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Abstract 

Many complex engineering structures, e.g. components of helicopters, wind turbines, aircraft 
wings and propellers, are beamlike and non-prismatic. Structures of this kind may be tapered, 
pre-twisted, and even curved in their unstressed state, and undergo large displacements and 
3D cross-sectional warping. Their mechanical modeling can be addressed via non-prismatic 
beam elements providing the appropriate compromise between computational efficiency and 
accuracy. Over the years many models have been proposed for beamlike structures, but gen-
eral non-prismatic cases still require investigation. Formulas valid for prismatic beams, for 
example, generally provide incorrect results in non-prismatic cases, as the variation in the 
dimensions and orientation of the transverse cross-sections produce non-trivial stress distri-
butions absent in prismatic beams. A model suitable for the aforementioned non-prismatic 
elements should properly describe their shape, explicitly consider the effects of their geomet-
ric design features on their stress and strain fields, account for large displacements, and pro-
vide the known results of prismatic cases. We propose a physical-mathematical model that 
accounts for all such requirements. The non-prismatic beam is seen as a collection of plane 
figures (the transverse cross-sections) attached at a 3D curve (the beam’s centre-line). The 
centre-line’s points may undergo large displacements. The transverse cross-sections are fully 
deformable and may undergo warpings in and out of plane. Assuming small warping and 
strain fields, a variational approach provides the field equations. The model obtained enables 
evaluating even analytically the effects of geometric parameters (such as taper) on the stress 
and strain fields. Numerical examples and comparisons with the results of nonlinear 3D-FEM 
analyses confirm the effectiveness of the proposed modeling approach. 
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1 INTRODUCTION 
Ongoing efforts to predict the mechanical behavior of non-prismatic beamlike structures, 

by using increasingly accurate and computationally efficient models, are aimed at optimizing 
their performance and cost. At the same time, tackling complex engineering problems contin-
uously leads to develop theories to meet ever more stringent requirements on the predictive 
models. For example, several theories have been developed over the years for helicopter 
blades with pre-twist, a geometric feature which induces several couplings in their mechanical 
response: for pre-twisted beams bending is always three-dimensional, and tension may be 
significantly coupled to torsion [1-6]. Wind turbine blades are another interesting example of 
pre-twisted structures. Moreover, they are also characterized by important spanwise variations 
in the dimensions of their transverse cross-sections, that is, they are also tapered [7-8]. Their 
shape alone makes predicting their mechanical behavior a very challenging task. Not to speak 
of the large displacements they may undergo, which further complicate the study and deriva-
tion of analytical closed-form formulas for engineering design purposes.  

Generally speaking, structural analyses show that the models and formulas commonly used 
for prismatic beams provide incorrect results in non-prismatic cases, as the variations in the 
dimensions and orientation of the transverse cross-sections produce non-trivial stress distribu-
tions absent in prismatic beams [9-10]. To date several models have been proposed for beam-
like bodies, ranging from linear theories [11-13] to geometrically exact and asymptotic 
approaches [14-20]. However, investigations are still required to develop rigorous yet applica-
tion-oriented models for three-dimensional non-prismatic beams, which explicitly account for 
important geometric features (such as taper), account for large displacements, directly furnish 
the 3D stress and strain fields, and provide known results in prismatic cases. 

This paper presents a physical-mathematical model that meets all such requirements for 
non-prismatic beams having fully deformable cross-sections and undergoing large displace-
ments and small strains. The general model is introduced in section 2. Analytical results for 
bi-tapered and pre-twisted beams are presented in section 3. Numerical examples and compar-
isons with the results of nonlinear 3D-FEM analyses are finally shown in section 4.

2 MECHANICAL MODEL 
In this section we introduce the main ingredients of our model, further details of which can 

be found in [21]. Then, we present tapered beams for which we can provide analytical formu-
las for evaluating their stress and strain fields (section 3) and, subsequently, provide compari-
sons with the results of nonlinear 3D-FEM simulations (section 4).

2.1 Geometry and strain measures 
The beam is seen as a collection of plane figures (transverse cross-sections) attached at a 

3D curve (beam’s centre-line). The cross-sections are fully deformable and may undergo dis-
placements in and out of plane (all called warping displacements). The displacement of each 
cross-sectional point from the reference to the current state consists of a rigid part (similarly 
to the beam theories with rigid cross-sections) onto which the aforementioned warping motion 
is superposed. Figure 1 shows a schematic of the beam’s reference and current states.

Two local triads of orthogonal unit vectors are introduced in Figure 1. The first, bi, in the 
reference state, with b1 tangent to the centre-line, depends on the reference arc-length s, i.e. 
bi=bi(s). The second, ai, is an image of bi in the current state and depends on the arc-length s 
and time t, i.e. ai=ai(s,t). A third triad, ci, pertains to a fixed Cartesian reference frame. 
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Figure 1: Schematic of current and reference states – centre-lines, cross-sections, local triads 

Two mapping functions, RA and RB, identify the positions of the beam’s points in their cur-
rent and reference states, respectively. The reference mapping function is

0 1 1( ) ( ) ( ) ( )B i B iR z R z x z b z (1) 

where R0B provides the position of the reference center-line relative to triad ci, xα identify the 
position of the cross-section’s points relative to such center-line, and zi are three mathematical 
variables, independent of time, with z1=s, and zα belonging to a bi-dimensional domain used 
to map the position, xα, of the cross-section’s points. Specifically, the spanwise variation of 
the shape of the transverse cross-sections is modeled via the map 

i ij jx z (2) 

where for the considered bi-tapered, pre-twisted beams Λ11=1, Λ22=Λ2(z1), Λ33=Λ3(z1), and 
the others Λij are zero. Throughout this paper, Greek indices range from 2 to 3, Latin indices 
take values from 1 to 3, and repeated indices are summed over their range.  

The current mapping function is defined, similarly to the reference one, as follows 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )A i A i k i kR z t R z t x z a z t w z t a z t (3) 

where R0A denotes the position of the center-line’s points in the current state, while wk are the 
components of the warping displacement with respect to triad ak.

We now introduce vector and tensor fields useful to describe the motion of our beam, start-
ing with the vector field k, associated to the change in the beam’s curvature between the cur-
rent and reference states, given by 

T
A Bk T k k (4) 

where the proper orthogonal tensor field i iT a b describes the relative orientation between 
triads ai and bi, being the usual tensor (or dyadic) product, while the vector fields kA and 
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kB are such that i A ia k a and i B ib k b , ˄ being the usual cross-product and apex-prime 
denoting the derivative with respect to s (further details are in [21]).

Along with k, we introduce another vector field, γ, which is related to the difference be-
tween the center-line tangent vectors of the current and reference states, as follows 

0 0
T

A BT R R (5) 

Note that γ and k, which vanish for rigid motions and are invariant under superposed rigid 
motion [20], are referred to here as 1D strain measures. The Green-Lagrange strain tensor E is 
instead referred to here as 3D strain measure and is written in a form based on the assumption 
of small strain and warping fields considered in this work. In particular, we assume that the 
characteristic dimension of the transverse cross-sections, h, is much smaller than the reference 
length, L, of the centre-line (i.e. the beam is slender); the beam’s curvatures are much smaller 
than 1/h; the warping fields, wk, are considered small in the sense that their maximum order of 
magnitude is hε (ε<<1 being a non-dimensional parameter), while the order of their derivative 
with respect to z1 is at most εh/L. In general, all components of the strain measures are con-
sidered small in the sense their order of magnitude is at most ε. For the considered beam, the 
strain tensor E is written (as in [9]) in the form 

2

T TT H H TE I
2

T H HTT H H (6) 

where H is the gradient of transformation between the reference and current states 

A

B

RH
R

(7) 

2.2 Stress measures and balance equations 
The stress fields in our beam are determined supposing it to be elastic. For small strains the 

second Piola-Kirchhoff stress tensor S is linearly related to the strain tensor E, as follows 

S EE (8) 
where is the classical elasticity tensor [22], which characterizes the beam’s material behav-
ior (e.g. isotropic or not). For completeness’ sake, we also introduce the first Piola-Kirchhoff 
stress tensor P and Cauchy stress tensor C, which for our beam are P=TS and C=TSTT (as in
[9]). By using the stress tensor P, cross-sectional stress resultants are defined in terms of two 
vector fields, F (force) and M (moment), as follows 

1

1

i i

i i

F P a

M x P a a
(9) 

where Σ is the cross-sectional domain and ij i jP P a b .
We now exploit the principle of expended power to derive balance equations for our beam-

like body, which is three-dimensional and hyper-elastic [22]. To this end, its interactions with 
the external environment are quantified, for each velocity field attainable by the body, via the 
following functional, Πe, called the external power 

e V V
p v b v (10) 
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In (10), b are body loads per unit body’s reference volume V, p are surface tractions per unit 
area of the reference boundary ∂V, and v is the referential description of the time rate of the 
current position of the body’s points, given by 

0v v x a ww (11) 

where w• is the time rate of the warping displacement. Interactions among different parts of 
the body are instead quantified via the functional Πi, called the internal power 

i V

d
dt

(12) 

where Φ (body’s energy density) is half the scalar product of tensors S and E, i.e. 2Φ=S∙E.
According to the principle of expended power, for any velocity field attainable by the body, 

its interactions with the external environment and among its parts are such that at any value of 
the evolution parameter t the total power vanishes (i.e. Πe=Πi). The exploitation of such prin-
ciple is a usual technique in continuum mechanics to obtain balance equations in terms of the 
problem’s unknowns (see, e.g., [20-22]). In our case, it enables writing balance equations for 
the stress resultants, F and M, in the form 

0 0A

F + f = 0
M R F m

(13) 

where f and m are the resultants of the body and contact actions per unit length of reference 
centre-line. The same principle also enables writing balance equations to determine the warp-
ing fields wk. In particular, in the case the body loads and surface tractions on the beam’s lat-
eral surface are neglected in calculating the warping fields, or vanish, it is possible to reduce 
the determination of the warping fields to those that verify the variational condition 

0
V

(14) 

where δ denotes the variation of the energy function with respect to the warping fields. Note 
that warping fields satisfying condition (14) can be obtained numerically or, in particular cas-
es, analytically, as solutions of the corresponding Euler-Lagrange equations [23]. 

So far we have introduced the main ingredients of our modeling approach. Specifically, we 
have sketched the body’s shape, which is three-dimensional and beamlike, and have defined 
the strain measures, stress measures, and balance equations we use to describe its mechanical 
behavior. By using such ingredients, the resolution of the three-dimensional nonlinear elas-
ticity problem is now reduced to the solution of two main problems: the first governs the 
cross-sectional warping motion and it’s strong formulation can be given in terms of partial 
differential equations (PDEs) defined over a reference bi-dimensional domain (as is discussed 
in the next section). The second problem governs the centre-line motion and can be expressed 
in terms of a set of non-linear ordinary differential equations (ODEs) defined over a reference 
line (as in [9], for instance). It is worth noting that this approach reduces the computational 
effort and produces accurate results compared to nonlinear 3D-FEM approaches (as is shown
also in the following). Moreover, the results obtained with our model enable evaluating even 
analytically the effects of important geometric features, such as the cross-sectional taper, on 
the stress and strain fields in all points of the considered beamlike bodies. The analytical re-
sults obtained in this work are presented in the next section 3 and, subsequently, are compared 
to the results of nonlinear 3D-FEM approaches (section 4).
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3 ANALITYCAL RESULTS 
In order to determine the stress and strain fields in our beam we need to exploit the varia-

tional condition (14). In particular, considering the corresponding Euler-Lagrange equations, 
in which we keep the terms up to the order εh/L, we can obtain a set of partial differential 
equations (PDEs) with Neumann-type boundary conditions the solution of which enables de-
termining the components of tensor E. In doing this, hereafter we choose the current local tri-
ads to be tangent to the center-line and focus on the case of bi-tapered beams the material 
properties of which are described in terms of just two material constants (i.e., Young’s modu-
lus Y, and Poisson’s ratio υ). The effects of other geometric features (e.g. centre-line curva-
ture), as well as those related to the material non-homogeneity and anisotropy, will be 
addressed in subsequent works. 

Proceeding as in [21], the components E11, E21, and E31 of E, related to the out-of-plane de-
formation of the transverse cross-sections, can be written in the form 

11 2 3 3 2 1 1,1 1 3 1,2 2 1,3

1
21 1,2 1 3 2 2 3 3 2 1 2 2 2 1 3

1
31 1,3 1 2 3 2 3 3 2 1 3 3 3 1 2

( )

2 2(1 )( )( )

2 2(1 )( )( )

B

B

B

E k x k x e k x e x e

E e k x e k x k x x k x

E e k x e k x k x x k x

(15) 

where ij i jE E b b , subscript-comma denotes the derivative with respect to xi, and the sca-
lar fields e1, e2, e3 are solutions of the following PDEs problems 

1,22 1,33

1,2 1 3 2 1,3 1 2 3

2,2 3,3 2 2 3 3

3,2 2,3 2 2 3 3 1

2 2 3 3

0

( ) ( ) 0

0

e e in

e k x n e k x n on

e e d x d x in
e e g x g x g in
e n e n on

(16) 

In (16), Σ and ∂Σ are the cross-sectional domain and its boundary, nα are the components of 
the outward unit normal vectors on ∂Σ, and coefficients dα and gk are given by

1 1
2 3 3 3 2 2 3

1 1
3 2 2 2 3 3 2

1 1 1
1

2 2 2 2 2 1 3
1

3 3 3 3 3 1 2

2(1 ) 2(1 ) 2

2(1 ) 2(1 ) 2

2 (2 2 )
2 2(1 ) 2 (3 2 )
2 2(1 ) 2 (3 2 )

B

B

B

d k k

d k k

g k
g k k k k

g k k k k

(17) 

It is worth noting that the PDEs equations (16) formally resemble those for flexure and tor-
sion of a Saint-Venant’s cylinder. Unfortunately, PDEs problems of this kind can be solved in 
closed-form only for a few cases, but this is not surprising (this happens even in the linear 
theory of prismatic beams [11-13]). However, they can always be solved with the aid of nu-
merical methods for all other cases as well. Regarding our PDEs problem (16)-(17), we more-
over note that its solution can generally be expressed as linear combinations of the 1D strain 
measures, γ1 and ki, and their s-derivative, and explicitly depends on the beam’s reference 
shape through the shape of the cross-sectional domain Σ and some application-oriented func-
tions, e.g. the taper coefficients Λα and pre-twist coefficient kB1.
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The results discussed right now are particularly interesting because the nature of our PDEs 
problem allows considering even separately the effects of the different 1D strain measures and 
geometric parameters (Λα and kB1) in the determination of the scalar fields e1, e2, e3, which are 
necessary for calculating the strain fields (15), stress fields (8), and stress resultants (9).

Note that the approach used can also provide expressions for the strain fields E22, E33, E23,
related to the cross-sectional in-plane deformation, plus the relevant PDEs problem. However, 
we do not provide details about this in the present paper, but focus on the scalar fields e1, e2,
and e3, and discuss some cases in which they can be obtained in closed-form. 

3.1 Tapered beam with circular solid cross-sections 
As anticipated in the foregoing, the PDEs problem (16)-(17) admits closed-form analytical 

solutions in some cases. This holds, for instance, for circularly cross-sectioned tapered beams
with taper coefficients Λ2=Λ3=Λ and pre-twist kB1=0. In such case, in fact, equations (16)-(17) 
are satisfied by e1=0 and the expressions of e2 and e3 that follow 

1 2 2
2 1 3 2 2 2 3 2 3 2

1 2 2
3 1 2 2 3 3 2 3 2 3

2(1 ) ( )

2(1 ) ( )

e p k p k x R k x x k

e q k q k R x k x x k
(18) 

where R is the radius of the transverse cross-section (which depends on s, as it is scaled from 
the root to the tip of the beam according to the taper function Λ), and 

2 2 2
1 3 2

2 2 3

2 2 2
1 2 3

2 3 2

2 (1 2 ) (3 2 )( )

(1 2 )

2 (1 2 ) (3 2 )( )

(1 2 )

p x x R

p x x

q x x R

q x x

(19) 

Given e1, e2, e3, we can also write closed-form expressions for the strain fields E11, E21, E31
by combining (18)-(19) with (15). In particular, such strain fields can be expressed in terms of 
linear combinations of the 1D strain measures and their s-derivatives, as follows 

11 2 3 3 2 1

21 1 3 1 3 2 2 3 3 4 1

31 1 2 1 2 2 3 3 2 4 1

2

2

E k x k x

E k x p k p k p k p

E k x q k q k q k q

(20) 

where the additional coefficients, p3, p4, q3, and q4, of the linear combinations are given by 
1 2

3

1
4 2

1 2
3

1
4 3

2(1 )

2(1 )

2(1 )

2(1 )

p R

p x

q R

q x

(21) 

Note that such solution (18)-(21), which is valid for the circularly cross-sectioned tapered 
beams considered here, undergoing large displacements and small strains, reduces exactly to 
that of the Saint-Venant’s linear theory if Λʹ vanishes (prismatic case) and both the beam’s 
displacements and strains are small. In such case, in fact, functions p3, p4, q3, q4 vanish, while 
functions p1, p2, q1, q2, which are proportional to kʹ2 and kʹ3 (i.e. the derivatives of the bending 
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curvatures), turn out to be proportional to the cross-sectional shear forces in the beam’s refer-
ence state, as in the works of Timoshenko [12] and Sokolnikoff [13]. 

It is worth noting that similar but generally more complex expressions for E11, E21, E31 can 
be obtained for other non-prismatic beams as well (see, e.g., [6,21]). However, we do not dis-
cuss here all cases in which we can obtain closed-form solutions to problem (16)-(17), but we 
present another interesting example (in section 3.2) and then proceed to compare the results of 
our model with those of nonlinear 3D-FEM simulations to verify its effectiveness in terms of 
computational efficiency and accuracy (section 4). 

Before doing this, we remark that regardless of the approach used (i.e. numerical or analyt-
ical) to solve our problem (16)-(17), the solution can always be expressed in terms of linear 
combinations of terms proportional to the 1D strain measures and their s-derivative, similarly 
to (18)-(20). The difference between the solution reported in this section and that of a generic 
bi-tapered, pre-twisted beam is represented by the expressions of the coefficients of the linear 
combinations (e.g. p1-p4), which are the functions of xα to be found. Such functions, however, 
have to be computed only once for a given cross-sectional shape. This fact, of course, con-
tributes reducing the computational effort required to solve the nonlinear elasticity problem 
that governs the behavior of our three-dimensional beams, as is shown in section 4 via numer-
ical examples and comparisons with the results of nonlinear 3D-FEM analyses.

3.2 Tapered beam with circular hollow cross-sections 
Let us now consider a tapered beam similar to that of the previous section, but having hol-

low cross-sections. Specifically, here we are considering thin-walled cross-sections, charac-
terized by small thickness-to-radius ratio, t/R. For example, we can refer to the case in Figure 
2, but without prescription on the shape of the taper function Λ (which does not need to be a
linear function for the derivation of the following formulas).

Figure 2: Tapered beam with circular hollow cross-sections (right) and its taper coefficient (left) 

Regarding functions e1, e2, e3 for the present beam, a vanishing e1 still satisfies the PDEs 
problem (16)-(17), but the expressions of e2, e3 obtained for the circular solid cross-sections in
section 3.1 do not satisfy all PDEs and boundary conditions (16)-(17) of the present case. For 
their determination, apart from using a numerical method, we can exploit, here, a simplified 
analytical approach (common for thin-walled beams) based on the assumption that the strain 
and stress fields may not vary too much through the cross-sectional thickness. 
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By using such approach, we proceed to derive formulas for the strain fields (15) valid for 
the present beam subject to flexure and express such formulas as functions of the bending 
curvatures and their s-derivatives. To this end, it is convenient to consider the components E11,
Eθ1, Er1 of E (in place of E11, E21, E31), r and θ being the independent variables along the radial 
and tangential directions in the cross-section (see, e.g., Figure 2). Moreover, we also introduce 
the mean value Eθ, through the cross-sectional thickness t, of the tangential shear strain Eθ1,
which is given by the following line-integral through the thickness 

21 31
1 sin cos

tickness

E E E
t

(22) 

By exploiting (22), (15)-(16), and standard integration techniques based on Green’s formu-
las, we can write Eθ in the following form 

1 2 1 2
3 3 2 2(1 )( 3 ) sin (1 )( 3 ) cosE k k R k k R  (23) 

The mean value Er of the radial shear strain Er1 is instead obtained by exploiting the condi-
tion of zero traction on the beam’s lateral surface, which yields

2 1
2 3(1 )( sin cos )rE k k R (24) 

Now, the approximation relies on considering the local strain fields almost coincident with 
their mean value over the cross-sectional thickness, i.e. Eθ1≃Eθ and Er1≃Er. Such assumption 
is expected to provide good results in terms of predictions of the cross-sectional strain and 
stress fields in thin-walled tapered beams, the cross-sectional thickness of which is small with 
respect to the cross-sectional diameter or radius (e.g. t/R≃0.1). 

The following examples provide comparisons with the results of nonlinear 3D-FEM simu-
lations to verify the effectiveness of the modeling approach and formulas discussed so far. 

4 APPLICATION EXAMPLES 
In this section we shows the results obtainable by our model, which we have implemented 

in a numerical code written in Matlab language, referred to here as 3D-BLM. The results from 
3D-BLM in terms of displacement, strain and stress fields are compared to those of nonlinear 
3D-FEM analyses performed with Ansys, based on a fine mesh of solid tetrahedral elements 
with ten nodes and quadratic displacement behavior [24]. 

Two test cases are reported here. The first addresses a tapered beam with circular solid 
cross-sections, which may undergo large displacements while fixed at one end (the root) and 
loaded at the other (the tip) by a transverse force of progressively increasing magnitude. For 
such case we can exploit the analytical results presented in section 3.1. The second test case is
similar to the first, but the transverse cross-sections are hollow. For such case we exploit the 
formulas presented in section 3.2. 

4.1 Test case 1 (solid cross-sections) 
The tapered beam considered here has a straight, 100m long centre-line; its transverse 

cross-sections are circular, with a radius R=2m at the root, which is linearly scaled toward the 
tip up to 30% of the root value. The material properties are given in terms of Young’s modu-
lus, 70GPa, and Poisson’s ratio, 0.25. The beam is fixed at the root and loaded at the tip by a 
flapwise dead force, F, ranging from 100kN to 15000kN (as in Figure 3). The simulation re-
sults are summarized in the following. 
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Figure 3 provides an overview of the beam’s un-deformed state (F=0), its deformed states 
obtained from 3D-BML for F=5000kN and F=10000kN (left), and the deformed state given 
by nonlinear 3D-FEM for F=5000kN (right). Figures 4 and 5, instead, provide comparisons 
between 3D-BLM and 3D-FEM in terms of centre-line’s displacements and simulation times 
for increasing F. As we can see, the simulation time with 3D-BLM is much smaller than that
required by nonlinear 3D-FEM, while the accuracy of results is always almost the same. 

Figure 3: Beam’s deflected shapes with 3D-BLM for increasing F (left) and 3D-FEM for F=5000kN (right) 

Figure 4: Comparing 3D-BLM and 3D-FEM in terms of centre-line’s displacements along X (left) and Z (right) 

Figure 5: Comparing 3D-BLM and 3D-FEM in terms of tip-displacements (left) and simulation times (right) 
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Apart from this, our model can also provide other useful information about the mechanical 
behavior of our beam, e.g. the rotation of its local triads, its curvature change and strain fields,
as well as the corresponding stress fields and stress resultants.

Figure 6, for example, reports the rotation θY of the local triads about Y, along with the 
curvature change about Y (kY), for increasing F. It is worth noting that the spanwise variation 
of the bending curvature kY is quite different from a linear function. However, this is expected 
for tapered beams (in spite of what would happen in a prismatic case under the same loading 
condition). This depends, in fact, on the spanwise variation of the cross-sectional bending 
stiffness which, in the present case, increases from the beam’s tip to the root according to the 
increasing cross-sectional diameter. 

Figure 6: Local triads rotation θY (left) and bending curvature kY (right) with 3D-BLM for increasing F 

As anticipated in the foregoing, 3D-BLM can also directly furnish the stress fields in all 
points of the beam. Hereafter we compare the results obtained in terms of Cauchy stress fields
from 3D-BLM with those given by nonlinear 3D-FEM simulations. 

Specifically, Figures 7 and 8 show the stress fields CXX and CZX obtained for F=100kN at 
three reference cross-sections (30%, 50%, 70% span). For completeness’ sake, we also report 
the results obtained for a much larger value of F (see Figures 9 and 10, F=10000kN). Similar 
results have moreover been obtained at other cross-sections and for other values of F.

Taking a look at the results obtained, we have observed that the normal stresses follow a
Navier-like distribution in each cross-section (i.e. they are almost linear in x3), while the shear 
stress distributions are quite different from those predictable by the linear theory of prismatic 
beams. In fact, the transverse shear stresses at the cross-section’s boundary do not generally 
vanish in non-prismatic beams, while they are always zero in the prismatic case. Also, they 
can change from cross-section to cross-section in non-prismatic elements, while their distribu-
tion and magnitude do not change spanwise in the prismatic case. 

Figure 7: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=100kN 
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Figure 8: Stress field CZX at different cross-sections (30%, 50%, 70% span) for F=100kN 

Figure 9: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=10000kN 

Figure 10: Stress field CZX at different cross-sections (30%, 50%, 70% span) for F=10000kN 

The results obtained so far confirm the effectiveness of the modeling approach introduced 
in the foregoing and the accuracy of the closed-form solution of section 3.1. 

4.2 Test case 2 (hollow cross-sections) 
The second test case considered here addresses a straight beam with 100m long centre-line 

and circularly shaped hollow cross-sections, which are tapered from the root to the tip of the 
beam. The radius of the hollow root section is R=2m, while its thickness is t=0.2m. Such di-
mensions are linearly reduced toward the beam’s tip as shown in Figure 2. The material prop-
erties are summarized by reference values of Young’s modulus, 70GPa, and Poisson’s ratio, 
0.25. The beam is fixed at the root and loaded at the tip by a flapwise dead force, F, ranging 
from 100kN to 10000kN (as in Figure 11). 
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Figure 11: Beam’s deflected shapes with 3D-BLM for increasing F (left) and 3D-FEM for F=5000kN (right) 

Also in this case we can obtain the same sort of results shown in section 4.1. For example, 
Figure 11 reports the beam’s deformed shapes obtained from 3D-BLM for different values of 
F, as well as the deformed shape given by 3D-FEM for F=5000kN. Figure 12 provides com-
parisons between 3D-BLM and 3D-FEM in terms of tip-displacements and simulation times, 
which confirm the levels of computational efficiency and accuracy noticed in the previous test 
case (section 4.1). Figure 13 shows the displacements of the centre-line’s points along X and 
Z given by 3D-BLM (blue lines) and 3D-FEM (red marks) for increasing F. Finally, Figures 
14 to 16 report the comparisons (between 3D-BLM and 3D-FEM) in terms of Cauchy stress 
fields. In particular, Figure 15 shows the normal stress CXX obtained for F=5000kN at three 
cross-sections (30%, 50%, 70% span), while the corresponding shear stresses along the tan-
gential and radial directions, CθX and CRX, are in Figures 16 and 17. 

Regarding the stress fields, it is worth noting that also in this test case the normal stresses 
follow a Navier-like distribution in the transverse cross-sections, while the shear stress distri-
butions are quite different from those observable in prismatic beams with circular hollow
cross-sections. For example, the tangential shear stress distributions are observed to change 
spanwise (i.e. from the root section to the tip section), while they would be the same at every 
cross-section in the prismatic case. In addition, in the present case we also have radial shear 
stresses, which, instead, are absent in the prismatic case. 

Figure 12: Comparing 3D-BLM and 3D-FEM in terms of tip-displacements (left) and simulation times (right) 
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Figure 13: Comparing 3D-BLM and 3D-FEM in terms of displacements along X (left) and Z (right) 

Figure 15: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

Figure 16: Stress field CθX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

Figure 17: Stress field CRX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

The results shown in this example, which are based on the formulas derived in section 3.2, 
confirm once again the effectiveness of our modeling approach in terms of computational ef-
ficiency and accuracy with respect to nonlinear 3D-FEM approaches. Other examples can also 
be found in previous works (e.g. [6,8,21]), which address other geometries and load cases. 
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5 CONCLUSIONS 
Non-prismatic beamlike bodies are characterized by non-uniform cross-sections, yielding  

stress distributions not predicable via prismatic beam theories and requiring non-prismatic 
beam models. This paper has illustrated a modeling approach for non-prismatic beams subject 
to large displacements, 3D cross-sectional warpings and small strains. Specifically, it provides 
a computationally efficient and accurate model that accounts for the main geometric features 
of such elements (e.g. taper) and provides the stress fields as linear combinations of 1D strain 
measures and geometric parameters, with the coefficients of such linear combinations to be 
computed only once for a given cross-sectional shape as solutions of PDEs, a fact which helps 
reducing the computational effort required to solve the 3D nonlinear problem. 

Two test cases have been presented to illustrate how the model can be used and which re-
sults it can provide. Analytical results have also been obtained, have been included in the nu-
merical version of the model (3D-BLM) and have been compared with the results of nonlinear 
3D-FEM analyses, confirming the efficiency and accuracy of the approach. Apart from the 
most theoretical outcomes of the model, it can be particularly useful for the design and opti-
mization of non-prismatic elements used in engineering: in particular, on the one hand the 
closed-form formulas obtainable from the model can help an engineer since the preliminary 
design tasks; on the other hand, the model implemented in a numerical code can be used for 
multi-objective optimization tasks thanks to its computational efficiency and accuracy. 

The results presented in this paper in terms of stress and strain fields have addressed the 
cross-sectional out-of-plane deformations and the corresponding PDEs. Investigations about 
the in-plane deformations and their PDEs would also be important, along with an analytical 
study about the effects of other geometric features (e.g. centre-line curvature) and those of the 
material non-homogeneity and anisotropy. An overview of other geometries that admit analyt-
ical closed-form solutions would also be interesting, plus other numerical examples validating 
the proposed modeling approach against other geometries and load cases. All such topics will 
be addressed in subsequent works.
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