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Abstract. In this work, a novel solid mechanics-based mesh deformation technique for high
order curved elements is presented. The technique falls under the a posteriori curved mesh
generation category, where higher order nodes are placed on a linear mesh and the geometry
is then deformed to conform to the exact CAD boundary. In contrast to the existing a pos-
teriori approaches in the literature such as the techniques based on the inclusion of residual
stresses, parametrised and varying material constants, regularisation and smoothing of curved
meshes, in this work, a rather consistent solid mechanics approach is followed. This implies,
that the underlying Euler-Lagrange equations that need to be solved for, emerge from an energy
principle, with well-defined internal energies constructed for an hyperelastic system, which are
subsequently, consistently linearised. Depending on the geometrical parameterisation, the ap-
proach guarantees better mesh quality and lower condition number for the system of equations.
Furthermore, due to the introduction of independent invariants emanating from fibre, surface
and volume mappings, the essential mesh distortion measures are encoded in the formulation.
The paper proves that for for two-dimensional elements such as triangles and quadrilaterals,
not all the distortion measures can be independent. An example of materially instable internal
energy is provided to pinpoint the importance of a consistent formulation in the context of highly
stretched boundary layer meshes.
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1 INTRODUCTION

The use of curved elements is nowadays accepted to be crucial in order to fully exploit the
advantages of high-order discretisation methods, but until relatively recently, the challenge of
automatically generating high-order curvilinear meshes has been an obstacle for the widespread
application of high-order methods [Vincent and Jameson(2011)]. Methods to produce high-
order curvilinear meshes are traditionally classified into direct methods and a posteriori meth-
ods [Dey, O’Bara, and Shephard]. Direct methods build the curvilinear high-order mesh di-
rectly from the CAD boundary representation of the domain whereas a posteriori approaches
rely on mature low-order mesh generation algorithms to produce an initial mesh that is subse-
quently curved using different techniques, such as local modification of geometric entities, solid
mechanics analogies or optimisation.

Within the category of a posteriori approaches, the solid mechanics analogy first proposed
in [Persson and Peraire] has become increasingly popular. The main idea is to consider the ini-
tial, low-order, mesh as the undeformed configuration of an elastic solid. High-order nodal dis-
tributions are then inserted into all of the elements and then the nodes over element edges/faces
in contact with the curved parts of the boundary are projected onto the true CAD boundary.
The displacement required to move the nodes onto the true boundary is interpreted as an es-
sential boundary condition within the solid mechanics analogy. The solution of the elastic
problem provides the desired curvilinear mesh as the deformed configuration. The initial ap-
proach proposed in [Persson and Peraire] used a non-linear neo-Hookean constitutive model.
Several attempts to reduce the computational cost of this approach have been proposed based
on a linear elastic analogy, see [Xie, Sevilla, Hassan, and Morgan]. It is clear that when large
deformations are induced to produce the deformed curvilinear high-order mesh, a linear elastic
model can result in non-valid elements due to the violation of the hypothesis of small defor-
mations. In order to alleviate this problem, it is possible to split the desired (potentially large)
displacement of boundary nodes into smaller load increments. Other approaches to increase
the robustness of the linear elastic analogy have been recently introduced, see for instance
[Moxey, Ekelschot, Keskin, Sherwin, and Peiró], where pseudo thermal effects are introduced.

In this work, a novel a posteriori solid mechanics-based mesh deformation technique for
high order curved elements is presented. In contrast to the existing a posteriori approaches in
the literature such as the techniques based on the inclusion of residual stresses, parametrised
and varying material constants, regularisation and smoothing of curved meshes, in this work,
a rather consistent solid mechanics approach is followed. This implies, that the underlying
Euler-Lagrange equations that need to be solved for, emerge from an energy principle, with
well-defined internal energies constructed for an hyperelastic system, which are subsequently,
consistently linearised. The theoretical and computational framework is presented in the next
two sections, respectively and finally followed by the numerical examples sections.

2 NO-LINEAR CONTINUUM MECHANICS

Let us consider the motion of a continuum from its initial undeformed (or material) config-
uration Ω0 ⊂ Rd, with boundary ∂Ω0 and outward unit normal n0, into its final deformed (or
spatial) configuration Ω ⊂ Rd, with boundary ∂Ω and outward unit normal n, where d repre-
sents the number of spatial dimensions. In the context of curved mesh generation, the initial
(undeformed) configuration Ω0 represents a linear mesh with planar faces (edges in two dimen-
sions) and the final (deformed) configuration Ω represents the final curved high-order mesh, as
illustrated in Figure 1. The motion is described by a mapping φ which links a material particle
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from material configurationX to spatial configuration x according to x = φ(X).

x1, X1

x3, X3

x2, X2

dA

da = HdA

dX

dx = F dX

dΩ0

dΩ = JdΩ0

x = φ(X)

Figure 1: Deformation map of a continuum and illustration of the strain measures F ,H and J .

The following well-known strain measures can be introduced, namely the two-point defor-
mation gradient tensor or fibre-map F , the two-point co-factor or adjoint tensor or area mapH
and the Jacobian J or volume-map

F = ∇0φ =
∂φ

∂X
, H = JF−T , J =

1

3
H : F (1)

where ∇0 denotes the gradient with respect to material coordinates. The fundamental strain
measures {F ,H , J}, also illustrated in Figure 1, encode the essential modes of deformation,
based on which a complete set of indepdendent mesh quality/distortion measure can be defined.
Kinematically any other quality measure would be a combination of these three measures.

3 A CONSISTENT INCREMENTALLY LINEARISED APPROACH

To guarantee and/or maintain essential mathematical requirements such as objectivity and
polyconvexity for the linearised strain energy density, a linearised solid mechanics approach
must emanate from an underlying non-linear variational principle, as the notion of objectivity
and polyconvexity cannot be invoked in small strains. This is typically achieved by consistent
linearisation of the non-linear total potential energy through a Taylor series expansion. To
illustrate this, let us consider the total potential energy in non-linear system, cast in the form of
an iterative (Newton-Raphson) scheme

Π(φ?
n+1) = inf

φn+1∈Vn+1

{∫
Ω0

Ψ(Cn+1) dΩ0

}
(2)

where Vn+1 =
{
φn+1 ∈ [H1(Ω0)]

d
: φn+1(X) = x̄n+1 on ∂Ω0

}
and xn+1 = φn+1(X) is

the position vector of the material points at increment n+ 1, which can be evaluated through an
incremental displacement u superimposed on the deformed configuration at increment n, i.e.
xn+1 = xn+u. At increment n, the current position vector xn, the state of deformation gradient
F n and, subsequently, the Cauchy-Green strainCn are fully known. In a non-linear regime, the
motion of the continuum from n to n + 1 is solved iteratively, as the amount of displacements,
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the state of deformation gradientF n+1 and the Cauchy-Green strainCn+1 cannot be determined
explicitly.

However, in the context of high-order curved mesh generation, it is convenient to approxi-
mate (2) through a Taylor series expansion of the form

Πu(u?) = inf
u∈U

{∫
Ω0

(
DΨ(Cn)[u] +

1

2
D2Ψ(Cn)[u;u]

)
dΩ0

}
. (3)

where U =
{
u ∈ [H1(Ωn)]

d
: u = ū on ∂Ωn

}
. Notice that the first term in Taylor series

expansion i.e. Ψ(C) would be a constant term describing the state of strain energy density at
increment n, which vanishes at the moment of computing the stationary point of (3). Certainly,
embedded in the definition of the new total potential energy (Πlin) in (3) are the first and second
directional derivatives of the non-linear total potential energy. The spatial form of the linearised
total potential energy can now be obtained as

Πu(u?) = inf
u∈U

{∫
Ωn

(
σn : εn(u)+

1

2
εn(u) : cn : εn(u)+

1

2
σn :

(
(∇nu)T (∇nu)

))
dΩn

}
(4)

where the subscript n denotes the state of deformation, stresses, tangent elasticity and the vol-
ume at increment n, namely εn, σn, cn and Ωn. In addition, ∇n represents the spatial gradient
operator at increment n. The stationary condition of (4), obtained after the linearisation with
respect to the virtual displacement v, leads to the principle of virtual work

DΠu(u?)[v] =

∫
Ωn

(
σn : εn(v)︸ ︷︷ ︸

Rn

+ εn(u) : cn : εn(v)︸ ︷︷ ︸
Cn

+σn : ((∇nu)T (∇nv))︸ ︷︷ ︸
Gn

)
dΩn = 0.

(5)
It is worth noting that, in the right hand side of (5), the first termRn corresponds to the residual
stresses, the second term Cn to the linearised constitutive stiffness term and the last term Gn to
the geometric stiffness term. The emergence of the geometric stiffness term is due to consistent
linearisation of the non-linear total potential energy, which would not have appeared, had the
starting point not been chosen to correspond to a non-linear total potential energy. As will be
seen in the numerical examples, in the context of high-order curved mesh generation, the ge-
ometric stiffness term, stiffens the interior elements of the computational mesh against severe
distortion, hence producing meshes with better quality. Note that unlike in the non-linear anal-
ysis, since (5) is linear in u, a further linearisation is not required. It is evident that, if a single
increment is used to reach the final configuration, i.e. when n = 0, the equations of classical
linear elasticity are recovered.

4 QUALITY MEASURES

In a standard high-order finite element formulation, measures involving the Jacobian of the
isoparametric mapping have been extensively used, in particular the so-called scaled Jacobian.
This measure only quantifies volumetric deformations and alternative measures that exploit
different modes of deformation and account for shape, skewness and degeneracy of elements
can also be considered. However, it is worth noting that not all of these quality measures
can be regarded as independent quantities. From a solid mechanics point of view, only three
independent isotropic and two independent transversely isotropic quality measures for a generic
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element e can be introduced

Qe
j =

√
minξ∈R {Ij}
maxξ∈ R {Ij}

for j = 1, . . . , 5, (6)

where R denotes the reference element employed in the isoparametric formulation, with local
coordinates ξ. If necessary, further quality measures can be obtained through a linear combina-
tion of the invariants Ij which will be independent of the geometrical parametrisation.

5 NUMERICAL EXAMPLES

This section presents a few selected numerical examples. For all the examples, material
parameters are chosen as E = 105 for Young’s modulus, EA = 5E

2
for transversely isotropic

bending modulus and GA = E
2

for transversely isotropic shear modulus and the Poisson’s ratio
is varied within the interval [0.001,0.495].

The first example considers an anisotropic boundary layer mesh around the SD7003 aerofoil
with a stretching level of 25 in the boundary layer. The detailed view near the leading edge of the
initial linear triangular and the high order mesh with a degree approximation of p = 5 is shown
in Figure 2 having 27,410 nodes. The curvilinear mesh is obtained using 20 load increments
of a consistently linearised version of Neo-Hookean model. The minimum quality measures
characterising fibre, surface and volume deformation are, Q1 = 0.991 , Q2 = 0.991 and Q3 =
0.982, respectively, numerically confirming that the first two quality measures (related to fibre
and surface deformation) are identical in two-dimension.

(a) Linear mesh. (b) High-order mesh with p=5.

Figure 2: Boundary layer mesh around an aerofoil.

The next example considers an isotropic tetrahedral mesh around a cylinder. The initial linear
and the high order mesh with a degree approximation of p = 4 is shown in Figure 3 having
38,355 nodes. The curvilinear mesh is obtained using 30 load increments of a consistently
linearised version of nearly incompressible Mooney-Rivlin type material model. The minimum
quality measures characterising fibre, surface and volume deformation are, Q1 = 0.965 , Q2 =
0.928 and Q3 = 0.891, respectively. Note that nodes lying on the planar faces of cylinder
require in-plane translation.

Finally 5 pin-points two critical aspects of solid mechanics based curved mesh generation
approaches, namely, the importance of a well-defined (i.e. polyconvex) material model depicted
in 5a (note that all material models apart form ILE TI and CIL TI models are well defined;
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(a) Linear surface mesh. (b) p = 4 surface mesh (c) p = 4 mesh surface showing
nodes

Figure 3: Isotropic mesh around cylinder.

notice the drop in mesh quality associated with these material models), and the equivalence
of fibre quality and surface quality i.e. Q1 = Q2 for two-dimensional problems shown in 5b;
both for anisotropic boundary layer mesh. For the explicit forms of the material models refer to
[Poya, Sevilla, and Gil].

ILE Isotropic
ILE TI
CIL neo − Hookean
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CIL TI
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(a) Mean value and standard deviation of the minimum
scaled Jacobian of the generated meshes as a function of
the Poisson’s ratio for different materials and degrees of
approximation.
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(b) Different quality measures of the generated
meshes with p=4 as a function of the Poisson’s ratio
for the ILE isotropic approach and using five load
increments.

6 CONCLUSIONS

A consistently linearised solid mechanics based framework for the generation of high-order
curvilinear meshes has been presented. The derivation of the approach, based on energy prin-
ciples, is used to propose mesh quality measures based on independent invariants of the strain
energy density. Of the three isotropic quality measures proposed, Q3 is the most impactful in-
dicator, which corresponds to the so-called scaled Jacobian traditionally used by the high-order
mesh generation community.

In terms of the material parameters, the use of a Poisson’s ratio near the incompressible
limit is generally advised in order to maximise the quality of the resulting mesh. For isotropic
meshes, a low number of increments (e.g. five increments) is typically sufficient to obtain the
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maximum possible quality, whereas for highly stretched meshes and for high-orders of approx-
imation (i.e. p > 4) a higher number (e.g. 40 increments) is needed to obtain good quality
meshes.
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