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Abstract. The goal of the work is to enhance the execution scalability of the code called 
AtomicClusters for evaluations of in-medium properties of nuclear clusters to extreme scales. 
In order to fully exploit the computing power of massively parallel supercomputing systems, 
the code was supplemented with parallel output and dynamic scheduling system based on 
task-stealing technique. The scheduling system was implemented for state-of-the-art distribut-
ed-memory high-performance computers (HPC) using the advanced features of Message 
Passing Interface (MPI) as an independent adjustable module. The parallel output was inte-
grated into the code using MPI IO. A number of strong scaling tests was performed for the 
resulting parallel software. An almost linear scalability was reached on up to 4000 cores. The 
code scales up to at least 38400 processes, but with lower speedup. The obtained results are 
discussed in the fifth section of the paper. 
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1 INTRODUCTION 

The dynamical evolution of core-collapse supernovae, the static properties of neutron stars, 
and the conditions for nucleosynthesis could be determined by Nuclear Equation of States 
(EoS) of stellar matter [1], the chemical composition of stellar matter. At densities below nu-
clear saturation density the nuclear matter is a mixture of nucleons, nuclei and electrons that 
could be considered as huge atoms also known as nuclei clusters. Their abundances depend 
strongly on the thermodynamic conditions such as density, temperature, and electron fraction. 
Since nuclei, which are composite objects, are immersed in a dense medium, their properties 
change significantly with the parameters mentioned due to the nuclear and electro-magnetic 
interaction with the surrounding particles and the action of the Pauli Exclusion Principle [1]. 
The latter is the main cause for the dissolution of nuclei with increasing density (Mott effect) 
[1]. Hitherto, several thousand clusters have to be considered for various values of the ther-
modynamic parameters as well as atomic mass and charge number to identify stable ones.  

The whole range of parameters for the evaluation of in-medium properties of all possible 
nuclear clusters is almost 500 million variations. Thus, the massive parallel calculations are 
crucial to complete full analyses. To reach good load balance of such computations at extreme 
scales, a middleware between cluster scheduling system and the simulation software, based on 
scalable scheduling algorithm has to be developed. Since the scalability of the commonly 
used single-queue master-managed technique is limited due to the Amdahl’s law [2] (the work 
distribution can be done only sequentially as there is only one master), and the calculation 
time for each set of parameters of computation for nuclear clusters cannot be accurately pre-
dicted (see chapter 3.1), the usage of static scheduling algorithms proved to be inefficient and 
a principally different scheduling approach known as task stealing was used. 

The task stealing suspects each process having own task stack, accessible concurrently by 
all the processes in system. Shared-memory systems meet the requirements of such an ap-
proach, but do not give enough computational resources for the simulations (the Blacklight 
machine of the Pittsburgh Supercomputing Center (PSC), the world’s largest shared-memory 
computing system [3], features 512 eight-core Intel Xeon 7500 processors). Distributed-
memory systems offer enough performance, but do not support direct access to the operative 
memory of another process. Therefore, a hybrid concept of the shared-memory-like synchro-
nization based on MPI-3 passive-target remote memory access [4] was implemented.  

The scalability tests of the designed parallel system were performed on the computational 
resource ForHLR Phase I (SCC/KIT, Karlsruhe) on up to 4000 cores and on the Cray XC40 
Hazel Hen system (HLRS Stuttgart, #8 in Top500) on up to 38400 cores, using renowned 
MPI libraries. 

The paper is organized as follows. Section 2 shortly describes physical models used in the 
code. Section 3 presents overview of applicable scheduling techniques. Section 4 gives more 
technical details of the implementation of the chosen approach. Section 5 is devoted to the 
quality assessment of the re-designed software. Conclusions and future work prospects are 
given in the section 6. 

2 CODE “ATOMICCLUSTERS” FOR THE EVALUATION OF IN-MEDIUM 
PROPERTIES OF NUCLEAR CLUSTERS 

A parallel AtomicClusters [5] code for the evaluation of in-medium properties of nuclear 
clusters was developed in a joint R&D project of the Steinbuch Centre for Computing of KIT 
with the Nuclear Theory group of GSI and is used to model the behavior of composite parti-
cles at zero and different non zero temperatures. The code allows searching for stable isotopes 
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and defining EoS consisting of such isotopes at extremely dense matter. This kind of EoS is 
an essential ingredient in astrophysical model simulations. 

The main objective of the AtomicClusters code is to calculate the change of properties of 
nuclei, mainly energy and radii, embedded in a medium of nucleons and electrons, required to 
have charge neutrality of the total system as in stellar matter, for given temperature and (bar-
yon) density. This is achieved by comparing the results of two calculations: one of homoge-
neous nuclear matter and one where the formation of a cluster is calculated inside a spherical 
Wigner-Seitz cell (inhomogeneous matter). For this we use a relativistic energy density func-
tional (EDF) that is based on a phenomenological relativistic mean-field (RMF) model [6] for 
nuclei with density-dependent nucleon-meson couplings. The exchange of mesons models the 
interaction between the nucleons. From the EDF the relevant field equations, i.e. coupled dif-
ferential equations, for the particles are derived. They have to be solved self-consistently. This 
is done using the relativistic Thomas-Fermi approximation. The results for energy shifts etc. 
are needed for the complete chart of nuclei, including unstable exotic nuclei, for different 
densities and temperatures. They will be used then in a second step as input for a model for 
the equation of state [1] of stellar matter (generalized relativistic density functional) that in-
corporates the full table of nuclei.  

So far, only simple approximations for the energy shifts are used, but they should be re-
placed in the future by more realistic results based on the underlying EDF.  

The parallelization technique used in the initial version of the AtomicClusters code was 
based on static domain decomposition, and proved to be inefficient (see section 5). 

3 SCHEDULING SYSTEM  

The necessity of optimal and effective use of limited and expensive computational time on 
any HPC system is crucial. Efficient resource utilization can seldom be reached without long 
term re-engineering of the scientific simulation codes. The code rebuilt may result in changes 
of the scientific concepts and architecture, practically leading to fundamentally new software 
and possibly different scientific results. In order to advance the AtomicClusters code for state-
of-the-art HPC systems and avoid affecting the underlying physical models, the external 
scheduling system was developed. As distinguished from code parallelization techniques, the 
scheduling system operates code-defined computational units instead of mathematical opera-
tions, thereby not influencing the simulation results.  

For the AtomicClusters code the scheduler-managed unit (hereinafter task), is one set of 
possible isotope parameters, namely density, temperature, atomic number and electron frac-
tion. Since the calculation time for each task is unknown, the simple statement of the schedul-
ing problem in case of heterogeneous computational system can be represented as follows: the 
project consists of N independent tasks of variable size; the tasks must be distributed among 
M: M<<N equal resources so that the latest are used in a most efficient way: the makespan of 
the project is minimized and the resources utilization is maximized; the distribution method 
must scale up to M>>10000. Standard static algorithms as those solving the bin packing prob-
lem [7] cannot be used to schedule tasks of undefined size. To solve the problem, the follow-
ing scheduling approaches were implemented and evaluated. 

3.1 Static scheduling techniques  

The first approach is a static distribution of equal N/M number of tasks among processes, 
or static domain decomposition. The advantages of the approach are the simplicity and the 
lack of bottlenecks. Since the input range of parameters is represented in an incremental form, 
it is small enough to fit into the memory of a single process irrespective of the problem size, 
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and the distribution of parameters among processes is done in parallel, namely the range of 
parameters to be processed is calculated on each process according to its rank. The disad-
vantages of the approach are the non-optimized completion time and the high load imbalance 
on the computational systems with static resource management. This technique gives better 
result on systems with dynamic resource management, where the finished processes can be 
freed immediately without waiting for the whole computation to complete [8]. Herewith, ful-
filling the resource occupation condition we are still not satisfying the makespan minimiza-
tion criteria. 

The second approach is a statistics-based grouping technique. The sizes of new tasks are 
estimated using the 3D spline-polynomial interpolation of the collected statistical data. The 
groups of tasks with similar computational intensity (cumulative size) are formed and sched-
uled as single units of equal size. Figure 1 demonstrates the estimated task size for the range 
of atomic numbers from 50 to 300 and temperatures from 25 to 140 MeV. 

 

Figure 1: Estimation of task sizes for given temperature and atomic number. 

On particular range of parameters, where the size function is smooth, the approach shows 
feasible results. However, the scalability of the approach is limited due to statistics I/O bottle-
neck, and the prediction is not possible on the whole range of parameters. This technique re-
mains useful for the simulations where the task size dependency on the input parameters can 
be approximated with monotonous function, such as the software to search for periodic gravi-
tational wave signals [9], where we successfully applied the grouping approach. In case of 
nuclear clusters study, where the computation of each set of parameters must be done only 
once, this approach must be advanced. 

3.2 Dynamic task-stealing scheduling technique  

Taking into account specifics of the AtomicClusters code such as non-predictable task sizes 
and independency of the tasks, the approach based on a task-stealing technique was chosen 
for the scheduling system.  

The idea of the task-stealing technique is derived from work-stealing. In [10] work-stealing 
was opposed to work-sharing – the technique where a single scheduler is responsible for the 
work distribution. Both work-stealing and work-sharing do not meet the requirements we 
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have set. The work-sharing technique is master-managed and does not scale due to Amdahl’s 
law. The work-stealing supposes that the tasks can be subdivided, that contradicts the idea of 
operating code-defined computational units. 

The following scheduling algorithm was chosen to be implemented. The tasks are initially 
distributed among processes as in the first approach, but as soon as the process completes the 
tasks from own queue, it starts “stealing” tasks from other queues. The task-stealing algorithm 
is initially parallel since each process is following the same steps. Provided the communica-
tion time is negligible compared to computation time, the load imbalance is not higher than 
the size of the biggest task, since each process is occupied while there are tasks still left in the 
system. Contrary to the simple distribution, this approach conduces to the completion time 
minimization. 

To balance the load, two techniques were applied: the random polling [11, 12], where the 
stealing requests are send to a randomly chosen target, and the ordered polling with match 
memorization, which means repetitive stealing from the same target until it is not empty. The 
first is quite efficient despite its simplicity and match unpredictability, but requires supple-
mental termination detection mechanism. The second is finite, since no new tasks are arising 
during the computational process, and the cycle can be subdivided into nested loops, first 
searching within the immediately accessible area (e.g. shared memory region), thus profiting 
from the HPC architecture. However, ordered polling can cause work maldistribution, and 
therefore higher communicational load, since the number of non-empty targets will decrease 
faster.  

4 IMPLEMENTATION OF THE TASK-STEALING ALGORITHM  

In the era of HPC one of the biggest problem limiting parallel applications scalability is the 
synchronization problem. The first goal of the scheduler implementation was to minimize in-
terprocessor communications, therethrough reaching higher scalability. The task stealing algo-
rithm is naturally suitable for the shared-memory systems, since it suspects each process 
having its own task stack, accessible concurrently by all the processes in system. To apply the 
task-stealing technique for distributed memory systems and optimize the interconnection be-
tween processes, shared-memory-like synchronization based on MPI passive-target remote 
memory access (RMA) [4] was implemented. 

The RMA is a new MPI feature, requiring an external progress engine to remain truly pas-
sive-target [13], and not fully supported by all MPI libraries. Normally the MPI progress en-
gine on each process activates only when the process itself is doing an active MPI 
communication. Therefore, once initiated the passive-target access epoch stalls and can be 
processed only when the target calls an MPI routine. The external progress engine is respon-
sible for the background progression, irrespective of the processes behavior, and allows 
avoiding deadlocks during passive-target access. 

For the scheduling system to remain efficient irrespective of the HPC environment, the ad-
ditional optionally activated synchronization mechanism was integrated. The mechanism pe-
riodically simulates MPI activity during the computational process, therethrough poking the 
MPI progress engine and activating stalled calls from other processes. Considering that no 
additional communication is done within the synchronization call, the increase of the single 
task computation time is negligible. The disadvantage of such a mechanism is a conflict of 
load balancing and synchronization. On the one hand, passive-target access epochs happening 
between the synchronization calls still stall, causing load imbalance, but on the other hand the 
meaningful decrease of synchronization periods may badly affect the computation time of 
each task. Therefore, the usage of the MPI libraries supporting asynchronous progress is pref-
erable.  
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5 EVALUATION OF THE DYNAMIC SCHEDULING SYSTEM 

The quality assessment of the re-designed parallel software was performed in a number of 
scalability tests. Figure 2 demonstrates the results of strong scaling of the code on the 
ForHLR Phase I system. The ordered polling with match memorization was chosen as a bal-
ancing technique. The tests were run with all three MPI libraries installed on the system: 
MVAPICH [13], Intel MPI and Open MPI. The default settings of the libraries were used. 
The speedup was measured relating to the sequential runtime with the same library and tuning 
parameters.  

Among the libraries available on the system only MVAPICH fully supports the asynchro-
nous progress. However, minimizing interconnection time to a negligible value by use of the 
external progress engine caused the decrease of performance. The cumulative runtime of all 
tasks on all processes increased. The Intel MPI library shows better results for the simulations 
with additional synchronization, which can be explained with optimal library configuration 
for the system.  

The magenta line is given for comparison and refers to the scalability results of the original 
(based on static domain decomposition) parallel version of the AtomicClusters code without 
integrated scheduling system. 

 

Figure 2: Scalability tests on ForHLR system with different MPI libraries. 

The diversity of the results proves that to reach higher efficiency of the parallel application 
at any system, the initial tuning of the system software in order to optimize its settings for the 
used hardware and application must be done. 

Figure 3 demonstrates the results of strong scaling of the code on the Cray XC40 Hazel 
Hen system with the default settings of the Cray environment.  

Both load balancing mechanisms were tested on higher scales: the ordered stealing with 
repetitive target choice on match and the random polling. Additional synchronization was 
used to provide non-stalling passive target access. 
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Figure 3: Scalability tests on Cray XC40 Hazel Hen system with different load balancing mechanisms.   

As was predicted, the random target choice showed better results on scale-up. We explain 
it with the tasks maldistribution, caused by faster decrease of the number of non-empty targets, 
which is the consequence of repetitive target choice on match. This imbalance leads to higher 
number of access epochs to non-empty targets left and increases the number of concurrent 
access epochs. For random polling, the possibility of simultaneous epoch to the same target is 
quite low.   

 

Figure 4: Relative work/idle/communication time distribution.   

The overall result on Hazel Hen appeared to be worse than on ForHLR. Detailed evalua-
tion of the results allowed discovering a bottleneck in the parallel output system, which can be 
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one of the reasons of speedup decrease. Here the optimization of the parallel output for 
AtomicClusters code is necessary and is under development. Another reason can be a not op-
timal (too small) size of the problem being solved. The performance of a single computational 
unit (core) of Hazel Hen system is almost two times greater than one of ForHLR according to 
the official documentation [14, 15], and is approximately three times greater according to the 
measurement of the single-process runtime of the same task on each machine. Thus the prob-
lem size must be enlarged to profit from Gustafson’s law principles [16].  

Higher performance also causes decrease of the computational time of a single task, which 
means that communication intensity increases. Figure 4 illustrates this increase, demonstrat-
ing the average distribution of processor time among work on own (received by initial distri-
bution) tasks, work on stolen tasks, communication and staying idle, for different runtime 
parameters (number of processors and stealing order). 

To minimize communications, the tasks grouping will be used so that groups rather than 
single tasks could be managed by scheduler as one unit. The optimal size of such a group as 
well as the preferable size of the whole simulated problem is a subject of further investigation. 

6 CONCLUSIONS  

The existing AtomicClusters code was supplemented with a dynamic scheduling system 
based on task stealing technique. The scheduling system was implemented using the advanced 
methods of MPI for the distributed memory system. The tests performed on the ForHLR sys-
tem up to 4000 cores showed good scalability of the designed software. Results, obtained for 
higher amount of cores on the Hazel Hen system, allowed us appointing the following pro-
spects of further system optimization: 

• the revision of the parallel output system and its re-integration from code into scheduler; 

• the estimation of the optimal size of the units operated by the scheduling system depend-
ing on the system performance; 

• the investigation of the tuning parameters of the environments used and an evaluation of 
the optimal configuration. 

Summarizing, one can claim that task stealing based scheduling concept appeared to be a 
good alternative to code parallelization and re-designing parallel software. Being used with 
optimal parameters it can provide almost linear speedup. 
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