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Abstract. A force-based formulation for the step-by-step non-linear (elastic-plastic) analysis 

of three-dimensional (3D) structural frames is presented. It uses the redundant force and 

moment components as primary unknowns, and approximates the non-linearity problem in an 

incremental pattern. Using a simple linear transformation, the equilibrium matrices are 

quickly formed via a partial multiplication of a subset of matrices with dimensions (3x3). The 

convex yield function that describes the static admissibility condition of each zero-length 

plastic hinge is approximated with a linear convex polyhedron (manifold), whose hyper plane 

equations are automatically defined with the help of De Bruijn sequences. In this way, a num-

ber of complex force/moment interaction criteria may easily be defined that take into account 

shear and torsion. Discontinuities (e.g. articulations) are also accounted for. Out of the par-

tial derivatives of these yield functions with respect to the stresses, the corresponding plastic 

deformations are computed, with the help of Lagrange multipliers. The formulation may be 

solved using any non-linear optimization algorithm that solves for linear constraints. Results 

are compared to those of the equivalent direct stiffness method and to those of the existing 

literature, proving the efficiency of the proposed formulation. 
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1 INTRODUCTION 

In this paper, an existing step−by−step, force−based method [1] is further extended to the 

analysis of inelastic 3D structural frames. Techniques to define equilibrium matrices for in-

cremental analysis have been already presented in [1], extending what was first presented in 

[2] for the case of optimal plastic design; remedies to these techniques in order to function for 

3D structures were presented in [3]. 

Herein, an alternate linear transformation that requires fewer computer operations is intro-

duced. Furthermore, a fully automated technique for generating any type of linearized yield 

function for up to six interacting stress components is developed, that is based on the assump-

tion of lumped plasticity (plastic hinge approach). By definition, these generalized yield func-

tions are able to also cater for shear and torsion, as well as for discontinuities (e.g 

articulations). The results are compared to those of widely accepted commercial packages and 

to those from the existing literature, proving the efficiency of the proposed formulation. 

2 PROBLEM FORMULATION 

2.1 Basic Equations 

The force method is solely based on equilibrium arguments. For elastic analysis, an excel-

lent review paper has been written by A. Kaveh [4]. The brief presentation that follows below 

incorporates plasticity. 

The stress components of a structure may be represented by a vector “Qs” which is ex-

pressed as a linear combination of a vector “Q0” that contains a part of the stress components 

which is due to external loads and a vector “Q1” containing a part of the stress components 

which is due to internal redundant stresses; a load scaling factor “γ” may also be included: 

1  s 0Q Q Q (1) 

The above equation may be further developed by expressing each of the two linearly inde-

pendent vectors as the product of a matrix “Bi” and a vector “pi”, where i={0,1}. These matri-

ces express the values of the stress components of the structure due to unit valued external 

loads “p0” and unit valued internal redundant stresses “p1”, respectively: 

1 1    s 0 0Q B p B p (2) 

Equation (2) may be satisfied for an infinite number of redundant stress vectors “p1”, but 

the problem is narrowed down to a unique solution with the help of the compatibility condi-

tion, as was first proposed by James Clerk−Maxwell: 

1

T  sB q 0  (3) 

Where in (3), vector “ sq ” contains the generalized deformations of the actual structure at 

its points of reference (nodes), which may be expressed as the summation of their elastic 

“ elq ” and plastic “ plq ” components: 

 s el plq q q  (4) 

The elastic components in (4) are computed with the help of the unassembled flexibility 

matrix “ F ”: 

el sq = F Q (5) 
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The plastic components in (4) may be computed with the help of the axiom of maximiza-

tion of plastic work [5], using the stress derivative of an adequately defined yield function 

“ ( )g sQ ”: 

( )g






s
pl

s

Q
q =

Q
(6) 

Where in (6) “λ” denotes a Lagrange (or plastic) multiplier. This multiplier may be explicitly 

computed within the framework of mathematical programming [6], using a linear comple-

mentarity condition between the potential of the material to absorb stress up to its’ conven-

tional yield point (plastic potential, or “ *Y ”), and the corresponding Lagrange (plastic) 

multiplier “ ”: 

* *0 , 0 , 0T   Y λ = Y λ (7) 

Schematically, the concept of the plastic potential “ *Y ” and its’ corresponding Lagrange 

(plastic) multiplier may be depicted in Figure 1 below: 

Figure 1: Plastic potential and corresponding Lagrange multiplier. 

In algebraic terms, the plastic potential “ *Y ” is a scalar, dimensionless quantity that ex-

presses the numerical difference between the maximum and the actual value of the yield func-

tion, and is by definition nonnegative. 

The displacements along the direction of the external loads may be computed with the help 

of the static−kinematic duality (SKD): 

0

T  su B q (8) 

Historically, the SKD may be seen as another variant of the principle of virtual works 

(PVW), as was first proposed by Archimedes of Syracuse through the principle of leverage 

[7]; it expresses a “balance” between the work of external forces and the work of internal 

stresses that develop in the structure. 

Another interesting remark is that the compatibility condition (3) may be seen as a special 

case of (8), where the displacements along the direction of the redundant components are zero. 

2.2 Three-Dimensional Equilibrium 

By considering the cross product in matrix form for a Cartesian space, the induced mo-

ments “M” at a particular point “f” due to a force vector “F” that is applied at another point 

“s” may be described by the following equation: 

( )g






pl

Q
q =

Q

*

1 1( / )Q Q

*

2 2( / )Q Q

*

1y

*

2y

Q 

q2,pl 

q1,pl 
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Where 

, ,f s f s f sx x x y y y z z z         (10) 

The equilibrium condition in global coordinates between the two points “f” and “s” may 

then be written in matrix form, as follows: 

0

Rf s

    
      

    

IF F

d IM M
(11) 

2.3 Linear Projections from Global to Local Coordinates 

A simple to implement, yet efficient linear transformation from global to local coordinates, 

is the following: 

L R G v T v (12) 

Where  
T

G x y zv v vv  is a vector whose components are defined with respect to a global 

Cartesian coordinate system with basis {x,y,z}, and  1 2 3

T

L v v vv  is the same vector 

with respect to a local Cartesian coordinate system with basis {1,2,3}. The transformation ma-

trix “ RT ” for the general case may then be expressed as follows: 

 cos sin cos sin cos

sin cos sin cos sin

yx z

y y xyx xz z
R

xy xy

y y xyx xz z

xy xy

vv v

L L L

v v Lv vv v

L L L L L L L

v v Lv vv v

L L L L L L L

    

    

 
   
 
 
             
 
 
 
            
  

T    (13) 

Where 2 2 2

x y zL v v v    and 2 2

xy x yL v v  and “α” is a rotation angle around the axis of 

the vector “ Gv ”, or “ Lv ”. This transformation is equivalent to the one presented in [3]. 

For each of the special cases where the global vector “ Gv ” is perpendicular to a Cartesian 

plane {x,y} or {y,z} or {z,x}, the elements of the transformation matrix “ RT ” are efficiently 

defined using proper numerical exception handling workarounds with the help of the Le-

vi−Civita cyclically interchanging index [8]. The rotation of angle “α” around the longitudinal 

axis is then applied separately, with the help of the corresponding (rotation) tensor “R”: 

1 0 0

0 cos sin

0 sin cos

 

 

 
 

   
  
 

R           (14) 
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2.4 Equilibrium Matrices 

The computation of the equilibrium matrices depends on the automated selection of a stati-

cally determinate basis that carries the external loads (matrix “ 0B ”) and of a minimal (or near 

minimal) cycle basis that defines the redundant stresses (matrix “ 1B ”). These automation 

techniques rely on graph theory and algorithms; analytical presentations may be found in [1], 

[2] and [3]. 

From a computational implementation perspective, it is convenient to define the equilibri-

um matrices “ 0B ” and “ 1B ” using a set of pre−solved mathematical formulae that simultane-

ously express equilibrium in 3D space as well as transformation of the stress components 

from the global coordinate system to the local of each member of the structure. By combining 

equations (9) − (14), we have: 

 
3 3

, 0,1
R x

i
R R R

i
 

  


 

T 0
B

T d T
(15) 

An additional (±) sign is to be applied to each row of (15), according to whether the direc-

tion of the local axes of the surface of the corresponding reference section coincide with the 

direction of the local axes of the corresponding member, or not. 

In this way, the stress and the elastic and plastic strain components of each structural 

member for every step of the incremental procedure may be quickly evaluated, using the in-

cremental forms of equations (2), (5) and (6), respectively. 

2.5 Linearized Yield Functions 

For an analysis of a structural frame that takes into account material post−elastic behavior, 

a plastic hinge approach is traditionally followed. From the strength of materials’ point of 

view, the conventional limits between elastic and plastic deformations may be defined using a 

convex hull, which, in the case of the proposed method, is further approximated by a linear 

convex polyhedron (also referred to as “manifold”): 

  *
1

( )
n

i
i

i i

Q
g s c

Q

  


Q (16) 

Where i={1,2,…,n}, “n” is the number of stress components, 

 2 3 2 3

T
N Q Q T M MQ is a vector that contains all potentially interacting 

stress components (see Figure 2 below), and “c” is a dimensionless constant (e.g. c=1). 

Figure 2: Local force and moment components at the end of a linear finite beam/column element. 

Due to the 3-dimensional nature of the problem, a series of stress interaction criteria may 

be defined, e.g. {N,M2,M3} or {T,M2,M3} or {T,Q2,Q3} or {N,Q2,M3} or {N,Q3,M2} or 

{N,Q2,Q3,M2,M3}, etc. Applied implementations of such criteria may be found e.g. in struc-

tural norms. 

For example, the AISC−LRFD [9] proposes a criterion which is a bi-segmented yield func-

tion for bending moment and axial force interaction; schematically, it is presented in Figure 3 

below: 

Q2
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Q3 

N 

M2

22

M3 

T 
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Figure 3: 3D illustration of the adopted form of the AISC-LRFD bilinear yield function. 

Another example from engineering practice is the failure criterion according to 

DIN−18880, which is a multi−segmented yield function for bending moment, shear, and axial 

force interaction. A definition of this function for planar frames is analytically presented in 

[10]; herein, the corresponding coefficients for implementing this function according to (16) 

are summarized in Table 1 below: 
 

Si N Q M 

Eq. 1 − − 1.00 

Eq. 2 1.00 − 1.00/1.10 

Eq. 3 − 0.45/1.15 1.00/1.15 

Eq. 4 1.10/1.25 0.45/1.25 1.00/1.25 

Eq. 5 − 1.00/0.90 − 

Table 1: Coefficients “si” for the yield functions according to DIN-18800. 

A practical problem that arises from the increase of the number of interacting components 

has to do with the (±) signs in (16), which are used to define the sector of the hyperspace 

wherein each one of the polyhedron’s stress interaction hyper planes is located (positive or 

negative plastic capacity for every stress component); but this may be easily tackled with the 

help of De Bruijn sequences [11]. 

For example, consider the simplest case of two interacting stress components (n=2), where 

sets of two are formed from the alphabet with symbols {+,−} (q=2). Then, we have four pos-

sible sets (q
n
 =2

2
=4) which form one distinct sequence (  

2 12 22! 2 1B


  ), shown in Figure 4: 
 

{+,+},{+,−},{−,+},{−,−} 

Figure 4: De Bruijn sequence for the signs of a yield function with two interacting components. 

Next, consider the case of three interacting components (n=3) where sets of three are 

formed from the alphabet with symbols {+,−} (q=2). Then, we have eight possible sets (q
n
 

=2
3
=8) which form two distinct sequences (  

3 12 32! 2 2B


  ), shown in Figure 5:  
 

{+,+,+},{+,+,−},{+,−,+},{+,−,−} 
 

{−,+,+},{−,+,−},{−,−,+},{−,−,−} 

Figure 5: De Bruijn sequences for the signs of a yield function with three interacting components. 

(N/N*) 

(M2/M2*) 

(M3/M3*) 
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It may be observed in Figure 5 above, that one sequence is a negated permutation of the 

other; in fact, the sequence consists of the sequence shown in Figure 4, embedded in a simple 

(elementary) set (of n=1 and q=2). This means, that, using the sequence of Figure 4 as a basis, 

and in combination with the basic principle of enumeration, all possible sequences may be 

constructed following the same pattern of successive embedding (or concatenation). 

A last example follows below, where five interacting components (n=5) are forming sets of 

five from the alphabet with symbols {+,−} (q=2), yielding a total of thirty two sets (q
n
=2

5
=32)

which form potentially two thousand and forty eight sequences (  
5 12 52! 2 2048B


  ); one 

of these has been formed using the aforementioned successive embedding (concatenation) 

technique, and is schematically presented in Figure 6: 

{+,+,+,+,+},{+,+,+,+,−},{+,+,+,−,+},{+,+,+,−,−} 

{+,+,−,+,+},{+,+,−,+,−},{+,+,−,−,+},{+,+,−,−,−} 

{+,−,+,+,+},{+,−,+,+,−},{+,−,+,−,+},{+,−,+,−,−} 

{+,−,−,+,+},{+,−,−,+,−},{+,−,−,−,+},{+,−,−,−,−} 

{−,+,+,+,+},{−,+,+,+,−},{−,+,+,−,+},{−,+,+,−,−} 

{−,+,−,+,+},{−,+,−,+,−},{−,+,−,−,+},{−,+,−,−,−} 

{−,−,+,+,+},{−,−,+,+,−},{−,−,+,−,+},{−,−,+,−,−} 

{−,−,−,+,+},{−,−,−,+,−},{−,−,−,−,+},{−,−,−,−,−} 

Figure 6: De Bruijn sequences for the signs of a yield function with five interacting components. 

In practice, only one of these 2048 sequences is required in order to properly describe all 

the hyper planes of the polyhedron (manifold), since, by definition, all other sequences are 

only permutations of the sets of five that form the initial sequence. 

Sequences for the case of alphabets with two elements were first proved by Camille Flye 

Sainte−Marie [12], 24 years before Nicolaas Govert de Bruijn was born. 

2.6 Implementation of Discontinuities 

For the case of sections that include discontinuities (e.g. articulations), a disjunction of the 

interacting components of the corresponding plastic hinge may be imposed that allows plasti-

cization only for the active stress component(s). 

For example, consider an articulated beam element with plastic hinges according to the 

AISC−LRFD criterion, defined for {N,M2,M3} interaction. Since the element has articulations 

at both of its’ ends, the {M2} and {M3} components will be always zero, for both positive and 

negative rotations; this leaves only the {N} component as active candidate for plasticization. 

In practice, this means that a separate static admissibility condition for each stress component 

must be defined; thus, we will have a yield function consisting of three separate parts, one for 

each component, with the formulae for {M2} and {M3} being degenerate, in order to describe 

that the corresponding bearing capacity is zero. This disjunct yield function is presented in 

equation (17): 

 
 

 

*

1
1 ( )

2

3

( ) 0 0 0 0 0 1

( ) 0 0 0 0 1 0 0

( ) 0 0 0 0 0 1 0

N
g

g

g


  

   

   

Q Q

Q Q

Q Q

(17) 

Where  2 3 2 3

T
N Q Q T M MQ  is the stress vector of the corresponding criti-

cal section and the (±) sign is used to denote upper and lower bounds. 
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It should be noted that the proposed disjunction technique presented in (17) may be used to 

define all sorts of discontinuities; the corresponding Lagrange multiplier is added to its’ elas-

tic counterpart in order to yield the actual elastic generalized displacement of the correspond-

ing discontinuity. 

2.7 Problem Formulation 

By combining equations (2), (15) and (16), the yield function “ ( )g Q ” may be explicitly 

expressed as a function of the external loads and the redundant stresses. By packing the coef-

ficients of this composite function into an incidence matrix “ N ”, a linear constraint inequality 

may be established: 

   * 1 1 0 0

T T        Y c N B p N B p 0                                   (18) 

By substituting equation (2) into (5), then evaluating (6) with the help of (16), then substi-

tuting both into (4) and then into (3), the first derivative of a Lagrange function is obtained: 

      1 1 1 1 0 0 1

T T T           B F B p B F B p B N λ 0                          (19) 

Equations (18) and (19) together with (7) may be seen as the Karush−Kuhn−Tucker (KKT) 

conditions of the following optimization problem: 

   

   

1 1 1 1 1 1 1 0 0

1 1 0 0

1
.: ( )

2

. .

T T T T

T T

Min f

s t





           

      

p p B F B p p B F B p

N B p c N B p

                    (20) 

In order to efficiently trace all the plasticization events along any given loading path, the 

independent variables and the critical parameters stated in the problem of equation (20) are 

replaced by their corresponding increments: 

   

   

1, 1, 1 1 1, 1, 1 0 0,

1 1, 1 0 0,

1
.: ( )

2

. .

T T T T

k k k k k

T T

k k k k

Min f

s t





             

       

p p B F B p p B F B p

N B p c Q N B p

          (21) 

Where in (21) “k” is the step’s counter. The problem is solved in an incremental pattern using 

any efficient algorithm (e.g. [13], [14]); a detailed description of the adopted numerical strat-

egy may be found in [1]. 

3 EXAMPLES 

In the following context, four indicative examples are presented in order to verify the func-

tionality of the proposed force−based formulation. Where possible, results are quantitatively 

compared with those of a widely accepted commercial program that uses the equivalent direct 

stiffness method; where not, with results according to methods found in the literature. 

3.1 1 Storey, 1 Bay, Eccentric Braced 3D Frame 

A single-storey, single-bay, eccentric-braced frame is used as a first test example to prove 

the efficiency of the proposed formulation. The frame’s height is H=3m, and distances be-

tween columns are Lx=Ly=6m. All columns are placed so that their strong bending axis is par-

allel to the y-axis of the global coordinate system, and are fully fixed at the basis. Beams are 

placed so that they bend along their strong axis due to external forces applied along the z-axis, 

and are subdivided into smaller elements of length L=0.6m each. The braces are placed inside 

the openings which are parallel to the y-z plane, are assumed articulated at both of their ends, 

and are load-free. Schematically, the frame is illustrated in Figure 7: 
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Figure 7: 3D illustrations of the 1−storey 1−bay, eccentric−braced frame (snapshots from SAP2000). 

The frame’s definitions (nodal numbering & coordinates, member connectivity, section as-

signments and interacting stress components) are summarized in Tables 2 and 3: 

Node x y z Node x y z 

1 6.00 6.00 0.00 7 0.00 3.60 3.00 

2 0.00 6.00 0.00 8 0.00 2.40 3.00 

3 0.00 0.00 0.00 9 0.00 0.00 3.00 

4 6.00 0.00 0.00 10 6.00 0.00 3.00 

5 6.00 6.00 3.00 11 6.00 2.40 3.00 

6 0.00 6.00 3.00 12 6.00 3.60 3.00 

Table 2: Nodal coordinates of the 1−storey 1−bay, eccentric−braced frame. 

Member 
Node: 

Start → End 
Section 

Interacting 

Components 
Member 

Node: 

Start → End 
Section 

Interacting 

Components 

1 1 → 5 HEM260 {N,M2,M3} 9 6 → 5 HEM180 {M2,M3} 

2 2 → 6 HEM260 {N,M2,M3} 10 9 → 8 HEB140 {M2,M3} 

3 3 → 9 HEM260 {N,M2,M3} 11 8 → 7 HEB140 {M2,M3} 

4 4 → 10 HEM260 {N,M2,M3} 12 7 → 6 HEB140 {M2,M3} 

5 1 → 12 HEB140 {N,M2,M3} 13 9 → 10 HEM180 {M2,M3} 

6 2 → 7 HEB140 {N,M2,M3} 14 10 → 11 HEB140 {M2,M3} 

7 3 → 8 HEB140 {N,M2,M3} 15 11 → 12 HEB140 {M2,M3} 

8 4 → 11 HEB140 {N,M2,M3} 16 12 → 5 HEB140 {M2,M3} 

Table 3: Connectivity, sections, and interacting components of the 1−storey 1−bay, eccentric−braced frame. 

The material of the structure is S235, with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

To simulate material non−linearity, the concentrated plasticity approach is followed. For 

the columns, the bilinear AISC−LRFD criterion is used [9], for {N,M2,M3} interaction. For 

the beams, the coupled bending moment {M2,M3} variant of the same criterion is applied, 

without the participation of the axial forces {N}; in order to be able to compare with 

SAP2000, the effect of torsion {T} on beams was purposefully left out, since no torsion-

bending interaction is supported by the available version of the program [15]. A linear relation 

between {M2} and {M3} was adopted for both interaction criteria. Articulations at the ends of 

the braces were implemented according to equation (17).  
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All beams are subject to a uniform load of 15kN/m. Each beam is divided into smaller 

elements of 0.6m length, and uniform loads are converted into a finite set of equally sized 

point loads of 9kN. Lateral loads are applied to the four top-corner nodes of the frame. 

Two pushover analyses were run, one for each horizontal direction {x,y}. The base shear 

vs. roof displacement curves of the structure are presented in Figures 8 and 9 below, where 

quantitative comparisons with SAP2000 [15] are also included; for SAP2000, default analysis 

parameters were used. 

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1 0.12

SAP2000 - X

Force Method - X

Figure 8: Pushover curve of the 1−storey, 1−bay, eccentric−braced frame; X−Direction; Units: {kN,m}. 

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25

SAP2000 - Y

Force Method - Y

Figure 9: Pushover curve of the 1−storey, 1−bay, eccentric−braced frame; Y−Direction; Units: {kN,m}. 

As it may be seen, results are in good accordance; the ultimate base shear is Vb,x~1067kN 

for the x-direction, and Vb,y~757kN for the y-direction. 
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3.2 6 Storey, 1 Bay, 3D Frame 

A six-storey frame, with one-bay at each horizontal direction, is used as a second test ex-

ample to prove the efficiency of the proposed formulation. Each storey has a height H=3.0m 

and each bay an opening Lx=Ly=6.0m. Beams are subdivided into smaller elements of length 

L=0.6m each; columns are placed so that their strong bending axis is parallel to the y-axis, 

and are fully fixed at the basis. The geometry of the frame is illustrated in Figure 10 below: 

 

  

Figure 10: 3D illustration of the 6−storey frame (snapshot from SAP2000). 

The sections of beams and columns were purposefully selected in order to form a strong 

column−weak beam sway mechanism, and are summarized in Table 4 below: 

 
Members Length Section Material 

Columns 3.0m HEM300 S235 

Beams 6.0m HEM180 S235 

Table 4: Section properties of the six storey frame. 

The material of the structure is S235, with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

To simulate material non−linearity, the concentrated plasticity approach is followed, ac-

cording to the exact assumptions that were made for the first example. 

All beams are subject to a uniform vertical load of 15kN/m. Each beam is subdivided into 

ten smaller elements of length L=0.6m each, and the distributed loads are converted into a fi-

nite set of equally sized point loads of value 9kN each. 

A lateral load pattern is applied to the beam−column junction nodes. The load distribution 

is defined as linearly varying with respect to the height of each storey (1
st
 eigenmode, with 

100% participation). 

Two pushover analyses were run, one each horizontal direction (x,y). The base shear vs. 

roof displacement curves of the structure is presented in Figures 11 and 12 below, where a 

quantitative comparisons with SAP2000 [15] are also included; for SAP2000, default analysis 

parameters were used. 
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Figure 11: Pushover curves of the six−storey frame, x−direction; Units: {kN,m}. 
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Figure 12: Pushover curves of the six−storey frame, y−direction; Units: {kN,m}. 
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As it may be seen, the results are in good accordance; the ultimate base shear along the x-

direction is Vb,x~667kN, and along the y-direction is Vb,y~516kN. 

3.3 1 Storey, 1 Bay, Portal 2D Frame 

This example is used to test the functionality of the herein implemented yield function ac-

cording to DIN−18800, via a comparison with AISC−LRFD; to this extend, I-beams are used. 

The frame’s height is H=3.0m and length L=6.0m. The beam’s section is HEB160 and the 

columns’ sections are HEM200. All structural elements are placed so as to bend around their 

strong axis. The beams are subdivided into smaller elements of length L=0.6m each. Columns 

are fully fixed at the basis. Schematically, the portal frame may be seen in Figure 13 below: 
 

 

Figure 13: Geometry of the portal frame and vertical loads (snapshot from SAP2000). 

The material of the structure is S235 with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

A uniform vertical load of magnitude 15kN/m is applied to the beam, which is simulated 

by finite point loads of magnitude 9kN each, applied in equal distances of 0.6 m. A horizontal 

force is applied to the top left node. 

Two pushover analyses were performed using the proposed formulation; one using the 

AISC−LRFD yield function and one using the DIN−18800. The results were compared to 

those of SAP2000 [15] and were found in good accordance. All base shear vs. roof displace-

ment curves are plotted in Figure 14 below: 
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Figure 14: Pushover curves of the 2D portal frame; Units: {kN,m}. 
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3.4 A Simple Grillage 

This simple example is used to demonstrate the functionality of the proposed formulation 

for structures where the contribution of torsion is important. Grillages are a typical case; a 

simple grillage found in [16] is used as reference. Schematically, it is presented in Figure 15: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Geometry and loading of the grillage. 

As it may be observed, the geometrical proportions and loading conditions are the same as 

in [16]; herein, elements have a length L=3m and a rectangular tube section with dimensions 

(bxh)=(160x160)mm and thickness t=10mm. 

The material of the structure is S235 with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and (of course) is considered to be elastic-perfectly plastic. 

Additionally to the assumptions above, the yield locus was linearized so as to be in accord-

ance with the proposed formulation. An analytical derivation of the collapse load according to 

the linear yield function adopted follows below: 

3
3

3,

( , ) 1 0
p p

MT
g T M

T M
                                                   (22) 

The partial derivatives of the yield function with respect to each stress component are: 

3 3,

1 1
,

p p

g g

T T M M

 
 

 
                                               (23) 

Thus, with the help of (23), the ratio of bending (θ) to torsion (γ) plastic rotations will be: 

3

3,

p

p

T M

M T





 
   
 

                                                      (24) 

As also stated in [16], a plastic bending rotation in the proximity of a support node of one 

beam will result in an equal rotation due to torsion in the other beam, in the proximity of the 

connection node between the two elements. Thus, from (24) we infer the following linear 

proportion: 

3

3, p p

M T

M T
                                                              (25) 

According to [16], the equation that gives the collapse load is the following: 

3

1

2
P L M T                                                            (26) 

By combining (25) and (26), and by assuming for simplicity that M3p=Tp, we have: 

z 

x y 

L 
L 

3104



Theodoros N. Patsios and Konstantinos V. Spiliopoulos 

3,2 p

C

M
P

L


                                                            (26) 

For the selected cross-section and material, M3p=79.4kNm; thus, from (26), PC=52.93kN. 

An analysis using the proposed incremental formulation of (21) was run, and the resulting 

load vs. corresponding displacement curve is presented in Figure 16 below: 
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Figure 16: Load vs. corresponding displacement curve of the grillage; Units: {kN,m}. 

As it may be seen, the results are in good accordance; the collapse load according to the 

proposed method is PC~53kN. 

 

4 CONCLUDING REMARKS 

 The proposed formulation has good convergence properties and yields good results, even 

for relatively large scale problems. However, an implementation using a solver suitable 

for sparse matrices is required, in order to drastically reduce the CPU time. 

 Non−holonomic plasticity is taken into account following a stepwise holonomic ap-

proach that is natively contained into the problem’s formulation; no particular numerical 

remedies are required. 

 Treatment of the effect of shear and torsion is also natively accommodated; however, it 

should be noted, that, when using the lumped plasticity approach, the warping stresses 

according to Vlasov [17] may be taken efficiently into account only in certain cases with 

the introduction of additional stress components, the bi−moments, which are defined as 

self−equilibrating systems on a section level. 

 P−Δ effects and large displacements [18], material hardening [19] and softening, may 

also be included. 
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