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Abstract. Since R.A. Fisher introduced the analysis of variance (ANOVA), the classic design 
of experiments (DoE) utilizes factorial model of fixed effects. The typical procedure assumes 
the normal distribution of the noise and uses the least square method (LSQ) to identify effects 
of the model with a priori assumed structure of main effects and some interactions, usually up 
to the second order. The terms of model are repeatedly eliminated in the specific backward 
stepwise regression.  
Methods of approximation and prediction rapidly evolved in recent years. Apart from this, the 
classic approach of the fixed effects model is still very useful and popular. In fact, this model 
is intrinsic to ANOVA however hidden. The significance analytical improvements have ap-
peared in the background of fixed effects models in recent decades: statistics based on wide-
spread strict requirements of the normal distribution have been replaced by so-called robust 
statistics based on the weak requirement of the continuous distribution or even on the statis-
tics based on numerical simulation like e.g. bootstrap approach. Practically, in the case of 
small size datasets, the conformity with the normal distribution has very weak reliability and 
it leads to very uncertain assessment of  parameters statistical significance. The bootstrap ap-
proach with simulation-based identification of parameters confidence intervals (CI) appears to 
be better solution than theoretically proved but only asymptotically equal t-distribution based 
evaluations.  
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1 INTRODUCTION 

The research investigation in a materials science always leads to the datasets. The large (or 
even huge) datasets should be analyzed to obtain summary results expressed in qualitative or 
quantitative forms. Such conclusions should be semi-proved by a statistical analysis.  

One of the typical methodology is to observe behavior of the phenomenon against different 
treatments of controlled factors being precisely defined in a matrix known as a design of ex-
periment. The general term ‘behavior’ is narrowed to a quantitative variable called ‘response’ 
or ‘output’. The experiment focuses on the ‘effect’: the difference of the output as a result of  
the difference of treatments. If only one controlled factor is changed at time, the experiment is 
named One-Factor-At-Time (OFAT) [1]. On the opposite side, the factorial experiment [2] 
may be found where all controlled factors are changed simultaneously in a specific manner. 
The factorial experiment is also known as ALLFAT (All-Factors-At-Time). This name is of-
ten used in an industrial environment and quality management procedures. 

The sensitivity of the investigated phenomenon to changes of controlled factor decides on 
the statistical significance of such factor. However this definition is intuitively clear, it re-
quires some quantitative measure and its evaluation. Typical procedure used to assessment of 
factors significance is the analysis of variance (ANOVA). 

ANOVA [2] is a well-known procedure to identify an inequality of means evaluated for 
subsets selected from the general dataset by a chosen particular classification factor. The null 
hypothesis H0 states that all means are mutually equal against the alternative hypothesis H1 
that not all means are equal. The ANOVA workflow leads from the general dataset through its 
decomposition to subsets. Mathematically, it is described as a decomposition of a variance, 
which finally leads to comparison of MSfactor (variance explained by classification factor) 
against  MSerror (remained variance). Technically, it replaces the original null hypothesis to its 
equivalent: the ratio of MSfactor by MSerror is equal to zero. As was proved by Fisher, this ratio 
has F-distribution however it requires some additional assumptions about an independency of 
observations, a normality of residuals and a homoscedascity in subsets. These assumptions are 
often questionable, especially when the size of a dataset is small and the statistical inference is 
weak. 

The proposed solution consists of two elements: (a) the replacement of the original null 
hypothesis with its equivalent related to parameters of an associated fixed effects model and 
(b) the replacement of the classic test of parameters significance with the bootstrap-based 
checking of zero existence inside the parameter confidence intervals. This solution is more 
practical for large datasets with the unknown distribution because it does not require to meet 
the ANOVA assumptions.  

Authors have been tried [3] previously to combine a bootstrap approach with an artificial 
neural network approximator to analyze materials science data processed by image analysis 
however they have with many numerical artifacts. Such approach was more successfully for 
processing non-parametric statistical analysis for surface layer [4]. 

The bootstrap approach appears to be a promising solution for some aspects of fuzzy statis-
tics which is developed mainly by Buckley [5, 6]. The general workflow for such implemen-
tations has been proposed by Grzegorzewski [7]. Some preliminary investigations in the field 
of a design of experiments (DoE) have been made by Pietraszek [8, 9].  

2 COMPUTATIONAL METHODS 

Two main methods were used: the fixed effects model [2] and the bootstrap method [10]. 
The fixed effects model is used to evaluate effects being deviations of particular means from 
the grand mean. The bootstrap method is used to evaluate confidence intervals for effects. Fi-
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nally, the existence of zero inside the intervals is inspected. If any of intervals contains zero, 
the null hypothesis of ANOVA is rejected. 

2.1 Fixed-effects model  

The fixed-effects model [2]consist of three terms: 

ij i ijy µ α ε= + +   (1) 

where: 
µ – grand mean (average response), 
αi – an effect at i-th treatment, 
εij – an random error at i-th treatment and j-th replication, 
yij – the observed response at i-th treatment and j-th replication. 

The grand mean and effects are evaluated using the ordinary least squares (OLS) [2]. 

2.2 Bootstrap 

The bootstrap approach [10] to fixed-effects model (Eq.1) is described by the following 

workflow. In the beginning, the parameters �µ , � iα  of the model were identified from the da-
taset using the least squares criterion L 

� �min ( , ) ( , )iiL Lµ α µ α=   (2) 

then fits ɵ iy were evaluated 

ɵ � �
iiy µ α= +   (3) 

and at last residuals rij of the model 

ɵ
ij ij ir y y= −  . (4) 

Then, iteratively, (a) the new dataset RB of the same size containing bootstrapped residuals 
rb|ij was constructed by drawing with replacement from the set of residuals: 

{ }| |: (1 ) (1 ) ( , , : )B b ij b ij klr i n j r i j k l r r= ≤ ≤ ∧ ≤ ≤ ∧ ∀ ∃ =R   (5) 

and (b) new bootstrapped residuals were added to the model fits creating new bootstrapped 
“observations”:  

ɵ
| |B ij B ijiy y r= +  . (6) 

That new observations were used (c) to identify bootstrapped parameters of the model.  

� �min ( , ) ( , )Bi BL Lµ α µ α=   (7) 

The parameters were collected until large number of iterations will be reached. Finally, (d) the 
quantiles were evaluated (typically 2.5% and 97.5%) for datasets of parameters as a range of 
confidence intervals and at last (e) zero existence inside confidence intervals was checked. 
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3 MATERIALS AND DATASET 

The data were obtained during investigation of the ceramic shell mould of the airfoil blade 
casting. The description below is a brief, while details can be found in article of Szczotok et al. 
[11]. 

Nickel-based superalloys are mainly used in aircraft and power-generation turbines. Creep-
resistant polycrystalline turbine blades are typically produced by an investment casting pro-
cess. It is especially useful for making castings of complex and near-net shape geometry, 
where machining may be impossible or too wasteful. Studies were performed on the IN 713C 
superalloy. The castings described in the work were produced by the Laboratory for Aero-
space Materials at Rzeszow University of Technology in Poland. One casting called GK was 
selected for the microstructural and statistical analysis. Final castings were cut off. The cross-
sections were included and prepared as metallographic samples from nickel-based superalloy. 
To reveal the microstructure of the investigated material the surfaces of the samples were 
etched. The microstructural investigations of the cross-sections of the GK casting were carried 
out by a scanning electron microscope. The recorded microphotographs were next subjected 
to a computer-aided image analysis program to estimate quantitatively the main parameters 
describing the (γ+γ’) eutectic islands that occurred in the investigated superalloy. 

The dataset was created by counting number and size of eutectic island detected at six dif-
ferent traces labelled from T1 to T6 (Table 1). The issue was to check the homogeneity of the 
eutectic phase i.e. statistical equivalence of observations at any trace. 

 

Trace 
No  

of islands 
Mean  
Area SE Median 

Quartiles 

Q1 Q3 

T1 31 34.5 7.8 12.0 3.8 53.6 
T2 49 22.0 3.8 12.1 4.2 28.1 
T3 80 24.0 3.4 10.8 4.0 32.2 
T4 75 26.9 3.9 14.6 4.6 35.8 
T5 64 25.1 4.2 11.3 3.9 35.1 
T6 61 24.5 3.5 14.2 8.6 28.4 

Table 1: Descriptive statistics of raw data (source [11]) 

4 ANALYSIS 

The typical method for checking the homogeneity of quantitative data is ANOVA. Due to 
the fact that area measures are positive they need to be transformed by a specific transfor-
mation into the whole real space to avoid nonsense negative values [12]. The natural loga-
rithm was selected as transformation mapping i.e.: 

ln( )LnY area= . (8) 

Such transformation guarantees that any value has physical sense after retransformation.  
Descriptive statistics of transformed data are presented in Table 2. 

The ANOVA protocol leads to the classic ANOVA table which decomposes the total vari-
ation into part assigned to grouping factor and the remain assigned to all other factors grouped 
under name ‘error’ which should be treated rather as ‘unexplained’ than only ‘random error’. 
For the mentioned data, the ANOVA table (Table 3) revealed that critical p-Value is equal to 
0.841, much greater than significance level α = 0.05, what means that homogeneity of traces 
was not rejected. 
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Trace 
No  

of islands 
Mean  
LnY SE Median 

Quartiles 

Q1 Q3 

T1 31 2.63 0.28 2.49 1.34 3.98 
T2 49 2.44 0.18 2.49 1.43 3.33 
T3 80 2.43 0.15 2.38 1.40 3.47 
T4 75 2.55 0.15 2.68 1.53 3.58 
T5 64 2.45 0.17 2.42 1.36 3.56 
T6 61 2.68 0.14 2.65 2.15 3.35 

Table 2: Descriptive statistics of transformed data (source [11]) 

 

Effect SS df MS F p 

Trace 3.318 5 0.664 0.411 0.841 
Error 572.019 354 1.616 – – 
Total 575.338 359 1.603 – – 

Table 3: ANOVA table for transformed data (source [11]) 

Simultaneously, the general linear model (GLM) (Eq.1) was introduced for 6 levels (T1…T6). 
The identification of the model resulted in a set of parameters (Table 4). Note that lack of the 
parameter for T6 is a typical presentation of results by statistical programs (here: StatSoft 
STATISTICA v12), because all effects from T1 to T6 should sum to 0 and T6 should be de-
ducted from such condition.  
 

Effect Parameter SE t p 1) -95 CI +95 CI 
const 2.527 0.070 35.88 0.000 2.389 2.666 
T1 0.100 0.199 0.50 0.617 -0.292 0.492 
T2 -0.091 0.164 -0.56 0.578 -0.414 0.232 
T3 -0.099 0.136 -0.73 0.467 -0.366 0.168 
T4 0.021 0.139 0.15 0.880 -0.252 0.294 
T5 -0.082 0.148 -0.55 0.580 -0.372 0.208 

Table 4: Parameters of fixed-effects model for transformed data 
1) p-value evaluated from inverse cumulative distribution for t-Student at d.o.f. = 354 

 
Trace Fit SE -95 CI +95 CI N 

T1 2.627 0.228 2.178 3.076 31 
T2 2.436 0.182 2.079 2.793 49 
T3 2.428 0.142 2.149 2.708 80 
T4 2.548 0.147 2.260 2.837 75 
T5 2.445 0.159 2.133 2.758 64 
T6 2.678 0.163 2.358 2.999 61 

Table 5: Model fits and their confidence intervals for transformed data 
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The model predictions and their confidence intervals are presented in Table 5. It should be 
noted that such results are still from classic ANOVA for further comparisons. 

Now, the approach was switched to the bootstrap. The number of draw iterations was set to 
10.000 to easy selection of quantiles from the bootstrapped dataset. After the full bootstrap 
procedure, the descriptive statistics were evaluated for model parameters (Table 6) and model 
predictions (Table 7), similarly to Table 4 and Table 5. 

The bounds of the confidence intervals were easy identified due to the selected number of 
bootstrap iterations. They were values found at positions 250 and 9750 in the sorted boot-
strapped results. Similarly, the bootstrapped p-Value was evaluated as relative position of sign 
switching inside the sorted bootstrapped results. 
 

Effect 
Parameter 

mean 
SE p-Valuebootstrapped 1) / 

p-Valuetheoretical 
2) -95 CI +95 CI 

const 2.527 0.070 0.000 / 0.000 2.388 2.665 
T1 0.101 0.196 0.614 / 0.607 -0.281 0.490 
T2 -0.092 0.161 0.576 / 0.568 -0.407 0.224 
T3 -0.099 0.135 0.468 / 0.464 -0.364 0.167 
T4 0.021 0.137 0.869 / 0.878 -0.250 0.290 
T5 -0.082 0.148 0.580 / 0.580 -0.367 0.206 
T6 0.151 0.147 0.310 / 0.305 -0.136 0.435 

Table 6: Parameters of fixed-effects model for transformed data 
1) bootstrapped p-Value was evaluated from relative position of sign switching inside a bootstrap table 

2) theoretical p-Value was evaluated from ratio (mean/SE) and t-Student distribution at d.o.f. = 354 

 
Trace Fit SE -95 CI +95 CI 

T1 2.628 0.225 2.189 3.073 
T2 2.435 0.179 2.090 2.785 
T3 2.428 0.141 2.153 2.703 
T4 2.549 0.145 2.261 2.835 
T5 2.445 0.159 2.136 2.754 
T6 2.678 0.160 2.360 2.988 

Table 7: Boostrap fits and their confidence intervals for transformed data 

The analysis of confidence intervals bounds revealed that small asymmetric exists between 
left and right side relative to means (Table 8). The coefficients were evaluated as studentized 
i.e. a quotient of a deviation and standard error, where deviation was difference between con-
fidence interval bound and respective mean: 

95CI mean
cf

SE

± −= . (9) 
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Trace / 
Effect 

Parameters intervals 
coefficients 

Fits intervals  
coefficients 

-95 CI +95 CI -95 CI +95 CI 
const -1.986 1.971 – – 
T1 -1.949 1.985 -1.951 1.978 
T2 -1.957 1.963 -1.927 1.955 
T3 -1.963 1.970 -1.950 1.950 
T4 -1.978 1.964 -1.986 1.972 
T5 -1.926 1.946 -1.943 1.943 
T6 -1.952 1.932 -1.988 1.938 

Table 8: Studentized coefficients of confidence intervals for the bootstrap model and its fits 

5 CONCLUSIONS  

• Bootstrap approach appears to be effective computational method to identify parameters 
of fixed effects model and their statistical properties. 

• Bootstrap approach does not require to make a priori inconvenient assumptions. 

• Bootstrap approach is very convenient to automatize in computational workflow and fur-
ther statistical postprocessing. 
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