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Abstract. This paper presents a methodology for building multi-fidelity surrogate models ba-
sed on Non-Intrusive Proper Orthogonal Decomposition. The proposed strategy aims at fusing
multiple fidelity levels of simulation to improve the quality of surrogate models exploited in au-
tomated optimization loops of industrial-scale problems. A proof of concept is then given on
a mathematical toy example which illustrates the ability of the proposed method to significan-
tly reduce the overall computation cost. A 3D industrial study of a 1.5 stage booster is then
presented to address the scaling capability of the proposed methodology.
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1 INTRODUCTION

Despite huge advances in the high performance computing domain, the integration of high-
fidelity computations, taking up to thousands of CPU hours, into automated optimization loops
still stands as a stumbling block for engineers. The design process being intrinsically multi-
scale, multi-fidelity and multi-disciplinary [1]; the earlier the different scales, fidelities and
disciplines are all integrated in the process, the better the technical solution can be [2, 3].

In this context, multi-fidelity surrogate modeling proposes a promising way to reduce the
computational cost of industrial optimization [4]. The “data-fusion”, also referred to as cor-
rective approach in scaling methods [4, Section 6.1], enables the improvement of surrogate
models [5] at a given computational cost. The most documented multi-fidelity model is the “co-
Kriging” proposed by Kennedy and O’Hagan [6]. This technique has been widely applied to
Multidisciplinary Design Optimization (MDO) [2, 5–11] and allows the enhancement of sparse
high-fidelity information with cheaper low-fidelity data as well as the gradient of the modeled
function [12, 13].

In the meantime, “Reduced-Order Models” (ROM) such as Proper Orthogonal Decomposi-
tion technique (POD) [14] have become very popular and their ability to focus on physical phe-
nomena with highest impact on the performances targeted by the designer [15, 16] fosters their
integration into new optimization strategies such as the “Non-Intrusive POD” (NI-POD) [17].

The aim of this work is to propose a methodology leveraging multi-fidelity computations
during the training phase of an improved NI-POD model. This strategy can be seen as a re-
interpretation of the constrained POD concept [15, 18] dedicated to multi-fidelity surrogate
modeling. The methodology efficiency will be compared to classical NI-POD models as well
as scalar mono- and multi-fidelity coKriging models.

The paper is organized as follows. Section 2 will present the NI-POD concept and the propo-
sed extension. In Section 3, a proof of concept will be given on an academic example. Section 4
introduces the industrial application to illustrate the scalability of the proposed methodology.
Finally, conclusions and perspectives are drawn in Section 5.

2 NON-INTRUSIVE POD

2.1 Classical NI-POD

POD, also known as “Karhunen-Loève expansion”, or Principal Component Analysis (PCA)
was introduced in the context of turbulence by Lumley [19] and allows to approximate high-
dimensional numerical solution’s output space by low-dimensional representation. The NI-POD
methodology consists in building the orthonormal basis which optimally spans training databa-
se simulation’s space and interpolating its coordinates in the basis via data-fitting methods [17].

The POD basis is computed by “snapshots” method [20] based on a Singular Value Decom-
position (SVD) of M centered snapshots of the physical solution corresponding to M distinct
positions Θ in a p-dimensional design space D ⊂ IKp.
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Let’s consider a solver giving the physical response of any configuration in the design space
D,

s̄ : D → IRn

θ → s̄(θ).
(2.1)

The centered data are obtained by substracting the mean response over the training database

s(θ) = s̄(θ) − 1

M

M∑

i=1

s̄(i). Following the formulation introduced in [21], the POD procedure

gives the best projector P(s) on the orthonormal basis Φ contained in the set of snapshots S, in
the sense of the Frobenius norm ‖A‖2F = tr(A>A),

Φ = argmin
Φ

(
‖S− P(S)‖2F

)
, with Φ>Φ = I, (2.2)

and,

P(s) = ΦΦ>s. (2.3)

The POD basis Φ lies in a IRM×n space where M � n. This ROM procedure is usually
associated with a truncating step that removes the less energetic modes yielding a POD basis

Φm in IRm×n, where m < M and characterized by the error ε(m) = 1 −
∑m

i=1 λi∑M
j=1 λj

, where λ

is the vector of monotically decreasing eigenvalues associated with the basis Φ. In the coming
sections, we consider a full basis of size M , for the sake of simplicity.

Denoting α = Φ>s(θ) the coordinate of a given configuration θ in the POD basis, the NI-
POD procedure approximates the vector α ∈ IRM over the whole design space D. Assuming
a good predictive behaviour of the built surrogate model, the NI-POD procedure enables the
engineer for predicting the full vectorial response at any location in D.

s̃(θ) = Φα̃(θ), (2.4)

where ∀i ∈ [[1,M ]], α̃i = α̃i(θ) w αi(θ). It is important to keep in mind that the type of the
surrogate model chosen to approximate the coefficients is critical. Depending on the sampling
method, the variations in the simulation output vector over the design space and on the number
of training samples, different techniques could lead to either good or bad approximation. One
can find a non-exhaustive list of potential models in Forrester et al. [5, Section I.2].

2.2 Proposed multi-fidelity extension to NI-POD based surrogate modeling:

Given the computational cost of industrial simulations, the number of known locations in
the design spaces is usually relatively low reducing the representativeness of the POD basis Φ
over the whole design space D. The integration of multi-fidelity information tends to address
this limitation by improving the basis and the interpolation of the coefficients surrogate models
thanks to cheaper low-fidelity solutions the engineer can compute more intensively. Adapting
the constrained POD modeling method introduced by Xiao et al. [15, 18], we propose to ap-
pend the POD basis with low-fidelity modes projected on the complementary space spanned
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by the high-fidelity data available. In the meantime, we improve the predictive capabilities of
the coefficients surrogate models by increasing the number of constraints they are submitted to.
Indeed, while the sparse high-fidelity projection coefficients are interpolated by the surrogate
models, the higher density of known low-fidelity projection coefficients gives information about
the global trend the surrogate models should follow.

Let’s consider an approximated solution associated with the simulation output of a complex
system characterized by its position in a p-dimensional design space D. Assuming the two
levels of fidelity at hand are lying in spaces with matching dimensions, we can denote the low-
and high-fidelity solutions respectively sL and sH both in IRn,

s : D → IRn

θ → sL(θ)

θ → sH(θ).

(2.5)

We compute the low- and high-fidelity databases SL and SH assuming the solutions s are
already centered as presented in Section 2.1 on two Design of Experiments (DoE) ΘL and ΘH .

SL(ΘL) =



sL1 (θ(1))

...
sLn(θ(1))

· · ·

sL1 (θ(ML))
...

sLn(θ(ML))


 , ∀θ(i) ∈ ΘL

SH(ΘH) =



sH1 (θ(1))

...
sHn (θ(1))

· · ·

sH1 (θ(MH))
...

sHn (θ(MH))


 , ∀θ(i) ∈ ΘH

(2.6)

Usually, the number of low-fidelity experiments will be higher ML > MH , and no ne-
sted sampling is here required to build the DoE’s ΘL and ΘH . One should notice that all the
presented notions are straightforwardly extendable to more than 2 different levels of fidelity.

2.2.1 Multi-fidelity basis

We first seek the best definition of the space spanned by the high-fidelity simulation output
via a QR decomposition,

SH = [Q1 Q2] [R1 0]>. (2.7)

Q1 is an orthonormal basis spanning the high-fidelity image of the high-fidelity DoE while
Q2 is a non-unique description of the complementary space of the space spanned by the basis
Q1.

As the two simulation output spaces are both lying in IRn, we can project the low-fidelity da-
tabase SL onto Q2 and perform an SVD to find the best projector for the low-fidelity information
in the complementary space of the high-fidelity information

VλU> = Q>2 SH . (2.8)
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We define the multi-fidelity POD basis Ψ in Eq. 2.9 as the best projector for the low-fidelity
information with a cancelling constraint on the high-fidelity error

Ψ = [Q1 Q2V] , (2.9)

with Ψ ∈ IR(ML+MH)×n.

2.2.2 Multi-fidelity coefficients surrogate model

Once the multi-fidelity POD basis Ψ is created, the final steps of the classical NI-POD pro-
cedure 2.1 are repeated. Given two databases, the information used for building the surrogate
model is tagged by its level of fidelity. We first project the low- and high-fidelity databases
SL and SH on the basis Ψ. This step enables the construction of data-fitting models on every
real-valued coordinate of the vectors of coefficients α.

The surrogate modeling techniques dealing with multi-fidelity databases are of two kinds.
The category of nested sampling based models does not restrain the high-fidelity database to
any subset of the low-fidelity database. This category being the less used in the literature, we
will focus on multi-fidelity surrogate models based on nested DoE’s such as classical corrective
models. We first project the two nested databases SL and SH onto Ψ and use the low-fidelity
coefficients of projection to create a low-fidelity Radial Basis Function Network (RBFN) model
α̃L(θ), ∀θ ∈ D. Then we build another RBFN model of the difference between low- and high-
fidelity coefficients and define the coefficients approximation as the sum of the two previous
models. The proposed model is an additive scaling model defined in Eq. 2.10 where the models
δ̃H−L(θ) and α̃L(θ) are one hidden-layer artificial neural networks

α̃H(θ) = δ̃H−L(θ) + α̃L(θ) ∀θ ∈ D . (2.10)

3 VALIDATION ON MATHEMATICAL FUNCTIONS

In this section, the developed multi-fidelity NI-POD model is used to approximate vectorial
analytical functions with different training sets. Various mathematical functions are referen-
ced in the literature for the validation of optimization methodologies, but none, to the authors
knowledge, exhibits a referenced low-fidelity definition and a multi-dimensional output space.
We decided to derive our analytical test case from the multi-fidelity examples in [7] and [22,
Section 3.5] as detailed in the coming section.

3.1 Mathematical definition

We assume two solvers associated with the functional solutions in Eq. 3.2. A 2-dimensional
“design” space D is created by parameterizing the low- and high-fidelity solutions defining a
1-dimensional function

f : D → F ⊂ C∞[0, 1]

θ → flθ(x)

θ → fhθ(x)

(3.1)

with
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flθ(x) = 0.5
(
(θ1x− 2)2 · sin(12x− 4)

)
+ θ2(x− 0.5) + 5,

fhθ(x) = 0.5(θ1x− 2)2 · sin(12x− 4) + sin(θ2 cos(5x)).
(3.2)
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Figure 3.1: Correlation between low- and high-fidelity functions

Two vectorial solutions sL and sH are extracted from the functions flθ(x) and fhθ(x) by
sampling the [0, 1]-interval with 100 points evenly spaced. A first 10-level full factorial DoE
Θvalid can show the correlation between low- and high-fidelity levels represented by its Pear-
son’s correlation coefficient [23] painted on Figure 3.1a. We can distinguish different regions
in the design space, some with good agreement (Fig. 3.2b) between low- and high-fidelity so-
lutions and others where low- and high-fidelity are completely decorrelated (Fig. 3.2a), while
the reference point (Fig. 3.1b) inspired by [7] and [22, Section 3.5] presents an average corre-
lation level. As illustrated on Figure 3.2, the 2− σ area (green shaded) of the coKriging model
f̃coKg(x) is highly dependent on the low- to high-fidelity correlation intensity.
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Figure 3.2: Range of correlations between low- and high-fidelity functions
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3.2 Design of Experiments

Multiple nested Latin Hypercube DoE’s (ΘH ⊂ ΘL) are created to assess the predictive
performance of the proposed multi-fidelity model. Figure 3.3 shows a possible repartition of
training points for a 2 + 10 samples multi-fidelity DoE in the design space. The next section
will present the results obtained with the proposed methodology in comparison with classical
NI-POD models.
As the definition of a Latin Hypercube Sampling (LHS) is not unique, a statistical analysis of
the impact of the training set on the model performances will be given for models trained on
100 different LHS for each couple (ML,MH).
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Figure 3.3: Multi-fidelity DoE in the design space D with (ML,MH) = (10, 2)

3.3 Results and classical NI-POD comparison

The performances of the proposed approach have to be evaluated in two phases. First, we
want to assess the impact of the low-fidelity information gathered all over the design space on
the quality of the multi-fidelity POD basis Ψ with respect to two representative bases:

• Φ : POD basis trained from SH(ΘH)

• Φ∀ : POD basis trained from SH(ΘL)

The POD basis Φ can be seen as the computational cost equivalent basis assuming the low-
fidelity solution is almost free whereas the POD basis Φ∀ is the “best” basis we would have if
we could afford intensive use of the high-fidelity solver.

3.3.1 Comparison of POD basis quality

Considering the DoE illustrated on Figure 3.3, the three basis Ψ, Φ, and Φ∀ are built and the
absolute L2-error of the POD reconstruction of the solution SH(Θvalid) is shown on Figure 3.4.
The represented errors are expressed as following for any sample point in the design space D
computed with the high-fidelity solver:

• εΦ(θ) =
√
‖sH(θ)−ΦΦ>sH(θ)‖2

‖sH(θ)‖2

• εΦ∀(θ) =
√
‖sH(θ)−Φ∀Φ>

∀ sH(θ)‖2
‖sH(θ)‖2

• εΨ(θ) =
√
‖sH(θ)−ΨΨ>sH(θ)‖2

‖sH(θ)‖2
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One can notice that the information introduced into the multi-fidelity basis construction pro-
cess globally reduces the absolute L2-error in the design space (Fig. 3.4c). This is due to the
enrichment of the basis with orthogonal modes taken from the low-fidelity solutions supposed
to be relatively close to the high-fidelity solution. Adding these modes in the complementary of
the high-fidelity output space cancels any contamination of the basis by incoherent information
from the low-fidelity solutions. We can also see (Fig. 3.4b) that for this 2-dimensional design
space, 10 samples are sufficient to drop drastically the reconstruction error.

The proposed multi-fidelity POD basis tends to reduce the reconstruction error in both badly
and strongly correlated low- and high-fidelity levels areas. This reduction of reconstruction
error has to be confirmed after the surrogate modeling of the POD coefficients step.
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Figure 3.4: Absolute L2-error of the POD reconstruction over D

3.3.2 Comparison of NI-POD models quality

Once the POD basis is built, the training points are projected onto the basis and surrogate
models are created to fit the coefficients databases. The chosen surrogate models are RBFN
with tuned kernel and widths. For the proposed methodology, the surrogate model described on
Equation 2.10 is used for each dimension of the vector of coefficients α.
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Figure 3.5 presents the prediction error, hereafter detailed, of the three NI-POD models
compared:

• Φα̃(θ) : NI-POD model trained on SH(ΘH),

with scalar mono-fidelity RBFN for α̃i ∀i ∈ [[1,MH ]]

• Φ∀α̃∀(θ) : NI-POD model trained on SH(ΘL),

with scalar mono-fidelity RBFN for α̃i ∀i ∈ [[1,ML]]

• Ψα̃+
H,L(θ) : NI-POD model trained on SH(ΘH) ∪ SL(ΘL),

with scalar multi-fidelity RBFN (Eq. 2.10) for α̃i ∀i ∈ [[1,MH +ML]] .

We can see on Figure 3.5b that for this test case, the 10 samples are sufficient to build a
very good approximation of the POD coefficients as well. The maximum error observed in the
lower-left corner of the design space on Figure 3.5a appears reduced on the Figure 3.5c as low-
fidelity information is added to the model in regions where the low- to high-fidelity correlation
coefficient is higher than 0.4 (Fig. 3.1a).
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Figure 3.5: Absolute L2-error of the NI-POD prediction over D
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It is also important to keep in mind that the projection of the low-fidelity information on the
complementary of the high-fidelity output space tends to reduce the impact of the POD coeffi-
cients associated with low-fidelity related modes as their contribution at high-fidelity location
is cancelled. This behaviour is responsible for the non-pollution of the multi-fidelity NI-POD
model in the top-left corner where both low- and high-fidelity are available and bad correlation
coefficient is observed on Figure 3.1a.

3.3.3 Statistical analysis

To validate the impact of the proposed methodology in terms of computational cost, we pro-
pose to estimate the mean absolute L2-error ε̄ over the entire design space depending on the
size of the DoE’s ΘH and ΘL and on the NI-POD based surrogate modeling technique. The
construction of any DoE given couple of sizes (MH ,ML) being non-unique, we build 100 in-
dependent DoE’s for every couple (MH ,ML) ∈ [[2]]× [[2, 28]]. Figure 3.6 shows the decreasing
trend of ε̄Φ∀α̃∀ while ε̄Φα̃ remains statistically stable meaning that the 100-DoE’s samples are
sufficient to determine coherent conclusions for the study case at hand. We can also observe
that the mean error associated with the proposed surrogate model ε̄Ψα̃+

h,l
starts decreasing with

added low-fidelity training points before stabilizing after ML > 8. Once all the high-fidelity
information lying in low-fidelity solutions is added to the POD basis, the computation of new
low-fidelity experiments becomes useless and new high-fidelity computations are required to
reduce further the global error of the surrogate model.

Statistical errors have also been compared for higher number of high-fidelity training snap-
shots and led to the same conclusions. These results are not illustrated because of too fast drop
in the mean error due to the fact that the design spaceD is low-dimensional in this case (p = 2).
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Figure 3.6: Evolution of the mean error ε̄ over D depending on the modeling technique

To investigate further the performance of the proposed modeling technique, we intend to test
its efficiency on an industrial application presented hereafter.
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4 INDUSTRIAL APPLICATION AND RESULTS

Aerodynamic design of Low-Pressure Compressors (LPC) is of major interest for jet engine
manufacturers. The economical, technical and environmental constraints applied to turbofan
designs force engineers to make a tradeoff between stage loading and both component efficiency
and stability. Based on previous work presented by Lepot et al. [24], we propose to improve
classical NI-POD surrogate models by adding low-fidelity information from coarse mesh based
simulations.

4.1 Test case presentation

The test case presented in [24] consists in a surrogate-assisted optimization of a 1.5 stage
booster based on 3D RANS simulations. The computational domain contains the inlet vane, the
first rotating row and its following stator as illustrated on Figure 4.1. The deformed geometries
are restrained to the rotating row, where the blade stacking as well as the hub axisymmetric
profiling are parameterized respectively by 2 and 17 parameters. The geometric deformations
are performed by either an in-house blade shape modeler for the stacking modifications or
CATIA v5R21 for the hub profiling. 3-level multigrid meshes are generated by Autogrid v9r1.1
and 3D RANS simulations are computed by elsA v3.3p1 [25]. Both high- and low-fidelity
computations are conducted with k − ε turbulence model without any near-wall treatment.

High-fidelity simulations are based on a structured mesh of about 5 million points preserving
a y+ value below 1 along blades and endwalls. The convergence is accelerated thanks to a 2-
level multigrid V-cycling leading to an overall run time around 2 hours for both design and
near stall configurations on 32 Intel Xeon E5-2680v3 computation cores of Cenaero’s cluster.
Low-fidelity computations are performed on the mesh χlf , obtained by isotropic coarsening of
the high-fidelity mesh χhf , leading to execution time around 15 minutes.

Figure 4.1: Low- and high-fidelity computational domains with isocontour of surface mesh
coefficient y+ and ρ distribution on mixing planes

4.2 Snapshot definition

We chose to approximate the conservative variables of the 3D computation in 4 sections de-
fined by the inlet, outlet and inter-rows mixing planes. The definition of every mixing plane is
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orthogonal to the revolution axis of the engine which avoid important mesh interpolation efforts.

As explained in Section 2.2, the low- and high-fidelity solutions lie in spaces with matching
dimensions. The high-fidelity solution is therefore considered only at low-fidelity mesh point
locations (“coarsening” step) to train the multi-fidelity NI-POD model and to compute scalar
indicators such as isentropic efficiency. Figure 4.2 shows the impact of “coarsening” the high-
fidelity solution on the computation of isentropic efficiency at design point η. We can see that
considering high-fidelity solution only on the low-fidelity mesh χlf has a negligible impact on
the isentropic efficiency. Indeed, the efficiency computed from the “coarsened” high-fidelity
solution ηhf [χlf ] (green points) is very close to the one integrated from the computed high-
fidelity solution ηhf (red line). On the contrary, the isentropic efficiency integrated from low-
fidelity solutions ηlf (blue points) presents non-negligible error with respect to the perfect match
line (red line).

ηfine [−]

η c
oa
rs
e
[−

]

ηhf[χlf]

ηlf

perfect match

Figure 4.2: Low- to high-fidelity correlation of the efficiency for the 1.5 stage compressor at
design configuration

4.3 Design of Experiments and multi-fidelity NI-POD

Given the overall computational cost of high-fidelity solutions, we decided to perform a
100-points DoE to train the proposed multi-fidelity NI-POD models as well as the POD and
data-fitting based models used for validation purposes. Both the low- and high-fidelity solu-
tions of the 100 training points are computed enabling a pseudo-statistical study of the impact
of high-fidelity training samples on models performances. The success rate of the overall com-
putation chain is about 60% removing all CATIA regeneration failures and all meshes with
minimal skewness angle lower than 3°.

The presented results only concern the design point performance approximations. By ran-
domly selecting high-fidelity solutions for a part of the training DoE we seek the impact of a
priori sampling on the surrogate model quality. Different models are compared at predicting the
high-fidelity design point efficiency computed for a 200-points validation DoE:

• Reconstruction capabilities assessment :
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1. POD model built on the high-fidelity training set only ΦΦ>s

2. POD model built on a high-fidelity training set computationally equivalent to the
multi-fidelity database ΦceΦ

>
ces

3. multi-fidelity POD model built on the high-fidelity training set enhanced by all low-
fidelity training solutions ΨΨ>s

• Prediction capabilities assessment :

1. NI-POD model built on the high-fidelity training set only Φα̃

2. NI-POD model built on a high-fidelity training set computationally equivalent to the
multi-fidelity database Φceα̃ce

3. multi-fidelity NI-POD model built on the high-fidelity training set enhanced by all
low-fidelity training solutions Ψα̃+

4. mono-fidelity tuned radial basis function network built on the high-fidelity training
set η̃

5. mono-fidelity tuned radial basis function network built on a high-fidelity training set
computationally equivalent to the multi-fidelity database η̃ce

4.4 Results

Figure 4.3 shows a comparison of the reconstruction capabilities of all POD-based models.
One can see that the reconstruction error of all 3 models (ΦΦ>s, ΦceΦ

>
ces, and ΨΨ>s) is very

low as the circles are close to the perfect match line (in red). This means that the POD basis
contains already (MH ≈ p, where D is p-dimensional) all the modal information needed to
reproduce the conservative variables distributions of the 110 successfully computed samples
in the validation DoE. Note that the reconstruction capability of a POD based model is totally
useless for a “real world” application as projecting a solution on the POD basis first requires the
expensive computation it is derived from.

ηcomputed [−]

η m
od
el
ed

[−
]

ΦΦ>s(10.0) : 0.997
ΦceΦ

>
ces(20.0) : 1.000

ΨΨ>s(15.9) : 1.000

lf

ΦΦ>s

ΦceΦ
>
ces

ΨΨ>s

Figure 4.3: Computed- to modeled-efficiency correlation for POD-based models reconstruction

On the contrary, the predictive capabilities of NI-POD based models present more differen-
ces depending on the chosen approach (see Fig. 4.4a). The integration of low-fidelity points for
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the training step increases the quality (correlation coefficients on Fig 4.4) of the proposed mo-
del with both respect to classical NI-POD models and mono-fidelity scalar RBF-based models
(Fig. 4.4b). We can see on Fig. 4.4a that the green points (associated to the isentropic efficien-
cy prediction of the proposed model) are closer on average to the perfect match line than the
blue and red points (associated to the isentropic efficiency prediction of classical NI-POD mo-
dels). The same observation can be made for mono-fidelity RBFN based models (see Fig. 4.4b).

ηcomputed [−]

η m
od
el
ed

[−
]

Φα̃(10.0) : 0.038
Φceα̃ce(20.0) : -0.129

Ψα̃(15.9) : 0.205

Φα̃

Φceα̃ce

Ψα̃+

(a) Computed- to modeled-efficiency corre-
lation for NI-POD based models prediction

ηcomputed [−]

η m
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[−
]

η̃(10.0) : -0.048
η̃ce(20.0) : 0.034

Ψα̃(15.9) : 0.205

Ψα̃+

η̃

η̃ce

(b) Computed- to modeled-efficiency corre-
lation for radial basis function based models
prediction

Figure 4.4: Comparison of predictive capabilities of NI-POD and radial basis functions based
models

As mentioned earlier, we try to study the impact of the initial high-fidelity training set ΘH

on the models quality. Table 1 shows that the proposed methodology is responsible on average
for an increase of the model quality and tends to limit the impact of the initial DoE.

Pearson’s coefficient (µ) Pearson’s coefficient (σ) CPU cost (µ)

PO
D ΦΦ>s 0.9913 0.0311 10.7

ΦceΦ
>
ces 0.9996 0.0008 17.7

ΨΨ>s 1.0000 0.0000 16.6

N
IP

O
D Φα̃ 0.0586 0.1611 10.7

Φceα̃ce 0.0803 0.1558 17.7
Ψα̃+ 0.1816 0.0588 16.6

R
B

F η̃ 0.0707 0.1573 10.7
η̃ce 0.0763 0.1491 17.7

Table 1: Mean and standard deviation of Pearson’s correlation coefficients for different models
trained with 50 different ΘH of given mean costs

As the selection of high-fidelity training points is non-uniformly random, the overall cost of
training points computation is not constant. The mean value of training CPU costs is given in
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Table 1, and shows that despite its higher mean training cost, the “computationally equivalent”
high-fidelity trained NI-POD model presents lower quality that the proposed multi-fidelity mo-
del. This is due to higher coverage of the design space with low-fidelity samples improving
globally the model quality.

5 CONCLUSIONS AND PERSPECTIVES

One can consider non intrusive-POD models as better integrators of physics than classical
data-fitting based models. In the context of surrogate-assisted optimization, this leads to better
insight in the relation between design parameters and performance indicators and similarly be-
tween parameters and the global system behaviour. Based on this assumption, the current paper
has presented an extension of non-intrusive POD to multi-fidelity design. The proposed metho-
dology leverages relatively high density of low-fidelity solutions in the design space to enhance
both the POD basis and the surrogate models of coefficients of classical NI-POD models. First
implementation of the presented technique has been tested on an analytical test case inspired
by coKriging related articles [7, 22] and an industrial test case of a 1.5-stage low-pressure com-
pressor [24].

The proposed model efficiency has been compared to classical NI-POD models and mono-
fidelity RBFN-based models. The multi-fidelity NI-POD model significantly improved both the
POD basis representativeness and the NI-POD predictive capabilities on the analytical test case.
The results showed the contribution of low-fidelity samples in the prediction error of the model.
At the same time, the potential limit in error reduction due to the lack of correlation between
low- and high-fidelity solutions in some regions of the design space has been revealed.

The prediction error reduction, obtained from added low-fidelity information, has also been
verified on the industrial scale problem in Section 4. The models performances have been com-
pared on the isentropic efficiency at design point showing again the impact of densely spaced
low-fidelity information. Despite relatively low correlations observed, the results showed a real
potential of the proposed method to reach the objective of starting an optimization with DoE
samples as large as the problem dimensionality (MH ≈ p).

Some issues remain to be addressed concerning the building methodology itself as well as so-
me questions remain opened on the industrial application presented. The question of truncation
is one of the cornerstones of NI-POD based approximation and is totally opened when dealing
with multi-fidelity POD models. The impact of truncation has to be questionned especially for
problems where only a few modes are needed but highly non-linear behaviour is observed for
projection coefficients. The impact of snapshot definition is also to be investigated. In the pre-
sented test case, the stacking deformation incited us to post-process conservative variables only
on mixing planes. Because of relatively important distances between rows and diffusion, the
physical complexity of wake and secondary flows can vanish and be missed in the integrated
snapshots. The extension of the proposed study to other performance indicators and off-design
configurations would allow more precise comparison with the results highlighted in [24].

In terms of general perspectives, a comparison with Kriging or coKriging models could be
considered in future work where none is presented in this study because of the hyper-parameters
optimization cost in high-dimensional design space. Last but not least, the integration of the
proposed methodology in an automated optimization loop has also to be performed and would
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check the validity of the given observations for higher correlation coefficients needed for a
successfull surrogate-assisted optimization.
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