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Abstract. Homogenization assumes that a unit-cell of a periodic composite material is infi-
nitely small and it has periodic boundary conditions. In practice, such material comprises a
finite number of measurable unit-cells and the stress fields are not periodic near the structure
boundary. It is thus critical to investigate in the scope of the present work whether the opti-
mized unit-cell topologies obtained are affected when applied in the context of real compos-
ites. This is done here by scaling the unit-cell an increasing number of times and accessing
the micro (or local) stresses of the resulting composite by means of standard numerical ex-
periments and comparing them to the homogenization predictions. The outcome indicates that
it is sufficient to have a low scale factor to replace the non-homogeneous composite by the
equivalent homogeneous material with the stress field computed by homogenization.
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1 INTRODUCTION

Stress-based topology optimization problems are more realistic to engineering practice
than the conventional maximum stiffness approaches because one may guarantee not only
very efficient designs but also feasible ones. However, dealing with stress criteria is specially
challenging due to the: (1) "singularity" problem; (2) local nature of the stress constraint; (3)
highly non-linear stress behavior. Several contributions have been made to handle these issues
to the point that fine results are now obtained for macroscopic structures [1-4]. The present
paper expands the analysis of stresses to material microstructures which may lay the ground-
work for the optimal topology design of material "unit-cells" including stress criteria [5]. An
"unit-cell" represents here the smallest periodic heterogeneity of periodic composite/cellular
media. In general, periodic homogenization models are used to compute the elastic properties
and local stresses of periodic composite materials based on the shape/periodicity of a given
material unit-cell [6,7]. Conversely, in material design, the unit-cell is not known a priori, and
the goal is to design it to attain specific properties values — inverse homogenization problem
[8]. This design problem is solved here by formulating it as an optimization problem. How-
ever, homogenization assumes that the unit-cell is infinitely small and it has periodic bound-
ary conditions (BC's). In practice, the composite material comprises a finite number of
measurable unit-cells and the stress fields are not periodic near the structure boundary. It is
thus critical to investigate in the scope of the present work whether the obtained unit-cell to-
pologies are affected when applied in the context of real composites. This is done here by
scaling the unit-cell an increasing number of times and accessing the micro (or local) stresses
of the resulting composite by means of standard numerical experiments and comparing them
to the homogenization predictions. This furthers previous work [9] related to compliance and
elastic coefficients convergence to homogenization predictions. Here, the outcome also indi-
cates that it is sufficient to have a low scale factor to replace the non-homogeneous composite
by the equivalent homogeneous material with the stress field computed by homogenization.

2 MATERIAL MODEL

Figure 1 presents the periodic material model mixing strong, E(l), and weak, E(z), materials
(see also [9]). The unit-cell volume Y (of feature size d) is cubic and one repeats it n° times

resulting in volume ¥ (D =|‘I‘| =1). Therefore, the ratio n = D/d can be seen as a scale factor.
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Figure 1: Material model. Finite element discretization of Y with periodic BC’s. Array of 5X5X5 unit-cells of
global size D (macroscale) and one unit-cell of size d (microscale).
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The asymptotic homogenization model used implies that stresses are calculated when n —
oo and thus no size is given to the unit-cell, i.e. d — 0. The stiffness ratio, E(l)/E(z), is here
equal to 10" or 10" representing a composite or cellular material, respectively. Both phases
are solid isotropic. One keeps phase 1 as the reference, i.e. E" = 300MPa and v= 0.3 (prop-
erties of a biodegradable polymer currently used in scaffolds for tissue engineering, see [10]).

3 OPTIMIZATION PROBLEM
The unit-cell topology shown in Figure 2 is obtained by inverse homogenization solving
the following compliance minimization problem subject to a volume fraction constraint [11],
min lGOCH(u)cO (1)
" 2

s.t.
[u(y)dysv”
Y

Here ¢” is a macroscopic hydrostatic stress state (o= 1MPa), volume |Y| =1 and C" is the

homogenized compliance tensor computed as the inverse of the stiffness tensor E” through,

1
E;Imn (lu )Crlr;lnkl( ) = 5 (5ik5jl + 5i15jk ) (2)
where §; are Kronecker deltas and,
o, oy”
E} E 0O — < | 0,0y = |dY 3
ykm( |Y| j pqrs ( 6yq ]( ri’sj Sys ( )

with the microstructure material elastic properties, E depending on density design

pqrs °
variables, W, in order to interpolate between two base materials according to the power law,

Epp ()= w E) + (1= JED), peN (4)

and the homogenized tensor depends on the material unit cell deformation modes or micro-
displacements " (Y-periodic), which are solution of the set of equilibrium equations defined
in Y (six equations in three dimensions),
a

aw .
—dY =|E. ’dY, V Y- periodic 5
ayj J. z]kl ayj w p 5

a) b) <) d)

Figure 2: Unit-cell. a) Box-type (isometric view); b) Section view using cutting plane 7z normal to the octahedral
direction, c) Shifted design results from translation along octahedral direction (material 2 is unselected only for
design comprehension, see also [10]); d) Graphical representation of anisotropy as in [9], units in [Pa].
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4 STRESS ANALYSIS

4.1 Homogenization prediction

The micro-stresses oy (in the level of material microstructure) are obtained from asymp-
totic homogenization theory, by considering the displacement test fields y,” from Eq. (5) as,

a rs
O-ij = Eijkm(dkré‘ms - Zk ggv (6)
ay,,
where 82 is the macroscopic (average) strain field related to the macroscopic stress in (1),
0 _ ~H _0
£,=Cp 0 (7

The oj;results represent the three-dimensional stress states varying throughout the unit-cell
domain Y (see Figure 4a). Here, the methodology used for obtaining such stresses is based on
the software POSTMAT [12,13].

4.2 Numerical experiments

The commercial finite element code ANSYS @ is used here to perform standard numerical
testing procedures with specific BC's to calculate the stress field inside the domain W of the
periodic composite/cellular material as the scale factor n increases from 1 to 5, see periodic

patterns in Figure 3. It is shown half the domain, ‘I’|/ 2, in order to highlight the central unit-

cell where the stress field is measured (see also Figure 4b,c) and compared to the results given
by homogenization running POSTMAT (Figure 4a). Shifted design (as shown in Figure 2c)
must be used in some arrays (for n = even number) to guarantee that the unit-cell topology
extracted from the center of the periodic pattern matches exactly the one (no-shifted) evalu-
ated by POSTMAT. Finite element meshes for each periodic pattern are not shown in Figure
3 because they would become so refined with increasing n that elements wouldn't be clearly
observed. Anyway, each unit-cell comprises a regular mesh 10x10x10 of 8-node isoparamet-
ric hexahedral finite elements. This means that a total of 1000xx’ finite elements are used in
the numerical model associated with scale factor n.

I1x1x1 2X2x2 3x3x3 4x4x4 5%5x%5

Figure 3: Volume ¥ (half represented) containing arrays nxnxn of unit-cells where n varies from 1 to 5. Unit-
cell design is shifted when arrays take even numbers. The unit-cell located at the center of W is highlighted.

One considers the Dirichlet and Neumman-type BC's (see [9,14]) given by, respectively,
u(Y)Ialy =0. y|aly (®)

0

¢ (y)-n‘a\P =0.n|, ©)
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B 0 0
0 0
0 B

and 0W is the boundary of P, u is the displacement vector, y is the spatial position vector,
n is the outward normal unit vector and /3 is the constant characterizing the hydrostatic tensor
©. On one hand, Eq. (8) applies in 0¥ a displacement field y linearly dependent such that ¥ is
tested at a uniform macroscopic strain £, i.e.

0
where O = b (10)
0

_jyed¥
o
On the other hand, Eq. (9) means that the test is carried out on ¥ at a uniform macroscopic
stress 3 (also on average holds <O->\y = ). In both tests  must be chosen such that consis-
tency with POSTMAT is ensured, see Eq. (6) and (7). However, BC's in Eq. (9) can't be ap-
plied to the analysis of cellular (or porous) material, EVIE® = 1012, because the pressure on

the top of the finite elements modeling the void phase results in excessive compliance. Never-
theless, Dirichlet-type BC's can be applied to both ratios, 10! (composite) and 10" (cellular).

 Ou;
el = l(a”' +LJ = 35, in 0¥ and on average (z) = B0, (11)

i W dy.
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Figure 4: Von-Mises stress is shown for the ratio E/E® = 10'* (averaged values are shown only for the sake of
getting a smoother display). a) POSTMAT results; b) ANSYS results for the array 5x5x5 of unit-cells (unde-
formed design in dashed lines); ¢) Section view of the array using plane zas used in Figure 2.

S CONVERGENCE ANALYSIS

The purpose of this study is the convergence analysis of stress fields to homogenization
predictions. These predictions are obtained running the POSTMAT code. Then a battery of
ANSYS analyses is carried out such that stresses can be read from the post-processor for each
array presented in Figure 3 with specific BC's and stiffness ratio.

ANSYS code provides individual stress components as well as the equivalent stress (Von-
Mises) at each node and element. To simplify the comparative analysis between POSTMAT
and ANSYS one chooses to compare element equivalent stresses that in ANSYS are com-
puted as follows,

1 o _ _ _ _ _ — — —
O = \/E [(011 — 0y )2 + (0'22 — 03 )2 + (0-33 — 0y )2]+ 3(0122 + 0223 + 0123) (12)
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where

N

So!
o, = "ZIT with N = 8 (number of Gauss points)

(13)

POSTMAT post-processor is properly adapted to do these same calculations of equivalent
stress. Finally, one proceeds evaluating the deviation of ANSYS stress results toward
POSTMAT according to the formula,

ANSYS POSTMAT)
Deviation [%] = —— 100 (14)

eq

This stress deviation measure is evaluated at each finite element of the unit-cell (in the
ANSYS model is the central unit-cell, see also Figure 3). Using the mesh 10x10x10, the re-
sulting data for plotting comprises 1000 points. However, due to the symmetry seen in the re-
sulting distribution only half the points are of interest. Therefore, the first five charts
presented in Figures 5 to 7 show the elements number (1 to 500) in the abscissa axis and the
deviation is represented along the ordinate axis [%]. Each one of these charts is obtained for
an increasing number of the scale factor n, 1 to 5. Looking only at clusters of points here
doesn't help much drawing some conclusions. So, the last chart shown in Figures 5 to 7 is an
attempt to provide the scale-size effect analysis in a nutshell and should be seen along with
Table 1. This table presents some statistical analysis of the plotted deviations in terms of
maximum and minimum values, mean (simple average) and standard deviation. Table 1 and
Figures 5 to 7 present data in the same order, i.e. first the composite material case (EVIE® =
10") is treated and the results with Neumann-type BC's precede the Dirichlet's results. Finally,
the cellular material case (E""/E® = 10'?) is presented with the respective results considering
Dirichlet-type BC's only (as explained in section 4.2).

B.C. ratio | Measures 1x1x1 2x2x2 3x3x3 4xdx4 SX5%5
max 3445707 747,230 70,011 10,301 2,872
Newumann | 10" e 647,289 156,114 11,965 0,659 -0,836
min -47,988 28,788 28,786 5,818 -1,665
s 930,933 215,734 20,560 3,174 0,540
max 209,803 21,159 2,770 1,413 1,282
10! e 2,994 -6,564 -0,421 0,805 0,389
5 min -50,748 -44,030 -5,102 -0,391 -0,226
< s 32,650 12,517 1,474 0,274 0,196
£ max 178,462 4,407 1,154 1,536 0,701
& 101 e 3,697 2,846 1,072 1,504 0,675
min -18,911 -6,465 0,581 1,314 0,656
s 30,799 1,351 0,073 0,026 0,009

Table 1: Statistical summary of deviations plotted in Figures 5 to 7. Mean e , standard deviation s and extreme de-
viations (max and min) attained [%].

One discusses first the composite stress results in Figures 5 and 6. Here one makes the dis-
tinction between the stress deviations measured in the material 1 which is stronger (see the
black dots plotted) and material 2 which is weaker (see the empty dots plotted). As a result of
separating things this way one concludes that the higher deviations are typically identified
with the elements where stress values are lower (material 2), see Figures 5a,b,c and 6a,b,c. In
regions where stress values are higher or critical (material 1) the stress values from ANSYS
and POSTMAT compare much better which is, in practice, a significant result because ulti-
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mately one would compare the maximum value of POSTMAT with the material Yield Stress
(oy) for design feasibility. The relative importance of the composite phases in the magnitude
of the deviations is far more noticed for low scale factors n, typically between 1 and 3. For n >
4 the deviations measured in materials 2 become eventually as big as the deviations seen in

material 1 and typically both come to be below 2% which is here an excellent convergence
result (see Figures Se and 6e).
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Figure 5: Scale-size effects analysis for composite EY/E® = 10" with Neumann B.C. Deviation computed
through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1xX1x1; b) 2x2x2; ¢) 3x3x3;
d) 4x4x4; e) 5x5x5. f) Statistical summary in terms of mean and standard deviation.
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However, despite higher n, one observes that deviations computed in only four elements
(numbers 445, 446, 455, 456) are comparatively much higher, reaching 22%. These elements
are located right in the middle of the unit-cell domain Y (in material 2) and their stress value
(order of 10?) is the minimum found in Y whether by POSTMAT or ANSYS (the order of the
maximum stress found is 106). These deviations are classified here as outliers and the statisti-
cal analysis carried out in Table 1 excludes them.
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Figure 6: Scale-size effects analysis for composite EV/E® = 10" with Dirichlet B.C. Deviation computed
through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1x1x1; b) 2x2x2; c) 3x3x3;
d) 4x4x4; e) 5x5x5. f) Statistical summary in terms of mean and standard deviation.
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Considering now the cellular material case, one notices that the stresses are basically zero
(e.g. 10°) in elements representing the void phase that's why one decides overlooking them
when calculating deviations and doing statistics (Figure 7 contains then comparatively lesser
points). Due to this simplification one notices the standard deviation decreasing faster than the
other cases. The min, max and mean values in Table 1 are all below 1% for n = 5 which is im-
pressive for such a low scale factor.
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Figure 7: Scale-size effects analysis for cellular material E’/E® = 10'* with Dirichlet B.C. Deviation com-
puted through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1x1x1; b) 2x2x2; c)
3x3x3; d) 4x4x4; e) 5x5x5. ) Statistical summary in terms of mean and standard deviation.
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In general, one perceives a fair convergence to the homogenizations predictions. Since the
shifted design is used in arrays with even number of unit-cells, it is more fair to compare re-
sults among n=1,3,5 and then between n=2,4 because the material distribution in the boundary,
0¥, where loads are applied, differs depending on whether the design is shifted or not (see
Figure 3). The standard deviation measure gives probably more insight in this analysis than
the mean value. The mean may go up and down (changing sign as well) as n increases be-
cause ANSYS may target POSTMAT either from above or below. The resulting trend for the
mean is not so consistent when compared to the standard deviation trend which always de-
crease with increasing n. Anyway, for n=5 the mean deviation is below 1% in all cases. The
maximum and minimum deviation values are also quite good as a result of excluding outliers
as aforementioned.

6 CONCLUSIONS

e Stress-based topology optimization is quite appealing for engineering practice due to the
fact that an optimal design must be a feasible one too.

¢ The inverse homogenization method is straightforward to generate unit-cell designs for
periodic composites. However the assumptions of ideal periodicity as well as dimen-
sionless unit-cell have to be checked in the context of real composites which motivates
the scale-size effect analysis presented in this work.

® As an outcome the present study indicates that it is sufficient to have a low scale factor
(n=5) to replace the non-homogeneous composite by the equivalent homogeneous mate-
rial with the stress field computed by homogenization.

® A single unit-cell topology design was investigated in this work and a coarse finite ele-
ment mesh was used to discretize the stress field that is in general highly non-linear.
These simplifications may motivate further detailed analyses on scale-size effects.
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