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Abstract. This paper presents the aerodynamic shape optimization of the MEXICO wind tur-
bine (WT) blade, targeting the maximization of the axial moment and, hence, of the produced
power. The optimization is conducted using the OpenFOAM-based continuous adjoint solver
named adjointOptimisationFoam, developed and made publicly available by the group of au-
thors. This implements and solves the adjoint to the Navier-Stokes system of equations, coupled
with the differentiation of the Spalart-Allmaras turbulence model. Herein, this was extended to
include the adjoint to the flow equations which are solved for the absolute velocity in the rela-
tive reference frame. Challenges in the convergence of the adjoint equations, mostly attributed
to flow unsteadiness causing marginal convergence of the steady flow solver, are treated by
additionally implementing the Recursive Projection Method (RPM). Assessment of the adjoint
sensitivities with finite differences in a similar 2D case is also included. Then, the flow solution
for the MEXICO WT case is compared with the outcome of another CFD solvers and exper-
imental data, prior to the application of the expanded optimization software to maximize the
axial moment of the WT. The blade and the displacement of the surrounding grid nodes are
parameterized using a volumetric B-Splines morphing box. The optimization designed a blade
bended in the axial direction axial moment, having a higher by 10.8%.
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1 INTRODUCTION

Wind energy is a widely used renewable energy source producing green and clean energy [1].

Among other, an increased interest has surfaced on how to decrease the cost of the produced

energy by wind turbines (WTs). This can be achieved by reducing the turbine capital cost

and/or by increasing the annual energy production. Upscaling WTs to have a bigger swept

area is a way to extract more energy, however, this solution affects the structural mechanics of

the WT [2], since mass increases with the cube of the rotor radius. Generally, the design of

WTs is a multidisciplinary trade-off among aerodynamic performance, structural efficiency and

manufacturing cost [3].

Currently, low-fidelity models are often used to design WT blades, because of their low com-

putational cost and simple implementation. Among them, Blade Element Momentum (BEM)

models are the most widely used [4]. Depending on the application however, such a model may

have limited success in accurately capturing viscous flow effects, compressibility and complex

3D patterns; hence, 3D Computational Fluid Dynamics (CFD) software should be used instead.

In other areas, such as aerospace or the automotive industry, CFD-based aerodynamic shape

optimization is used on a regular basis [5, 6]. Similar methods in the wind energy field are

not yet in widespread use. High-fidelity CFD-based shape optimization can be performed with

or without computing the gradient of the objective function. In [7], a WT blade winglet was

optimized using a 3D CFD model and a gradient-free method using two design variables to

increase the moment which, in turn, increased power production by 9%. Increasing the number

of design variables is expected to increase the optimization turn-around time of gradient-free

methods a lot. Gradient-based optimization may overcome this manner as the adjoint method

is the only way to compute the required gradient components at a cost that does not scale with

their number [8, 9]. The first time the adjoint to a RANS equations solver was used to optimize

the lift-to-drag ratio of a WT blade airfoil was in [10].

A few 3D adjoint-based shape optimizations considered modelling the rotation effects. In

one of them [11], the NREL Phase VI rotor was optimized using the RANS equations. The

continuous adjoint to the discrete adjoint to the RANS equations, including the adjoint to the

Spalart-Allmaras turbulence model, was used in [12] to maximize the power of the MEXICO

WT rotor with the flow and adjoint solvers running on GPUs.

In the present work, the aerodynamic shape of the MEXICO WT blade is optimized in order

to increase the axial moment and, thus, power production. The RANS equations are formulated

in the relative reference frame and solved for the absolute velocity. Initially, the CFD analysis of

the MEXICO WT blade is validated with two other CFD solvers and experimental data. A con-

tinuous adjoint formulation is then used to compute the gradient and support the optimization.

The adjoint to the terms emerging from changing the reference frame to the relative one is also

included, along with the differentiation of the Spalart-Allmaras turbulence model. Although

a steady-state RANS solver was used and was sufficient in capturing the main aspects of the

flow, small scale unsteadiness led to oscillating flow solver residuals and, as a result, the adjoint

solver diverged on most optimization cycles. To stabilize the latter and allow an uninterrupted

optimization, the Recursive Projection Method (RPM), developed in [13] for the stabilization

of unstable iterative procedures, was used to support the adjoint method, leading to an increased

axial moment by 10.8%.
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2 Flow and adjoint equations

2.1 Flow (primal) equations

The flow model includes the steady-state RANS equations for incompressible flows, coupled

with the Spalart-Allmaras turbulence model [14]. The flow equations are solved for the absolute

velocity in the rotating reference frame. These equations coincide with those of the Multiple

Reference Frame (MRF) approach, with uniform angular speed � being uniform along the

entire computational domain in our case. The flow equations read

Rp=−∂wj

∂xj

=0 (1a)

Rv
i =wj

∂vi
∂xj

− ∂τij
∂xj

+
∂p

∂xi

+ eijk�jvk=0 , i = 1, 2, 3 (1b)

Rν̃=wj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃ P (ν̃)+ν̃D(ν̃)=0 (1c)

RΔ=
∂

∂xj

(
∂Δ

∂xj

Δ

)
−Δ

∂2Δ

∂x2
j

− 1=0 (1d)

where vi and wi are the absolute and relative velocity components, respectively (vi = wi +
eijk�j(xk − xc

k) where xk denotes the position vector, eijk stands for the Levi-Civita symbol

and xC
k corresponds to the origin lying on the rotation axis), p is the static pressure divided

by the constant fluid density, τij = (ν+νt)
(

∂vi
∂xj

+
∂vj
∂xi

)
and ν and νt = ν̃fv1 are the constant

bulk and turbulent viscosities. Eq. 1c is solved for ν̃ and terms P (ν̃) & D(ν̃) stand for the

production and destruction terms, respectively, while the rest of terms in Eq. 1c are explained

in [14]. Eq. 1d is the eikonal equation, [15], used to compute distances, Δ, from the nearest

wall, as required by the turbulence model. The objective function to be maximized is the axial

moment coefficient,

J=

∫
SW

rMi eijk(xj − xc
j) (−τklnl + pnk) dS

1
2
lAU2∞

(2)

where rMi is the unit vector in the axial direction. The blade length is l, U∞ is the far-field

velocity magnitude, A is the blade area perpendicular to the flow direction and SW is the blade

surface.

2.2 Continuous adjoint formulation

The first step in the formulation of the continuous adjoint method is the definition and sub-

sequent differentiation of the Lagrangian function

L=J+

∫
Ω

(
uiR

v
i +qRp+ν̃aR

ν̃+ΔaR
Δ
)
dΩ (3)

In Eq. 3, ui denotes the adjoint velocity components, q is the adjoint to the pressure p, ν̃a is the

adjoint turbulence variable and Δa is the adjoint distance. The derivatives of L with respect to

(w.r.t.) the design variables bn, n ∈ [1, N ] , yields

δL

δbn
=

δJ

δbn
+

∫
Ω

(
ui
δRv

i

δbn
+q

δRp

δbn
+ν̃a

δRν̃

δbn
+Δa

δRΔ

δbn

)
dΩ (4)
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where δ
δbn

(.) represents total (or material) derivatives and

δJ

δbn
=

1
1
2
lAU2∞

[ ∫
SW

rMi eijk(−τklnl + pnk)
δxj

δbn
dS−

∫
SW

rMi eijk(xj − xc
j)
δτkl
δbn

nldS

+

∫
SW

rMi eijk(xj − xc
j)(−τkl + pδlk)

δ(nldS)

δbn
+

∫
SW

rMi eijk(xj − xc
j)

δp

δbn
nkdS

]
(5)

Further developing Eq. 4 makes use of δ
δbn

(
∂(.)
∂xj

)
= ∂

∂xj

(
δ(.)
δbn

)
− ∂(.)

∂xk

∂
∂xj

(
δxk

δbn

)
(see [16]), and

the Gauss divergence theorem. Only the differentiation of the continuity equation is shown∫
Ω

q
δRp

δbn
dΩ=

∫
SW

−qnj
δwj

δb
dS

+

∫
Ω

[
∂q

∂xj

δvj
δbn

− ∂q

∂xj
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δxk

δbn
+q

∂vj
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∂
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(
δxk

δbn

)
−qejlk�l

∂

∂xj

(
δxk

δbn

)]
dΩ

(6)

In Eq. 6, all terms including the so-called grid sensitivities δxk

δbn
contribute to the sensitivity

derivatives. The rest of integrals in Eq. 3 are expanded similary. Boundary integrals including

flow variations contribute to the adjoint boundary conditions whereas field integrals of the same

quantities contribute to the field adjoint equations.

2.2.1 Field adjoint equations

In order to avoid the computation of variations in the flow variables w.r.t. bn within the field

integrals of the developed form of Eq. 4, the multipliers of these terms are set to zero. Thus, the

field adjoint equations

Rq=−∂uj

∂xj

= 0 (7a)

Ru
i =uj

∂vj
∂xi

− ∂(wjui)

∂xj

−
∂τaij
∂xj

+
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+eijkuj�k+ν̃a
∂ν̃
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− ∂

∂xl

(
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Y

emjk
∂vk
∂xj

emli

)
=0 , i=1, 2, 3 (7b)

Rν̃a =−∂(wj ν̃a)
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)
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∂
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Δa
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)
+ν̃ν̃aCΔ=0 (7d)
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emerge, where τaij = (ν+νt)
(

∂ui

∂xj
+

∂uj

∂xi

)
is the adjoint stress tensor. The Cν̃a , CY and CΔ terms

in Eq. 7c are defined in [17].

2.3 Sensitivity derivatives

After eliminating all other integrals in the developed form of Eq. 4, by satisfying the adjoint

field equations and boundary conditions (omitted here in the interest of space; see [9] for a

detailed derivation), the remaining terms can be computed at a negligible cost and constitute the

sensitivity derivatives of J , which read

δL

δbn
=

∫
SW

τaijnjeikl�k
δxl

δbn
dS+

1
1
2
lAU2∞

[ ∫
SW

rMi eijk(−τklnl + pnk)
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∫
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]
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dΩ
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σ
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−2ν̃a
cb2
σ

∂ν̃

∂xj
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∂Δ

∂xj

∂Δ

∂xk

]
∂

∂xj

(
δxk

δbn

)
dΩ (8)

where �Y is the flow vorticity.

3 The Recursive Projection Method

Both the primal and adjoint equations are solved in OpenFOAM using a pressure-based

solver. The primal and adjoint solvers are both variants of the standard SIMPLE algorithm [18]

with small modifications. The slow convergence, or even divergence, of SIMPLE-like solvers

is usually related to a difficulty in reducing the primal/adjoint pressure equation residuals. This

difficulty is even more pronounced in cases that exhibit unsteadiness where it is not unusual

for the steady primal solver residuals to marginally converge and then begin to oscillate after a

number of iterations. This is usually accompanied by the subsequent divergence of the contin-

uous adjoint solver; this behavior may be observed even in cases with small-scale unsteadiness

[19]. This issue was observed in the optimisation of the WT and, on a number of optimization

cycles, the use of the RPM was necessary to make the adjoint equations converge.

The RPM is a technique for stabilizing unstable iterative procedures, formally written as

UUU (n+1) = FFF (UUU (n)), where UUU ∈ RM is the array of (primal or adjoint) unknowns and n the

iteration counter. If the largest eigenvalue of the Jacobian matrix FU exceeds unity, such a

scheme is expected to diverge and, on many occasions, the RPM can make such an otherwise

diverging scheme converge. First, the method needs to identify the diverging modes of FU , i.e.

the eigenvectors corresponding to the largest eigenvalues. Once identified, and assuming that

these modes are m in total, they can form a basis Z∈RM×m which is used to split the solution

space RM into two parts: the unstable subspace P∈RM , spanned by the m diverging modes of

FU , and its orthogonal complement Q∈RM . The solution UUU is also decomposed into Up ∈ P

and Uq ∈ Q; the unstable and stable parts of the solution respectively. A stabilized iterative

scheme is thus derived where a Newton iteration is performed on Up while the original scheme

is retained for Uq. This way, the RPM makes a previously diverging scheme converge.

Practically, m is initially zero and gradually grows as diverging and slowly decaying modes

are identified and incrementally appended to Z throughout the solution of the adjoint equations.
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Additionally, Z is approximated using power iterations on an initial matrix estimate (more

details about the implementation of the RPM can be found in [13]). Finally, the new scheme

derived through the RPM becomes stable after all the diverging modes have been identified and

provided that Z has been approximated with sufficient accuracy.

4 Analysis and Optimization of the WT blades

This work presents the aerodynamic shape optimization of a Horizontal Axis Wind Turbine

(HAWT) blade, namely that of the MEXICO WT, associated with the EU project ”Model Rotor

Experiments In Controlled Conditions” [20]. Measurements were performed in the Large Low-

Speed Facility of DNW in the Netherlands [20, 21]. The computational domain Ω includes

one third of the WT disk, with periodic boundary conditions. The CFD domain and mesh are

presented in Fig. 1. The hybrid CFD mesh is generated with ≈ 107 cells using Pointwise.

Figure 1: CFD domain and mesh around the MEXICO WT blade.

4.1 Flow Solver Verification

The wind speed and yaw angle are 10m/s and 0◦, respectively. The pressure coefficient

distribution on a number of different spanwise positions over the blade is shown in Fig. 2.

OpenFOAM-based results are compared with wind tunnel measurements and two other CFD

results. The latter are obtained from the MaPFlow code of the Lab. of Aerodynamics, NTUA

[22] and the GPU-enabled PUMA code (incompressible flow solver) of the Parallel CFD &

Optimization Unit, NTUA [12]. All CFD results are in very good agreement.
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Figure 2: MEXICO WT Blade: Comparison of the pressure coefficient computed by Open-

FOAM, PUMA and MaPFlow with measurements, at four spanwise positions.

It can be observed that pressure on the suction side is underpredicted by all CFD results

and, in those cases, the experimental results are not in good agreement with CFD. A number of

possible reasons for this are mentioned in [23]. On the other hand, all CFD results shown here

and additional ones presented in [23] are in very good agreement.

4.2 Verification of the Sensitivity Derivatives

The adjoint-based sensitivity derivatives are verified against the results of finite-differences

(FDs) in this section. Since FDs are very time consuming due to the need to solve the flow
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equations twice for each design variable, the adjoint-based sensitivity derivatives are verified

on a 2D mixer case, Fig. 3. Adjoint-based sensitivities are in a good agreement with FDs and

can be used in a gradient-based optimization loop.

(a)
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(c)

Figure 3: 2D mixer: Verification of the adjoint-based sensitivity derivatives with FDs. (a)

Case geometry; blue/red lines correspond to rotating/stationary walls. The grey area indicates

the rotating part of the computational domain, i.e. the part in which additional terms in the

momentum equations, Eq. 1b are introduced. The lattice of control points parameterizing the

rotor is also shown. The coordinates of the control points in red act as the design variables.

(b)-(c) Comparison of the adjoint-based derivatives with FDs for the x and y coordinates of the

control points.

4.3 Wind Turbine Blade Optimization

After validating the flow solver and sensitivity derivatives, the next step includes the opti-

mization of the WT blade to maximize the axial moment coefficient, Eq. 2. The blade was

parameterized using the volumetric B-Splines morphing box presented in Fig. 4. The role un-

dertaken by the RPM within the first optimization cycle is explained in Fig. 5. With a converged

adjoint, optimization ensued and, after 15 cycles, the axial moment coefficient has increased by

10.8%, from 0.2332 to 0.2584.
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Figure 4: MEXICO WT Blade: A 6×12×6 volumetric B-Splines morphing box parameterizes

the blade and part of the mesh. Control points (CPs) in red were allowed to move only in the

axial direction (z); CPs in blue remain frozen during the optimization.
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Figure 5: MEXICO WT Blade: Convergence of the adjoint equations with/without the RPM

(blue/red) within the first optimization cycle. Residuals averaged over the ensemble of equations

are plotted in logarithmic scale.

From Figs. 6, it can be observed that the optimizer has mainly changed the shape of the blade

close to its tip. Smaller changes can also be seen close to the root. Fig. 7 demonstrates that the

optimizer bended the tip towards the axial flow direction and slightly increased the blade yaw

angle at the same position.
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(a) 25% Span (b) 35% Span

(c) 60% Span (d) 82% Span

Figure 6: Comparison of the baseline (magenta) and optimized (green) blade sections at a

number of spanwise positions.

Figure 7: Comparison of the baseline (white) and optimized (green) geometries of the blade, as

seen from its tip.

To get a clearer view on local deformations along the blade span, the cumulative normal dis-

placement of the optimized blade surface is presented in Figs. 8.

(a) Pressure side

(b) Suction side

Figure 8: Cumulative normal displacements of the blade surface. Positive/negative signs

(red/blue) indicate inward/outward displacements.
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The comparison of the pressure coefficient distribution on the blade for the baseline and

optimized geometries is presented in Figs. 9 and 10 for the pressure and suction sides, respec-

tively. Figs. 10a and 10b demonstrate that the largest pressure coefficient difference is at the

middle and upper part of the blade, whereas the pressure coefficient at the leading and trailing

edges does not change significantly w.r.t. the baseline design. For the pressure side of the blade,

Fig. 9a and 9b show that the significant pressure coefficient difference happens at the upper part

of the blade.

(a) Baseline

(b) Optimized

Figure 9: Comparison of the pressure coefficient distribution on the blade pressure side.

(a) Baseline

(b) Optimized

Figure 10: Comparison of the pressure coefficient distribution on the blade suction side.

The pressure coefficient distributions of the baseline and optimized geometries are also plot-

ted in Fig. 11 at a number of spanwise positions. It is evident that the largest increase in the

objective function comes from the tip, whereas the pressure coefficient is almost unchanged

close to its root.
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Figure 11: Comparison of the pressure coefficient of the baseline and optimized blades at four

spanwise positions.

5 Conclusions

This paper presented an application of the publicly available adjointOptimisationFoam,

the adjoint-based optimizer within OpenFOAM developed by the authors, to the optimization of

the MEXICO wind turbine, targeting an increased axial moment coefficient. The capabilities of

the software were enhanced by including the adjoint to the terms taking the rotation of the com-

putational domain into consideration. Convergence difficulties, encountered in the numerical

solution of the adjoint equations, were treated using the RPM which enabled the adjoint solver

to converge and compute the required sensitivities. The application of the extended software

led to an increase in the axial moment coefficient by 10.8%, by mainly bending the blade tip in

the axial direction and changing the blade yaw angle close to the tip.
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