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Abstract. In uncertainty quantification, interval arithmetic provides an appropriate procedure
when little knowledge is available on the nature of the probability distribution of uncertain
or imprecise quantities. This commonly occurs in engineering applications due to subjective
knowledge or incomplete availability of test data. Intervals are by definition unable to take into
account dependent input and output quantities, which forces the assumption of independency
when applying them. This is a severe limitation on the accuracy of the analysis as dependency
is always present to some extent. The concept of interval fields (IF) [1] provides a solution by
defining non-deterministic fields using interval parameters. In its simplest form [2], the field
is expressed as a weighted sum of basis functions, the weights being modelled using interval
parameters. The dependency within the field is then captured by the basis functions, which
describe the spatial nature of dependency, whereas the magnitude of uncertainty is captured
by the weights. Field parameters are usually associated to geometric quantities (such as plate
thickness), but they can be applied generally whenever multiple uncertain input or output quan-
tities are involved. Both at the input and output side of a numerical analysis, IF can be used
for a more realistic description of the estimated uncertainty. At the input side, taking into ac-
count dependency reduces overestimation on the output uncertainty bounds. At the output side,
it is important that a realistic uncertain set of output quantities is represented as closely as
possible without adding conservatism, as this corrupts the results of possible postprocessing or
follow-up analysis. The application of IF here provides an important step towards achieving
this goal.

This paper aims to apply IF to analyse structural Finite Element models with uncertain
structural properties. The property of interest in this paper will be the E-modulus. The concept
of IF will be used to model spatial dependency within this parameter and will lead to a more
accurate estimation of the output uncertainty.
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1 INTRODUCTION

1.1 Possibilistic uncertainty analysis

In numerical modelling, Uncertainty Analysis (UA) concerns the identification and quan-
tification of possible sources of uncertainty within a model, with the purpose of obtaining in-
formation on the uncertainty present in the model’s relevant output. In this context, a non-
deterministic approach of the modelling process is essential. Instead of the classical determin-
istic representation of model parameters, non-deterministic concepts are used to open up the
possiblity of representing uncertainty on the parameters. These concepts can be divided in two
groups. Firstly, probabilistic analysis uses probability distributions and stochastic parameters
to assign a finite probability to a parameter having a certain value. Secondly, possiblistic anal-
ysis omits the concept of probability and only concerns the possiblity of a parameter having a
certain value. Intervals, fuzzy numbers and convex regions are commonly used for this pur-
pose. The choice of which approach to follow is usually based on the availability of knowledge
on the uncertainty that is present. The definition of probability functions requires extensive
knowledge on the uncertain parameter of interest. In practise, the Gaussian distribution is often
assumed to estimate the stochastic moments, but the infinite base of this distribution poses a
fundamental objection to this. Also, to accurately estimate stochastic parameters, a lot of exper-
imental data is required. When experimental data is hard or expensive to obtain or their quality
is questionnable, possibilistic analysis becomes an interesting alterative. The interval approach
provides a much lower threshold to perform a non-determistic analysis than the stochastic ap-
proach. Also numerically, experiments can be expensive in terms of computational time, lim-
iting the use of sample based stochastic techniques such as Monte Carlo Sampling. This paper
will focus on the interval approach as basic tool for possibilistic analysis, and apply it in the
context of a structural Finite Element (FE) model.

1.2 Modelling geometric uncertainty

Uncertain parameters in FE models typically have a spatial character: material properties
such as density and Young’s modulus or geometric properties such as plate thicknesses are
geometrically oriented in space. In uncertain context, these parameters can show variability
over the spatial domain, referred to as geometric variability. In FE-models, such a geometric
parameter is discretised to the elements, leading to a set of discrete variables representing that
variable in each element of the model. According to the possibility of geometric variability, the
value in each element can vary separately, leading to different values in each element. However,
some degree of dependency will usually be present and the value in different elements can
not vary independently. Here the interval concept poses a problem. The uncertainty in each
element could be captured by an interval parameter marking the bounds of the variation, but
interval parameters are by definition incapable of incorporating the dependency present in the
spatial domain. To mark the uncertainty present in such field parameters using a possiblistic
technique, the interval field technique can be used as illustrated in equation 1. In its simplest
form, an interval field consists of basis functions φ(r) representing the dependency and interval
coefficients αI representing the uncertainty.

yI(r) =
n∑
i=1

αIφi(r) (1)
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1.3 Dependency in a possibilistic context

For non-deterministic field parameters, a parameter needs to be defined that represents the
level of dependency within the field. In stochastic FE context, as dictated by the theory of
random fields (RF) [3], the correlation length is often used as measure for the dependency in the
spatial domain. In this case, the correlation between values in different points is made a function
of the distance between the points, with the correlation length Lρas governing parameter. The
example of an exponential relationship is given in equation 2.

COV (x(r1), x(r2)) = exp

(
‖r1 − r2‖

Lρ

)
(2)

As correlation is only defined in stochastic context, use of this parameter in possibilistic context
is not straightforward. The authors proposed the use of the maximum gradient as parameter
governing the dependency in the field, as this better fits the possiblistic approach than the corre-
lation. The subject of this paper will be to apply this approach to identify the variability of the
natural frequencies of a steel plate with geometrically varying Young’s modulus.

2 MODELLING THE INPUT UNCERTAINTY: THE LOCAL INTERVAL FIELD DE-
COMPOSITION

2.1 General concept

Referring to [4], the Local Interval Field Decomposition (LIFD) was introduced to incor-
porate the maximum derivative constraint in a 1D non-deterministic field. This decomposition
method puts a radial-based basis function and corresponding interval parameter in each element
of the FE model. Therefore, the dimensionality of the uncertainty is equal to the number of ele-
ments. The reason for this approach is that, regardless of the level of dependency, each element
can (at least partially) determine its own value and as a result, the dimensionality is equal to the
number of elements. However, the issue of the dependency between the elements still stands.
Through the LIFD, the initial interdependent interval set is transformed to an interval set of (at
least) equal size that is independent, while still obeying the maximum derivative constraint. The
following section considers the expansion of the LIFD to 2D non-deterministic fields.

2.2 Derivation of the LIFD in 2 dimensions

Suppose we have a field parameter u(x, y) with x, y the spatial coordinates in a 2D-plane.
We define the gradient ∇u(x, y) and its norm G as:

∇u(x, y) =

(
∂u(x, y)

∂x
,
∂u(x, y)

∂y

)
(3)

G =

√(
∂u(x, y)

∂x

)2

+

(
∂u(x, y)

∂y

)2

(4)

For a certain realisation ũ(x, y), the maximal and minimal value for that specific realisation
are defined as maxx,y ũ(x, y) = u and minx,y ũ(x, y) = u. The LIFD in 2D will write the
non-determistic field u(x, y) as an interval field uI(x, y) in the form of equation 1 that obeys
the following statements:

1. ∀(x̃, ỹ) ∈ Ω : Umin ≤ u(x̃, ỹ) ≤ Umax

6109



Maurice Imholz, Dirk Vandepitte and David Moens

2. ∀(x, y) ∈ Ω :

√(
∂u(x,y)
∂x

)2

+
(
∂u(x,y)
∂y

)2

≤ Gmax

3. ∀ũ(x, y) : u− u ≤ Dmax

The parameters Gmax, Umin, Umax and Dmax can be independently set. The first statement
demands that the absolute bounds on the field parameter Umin and Umax are never exceeded.
The second statement demands that the norm of the gradient never exceeds a preset value.
This statement accounts for the dependency in the field. The third statement puts a bound
on the difference between the maximal and minimal value of any realisation of the interval
field. The objective of the LIFD is to obey the statements using the four governing uncertainty
parameters mentioned above with an explicit interval field description with independent interval
coefficients.

The only freedom we have is the shape of the basis functions. In the 2D-case, the basis
functions have the following properties:

1. All φi are identically shaped radial basis functions.

2. A single φi is positioned at each element at location ri of the FE mesh.

3. All φi are piecewise second order polynomial functions so the first derivatives are contin-
uous.

figure 1 illustrates the shape of a basis function. For a basis function centered at element i
with coordinates xi and yi, the mathematical definition is given by equation 5.

φi(x, y) =


0 R <

√
(x− xi)2 + (y − yi)2

2(r−ri+R)2

R2
R
2
<
√

(x− xi)2 + (y − yi)2 ≤ R

1− 2(r−ri)2
R2 0 ≤

√
(x− xi)2 + (y − yi)2 ≤ R

2

(5)

with r =
√
x2 + y2 and ri =

√
x2
i + y2

i . To comply with all demands, the following explicit
field is proposed:

uI(x, y) = CI +
n∑
i=1

a · 1Ii · φi(x, y, R), (6)

withCI =
〈
C|C

〉
and 1Ii = 〈0|1〉 defined as the unity interval. The four controllable parameters

are C, C, a and R. A unique mapping between these parameters and the four global uncertainty
pararmeters is given by equation 7:

Umax =
7π · a ·R2

24 · dx · dy
+ C

Umin = C

Gmax =
a ·R
dx · dy

Dmax =
7π · a ·R2

24 · dx · dy
(7)
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Figure 1: shape of a 2D radial basis function. Beyond a radius R from the center point, the basis function equals
zero.
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Figure 2: Illustration how dummy points are added beyond the physical domain to keep the maximum gradient
constraint valid close to the edges.

With these relations, the four global uncertainty parameters can be independently set, leading
to a unique field definition as in equation 6.

To ensure the maximum gradient constraint is kept over the entire domain, an adjustment is
needed close to the edge of the domain. For points that lie within a distance R from a domain
edge, the maximum constraint does not hold, because fewer basis functions have an effect in
these points, leading to a smaller interval on the gradient in these points. To counter this, dummy
points are added beyond the physical domain up to a distance R. The basis functions placed
in these points lie partly in the physical domain and will ensure that the maximum gradient
constraint is kept over the entire physical domain. Figure 2 shows the dummy points beyond
the physical domain.

Figure 3 shows some realisations of a field within a rectangular plane for different values
of R and a. One can clearly see how the combined choice of a and R produce more or less
spatially dependent realisations.

3 PROPAGATING THE UNCERTAINTY: THE CONTINUOUS FIELD RESPONSE
SURFACE

The analysis case in this paper will be the natural frequencies of a simple plate model with
uncertain Young’s modulus. The plate has a total of 20× 20 = 400 elements, which leads to (at
least) 400 interval parameters in the input field. To propagate this uncertain field to the output,
a response surface will be defined. Assume we define a second order polynomial model on an
output w within an input space u1, u2, ..., un given by equation 8.

w = w0 +
n∑
i=1

aiui +
n∑
i=1

n∑
j=1

bijuiuj (8)
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Figure 3: realisation examples for different values of R.

We assume n is a very large number, but all input parameters are instances of the same geometric
parameter at different locations, e.g. the Young’s modulus in each element of the FE-model.
Obviously, determining the coefficients of such a high-dimensional model would require a very
large amount of training samples, especially when the interaction terms are considered. To
reduce the actual dimension of the response surface, we will take into account the high similarity
of the input parameters. For example, the coefficients corresponding to the parameter value in
adjacent elements have to be quite similar. The fact that the coefficients are correlated in space
leads to a response surface description in terms of the spatial coordinates x and y, which the
authors introduced earlier in [5], and is given by equation 9.

w = C +

∫∫
x,y

a(x, y)u(x, y)dxdy +

∫∫
x,y

b(x, y)u2(x, y)dxdy +∫∫
x,y,∆x,∆y

q(x, y,∆x,∆y)u(x, y)u(x+ ∆x, y + ∆y)dxdyd∆xd∆y (9)

The discrete coefficients of the discrete model have been replaced by continuous coefficient
fields that are defined over the spatial domain. The function also includes an interaction term
which includes the product of the geometric parameter u(x, y) at different elements in the
model. Based on the first order approximation:

u(xi + ∆x, yi + ∆y) = u(xi, yi) + ∆x
∂u(x, y)

∂x
+ ∆y

∂u(x, y)

∂y
, (10)
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Figure 4: coefficient fields corresponding to each of the first 10 natural frequencies.

we replace this term by 2 terms including the product of the geometric parameter and its deriva-
tives, leading to equation 11.

y = C +

∫∫
x,y

a(x, y)u(x, y)dxdy +

∫∫
x,y

b(x, y)u2(x, y)dxdy +∫∫
x,y

qx(x, y)u(x, y)
∂u(x, y)

∂x
dxdy) +

∫∫
x,y

qy(x, y)u(x, y)
∂u(x, y)

∂y
dxdy) (11)

For the training process, we assume that the coefficient fields a(x, y), b(x, y) etc. are continuous
functions in the spatial domain, thereby transforming the training process to a much lower
actual dimension. For example, a coefficient field a(x,y) with 400 discrete locations can be
written with a 2D polynomial as in equation 12.

a(x, y) = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2 (12)

This representation only has 6 unknown coefficients, so instead of determining all 400 coeffi-
cients independently, redefining the problem reduces this number to only 6.

4 APPLICATION: STEEL PLATE WITH UNCERTAIN STIFFNESS PROPERTIES

4.1 Coefficient functions

We now continue towards applying this continuous model on our analysis case. The coeffi-
cient fields a(x, y), b(x, y), etc. are determined by using a linear least-squares based algorithm.
For the specific case of the plate frequencies, first order polynomials lead to errors of only 1%.
The coefficient function for each of the 10 first eigenfrequencies are given in figure 4.
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4.2 Resulting output field

With the response surface defined, we can very easily make the step towards an output inter-
val field description. The interval field can be written as

uI(x, y) = u0(x, y) +
Next∑
i=1

·1Ii · φi(x, y) (13)

with Next the total number of elements and dummy points (figure 2). If we put this in equation
9, we obtain the following description of the output field:

ωI = ω0 +
Next∑
i=1

a · ξ(i) · 1Ii (14)

with ωI an interval vector with the 10 first natural frequencies in it. ξ(i) are vectors with ele-
ments:

ξ
(i)
j =

∫∫
x,y

ai(x, y)φj(x, y)dxdy (15)

4.3 Identifying the uncertain region

The resulting interval field has a total of Next terms. For ease of calculation, the interval
parameters are depicted by normalized intervals 1Ii = 〈0|1〉.

The interval field mentioned above corresponds to an uncertain region of frequency com-
binations. Because the example considers only the first 10 natural frequencies, this is a 10-
dimensional region. If we look at 2D projections of this region on all possible (ωi, ωj)-subspaces,
we observe ’shuttle’-shaped regions, an example of which is given in figure 5. This is due to the
monotonous behaviour of natural frequency w.r.t increasing stiffness. Such a shuttle shape has
two cornerpoints corresponding to the input points where al inputs are at their lowest or highest
value respectively. Between these points, two curves bound the uncertain region, an upper and
a lower curve.

From the fields ξ(i) we can reconstruct the 2D projections of the uncertain region. For

frequencies ωp and ωq, we define the vector ρ(pq) with elements ρ(pq)
i =

ξ
(p)
i

ξ
(q)
i

. Define
+
ρ

(pq)
as

the vector with the elements of ρ(pq) sorted in ascending order, and
-
ρ

(pq)
as the vector with the

elements of ρ(pq) sorted in descending order. Additionally, we rearrange ξ(p) and ξ(q) so that
(equation 16)

+
ρ

(pq)

i =

+

ξ
(p)

i

+

ξ
(q)

i

and
-
ρ

(pq)

i =

-

ξ
(p)

i
-

ξ
(q)

i

. (16)

To each element in
+
ρ

(pq)
and

-
ρ

(pq)
, we assign coordinates

+

φi=
∑i

k=1

+
ξ
(q)

k −
+
ξ
(q)

i /2∑Next
k=1

+
ξ
(q)

k

and
-

φi=

∑i
k=1

-
ξ
(q)

k −
-
ξ
(q)

i /2∑Next
k=1

-
ξ
(q)

k

. Finally, we define the continuous functions
+

h (
-

φ) and
-

h (
-

φ) that interpolate
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Figure 5: Example of a ’shuttle’-shaped uncertainty region.

the points
(

+
ρ

(pq)

i ,
+

φi

)
and

(
-
ρ

(pq)

i ,
-

φi

)
. The lower and upper curve are then described by equa-

tion 17.

lower curve :
+
c (

+

φ) :→

ωp(t) =
∫ t

+
φ=0

+

h (
+

φ)d
+

φ

ωq(t) =
∫ t

+
φ=0

d
+

φ

upper curve :
-
c (

-

φ) :→

ωp(t) =
∫ t

-
φ=0

-

h (
-

φ)d
-

φ

ωq(t) =
∫ t

-
φ=0

d
-

φ
(17)

Figure 6 illustrates the process described above.

4.4 Observations

In the 2D-projections of the uncertain region we can clearly see the effect of a varying
Young’s modulus. We examine 7 cases of increasing maximum gradient. The extreme val-
ues of the Young’s modulus are 210 GPa and 1.2 · 210 = 252 GPa. From figures 7 to 10, that
show some 2D projections for all 7 cases, a few observations can be made:

1. Increasing the maximum gradient does not change the cornerpoints, as these depend on
the extreme values of the Young’s modulus itself, but the uncertain region does change.
The shuttle-shaped regions become wider, effectively decreasing the dependency between
the frequencies as the gradient increases.

2. For lower frequencies, the effect of increasing the gradient on the uncertain region appears
to saturate. This saturation effect is much less outspoken for higher frequencies.

3. Some frequencies, such as 5 and 8 (figure 9), appear to be much more interdependent than
others, which can be seen from the relatively slim shuttle shape. The increased maximum
gradient appears to have little effect on the dependency between these frequencies.
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Figure 6: illustration of the process to determine the uncertain region, for the case of only 5 fields ξ(i).
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Figure 7: uncertainty region projected on the (ω1, ω2)-plane.

Figure 8: uncertainty region projected on the (ω4, ω7)-plane.
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Figure 9: uncertainty region projected on the (ω5, ω8)-plane.

Figure 10: uncertainty region projected on the (ω9, ω10)-plane.
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5 CONCLUDING REMARKS & FUTURE RESEARCH TOPICS

In a possiblistic framework, the inability to use correlation forces us to look at dependency
at a more general level. According to the authors, the shape of the uncertain region itself holds
the most information not only on the degree of dependency between parameters, but also on the
nature of it. In this paper, the interval concept is specifically designed towards the fast com-
putation of these regions. For the purpose of monotonous and linear behaviours, which lead
to so-called ’shuttle’-shaped uncertain regions, this paper introduced an easy way of comput-
ing them without the need of additional simulations. Further research will be done towards
formulating relationships between interval field formulations and uncertain region shapes, for
non-linear and also non-monotonous input-output relations.
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