the parameters’ co-
variance matrix Cθ enables the utility function to find designs that provide the correct parameter
values with least variation at the same time. By choosing a sufficiently large value of B, Ũ(δ)
becomes a distribution smooth enough to be handled in the context of Eq. 1.
The algorithm converges within few steps to an optimal arrangement that is shown in Fig.3.

There, the tunnel excavation proceeds from bottom to top of the figure (in y-direction). Larger
settlements are indicated by red coloured areas. The bypassed building is symbolised by the
black block and the sensor arrangement by the crossed circles. The area of the building itself
is excluded from the search space as it would be technically not possible to place any sensors
below it. It is suggested to position the sensors not right above the tunnel centreline where
the settlements are largest but on the edge of the settlement trough. This corresponds to the
further works in this field, e.g. [6] and [19], that most suitable placements for measurements
are not where the maximum value of a system output occurs, but where the changes in the pa-
rameters provoke the largest relative changes of the settlements, i.e. where the output is most
sensitive to a certain parameter. However, it should be indicated that this is highly influenced
by the amount and type of error, defined by e1 and e2 in Eq. 3, that is added. Regarding the
parameters for which the differently located sensors are employed, the two sensors at the low-
est positions are both designated for Eref

50 what shows that this parameter needs locations with
higher gradient.
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Figure 3: Positions of the identified design, mapped on the ground surface in top view, all dimensions in [m]

5 CONCLUSIONS

In this study, an approach is introduced to identify an optimal experimental design for model
validation of mechanised tunnelling using settlement data. To find this design, that consists of
the positions in which sensors should be placed to measure vertical settlements, the concept
of Bayesian OED is employed using the ACE algorithm to reduce the calculation time. The
suitability is shown using a FE-model of a tunnel underpassing a high-rise building. The iden-
tified results are comprehensible and comparable with results of previous studies that employed
different methods. However, the presented case is a simplified example and many further as-
pects are investigated in ongoing research. Details of the noisy data should be considered. The
impact of different values of e1 and e2, but also their ratio and the type of error distribution will
be varied systematically. Besides, varying the amount of sensors with different ”inaccuracies” e
gives additional insight to a cost-efficiency understanding as high accuracy of sensors is usually
connected to higher costs. Further research is intended to address the model state depending on
the advancement of the TBM: as the relative position of building an TBM is different in every
excavation step, the resulting OED is always different. Therefore, it can be useful to change the
arrangement of measurement positions or their weighting in the utility function. Besides, it is
of interest to consider further types of measurement data such as excess pore water pressures or
horizontal deformations.
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[5] R. Hölter, C. Zhao, E. Mahmoudi, A. A. Lavasan, M. Datcheva, M. König and T. Schanz.
Optimal measurement design for parameter identification in mechanized tunneling, Un-
derground Space, 3, 34-44, 2018.

[6] R. Hölter, E. Mahmoudi, S. Rose, M. König, M. Datcheva and T. Schanz. Employment
of the bootstrap method for optimal sensor location considering uncertainties in a coupled
hydro-mechanical application, Applied Soft Computing Journal, 75, 298-309, 2019.

[7] X. Huan and Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for
nonlinear systems, Journal of Computational Physics, 232 (1), 288–317, 2013.

[8] T. Kasper, G. Meschke, A 3D finite element simulation model for TBM tunnelling in soft
ground, International Journal for Numerical and Analytical Methods in Geomechanics,
28 (14), 1441-1460, 2006.

[9] X. Li, C. Zhao, R. Hölter, M. Datcheva and A.A. Lavasan, Modelling of a Large Landslide
Problem under Water Level FluctuationModel Calibration and Verification, Geosciences,
9 (2), 89, 2019.

[10] A. M. Overstall and D.C. Woods, Bayesian Design of Experiments Using Approximate
Coordinate Exchange, Technometrics, 59 (4), 458–470, 2017.

[11] E. Mahmoudi, R. Hölter, R. Georgieva, M. König and T. Schanz, On the Global Sensitivity
Analysis Methods in Geotechnical Engineering: A Comparative Study on a Rock Salt
Energy Storage, International Journal of Civil Engineering, 17, 131–143, 2019.

[12] R. K. Meyer and C.J. Nachtsheim, The Coordinate-Exchange Algorithm for Constructing
Exact Optimal Experimental Designs, Technometrics, 37 (1), 60–69, 1995.

[13] M.D. McKay, R.J. Beckman and W.J. Conover, A Comparison of Three Methods for Se-
lecting Values of Input Variables in the Analysis of Output from a Computer Code, Tech-
nometrics, 21 (2), 239-245, 1979.

699



Raoul Hölter, Maximilian Schoen, Arash A. Lavasan, and Elham Mahmoudi

[14] R. B. Peck, Advantages and Limitations of the Observational Method in Applied Soil
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Abstract. The standard approach when establishing optimal ensembles of metamodels (OEM)
is to apply affine combinations of metamodels. However, we have found when performing
reliability-based design optimization (RBDO) that this choice might sometimes result in poor
representation of the limit state surfaces. Therefore, in this work, we suggest to use convex
combinations instead of affine combinations in order to get robust RBDO by using OEM. Opti-
mal convex combinations of metamodels are established by minimizing the taxicab, Euclidean
or infinity norm of the PRESS vector. The PRESS vector is defined by the leave-one-out cross-
validation errors of a linear combination of ten metamodels, which constitute different settings
of quadratic regression, Kriging, radial basis functions, polynomial chaos and support vector
regression. Thus, the minimization of the norms are constrained such that the sum of weights of
the linear combination equals one and only non-negative weights are allowed. We have found
that the latter constraints might be extremely important when the ensembles of metamodels
represent the limit surfaces. The most probable point (MPP) of the OEM is established in the
physical space where the distance is minimized in the metric of Hasofer-Lind. The solution to
the corresponding Karush-Kuhn-Tucker conditions is obtained by using Newton’s method with
an inexact Jacobian and a line-search of Armijo type. At the MPP, we perform Taylor expan-
sions of the OEM using intermediate variables defined by the iso-probabilistic transformation.
In such manner, we derive a quadratic programming (QP) problem which is solved in the stan-
dard normal space. This is done for several probability distributions such as e.g. lognormal,
Gumbel, gamma and Weibull. The optimal solution to the QP problem is mapped back to the
physical space and new Taylor expansions of the OEM are derived and a new QP problem is
formulated and solved. This procedure continues in sequence until we obtain convergence of
our RBDO problem. The steps presented above constitute our proposed FORM-based sequen-
tial QP approach for RBDO by using OEM. The implementation of the approach in an in-house
toolbox is very robust and efficient.
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1 INTRODUCTION

Optimization of machine components and systems of machine components by using non-
linear finite element analysis are typically performed for deterministic variables and parameters.
This is indeed a draw-back because it is not trivial to choose a corresponding optimal safety
factor. Examples of uncertainties influencing this choice of safety factor are uncertainties in
loading conditions, material parameters and geometry. An established approach to include
uncertainties like these in the optimization is to apply reliability-based design optimization [1].
The safety factor is then included in the optimization by setting a target on the reliability that the
design criteria are satisfied. However, the RBDO problem is not easy to solve and it is indeed a
challenging task to incorporate the RBDO formulation explicitly in a non-linear finite element
code. A way forward to handle this latter difficulty is to treat the non-linear finite element
model as a black-box by setting up design of experiments (DoE) and training metamodels for
these DoEs. Popular metamodels for this task are Kriging, radial basis function networks,
polynomial chaos expansion and support vector regression. For instance, in Strömberg [2],
RBDO was performed by using radial basis function networks with a priori bias [3]. Most
recently, RBDO with support vector machines was studied in [4], and a comparison of RBDO
with several different established metamodels was conducted in [5].

A question discussed and investigated over the years is which one of all different types of
metamodels is the best. In my opinion, looking for the answer to this question is like looking
for the holy grail. A better way is to set up a linear combination of your metamodels and then
find the optimal weights for you particular DoE. The standard approach is to use affine com-
binations. An early work on ensemble of metamodels can be found in [6], where a weighted
average of the metamodels was adopted. Examples of other works on ensemble of metamodels
are e.g. [7, 8, 9, 10, 11]. Acar [7] studied various approaches for constructing affine combi-
nations of metamodels using local measures. Zhou et al. [8] established affine combinations
of metamodels with recursive arithmetic average. Lee and Choi [9] proposed a new pointwise
affine combination of metamodels by using a nearest points cross-validation approach. Shi et
al. [10] proposed efficient affine combinations of radial basis function networks. Most recently
Song et al. [11] suggested an advanced and robust affine combination of metamodels by using
extended adaptive hybrid functions. But, in this work, we do not adapt the approach of affine
combinations of metamodels, instead we suggest to use convex combinations of metamodels
for robust treatment of the limit state surface. The optimal ensembles of metamodels are then
used to set up RBDO problems which we solve by using the FORM-based sequential quadratic
programming (SQP) approach presented by Strömberg [12].

The outline of the paper is as follows: in the next section the basic equations of polynomial
regression models, Kriging, radial basis function networks, polynomial chaos expansion and
support vector regression are reviewed, in section 3 we present our new approach for convex
combinations of our metamodels by minimizing the PRESS vector for three different norms,
section 4 reviews the SQP-based RBDO approach by using FORM and SORM, and then we
study a RBDO benchmark as a blackbox by performing DoE and adopting our new convex
combinations of metamodels. It is demonstrated that a most accurate solution is obtained most
efficiently. In this section, we also motivate our choice of convex combinations instead of affine
combinations by studying the Hosaki test function. Finally, some concluding remarks are given.
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2 METAMODELS

Let us assume that we have a set of sampling data{x̂i, f̂ i} obtained from design of exper-
iments. We would like to represent this set of data with a function, which we call a response
surface, a surrogate model or a metamodel. One choice of such a function is the regression
model given by

f = f(x) = ξ(x)Tβ, (1)

whereξ = ξ(x) is a vector of polynomials ofx andβ contains regression coefficients. By
minimizing the sum of squared errors, i.e.

min
β

N
∑

i=1

(

Xijβj − f̂ i
)2

, (2)

whereXij = ξj(x̂
i) andN is the number of sampling points, then we obtain optimal regression

coefficients from the normal equation according to

β∗ =
(

XTX
)

−1
XT f̂ . (3)

Examples of other useful metamodels are Kriging, radial basis functions, polynomial chaos
expansion and support vector regression. The basic equations of these models are presented in
the following.

2.1 Kriging

The Kriging model is given by

f(x) = ξ(x)Tβ∗ + r(x)TR−1(θ∗)
(

f̂ −Xβ∗

)

, (4)

where the first term represents the global behavior by a linear or quadratic regression model and
the second term ensures that the sample data is fitted exactly.R = R(θ) = [Rij ], where

Rij = Rij(θ, x̂
i, x̂j) = exp

(

−
N
∑

k=1

θk(x̂
i
k − x̂i

k)
2

)

. (5)

Furthermore,θ∗ is obtained by maximizing the following likelihood function:

1

σN
√

det(R)(2π)N
exp

(

−(Xβ − f̂ )TR−1(Xβ − f̂)

2σ2

)

(6)

and
β∗ =

(

XTR−1(θ∗)X
)

−1
XTR−1(θ∗)f̂ . (7)

2.2 Radial basis function networks

For a particular input̂xk the outcome of the radial basis function network can be written as

fk = f(x̂k) =

NΦ
∑

i=1

Akiαi +

Nβ
∑

i=1

Bkiβi, (8)
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N. Strömberg

whereNΦ is the number of radial basis functions,Nβ is the number of regression coefficients
in the bias,

Aki = Φi(x̂
k) and Bki = ξi(x̂

k). (9)

Both linear and quadratic regression models are used as bias. Furthermore,Φi = Φi(x̂
k) repre-

sents the radial basis function.
Thus, for a set of inputs, the corresponding outgoing responsesf = {f i} of the network can

be formulated compactly as
f = Aα+Bβ, (10)

whereα = {αi}, β = {βi}, A = [Aij ] andB = [Bij ]. If we let β be given a priori by the
normal equation as

β =
(

BTB
)

−1
BT f̂ , (11)

then
α = A−1

(

f̂ −Bβ̂
)

. (12)

Otherwise,α andβ are established by solving
[

A B

BT
0

]{

α

β

}

=

{

f̂

0

}

. (13)

2.3 Polynomial chaos expansion

Polynomial chaos expansion by using the Hermite polynomialsϕn = ϕn(y) can be written
as

f(x) =

M
∑

i=0

ci

NVAR
∏

j=1

ϕi(xj), (14)

whereM + 1 is the number of terms and constant coefficientsci, andNVAR is the number of
variablesxi. The Hermite polynomials are defined by

ϕn = ϕn(y) = (−1)n exp

(

x2

2

)

dn

dxn

(

exp

(

−x2

2

))

. (15)

For instance, one has

ϕ0 = 1, (16a)

ϕ1 = y, (16b)

ϕ2 = y2 − 1, (16c)

ϕ3 = y3 − 3y, (16d)

ϕ4 = y4 − 6y2 + 3, (16e)

ϕ5 = y5 − 10y3 + 15y, (16f)

ϕ6 = y6 − 15y4 + 45y2 − 15, (16g)

ϕ7 = y7 − 21y5 + 105y3 − 105y. (16h)

The unknown constantsci are then established by using the normal equation. A nice feature
of the polynomial chaos expansion is that the mean off(X) in (14) for uncorrelated standard
normal distributed variablesXi is simply given by

E[f(X)] = c0. (17)
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2.4 Support vector regression

The soft non-linear support vector regression model reads

f(x) =
N
∑

i=1

λik(xi,x)−
N
∑

i=1

λ̂ik(xi,x) + b∗, (18)

whereλi, λ̂i andb∗ are established by solving


































min
(λ,λ̂)

1

2

N
∑

i=1

N
∑

j=1

(λi − λ̂i)(λj − λ̂j)k(xi,xj) +

N
∑

j=1

(λ̂i − λi)f̂ i + δ

N
∑

j=1

(λi + λ̂i)

s.t.











N
∑

j=1

(λi − λ̂i) = 0,

0 ≤ λi, λ̂i ≤ C, i = 1, . . . , N.

(19)

Finally, the corresponding least square support vector regression model is established by
solving





0 −1
T

1

1 B + γI −B

−1 −B B + γI











b
λ

λ̂







=







0

f̂ − δ1

−f̂ − δ1







, (20)

whereγ = 1/C, 1 = {1; . . . ; 1} and

B = [Bij], Bi,j = ϕ(xi)ϕ(xj) = k(xi,xj) (21)

is a matrix containing kernel values.

3 ENSEMBLE OF METAMODELS

Let us now define a new metamodelfen = fen(x) as a convex combination of the metamodels
presented in the previous section, i.e.

fen = fen(x) =

M
∑

i=1

wifi(x), (22)

whereM is the total number of metamodels in the ensemble,wi ≥ 0 are weights satisfying
w1 + w2 + . . . + wM = 1 andfi = fi(x) represents any particular metamodel of the ones
presented above. In this work, we letM = 10 and let the ensemble be given by the following
metamodels:

1. Quadratic regression model,

2. Kriging with linear bias,

3. Kriging with quadratic bias,

4. RBFN with linear a priori bias,

5. RBFN with quadratic a priori bias,

6. RBFN with linear a posteriori bias,

7. RBFN with quadratic a posteriori bias,
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8. Polynomial chaos expansion,

9. Support vector regression,

10. Least-square support vector regression.

The leave-one-out cross-validation error at a pointx̂k of yen is given by

ek = e(x̂k) = f̂k − f (−k)
en (xk) = f̂k −

M
∑

i=1

wif
(−k)
i (x̂k), (23)

wherey(−k)
i (x) represents the metamodel with thek-th data point excluded from the sampling

set{x̂i, f̂ i}. If we now perform the leave-one-out cross-validation in (23) for every data point,
then we establish the vector of PRESS residuals:

e = {ei} = f̂ − Y w, (24)

wheref̂ containsf̂ i, w is a vector of weightswi and

[Y ]ij = f
(−i)
j (x̂i). (25)

Let us now minimize the norm of the PRESS vectore subjected towT
1 = 1 andwi ≥ 0, i.e.







min
w

‖e‖x
s.t.

{

wT
1 = 1,

wi ≥ 0, i = 1, . . . ,M,

(26)

where‖e‖x represents the taxicab norm‖e‖1, the Euclidean norm‖e‖2 or the infinity norm
‖e‖∞ according to

‖e‖1 =
N
∑

i=1

|ei|,

‖e‖2 =
√
eTe,

‖e‖∞ = max(e1, . . . , eN),

(27)

whereN is the number of sampling points.
The problem in (26) with the taxicab norm corresponds to the following LP-problem:



























min
(w,p,q)

N
∑

i=1

pi + qi

s.t.







Y w − f̂ = p− q,
wT

1 = 1,
wi, pj , qj ≥ 0, i = 1, . . . ,M, j = 1, . . . , N.

(28)

By taking the square of the Euclidean norm, (26) becomes of course a QP-problem. Finally,
using the infinity norm, (26) can be rewritten as the following LP-problem:



























min
(w, t)

t

s.t.















Y w − f̂ ≤ t1,

−Y w + f̂ ≤ t1,
wT

1 = 1,
wi, t ≥ 0, i = 1, . . . , N.

(29)

Here, and above,1 represents a column vector of ones of proper size.
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Figure 1: Ensemble of metamodels of the Hosaki test function in(37). Left: affine combination, right: convex
combination.

4 RELIABILITY-BASED DESIGN OPTIMIZATION

By using the convex combinations of metamodels presented in the previous section it is
straight-forward to set up any design optimization problem as

{

min
x

fen(x)

s.t. gen(x) ≤ 0.
(30)

For instance the OEMfen = fen(x) might represent the mass of a design andgen = gen(x) is a
OEM-based limit surface for the stresses obtained by finite element analysis.

A possible draw-back with the formulation in (30) is that it is not obvious how to include
a margin of safety. For instance, what is the optimal safety factor to be included ingen? An
alternative formulation that includes a margin of safety is

{

min
µ

E[fen(X)]

s.t. Pr[gen(X) ≤ 0] ≥ Ps,
(31)

whereX now is treated as a random variable,E[·] designates the expected value of the function
fen, andPr[·] is the probability that the constraintgen ≤ 0 being true.Ps is the target of reliability
that must be satisfied.

4.1 FORM

An established invariant approach for estimating the reliability is the first order reliability
method (FORM) suggested by Hasofer and Lind [13]. The basic idea is to transform the relia-
bility constraint from the physical space to a space of uncorrelated standard Gaussian variables
and then find the closest point to the limit surface from the origin. This point is known as
the most probable point (MPP) of failure. The distance from the origin to the MPP defines
the Hasofer-Lind reliability indexβHL, which in turn is used to approximate the probability of
failure as

Pr[gen ≤ 0] ≈ Φ(−βHL). (32)

Assuming thatX is normal distributed with means collected inµ andσ containing standard
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deviations, the MPP is obtained by solving














min
x

βHL =

√

√

√

√

N
∑

i=1

(

xi − µi

σi

)2

s.t. gen(x) = 0.

(33)

4.2 SORM

The approximation in (32) is derived by performing a first order Taylor expansion at the
MPP and then evaluating the probability. Second order reliability methods (SORM) is obtained
by also including the second order terms in the Taylor expansion. Based on these higher order
terms the FORM approximation of the reliability is corrected.

For instance, by lettingλi denoting the principle curvatures of a second order Taylor expan-
sion ofg, we can correct (32) by using e.g. Tvedt’s formula [14], i.e.

Pr[gen ≤ 0] ≈ P1 + P2 + P3,

P1 = Φ(−βHL)

N−1
∏

i=1

1√
1 + 2βHLλi

,

P2 = (βHLΦ(−βHL)− φ(−βHL))

(

N−1
∏

i=1

1√
1 + 2βHLλi

−
N−1
∏

i=1

1
√

1 + 2(βHL + 1)λi

)

,

P2 = (βHL + 1)(βHLΦ(−βHL)− φ(−βHL))

(

N−1
∏

i=1

1√
1 + 2βHLλi

−Re

[

N−1
∏

i=1

1
√

1 + 2(βHL + i)λi

])

.

(34)

4.3 SQP-based RBDO approach

Recently, a FORM-based SQP approach for RBDO with SORM and MC corrections was
proposed in [12]. For non-Gaussian variables, we derive the following FORM-based QP-
problem in the standard normal space:











min
ηi

fen(η)

s.t.

{

µg ≤ −βtσg,
−ǫ ≤ ηi ≤ ǫ,

(35)
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where

fen(η) =

NVAR
∑

i=1

∂fen

∂Xi

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(µk
i ; θ

k
i )
ηi +

1

2

NVAR
∑

i=1

NVAR
∑

j=1

H̃ijηiηj ,

H̃ij =
∂2fen

∂Xi∂Xj

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(µk
i ; θ

k
i )

φ(Y k
j )

ρj(µk
j ; θ

k
j )
,

µg =

NVAR
∑

i=1

∂gen

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(xMPP
i ; θk

i )

(

ηi − yMPP
i

)

,

σg =

√

√

√

√

NVAR
∑

i=1

(

∂gen

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(xMPP
i ; θk

i )

)2

.

(36)

Here,βt = Φ−1(Ps) is the target reliability index which can be corrected by a SORM approach
as presented above or any Monte Carlo (MC) approach. The optimal solution to (35), denoted
η∗i , is mapped back from the standard normal space to the physical space using

µk+1
i ≈ µk

i +
Φ(Y k

i )

ρi(µ
k
i ; θ

k
i )
η∗i .

Then, a new QP-problem is generated aroundµk+1 and this procedure continues in sequence
until convergence is obtained. The QP-problem in (35) is solved usingquadprog.m in Mat-
lab.

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

Figure 2: Halton sampling with 30 points.

5 EXAMPLES

We begin motivating the choice of convex combinations instead of affine combintions by
studying the Hosaki test function, i.e.

f = (1− 8x1 + 7x2
1 − 7/3x3

1 + 1/4x4
1)x

2
2 exp(−x2), 0 ≤ xi ≤ 5. (37)
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By considering (37) as a black-box, we set up Halton sampling with 30 points similar to what is
used in our next example, see Figure 2, and then establish our convex combination of metamod-
els as well as a standard affine combination of metamodels. The two ensemble of metamodels
are plotted in Figure 1. Both ensembles represent the global optimum properly. However, the
boundary with values of zero is represented poorly with the affine combination. On the con-
trary, the convex combination also performs well for this case. This latter case could of course
be a limit surface and it is then clear that our convex combination will represent the reliability
much better than the affine combination for a limit surface like this.

Figure 3: Histograms of the objectives and the constraints. The first row contains histograms for the analytical
expressions in (38). The second row shows histograms of the OEMs.

Next, we will demonstrate by solving


















min
µi

√

1000

(

4

µ1
− 2

)2

+ 1000

(

4

µ1
− 2

)2

s.t.

{

Pr[(X1 − 0.5)4 + (X2 − 0.5)4 ≤ 2] ≥ Ps,
1 ≤ µi ≤ 4,

(38)

that the convex combinations of metamodels represent the objective as well as the limit surface
most properly such that our SQP-based RBDO methodology can be applied with most satisfying
results. We letPs = 0.999 andVAR[Xi] = 0.12. The deterministic solution is (1.5,1.5) and
the minimum of the unconstrained objective function is found at (2,2). The solution to (38)
obtained by our SQP-based RBDO approach is (1.2705,1.2705). The corresponding reliability
is 99.9%. The problem was considered in [2], where SLP-based RBDO was performed by
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adopting radial basis function networks as metamodels, and, in [4], it was studied by using
support vector machines.

The example in (38) is now considered to be a black-box which we treat by applying design
of experiments and our approach of convex OEM. Thus, first, we set up a DoE by using Halton
sampling with 30 points according to Figure 2, secondly, we establish our metamodels presented
in section 2, thirdly, we establish convex combinations of these metamodels for the objective
function and the constraint by solving (26), and, finally, we solve (31) by applying our SQP-
based RBDO approach. The solution is (1.2715,1.2694) and the corresponding reliability for
the black-box in (38) is 99.9%. In conclusion, the metamodel-based solution is most accurate.
This is also demonstrated in Figure 3, where the histograms of the objective function and the
constraint are compared for the analytical expressions and the ensembles of metamodels.

6 CONCLUDING REMARKS

In this work we propose to use convex combinations of metamodels as the ensemble of
metamodels for reliability-based design optimization. The OEM is a convex combination of
quadratic regression models, Kriging, radial basis function networks, polynomial chaos expa-
sion and support vector regression. The performance of the OEM-based RBDO approach is
excellent.
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[12] N. Strömberg, Reliability-based Design Optimization using SORM and SQP,Structural
and Multidisciplinary Optimization, 56, 631-–645, 2017.

[13] A. Hasofer & N. Lind, Exact and Invariant Second Moment Code Format,Journal of the
Mecanics Division, ASCE, 100, 111-121, 1974.

[14] L. Tvedt, Two Second Order Approximations to the Failure Probability,Technical report:
RDIV/20-004-83, Det Norske Veritas, 1983.

712



UNCECOMP 2019
3rd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Crete, Greece, 24-26 June 2019

BLACK-BOX PROPAGATION OF FAILURE PROBABILITIES UNDER
EPISTEMIC UNCERTAINTY

Marco De Angelis1, Scott Ferson1, Edoardo Patelli 1, and Vladik Kreinovich2

1Institute for Risk and Uncertainty, School of Engineering, University of Liverpool
Liverpool, L69 7ZF

marco.de-angelis@liverpool.ac.uk

2 Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA

vladik@utep.edu

Keywords: Black-box code, Cauchy-deviate method, Line sampling, Digital Twins

Abstract. In engineering simulation a black-box code is often a complex, legacy or proprietary
(secret) black-box software used to describe the physics of the system under study. Strategies to
propagate epistemic uncertainty through such codes are desperately needed, for code verifica-
tion, sensitivity, and validation on experimental data. Very often in practice, the uncertainty in
the inputs is characterised by imprecise probability distributions or distributions with interval
parameters, also known as probability boxes. In this paper we propose a strategy based on
line sampling to propagate both aleatory and epistemic uncertainty through black-box codes to
obtain interval probabilities of failure. The efficiency of the proposed strategy is demonstrated
on the NASA LaRC UQ problem.
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1 INTRODUCTION

Digital twins seem to be the emerging modelling paradigm for industrial system simulation.
According to ANSYS [1], a digital twin is “a complete virtual prototype of an entire system, a
working system in a real world environment, a complex system integrating multiple engineering
disciplines, requiring system-level simulation knowledge”. ANSYS also state that digital twins
“ represent a new era in simulation, a new world of predictability, a new tool for engineering
the future”.

The rise of digital twins is justified by the progressive increase of high-fidelity methods (e.g.
finite element and computational fluid dynamic) and the fast-paced growth of the computing
power that has led to the solution of unprecedentedly complex models, for ever more realistic
boundary conditions. The excitement about this new era of simulation must face the truth
about our limitation of modeling the physics around us. Deterministic models are rarely suited
to describe in detail the multifaceted reality of a system, and usually the more detailed the
model the more sensitive it is to variations and uncertainty. Comparing predicted responses
with measured data, however, does not generally show that the fidelity has improved as much
as our ability of making more detailed models and accurate analyses.

The reason for this discrepancy is often the presence of uncertainties, for instance in the
parameters of the model, which are not precisely known and must be expected to deviate from
the assumed deterministic values. Another source of uncertainty is in the mathematical model,
which usually involves some abstraction and simplifying assumptions to represent the actual
mechanical/physical response. Given the limitations of data, quantification methods often rely
on subjective judgement and assumptions and it may not always seem reasonable to character-
ize the uncertainties in a classical probabilistic way. To avoid the inclusion of subjective and
often unjustified hypothesis, the imprecision and vagueness of the data can be treated by using
generalized probabilistic methods.

The unavoidable uncertainties must be explicitly included in the computations to guarantee
that the components or systems will continue to perform satisfactorily despite variability and
precise models. If the effect of uncertainties in the optimized design is ignored, this design may
perform unsatisfactorily in realistic conditions. Resilient/reliable systems are less sensitive to
the uncertainties and hence, they reach low variability of the overall performance allowing for
significant reductions in terms of e.g. the manufacturing and operating costs.

Quantifying the effect of the uncertainty is a necessary step to support decision makers.
For instance, the analyst can estimate the importance of collecting additional information and
identify the parameters that contribute the most to the variability of the output. One of the most
important analyses is to identify the extreme response performances of the system. It is also
important to determine the combination of input parameter values that causes a performance
metric of interest to reach its extreme. Knowing such conditions, it might be possible to prevent
those extreme performances or mitigate their consequences.

The need for efficient and robust uncertainty propagation on black-box models has been
shown by the NASA Langley Uncertainty Quantification Challenge [2]. The only information
that was released about the model is that it described the flight of a remotely controlled twin-jet
aircraft pushed to the edge of the flight envelope, thus subject to strong uncertainties.

In this paper, a novel approach for black box failure probability propagation analysis is pre-
sented and discussed. The theoretical framework of imprecise probability is used for the repre-
sentation of the uncertainty. An efficient and general computational framework based on Line
Sampling simulation is proposed to perform reliability analysis [3]. The Cauchy-deviate method
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is used for the propagation of epistemic uncertainty [4]. We show that these two approaches
can be combined to obtain interval failure probability of the aircraft performance. We show the
applicability and efficiency of the methodology on the NASA Langley UQ black-box model.

2 BLACK-BOX CODES

In uncertainty quantification distinguishing between black-box models and open-source mod-
els is consequential. The research community is not united on the definition of black boxes.
Researchers in machine learning often refer to black boxes as deep learning models, which are
practically impenetrable due to their complexity. A more general definition of black-box code
can be found in [4]. In this paper a black-box model is a quantitative model, whose source code
is inaccessible.

2.1 Why such models exist

The reason why this kind of model exists can be ascribed to (i) secrecy: for example, com-
mercial companies release to the open market only the software binaries, or the code is en-
crypted for verification and validation by third parties; (ii) legacy: for example, the source code
is partially or totally lost and only the binaries are available, or the source code is available but
does not build on the current compiler; (iii) complexity: for example, deep learning models,
and large FEM and CFD models.

2.2 Need to distinguish black-box and open-source codes

In automatic uncertainty propagation the source code can be decomposed into a list of basic
binary operations. This turns out to be the key for efficient rigorous propagation, as numerical
strategies for interval analysis can be deployed.

2.3 Restrictions introduced by black boxes

Uncertainty quantification on black-box models is particularly challenging. This is because
the model can only be queried and often the time required by a single evaluation is very long,
in some cases ranging from hours to weeks.

Furthermore, when the user does not completely know the origin of the model, more evalua-
tions are usually needed to characterise the mathematical properties of the model. For example,
checking that the function is continuous or smooth may already require a significant amount
of evaluations. Nevertheless, even if we know that the function is e.g. smooth, computing the
partial derivatives may be computation expensive. This fact rules out the efficient use of dif-
ferential algebra, local Taylor expansions, and monotonicity checks that may be alternatively
possible in the case of open-source code. Another big limitation introduced by black-box codes
is the difficulty of rigorous propagation of epistemic uncertainty. The rigorous propagation is
only possible by means of intrusive interval analysis.

2.3.1 What can be done?

We can establish prove that the function in a black-box model is deterministic, by check-
ing whether the outputs are different on a number of repeated computer experiments. If the
black-box model is non-deterministic and single evaluations are computation expensive, then
rigorous uncertainty quantification may not be practically possible. Techniques that combine
surrogate modelling, and massive high performance parallel and distributed computing, may be
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the answer. If the model is deterministic, the aforementioned techniques may still be necessary,
but it is also possible to better characterise the behaviour of the black box and deploy sampling
schemes and accelerating strategies to achieve efficiency.

3 PROBLEM STATEMENT

A deterministic model can be conceptually represented in the functional form

y = f(x) (1)

where f is a function that maps x to y [5]. The variable x = [x1, ..., xNX
] is a vector of real

valued inputs, and y = [y1, ..., yNY
] is a vector of real-valued model outputs. In this paper we

will restrict the discussion to NY = 1, so for simplicity we assign N = NX .
The uncertainty about the elements of x will be represented by a sequence of imprecise

distributions D1, ...,DD, where Dj characterises the uncertainty associated with the element xj
of x. Various correlations and other restrictions involving the elements of x may be specified.
Typically, these distributions are obtained through some form of expert elicitation or expert
review process.

3.1 Uncertainties

The imprecise distributionDj fully characterises both the aleatory and epistemic uncertainty
of the element xj . The probability box or simply p-box [D, D] denote the set of all non-
decreasing functions D from the real line into [0, 1], such that D(x) ≤ D(x) ≤ D(x) [6]. Eq. 2
summarises in one formula the latter sentence.

D : R→ [0, 1], D(x) ≤ D(x) ≤ D(x) (2)

So if [D,D] is a p-box for a random variable X whose distributionD is unknown except that
is within the p-box, then D and D are respectively lower and upper bounds on D(x), which is
the – imprecisely known – probability that the random variable X is smaller than x. In practical
applications it is very common to construct p-boxes using known probability distributions with
interval parameters. In these cases the assumption on the probability distribution type may be
relaxed to include all the distributions that fall within the bounds.

3.2 Failure probability

The probability that the model output y is greater than a given, yet uncertain, threshold can
be expressed as

P (Y > ỹ) = P (f(X) > ỹ) (3)

Often the threshold ỹ represents a given performance limit that the model under study should
be in, with a large margin of safety. The more catastrophic are the consequences associated with
exceeding the given threshold, the larger the safety margin, therefore the smaller is the failure
probability.

The aim of this paper is to present a sampling strategy to compute small failure probabil-
ity bounds on Y when continuous imprecise probability distributions are defined for the input
variables of the black-box model.
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3.3 Sampling

The probability of Eq. 3 can be approximated via sampling. The solution of the multi-
dimensional integral of Eq. 4 can be obtained by averaging over the generated samples so to
avoid the numerical integration.

Let Cx : [0, 1]N → [0, 1] be the copula function of the vector of uncertain variables, and let
g(x) = ỹ − f(x), with ΩF = g(x) < 0 denote the failure domain.

The probability of failure can be given as:

P (g(x) < 0) =

∫
ΩF

dCx (4)

Where, the copula expresses the aleatory dependence between the p-boxes, and can be used
to represent without loss of generality, the uncertainty about the model in its entirety. Clearly,
this is restricted to the case of precise aleatory dependence among the variables. The depen-
dence among focal elements, also known as epistemic dependence, will not be treated in this
paper.

In this particular formulation of the uncertainty model, every draw corresponds to a focal
element, which is the interval counterpart of a pointwise sample. We use the inverse trans-
formation method to generate focal elements from the copula function [7]. Focal elements
[x]{s} = [x, x]{s} are propagated through the model solving the following two problems:

min
x∈[x]{s}

g([x]{s}), max
x∈[x]{s}

g([x]{s}). (5)

Let us define the set A of all the boxes contained in ΩF , and the set Bc of all the boxes strictly
not contained in ΩF . Let B be the complement of Bc, then the two sets are

A = {[x] : [x] ⊆ ΩF} ; B = {[x] : [x] ∩ ΩF 6= ∅} (6)

Let us define the characteristic function χA for a set A as

χA(ei) =

{
1 if ei ∈ A
0 if ei /∈ A

(7)

where ei is a box in Ω. Lower and upper bounds on the failure probability are obtained averaging
the number of focal elements classified as in Eq. 6.

p̂F =
N∑
s=1

χA

(
[x]{s} ⊆ ΩF

)
, p̂F =

N∑
s=1

χB

(
[x]{s} ∩ ΩF 6= ∅

)
. (8)

4 LINE SAMPLING

Line sampling is a simulation method primarily developed to efficiently compute small fail-
ure probabilities for high dimensional problems [3]. Line sampling has been recently extended
to deal with epistemic uncertainty in the form of intervals [8]. The method is generally appli-
cable and it only requires the knowledge of the so-called “important direction”, a ∈ RN , which
can be any vector pointing towards the failure region. In this paper we use the line sampling
scheme to produce focal elements. On each focal element we run the problem of Eq. 5 to solve
the classification of Eq. 6.
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5 PROPAGATION OF EPISTEMIC UNCERTAINTY

5.1 Why Monte Carlo is bad for epistemic propagation

Monte Carlo simulation works particularly well with aleatory uncertainty. This is because
Monte Carlo is insensitive to the number of random variables. For example, the estimation of
E (f(x)), where E is the mean operator, can be done efficiently by Monte Carlo. However,
this is quite the opposite in epistemic uncertainty, where the accuracy of the simulation method
drastically decreases with the number of epistemic variables. Consider this simple example: we
want to sum a number N of epistemic variables x1:N in the box [a, b]N , and compute the bounds
of the resulting sum. The exact bounds on the sum can be computed exactly and are

f(x) =
∑
i=1:N

xi = [N ∗ a,N ∗ b] = N ∗ [a, b].

Now, let us pretend that the function f(x) is a black-box model, so we do not know that behind
the model is doing a simple sum. A Monte Carlo way to approach the problem consists in
(i) generating random samples in [a, b]N , (ii) summing the generated samples, (iii) getting the
minimum and maximum of the sum. This process gets increasingly less accurate as the number
of variables increases. In fact, for the central limit theorem, the obtained sum will approximate a
Gaussian distribution, with mean µ and variance σ2/N , where σ2 is the sample variance. Given
that the variance of the sum linearly decreases with the number of variables, it gets ever more
improbable to sample close to the endpoints of the box where the exact bounds hold. Note that
this applies to any probability distribution within the box [a, b]N , because of the generality of
the central limit theorem.

5.2 Cauchy-deviate method

The Cauchy-deviate method propagates epistemic uncertainty using sampling. [4]. The
method exploits the properties of the Cauchy distribution, by which a linear combination of
Cauchy random variates is also Cauchy distributed. The properties of the Cauchy distribution
ensure that the samples do not get trapped around the arithmetic mean of the generated sample
set. Thus the model can be treated as a black box. The method works particularly well when
the intervals are small or the black-box is approximately monotonic over the interval.

6 THE NASA BLACK-BOX MODEL

The NASA Langley multidisciplinary uncertainty quantification (UQ) challenge was re-
leased in 2013 to seek responses from practitioners in the filed of UQ. Among the different
challenge problems, NASA was seeking responses pertaining the propagation of mixed aleatory
and epistemic uncertainties through system models. The challenge page quotes:

“NASA missions often involve the development of new vehicles and systems that must be de-
signed to operate in harsh domains with a wide array of operating conditions. These missions
involve high-consequence and safety-critical systems for which quantitative data is either very
sparse or prohibitively expensive to collect. Limited heritage data may exist, but is also usually
sparse and may not be directly applicable to the system of interest, making uncertainty quan-
tification extremely challenging. NASA modeling and simulation standards require estimates of
uncertainty and descriptions of any processes used to obtain these estimates.” NASA LaRC
UQ Challenge 2014.
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The challenge problem was based upon a model of the NASA Langley Generic Transport Model
(GTM). The GTM is a 5.5% dynamically scaled, remotely piloted, twin-turbine, research air-
craft used to conduct experiments for the NASA Aviation Safety Program. The multidisci-
plinary character of the proposed problems led the challenge scientists to release the model in
the form of a black-box. Again quoting the challenge page:

“Although a discipline-specific application is the focus of this challenge problem, the prob-
lem was specifically structured so that specialized aircraft knowledge is not required. We seek
responses from all interested parties not only those with aircraft experience.”

Five out-of six challenge problems involved solving a forward propagation problem with mixed
aleatory and epistemic uncertainty. The epistemic uncertainty was expressed in the form of
intervals, while the aleatory uncertainty in the form of beta and normal distributions.

6.1 The challenge problem

In this section we analyze a portion of the black-box model provided by the NASA Lan-
gley Research Center. The full model contains twenty-one input parameters and eight out-
puts, nonetheless we will limit our discussion to only the first five input parameters p =
[p1, p2, p3, p4, p5], and the first output y = y1. In the original text of the challenge manifesto
this output was referred to as x.

NASA provided the software binaries to evaluate h:

y = h(p) = h(p1.p2, p3, p4, p5), (9)

Where p1:3 ∈ [0, 1]3, p4,5 ∈ R. Specific information about these parameters are provided in
Table 1. We provide a solution to the following problem:

P (h(p) > 0.39) (10)

Or equivalently P (g(p) < 0), with g(p) = 0.39 − h(p). The problem of Eq.10 in words is:
“What is the probability of y = h(p) being greater than 0.39, when the uncertainty about p is
given in Table 1?”

6.2 Input variables

The input variables of the problem are shown in Table 1, and are classified into Category I,
II, and III.

• Category I represents random variables with a precise distributions; these variables only
have aleatory component.

• Category II represents intervals, any value within the endpoints of the interval is allowed.
Although interval is a pure epistemic way to characterize uncertainty, intervals do have
an aleatory component. In fact, not only any value but also any distribution bounded by
the endpoints of the interval is allowed.

• Category III is the more general representation of uncertainty. Dempster-Shafer structures
and p-boxes fall into this category.
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Table 1: Uncertain input parameters

Variable Category Uncertainty Epistemic Marginal
component distribution

p1 III P-box µ1 = [3/5, 4/5] B(a1, b1)
Unimodal Beta σ2

1 = [1/50, 1/25] independent
p2 II Interval ∆2 = [0, 1] –
p3 I Random variable – U(0, 1)

p4, p5 III P-box µ4 = [−5, 5] N(µ4, σ
2
4)

Normal bivariate σ2
4 = [1/400, 4] dependent on p5

µ5 = [−5, 5] N(µ5, σ
2
5)

σ2
5 = [1/400, 4] dependent on p4

MN(µ4:5, σ4:5, ρ4:5) ρ4,5 = [−1, 1]

7 Results

A preliminary analysis is run with 1000 samples. The model takes approximately 30s to
produce a thousand samples on a common desktop computer.

The 1000 focal elements are propagated through the model and the classification of Figure 1
is obtained. This preliminary classification shows clear borders between the three states, namely
safe, plausibility, and belief. In Figure 1, the set of dots that are both red and black belong to
the first class of Eq.8, i.e. the focal elements that contribute to the upper bound of the failure
probability pF ; while the black dots only contribute to the lower bound.

Figure 1: Focal elements p1 v. p2:5 in the copula space (top row) and in the standard normal space (bottom row)

If we look at the scatter plot of classified focal elements for the remaining variables as shown
in Figure 5, Figure 6, and Figure 2 we note that there is not a clear border as in the previous
case. This suggests that variable p1 is predominant with respect to the other variables. It is
also to note the characteristic cross-shaped dependence between variable p4 and p5 depicted in
Figure 2 that is typical of the case of unknown linear correlation as specified in Table 1.

With the preliminary analysis it was possible to identify the following important direction α.
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Figure 2: Classification of focal elements for variables p4 v. p5 in the copula (top) and the standard normal space
(bottom)

Figure 3: Performance function envelope on the line, each line displays a different color.

α = [−0.987,−0.0087, 0.162, 0.0145, 0.00028]

The analysis conducted with 100 lines and a total of 500 focal elements, with the threshold of
Eq. 10, led to the failure probability interval [p̂F ] = [0.0378, 0.44], with no update in direction.
The same analysis run on the set of thresholds t = [0.4, 0.5, 0.6, 0.7, 0.8] led to the upper and
lower fragility curves shown in Figure 4.

t 0.4 0.5 0.6 0.7 0.8
pF 4.38E-1 1.71E-2 4.70E-3 1.06E-3 3.26E-4
pF 3.06E-2 1.17E-4 6.57E-6 3.94E-7 3.79E-8
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Figure 4: Upper and lower fragility curves

Figure 5: Classification of focal elements for variables p2 v. p3:5
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Abstract. In time series analysis (e.g. in structural dynamics) one frequently encounters a
situation that parts of a signal are either missing or they are distorted by an unacceptably high
level of random noise. In such a situation it is desirable to reconstruct the missing or un-usable
parts by a procedure which does not necessarily introduce a large amount of further uncertain-
ties. Also, the signals may substantially depend on a set of parameters (e.g. system properties)
and these signals have typically been measured only for a limited set of parameter values. For
further application, however, one would like to predict the signals for a different set of possibly
random parameter values. Based on such a signal reconstruction it is possible to solve opti-
mization problems, e.g. carry out parameter identification with high numerical efficiency. This
is especially important if the underlying problem is ill-conditioned and possesses multiple local
minima. In such cases, relatively expensive global optimizers (such as e.g. Genetic Algorithms)
can be used advantageously. The feasibility of such an approach heavily depends on the accu-
racy and the computational speed of the meta-models being used. The paper discusses some
possible formalisms underlying meta-models for time series and demonstrates their usefulness
by several numerical and structural applications.
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1 INTRODUCTION

The application of meta-modeling techniques for the prediction of the behavior of complex
systems under varying external and internal conditions has had a long history of development.
In the area of structural reliability, this type of approach has frequently been termed Response
Surface Method [1, 2]. Essentially, the underlying concept follows the strategy that first a pre-
determined set on analyses with different governing parameters is carried out (the so-called De-
sign of Experiments, DOE) and then the behavior in the required setting is computed by rather
simple approximation (usually interpolation) formulas. This strategy shifts the main computa-
tional burden to the DOE phase and thus in typical application reduces overall computational
effort substantially.

The main issue of such a meta-modeling approach lies in the question of accuracy and error
estimation. Some of the most fundamental points are outlined in [3]. Some further thoughts
on assessing the quality of a meta-model have been discussed in [4]. A first and widely used
quality measure is the coefficient of determination (R2). This quantity measures the correlation
between the actual data Y and the model predictions Z:

R2 =

(
E[(Y − Ȳ ) · (Z − Z̄)]

σY σZ

)2

= ρ2Y Z ; Z =
n∑

i=1

pigi(X) (1)

One well-known problem with this measure is that the CoD may be high due to overfitting
(which eventually leads to bad prediction behavior). If an additional test data set T is avail-
able, then a true measure for the prediction quality can be computed, which is herein called
Coefficient of Quality (CoQ, Nash-Sutcliffe Efficiency [5])

CoQ = 1−

∑m
k=1

(
T (k) − Z(k)

T

)2
∑m

k=1

(
T (k) − T̄

)2 ; ZT =
n∑

i=1

pigi(XT ); CoQ ≤ 1 (2)

In practical application it is useful to randomly split data into training set/test set and repeat
the computation of the Coefficient of Quality several times to obtain a stable statistical estimator
of CoQ. This strategy allows to assess the variability of the CoQ-value at the same time such
that confidence intervals can be provided.

It should be noted that the CoQ is a global measure based on second-order statistics and
should not be misconstrued as a valid measure for local errors of the response surface model.

2 THEORECTICAL CONSIDERATION

Two specific, and essentially quite different, tasks will be considered in the present analysis.
These tasks focus on

• Filling gaps in a stationary time series

• Identify (system) parameter values from realizations of a space-time field

Apparently, as the tasks are different, it is reasonable to follow different approaches.
In the first case, the analysis establishes a recurrence relation between the signal values over

time. This recurrence is then extended to cover those time intervals from which actual data are
missing. Thus, a meta-model is used to fill the gaps.
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In the second case, it is assumed that a data base of signals depending on a set of system
parameters is available (a so-called Design of Experiments, DOE). Based on this DOE, a meta-
model relating the system parameters to the signals is established. For a new signal (whose
system parameters are not known), the meta-model can be used to inversely compute the system
parameters specific to this new signal.

2.1 Time series with missing data points

We consider filling gaps in a discrete time time series yk in which several data points are
missing (gaps or un-usable data). A simple case in sketched in Fig. 1.

𝑡

𝑦

𝐩

𝐲

Figure 1: Time series with missing data points

If the number of missing points is small in comparison to the number of actually available
data then it is reasonable to assume that the missing data should somehow be ”similar” to
the available ones. Such a similarity arises naturally when solving differential equations in
a time-discrete manner. For homogeneous differential equations, this solution can easily be
arranged into a recursive (auto-regressive, AR) scheme in which future values are computed
by appropriate combinations of present and past values. In the case of linear equations, these
combinations are linear as well. In this sense, we follow this idea and thus we can design the
following procedure:

• collect all N known data points into vector y

• collect allM unknown data points (in the beginning freely assumed values) into the vector
p

• Sort both vectors together into a vector z of size N +M corresponding to strictly increas-
ing time values

• Create Hankel matrix Z of size (N − L) · L containing time shifted values (L represents
the assumed order of the AR-model)

Z =


z1 z2 . . . zL
z2 z3 . . . zL+1
...

zN−L zN−L+1 . . . zN

 (3)
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• Establish a formal linear relation between the present values and the past values

z = Za (4)

containing an unknown parameter vector a of size M to be determined by a least-squares
fit

a = (ZTZ)−1(ZTz) (5)

• Compute the regression values
ẑ = Za (6)

This actually means that the entire time series can be written as an autoregressive (AR)
process without any external input.

• Compute the error

E2 =
N∑
k=1

(ẑk − zk)2 (7)

• Minimize this error term with respect to the numerical values of the components of the
vector p.

2.2 Space-time fields

Here we consider a scalar- or vector-valued random field H(x, t) depending on a spatial
coordinate vector x ∈ D and time t. In addition, the random field depends on a vector p of
time-invariant variables. We assume that there are P sample functions of the random field avail-
able. These realizations Hi of the random fields taken at the sample locations xk; k = 1 . . . N
therefore depend not only on the time points tj; j = 1 . . .M but also on the corresponding re-
alizations (samples) pi; i = 1 . . . P of the parameter vector. For the sake of numerical analysis,
the values of each realization Hi for all time steps are arranged into a matrix si with N ×M
entries. For convenience, all matrices si are further arranged into an N × (M · P ) supermatrix
S.

From this sample matrix, the essential features are extracted by means of a Proper Orthog-
onal Decomposition (POD) leading m POD vectors contained columnwise in the matrix U.
Typically, m is substantially smaller than M · P . A corresponding matrix A of amplitudes can
be computed by projection onto U as

A = UTS

Note that this POD deals with the spatial and temporal variability simultaneously, and at the
same time accounts for the effect of parameter variability contained in pi. Each column aj of
the amplitude matrix A is a time-signal. Of course, all these signals retain their dependency on
the parameter vector pi.

3 NUMERICAL EXAMPLES

3.1 CATS benchmark

The data series as analyzed here consists of 5000 data points as shown in Fig. 2. For the
purpose of a benchmark study [6], five small intervals, each containing 20 data points, have
been removed.
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Figure 3: Missing data points (solid lines, black) and model predictions (dashed lines, red)
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Table 1: Random Variables

Variable Lower Bound Upper Bound
a1 1.000 1.500
a2 0.500 0.750
a3 0.333 0.500
a4 0.250 0.375
a5 0.200 0.300
ν 2.000 2.500
ζ 0.050 0.075

An AR model with a dimension L = 15 has been established. The minimization process as
described above was done within the in-house software package slangTNG [7]. The optimiza-
tion algorithm employed is CONMIN [8].

The error measure E1 (as defined in [6]) achieved by this approach is E1 = 310. This is
substantially smaller than all results reported in the primary reference. In this reference, the
best value of E1 = 408 was achieved by a Kalman Smoother procedure [9]. A later study using
a Deep Gaussian Covariance Network [10] yielded a value of E1 = 368.

3.2 String Example

Consider the vibration of a string with nominal frequency ν. We assume for simplicity that
the string is vibrating freely (with damping) according to

𝐿
𝑤(𝑥, 𝑡)

Figure 4: Vibrating string

w(x, t) =
N∑
k=1

ak exp(−ζωkt) cosωkt sin
kπx

L

In this equation, the harmonics are ωk = 2πkν, L is the length of the string, and the coefficients
ak are chosen as ak = 1

k
. The series is truncated at N = 5.

For the purpose of establishing a meta-model, the coefficients ak, the nominal frequency ν
and the damping ζ are assumed to be uniformly distributed random variables. The respective
lower and upper bounds are given in Table 1.

A Latin Hypercube Design of Experiments (DOE) with a sample size of 100 is set up.
The time signals at different locations xk along the string are shown in Fig. 5.
The variance of the field depends on both location x and time t as shown in Fig. 6.
The Karhunen-Loéve expansion (or, equivalently, POD) yields 5 relevant POD shapes as

shown in Fig. 7. Of course, these shapes are basically a representation of the 5 vibration modes
as considered in this example.

Projecting the time signals onto the POD shapes yields in the amplitude functions as shown
in Fig. 8.

The dependency of the amplitude functions on the random input variables is now described
by a meta-model of optimum quality [4]. The prognostic quality of the two most important
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Figure 5: Time signals at different locations x
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Table 2: Variance-weighted average CoQ values for Amplitudes 1–5

Quantity CoQm,1 CoQm,2 CoQm,3 CoQm,4 CoQm,5

Value 0.993 0.987 0.985 0.984 0.993

amplitude functions as expressed by the Coefficient of Quality (CoQ) is shown in Figs. 9. It
can be seen that in the initial phases of the signals the quality is excellent, but it does markedly
decrease as the signal intensities diminish. This diminishing of the signals after t = 10 can also
be clearly seen from the variance as shown in Fig. 6. A variance-weighted average CoQm can
be computed according to

CoQm =

T∫
0

CoQ(t)σ2(t)dt

T∫
0

σ2(t)dt

(8)

In this equation, T denotes the total time duration of the signals. For Amplitude 1, the average
is CoQm,1 = 0.993. Data for amplitudes 1–5 are given in Table 2. These numbers certainly
indicate quite satisfactory accuracy of the meta-models.

Fig. 9 also shows the sensitivities (computed as total Sobol indices, [11]) of the amplitude
with respect to the system parameters. This figure shows that the two most important parameters
for amplitude 1 are the coefficient a1 and the frequency ν. In the initial phase, the importance
oscillates between those parameters which in the later phase only the influence of the frequency
remains.
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Figure 9: Coefficients of Quality and sensitivities for Amplitude 1

Finally, a system identification using the meta-model is carried out. Target values for the
identification are given in Table 3.

The identification is based on the signals of points 2 and 34 as shown in Figs. 10 and 11.
The objective function is chosen as to minimize the mean square difference between the true
values and the meta-model values of these two signals. The resulting parameter values are
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Figure 11: Comparison of true signal and meta model for point 34

Table 3: Target values for System identification

Variable Target Value Identified Value
a1 0.700 0.671
a2 0.150 0.113
a3 0.200 0.192
a4 0.050 0.063
a5 0.140 0.115
ν 2.150 2.143
ζ 0.070 0.0691
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given in Table 3 and the corresponding signals reconstructed using the meta-models are shown
in Figs. 10 and 11.

4 CONCLUSIONS

From the preceding analysis and the numerical examples it can be seen that interpolation of
missing data points of random time series may be reasonably well done by using auto-regressive
schemes. Such a scheme essentially assumes that the time signal under consideration is obtain-
able by the numerical solution of some homogeneous ordinary differential equation. Therefore
this rather simple approach is considered to be appropriate only if the time series does not have
significant external dependencies.

The second example demonstrates the usefulness of meta-modeling techniques to quantita-
tively describe the relation between space-time signals and external or system parameters. It
has been shown that inverse problems (system parameter identification) can be successfully
performed on the basis of such meta-models.

One may conclude that meta-modeling techniques can be successfully applied to the re-
construction of time series with gaps and for the modeling of the parameter-dependence of
space-time signals representing system responses.
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Abstract. Accurate and efficient estimation of rare events probabilities is of significant impor-
tance, since often the occurrences of such events have widespread impacts. The focus in this
work is on precisely quantifying these probabilities, often encountered in reliability analysis
of complex engineering systems, by introducing a gradient-based Hamiltonian Markov Chain
Monte Carlo (HMCMC) framework, termed Approximate Sampling Target with Post-processing
Adjustment (ASTPA). The basic idea is to construct a relevant target distribution by weighting
the high-dimensional random variable space through a one-dimensional likelihood model, us-
ing the limit-state function. To sample from this target distribution we utilize HMCMC algo-
rithms that produce Markov chain samples based on Hamiltonian dynamics rather than ran-
dom walks. We compare the performance of typical HMCMC scheme with our newly developed
Quasi-Newton based mass preconditioned HMCMC algorithm that can sample very adeptly,
particularly in difficult cases with high-dimensionality and very small failure probabilities. To
eventually compute the probability of interest, an original post-sampling step is devised at this
stage, using an inverse importance sampling procedure based on the samples. The involved
user-defined parameters of ASTPA are then discussed and general default values are suggested.
Finally, the performance of the proposed methodology is examined in detail and compared
against Subset Simulation in a series of static and dynamic low- and high-dimensional bench-
mark problems.
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1 INTRODUCTION

In this work, we investigate Hamiltonian Markov Chain Monte Carlo (HMCMC) schemes
for estimation of rare events probabilities, a commonly encountered important problem in
several engineering and scientific applications, most often observed in the form of failure
probability, or alternatively, reliability estimation. Calculating such small probabilities with
accuracy presents many numerical and mathematical challenges, particularly in cases with
high dimensional random spaces and/or expensive computational models, that practically limit
the afforded number of model calls. The well known gradient based First Order Reliability
Method (FORM), and variants, have a very long history in reliability estimation problems, with
numerous successes [1, 2, 3, 4]. Such asymptotic approximation methods naturally have of
course limitations, however, in general settings. Hence, numerous sampling based methods
have been also suggested in the literature to tackle the problem in its utmost generality, e.g.
[5]. The current state-of-the-art sampling method for problems of this type is termed Subset
Simulation (SuS) [6] and belongs to the family of MCMC techniques. Within the context of
Subset Simulation, various random-walk and non-random-walk-based MCMC proposal steps
[7, 8] have been explored and suggested, to improve the sampling efficiency of SuS, including
Hamiltonian steps [9].

In this work we completely deviate from SuS and we introduce a gradient-based Hamiltonian
Markov Chain Monte Carlo (HMCMC) sampling framework, termed Approximate Sampling
Target with Post-processing Adjustment (ASTPA) [10], that is directly used for rare events
probabilities estimation. The basic idea of ASTPA is to construct a relevant target distribution
to sample from, by weighting the high-dimensional random variable space through a one-
dimensional likelihood model, using the limit-state function, and to then utilize an original
post-sampling step, using an inverse importance sampling procedure based on the acquired
samples. Hamiltonian MCMC schemes are employed to perform the sampling. The Hamiltonian
Monte Carlo (HMC) method, originally developed by [11], and more recently popularized mainly
through the works of [12, 13, 14], is characterized by scalability [13, 15], fast mixing rates,
weak sample auto-correlation, even in complex high-dimensional parameter spaces [16], and
has achieved broad-spectrum successes in most general settings e.g. [17, 18, 19, 20]. Herein,
we compare the performance of the typical HMCMC scheme with our newly developed Quasi-
Newton based mass preconditioned HMCMC algorithm that also exploits the information about
the localized geometry of the failure region, through an inexpensive BFGS approximation. The
involved user-defined parameters of ASTPA are also discussed in the paper and general default
values are suggested. The performance of the proposed methodology is finally examined and
compared successfully against Subset Simulation, in a series of static and dynamic, low- and
high-dimensional benchmark problems.

2 CONCEPTS BEHIND HAMILTONIAN MARKOV CHAIN MONTE CARLO

In HMCMC methods, Hamiltonian dynamics are used to produce distant state steps for the
Metropolis proposals, thereby avoiding the slow exploration of the state space that results from
the diffusive behavior of simple random-walk proposals. Given a parameter of interest θ with
(unnormalized) density πΘ(.), the Hamiltonian Markov Chain Monte Carlo method introduces
an auxiliary momentum variable z and samples from the joint distribution characterized by:

π(θ, z) ∝ πΘ(θ) πZ|Θ(z|θ) (1)
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where πZ|Θ(.|θ) is proposed to be a symmetric distribution. With πΘ(θ) and πZ|Θ(z|θ) be-
ing uniquely described up to normalizing constants, the functions U(θ) = − log πΘ(θ) and
K(θ, z) = − log πZ|Θ(z|θ) are introduced as the potential energy and kinetic energy, owing to
the physical laws which motivate the Hamiltonian Markov Chain Monte Carlo algorithm. The
total energy H(θ, z) can be thus expressed as:

H(θ, z) = U(θ) +K(θ, z) (2)

and is often termed the Hamiltonian H . The kinetic energy function is unconstrained and can be
formed in various ways based on the implementation. In most typical cases, the momentum is
given by a zero-mean normal distribution [13, 16], and accordingly the kinetic energy can be
written as: K(θ, z) = − log πZ|Θ(z|θ) = − log πZ(z) = 1

2
zTM−1z, where the M is a symmetric,

positive-definite covariance (mass) matrix.
HMCMC generates a Metropolis proposal on the joint state-space (θ, z) by sampling the

momentum and simulating trajectories of Hamiltonian dynamics in which the time evolution of
the state (θ, z) is governed by Hamilton’s equations, expressed typically by:

dθ

dt
=
∂H

∂z
=
∂K

∂z
= M−1z,

dz
dt

= −∂H
∂θ

= −∂U
∂θ

= ∇θL(θ) (3)

where L(θ) denotes the log-density of the target distribution. Hamiltonian dynamics prove to be
an effective proposal generation mechanism because the distribution π(θ, z) is invariant under
the dynamics of Eq. (3). These dynamics enable a proposal state, obtained by an approximate
solution of Eq. (3), to be distant from the current state, yet having high probability of acceptance.
The solution to Eq. (3) is in general analytically intractable and thus the Hamiltonian equations
need to be numerically solved by discretizing time, using some small step size, ε. A symplectic
integrator that can be used for the numerical solution is the leapfrog one, as follows:

zt+ε/2 = zt − (
ε

2
)
∂U

∂θ
(θt), θt+ε = θt + ε

∂K

∂z
(zt+ε/2), zt+ε = zt+ε/2 − (

ε

2
)
∂U

∂θ
(θt+ε) (4)

The main advantages of using the leapfrog integrator are its simplicity, its volume-preserving
feature, and its reversibility, due to its symmetry, by simply negating z, facilitating a valid
Metropolis proposal. See [13], [16] and[21] for details on energy-conservation, reversibility
and volume-preserving integrators and their connections to HMCMC. It is noted that in the

above leapfrog integration algorithm, the computationally expensive part is to acquire the
∂U

∂θ
term at the updated location θ. Taking L = τ/ε steps of the leapfrog integrator approximates
the evolution (θ(0), z(0)) −→ (θ(τ), z(τ)), where τ is the trajectory length or path length, and
provides the exact solution in the limit ε −→ 0.

As discussed, the typical HMCMC version is based on a Gaussian momentum πZ|Θ(z|θ) =
πZ(z) ∼ N(0,M) (or z ∼ N(0,M)). The mass matrix M is often set to the identity matrix, I,
but can also be adapted to precondition the sampler when relevant information about the target
distribution is available (see Section 4). A standard procedure for drawing NIter samples via
HMCMC is described in Algorithm 1, where L(θ) is the log-density of the target distribution of
interest. θ0 are the initial values for the θ, and L is the number of leapfrog steps, as explained
before. For each HMCMC step, we first resample the momentum and then implement the L
leapfrog updates (Leapfrog(θ̃, z̃, ε)) before we accept or reject the Metropolis proposal at the
pertinent step.
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Algorithm 1 Hamiltonian Markov Chain Monte Carlo
1: procedure HMCMC(θ0, ε, L, L(θ), NIter)
2: for m = 1 to NIter do
3: z0∼N(0, I) . momentum sampling from standard normal distribution
4: θm← θm−1, θ̃← θm−1, z̃← z0

5: for i = 1 to L do
6: θ̃, z̃← Leapfrog(θ̃, z̃, ε) . leapfrog integration
7: end for
8: with probability:

9: α = min
{

1,
exp(L(θ̃)− 1

2
z̃.z̃)

exp(L(θm−1)− 1

2
z0.z0)

}
. Metropolis step

10: θm← θ̃, zm← -z̃
11: end for
12: end procedure

The efficiency of HMCMC relies significantly on selecting suitable values for ε and L. In
this work we select the stepsizes ε in such a way that the corresponding average acceptance
rates are approximately 65%, as values between 60% and 80% are typically assumed optimal
[13, 14, 15]. The dual averaging algorithm of [14] was adopted here to find these stepsizes.
However, in contrast to [14] we adapt these stepsizes throughout the analysis, in both the burn-in
and stationary phases of the MCMC algorithm. To determine the value of L, we estimate the
trajectory length τ so as to have a sufficient so called normalized Expected Square Jumping
Distance (ESJD) τ−1/2 E‖θ(t+1)(τ) − θ(t)(τ)‖2, as introduced in [22], and then we randomly
perturb each trajectory length τ (t) in the range [0.9τ, 1.1τ ] to avoid periodicity (t denotes the t-th
iteration of HMCMC). In all our experiments we determine L and control the trajectory length
in this manner, as we have found it to work well in practice. The role of these parameters (ε and
τ (or L)) and techniques for determining them have been quite extensively studied and for more
details we refer the readers to [13, 14, 15].

3 METHODOLOGY TO CALCULATE THE FAILURE PROBABILITY

The failure probability PF for a system, that is the probability of a defined unacceptable
system performance, can be expressed as a d-fold integral, as:

PF = E[IF (θ)] =

∫
g(θ)≤0

IF (θ)πθ(θ)dθ (5)

where θ is the random vector [θ1, ..., θd]
T ; F ⊂ Rd is the failure event in the parameter space;

g(θ) is the limit-state function that can include one or several distinct failure modes and defines
the failure of the system by g(θ)≤ 0; I(.) is the indicator function with: IF (θ) = 1 if θ ∈
g(θ)≤ 0 and IF (θ) = 0 otherwise; E is the expectation operator, and πθ is the joint probability
density function (PDF) for Θ. It is common practice in reliability analysis to have the joint PDF
of Θ be the standard normal one, due to its rotational symmetry and exponential probability
decay. In most cases, this is not restrictive, since it is uncomplicated to transform the original
random variables X to Θ, e.g. [23]. When this is not the case however, but the probabilistic
characterization of X can be defined in terms of marginal distributions and correlations, the Nataf
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Figure 1: The above figures represent the analytical target distribution, the simulated target distribution samples
based on our HMCMC-based method, and the fitted Gaussian Mixture Model describing the simulated samples,
from left to right, respectively.

distribution (equivalent to Gaussian copula) can be used to model the joint PDF, and the mapping
to the standard normal space can be then accomplished [24].

The main idea of our approach to calculate the failure probability is to construct an appropriate
approximate target distribution to sample from, based on Hamiltonian MCMC methods that
can quickly reach regions of interest and can keep the number of model calls to a minimum,
and to then utilize a post-sampling step to acquire the exact probability estimation, without
any additional model calls. We construct this approximate target distribution by combining
the multidimensional parameter space Θ with a one-dimensional likelihood function, using the
limit-state expression. This one-dimensional likelihood function is expressed as a Gaussian PDF
with mean = µg(θ) = 0, where g(θ) is the limit-state function, and a dispersion factor σ:

N
(
g(θ)

gc

 µg(θ) = 0, σ

)
, gc =

{
g(0), if g(0) > 8 or g(0) < 1

1, otherwise
(6)

where gc is a normalizing constant. The reason for this normalization, g(θ)/gc, is to control the
suggested upper and lower bounds of σ. The target PDF is then defined as:

Target probability distribution ∝ N
(
g(θ)

gc

 µg(θ) = 0, σ

)
×
(
θ ∼ N(0, I)

)
(7)

Having the total number of model calls in mind, as well as the coefficient of variation of the
estimator (C.O.V), the suggested value for σ is in the range [0.1 0.7]. Fine tuning σ in that range
is not generally necessary. It is recommended, in general, to use higher σ values (0.6− 0.7) in
nonlinear high-dimensional problems and multi-modal cases when 1 ≤ g(0) ≤ 8, since a larger
σ usually allows longer state jumps and fewer required model calls. On the other hand, a lower
σ generally increases the accuracy of the estimator, at the expense of a slightly increased number
of model calls.

Fig. 1 concisely portrays the overall approach by using a bimodal target distribution. The gray
curves represent the parabolic limit-state function g(θ) of this problem, with the failure domain
being outside g(θ). The left figure displays the constructed target distribution, by adopting the
previously described approach, which in this simple 2D case can be visualized. The middle
figure shows drawn samples from the target distribution by our suggested Hamiltonian MCMC
variant, described in Section 4. For their initial stage, our HMCMC samplers have an adaptive
annealed phase, mainly in order to automatically tune parameters and reduce the computational
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cost, overall, and then follow the typical Hamiltonian approach, except in our Quasi-Newton
case (Section 4) the mass matrix is appropriately preconditioned. As such, during the burn-in
period, we initialize the spread of likelihood, σ0, equal to 1 that then follows an exponential
decay throughout the burn-in period, while at the end of this initial period, σ takes its constant
value, as described above, for the stationary phase of the algorithms.

To finally compute the failure probability we have to adjust Eq. (5) accordingly, since the
samples have been sampled based on our constructed approximate target distribution. An original
post-sampling step is devised at this stage using our inverse importance sampling procedure, i.e.
having the samples, choose a pertinent Importance Sampling Density (ISD) automatically, based
on the samples. Given that, the probability of failure after some algebra (see [10] for details) can
be computed as follows:

PF =

∫
IF (θ)πθ(θ)dθ =

∫
IF (θ)

C . h̃(θ)

`(θ)
dθ (8)

where C = 1
N

∑N
i=1

h̃(θi)

Q(θi)
; h̃(.) denotes the non-normalized target PDF, `(θ) is our likelihood

function, andQ(.) is a computed Gaussian Mixture Model (GMM), based on the already available
samples and the generic Expectation Maximization (EM) algorithm, as indicatively seen in the
right plot of Fig. 1.

Our described newly proposed method is termed ASTPA (Approximate Sampling Target with
Post-processing Adjustment) and, as a summary, comprises of constructing a target distribution
model, performing HMCMC sampling, and finally applying a post-sampling step. For more
details on supplementary justifications about this method, we refer readers to [10].

4 QUASI-NEWTON EXTENSIONS AND CONNECTIONS TO HMCMC

In high-dimensional problems, the computational cost of the typical HMCMC sampler may
increase considerably and a prohibitive number of model calls per leapfrog step may be required.
In this work, we address this issue in a developed Newton-type context, where the Hessian
information is approximated without any required additional model calls per leapfrog step.
To this end, the well-known BFGS approximation [25] is used in our Quasi-Newton type
Hamiltonian MCMC approach. Let θ ∈ Rd, consistent with the previous section. Given the
k-th estimate Wk, where Wk is an approximation to the inverse Hessian at θk, the BFGS update
Wk+1 can be expressed as:

Wk+1 = (I− skyTk
yTk sk

)Wk(I− yksTk
sTk yk

) +
sksTk
sTk yk

(9)

where I is the identity matrix, sk = θk+1−θk, and yk = ∇f(θk+1)−∇f(θk) where f : Rd −→ R
denotes any relevant target distribution function in this case. Our developed Quasi-Newton
preconditioned Hamiltonian Markov Chain Monte Carlo (QNp-HMCMC) method is presented
in detail in Algorithm 2. In the burn-in phase we are still sampling the momentum from an
identity mass matrix but the ODEs of Eq. (3) now become:

θ̇ = WM−1z, ż = W∇θL(θ). (10)

where W ∈ Rd×d is the symmetric positive definite matrix of Eq. (9) and being the inverse
Hessian matrix provides an informed approximation of the local geometry of the parameter space,
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accelerating exploration of the domain. The final estimation of the approximated inverse of the
Hessian matrix, W, from the burn-in phase is then used to define the preconditioned covariance
matrix to sample the momentum variable for the stationary, non-adaptive stage of the chain. It
can be shown that all utilized dynamics in both phases of the algorithm enable us to maintain the
desired target distribution as the invariant one. In Section 5 we empirically evaluate and compare
the QNp-HMCMC performance in various settings. For further details on the QNp-HMCMC
method, its performance in different settings, and its validity, see [10].

5 NUMERICAL RESULTS

In this section, four numerical examples are implemented to illustrate the efficiency of the
proposed methods. In all examples, the tuning parameters (ε,τ ,σ) are systematically used as
mentioned in Sections 2 and 3. In the context of reliability problems, we use the default value
τ = 0.7 as a starting point and then employ the ESJD metric [22] as described in Section 2. The
burn-in period is chosen to be on average 15% of the total number of model calls, while the
upper bound of the burn-in size is limited to 20%. The described methods are compared to the
Component-wise Metropolis-Hastings based Subset Simulation (CWMH-SuS). For the sake of
comparison, we use two proposal distributions in CWMH-SuS, a uniform distribution of width
2 and a standard normal one. The parameters of Subset Simulation are chosen as ns = 1,000
and 2,000 for low- and high-dimensional simulations respectively, where ns is the number of
samples for each subset level, and p0 = 0.1, where p0 is the percentile of the samples that
determines the intermediate subsets [6]. Comparisons are illustrated in terms of accuracy and
computational cost. In particular, the tables show the PF estimation, including the mean number
of limit-state function calls in order to calculate the value and gradient of the target distribution
in the HMCMC-based algorithms, and the value of the limit-state function in SuS. The analytical
gradients are provided in all examples, hence one model call can provide both the value and the
gradient of the target distribution. In all examples, the number of limit-state function evaluations
for all methods has been set to be roughly the same to each other for comparison purposes.
Results are based for all examples on 500 independently performed simulations, so that the
sample mean and C.O.V of the results can be acquired. It should be noted that the ASTPA
parameters are carefully chosen for all examples but are not optimized for any one. Hence,
comparative and perhaps improved alternate performance might be achieved with a different set
of parameters.

5.1 Example 1: parabolic/concave limit-state function

The first example is expressed by the following limit state function for two standard normal
random variables [26]:

g(θ) = r − θ2 − κ (θ1 − e)2 (11)

where r, κ and e are deterministic parameters chosen as r = 6, κ = 0.3 and e = 0.1. The
probability of failure is 3.95E-5 and the limit-state function consists of two design points (failure
modes), as seen in Fig. 1. For the HMCMC-based algorithms, the likelihood dispersion factor, σ,
is 0.7 and the burn-in sample size is taken as 200. Consistent to the discussion in Section 3, the
trajectory length is set to τ = 1.

Table 1 compares the number of model calls, the coefficient of variation and the E[P̂F ]
obtained by all tested methods. The Subset Simulation results are based on ns = 1,000. It
is shown that the HMCMC approach gives significantly smaller C.O.V. than SuS and also
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Algorithm 2 Quasi-Newton preconditioned Hamiltonian Markov Chain Monte Carlo
1: procedure QNP-HMCMC(θ0, ε, L, L(θ), BurnIn, NIter)
2: W = I
3: for m = 1 to NIter do
4: if m ≤ BurnIn then
5: z0∼N(0,M) . where M = I
6: θm← θm−1, θ̃← θm−1, z̃← z0, B←W
7: for i = 1 to L do
8: θ̃, z̃← Leapfrog-BurnIn(θ̃, z̃, ε, B)
9: Update W using Eq. (9)

10: end for
11: with probability:

12: α = min
{

1,
exp(L(θ̃)− 1

2
z̃.z̃)

exp(L(θm−1)− 1

2
z0.z0)

}
13: θm← θ̃, zm← -z̃ . If proposal rejected: W← B
14: else . If m > BurnIn
15: z0∼N(0,M) . where M = W−1

16: θm← θm−1, θ̃← θm−1, z̃← z0

17: for i = 1 to L do
18: θ̃, z̃← Leapfrog(θ̃, z̃, ε, M)
19: end for
20: with probability:

21: α = min
{

1,
exp(L(θ̃)− 1

2
z̃. M−1.z̃)

exp(L(θm−1)− 1

2
z0. M−1.z0)

}
22: θm← θ̃, zm← -z̃
23: end if
24: end for
25: end procedure
26:
27: function LEAPFROG-BURNIN(θ̃, z̃, ε,B)
28: z̃← z + (ε/2)B∇θL(θ)
29: θ̃ ← θ + εBz̃
30: z̃← z + (ε/2)B∇θL(θ̃)
31: return θ̃, z̃.
32: end function
33:
34: function LEAPFROG(θ̃, z̃, ε,M)
35: z̃← z + (ε/2)∇θL(θ)
36: θ̃ ← θ + εM−1z̃
37: z̃← z + (ε/2)∇θL(θ̃)
38: return θ̃, z̃.
39: end function
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Table 1: Performance of various methods for the parabolic/concave limit-state function

σ = 0.7
τ = 1

500 Independent
Simulations

CWMH-SuS HMCMC QNp-HMCMC
U(−1, 1) N(0, 1)

Number of model calls 4,559 4,565 4,391 4,926
C.O.V 0.62 0.65 0.35 0.39
E[P̂F ] (Exact PF ∼ 3.95E-5) 4.19E-5 4.14E-5 3.86E-5 3.47E-5

Table 2: Performance of various methods for the four-branch series system

σ = 0.7
τ = 1
ns = 1,000

500 Independent Simulations CWMH-SuS HMCMC QNp-HMCMC
U(−1, 1) N(0, 1)

Number of model calls 2,841 2,852 2,867 2,887
C.O.V 0.26 0.30 0.29 0.26
E[P̂F ] (Exact PF ∼ 2.20E-3) 2.23E-3 2.26E-3 1.98E-3 1.91E-3

σ = 0.7
τ = 1
ns = 2,000

Number of model calls 5,634 5,657 5,688 5,740
C.O.V 0.19 0.22 0.13 0.17
E[P̂F ] (Exact PF ∼ 2.20E-3) 2.24E-3 2.23E-3 2.16E-3 2.11E-3

outperforms it in terms of the E[P̂F ]. Fig. 1 also demonstrates that the QNp-HMCMC samples
accurately describe the two important failure regions.

5.2 Example 2: four-branch series system

This example is a well-known benchmark system reliability problem, defined by the following
limit-state function in the standard normal space:

g(θ) = min


3 + 0.1(θ1 − θ2)2 − (θ1 − θ2)/

√
2

3 + 0.1(θ1 − θ2)2 + (θ1 − θ2)/
√

2

(7/
√

2) + (θ1 − θ2)

(7/
√

2) + (θ2 − θ1)

(12)

The trajectory length is chosen as τ = 1 and the likelihood dispersion factor, σ, is fixed to 0.7.
The burn-in is set to 200 samples. Table 2 shows that the SuS with uniform proposal gives more
accurate PF estimation with smaller C.O.V than the HMCMC-based methods for the case of
ns = 1,000. However, by increasing the sample size to ns = 2,000, it is seen that the HMCMC
algorithm exhibits lower C.O.V compared to both SuS implementations. For the case of QNp-
HMCMC, both the bias and C.O.V of the probability estimate considerably decrease with the
sample size increase. Fig. 2 shows the analytical target density of the four-branch limit-state
function problem and samples from the target distribution using the HMCMC approach. As seen,
the method achieves to efficiently sample all four important failure regions.

5.3 Example 3: SDOF oscillator under impulse load

In this example, a nonlinear undamped single-degree-of-freedom (SDOF) oscillator subjected
to a rectangular impulse load is analysed, as described in [27, 28]. The limit-state function is
given as:

g(k1, k2,M, r, T1, F1) = 3r −
∣∣∣∣ 2F1

Mω2
0

sin(
ω0T1

2
)

∣∣∣∣ (13)
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(a) (b)

Figure 2: (a) Simulated samples from the target distribution, (b) Analytical target distribution.

Table 3: Random variables of the undamped oscillator

Variable Distribution Mean C.O.V
M Gaussian 1 0.05
k1 Gaussian 1 0.1
k2 Gaussian 0.1 0.1
r Gaussian 0.5 0.1
T1 Gaussian 1 0.2
F1 Gaussian 0.6-0.45 1

6

Table 4: Performance of various methods for the undamped oscillator example

σ = 0.1
τ = 0.7
µF1

= 0.6

500 Independent Simulations CWMH-SuS HMCMC QNp-HMCMC
U(−1, 1) N(0, 1)

Number of model calls 5,170 5,160 5,132 5,119
C.O.V 0.67 0.51 0.14 0.11
E[P̂F ] (Exact PF ∼ 9.09E-6) 9.68E-6 9.55E-6 9.10E-6 9.08E-6

σ = 0.1
τ = 0.7
µF1

= 0.45

Number of model calls 7,583 7,617 7,523 7,515
C.O.V 0.77 0.70 0.21 0.15
E[P̂F ] (Exact PF ∼ 1.55E-8) 1.67E-8 1.50E-8 1.52E-8 1.51E-8

where ω0 =
√

(k1 + k2)/M is the natural frequency of the oscillator, T1 is the duration of the
impulse load, M is the mass, k1 and k2 are the stiffnesses of the primary and secondary springs,
r is the displacement at which one of the springs yields, and F1 is the amplitude of the force. The
description of all random variables is listed in Table 3. SuS results for both proposals are based
on ns = 1,000. All variables are first transformed to the standard normal space. Results are
shown in Table 4 for two cases, by changing the mean value, µF1 , of F1. For the HMCMC-based
methods, the trajectory length and the likelihood dispersion factor are chosen as τ = 0.7 and
σ = 0.1 respectively. The burn-in sample size is set to 500. It is shown in this example that
the QNp-HMCMC approach provides significantly more accurate and stable results in terms
of the C.O.V. and E[P̂F ]. Particularly for the lowest failure probability level, QNp-HMCMC
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Table 5: Performance of various methods for SDOF oscillator under white noise

σ = 0.2
τ = 0.9
R = 1.8

500 Independent Simulations CWMH-SuS HMCMC QNp-HMCMC
U(−1, 1) N(0, 1)

Number of model calls 11,000 11,011 11,063 11,059
C.O.V 0.32 0.35 0.30 0.24
E[P̂F ] (Exact PF ∼ 2.53E-6) 2.58E-6 2.63E-6 2.57E-6 2.55E-6

σ = 0.2
τ = 0.9
R = 2

Number of model calls 13,578 13,646 13,644 13,618
C.O.V 0.41 0.48 0.34 0.29
E[P̂F ] (Exact PF ∼ 1.11E-7) 1.16E-7 1.14E-7 1.13E-7 1.12E-7

approach noticeably outperforms all other methods. As results indicate, the QNp-HMCMC
method is roughly insensitive to the failure probability level and there is no negative influence on
the method when changing µF1 . For the two SuS variants, it is noteworthy to say here that the
SuS with the standard normal proposal distribution indicates reasonably better performance in
this example than the one with the uniform proposal.

5.4 Example 4: SDOF oscillator under white noise excitation

In this last example, we consider a SDOF oscillator, initially at rest, with natural frequency
ω = 7.85 rad/s and damping ratio ξ = 0.02, subjected to a Gaussian white noise (W (t))
excitation with spectral density of magnitude S0 = 1. The response of the system is computed
at discrete time instants {tj = (j − 1)∆t : j = 1, ...n} with ∆t = 0.05, and the duration
of study is T = 5 sec. Thus, the number of time instants is equal to n = T/∆t + 1 = 101.
The state vector θ is the sequence of i.i.d. standard normal random variables that generate the

W (tj) =
√

2πS0

∆t
θj at the discrete time instants, resulting in 101 involved random variables in this

example. Failure is characterized by the positive displacement response exceeding a threshold
level R: g(θ) = R−max{Y (t)}.

The burn-in sample size is taken as 1,000 for the HMCMC-based methods. SuS results are
based on ns = 2,000. It is seen in Table 5 that the QNp-HMCMC approach shows more accurate
and efficient results in terms of C.O.V. and E[P̂F ]. Compared to the HMCMC approach, this
example agrees with the additional results in [10] and confirms that the application of QNp-
HMCMC in high-dimensional reliability problems is in general more attractive. By decreasing
the target failure probability, results also reveal that QNp-HMCMC gives us a substantially
improved estimation in comparison to all other methods.

6 CONCLUSIONS

A novel approach for estimation of rare event probabilities termed Approximate Sampling
Target with Post-processing Adjustment (ASTPA), is presented in this paper, suitable for low-
and high-dimensional problems, very small probabilities and multiple failure modes. ASTPA
can provide an accurate unbiased estimation of the failure probabilities with an efficient number
of limit-state function evaluations. The basic idea of ASTPA is to construct a relevant target
distribution by weighting the high-dimensional random variable space through a one-dimensional
likelihood model, using the limit-state function. To sample from this target distribution we utilize
gradient-based HMCMC schemes, including our newly developed Quasi-Newton based mass
preconditioned HMCMC algorithm (QNp-HMCMC) that can sample very adeptly, particularly
in difficult cases with high-dimensionality and very small failure probabilities. Finally, an
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original post-sampling step is also devised, using an inverse importance sampling procedure
based on the samples. The performance of the proposed methodology is examined and compared
very successfully herein against Subset Simulation in a series of static and dynamic low- and
high-dimensional benchmark problems. As a general guideline, QNp-HMCMC is recommended
to be used for problems with more than 20 dimensions, where traditional HMCMC schemes may
not perform that well. However, even in lower dimensions QNp-HMCMC performs reasonably
well and is still a competitive algorithm. Since we are utilizing gradient-based sampling methods,
all of our analyses and results are based on the fact that analytical gradients can be computed.
In cases where numerical schemes are needed for the gradient evaluations, then HMCMC
methods will not be competitive in relation to SuS. It should also be pointed out that different
combinations of the HMCMC and QNp-HMCMC algorithms can be possible, based on problem-
specific characteristics. Some of the ongoing and future work is directed towards exploring
various ASTPA variants, and on estimating first-passage problems under numerous settings and
high-dimensional parameter spaces.
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