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Abstract. This paper overviews the capabilities of adjointOptimisationFoam, an OpenFOAM-
based framework for adjoint-assisted, gradient-based optimisation that first appeared publicly
in the open-source CFD toolbox, OpenFOAM, in v1906. Capabilities of the publicly available
software and of the in-house version of it are separately discussed. The publicly available soft-
ware is structured in a way that allows for an automated shape optimisation loop, including all
steps from the solution of the flow equations to the update of the design variables in a single ex-
ecutable, avoiding thus the need for external scripting. The software has already been used in a
number of industrial optimisation problems, some of which will briefly be presented herein. Ad-
ditionally, adjointOptimisationFoam is currently developed and extended by the Parallel CFD
& Optimization Unit of NTUA. Topics of active development include a) the continuous adjoint
to unsteady flows, including data compression techniques to reduce the memory footprint, b)
stabilisation techniques for the solution of the primal and adjoint equations based on the Re-
cursive Bisection Method and the control of the Adjoint Transposed Convection term, c) a suite
of tools for topology optimisation, with or without heat transfer, occasionally in the presence
of two fluids, and d) a number of adjoint-assisted methods for Uncertainty Quantification and
Robust Design Optimisation.
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1 INTRODUCTION

The open-source CFD toolbox, OpenFOAM1, is one of the largest open-source projects re-

lated to the solution of a number of computational problems pertaining to fluid mechanics,

with solvers tackling compressible and incompressible, single and multi-phase flows, chemi-

cal reactions, heat transfer, species transport etc. Due to its versatility and capability to tackle

a wide range of physical problems, it has attracted the attention of many industrial sectors,

among which the automotive, energy and turbomachinery ones as well as industries related to

combustion, plastics etc.

In the OpenFOAM release by OpenCFD, version v1906, OpenFOAM introduced a library

supporting adjoint-based shape optimisation, developed by the Parallel CFD & Optimisation

Unit of NTUA (PCOpt/NTUA) and contributed by the group of authors. This paper focuses

on highlighting the capabilities of this publicly available software, presenting some indicative

applications and discussing further developments that are currently being undertaken in-house.

The main executable making use of the adjoint-based infrastructure is called adjointOptimi-
sationFoam; this name will hereafter be used to refer to all adjoint-related OpenFOAM capa-

bilities, both publicly available and in-house developed at PCOpt/NTUA. adjointOptimisation-
Foam has been continuously developed and maintained with publicly available contributions

till v2012.

The publicly available software is structured in a way that allows for an automated shape

optimisation loop, without the need for external scripting, incorporating a) the adjoint to steady-

state incompressible flows, with full differentiation of the Spalart-Allmaras model with or with-

out wall functions, b) a number of differentiated objective functions, like forces, moments and

total pressure losses, c) a parameterisation scheme based on volumetric B-Splines that can also

act as a grid displacement tool, d) two major families of methods for computing shape sen-

sitivity derivatives based on either surface or field integrals and e) a number of methods for

updating the design variables, like the one from Broyden-Fletcher-Goldfarb-Shanno (BFGS)

and Sequential Quadratic Programming (SQP, used for constrained optimisation). The software

has already been used in a number of industrial optimisation problems, some of which will be

briefly presented herein.

At the same time, adjointOptimisationFoam is further developed and extended in-house by

PCOpt/NTUA. Topics of active development include a) the continuous adjoint to unsteady

flows, focusing on the usage of efficient compression algorithms to cut down on the sizable

storage requirements associated with unsteady adjoint, b) stabilisation techniques, mainly fo-

cusing on the Recursive Projection Method, to tackle convergence challenges associated with

small scale oscillations of the flow field in practical applications, c) a suite of tools for topology

optimisation, including Conjugate Heat Transfer (CHT) and multiple fluids, for the design of

heat exchangers and d) a number of adjoint-assisted methods for Uncertainty Quantification

(UQ) and Robust Design Optimisation (RDO), including first-and second-order variants of the

Method of Moments, an adjoint-assisted regression approach to the non-intrusive Polynomial

Chaos Expansion (PCE) and the adjoint to the intrusive PCE variant. Some relevant applications

features will be briefly presented herein.

2 THE ADJOINT METHOD IN BRIEF

The adjoint method is used to compute the sensitivity derivatives (SDs) δJ/δbi, where J is

the objective function of the optimisation problem (e.g. lift/drag forces, total pressure losses,

1www.openfoam.com
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etc) and bi, i ∈ [1, N ] the design variables, at a cost that does not scale with N . This allows for

handling optimisation problems with a very large number of design variables, occasionally in

the order of millions (see section 4.3).

The publicly available adjointOptimisationFoam solves the adjoint to incompressible, lami-

nar and turbulent flows. Assuming turbulence is modelled by the Spalart–Allmaras model, [1],

the flow (primal) equations read

Rp=−∂vj
∂xj

=0 (1a)

Rv
i =vj

∂vi
∂xj

− ∂τij
∂xj

+
∂p

∂xi

=0, i = 1, 2, 3 (1b)

Rν̃=vj
∂ν̃

∂xj

− ∂
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ν̃
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)
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]
− cb2

σ

(
∂ν̃

∂xj
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−ν̃ P (ν̃)+ν̃D(ν̃)=0 (1c)

where vi are the velocity components, p the static pressure divided by the constant density, ν

and νt the constant bulk and turbulent viscosity, respectively, τij=(ν+νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
the stress

tensor components, ν̃ is the turbulence model variable and Δ is the distance from the wall.

Details about the terms and constants of eq. 1c can be found in [1]. To account for the distance

variation with respect to (w.r.t) the design variables during the adjoint formulation for shape

optimisation problems, [2], the Hamilton-Jacobi PDE is used for computing Δ

RΔ=
∂

∂xj

(
∂Δ

∂xj

Δ

)
−Δ

∂2Δ

∂x2
j

− 1=0 (2)

In industrial cases, the use of the law-of-the-wall (wall functions) is a common practice in order

to avoid extremely stretched grids close to the solid walls and lower the computational cost.

Working with a cell–centered finite volume discretisation scheme, Spalding’s law is used to

compute the friction velocity based on the velocity magnitude at the first cell-centre off the wall

[3].

As already mentioned, the adjoint equations are formulated in a way that makes the final

SD expression free of variations of the flow variables w.r.t. the design ones. To this end, an

augmented objective function L is formed by adding the field integrals of the products of the

flow PDEs and the adjoint variable fields to the objective function J , i.e.

L=J+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ+

∫
Ω

ΔaR
ΔdΩ (3)

where Ω is the computational domain, ui the adjoint velocity components, q the adjoint pressure,

ν̃a the adjoint turbulence variable and Δa the adjoint distance. Given that, upon convergence,

the residuals of the primal equations are zero, L≡J .

After differentiating eq. 3 w.r.t. bn and developing it using the Gauss divergence theorem, the

adjoint PDEs result by setting the multipliers of the derivatives of the flow variables w.r.t. bn to
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zero, [2], and read
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= 0 (4a)
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where τaij = (ν+νt)
(

∂ui

∂xj
+

∂uj

∂xi

)
are the adjoint stress tensor components. The Cν̃ , CY and CΔ

expressions can be found in [4, 5].

The adjoint boundary conditions are defined after zeroing the multipliers of the derivatives

of the flow variables w.r.t. bn in the boundary surface integrals emerging after differentiating

eq. 3 and applying the Gauss divergence theorem. The detailed presentation of the adjoint

boundary conditions can be found in [2], including the adjoint law of the wall for cases using

wall functions.

The final SD expression depends on the design variables bn (see, for instance, [6] for shape

and [7] for topology optimisation). It is important to note that the eqs. 4a to 4c do not depend

on bn and can, thus, be used with any design variable, supporting for instance shape [2], flow

control [8], topology optimisation [7] (after minor additions), etc.

The publicly available version of adjointOptimisationFoam includes the adjoint to the Spalart–

Allmaras turbulence model and with or without wall functions, [4, 2]. The adjoint to a number

of other turbulence models has also been developed in-house and can be found in [9, 8] for

high- and low-Re variants of the k − ε turbulence model and in [10] for the k − ω SST one.

3 SHAPE OPTIMISATION

3.1 Publicly Available Functionality

In shape optimisation, the publicly available adjointOptimisationFoam can be used to com-

pute only sensitivity maps or perform shape optimisation loops.

Sensitivity maps, like the one presented in fig. 1, are plots of the derivatives of the objective

function w.r.t. the normal displacement of boundary wall nodes and may become a very useful

tool for designers, since they offer insight into areas with great aero/hydrodynamic optimisation

potential and mark the direction of favorable surface displacement. Hence, at the cost of a

single flow and adjoint solution, the designer can obtain useful information about favorable

shape deformations without even running an optimisation loop.

To create an automated shape optimisation loop, apart from solving the flow and adjoint

equations, a number of additional steps need to be performed within each cycle, fig. 2. ad-
jointOptimisationFoam incorporates all these steps within a single executable, without external

scripts for managing the optimisation process.

Regarding parameterisation (which, among other, determines the design variables control-

ling the aero/hydrodynamic shape), adjointOptimisationFoam makes use of volumetric (i.e. trivari-
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Figure 1: Drag sensitivity map computed on the surface of the DrivAer car model. Blue/red

areas should be displaced inwards/outwards to reduce drag. All other areas have a negligible

effect on drag.

ate) B-Splines; this is based on structured grids of control points, the coordinates of which act

as the design variables, fig. 3. More details about the mathematical background of the parame-

terisation tool can be found in [11].

Regarding the available objective functions, adjointOptimisationFoam can handle forces,

moments, total pressure losses and a surrogate objective for noise minimisation, see [11].

Sensitivity derivatives for shape optimisation can be computed using two families of meth-

ods, based on either surface or field integrals, namely the (E-)SI and FI adjoints developed in

[6]. The E-SI approach includes also the adjoint to the grid displacement model, taking into

consideration the effect of the so-called grid sensitivities.

The design variables can be updated using a number of methods, including among other the

conjugate gradient and (L)BFGS, [12], ones for unconstrained optimisation problems as well

as Rosen’s projection method, [13], and SQP, [12], for optimisation problems including con-

straints. All the above-mentioned objective functions can also act as constraints (for instance,

by setting target or threshold values for them). Additionally, some geometric constraints, like

the area/volume of an aerodynamic shape, can also be imposed.

Finally, all grid displacement methods already available in OpenFOAM can be used to adapt

the internal mesh points to the new boundary designed by the optimisation loop. Experience

with a number of industrial optimisation problems has shown that the volumetric B-Splines

used to parameterise surfaces can also act as a robust grid displacement method and are, hence,

usually preferred to other methods.

An indicative application of adjointOptimisationFoam, studied in [5], deals with the multi-

point, multi-objective optimisation of the “FP01” concept car designed by the Toyota aerody-

namics department, depicted in fig. 3. To investigate the trade-off between drag and side-wind

sensitivity, a two operating point design problem is defined and solved. The two operating points

correspond to two flow directions (0o and 30o side-wind); each case is associated with its own

objective function. The two functions being minimised are the drag coefficient at 0o and the yaw

moment coefficient at 30o side-wind. The parameterisation of the spoiler and diffuser regions

with volumetric B-Splines boxes is depicted in fig. 3. The Pareto front of non-dominated solu-

tions, computed by combining the two objective functions with different weight value-sets and

optimising anew, is presented in fig. 4, along with the optimised car geometries corresponding

to a number of Pareto front members. The optimisation was based on the (steady-state) RANS

equations for the CPU cost to be affordable. However, some of the optimised geometries were
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Figure 2: Flowchart of a typical shape optimisation loop. U stands for the primal variables

(unknowns in eqs. 1b and 1c). Ψ are the adjoint variable fields, i.e. solutions to eqs. 4.

Figure 3: Two morphing boxes parameterising the spoiler and diffuser areas of a concept car.

Case studied in [5]. The location of the morphing boxes has been found after computing sensi-

tivity maps for the two objectives.

re-evaluated using DDES, [5]; it was observed that even though the quantitative reduction of

the objective functions was different for the RANS- and DDES-based evaluations, the geome-

tries designed using the RANS equations were indeed better than the baseline car even when

re-evaluated with DDES.
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Figure 4: Shape optimisation of the FP01 concept car: Top: Front of non–dominated solutions

(filled, red squares) and convergence paths of the optimisation runs carried out using different

sets of weights for the drag coefficient (plotted in the abscissa) and the yaw moment coefficient

(shown in the ordinate). All values have been normalised w.r.t. the baseline geometry. Mid

and bottom: optimised geometries (port side) compared to the baseline car (starboard side),

corresponding to four Pareto front members. Case studied in [5].

197



E. Papoutsis-Kiachagias, K. Gkaragkounis, A.-S. Margetis, T. Skamagkis, V. Asouti and K. Giannakoglou

3.2 In-house shape optimisation developments

The publicly available shape optimisation infrastructure is enriched in-house with a number

of additional objectives and parameterisation schemes/design variables. Indicatively, shape op-

timisation can be performed using the displacement of all wall nodes as the design variables. To

ensure the surface smoothness while using such a high number of design variables, the boundary

displacement is smoothed using a Helmholtz-type PDE, as in [14].

An indicative application pertaining to the optimisation of a Kaplan-type turbine runner is

presented in fig. 5. The objective function is to minimise the area of the runner surface with a

pressure below a certain threshold, to avoid cavitation. Since, in gradient-based optimisation,

objective functions must be differentiable, the minimum of the pressure field is replaced by a

differentiable sigmoid function, as in [15]. As seen from fig. 5, the cavitation-prone areas have

practically disappeared after 40 cycles.

The in-house functionality of adjointOptimisationFoam has also been extended to include

the adjoint method supporting CHT shape optimisation, see [16].

4 ADDITIONAL FEATURES - EXTENSIONS

adjointOptimisationFoam is actively being developed at PCOP/NTUA, extending the pub-

licly available features and adding new ones. In this section, some of these features are briefly

discussed and indicative applications are showcased.

4.1 Compression methods for unsteady adjoint simulations

In gradient-based optimisation with unsteady flows, the adjoint equations must be integrated

backwards in time; this requires the instantaneous flow fields to be available at each time-step of

the adjoint solver. Storing the entire flow history is usually infeasible for practical applications

due to the immense memory requirements. The latter can be alleviated using the so-called

check-pointing approach, [17], which stores a number of flow solutions (the check-points) along

the simulation time span; then, the flow solution at any time-step other than a check-point is

retrieved by integrating the flow equations starting from the nearest check-point, while re-using

check-points that become idle. Though check-pointing can reduce storage requirements, the

additional CPU cost for recomputing intermediate flow fields might not be negligible at all.

Lately, a compressed full storage strategy for unsteady adjoint-based optimisation problems

has been implemented and proved to exhibit great benefits compared to the memory require-

ments of a (uncompressed) full storage, by avoiding at the same time the flow recomputations

of check-pointing and maintaining the SD accuracy. The compression of the computed flow

fields at each time-step is performed using a combination of the ZFP lossy compression al-

gorithm, [18], and an incremental variant of Proper Generalised Decomposition (iPGD) [19].

Initial results show that an efficient combination of the two approaches can lead to a compres-

sion ratio of the order of 100-1000, [20], allowing the compressed full storage of the flow fields

and avoiding, thus, the use of check-pointing and the associated extra CPU cost.

Indicatively, fig. 6 presents an adjoint-based optimisation of the fairing of the motorbike

tutorial of OpenFOAM, based on the URANS equations. The objective to be minimised is

the time-averaged drag exerted on the whole motorbike, fig. 6. The solver runs with Δt =
2.5·10−4sec for a total time of 7sec on a grid of ∼1.1·106 cells. The optimisation is performed

on two computational nodes with 128 GB memory each. A reduction in the memory footprint

by a factor of 480 was achieved, with a negligible error in the computed sensitivities, fig. 7.
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Figure 5: Kaplan-type turbine runner: optimisation targeting suppression of cavitation. Top:

pressure distribution over the initial (left) and optimised (right) geometries, as seen from the

outlet of the runner/suction side of the runner blades. The runner areas with a pressure below

the defined threshold are contained within the black lines (areas close to the leading edge of

the suction side and the trailing edge of the pressure side). The cavitation-prone areas have

practically disappeared in the optimised geometry. Bottom: cumulative normal displacement

of the optimised blade, plotted over the suction (left) and pressure (right) sides. Red areas have

been displaced “inwards” while blue areas have moved in the opposite direction. It is interesting

to note that even the pressure side has been slightly displaced in an attempt to eliminate the

cavitation-prone area close to the trailing edge. The geometry is a courtesy of Andritz Hydro.
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Figure 6: Case 4. Initial (left) and optimised (right) shape of the motorbike’s fairing.

Compression
Method

CPU cost
CR

Memory
Size(GB) ε

abs(h) rel

check-pointing 50.6 100% 218

iPGDZ 35.6 70.4% 479.1 4.25 0.59% 0.93
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Figure 7: Motorbike optimisation using unsteady adjoint: Left: CPU cost, compression ratio

(CR) and error in SDs (ε) at the first optimisation cycle, using a combination of ZFP and iPGD

(abbreviated as iPGDZ) to compress the entire flow field series, compared with check-pointing.

Right: evolution of the normalised mean drag coefficient during the course of the optimisation.

JD is reduced by 6.7%. By using iPGDZ, the memory footprint can be divided by a factor of

480 (from ∼ 2TB for the uncompressed full storage to 4.3GB for the iPGDZ-compressed full

storage) with a negligible error in SDs (less than 0.6%). Additionally, the computational cost

is reduced by ∼ 30% (from ∼ 51h to ∼ 36h) compared to that of a binomial check-pointing

approach which stores approximately 10% of the total number of flow fields.

4.2 Stabilisation of the adjoint equations

Despite the great cost benefits that can be achieved using the compressed full-storage strat-

egy presented in section 4.1, optimisation using unsteady flow solvers can be quite expensive

due to the high cost of each transient flow solution. In many industrial cases, steady-state

solvers are used even in the presence of mild, occasionally a bit stronger, flow unsteadiness in

an attempt to reduce the CPU cost of CFD evaluations and optimisations. However, the use

of steady-state solvers in cases with mild unsteadiness (or, even, cases with vortex shedding),

often encountered in flows past bluff bodies, usually leads to significant convergence difficul-

ties for both the primal and adjoint solvers. The use of a steady flow solver does not allow

convergence of the flow equations, and the adjoint solution may be led to stalling or divergence

[21, 22]. For the stabilisation of iterative procedures, the Recursive Projection Method (RPM),

[23], has been implemented within adjointOptimisationFoam to deal with the aforementioned

convergence difficulties, [20]. The RPM splits the solution space into two subspaces, contain-

ing the unstable and stable modes of the Jacobian matrix of the iterative scheme, where the

one is the orthogonal complement of the other. It, then, performs an additional Newton step

within the unstable subspace while retaining the original iterative scheme on its complement.

An indicative application of the RPM for the stabilisation of the adjoint equations in a problem

where vortex-shedding is predicted by a steady-state solver in fig. 8.
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Figure 8: Shape optimisation of a cylinder with a Re = 140, targeting min. drag under the

constraint of maintaining the cylinder area. Despite the high Re number and the presence of

vortex-shedding in the initial geometry, a steady-state solver is used for the solution of the

primal and adjoint equations. Top: Residuals of the primal (left) and adjoint (right) pressure

equations. Blue/red colors correspond to solutions with/without the RPM. In both cases plotted

on the right, the adjoint equations were solved after having stabilised the primal equations by

means of the RPM. The RPM manages to stabilise the solution of both the primal and the adjoint

equations. Bottom: streamlines of the flow velocity, colored by the velocity magnitude, plotted

around the initial and optimised geometries. Using the RPM, the optimisation converged to a

geometry in which vortex-shedding has been suppressed, justifying the use of a steady-state

solver.

4.3 Topology optimisation

Topology Optimisation (TopO) is nowadays a popular method for the preliminary design of

industrial duct systems with multiple inlets and outlets [24]. Though a number of variants ex-

ist for formulating the TopO problem, such as the density- (or porosity) based approach [25]

or level-set methods, they all follow the idea of artificially blocking part of an initial flow do-

main to penalize its counter-productive areas, in an attempt to minimize J . This blockage (or

porosity) field acts as the field of the design variables in TopO problems. Usually, one design

variable exists per grid cell, formulating optimisation problems with thousands or millions of

design variables. This particular feature of TopO makes the utilisation of adjoint methods for

computing δJ/δbn the only computationally feasible approach.

PCOpt/NTUA has recently incorporated a number of best practices related to porosity-based

TopO, such as the regularisation and projection of the porosity field to mitigate the effects of

a grid-dependent solution and alleviate the checkerboard effect [26], to the in-house version of

adjointOptimisationFoam, [7]. Additionally, a number of peripheral tools supporting TopO, like

the Method of Moving Asymptotes (MMA, [27]) used to update the design variables variables

in TopO problems with inequality and bound constraints, have also been implemented. Finally,

the adjoint to Conjugate Heat Transfer (CHT) problems, with one or more working fluids, has
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been implemented in adjointOptimisationFoam for tackling the optimisation/design of heat ex-

changers. An indicative application of TopO for CHT problems, initially presented in [7], is

showcased in fig. 9.

4.4 Adjoint methods for uncertainty quantification and robust design optimisation

Most of the optimisation applications assume fixed boundary conditions and do not consider

manufacturing imperfections. However, this is not the case in real life and industrial problems.

For instance, operating conditions may vary within a certain range, creating an uncertain envi-

ronment. If these variations are not taken into account, it is likely that the designed/optimised

geometries will perform efficiently solely at a single operating point [28]. Hence, there is a

need to develop alternative optimisation methods that account for uncertainties [29], a.k.a. ro-

bust design optimisation (RDO) methods. In order to measure the impact of uncertainties on the

performance of an aero/hydrodynamic shape, statistical moments (usually the mean value and

variance) of the Quantity of Interest (QoI, the objective function in optimisation problems with-

out uncertainties) have to first be quantified. The process of computing these statistical moments

is referred to as Uncertainty Quantification (UQ). In an RDO problem, a weighted combination

of the statistical moments of the QoI is minimised. A recent review of UQ methods and their

application in the RDO of air vehicles can be found in [30].

Here, we will focus on how adjoint methods, programmed within adjointOptimisationFoam,

can reduce the cost of some UQ approaches and/or drive the RDO loop. Non-intrusive Polyno-

mial Chaos Expansion (niPCE) [31, 32] is a popular UQ method that approximates the QoI as

a function of weighted polynomials of the uncertain variables. The weights of the polynomials

can be computed using either Gauss Quadrature rules or a regression approach, [33]. Adjoint

methods within adjointOptimisationFoam have been used to either compute the gradient of the

RDO objective function evaluated using the former approach, to drive the RDO loop, or provide

entries for the regression system of the latter approach at the cost of a single adjoint solution,

[34], reducing its UQ cost by a factor of M , where M is the number of the uncertain variables.

Additionally, an intrusive PCE (iPCE) variant for incompressible flows and its adjoint counter-

part have also been implemented within adjointOptimisationFoam, [35], further reducing the

cost of RDO for this particular type of problems.

Another UQ method that heavily utilises adjoint is the Method of Moments (MoM) [36, 37].

According to the MoM, the QoI is expanded into a Taylor series in terms of the uncertain

variables. By keeping only the first-order term in the Taylor expansion and computing the

first two statistical moments of the QoI, namely its mean and standard deviation, a First-Order

Second-Moment (FOSM) UQ method is formulated. Since the FOSM-based RDO objective

already includes first-order derivatives w.r.t. the uncertain variables, second-order mixed ones

(w.r.t. both design and uncertain variables) are needed to compute the gradient driving the RDO.

All first-order gradients, w.r.t. either the design or the uncertain variables, are computed based

on the continuous adjoint method presented in section 2. To avoid the computation of the

second-order mixed derivatives, with a cost that scales with the min. of M and N , its projection

to a certain vector is computed at a CPU cost of 2 Equivalent Flow Solutions, formulating the

only RDO approach known to the authors with a cost that is independent from both M and N .

The latter stands for the projected FOSM (pFOSM) method proposed by the group of authors,

[38], and implemented within adjointOptimisationFoam. Hessian computations used to support

the Second-Order Second-Moment (SOSM) variant of the MoM have also been implemented

within adjointOptimisationFoam and are discussed in [34].
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Figure 9: CHT optimisation of a micro-channel. The bottom and side walls of the channel

have a temperature of 373K while the flow enters the domain from the left with 273K and a

Re = 166. The walls adjacent to the inlet and outlet are adiabatic and the top boundary has

symmetry conditions. Weighted combinations of total pressure losses (Jpt) and the temperature

difference between the outlet and the inlet (JQ) of the domain are formulated and minimised,

using different weight value-sets. The fluid and solid distributions (blue and red areas, respec-

tively) obtained for the (1,0), (0.5,0.5) and (0.1,0.9) weight-value sets of Jpt and JQ, along with

the corresponding temperature fields are shown in the top three rows. Increasing the weight of

JQ computes ducts which are approaching the heated bottom wall and even create some fin-like

structures to increase heat transfer. The front of non-dominated solutions obtained for the vari-

ous weight value sets is plotted (bottom). All objective values have been normalised with those

corresponding to a completely fluidised domain. Case studied in [7].
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[29] G.I. Schuëller and H.A. Jensen. Computational methods in optimization considering un-

certainties - an overview. Computer Methods in Applied Mechanics and Engineering,

198(1):2–13, 2008.

[30] Z. Huan, G. Zhenghong, X. Fang, and Z. Yidian. Review of robust aerodynamic design

optimization for air vehicles. Archives of Computational Methods in Engineering, 26:685–

732, 2019.

[31] D. Xiu and G.M. Karniadakis. Modeling uncertainty in flow simulations via generalized

polynomial chaos. Journal of Computational Physics, 187:137–167, 2003.

[32] C. Dinescu, S. Smirnov, C. Hirsch, and C. Lacor. Assessment of intrusive and non-

intrusive non-deterministic CFD methodologies based on polynomial chaos expansion.

International Journal of Engineering Systems Modeling and Simulations, 2:87–98, 2010.

[33] D. Xiu. Fast numerical methods for stochastic computations: A review. Communications
in computational physics, 5:242–222, 2009.

[34] E.M. Papoutsis, V.G. Asouti, and K.C. Giannakoglou. Assessment of variants of the

method of moments and polynomial chaos approaches to aerodynamic uncertainty quan-

tification. In 4th ECCOMAS Thematic Conference on Uncertainty Quantification in Com-
putational Sciences and Engineering (UNCECOMP 2021), Virtual Event, Steamed from

Athens, Greece, June 27-30 2021.

[35] A.K. Papageorgiou, K.B. Fragkos, E.M. Papoutsis-Kiachagias, and K.C Giannakoglou.

Uncertainty quantification and robust design for aerodynamic applications, using continu-

ous adjoint methods. In 6th European Conference on Computational Mechanics (ECCM
6)-7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, UK,

June 11-15 2018.

[36] R.W. Waters and L. Huyse. Uncertainty analysis for fluid mechanics with applications.

NASA/CR 2002, 211449, 2002.

[37] M.M. Putko, P.A. Newman, A.C. Taylor, and L.L. Green. Approach for uncertainty prop-

agation and robust design in CFD using sensitivity derivatives. In AIAA Paper 2001-2528,
15th Computational Fluid Dynamics Conference, Anaheim, CA, 2001.

[38] K.B. Fragkos, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. pFOSM: An efficient

algorithm for aerodynamic robust design based on continuous adjoint and matrix-vector

products. Computers & Fluids, 181:57–66, 2019.

206


