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Abstract. We discuss several issues concerning the application of the Virtual Element Method
(VEM) to the flow in fractured media modeled by the Discrete Fracture Network (DFN) model.
Due to the stochastic nature of the computational domains, several geometrical complexities
make the computations very challenging. The geometrical flexibility provided by the Virtual
Element Method can be exploited to mutually couple local problems, either by resorting to a
Mortar approach, or by allowing for the global conformity of the local meshes, while keeping
the computational cost under control. We describe these two approaches in detail and we test
them on a realistic test case, showing the viability of the two approaches.
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1 Introduction

Subsurface fluid flow has applications in a wide range of fields, including e.g. oil/gas recov-
ery, gas storage, pollutant percolation, water resources monitoring. Underground fluid flow in
fractured media is a heterogeneous multi-scale phenomenon that involves complex geological
configurations; a possible approach for modeling the phenomenon is given by Discrete Frac-
ture Networks (DFNs), which are complex sets of polygonal intersecting fractures randomly
generated from known distributions for geometrical features (such as orientation in the three di-
mensional space, position, dimensions) and hydro-geological properties. Geological fractured
media are therefore characterized by a very challenging geometrical complexity, which is one
of the major difficulties to be tackled when performing flow simulations.

In this work we recall some results concerning the application of the Virtual Element Method
[4, 3, 2] to the steady state simulation of the flow in DFNs [1, 22, 27, 30, 24, 32, 23, 15, 16,
17, 18, 19, 9, 10, 8, 13]. In this approach we can exploit the flexibility of VEM in order to
tackle the geometrical complexity. Indeed, a crucial issue in DFN flow simulations is the need
to provide on each fracture a good quality mesh [24, 20, 29, 30] on any randomly generated
configuration. Namely, if classical triangular or quadrilateral meshes on the fractures are re-
quired to be conforming to the traces (fracture intersections), and also conforming each other,
the meshing process for each fracture is not independent of the others, thus yielding in practice
a quite demanding computational effort for the mesh generation process. In some cases, the
meshing process may even result infeasible so that some authors propose to modify the DFN
removing problematic fractures [24].

Here, the VEM will be used within several possible approaches to the problem: in conjunc-
tion with a totally conforming polygonal mesh [10] and with a Mortar approach [8]. Indeed, tak-
ing advantage from the great flexibility of VEM in allowing the use of rather general polygonal
mesh elements, a suitable mesh for representing the solution and imposing matching conditions
between the solutions on different fractures can be easily obtained, starting from an arbitrary
triangular mesh independently built on each fracture, and independent of the trace disposition.
Robustness and efficiency of the approach are of great importance also in the framework of
Uncertainty Quantification analysis applied to DFNs, see [14].

The paper is organized as follows: after introducing some notation about the DFNs in Sec-
tion 2, we describe the more common geometrical complexities present in DFNs flow simu-
lations in Subsection 2.1. The problem considered and the formulation used are described in
Section 3. Section 4 is devoted to discuss the VEM formulation and some issues concerning
its implementation. Subsection 4.3 recalls the elements of a hybrid mortar approach to the
matching conditions, whereas Subsection 4.4 recalls the basic ideas of a globally conforming
approach. Finally, we propose in Section 5 some numerical results obtained with the two ap-
proaches.

2 Discrete Fracture Networks

A DFN is a possible model for a fractured medium in which the surrounding rock matrix can
be assumed to be impervious. In a DFN, fractures in the underground medium are represented
as bi-dimensional open polygons. The intersections between fractures are called traces, and we
assume, for the sake of simplicity, that precisely two fractures meet at each trace. For a DFN Ω,
we will indicate by Fi the generic fracture, with i ∈ I = {1, . . . , N}, while its boundary will
be ∂Ω = ∪i∈I∂Fi. Traces will be denoted by Γm, with m ∈M = {1, . . . ,M}. Without loss of
generality, we assume that the set Ω̄ is connected. Finally, we introduce the following notation:
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Figure 1: DFN with 134 fractures

• ∀i ∈ I, let Mi ⊂ M be the subset of trace indices corresponding to traces lying on Fi;
each subset Mi is assumed to be ordered, and we will denote by Mi(k) the k-th index of
a trace in Mi;

• ∀m ∈ M, let Im = (i, j) be the ordered couple of indices such that Γm = Fi ∩ Fj , with
i < j;

• for each i ∈ I and each m ∈Mi, we fix a unit vector n̂im normal to Γm on Fi.

2.1 Geometrical issues

When dealing with DFN flow simulations, the greatest obstacle is to devise a robust and
efficient meshing process, while enforcing some kind of conformity of the mesh polygons to
the traces. This can be required locally on each fracture, or globally, asking that polygons on
different fractures meeting on the same trace share either one point or a whole side. These con-
straints can make the meshing process infeasible using traditional simplicial elements, because
traces may intersect with very small angles, may have very different lengths or can be very close
to each other without intersections. To illustrate how common are problematic configurations,
let us consider a quite simple, although realistic, DFN containing 134 fractures; the DFN is
displayed in Figure 1. Even though fractures in this DFN are of comparable size (see Figure
2a) the trace lengths span several orders of magnitude (Figure 2b), thus creating problems when
mesh edges are required either to lie entirely on traces or have an intersection with them with
a null measure. Furthermore, in Figure 3a we show the global distribution of angles between
intersecting traces, while Figure 3b shows that a considerable amount of them is very small,
making it very hard to build good quality triangular elements close to the corresponding inter-
sections. Finally, another geometrical issue which is worth to analyze is the presence of very
close and non – intersecting traces. In Figure 4 we see that there is a significant amount of them,
which would yield very small elements, in case a regular triangulation is built.
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(a) Distribution of fracture areas.
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(b) Distribution of trace lengths.

Figure 2: Distribution of fracture areas and traces lengths of the DFN in Figure 1.
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(b) Occurrences of very small angles.

Figure 3: Distribution of angles between traces for the DFN in Figure 1.
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(b) Occurrences of very small distances.

Figure 4: Distribution of distance between non intersecting traces for the DFN in Figure 1
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3 Problem formulation

Given an open bounded domain ω, let (·, ·)ω and ‖·‖ω denote the L2 (ω) scalar product and
norm, respectively, and (·, ·)α,ω and ‖·‖α,ω denote the Hα (ω) scalar product and norm, respec-
tively. In general, a subscript i will denote the restriction of a function to the fracture Fi.

For any segment σ ⊂ Fi, i ∈ I, we introduce the trace operator γσ : H1 (Fi) → H
1
2 (σ) and

the notation

〈µ, β〉σ :=
H− 1

2 (σ)
〈µ, β〉

H
1
2 (σ)

, ∀µ ∈ H−
1
2 (σ) , β ∈ H

1
2 (σ) ,

to denote the duality product between H−
1
2 (σ) and H

1
2 (σ). Let v ∈ H1 (Fi), in order to simplify

the notation, it is convenient to introduce the vectors γMi
(v), ∀i ∈ I, the k-th element of γMi

(v)
being γΓMi(k)

(v). Furthermore, we introduce the jump across a trace Γm as

JvKΓm
:= γΓm (vi)− γΓm (vj) , if Im = (i, j) ,

and we introduce the symbols JvKM and JvKMi
to denote the vectors of jumps of v across all

traces in the network, and across traces on Fi, respectively. With the same purpose, ∀i ∈ I, we
introduce the notation

〈µ, β〉Mi
:=

∑
m∈Mi

〈µm, βm〉Γm , ∀µ ∈
∏
m∈Mi

H−
1
2 (Γm) , β ∈

∏
m∈Mi

H
1
2 (Γm) .

Finally, for any β, λ ∈
∏

m∈Mi
H

1
2 (Γm) we denote

(β, λ)Mi
:=

∑
m∈Mi

(β, λ)Γm .

We are interested in computing the hydraulic head h = π/(ρg) + z, where π is the fluid
pressure, g the gravitational acceleration, ρ the fluid density and z the elevation. The hydraulic
head, on each fracture Fi, is modeled by means of the Darcy law as follows.

Let Ki denote the transmissivity on Fi, which we assume to be constant, and fi = fi(x)
denote the source term on Fi; notice that both Ki and fi are functions of the local tangential co-
ordinate system. Let ΓD ⊆ ∂Ω be the Dirichlet boundary, and let hD be the Dirichlet boundary
condition defined on ΓD. We define the functional spaces:

Vi :=
{
v ∈ H1 (Fi) : γΓD (v) = 0

}
∀i ∈ I ,

V D
i :=

{
v ∈ H1 (Fi) : γΓD (v) = hDi

}
∀i ∈ I ,

V := {v : vi ∈ Vi ∀i ∈ I} ,
V D :=

{
v : vi ∈ V D

i ∀i ∈ I
}
.

On each fracture Fi, i ∈ I, we want to find hi ∈ V D
i such that, ∀vi ∈ Vi,

ai(hi, vi) := (Ki∇hi,∇vi)Fi = (fi, vi)Fi +
〈
hNi , γ

i
ΓNi

(vi)
〉

ΓNi

+

〈s
∂hi
∂n̂Mi

{

Mi

, γMi
(vi)

〉
Mi

(1)

where
r
∂hi
∂n̂im

z

Γm
is the jump of the co-normal derivative ∂hi

∂n̂im
= Ki∇hi · n̂im along n̂im; fur-

thermore, ΓNi ⊆ ∂Fi is the Neumann boundary on Fi and hNi ∈ H−
1
2

(
ΓNi
)

is the Neumann
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boundary condition. For future reference, we set ΓN = ∪i∈IΓNi ⊂ ∂Ω and define hN such that
hNi is the restriction of hN to Fi. We couple the problems on each fracture by imposing the
continuity of the solution and balance of incoming and outgoing fluxes at each trace: ∀m ∈M,
with Im = (i, j), we have

JhKΓm
= γΓm (hi)− γΓm (hj) = 0,

s
∂hi
∂n̂im

{

Γm

+

s
∂hj

∂n̂jm

{

Γm

= 0. (2)

3.1 Saddle point formulation of the DFN problem

The DFN problem (1)-(2) can be easily re-formulated as a saddle point problem. To this aim,
let us first define, for each trace m ∈ M, and recalling that Im = (i, j), the function sΓm such
that:

sΓm(i) = 1, sΓm(j) = 0,

and, for each fracture, a bilinear form bi : Mi :=
∏

m∈Mi
H−

1
2 (Γm)× Vi → R defined by

bi (v, ψ) :=
∑
m∈Mi

(−1)sΓm (i) 〈ψm, γΓm (vi)
〉

Γm
.

Moreover, let us define

b (v, ψ) :=
∑
i∈I

bi (v, ψ) =
∑
m∈M

〈
ψm, JvKΓm

〉
Γm
.

These bilinear forms are used in the definition of the functional F : V ×M :=
∏

m∈M H−
1
2 (Γm),

given as a sum of contributions from the different fractures:

F(v, µ) :=
∑
i∈I

1

2
(Ki∇vi,∇vi)Fi − (fi, vi)Fi −

〈
hNi , γ

i
ΓNi

(vi)
〉

ΓNi

+
(
∇Ri

(
hDi
)
,∇vi

)
Fi

+ bi (v, µ) + bi
(
Ri

(
hDi
)
, µ
)
,

where Ri is the lifting operator from H
1
2 (Fi) to H1 (Fi), i ∈ I.

The solution (h, λ) ∈ V D ×M such that hi = h0
i + Ri

(
hD
)
, h0

i ∈ Vi, i ∈ I and

F
(
h0, λ

)
= min

v∈V
max
ψ∈M

F (v, ψ) , (3)

is equivalent to the unique solution to the problem: h = h0 + R
(
hD
)
, with h0 ∈ V and λ ∈M

such that, {
a(h0, v) + b (v, λ) = (f, v) +

(
hN , v

)
ΓN
− a(R

(
hD
)
, v) ∀v ∈ V ,

b (h0, ψ) = −b
(
R
(
hD
)
, ψ
)

∀ψ ∈M ,
(4)

that provides the solution to the problem (1)-(2), as it can be proven following classical argu-
ments (see e.g. [31]). Moreover, we have

λm =

s
∂hi
∂n̂im

{

Γm

= −
s
∂hj

∂n̂jm

{

Γm

,

with Im = (i, j).
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4 The discrete DFN problem

First introduced in [4] and extended in [5, 6, 3, 21, 2, 26], the Virtual Element Method
allows the use of quite general non-degenerate and star-shaped polygons to mesh the spatial
domain, even including the possibility of straight angles. In the present framework, we take
advantage from this flexibility to easily build a mesh which, on each fracture, is locally or
globally conforming to the traces. In the following of this section, we review the use of VEM,
focusing on the framework of DFN simuations.

4.1 Construction of the mesh

Let a fracture Fi be fixed. To obtain a locally conforming mesh, we first introduce on Fi a
triangular mesh built independently of trace positions; the triangles are then cut into polygons
by the traces, possibly prolonging the trace segment up to the nearest mesh edge if it happens to
end in the interior of a triangle. Note that in this latter case the trace tip is kept as a node of the
discretization and the trace is not modified, a new node is created at the intersection between
the prolongation of the trace segment and the mesh edge, and therefore two edges are created,
with a 180◦ angle between them. Let Tlc

δi be the resulting local mesh. We refer to Figure 5 for a
possible mesh configuration and to Figure 6a for a locally conforming mesh on a fracture. Let
Tlc
δ = ∪i∈ITlc

δi. We will use the symbols Elc
δi and Vlc

δi to denote the sets of edges and vertices on
fracture Fi, respectively, and define the sets of the mesh edges and vertices of the whole DFN
as Elc

δ = ∪i∈IElc
δi, V

lc
δ = ∪i∈IVlc

δi, respectively. The mesh built in this way can be used to couple
VEM discretizations on each fracture with a Mortar approach, as described in subsection 4.3.

Another possible meshing process, that aims at building a globally conforming mesh T
gc
δ , can

be devised as follows, starting from the above described mesh Tlc
δ . Let us consider an arbitrary

trace Γm, with m ∈ M and Im = (i, j). Then, we add to Tlc
δi the nodes generated by Tlc

δj on
Γm, and viceversa. Some polygons belonging to mesh Tlc

δi (Tlc
δj , respectively) having an edge

lying on Γm, will possibly have such edges split by the new nodes, the new edges forming a
straight angle at their intersection. Again, we refer the reader to Figure 5 for a visualization of
a rather intricate trace configuration and to Figure 6b for a resulting globally conforming mesh
on a fracture. All sets of geometrical objects relative to this globally conforming mesh will have
a superscript “gc” in the following. This spatial discretization will be used in subsection 4.4 to
allow the construction of VEM spaces containing globally continuous functions.

To further illustrate this process, we show in Figure 6 a possible situation in which the num-
ber of nodes on traces in T

gc
δ is larger than the number of nodes in Tlc

δ . In the two subfigures,
traces are drawn in red: as we can see the globally conforming mesh in Figure 6b presents some
nodes that do not correspond to intersections between polygons and traces, but are induced
by polygons on another fracture that generate the same trace. These nodes are not treated as
hanging nodes, but as vertices of a polygon whose edges meeting there form a flat angle. The
locally conforming mesh, instead, uses as nodes only the intersections between local polygons
and traces. Finally, notice that in both cases the trace tip is added as a node.

Remark. All the elements created with the above procedures are convex.

4.2 The VEM setting

Let us now briefly sketch the main ideas at the basis of the use of the VEM in the context of
flow simulations in complex networks of fractures, referring to the specific literature (see e.g.
[4, 6, 2]) for a deeper insight about the method.

Let k ∈ N be a fixed polynomial degree, corresponding to the desired polynomial accuracy
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Figure 5: A detail of the mesh around traces on the DFN in Figure 1
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Figure 6: Details of the vertices of the discretizations on a trace
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for the VEM approximation, and let E be a generic polygonal element of the mesh T?δi for i ∈ I

and ? =′ lc′ or ′gc′, as in subsection 4.1. Let us define on E the discrete functional space

V E
δi :=

{
v ∈ H1 (E) : γe (v) ∈ P k(e) ∀e ⊂ ∂E, ∆v|E ∈ P k−2(E)

}
, (5)

and, on each fracture Fi the space

V ?
δi :=

{
vδ ∈ C0 (Fi) : v ∈ V E

δi ∀E ∈ T?δi
}
.

Then the discrete subspace of V with the VEM is:

V ?
δ := {vδ ∈ V : v ∈ V ?

δi ∀i ∈ I} , (6)

spanned by basis functions φ?` , ` = 1, . . . , N`, being N` its dimension. The following set of
degrees of freedom (DOFs) is introduced to uniquely define a function vδ ∈ V ?

δi [4]:

• the values of vδ at each vertex in V?δ;

and, if k > 1 also

• the values of vδ at k− 1 internal points (e.g. internal Gauss-Lobatto quadrature nodes) on
each edge e ∈ E?δ;

• the moments 1
|E|

∫
E
vhmα where α = (α1, α2) ∈ N2,

mα(x, y) :=

(
x− xE
hE

)α1
(
y − yE
hE

)α2

,

∀E ∈ T?δ and ∀α such that |α | ≤ k − 2,

where (xE, yE) and hE are the barycenter and the diameter of the element E, respectively. The
chosen basis functions for V ?

δ are Lagrangian with respect to this set of DOFs. We remark that
functions φ` are not explicitly known in the interior of each element.

Assuming that the fracture transmissivity Ki is a constant function on each fracture, we
introduce, for each i ∈ I and E ∈ T?δi, the operator Π∇E : V E

δi → P k(E) defined as follows:
(
Ki∇Π∇Eφ,∇p

)
E

= (Ki∇φ,∇p)E ∀p ∈ P k(E) ,∑
V ∈VE

δi
Π∇Eφ(V ) =

∑
V ∈VE

δi
φ(V ) if k = 1,∫

E
Π∇E,kvδ =

∫
E
vδ if k > 1.

that can be computed by means of the above listed degrees of freedom, and the symmetric
bilinear form SE : V E

δi × V E
δi → R, such that kerSE ∩ ker Π∇E = {0} and

c∗ (Ki∇φ,∇φ)E ≤ SE (φ, φ) ≤ c∗ (Ki∇φ,∇φ)E , ∀φ ∈ V E
δi , s.t. Π∇Eφ = 0 (7)

for two positive constants c∗ and c∗, independent of E and of the fracture Fi. The discrete
counterpart of the bilinear form ai : Vi× Vi → R in equation (1) is aδi : V ?

δi× V ?
δi → R, defined

by
aδi (v, w) :=

∑
E∈Tδi

aEδ (v, w) ,
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where aEδ : V ?
δ × V ?

δ → R is such that ∀v, w ∈ V ?
δ ,

aEδ (v, w) :=
(
Ki∇Π∇Ev,∇Π∇Ew

)
E

+ SE
(
v − Π∇Ev, w − Π∇Ew

)
.

Thanks to the definition of SE and to property (7), the coercivity of the discrete bilinear form
can be easily proven and it can be shown that it scales like (Ki∇v,∇v)Fi , i.e.:

∃α∗, α∗ > 0: α∗ (Ki∇v,∇v)Fi ≤ aδi (v, v) ≤ α∗ (Ki∇v,∇v)Fi . (8)

For the computation of the discrete counterpart of the scalar product (f, vδ) at the right-hand-
side of equation (1), when vδ is a function of the VEM space not known in the interior of each
mesh element, we introduce the following discrete scalar product

(fi, vδi)δ,Fi :=
(
fi, Π̃

0
kvδi

)
Fi
∀i ∈ I ,

where the pseudo-projection Π̃0
k : Vδi → Pk is defined, as in [3], by local projections, using

Π∇E,kvδi in place of vδi to compute the moments of order k − 1 and k:

∀E ∈ Tδi,


(

Π̃0
kvδi, p

)
E

= (vδi, p)E ∀p ∈ P k−2(E) ,(
Π̃0
kvδi, p

)
E

=
(
Π∇E,kvδi, p

)
E
∀p ∈ P k(E) \ P k−2(E) .

We finally introduce the following global discrete operators:

aδ (v, w) :=
∑
i∈I

aδi (v, w) ∀v, w ∈ V ?
δ ,

(f, vδ)δ :=
∑
i∈I

(fi, vδi)δ,Fi ∀v ∈ V ?
δ .

Remark. A possible choice for the term SE in the context of the simulation of the flow in DFNs
is proposed in [9] and is given by the scalar product between the vectors containing the degrees
of freedom of the two arguments on the element ([4, 6]). This choice guarantees property (7)
under some basic regularity assumptions on the triangulation.

4.3 The locally conforming approach with Hybrid Mortar Virtual Elements

Let us now consider the locally conforming mesh Tlc
δ defined in subsection 4.1. Following

[8], we will use the mortar method [11, 7, 12] to weakly enforce continuity of the solution
hδ across the traces. Let m ∈ M be a trace index and let i be the fracture index such that
(i, j) = Im, we construct a discretization of Γm induced by the nodes of Tlc

δi, i.e. the nodes
on Γm coincide with the vertices of the elements in Tlc

δi lying on Γm. On this mesh the finite
dimensional space M lc

δm ⊂ L2 (Γm) is defined, and we also set M lc
δ =

∏
m∈MM

lc
δm. In the

present context the space M lc
δm contains piecewise (discontinuous) polynomials of degree kλ

in the interior of the trace and the polynomial functions of degree kλ − 1 on the first and last
intervals of the discretization, [11, 33, 8]. The discrete version of problem (3) within this
framework is: find hδ = h0

δ + Rδ

(
hD
)
, with h0

δ ∈ V lc
δ and λδ ∈M lc

δ such that,
aδ
(
h0
δ , vδ

)
+ b (vδ, λδ) = (f, vδ)δ +

(
hN , vδ

)
ΓN

− aδ
(
Rδ

(
hD
)
, vδ
) ∀vδ ∈ V lc

δ ,

b (h0
δ , ψδ) = −b

(
Rδ

(
hD
)
, ψδ
)

∀ψδ ∈M lc
δ ,

(9)
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where the bilinear form b (., .) on each trace is evaluated as an L2 (Γm) scalar product.
Well posedness of (9) is proven in [8] under a quite common regularity assumption on the

mesh. As a consequence the following inf-sup condition holds:

inf
ψδ∈M lc

δ

sup
vδ∈V lc

δ

b (vδ, ψδ)

‖vδ‖V lc
δ
‖ψδ‖M lc

δ

≥ β ,

for a constant β > 0 independent of δ. We remark that, in the present context the solution λδm
represents a piecewise polynomial approximation of

r
∂hi
∂n̂im

z

Γm
. If we collect the DOFs for h0

δ

and λδ in the vectors h ∈ RN lc
h and λ ∈ RN lc

λ , respectively, the discrete solution is obtained
solving the following linear system:(

A BT

B 0

)(
h
λ

)
=

(
f
d

)
,

where A ∈ RN lc
h ×N

lc
h is the block-diagonal matrix of the fracture-local stiffness matrices

(Ai)kl = aδi
(
φlc
ki, φ

lc
li

)
.

The matrix B ∈ RN lc
λ ×N

lc
h collects the terms of the form:

Blk := b
(
φlc
k , µ

lc
l

)
∀l ∈ {1, . . . , N lc

λ }, k ∈ {1, . . . , N lc
h },

being φlc
k the k-th basis function of V lc

δ and µlc
l the l-th basis function of M lc

δ . Finally we have

fk :=
(
f, φlc

k

)
δ

+
(
hN , φlc

k

)
ΓN
− aδ

(
Rδ

(
hD
)
, φlc

l

)
∀k ∈ {1, . . . , N lc

h },
dl := −b

(
Rδ

(
hD
)
, µlc

l

)
∀l ∈ {1, . . . , N lc

λ }.

4.4 A globally conforming approach

A second approach, based on a globally conforming discretization of the DFN is proposed in
in [10], where the matching conditions at the traces are strongly enforced by means of Lagrange
multipliers. We set, on each fracture Fi, i ∈ I, and on each trace Γm, m ∈Mi, the discretization
induced by T

gc
δi , excluding the two extreme points (tips) of the trace, and we build, on this mesh

the finite dimensional space

Mgc
δm,i = span

{
µmki, k = 1, . . . , Ngc

Γm

}
,

where Ngc
Γm

is the number of interior nodes on Γm and µmki is a continuous linear operator such
that 〈

µmki, γΓm (vδj)
〉

Γm
= δijvδi(x

m
k ) ∀vδ ∈ V gc

δ , (10)

being δij the Kroneker delta and xmk the k-th node on trace Γm. We then set

Mgc
δm :=

{
µmk : µmk = µmki − µmkj if Im = (i, j) , k = 1, . . . , Ngc

Γm

}
,

and the discrete subspace Mgc
δ ⊂ M is Mgc

δ =
∏

m∈MM
gc
δm. Observe that the continuity

of functions vδ ∈ V ?
δ across al the traces, i.e. the condition JvδKM = 0, is equivalent to an

orthogonality condition of jumps across the traces with respect to the space Mgc
δ

b (vδ, ψδ) = 0 ∀ψδ ∈Mgc
δ ⇐⇒ JvδKM = 0 ,
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being for any m ∈M, if Im = (i, j), ∀k ∈ {1, . . . , Ngc
Γm
},〈

µmk , JvδKΓm

〉
Γm

=
〈
µmki, γΓm (vδi)

〉
Γm
−
〈
µmkj, γΓm (vδj)

〉
Γm

= vδi(x
m
k )− vδj(xmk ).

Setting hδ = h0
δ + Rδ

(
hD
)
, with h0

δ ∈ V
gc
δ and Rδ

(
hD
)

the lifting of the boundary condi-
tions, the discrete solution to (3) (h0

δ , λδ) ∈ V
gc
δ ×M

gc
δ , such that

F
(
h0
δ , λδ

)
= min

vδ∈V gc
δ

max
ψδ∈Mgc

δ

F (vδ, ψδ) ,

is given by the solution of:
aδ
(
h0
δ , vδ

)
+ b (vδ, λδ) = (f, vδ)δ +

〈
hN , γΓN (vδ)

〉
ΓN

+ aδ
(
Rδ

(
hD
)
, vδ
) ∀vδ ∈ V gc

δ ,

b (h0
δ , ψδ) = −b

(
Rδ

(
hD
)
, ψδ
)

∀ψδ ∈Mgc
δ .

This problem is well posed, as it can be easily proven, observing that, given the space

W gc
δ := {vδ ∈ V gc

δ : b (vδ, ψδ) = 0 ∀ψδ ∈Mgc
δ } =

{
vδ ∈ V gc

δ : JvδKΓm
= 0 ∀m ∈M

}
,

vδ 7→
∑

i∈I (Ki∇vδi,∇vδi)Fi is a norm on W gc
δ and then aδ is coercive on W gc

δ thanks to (8),
and to the fact that

∀ψδ ∈Mgc
δ , sup

vδ∈V gc
δ

b (vδ, ψδ)

‖vδ‖V gc
δ

= ‖ψδ‖Mgc
δ
.

The discrete solution in the present framework can be obtained solving the linear system(
A BT

B 0

)(
h
λ

)
=

(
f
d

)
, (11)

where h is the vector collecting all the DOFs for hδ, λ is the vector of Lagrange multipliers,
f is the vector containing the right-hand-side terms, d the vector of nodal values of hD on the
traces. Matrix A is again the block diagonal matrix obtained collecting the stiffness matrices Ai
related to the VEM discrete bilinear forms on the globally conforming mesh of each fracture:

(Ai)kl = aδi (φ
gc
ki , φ

gc
li ) .

Matrix B is related to the bilinear form b (vδ, ψδ) in the following way. Let us observe that

bi (φ
gc
l , µ

m
k ) =

{
(−1)sΓm (i) if xl = xmk ,

0 otherwhise,

where xl are the coordinates of the mesh vertex such that φl(xl) = 1. After introducing a
global numbering for the degrees of freedom on all the traces according to trace numbering, we
introduce, for each trace index m ∈M, the row vector Bm such that (Bm)k = 1 if µmk ∈M

gc
δm,i

and (Bm)k = −1 if µmk ∈M
gc
δm,j with (i, j) = Im. Finally

B :=

B1
...

BM

 .

The solution to (11) is unique, as it can be proven using classical results (see e.g. [28]). Fur-
ther, within this framework it is possible to use preconditioning techniques borrowed from do-
main decomposition method, as for example the one-level FETI preconditioner [25], as shown
in [10].
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(a) Values of the transmissivity on each
fracture (the vertical axis is in log-scale). (b) Plot of the distribution of transmissivity.

Figure 7: The distribution of transmissivity chosen for the numerical test.

5 Numerical results

For numerical results about the convergence behaviour of the described methods we refer the
reader to [10, 8]. Here we focus on the application of the globally conforming method and the
VEM-Mortar approach to a almost realistic DFN.

Let us consider the 134 Fractures DFN already depicted in Figure 1. We impose a non-null
Neumann boundary condition (an incoming flux) on one side of three source fractures, a ho-
mogeneous Dirichlet boundary condition on one side of a sink fracture, and a homogeneous
Neumann boundary condition (no flux) on all other boundaries. The forcing term is the null
function, i.e. we assume there are no internal sources or sinks inside the fractures; this cor-
responds to neglect the effect on the fractures of the surrounding rock matrix. We assume a
constant transmissivity on each fracture, with values randomly distributed between 10−1 and
10, displayed in Figure 7a. As we can see in Figure 7b, there are significant jumps of transmis-
sivity between intersecting fractures. See Figure 8 for the discrete hydraulic head obtained with
the globally conforming method and Figure 10 for a visualization of the solutions obtained by
the two methods using the same base mesh, on two particular fractures.

In practical applications, the most important quantity to be evaluated is the flux through the
traces. This is obtained as a direct solution (the Lagrange multiplier) of the system if the VEM-
Mortar method is used, whereas in the globally conforming case it has to be computed as a
post-processing of the discrete VEM solution, first projecting the latter on the space of polyno-
mials of degree k and then computing the jump of the co-normal derivative of the projection in
correspondence of traces.

The two considered approaches yield very similar results, as we can see in Figure 9, where
we show the discrete fluxes computed with VEM of order 1 and the results for the VEM-Mortar
method are obtained using continuous piecewise linear Lagrange multlipliers. We remark that
the oscillations of the discrete flux coming from the Mortar approach are justified by the fact
that convergence is proved in the H−

1
2 (Γm) norm, ∀m ∈ M, which is a weaker norm than the

L2 (Γm) norm.
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Figure 8: A discrete solution of the problem.
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Figure 9: Comparison of fluxes computed by the two methods on three selected traces. Yellow:
globally conforming VEM. Red: VEM-Mortar.
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Figure 10: Solutions given by the two approaches on two selected fractures
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6 Conclusions

We have shown that the capability of the VEM to handle a large class of polygons enables
to easily construct functional spaces defined on local meshes on each of the fractures that are
locally or globally conforming to traces. This allows for the use of standard domain decompo-
sition approaches, coupling local problems by a Mortar method or, if meshes are globally con-
forming, by resorting to global continuity. Numerical results on the computed discrete fluxes at
traces show that the two approaches are viable and sufficiently relaibale.
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