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Abstract. This paper presents a multi-scale, multi-physics finite element model (FEM) 

simulating the electrical performance of single layer graphene/insulator under DC loading, 

which would be easily applied to most cases, extended to a more sophisticated material archi-

tecture in respect of being scientifically structured and proven. The approach consists of the 

creation of a unit cell and a representative volume element (RVE) micro-scale nanocomposite 

model on a commercially available FE package. The implementation of these models has 

been considered satisfactory and successful, as the variation of nanocomposite’s electrical 

conductivity in respect to the volume content was in accordance with experimental data. 

Moreover, the numerical simulation was in accordance with the classical percolation law 

predictions, while the obtained percolation thresholds in terms of aspect ratio obey the Ex-

cluded Volume Theory. The graphene shape was considered in the analysis as a geometric 

parameter, being proved that the shape does not exhibit any profound effect on the electrical 

performance of the graphene/insulator nanocomposite. Finally, this model is capable to pre-

dict the full percolation response of the nanocomposite and can be applied to any nanocom-

posite architecture in contrast to general theories that can only estimate the percolation 

threshold rather than the full response. 
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1 INTRODUCTION 

Conductive polymers have been extensively studied for their potential applications in light 

emitting devices, batteries, electromagnetic shielding, and piezoresistive sensors. At first, car-

bon black [1], [2], metallic powder [3–5], polyaniline [6] and graphite [7]  were used as elec-

trical reinforcement in polymer, but high concentration was necessary to achieve the 

percolation threshold which endangered the mechanical properties of the nanocomposites due 

to the formation of agglomerations. Later, several researchers proposed polymer nanocompo-

sites reinforced with graphene nanoparticles and its derivatives (expanded graphite, graphene 

nanoplatelets, graphite oxide, functionalized graphene/expanded graphite), which are able to 

form more stable 3D conductive networks in lower volume content as a consequence of their 

high aspect ratio (AR-ratio of main particle dimension to minor one) [8–15]. 

However, despite the high financial and time cost of material preparation and experimental 

work, there are a few computational models predicting the electrical response of gra-

phene/polymer nanocomposites. Most of them are based on molecular dynamics and geomet-

rical programming routines, being able mainly to predict the percolation threshold of the 

nanocomposites with high computational cost. Oskouyi et al. [16] appeared to be the first to 

apply the method of Monte Carlo model to study the percolation threshold for disk-shaped 

fillers, simulating the conductive network formed by inclusions like graphene nanoplatelets. 

Later, Hicks et al. [17] developed a tunnelling-percolation model to investigate electrical 

transport in graphene-based nanocomposites, covering the need of a suitable model able to 

predict the full electrical response of semiconducting 2D element reinforced materials. This 

model, however, is applicable only to rectangle shaped nanoparticles forming 2D networks, 

while in common graphene reinforced nanocomposites, fillers exhibit a wide range of shapes, 

mainly circular-ellipsoid ones, and the conductive network formed is considered to be a 3D 

one. In simulation work [18], the percolation threshold for circular and ellipsoid fillers was 

investigated for a 2D network, while in [19] the percolation threshold of composites filled 

with intersecting circular disks and particles of various morphology was studied under a 3D 

Monte-Carlo simulation. Otten et al. [20] developed an analytical approach to investigate the 

percolation behaviour of polydisperse nanofillers, specifically focusing on the percolation 

threshold’s sensitivity on the polydispersity in length, diameter and the level of conductivity 

of mainly needle-like filler nanocomposites. After the work of Hicks et al. [17] on the varia-

tion of electrical conductivity in respect of the volume fraction, Ambrosetti et al. [21] ap-

proached the electrical conductivity of an insulating matrix reinforced with conductive 

ellipsoids of revolution by assuming that an expected curve of electrical conductivity varia-

tion would be applied and finally being reduced in a geometrical form taking into account the 

inter-particle distance and the tunnelling distance. Mathew et al.  [22] studied the percolation 

threshold of hard platelets in a 3D continuum system in terms of isotropic-nematic transition, 

while Hashemi et al. [23] proposed a continuum model developed, which embodied the most 

fundamental characteristics of the graphene nanocomposites (percolation threshold, interface 

effects and additional contribution of electron hopping, microcapacitor structures to interfacial 

properties) to determine the effective AC and DC electrical properties of graphene nanocom-

posites.  

Knowing that, such numerical models are not easily applicable on industrial and engineer-

ing case study, as their employment is complicated and their results are limited to certain case, 

in this paper it is presented a multi-scale multi-physics finite element model (FEM) which 

would be easily applied to most cases, extended to more sophisticated material architecture in 

respect of being scientifically structured and proven. The current approach on multi scale 

modelling consists of the creation of a unit cell and a micro-scale nanocomposite model 
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(MSNM - Representative Volume Element RVE) on a commercial finite element modelling 

environment. The unit cell consists of a single rectangle graphene plate surrounded by a thin 

layer of polymer. This polymer layer represents the inter-plate volume between successive 

graphene reinforcements, in which conduction phenomena (tunnelling effect, electron hop-

ping etc.) take place. The unit cell is loaded with a constant electric potential to compute the 

resistance matrix representing this system. The MSNM is a rectangle block, on whose re-

sistance matrix elements previously obtained through the unit cell is randomly distributed. 

This distribution represents the random position of graphene on the bulk volume of polymer 

nanocomposites. The orientation of graphene is simulated by the 3D random orientation of the 

corresponding element local coordinate system.   

2 FINITE ELEMENT MODELLING 

2.1 Unit Cell 

In similar terms with the approach of hard core-penetrable shell has been assumed on sev-

eral studies predicting the percolation threshold [17], [24], the unit cell consists of a single-

layer graphene plate surrounded by a thin layer of polymer. From this description, three main 

geometrical parameters could be derived-graphene’s plate shape and size (expressed by the 

Aspect Ratio defined as the ratio of the length to the width) and the polymer layer thickness dt.  

Graphene is modelled as an isotropic electrical conductive material with electrical conductivi-

ty of σ=10
7
S/m, while the polymer layer represents the polymer volume between consecutive 

graphene, where the effect and the electron hoping phenomenon takes place. As a conse-

quence, the conduction mechanism on polymer volume would be simulated by applying an 

exponentially varied resistivity ρtunnel expressed by the equation (1) in accordance to the find-

ings of [25] for the electric tunnel effect between similar electrodes separated by a thin insu-

lating film.  
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Since it has been assumed that the conductive phenomena taking place between two suc-

cessive graphene plates would be taking into account in the unit cell analysis, it is necessary 

to modify the application of the tunnelling resistivity in the unit cell, so as to simulate the con-

tribution of a single plate to the conduction. In many studies the cut-off distance, otherwise 

the maximum inter-particle distance above this the tunnelling effect is eliminated, was con-

sidered around 2 nm [17], [21], [26], leading to the polymer thickness range between 0 and 

1.0 nm. In addition to this, it is crucial to note that the architecture of graphene plates forms 

conductive paths inside the insulating polymer, which could be represented as a typical 2D or 

even 3D resistor network. As a consequence, if the resistance of each unit cell was used to 

from a network, the result would be to add the resistance of two graphene plates and the tun-

nelling resistance assigned to each plate for every pair of plates. However, due to the fact that 

the tunnelling resistance is an exponential function of tunnelling distance, the sum of assigned 

tunnelling resistance of each plate would not be equal to the actual resistance. This observa-

tion implied the need to modify the equation (1) by multiplying it with the equation (2), so as 

to be able to simulate the actual tunnelling resistance when formed in a 3D real nanocompo-

site structure. In the proposed function (2), it is noticeable that the definition of the tunnelling 

resistivity applied on the unit cell would not be a deterministic variable but a stochastic one. 

This statistical feature, then, should be transferred to the next scale and be applied on the rep-

resentative volume implying complicated distributions on material properties. In order to 
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eliminate this effect, it is proposed to use an equivalent constant C in combination with the 

modified equation (3) of tunnelling resistivity. The constant C would be given by the equation 

(4), depicted in Figure 1 and its equivalent value would be the result of the equation (5). The 

equivalent value of C for each case is presented in Table 2, where it is possible to conclude 

that assuming C being equal to 0.3 would be reasonable to represent each case. 
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Plank’s constant h m
2
kg/s 6.62607004∙10

-34
 

Electron charge e Coulomb 1.60217662∙10
-19

 

Electron mass m kg 9.10938356∙10
-31

 

Height of barrier λ eV 0.5-2.5 

Polymer layer thickness/Tunnelling distance dt nm 0.0-1.0 

Table 1: Tunnelling resistivity variables and parameters 
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Figure 1: Variation of constant C in function of polymer thickness surrounding graphene layer. 

d2 (nm) Cequivalent 

0.2 0.37 

0.4 0.37 

0.6 0.38 

0.8 0.34 

1.0 0.20 

Table 2: Cequivalent in function of d2. 

In terms of finite element analysis, the proposed model was built in commercial FEA pro-

gram ANSYS 16.2.  A 3D 20-Node Hex couple-field solid element was used with its piezore-

sistive behaviour activated through the available key-option 101, while both for graphene and 

polymer isotropic electrical behaviour was assumed. It is important to mention that the piezo-

resistive coupling induced by this key-option was neglected by not defining the piezoresistive 

matrix. The values of the parameters used on the analysis of the unit cell are presented on the 

Table 3 and Table 4. Unit cell is loaded in the longitudinal, transverse and through thickness 

direction by a constant voltage, simulating DC loading and resulting to the calculation of the 

resistance matrix by the use of Ohm’s law. 

 

Graphene Shape  Rectangular Ellipse 

Graphene plate thickness t (nm) 0.45 0.45 

Graphene minor side dimension a (nm) 10 2∙5.64 

Aspect Ratio AR (-) 1,5,10,50 1,2,5,7,10 

Graphene major side dimension  b (nm) AR∙a AR∙a 

Table 3: Graphene geometrical parameters 
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Material Electrical behaviour   

Graphene Electrical conductivity S/m 10
7
 

Polymer Tunnelling resistivity Ωm Equation (3) 

 Cequivalent - 0.3 

 Height of  barrier (λ) eV 0.5-2.5 

 Tunnelling distance (d) nm 0.2-1.0 

Table 4: Unit cell material properties 

 

Figure 2: Unit Cell finite element model. 

2.2 Representative Volume Element (RVE) 

The nanocomposite structure was approached by a square block of side equal to multiplied 

b (k∙b) and thickness of multiplied a (k∙a). The number of graphene seeds on the block is de-

fined by equations (6) and (7) as a function of nanocomposites volume fraction and gra-

phene’s geometry. The number of elements representing each graphene layer (γ) would equal 

to the number of division in the direction of loading (eix) divided by the factor k. As a conse-

quence the number of elements representing graphene reinforcement in total in the volume (ng) 

would be given by the equation (8). The number of elements in the perpendicular to loading 

direction (eiz) would be given by the equations (9) and (10), while the number of elements 

through the block’s thickness (eiy) would be 
AR

eiz .   
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Number of graphene seeds in respect of the graphene shape 

Square - Rectangle 
t

ARak
Vn f

3

  (6) 

Circle - Ellipse 
t

ARak
Vn f



3

  (7) 

Table 5: Equations describing the number of graphene seeds in respect of the graphene shape. 

 

k

eix
nnng    (8) 

 

Number of element on perpendicular to loading direction in respect of graphene shape 

Square - Rectangle 
t

a
kAReiz   (9) 

Circle - Ellipse 
t

a
kAReiz


  (10) 

Table 6: Equations describing the number of elements on perpendicular to loading direction in respect of the 

graphene shape. 

The nanocomposite’s architecture is approached by the distribution of the graphene plates 

being enforced by choosing ng non-repeatable integer numbers. Each number indicates the 

element ID number in the FE model. Each selected element has the electrical properties re-

sulted by the analysis of the unit cell. Especially, assuming DC linear electrical behaviour, the 

electrical response of the unit cell in each element is introduced in accordance to equations 

presented in Table 7. The tunnelling distance between two successive graphene particles is 

assigned by random choice of material types obtained by unit cell and related to a specific 

tunnelling distance. Finally, the orientation of graphene layers in the volume is approached by 

the orientation of the element local coordinate system with rotation angles of 𝑇𝐻𝑋𝑌 ∈ [0,90], 
 90,0THZY  and  90,0THXZ . The elements, which have not been chosen to represent 

graphene sheets, are simulated as pure insulating matrix with electrical resistivity of 10
16

Ωm. 

The RVE model was built up under the same principles as the unit cell one. The volume is 

loaded with constant voltage, while the result of the analysis is the reaction current. With the 

use of the Ohm’s law and under the conduction of 50 separate analysis per case, the variation 

of electrical conductivity in respect of volume fraction is created, while in the probability 

function of percolation the inflection point is calculated to be the percolation threshold in ac-

cordance to the suggested procedure of [22].   
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Electrical resistivity distributed in the RVE in respect of the direction 

x-axis 
2

2

eiz

ARak
Runitcell

xx   (11) 

y-axis 
2

2

eix

ARak
Runitcell

yy   (12) 

z-axis 
2

2

eix

ARak
Runitcell

zz   (13) 

Table 7: Equations for the electrical resistivity introduced to the elements representing graphene particles in 

respect of the direction. 

 

Figure 3: Representative Volume Element finite element model. 

3 RESULTS 

3.1 Unit cell analysis 

After the analysis of the unit cell in respect of all the parameters mentioned on Table 3 and 

Table 4, it is possible to make some notes on the effect of these feature on the unit cell re-

sistance, which could be assumed to represent the local resistance shown on a nanocomposite 

structure. As far as the effect of the aspect ratio is concerned, in Figure 4 this effect is depict-

ed in respect of the loading direction and tunnelling distance for rectangle shaped graphene 

and height of barrier of 0.5eV. It could be noted that the rise of the aspect ratio leads to signif-

icant decrease in the resistance, as the resistance of the graphene has been the dominant con-

duction mean in the unit cell. Especially in the case of aspect ratio being greater than 50, in 

the longitudinal direction of the unit cell (x-direction) the resistance saturates to a constant 

value in function of the tunnelling distance.  
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Figure 4: Effect of aspect ratio on unit cell resistance for the case of rectangular shaped graphene and height 

of barrier of 0.5eV in respect of the direction and the tunnelling resistance. 

Polymer and all the features controlling its response under any excitation (degree of 

polymerization, voids, humidity, temperature etc.) have serious effect on the electrical con-

ductivity of a nanocomposite through the energy quantity of height of barrier appearing on the 

tunnelling resistivity. As it is thoroughly explained in [25], when two conductive particles are 

separated by an insulating film (polymer film in this case), the equilibrium conditions require 

that the top of the energy gap of the insulator to be positioned above the Fermi level of the 

conductive particles. As a result, the action of the insulating film is to introduce a potential 

barrier between the electrodes which impedes the flow of the electron between the conductive 

particles. This description of the physical system of conductive particles separated by an insu-

lator suggests that electronic current would flow through the insulating region between the 

conductive particles if the electron had enough thermal energy to overcome the potential bar-

rier and flow in the conduction band or even if the barrier was that low to permit its penetra-

tion by the electric tunnel effect. This potential barrier is described in this study as height of 

barrier and usually takes values of a few electron volts (0.5-2.5eV). In this part of our study, 

the effect of height barrier on the unit cell resistance in respect of tunnelling distance and for 

the case of rectangle shaped graphene with aspect ratio of 1 and 5 is depicted in Figure 5. The 

rise of the height of barrier has as a consequence the rise of the local resistance even in orders 

of magnitude. This increasing trend is common for every case of unit cell studied, while be-

comes more evident with the increase of tunnelling distance. 
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Figure 5: Effect of height of barrier on unit cell resistance for the case of rectangular shaped graphene filler 

and aspect ratio of 1 & 5 in respect of the direction and the tunnelling resistance. 

Finally, the shape of the graphene layer is considered. In Figure 6, the effect of graphene 

shape on the unit cell resistance in respect of the direction and the tunnelling distance is de-

picted for all examined aspect ratios and height of barrier of 0.5eV. It could be stated that el-

lipse shaped graphene sheets exhibit higher local resistance in the main axis directions than 

the rectangle shaped ones. However, for the case of the through thickness resistance, for the 

common aspect ratios ellipse and rectangle shaped graphene plates show the same electrical 

resistance. It is important to mention that for the purposes of comparison, the area of the rec-

tangle shaped graphene layers is equal to that of the elliptical shaped graphene layers for each 

aspect ratio.     
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Figure 6: Effect of graphene shape on the unit cell resistance for all examined aspect ratios, height of barrier 

of 0.5eV in respect of the direction and the tunnelling resistance.  

3.2 RVE analysis 

Since it is not reasonable to model infinite material and in order to eliminate the edge ef-

fect, it is important to conduct a convergence study on the size of the square block. Having 

considered as value identical to the nanocomposite structure the ratio of the average of the 

electrical conductivity of the sample to its standard deviation, as it could be noticed in the 

Figure 7, for k=5 the structure of the nanocomposite has converged.    
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Figure 7: Convergence study on the size of the representative volume for the case of the graphene filler with 

aspect ratio=1 and Vf=0.4. 

As it has been already stated the percolation probability, in accordance to the procedure 

suggested by the [22], is fitted by the function (14) and the inflection point of this function is 

considered to be the percolation threshold. In Figure 8, the percolation probability in respect 

of the volume fraction is depicted for the case of rectangle graphene sheets and λ=0.5eV. As it 

could be noted, the proposed fitting function is suitable for describing this kind of data set 

achieving 99.999% accuracy on fitting process.    

     BVAVP ff  tanh1
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 (14) 
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Figure 8: Percolation probability in respect of volume fraction for studied graphene aspect ratios for the case 

of λ=0.5eV and the corresponding functions.  
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In Figure 9, the effect of aspect ratio on the variation of electrical conductivity in respect of 

the graphene volume fraction for the case of rectangle shaped filler. It is notable that, the rise 

in aspect ratio leads to decrease on the volume fraction on which the onset of conductance 

occurs. In addition to this, for a constant value of volume fraction, nanocomposite’s electrical 

conductivity increases with rising aspect ratio. These results suggest that fillers with high as-

pect ratio are able to form more stable and efficient conductive network in the volume of 

nanocomposite in lower volume fraction. The above conclusion is supported also by the fact 

that with the rise of volume fraction the deviation on the statistical sample is significantly re-

duced leading to more uniform sample close to uniquely defined electrical conductivity for a 

nanocomposite of a specific volume fraction. 

In Figure 10, the effect of height of barrier on nanocomposite’s electrical conductivity is 

depicted for the case of rectangle shaped graphene with aspect ratio equal to 1 and 5. Alt-

hough, the percolation threshold seems no to be affected by the height of barrier, since the 

onset of percolation is mainly geometrically oriented as it has been proven by [23], for the 

case of constant volume fraction the rise of height of barrier causes rapid decrease on the 

nanocomposite’s electrical conductivity even by a decrease of an order of magnitude in the 

case of increasing the height of barrier by 0.5eV. 
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Figure 9: Effect of aspect ratio on the electrical conductivity in respect of volume fraction Vf for rectangle 

shaped graphene and height of barrier λ=0.5eV. 
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Figure 10: Effect of height of barrier on the electrical conductivity in respect of volume fraction Vf for rec-

tangle shaped graphene and aspect ratios of 1 &5. 

In Figure 11 the effect of the graphene shape is depicted in respect of the volume fraction 

for the case of height of barrier being 0.5eV.  The graphene shape does not affect the trend of 

the nanocomposite electrical response in function of the Vf, although for graphene particles of 

the same aspect ratio and volume, the nanocomposite reinforced with rectangle shaped exhib-

its higher electrical conductivity than that of a nanocomposite reinforced with ellipse shaped 

graphene particles, while the rectangle shaped graphene particles show lower percolation 

threshold than that obtained for the ellipse graphene. [27] suggested that this observation 

could be explained as the corner angles of squares and rectangles make it easier for the plates 

to touch each other, therefore enhancing the current passing from the one particle to another.   
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Figure 11: Effect of graphene shape on the electrical conductivity in respect of the volume fraction Vf for 

height of barrier of 0.5eV. 

3.3 Percolation model 

For the description of the percolation behaviour of the nanocomposites, several theories 

have been suggested with more popular the percolation law, which describes the variation of 
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the electrical conductivity of the nanocomposite in respect of the volume fraction after the 

percolation threshold having being obtained, and the excluded volume theory, which is able to 

predict the percolation threshold of a nanocomposite in respect of the geometrical features of 

the reinforcement (dimensions, shape, 2D-3D conductive networks). 

Taking into consideration the excluded volume theory and assuming that the each particle 

could be considered equivalent to a circular one, the excluded volume theory for the circular 

disk [28] could be modified so as to define the upper and lower boundaries of the volume 

fraction in which the percolation threshold should be expected (15). In Figure 12, it could be 

obvious that the percolation threshold is reduced with increasing aspect ratio, the values were 

successfully found to lie between the assumed percolation bounds. In addition to this, the 

shape of the graphene seems not to show any effect on the percolation threshold, since the 

corresponding values for each case are in good agreement. 
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Figure 12: Percolation Threshold in respect of the graphene shape and boundary functions (15). 

 

The percolation law is a power equation (16) introduced in [29], which is able to describe 

to electrical behaviour of an insulating material reinforced with conductive particles after the 

percolation threshold. In the equation (16) σc is the electrical conductivity of the composite, 

Vf is the volume fraction, Vp is the percolation threshold, σo is a factor with value close the 

electrical conductivity of the conductive phase measured in units of electrical conductivity 

and t is the critical exponent. For a three dimensional conductive network, t usually takes val-

ue between 1.65 and 2.0, which is accepted as a universal value. Higher values of t indicate 
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the presence of tunnelling phenomena and the filler having extreme geometries (i.e. high as-

pect ratio). In Figure 13, the fitting of the finite element model results in accordance to the 

percolation law is presented, showing a good correlation, while in Figure 14 the effect of the 

geometry of the filler and the height of barrier on the percolation law variables is depicted. As 

far as the σo is concerned, it is increased with rising aspect ratio converging to the filler elec-

trical conductivity, while it is fallen with increasing height of barrier. The increase on aspect 

ratio leads to more stable electrical networks which are mainly governed by the fillers con-

ductance and not the tunnelling resistance formed in the interparticle region, leading σo to 

converge to the electrical conductivity of the filler. On the other hand, the rise of height of 

barrier which induces a rise on the tunnelling resistance in the interparticle volume, has as a 

consequence the decrease of the σo for the case of low aspect ratios. One of the most signifi-

cant findings related to the percolation law is the agreement of the observation to the general 

law regarding the critical exponent. An increase on the aspect ratio (defining an extreme ge-

ometry) or even any rise of the height of barrier (defining a more intense tunnelling phenome-

non) has a result an important increase of the value of the critical exponent far above the 

prediction for a common three dimensional conductive network. 

 

  t
pfoc VV   (16) 
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Figure 13: Percolation Law in respect of the aspect ratio and the shape of the graphene particle for the case of 

height of barrier of 0.5eV. 
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Figure 14: Variation of the percolation law variables in respect of the aspect ratio, the shape of graphene and 

the height of barrier. 

4 CONCLUDING REMARKS 

 The finite element model has been shown to effectively simulate the electrical re-

sponse of the selected graphene/polymer composite under DC loading. 

 The results are in accordance to theoretical predictions. 

 Increasing the Aspect Ratio reduces the percolation threshold and increases the elec-

trical conductivity of the nanocomposite for a given value of volume fraction. 

 The tunnelling resistance exhibited in the inter-particle volume affects the overall per-

formance of the nanocomposite, especially due to the height of barrier, whose rise in-

creases the inter-particle resistance and decreases the electrical conductivity of the 

nanocomposite. 

 The shape of the graphene fillers do not show any significant effect in terms of perco-

lation, but the formation of sufficient contact between particles for the charge transfer 

is enhanced for the case of rectangular shaped graphene.  

 

2000



Asimina Manta, Matthieu Gresil and Constantinos Soutis 

REFERENCES  

[1] E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of carbon-polymer 

composites,” J. Electron. Mater., vol. 11, no. 4, pp. 699–747, Jul. 1982. 

[2] Y. Ishigure, S. Iijima, H. Ito, T. Ota, H. Unuma, M. Takahashi, Y. Hikichi, and H. Su-

zuki, “Electrical and elastic properties of conductor-polymer composites,” J. Mater. 

Sci., vol. 34, no. 12, pp. 2979–2985. 

[3] G. Pinto and A. Jiménez-Martín, “Conducting aluminum-filled nylon 6 composites,” 

Polym. Compos., vol. 22, no. 1, pp. 65–70, Feb. 2001. 

[4] V. . Roldughin and V. . Vysotskii, “Percolation properties of metal-filled polymer films, 

structure and mechanisms of conductivity,” Prog. Org. Coatings, vol. 39, no. 2–4, pp. 

81–100, Nov. 2000. 

[5] L. Flandin, J. Y. Cavaillé, G. Bidan, and Y. Brechet, “New nanocomposite materials 

made of an insulating matrix and conducting fillers: Processing and properties,” Polym. 

Compos., vol. 21, no. 2, pp. 165–174, Apr. 2000. 

[6] S. S. Ray and M. Biswas, “Water-dispersible conducting nanocomposites of polyani-

line and poly(N-vinylcarbazole) with nanodimensional zirconium dioxide,” Synth. Met., 

vol. 108, no. 3, pp. 231–236, Feb. 2000. 

[7] A. Quivy, R. Deltour, A. G. M. Jansen, and P. Wyder, “Transport phenomena in poly-

mer-graphite composite materials,” Phys. Rev. B, vol. 39, no. 2, pp. 1026–1030, Jan. 

1989. 

[8] W. Zheng, S.-C. Wong, and H.-J. Sue, “Transport behavior of PMMA/expanded graph-

ite nanocomposites,” Polymer (Guildf)., vol. 73, pp. 6767–6773, 2002. 

[9] W. Zheng and S.-C. Wong, “Electrical conductivity and dielectric properties of 

PMMA/expanded graphite composites,” Compos. Sci. Technol., vol. 63, pp. 225–235, 

2003. 

[10] G. Chen, W. Weng, D. Wu, and C. Wu, “PMMA/graphite nanosheets composite and its 

conducting properties,” Eur. Polym. J., vol. 39, pp. 2329–2335, 2003. 

[11] H. Kim, Y. Miura, and C. W. Macosko, “Graphene/Polyurethane Nanocomposites for 

Improved Gas Barrier and Electrical Conductivity,” Chem. Mater, vol. 22, pp. 3441–

3450, 2010. 

[12] Y. Song, J. Yu, L. Yu, F. E. Alam, W. Dai, C. Li, and N. Jiang, “Enhancing the thermal, 

electrical, and mechanical properties of silicone rubber by addition of graphene nano-

platelets,” JMADE, vol. 88, pp. 950–957, 2015. 

[13] C. Yun, Y. Feng, T. Qiu, J. Yang, X. Li, and L. Yu, “Mechanical, electrical, and ther-

mal properties of graphene nanosheet/aluminum nitride composites,” Ceram. Int., vol. 

41, pp. 8643–8649, 2015. 

[14] M. H. Al-Saleh, “Electrical and mechanical properties of graphene/carbon nanotube 

hybrid nanocomposites,” Synth. Met., vol. 209, pp. 41–46, 2015. 

[15] E. Kandare, A. A. Khatibi, S. Yoo, R. Wang, J. Ma, P. Olivier, N. Gleizes, and C. H. 

Wang, “Improving the through-thickness thermal and electrical conductivity of carbon 

fibre/epoxy laminates by exploiting synergy between graphene and silver nano-

inclusions,” Compos. PART A, vol. 69, pp. 72–82, 2015. 

[16] A. B. Oskouyi and P. Mertiny, “Monte Carlo model for the study of percolation thresh-

olds in composites filled with circular conductive nano-disks,” Procedia Eng., vol. 10, 

pp. 403–408, 2011. 

[17] J. Hicks, A. Behnam, and A. Ural, “A computational study of tunneling-percolation 

electrical transport in graphene-based nanocomposites,” Appl. Phys. Lett., vol. 95, no. 

21, pp. 213103:1–213103:3, 2009. 

2001



Asimina Manta, Matthieu Gresil and Constantinos Soutis 

 

[18] W. Xia and M. F. Thorpe, “Percolation properties of random ellipses,” Phys. Rev. A, 

vol. 38, no. 5, pp. 2650–2656, Sep. 1988. 

[19] L. Vovchenko and V. Vovchenko, “Simulation of percolation threshold in composites 

filled with conducting particles of various morphologies,” Materwiss. Werksttech., vol. 

42, no. 1, pp. 70–74, Jan. 2011. 

[20] R. H. J. Otten and P. Van Der Schoot, “Connectivity percolation of polydisperse an-

istropic nanofillers,” J. Chem. Phys., vol. 134, pp. 094902:1–094902:15, 2011. 

[21] G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, and P. Ryser, “Solution 

of the tunneling-percolation problem in the nanocomposite regime,” Phys. Rev. B, vol. 

81, no. 15, p. 155434, Apr. 2010. 

[22] M. Mathew, T. Schilling, and M. Oettel, “Connectivity percolation in suspensions of 

hard platelets.,” Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., vol. 85, no. 6 Pt 1, p. 

061407, Jun. 2012. 

[23] R. Hashemi and G. J. Weng, “A theoretical treatment of graphene nanocomposites with 

percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC 

and DC electrical settings,” Carbon N. Y., 2016. 

[24] G. Ambrosetti, N. Johner, C. Grimaldi, A. Danani, and P. Ryser, “Percolative proper-

ties of hard oblate ellipsoids of revolution with a soft shell,” Phys. Rev. E, vol. 78, pp. 

061126:1–061126:11, 2008. 

[25] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar 

Electrodes Separated by a Thin Insulating Film,” J. Apllied Phys., vol. 34, no. 6, pp. 

1793–1803, 1963. 

[26] A. B. Oskouyi, U. Sundararaj, and P. Mertiny, “Tunneling Conductivity and Piezore-

sistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets,” 

Materials (Basel)., vol. 7, pp. 2501–2521, 2014. 

[27] Y. B. Yi and E. Tawerghi, “Geometric percolation thresholds of interpenetrating plates 

in three-dimensional space,” Phys. Rev. E, vol. 79, no. 04, pp. 041134:1–041134:6, 

2009. 

[28] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, “Excluded volume and its 

relation to the onset of percolation,” Phys. Rev. B, vol. 30, no. 7, pp. 3933–3943, 1984. 

[29] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Revised Se. London: 

Taylor & Francis, 1994. 

 

2002


