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Abstract. To create efficient new aerodynamic designs or predict the onset of flutter, the lin-
earised Navier-Stokes equations might be used. In some cases, many right-hand sides must be
solved keeping the same matrix. In this paper, techniques which enable to solve several right-
hand sides at the same time, such as Block GMRes, or reuse pieces of information computed
in the previous solves, such as Krylov space recycling, are investigated. They will be tested on
both simple and industrial test cases.
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1 INTRODUCTION

To create efficient new designs, aircraft manufacturers may resort to automatic optimisations
tools relying on linearised Navier-Stokes solver [3]. Flutter analysis is another application where
one can use time-domain linearisation of the Navier-Stokes equations [2]. In both cases, one may
have to solve the same linear system with different right-hand sides, be it one for each geometric
variable (direct method) or for each cost function (adjoint method) in the case of optimization, or
one for each structural eigenmode in the case of flutter analysis. Due to their size and sparsity,
these linear systems are solved using iterative methods such as GMRes [14].

Extensions of the GMRes method to multiple right-hand sides were consequently investigated.
They can be grouped in two main classes. The first one is based on reusing information from
the first solve to speed-up convergence of the subsequent systems. Using a projector, spectral
information from the first solve can spectrally deflate at lower cost a GMRes method [10]. It is
expected to attain near asymptotic convergence right from the beginning, removing transient
plateaus. Another method could be to project all the right hand-sides on the Krylov space
generated during the GMRes solve of the first vector to make these converge at least partially,
lowering the number of iterations necessary for their complete solving.

The second class of extension of GMRes to several right-hand sides is to solve them all at once,
using block Krylov spaces [5]. To improve the convergence when using small Krylov spaces
with restarts, spectral deflation was implemented [9]. Decreased computation time is expected to
come from both an accelerated convergence and a reduced parallel communication time due to
block communications.

These methods will be tested on 2D and 3D examples, ranging from one hundred thousand to
thirty million unknowns, on parallel architectures. Both convergence and timing results will be
presented.

2 AETHER
2.1 Compressible Navier-Stokes code

AETHER is a compressible Navier-Stokes code developed in-house by Dassault Aviation. It is
a finite elements solver on unstructured mesh, stabilized by the SUPG method [7]. To enable
better properties of the implicit matrices, the compressible Navier-Stokes equations are written
in entropic variables, so that they become symmetric. Several turbulence models are available
(Spalart-Allmaras, k-¢, k-w, K-KL, efc).The non-linear code is fully implicit, using GMRes to
solve the Newton iterations. The code is made parallel using MPI as message passing library.

2.2 Linearised Navier-Stokes equations

For aeroelasticity problems, a simple way to understand the linearised Navier-Stokes equations
is to consider the non-linear ones in a reduced form:

E(V,x)=0 (1)

Here, V is the physical state of the systems (i.e. the flow variables), and x corresponds
to coordinates of the aeroplane. If the surface of the aircraft is slightly modified by a small
displacement dx, for instance a twist, then the flow variables will change accordingly by an
increment 0V:

E(V+46V,x+6x)=0 (2)
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A linear expansion of this equation, remembering that the base flow state verifies (1), yields

o5V = — 6% 3)
X

Thus, if a small known displacement dx is applied to the aircraft, solving this linear system
enables to know the variation of the flow variables V. If a harmonic movement needs to be
applied to the structure, complex numbers are used. For details, see [2]. When doing aerodynamic
optimisation, either a direct approach (comparable to the derivation in real number made before)
or a adjoint one can be used, as explained in [3].

3 BLOCK GMRES

When solving for several right-hand sides, it might be assumed that searching iteratively the
solution in several directions at the same time could be advantageous. Herein lies the main idea
of the block GMRes method.

3.1 Standard block GMRes

Block GMRes is simply a generalisation of the standard iterative GMRes method [14] for
vector with several columns. We want to solve the following linear problem :

Ax=b with AeRVY beRY" xeRY® 4)

Here, NV is the dimension of the linear system, and s is the number of right-hand side we want
to solve simultaneously. Krylov spaces, which are necessary to GMRes, can be extended to a
block definition.

B.(A,y) = block span (y, Ay, ... ,A"’ly) (5)

Block span means that the linear combinations of the individual columns of the block vector
are taken into account, i.e.

n—1
Vu € B,(A,y),3(v,) € R u= ZA’“ywC
k=0
Starting from an initial guess x,, a block Krylov method for solving the linear system (4)
finds an approximate solution x,, such that

X, — Xp € Bn(A, ro) (6)

with ry = b — Ax( being the initial residual.

The algorithm of the block GMRes is presented in [5]. Its implementation is summarised
in algorithm 1. Compared to standard GMRes, there is little conceptual difference. Only the
normalisations are transformed into QR-factorisations and the Hessenberg matrix is defined by
blocks.

The Hessenberg matrix H, = (7, ;) € R™™" is upper triangular with one extra lower
diagonal. To solve the least-square problem with only a simple triangular solve as in line 17 of
algorithm 1, the matrix H,,, needs to be reduced to a purely upper triangular matrix. A complete
QR decomposition would be both too costly and impractical to update, as H,, is created column-
by-column. As introduced in [6], Householder transformations can be put to use efficiently for
this task. These transformations are applied to blocks of dimension 2s X s to reduce them to
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Algorithm 1 Non-restarted Block GMRes with m Krylov vectors
1: vopy = QR (ro) > QR factorisation of the initial residual
2: q <+ e1p > Least-square problem right-hand side
3: forn =1,mdo
V AVn_l
for k=0,n —1do > Arnoldi orthonormalisation of the next vector
Finot — (Vi ¥)
V&V — Vkﬁk,nfl
end for
Vn'?/mn—l = QR (‘N")
10:  Apply previous Householder transformations to (7,,,,) ,k =0,...,n — 2

e A AN

11: Create and apply Householder transformation Q,, on ("73—1,n—1>

Ir’n,nfl

12: Apply Householder transformation Q,, to q

13: Compute residual : norm of the last block of q

14: If residual lower than ¢ exit loop

15: end for

16: Apply Householder transformations backwards to g

17: k, + H_q > Triangular solve
18: X, < Xg + V,iik, > New approximate solution
19: v, < V, 1k, > New residual

upper triangular form. When a column is added to H,,, all previous Householder transformations
need to be applied so as to get the modified 7, ,,. This transformed column is added as the last
column of H,, which is upper triangular.

Restarting the block GMRes algorithm is simply a matter of restarting it with the new residual.

3.2 Spectral deflation of block GMRes

When solving a linear problem with the GMRes method, restarts are a necessity for memory
reasons and computational time, as each new Krylov vector must be orthogonalised against all
previous vectors. When restarted, Krylov methods have a known tendency to stall convergence.
To alleviate these convergence problems, Morgan introduced in [8] a deflation of the smallest
eigenvector of the matrix A, which are hard to find during the iterations. Some numerical tricks
are introduced by Réllin in [13]. This theory can be adapted to the block case.

The deflated restart is done in several steps as explained in algorithm 2. First of all, the
harmonic Ritz vectors are computed, solving a standard eigenvalue problem and not a generalized
one (see [13] for details). The k lowest ones are stored and orthogonalized. To force the new
iterations to explore directions yet unsearched, the residual of the previous iteration is added to
this basis. The new Krylov basis and Hessenberg matrix are also created. Finally, the residual in
the new Krylov basis has to be computed. The idea for this critical step came from [12] : q is
simply filled with the orthonomalising coefficients created during the orthogonalisation of the
residual against the harmonic Ritz vectors.

Deflation of the right-hand sides, which is a way to eliminate linear dependence between
the right-hand sides [5], was not used for several reasons. First of all, it is hard to correctly
implement it jointly with spectral deflation. At restarts with spectral deflation, the new starting
Krylov space and Hessenberg matrix must follow the Arnoldi relation. Moreover, the residual is a
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Algorithm 2 Deflated restart of the block GMRes algorithm with &£ harmonic Ritz vectors
1: Compute the k£ first harmonic Ritz vectors p; of H,,

Orthonormalise Py, = (pi);_, ;

Append q,, to P, which becomes Py,

Orthonormalise the last column of Py ; against the first columns

Store the orthonormalisation coefficients in q
ki1 < Vo Pri

Fxnew

H," « P!, H,P;

U A A

linear combination of the harmonic Ritz vectors [13]. Deflation of the right-hand sides can delete
and add (previously deleted) right-hand sides, and to enforce the aforementioned Arnoldi relation
is difficult. To circumvent this problem, one could use the GCRO-DR algorithm [11], which
will be introduced shortly below. The second reason is that a deflation of the right-hand sides
was implemented (but not along spectral deflation), and no linear (near-)dependency could be
found. As in aeroelasticity applications, the right-hand sides are quite similar, and the solutions
have some sort of commonality between them, deflation was hoped to be quite powerful, but
ultimately it was not found to be of any effect in our problems.

4 KRYLOV SPACE RECYCLING

Instead of solving all the right-hand sides at the same time, the information created during the
solving of one right-hand side can be reused to solve all the other ones. Several methods can be
devised, depending on which piece of information is to be recycled. When a single right-hand
side is solved using the GMRes method, a Krylov space is generated, which in itself might be
interesting to recycle. Moreover, if deflation is used, the smallest harmonic Ritz vectors are
also computed. They are hard to find, and their approximation might take several restarts to be
correct, so they might be of higher value than a single Krylov space.

4.1 Harmonic Ritz vector reuse

A first way to effectively reuse the harmonic Ritz vectors created during a previous solve with
a deflated GMRes method is GCRO-DR [11]. It consists in a GMRes loop nested within a GCR
(Gradient Conjuguate Residual). The necessary orthogonality constraint for GCR is enforced
through a carefully chosen projector, akin to deflation projectors. See [4] for an interesting
comparison between deflation projectors and deflation as treated in section 3.2. GCRO-DR was
put to use in [15] for linearised Navier-Stokes computational studies with some success. It was
chosen not to implement this algorithm due to its complexity and its likeness to deflated GMRes
(see [11]).

Instead, a simpler method was tried. As explained in [10], a projection onto the small
harmonic Ritz vectors at each restart of a standard GMRes (i.e. non deflated) could be sufficient to
attain near-asymptotic convergence right from the start, and also exhibit good deflation properties
at restart (no significant change of the convergence rate). For the projection and the GMRes
method to interweave properly, the projection has to be carefully crafted. The projection, dubbed
MinRes in [10], is explained in algorithm 3.

The MinRes projection should be used in the following way. A first right-hand side is solved
using deflated GMRes. At the last restart, the Krylov space and the Hessenberg matrix created
by the deflation and corresponding to the smallest harmonic Ritz vectors are saved. The other
right-hand sides are then solved : before each restart of a standard GMRes cycle, the residual and
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Algorithm 3 MinRes projection

Require: x, approximate solution, ry residual, V., and H}, verifying Arnoldi relation
1: ¢ < V£+1I‘0
2: Solve min ||c — Hd|| > Simple triangular solve after upper-triangularising Hj,
3: New solution is xj, < Xg + Vd
4: New residual is rj, < rog — Vi Hyd

the approximate solution are updated with the MinRes projection, using the saved Krylov space
and Hessenberg matrix.

Another variant which was tested is to solve all the right-hand sides at the same time, one
of them being solved with a deflated GMRes, and all the other being projected on the same
Krylov space using the Minres projection. The idea is to leverage the similarities between the
right-hand sides, and solving one may lower to a large extent the other residuals. Unfortunately,
this technique proved unsuccessful in reducing with more than one order of magnitude the
residuals of the other right-hand sides.

S TEST CASES

These two techniques for solving linear systems with multiple right-hand sides will be tested
on a two dimensional test-case, and a three-dimensional one, the latter being more representative
of industrial problems.

5.1 2D test case: RAE2822

The first test case is a classic 2D wing profile. An illustration of the mesh used is shown in
figure 1. This unstructured mesh has 35,000 nodes. A simulation on this test case has 140,000
unknowns.

This test case was used at a Mach number of 0.734 and an angle of attack of 3°. The base flow
around which the linearised calculations are made does not exhibit any shocks or flow separation.
Four movements of the profile were used for the purpose of creating four right-hand sides. The
deformations corresponds in that order to a thickening, a pitching, a vertical displacement of the
profile and an aileron deflection.

5.1.1 Block GMRes

To test the efficiency of the block GMRes method, several combinations of the number of
right-hand sides and of Krylov space were tried. The figure 2 indicates the results.

The test runs are sorted according to the order of the block Krylov space, which is equivalently
the number of iterates with the matrix A . The parameter “p” indicates the number of right-hand
sides solved at the same time. The dotting pattern is identical when solving the same number of
right-hand sides. The smaller the dots, the lower the number of right-hand sides. The abscissa
was chosen to be the number of matrix block-vector product (instead of matrix vector product).
This enables to compare easily a block GMRes run with a standard one. For instance, if a solve
with four right-hand sides takes less iterations than a solve with a single right-hand side (and
that the four right-hand sides take roughly the same number of standard GMRes iterations to be
solved), then solve the four of them at the same time is advantageous in terms of matrix-vector
products.

The first comment to be made is that as a general rule, when a higher number of right-hand
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Figure 1: Mesh used for the 2D test case RAE2822
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Figure 2: Convergence of the right-hand sides with block GMRes. In abscissa is the number of matrix block-vector
products. “kry” is the order of the block Krylov space

7364



A. Bissuel, G. Allaire, L. Daumas, F. Chalot and M. Mallet

Krylov 200 200 200 200 100 100 100 100
p 4 3 2 1 4 3 2 1
Time (s) 356 244 135 35 272 149 61 25
Time/p (s) 89 81 68 35 68 50 30 25
Iterations 1974 2546 3174 3315 3140 3021 3092 3931
Iterations/s 55 104 234 952 11.6 202 51.1 1552

Iterations*p/s  22.2 313 469 952 46.2 60.7 1022 1552
= matvec/s

Krylov 50 50 50 50
p 4 3 2 1
Time (s) — 80 — 33
Time/p (s) — 27 — 33
Iterations — 3444 — 8185
Iterations/s — 430 — 2453
Iterations*p/s — 128.9 — 2453
= matvec/s

Table 1: 2D test case: timing of block GMRes solve. Hyphen indicates a lack of convergence

sides are computed at the same time, the convergence is achieved in less iterations. This is
verified for the solves with a block Krylov space of 200. It would have also been the case for
the block Krylov space of 100, if it were not for the solve with four right-hand sides, whose
convergence exhibits a strange slowing around 2000 iterations. Also, when the order of the block
Krylov space is reduced, the robustness of the solve is decreased.For the Krylov space of order
50, with four and two right-hand sides, the convergence stalled for unexplained reasons.

Some timing details are provided in table 1. From these results, it can be inferred that block
GMRes is slower than standard GMRes. The small convergence acceleration is not sufficient to
overcome the the extra work of mainly orthonormalisation due to the larger number of vectors in
memory.

To make a fairer comparison between block GMRes and its single right-hand side counterpart,
table 2 shows a comparison this time grouped by equal memory footprint of the Krylov space.
Here the block GMRes method is faster than the standard GMRes. First of all, the block GMRes
needs less iterations to converge. Also, due to the blocking of the parallel communications and
of the scalar products in the orthonormalisations, the matrix vector product is faster in block
GMRes. Both of these effects combine to give a significant timing edge to the blocked Krylov
method. This comparison is not realistic of industrial applications because of the large number
of vectors used. Deflated GMRes has enabled Dassault Aviation to use quite small Krylov spaces
without loss of robustness. Its blocked version is not yet robust enough.
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800 vectors 400 vectors

Kry 200 400 800 100 200 400
p 4 2 1 4 2 1

Time (s) 356 208 129 272 135 177
Time/p (s) 89 104 129 68 68 177
Iterations 1974 2336 2819 3140 3174 3023
Iterations/s 5.5 11.2 21.8 11.6 234 17.1
Iterations*p/s 222 225 21.8 462 469 17.1

= matvec/s

Table 2: 2D test case: timing with equal memory footprint

5.1.2 Krylov space recycling

Krylov space recycling was tested. The first right-hand side was solved using a standard
deflated GMRes, so as to get the lowest harmonic Ritz vectors of the matrix. The convergence
curve is shown on figure 3.

In this test case, the Krylov space size was of 200 vectors. The number of harmonic Ritz
vectors which were kept was 60. The target residual was a normalized 10~°, meaning that the
residual had to be 5 orders of magnitude lower for the computation to be stopped. From the
second right-hand side onward, the system was solved using non-deflated GMRes with Minres
projection. For the first three orders of magnitude, it is competitive with deflated GMRes, but
then the convergence stalls (except for the second right-hand side for which it happens one order
of magnitude lower). For clarity, the graph was trimmed at 12 000 iterations.

5.2 3D test case

The 3D test case is a composed of a dummy half-fuselage with a generic swept wing. The
profile has a 10% thick symmetric airfoil section (NACA 64A010 profile). The wing has a Im
span. It has been tested previously in CFD and in wind tunnel [2]. A view of the half-model is
shown on figure 4. The flow conditions are a Mach number of 0.88 and an angle of attack of 0°.
The computational mesh totals more than 6 million nodes, which makes more than 30 million
unknowns to be solved. This test case is deemed to be representative of industrial applications.

The movements corresponding to the right-hand sides are test polynomials on the wing of the
coordinates x, y and z of increasing degree. Seven of them are shown on figure 5. They are a
blend of a pitching, heaving, bending, twisting movement of the wing. They seem quite similar.
It is thus expected that solving one may considerably help solving the others.

5.2.1 Block GMRes

The block GMRes solver was tested on the 3D case. Ten right-hand sides were solved at the
same time. Due to memory restrictions, we were forced to use a block Krylov space of order
50. The convergence curve is shown on figure 6. The convergence for the overall residual is
presented with a bold line, and the residual of the single vectors are plotted with thin lines. After
the 2000th iteration, the convergence is slowing down, and is completely stalled at the end of the
computation. The residual failed to be lowered by 5 orders of magnitude, which is by experience

7366



A. Bissuel, G. Allaire, L. Daumas, F. Chalot and M. Mallet

Residual

10 0 2000 4000 6000 8000 10000 12000
Iteration

Figure 3: 2D test case: convergence of the Krylov space recycling method

Figure 4: General view of the 3D test case
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Figure 5: Seven movements corresponding to test polynomials on the wing

a requirement to get a good solution. By 4000 iterations, a standard GMRes computation would
have already converged to that precision. As the convergence curve is not conclusive, no timings
are shown.

5.2.2 Krylov space recycling

Recycling the harmonic Ritz vectors proved more interesting on the 3D case than on the 2D
one. Figure 7 shows the convergence of the GMRes solver coupled with the Minres projection.
The Krylov space was composed of 200 vectors, and 40 harmonic Ritz vectors were kept and
used for the Minres projection. It is interesting to see that all the right-hand sides have the same
asymptotic convergence rate. Nevertheless, this rate is smaller than the one achieved with the
deflated GMRes solve (first right-hand side). Finally, the asymptotic convergence was not reached
rapidly. The fact that no plateaus are found in the GMRes solve shows that this test case might
not be the one where this method could shine [10]. To conclude with, the convergence penalty is
far larger than the overhead time imposed by the deflation in standard GMRes.

6 CONCLUSION

In this paper, extensions of the GMRes algorithm to simultaneously solve several right-hand
sides were implemented and tested on simple and industrial test cases. Block GMRes, the
natural extension of GMRes to several right-hand sides, can accelerate matrix vector products
on parallel computing architectures. Its lack of robustness on small Krylov space does put it
at a disadvantage compared to standard GMRes. To compare favourably, it needs too large a
Krylov space to be fast enough for industrial use. Krylov space recycling, which is a simpler
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Figure 6: 3D test case: convergence of the block GMRes solver. Bold line is the total residual.
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Figure 7: 3D test case: Krylov recycling. First right-hand side is solved with deflated GMRes
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way of solving several right-hand sides at the same time, was disappointing on the simpler test
case, where it stalled the convergence. On the industrial test case, though all right hand sides
converged, the asymptotic convergence rate was not good enough and not reached soon enough
for this method to be competitive.

This study reversely highlighted the performance of the deflated GMRes method for solving
large linear systems, as various extensions of this method proved to be not as fast. Thus, future
works will be devoted to accelerating the solves without changing the GMRes method. A study is
currently underway to look at two-level preconditionners, which have shown to be promising to
reduce the impact of domain decomposition on convergence in CFD computations[1].
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