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Abstract. Due to the substantial increase of the size of current and future wind turbine designs,
the blades tend to be quite flexible, resulting to large displacements and finite rotations under
the action of the aerodynamic loading. As a result, the geometry of the blades changes, in some
cases the flap deflection exceeds 10% of the blade radius, and thus, geometrically non-linear
effects of significant importance take place.

Two geometrically non-linear models are available in the multi-body hydro-servo-aeroelastic
tool hGAST [1, 2], the first employs a 2nd order Euler-Bernoulli beam approach and the second
is based on a non-linear sub-body modeling of the blades. In the present paper, a degenerate-
continuum based Timoshenko beam approach is presented, which has been implemented in the
code. The main kinematic assumptions are that the cross-section remains plane and rigid in its
own plane, hence, the cross-sectional out-of-plane and in-plane warpings are neglected. The
material is assumed homogeneous, isotropic, linear and elastic.

Comparisons between the non-linear models and the linear one are presented. The basic out-
come from the analysis of a three-bladed rotor, with aerodynamic and structural properties
same to the SMW NREL reference wind turbine, is that the non-linear models result to a signif-
icant difference in torsional response compared to the linear model, due to the bending-torsion
non-linear coupling. This could be an important aspect for the design of the blades, since it
contributes to passive load reduction strategies.
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1 INTRODUCTION

In bibliography, geometrically non-linear beam theories could be separated into two cate-
gories: a degenerate-continuum beam theory [3, 4, 5] and a geometrically exact beam theory
[6, 7]. The first category, which has been inspired by the work done for shells (first introduced in
1968 by Ahmad et al. [8]), is directly derived from the 3D-continuum. The strain-displacement
relations used are written in a strong sense, i.e. at the material particle level. The second
category, which has been introduced by Reissner [6] for the plane case and by Simo [7] for the
spatial case, deals with the problem formulation at a beam theory level. The strain-displacement
relations used are written in a weak sense, i.e. at the reference point of the beam. These gener-
alized strain measures do not spoil the geometric exactness, as this is expressed via the resultant
form of the differential equilibrium equations at the deformed state. Actually, Reissner [9] had
proposed a formulation in 3D before Simo, but, using a rotation matrix simplification to derive
the required strain-displacement relations, he spoiled the geometric exactness [10]. Many finite-
element developers of the beam theories, e.g. Jeleni¢ & Crisfield [10], Cardona & Geradin [11],
Ibrahimbegovi¢ [12], based their approach on the geometrically exact beam theory.

The more flexible wind turbine blades of modern design lead to a strong coupling between
aerodynamics and structural dynamics, namely the aeroelasticity. Thus, the structural models
used in aeroelasticity of the blades need to account for the exact geometry of the deformed
shape, so that an accurate input for the aerodynamics load estimation may be provided. A
review on the structural models used in aeroelasticity of the blades is given in [13]. As far as
the 1D structural models are concerned, linear beam models had been used for long. Important
terms which consider certain non-linearities were included, i.e. coupling-type terms associated
with the centrifugal forces. Today, two non-linear beam theory models for rotor blades are
used: One is the moderate deflection beam model [9, 14] based on ordering schemes, and, the
other is the large deflection beam model [15, 16] developed according to the aforementioned
geometrically exact beam theory.

As far as the aerodynamics is concerned, the aerodynamic model, used to transform the wind
flow field to loads on the blades, is a (BEM) Blade-Element Momentum model, which accounts
for dynamic inflow, yaw misalignment, and dynamic stall effects [17].

In this work, a Total Lagrangian beam approach based on the degenerate-continuum con-
cept, for using it in aeroelasticity, is presented. The difference compared to the beam theory
model presented in [3, 4, 5] is that before the element interpolation is performed, an analytical
integration over the cross-section is carried out to reduce the 3D integration to a 1D integration.
The same procedure is followed in [18] for an Updated Lagrangian formulation. The paper out-
line is as follows: In section 2, the kinematics and kinetics of the degenerate-continuum based
beam formulation are presented. An important issue is how to represent the finite rotations of the
cross-section. In the present work, the rotational vector representation technique is used to avoid
the non-uniqueness problem associated to the Euler angles one [19]. The exponential mapping
of the skew-symmetric matrix of the rotational vector is evaluated to update the cross-sectional
orientation. Consistent linearization of the configuration state is presented in the following,
needed to construct a step-by-step analysis, in the context of a Total Lagrangian formulation.
In section 3, the linearized equilibrium equation is presented, from which the beam matrices
are derived after the discretization procedure, using the finite element method. In section 4, the
numerical results from the three-bladed SMW NREL [20] rotor motion, under uniform inflow
conditions, are presented. Comparisons are given between the three options of the geometri-
cally non-linear modeling (degenerate-continuum based, 2nd order Euler-Bernoulli, sub-body
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approach models) and the linear one.

2 DEGENERATE-CONTINUUM BASED TIMOSHENKO BEAM APPROACH
2.1 Assumptions

e The cross-section of the beam remains plane and rigid inside its own plane, hence, warp-
ing is not included. However, the warping displacement behavior could be added to the
assumed deformations.

e Shear deformation is taken into account, and, it is assumed constant in the cross-section
as a consequence of the previous non-warping assumption.

e The initial reference line of the beam is assumed, for the sake of simplicity, straight.
e The material is homogeneous, isotropic and linear elastic.

2.2 Basic kinematics
The reference bases used in kinematics are (fig. 1),

e FE; j =1 — 3,is the orthonormal body-attached reference basis (which is rotating in the
context of the blade dynamics)

o V;(&),i =r,s,t, is the orthonormal moving basis, attached to each cross-section

where, ¢ is the arc-length variable along the reference line of the beam.

Oyt 't=0"'

4
- ﬂ;/
)/o > 2 > e / >oVr

E3.z

Fig. 1: Initial and deformed configuration of the beam.
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2.2.1 Initial configuration state

The initial cross-sectional orientation is expressed via the initial orthogonal transformation
& — PA(€) € SO(3), SO(3) is the special orthogonal group, thus, the moving frame basis at
the initial (undeformed) state (fig. 1) is given by,

"Vi(€) = "Ny (O E; (1

The triads °V;(€),i = r, s, t are directed along the axes shown in fig. 1, which are parallel to
the reference basis F;, j = 1 — 3, (in blade dynamics the origin of these triads is located on the
pitch axis of the blade). The basis vectors °V;(€), in general, depend on £ due to the presence
of initial curvatures and/or twist. In the present, because of the straight beam assumption,
these vectors are constant along the beam. The corresponding position vector R of an arbitrary
material particle (£, 7, ¢) of the undeformed beam is given by,

0
R(£,1,¢) = Ro(§) +°AT - ¢ p = Ro(&) +1- Vo +( -V, 2)
¢

where, Ry () is the position vector of the undeformed beam reference point.

2.2.2 Current configuration state

In a similar way, the deformed cross-sectional orientation is expressed via the orthogonal
transformation £ — 'A(§) € SO(3), thus, the moving frame basis at the current (deformed)
state (fig. 1) is given by,

Vi) ="\ (§E; 3)
The Bernoulli hypothesis of the plane cross-sections remaining planar after deformation and
retaining their shape and area is assumed to hold, thus, the corresponding position vector tr of
an arbitrary material particle (£, 7, ) of the deformed beam is given by,

0
(&1, Q) ="ro(&) +TAT(E) - {1 p = "To() + 1 Vi(§) + ¢ TVA(E) (4)
¢

where, ‘7o () is the position vector of the deformed beam reference point.

2.3 Updated (trial) configuration state

The update of the configuration state w.r.t. the displacements is conventional, i.e. additive,
due to their vectorial nature. To update the configuration state w.r.t. the rotations, the cross-
sectional orientation at configurations ¢ + At and ¢ are related via the rotational (pseudo)-vector
0(&) (fig. 2), which rotates the base vectors 'V;(€) into the base vectors +2!V;(€) around the
axis @ - 0(€) for the angle 6(&), through

TEVIE) = A9 'Vi(€) = exp(B()) Vil6), i =15, 5)
where, the rotation matrix A () is given by,

A(E) = eap(0(6)) = T+ 700 + == 00 ©
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where ?(f ) is the skew-symmetric matrix formed by the components of the rotational vector
0(¢) (B(¢) = —¢/0"E;ET; ¢} is the permutation symbol). The above formula is the well-
known Rodrigues formula. Details about the derivation of the formula one could find at [3, 21].

T.50(3) Y exp. map

Fig. 2: Geometric interpretation of the exponential map, T: 5 SO(3): tangent plane at ' A [22].

2.3.1 Strain and stress measures at the updated (trial) configuration state

By subtracting the position vector at ¢ = 0, given in eq. (2), from the position vector at
t + At, given in eq. (4) for t = t + At, for an arbitrary material particle (£, 7, () of the beam,
the displacement field at ¢ + At is written as follows,

R, ) = THug(€) + - THAV(E) + (- THAV(E) @)

where, 2y (€) is the updated displacement of the beam reference point, and, ‘2t AV, (&),
HAt AV, (€) are the differences between the initial and the updated cross-sectional directors.

To know the stress condition contributing to the geometric stiffness in the context of the
Newton-Raphson iterative procedure, the internal forces and moments of the beam at the trial
state t + At need to be evaluated. To do so, the steps below are followed (for convenience, the
variables &, 1, ¢ are omitted from the RHS),

1. The material particle (£, 7, () global displacement gradients are evaluated,

t+At t+At t+At t+At t+At t+At t+At t+At t+At T
{ U,y U,y U,z U,z U,y U,z W,y W,y w,,

t+At,, tHAt,, t+At
u? )

where, v w are the components of the updated displacement (eq. 7) w.r.t.
the reference basis F, while, (,) denotes the spatial derivative relative to the z,y, z coor-
dinates.

2. Using the coordinate transformation of a 2nd order tensor [23], the global displacement
gradients are rotated to get the initial local ones, i.e. relative to the initial cross-sectional
basis °V.

3. The components of the Green strain tensor [3, 4] are evaluated. Because of the assumption
that the cross-sectional shape does not change during deformation, the only remaining
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components of the Green strain tensor are,

1 1 1
t+At€£§(€’ n, C) — t+Atu§7$ + §(t+Atu§7€)2 + §(t+Atvn,§)2 + §<t+Atw<7§)2

1
tHAL AL t-AL t+AL AL t+AE AL
5517(57 n,¢) = 5( Ugpy + Upe + Ug,e Ugpy + Un,¢ Un,n

t+At t+At
+ T we ¢ we )

) )

A A
+ ¥ we M Mwee)  (8)

1
t+At _ t+At t+At t+At t+AL t+At t+At
eec(€,m,¢) = 5( Ugc + T W + T g e T g+ T o e T g

where, T8y, ALy, ALy are the updated displacements of an arbitrary material par-

ticle w.r.t. the cross-sectional basis °V/, while, (,) denotes the spatial derivative relative to
the &, 7, ( coordinates.

. The internal forces/moments that arise in the geometric stiffness due to the 2nd Piola-
Kirchhoff normal stress t2!S¢¢ (€, 7, ¢) are defined as,

t+AtF££(£) — AA t+At5££ d()147 t+AtMm](€) — /)\AC . tJrAthg dOA
t+AtMCC(§) — [A n - t+AtSf§ doA, t+AtM§§1 (g) — lA 7]2 . t+AtS§§ dOA
t+AtM£§2(€) — \AA CQ . t-i-AtS55 dOA, t+AtM££3 (5) _ [A 77C X H_AtS&{ doA (9)

where, °A is the initial cross-sectional area, ‘F2See(€,1,() = E - A%, E is the
Young’s modulus, "2 Fy.(€) is the normal force, ‘210, (€), T2 M (€) are the bend-
ing moments, and, "2 My 3(€) lead to the effective torsional moment components due
to the bending, all referred to the initial state. A geometrical interpretation of the last
internal moment is given in [24].

The internal forces/moments that arise in the geometric stiffness due to the 2nd Piola-
Kirchhoff shear stress +4¢S, (€, 7, C), 2S¢ (€, 1, ¢) are defined as,

H_AtF&n(g) — A'A t+AtS§n dOA, t+AtF§C (5) — [A t+AtS§C dOA
t+AtM£§4(€) _ AAC X t+AtS§n dOA, t+AtM££5 (5) _ /;A n- t+AtS§< doA (10)

where, "5, (€,1,() = G - (27 Reg), RS (E,1,¢) = G - (2" Peg), G s the
shear modulus, A1 F, (€), HHAF.(€) are the shear forces, and, "2 Mgy 5(€) lead to
the torsional moment components, all referred to the initial state.

By performing the cross-sectional integration analytically, the internal forces and mo-
ments are derived in relation with the cross-sectional properties and a resultant form of
the strain measures.

Remark: At the updated configuration ¢ + At,

- "Rotations’ contribute in the internal elastic energy are depicted in the difference

t+AtA‘/i(£> :t+At‘/'i(§) _0‘/2'72. — ij/_ (11)
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- ’Curvature’ measures contribute in the internal elastic energy are depicted in the deriva-
ITALAV;(E)

tive of the above difference along the beam arc-length, 5

;1 =8,1:

~

DAV () — OV) _ V(exp(6(€)) *Vi(€)) (12)

D€ €

where the orientation update relation (5) has been used.

For the differentiation of the exponential mapping we refer to [25], where a family of
trigonometric functions, that have been used, facilitate the procedure significantly.
2.4 Perturbation of the configuration state at ¢t + At

To construct the perturbed configuration state at ¢ + At,

- The perturbed position of the reference line relative to +2trg(¢) is constructed as,
t+At,e,r,0(£) — H—At’f'o(f) + 65’(1,0(5) (13)

where, dug(§) = dupi(§)E; is a vector field, interpreted, for ¢ > 0, as superposed in-
finitesimal displacement onto the reference line [22].

- The perturbed orthogonal transformation relative to ‘+2* A (¢), which consists of the cross-
sectional basis FA'V(€) as given in eq. (5), is constructed by two ways (fig. 3),

a)
HALCA(€) = exp(edT(£))FATA(E) = exp(eﬁ\ll(g))eﬁp(é(@) 'A(¢) (14)

where, W () is a skew-symmetric tensor field, interpreted, for € > 0, as superposed
infinitesimal rotation (spin) onto the Amoving frame [22]. The eq. (5) has been used
above, in the form 2T A (&) = exp(0(€)) LA(E).

b)
AL A (€) = exp(O(E) + €60(€)) LA(E) (15)

where, 60 (¢) is a skew-symmetric tensor field, interpreted, for € > 0, as infinitesimal
rotation that can be added to the previous rotation.

To get a relation between the axial vectors d1)(§) and 06(¢) of the skew-symmetric matrices
dW (&) and 66(&) respectively, the Rodrigues formula is used in eqs. (14, 15) and then, the
derivative with respect to the scalar parameter € is taken, for e = 0 [26],

0p(&) =T (0)d0(¢) (16)
where, » ; ) »
T(6) = Szg 74l _9205 6 + _eim 00 (17)

For the derivation of the transformation T'(0) (named as the tangential transformation because
is a linear map between tangent spaces, fig. 3) see [3, 11, 27].
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V¥ exp. map

|||||

Fig. 3: Rotation increments and their projection onto the manifold SO(3) [11, 26].

2.4.1 Virtual strain measures

By employing the directional derivative onto the perturbed configuration state (eqs. 13, 14),
the variation of the configuration state (679(¢), A ()) is derived,

d
0ro(€) = —- 8o (€) = duo(€) (18)
€ e=0
SA(E) = | A = 8E(E) A (19)
€le=0
Thus, the virtual displacement for an arbitrary material particle (£, n, ) is written as,
du(8,n,C) = duo(§) +1-0Vs(&) + ¢ - 6V4(¢) (20)

where, dug(§) is the virtual displacement of the beam reference point and 0V;(§) = 0A;;(§) E;,
1 =r,s,t,5 = 1—3. Specifically, by using eqs. (16, 17, 19), the virtual cross-sectional directors
are given as follows,

V4(€) = 8 (&) TV4(€) = dp(€) x V() = (T(0)06(€)) x THVe(6) 2D
V() = 8W(§) V(€)= d3p(€) x V() = (T(0)30(€)) x T2Ve(€)  (22)

By substituting eq. (21) and eq. (22) in eq. (20), the material particle virtual displacement is
written in relation with the unknown variables duo (&) and §0(€). The steps (1) and (2) from the
section 2.3.1 are followed to get the initial local infinitesimal displacement gradients. Following
[4] for a Total Lagrangian formulation, the corresponding components of Green-Lagrange strain
tensor are given by,

- The linear virtual strain components are (for convenience the variables &, 7, ( are omitted
from the RHS),

Sece(€,1,C) = Guge + " ug e Guge + 0, ¢ 6vy e + T we e S

degn(§5m,C) = %(5%7; + 0upe + T uge Sugy + 0y buyy + T we e S,
+ gy Sug e + T, buy e+ e, Swe )

deec(€,m,¢) = %(5%4 + 0wee + P ug e ug + Ty ¢ Gy e + T w0 g g

+ Mg ¢ Suge + M v dune + T wg dwee) (23)
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where, dug, 6v,, dw, are the components of the virtual displacement for the material par-
ticle (£, 7, (), eq. (20), rotated to the cross-sectional basis OV, and, (,) denotes the spatial
derivative relative to the &, 7, ( coordinates.

- The non-linear virtual strain components are (for convenience the variables &, 7, ( are
omitted from the RHS),

1
Onee(€,1, Q) = 5 (Gug ¢ + vy ¢ + i)
1
MNen(&,m,C) = 5(51‘5765“5,77 + 00y £0Uy  + dwe 0w )

1
onec(€,m,¢) = 5(5%45“&,4 + vy 60y ¢ + dwe gdwe ) (24)

3 VIRTUAL WORK EQUATION FOR A TOTAL LAGRANGIAN FORMULATION
The equilibrium equation of the body at (t + At, €) is given by [4],

/ Op t+At’€7";Gk (5ukdOV +/ t+At,eSij 5t+At,e€ij dOV _ / t+Atka 5uk dOV
0y oy

%

+/ t—i—Atf’f 5’&5 dt+AtS (25)
AL,

where, °V is the initial volume, °p is the mass density referred to the initial state, 205,

k = &,m,( is the acceleration of the particle due to all the inertia effects [2], i.e. the ac-
celeration of the body origin, the Coriolis acceleration, and, the acceleration due to the body
deformation, du, = {dug, vy, (5w4}T are the virtual displacements, "F25<S;: i, j = &, n,(,
are the 2nd Piola-Kirchhoff stress components, §'t4<¢;; are the virtual strains, "72! fC is the
gravitational load and 2! fJ is the surface aerodynamic load, where +2!S corresponds to the
last calculated surface area.

For the linearization of the internal virtual work (2nd term of the LHS of the above relation
25), the iterative decompositions for stresses and strains are used,

t+AL, _trAt
ESij = Sij + dSZj (26)
t+ALe . _ t+AL _
€€ij = €ij + dGZ’j, dEZ’j = d€2‘j + dTh‘j (27)
where, 215, = Oy, T%;;, Cyjrs expresses the material constitutive behaviour, "™2%;; are

given by eq. (8), dS;; = Cjj,s de;j, de;j is the linear strain part, given by the same relations as
the corresponding virtual strain components (eqs. 23), and d7;; is the non-linear strain part, the
variation of which is related to the geometrical stiffness. While variation and linearization can
commute, the variation ddn;; is given by the chain-differentiation of eqs. (24).

Substituting in relation (25) the iterative decompositions (26) and (27), and following the
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linearization process as it is presented in [4], the linearized equilibrium equation is derived,

/ Op t+At’6’i’:Gk 6ukd0V + / Cijrs ders 6€ij dOV + / t+AtSij 5d772j dOV =
oy %

oy
:>Kmat ﬁngom
/ t+Ath 6Uk dOV + / t+Atf]§ 5u;3 dt—i—AtS . / t+AtSij 5edeV (28)
oy t+AtSf oy P
:>Fint

To construct the under-braced integrals, one has to substitute the strain components de,, de;;
and ddn;; in eq. (28). By performing analytical integration over the cross-sectional area, the 1D
form of the linearized virtual work is derived. After discretization, the matrices Knat, Kgeom
and the vector F},,; are constructed. The first matrix refers to the resistance due to the linear
constitutive behaviour of the material, while, the second one refers to the resistance due to the
non-linear geometrical stiffness.

As far as the numerical implementation is concerned, one has to note two issues. The first
is that the developed finite element is based on a quadratic interpolation, using a 2nd order
Lagrange polynomial, of both the displacement and the rotation parameters, while, the second
is that the mass matrix is evaluated using the initial configuration of the body, and thus, it is
calculated prior to the step-by-step solution. Time integration is performed using the Newmark
2nd order implicit method [4].

4 NUMERICAL RESULTS

Time domain non-linear aeroelastic simulations for the isolated rotor of the SMW NREL
reference wind turbine [20] are performed, using the multi-body hydro-servo-aeroelastic tool
hGAST [1, 2]. The present non-linear Degenerate-Continuum based Timoshenko beam model
(non-linear DC) is compared to the 2nd order Euler-Bernoulli beam model (non-linear EB),
the sub-body beam model (non-linear SB) and the linear one (linear). The transverse shear
effect was neglected in view of enabling direct comparison with the 2nd order Euler-Bernoulli
model. The 2nd order Euler-Bernoulli beam model accounts for moderate deflections by using
an ordering scheme acted on the cross-sectional rotations [14, 28]. The sub-body modeling
is an extension of the multi-body formulation to the body level. It consists of dividing the
body (blade) into sub-bodies, which are subsequently treated as beam elements. At the sub-
body level, local deflections and rotations are assumed small, and thus, the use of a linear
Timoshenko beam model is justified, while by imposing kinematic and dynamic continuity
between consecutive sub-bodies at their connection points, large deflections and rotations are
gradually built [28]. The linear model accounts for the non-linear tension-bending coupling
effect, which is added in the analysis of rotating bodies, since the centrifugal force increases
their bending stiffness.

Uniform inflow conditions are considered at the rated wind speed of 11.4m/s, where the
deflections are expected to attain their maximum value and, in turn, the non-linear effects will
be more pronounced. The rotor is operated at fixed rotational speed of 12rpm and at zero pitch
angle (open loop operation, i.e. the controller is not active), corresponding to average operating
conditions at the rated wind speed. The results are presented in terms of time histories, after the
initial transients are damped.
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In fig. 4, the blade tip twist angle is presented. The three non-linear models (non-linear
DC, non-linear EB, non-linear SB) predict higher amplitudes of the twist angle variation as
compared with the linear model. This is linked to the bending-torsion coupling effect [28] which
is predicted only by the non-linear models. Although the twist angle amplitude as predicted by
the non-linear SB model is ~ 20% reduced compared to the other two non-linear models, the
phase of the signal is in perfect agreement between the three of them. Moreover, the non-linear
models result to an increase of the twist angle mean value (~ 0.4° for the non-linear SB model
and ~ 0.25° for the other two non-linear models) compared to the linear model (~ 0.1°).

The increase in the amplitude of the twist angle affects the flapwise deflection (fig. 5) through
the corresponding change in the effective angle of attack. So, in fig. 5, the three non-linear mod-
els depict a phase shift of the flapwise deflection signal compared to the linear model, following
the phase of the torsion angle. Moreover, the non-linear DC and non-linear EB models predict
the same amplitude of the flapwise deflection variation, although the non-linear DC model re-
sults to a slightly reduced mean value compared to the non-linear EB model. The non-linear SB
model shows reduced amplitude of the variation (~ 25%) compared to the other two non-linear
models, and slightly reduced compared to the linear model. The flapwise deflection mean value
predicted by the non-linear SB model is identical to this of the linear modeling.

In fig. 6, the blade tip edgewise deflections are presented. As expected, the agreement be-
tween the four models is good, since the edgewise direction of the blade is stiff compared to
the flapwise one, and, the corresponding loads are driven just by the gravity. In fig. 7, the blade
tip extension is presented. The linear model predicts a positive extension due to the centrifugal
force, while, the three non-linear models consistently predict the virtual axial shortening of the
blade due to the bending.

Regarding the loads, the non-linear models predict considerably higher amplitude of the
blade root torsion moment due to the bending-torsion coupling, as seen in fig. 8. The linear
model results to an almost constant torsion moment, independent of the azimuth position of the
blade. Its mean value is reduced about 40% compared to all the non-linear beam models, which
predict almost the same mean values of the torsion moment. The amplitude of the variation
is identical for the non-linear DC and non-linear EB models, while, the non-linear SB model
predicts reduced amplitude (~ 30%).

In similar with the flapwise deflections (fig. 5), the amplitude of the flapwise bending mo-
ment at the blade root (fig. 9) is clearly affected by the increase in the amplitude of the twist
angle (fig. 4). This is depicted in the results of all the non-linear models. Specifically, the non-
linear DC model predicts a slightly increased amplitude of the variation (~ 5%) compared to
the non-linear EB model, while, the other models follow with ~ 20% reduced amplitude for the
non-linear SB model and ~ 70% reduced amplitude for the linear one, compared to the non-
linear DC model. The mean value of the flapwise moment is almost the same for the non-linear
DC, the non-linear EB and the linear model, while, the non-linear SB model predicts slightly
increased mean value. A good agreement between the three non-linear models is obtained in
the phase of the signal (which again follows the phase of the twist angle variation).
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S CONCLUDING REMARKS

A Total Lagrangian degenerate-continuum based Timoshenko beam approach was presented.
The important features are that there is no constraint in the magnitude of displacements and
rotations and that the beam model may be easily extended to a general curved beam. The
main kinematic assumption is that the cross-sectional plane remains planar and rigid during
deformation, although warping can be included in the formulation.

The present beam approach was implemented in the multi-body hydro-servo-aeroelastic tool
hGAST. The stiffness of the beam is derived by retaining all the geometrical non-linear terms
from the Green strain tensor, while, the beam inertia is taken into account using the initial
configuration. The aeroelastic analysis of the three-bladed rotor of the SMW NREL reference
wind turbine was performed. The numerical results compare four modelings, the present beam
approach, the 2nd order Euler-Bernoulli, the sub-body and the linear one, to assure the validity
of the present formulation. The comparisons show that the present formulation works well,
while the non-linear coupling effects compare well with the 2nd order Euler-Bernoulli beam
theory model. The basic outcome from the analyses is that the geometrical non-linearity is
significant w.r.t. the torsion-bending coupling terms and this is shown mainly in the torsional
response, which is the basic factor for the determination of the aerodynamic loading.
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