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Abstract. This paper presents a parameterization-free framework for aerodynamic shape op-
timization based on the continuous adjoint method; the optimization controls a field of virtual
boundary displacements and requires a regularization which acts on the aforementioned (likely
noisy) field to transform them into a smooth displacement field, used to update the baseline ge-
ometry. Two different regularization approaches, based either on a Laplace-Beltrami equation
solved on the surface of the designed geometry or a p-Laplacian equation solved in the entire
computational domain, are utilized and assessed. To smoothly fade out the computed displace-
ments close to the fixed part of the body shape (if any) and enforce a seamless synthesis of the
optimized and fixed parts of the geometry, a proximity smoothing technique is also applied. The
whole chain is differentiated, introducing the adjoint to the regularization equations and lead-
ing to the computation of accurate sensitivity derivatives of the objective function. The tool is
implemented and tested on a 2D duct case as well as the optimization of the DrivAer car model.
The framework is developed by extending the adjointOptimisationFoam tool-set of OpenFOAM,
developed and made publicly available by the group of authors.
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1 INTRODUCTION

Shape optimization usually employs some kind of parameterization to control the shape be-
ing designed, either based on a CAD model, [12], or by directly controlling the CFD grid
(such as with a Free Form Deformation, FFD, tool [11]). These approaches have the advantage
of producing smooth geometries controlled by a relatively small number of design variables.
However, such a treatment may lead to sub-optimal solutions since these parameterizations re-
strict the design space. With an FFD tool, in particular, keeping certain parts of the designed
geometry fixed can become quite challenging as all nodes laying within the morphing lattice(s)
move when the positions of the control points change.

Alternatively, one could use the displacement of the boundary wall nodes or faces as the
design variables. However, the sensitivity derivatives of the objective function with respect to
(w.r.t.) the latter are often noisy, resulting to non-smooth optimized shapes. To deal with this
issue, some kind of regularization of the sensitivity derivatives, computed either explicitly, [15,
3] or implicitly, [4, 13, 8] must be employed; a schematic representation of such an approach is
given in fig. 1. The present work follows an implicit approach but formulates the optimization
problem in a way that does not regularize the sensitivity derivatives ad hoc. Instead, a new set
of design variables is introduced, which can be seen as the non-smooth vectorial displacement
of the boundary to be optimized. Then, regularization is applied to the design variables and
converts them to a smooth displacement field which can be used to update the shape. Adding
the adjoint to the regularization process into the (continuous) adjoint method, [10, 5], leads to
the computation of accurate sensitivity derivatives of the objective function w.r.t. these design
variables. This allows the utilization of state-of-the art update methods for the design variables,
like BFGS and, more importantly, allows the treatment of constraints (for instance through SQP)
as with any other parameterization; the latter is challenging with approaches that regularize only
the sensitivity derivatives [8].

The developed shape optimization framework is demonstrated with two regularization meth-
ods, one based on a Laplace-Beltrami equation solved only on the designed surface, [4], and
one based on a p-Laplacian equation solved in the entire computational domain, [8]. The two
variants are initially tested in a 2D internal aerodynamics case and, then, used for the drag
minimization of the DrivAer car model, [2]. The developed method is implemented within the
in-house variant of the publicly available adjointOptimisationFoam tool-set, programmed by
the group of authors within the OpenFOAM environment.

2 DESIGN VARIABLES AND SHAPE UPDATE

Let bfi , i ∈ [1, d] with d = 2(3) for 2D(3D) problems and f ∈ [1, Nf ] be a vector defined
on the Nf faces of the part of the geometry to be designed (active part of the geometry). In
what follows, superscript f will be used to indicate that a quantity is computed/stored on the
aforementioned boundary faces. The N =Nfd components of bfi stand as the design variables
of the optimization problem and can be seen as the (possibly non-smooth) displacement of each
boundary face from its original position xf,0

i . If bfi were used to directly update the positions
of the boundary faces through a gradient-based optimization algorithm, non-smooth geometries
might emerge, [15]; these can be attributed to the fact that the derivatives of the objective func-
tion J w.r.t. each bfi contain information about this face only, with no mechanism to enforce the
regularity of the final shape. Hence, some kind of regularization should be applied to obtain
a smooth boundary displacement, denoted by mi, i ∈ [1, d] in the continuous sense (or mf

i , as
seen from a discrete perspective). In this article, the mi field is computed through the solu-
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Figure 1: Flow chart of a typical optimization workflow based on the regularization of the
sensitivity derivatives (as in [4, 15, 13, 8].)

tion of a regularization Partial Differential Equation (PDE) Rr
i , solved either on the designed

geometry or throughout the entire domain, see section 2.1. We, additionally, introduce the m̃i

displacement field as

m̃i = f(rg)mi, i ∈ [1, d] (1a)
f(rg) = min(−2r3g + 3r2g , 1) (1b)

where rg are geodesic distances from the interface of the active and fixed parts of the geometry,
normalized by rp, to be referred to as the proximity threshold. The purpose of eq. 1a is to
smoothly fade out mi values close to the fixed part of the geometry, maintaining C0 and C1

continuity, fig. 3b; any other function with similar attributes could be used instead of eq. 1b. We
will hereafter refer to the process described by eqs. 1 as the proximity smoothing.

Finally, the update of the coordinates of point p is given by

∆xp
i =

∑
f∈(p)

wfpm̃i
f (2)

where f ∈ (p) denotes all faces having p as a vertex and wfp are weights, computed using the
inverse distance of the face center of f to point p and normalized so that

∑
f∈(p) w

fp = 1. It
should be noted that, in order to fully define the updated geometry using only the initial one and
the design variables field, the displacement field is always added to the coordinates of the initial
geometry. For the same reason, Rr

i and f(rg) are solved/computed on the initial geometry at
any optimization cycle. The workflow of the proposed shape optimization framework is given
in fig. 2, after briefly explaining the rest of its constituents.

2.1 The regularization PDEs

Two regularization PDEs are used in this paper, one based on a Laplace-Beltrami operator
and solved on the active parts of the geometry and one based on a p-Laplacian PDE solved in
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the entire computational domain.

2.1.1 Laplace-Beltrami

The Laplace-Beltrami PDEs, [4], read

Rr,LB
i = −r2LB

∂2mi

∂x2
s,j

+mi − bi = 0, i ∈ [1, d] (3)

where
∂(·)
∂xs,j

is the gradient operator constrained on the active part of the geometry S; zero Neu-

mann boundary conditions are imposed on its boundary, ∂S. The solution of eq. 3 is the field
that minimizes an integral objective function comprising the smoothness of mi and its deviation
from bi, weighted through the regularization radius rLB. We choose to regularize the vectorial
displacement bi, instead of its normal component only, to also take in-plane regularization into
account. Eq. 3 is numerically solved using the Finite Area Method (FAM, [16]), which resem-
bles the Finite Volume Method (FVM) but is dedicated in solving PDEs which are constrained
on curved surfaces.

2.1.2 p-Laplacian

Inspired by [8], the p-Laplacian regularization PDE is defined through the computational
domain as

Rr,pL
i =

∂

∂xj

[
|∇m⃗|p−2 ∂mi

∂xj

]
= 0 (4)

with boundary conditions expressed by

rpL |∇m⃗|p−2 ∂mi

∂xj

nj +mi − bi = 0 (5)

where |∇m⃗| =
√

∂mk

∂xl

∂mk

∂xl
and rpL is a regularization radius. The non-linear diffusivity in eq. 4,

namely |∇m⃗|p−2, penalizes mesh areas with high deformation gradients, with higher p values
increasing this penalization. If p=2, eq. 4 corresponds to a Laplace equation with a Robin-type
boundary condition. According to eq. 5, regularization is mainly conducted in the normal to the
boundary direction, with in-plane regularization taking place due to the indirect connection of
adjacent boundary values through eq. 4. Eq. 4 is solved using typical infrastructure existing in
any FVM software. The solution of eq. 4 can also be used to update the positions of both bound-
ary and interior mesh nodes or, in other words, eq. 4 can also be used as the grid displacement
PDE.

3 COMPUTATION OF SENSITIVITY DERIVATIVES

The flow problem is governed by the Navier-Stokes equations for incompressible fluids, cou-
pled with the Spalart-Allmaras turbulence model, [14]. The detailed development of the con-
tinuous adjoint equations can be found in [10] and the computation of the sensitivity derivatives
of the objective function J w.r.t. the coordinates of a boundary point xp

i is conducted using the
the so-called E-SI continuous adjoint approach, introduced in [5]. Here, we focus exclusively
on differentiating the chain presented in section 2 to compute δJ/δbfi , starting from δJ/δxp

i .
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By applying the chain rule, we get

δJ

δbfi
=

Nf∑
l=1

d∑
j=1

δJ

δml
j

δmj
l

δbfi
(6)

δJ

δml
j

=
d∑

k=1

δJ

δm̃l
k

δm̃l
k

δmj
l

(7)

The derivative of J w.r.t. the face displacement field m̃k at a face l can be computed after taking
eq. 2 into consideration as

δJ

δm̃k
l
=

d∑
j=1

∑
p

δJ

δxp
j

δxp
j

δm̃k
l
=

d∑
j=1

∑
p

δJ

δxp
j

∑
f∈(p)

wfp
δxf

j

δxl
k

=
∑
p∈(l)

wlp δJ

δxp
k

(8)

where p ∈ (l) are the points that belong to face l. It is interesting to note that sensitivities
w.r.t. the face displacement are computed using a point-to-face interpolation using the same
weights used for the face-to-point interpolation of the boundary displacement, eq. 2. Another
interesting observation is that, in the case of the point-to-face interpolation of the sensitivities,

the interpolation weights do not sum up to one. Additionally, according to eq. 1a,
δm̃l

k

δmj
l
=

f(rlg)δkj , where δkj is the Kronecker symbol.
The computation of δmj/δb

f
i in eq. 6 would require the differentiation of eq. 3 or 4 w.r.t. bfi

which requires the solution of N differentiated regularization PDEs. To reduce this cost, the
adjoint to the regularization PDEs can be devised. This is developed separately for Rr,LB

i and
Rr,pL

i in subsections 3.1 and 3.2.

3.1 Adjoint to the Laplace-Beltrami (LB) PDE

Let us consider the Lagrangian function L = J −
∫
S
ΨLB

k Rr,LB
k dS, where ΨLB

i is the adjoint
to mi, as computed by eq. 3. Its derivative w.r.t. bfi reads

δL

δbfi
=

∫
S

(
1

∆S

δJ

δmk

+ r2LB
∂2ΨLB

k

∂x2
s,j

−ΨLB
k

)
δmk

δbfi
dS +

∫
S

ΨLB
k

δbk

δbfi
dS

+

∫
∂S

r2LBΨ
LB
k

∂

∂xs,j

(
δmk

δbfi

)
ns,j∂(dS)−

∫
∂S

r2LB
∂ΨLB

k

∂xs,j

ns,j
δmk

δbfi
∂(dS) (9)

where ns,j are the components of the normal vectors to ∂S, constrained on S. To facilitate the
derivation of the continuous adjoint to Rr,LB

i , the discrete form of eq. 6 was converted into the
first term in the first integral on the r.h.s. of in eq. 9, with ∆S being the local face area. To
avoid the computation of δmk/δb

f
i , its multiplier in the surface integral of eq. 9 is set to zero,

formulating the adjoint Laplace-Beltrami PDEs as

RLB
Ψk

= −r2LB
∂2ΨLB

k

∂x2
s,j

+ΨLB
k − 1

∆S

δJ

δmk

= 0 , k ∈ [1, d] (10)

with zero Neumann conditions on ∂S, which nullify the last term on the r.h.s. of eq. 9. The
third term on the r.h.s. of the same equation vanishes automatically due to the Neumann con-
ditions imposed on mi. After satisfying the adjoint Laplace-Beltrami PDEs and their boundary
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conditions, the sensitivity derivatives are given by

δL

δbfi
=

∫
S

ΨLB
k

δbk

δbfi
dS = ΨLB

i

∣∣f ∆Sf (11)

i.e. they are computed as the solution of the adjoint Laplace-Beltrami PDEs, multiplied by the
local face area. It is interesting to note that eq. 10 is the equivalent to eq. 3, with the sensitivity
derivative w.r.t. the face displacement being regularized, instead of the face displacement.

3.2 Adjoint to the p-Laplacian (pL) PDE

Following a similar process, we define L = J +
∫
Ω
ΨpL

k Rr,pL
k dΩ and differentiate it w.r.t. bfi

to get

δL

δbfi
=

∫
S

1

∆S

δJ

δmk

δmk

δbfi
dS +

∫
S

(p−2) |∇m⃗|p−4 ΨpL
k

∂mn

∂xl

∂mk

∂xj

nj
∂

∂xl

(
δmn

δbfi

)
dS

−
∫
S

(p−2) |∇m⃗|p−4 ∂Ψ
pL
k

∂xj

∂mn

∂xl

nl
∂mk

∂xj

δmn

δbfi
dS +

∫
S

|∇m⃗|p−2 ΨpL
k

∂

∂xj

(
δmk

δbfi

)
njdS

−
∫
S

|∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj
δmk

δbfi
dS +

∫
Ω

(p−2)
∂

∂xl

[
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

]
δmk

δbfi
dΩ

+

∫
Ω

∂

∂xj

[
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

]
δmk

δbfi
dΩ (12)

After differentiating eq. 5, the sum of the second and fourth integrals on the r.h.s. of eq. 12 is
transformed into integrals that contain only δmk/δb

f
i and eq. 12 becomes

δL

δbfi
=

∫
S

[
1

∆S

δJ

δmk

− ΨpL
k

rpL
− (p−2) |∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

nl − |∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj

]
δmk

δbfi
dS

+

∫
Ω

[
∂

∂xj

(
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

)
+ (p−2)

∂

∂xl

(
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

)]
δmk

δbfi
dΩ

+

∫
S

ΨpL
k

rpL

δbk

δbfi
dS (13)

To avoid the computation of δmk/δb
f
i , its multipliers in eq. 13 are set to zero, resulting to the

adjoint p-Laplacian PDEs

RpL
Ψk

=
∂

∂xj

(
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

)
+ (p−2)

∂

∂xl

(
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

)
= 0, k ∈ [1, d]

(14)

and their boundary conditions

|∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj +
ΨpL

k

rpL
+ (p−2) |∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

nl −
1

∆S

δJ

δmk

= 0 (15)
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Finally, the sensitivity derivatives are given by

δL

δbfi
=

∫
S

ΨpL
k

rpL

δbk

δbfi
dS = ΨpL

i

∣∣∣f ∆Sf

rpL
(16)

It is interesting to note that for p ̸= 2 and for the initial geometry with mi=0 everywhere, eq. 4
is not differentiable due to the presence of |∇m⃗|p−2. One can, however, start the optimization
with p=2, in which case eqs. 14 and 15 simplify to

RpL
Ψk

=
∂2ΨpL

k

∂x2
j

= 0 (17a)

∂ΨpL
k

∂xj

nj +
ΨpL

k

rpL
− 1

∆S

δJ

δmk

= 0 (17b)

and increase p in the subsequent optimization cycles.
A flow chart of the complete shape optimization framework is given in fig. 2.

4 APPLICATIONS

The shape optimization workflow summarized in fig. 2 is initially applied to the optimization
of a 2D S-shaped duct and, then, to the DrivAer car model.

4.1 S-shaped duct

The shape optimization of the S-shaped duct of fig. 3a, targets the minimization of total
pressure losses between its inlet and outlet. The flow is laminar with Re=1000, a structured
grid of 24K cells is used and the active part of the geometry contains 226 faces located on the
two curved parts of the boundaries, leading to 452 design variables. L-BFGS, [6], is used to
update the design variables, coupled with a line-search approach that satisfies the strong Wolfe
conditions, [9], and the boundary displacement is propagated to the interior grid nodes using
the Inverse Distance Weighting method, [7]. Optimizations run for 20 cycles at most, unless the
relative reduction in the J value between two optimization cycles is smaller than 10−4.

The workflow of fig. 2 is applied using both the Laplace-Beltrami (LB) and the p-Laplacian
(pL) as regularization PDEs. In all cases, rp=0.5m (see section 2), compared to the length of
the active part of the geometry which is 2m. The distribution of the proximity filter, f(rg) in
eq. 1b, along the length of the initial geometry is shown in fig. 3b.

Concerning the LB regularization, it can be observed that rLB∈ [0.25, 1]m lead to optimized
geometries with almost the same J value, fig. 4a, even though the resulting geometries differ
noticeably from each other, fig. 4b. From the same figure, we can observe that larger rLB values
lead to geometries with larger wavelength features, as expected. Additionally, increasing rLB
beyond a certain threshold (4m in this case) does not seem to have any impact on the optimized
geometry or the convergence of the optimization (in figs. 4a and 4b , curves corresponding
to rLB = 4m and 5m practically coincide). This can be interpreted by viewing rLB as the
equivalent smoothing radius of an explicit regularization method using a Gaussian kernel, [15],
above which all nodes of the surface are taken into consideration when computing δJ/δbfi for
a specific face. Fig. 5 compares the values of δJ/δbfi , for various rLB radii, with the values
of δJ/δm̃i

f (i.e. the regularized and non-regularized sensitivities). It can be observed that
larger rLB values gradually smooth out the picks of the non-regularized sensitivities, up to a
point where increasing rLB further has no impact on the result. Finally, the virtual and actual
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Figure 2: Flow chart of the proposed optimization workflow.
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displacements corresponding to the optimized duct geometry computed with rLB = 0.2m are
plotted in fig. 6. The impact of proximity smoothing close to the boundaries of the duct is
evident, with regularization seemingly playing a smaller role in this case.
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Figure 3: S-shaped duct: (a) active part of the geometry and mesh, focused around the S-shaped
part of the duct (the mesh is further extended upstream and downstream) and (b) the distribution
of the proximity smoothing function of eq. 1b.
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Figure 4: S-shaped duct: (a) convergence history, normalized with the first J value, and (b)
shapes (not in scale) of the optimized ducts obtained using LB regularization with different
regularization radii, rLB.

The convergence history and optimized geometries obtained using the pL regularization with
different rLP values and p = 2 are presented in figs. 7a and 7b, respectively. Smaller rpL
values tend to produce geometries with smaller J values. Additionally, geometries obtained
using different rpL values do not differ significantly from each other, even for large rpL values.
This can be justified by examining the δJ/δbfi values for various rpL in fig. 8. From there, it
can be observed that increasing rpL beyond a certain value seems to only scale the sensitivity
derivatives with 1/rpL, without changing their spatially distribution significantly. This indicates
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Figure 5: S-shaped duct: sensitivity derivatives of J obtained using LB regularization with
different rLB values. Curves labeled with “base” correspond to the non-regularized sensitivities,
δJ/δm̃i

f . Curves corresponding to rLB=4m and 5m are practically indistinguishable.
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Figure 6: S-shaped duct: x (left) and y (right) components of the virtual (⃗b) and actual ( ⃗̃m) face
displacement fields, plotted over the lower and upper walls of the LB optimized geometry, with
rLB = 0.2m.

that the p-Laplacian regularization cannot smooth out certain features of δJ/δm̃i
f ; the impact

of this will become apparent in the optimization of the DrivAer car model.
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Figure 7: S-shaped duct: (left) convergence history and (right) shapes of the optimized ducts
obtained using pL regularization with different rLP values and p=2.
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Figure 8: S-shaped duct: sensitivity derivatives of J obtained using pL regularization with dif-
ferent rpL values and p=2; all regularized sensitivities are multiplied with their corresponding
rpL value. Curves labeled with “base” correspond to the non-regularized sensitivities, δJ/δm̃i

f ,
and have been divided by 10 to fit into the scale of the plot.
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4.2 DrivAer Car Model

The shape optimization framework described in section 2 is applied to the drag minimization
of the fast-back configuration of the DrivAer car model, with a smooth underbody, with mirrors
and wheels (F S wm ww). A CFD grid of approximately 5.3 million cells is used to model
half of the car, the simulation includes a moving road, rotating wheels (through an appropri-
ate boundary condition, since the wheels are closed) and turbulence is modeled by means of
the Spalart-Allmaras model with wall functions. Since a steady state primal solver is used, J
cannot reach a constant value within each optimization cycle but oscillates around a “mean”
value. Each flow evaluation performs 5500 iterations and the objective function results from the
averaging of the last 3500 of them.

The active part of the geometry includes the back side of the car, excluding the rear window,
and the diffuser, fig. 9. Before performing an optimization, an investigation is first made on
the impact of the regularization radii in eq. 10 and 15 on δJ/δbfi . For this purpose, the latter is
computed for various rLB and rPL values and its projection to the local unit normal vector (the
so-called sensitivity map) is compared with the non-regularized sensitivity field, (δJ/δm̃i

f )nf
i ,

in figs. 10 and 11. Sensitivities regularized with LB do not change significantly above rLB =
2m and all small wavelength features have been smoothed out. This is the rLB value used in
the optimization. On the other hand, and in agreement with what was observed in fig. 5 for
the S-shaped duct, pL cannot smooth out the small wavelength features of the sensitivities,
irrespective of the rpL value. The sensitivity maps obtained using pL and rpL > 0.5m appear
similar to the ones obtained with LB and rLB = 0.1m, i.e. the smallest value from the ones
tested herein. For the pL-based optimization that follows, rpL=10m is used.

Figure 9: DrivAer: The active part of the geometry, i.e. the part allowed to move during the
optimization, is colored in red. Only half of the geometry is simulated, using symmetry condi-
tions. The geometry is then, mirrored, for visualization.

Having picked a proper value for the regularization radius, two optimizations were performed
based on the two regularization approaches. Twenty optimization cycles were performed using
the Conjugate Gradient method, [1], to update the design variables; the two optimized geome-
tries will be referred to as gLB and gpL, from the initials of the corresponding regularization
methods used to design them. Irrespective of the regularization method used, the boundary dis-
placement is propagated to the interior using eq. 4 with p=4 and Dirichlet conditions computed
through eq. 2. The gLB geometry led to a 5.1% drag reduction while the gpL one had a 14.7%
reduction. The large difference in drag reduction can be attributed to the fact that LB filtered
all small-scale features of the sensitivities leading to a much smoother shape while pL retained
some of these features, leading to better performance but also to a less aesthetically pleasing
and potentially non-manufacturable solution. Despite this, the complex gpL geometry show-
cases the robustness of the shape optimization framework. The geometries obtained from the
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(a) Regularization based on the adjoint Laplace-Beltrami and different rLB

(b) Regularization based on the adjoint p-Laplacian and different rpL

Figure 10: DrivAer: Non-regularized (starboard side) and regularised (port side) sensitivity
derivatives of the baseline geometry, projected on the unit normal vector; the regularization
involves the adjoint LB and adjoint pL PDEs, for various rLB and rpL values (0.1m (top-left),
0.5m (top-right), 2m (bottom-left), 10m (bottom-right) in each set of figures); sensitivity values
computed using p-Laplacian have been multiplied with their corresponding rpL. Blue colour
(negative normal derivatives) indicates areas that should be pushed inwards to reduce drag while
red areas (positive normal derivatives) should be pulled outwards. Zero sensitivity isolines are
depicted in white.

two optimizations are shown in fig. 12 while fig. 13 depicts the cumulative normal displacement
from the baseline geometry. Finally, the comparison of the cumulative normal displacement and
the projection of the design variables field to the unit normal vector of the baseline geometry is
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(a) Regularization based on the adjoint Laplace-Beltrami and different rLB

(b) Regularization based on the adjoint p-Laplacian and different rpL

Figure 11: DrivAer optimization: Effect of the regularization radius on the sensitivity deriva-
tives. Notation and regularization radii as in fig. 10 (from left to right, 0.1m, 0.5m, 2m and
10m).

given in fig. 14. The effect of the regularization PDEs on the displacement field can mostly be
spotted on the bottom and back sides of the optimized geometries.

Figure 12: DrivAer: Comparison of the optimized geometries obtained with LB (left column)
and pL (right column) with the baseline one. In all figures, optimized geometries are shown on
the port side and the baseline on the starboard side.
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Figure 13: DrivAer: Cumulative normal displacement of the LB-based (left) and pL-based
(right) optimized geometries from the baseline one. Blue/red areas have been displaced in-
wards/outwards.

Figure 14: DrivAer: Cumulative normal displacement (starboard side) and projection of the
design variables field to the unit normal vector of the baseline geometry (bfi n

f
i , port side) of

the LB-based (top) and pL-based (bottom) optimized geometries. Blue/red areas have been
displaced inwards/outwards.
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5 SUMMARY - CONCLUSIONS

A parameterization-free shape optimization framework was developed within adjointOpti-
misationFoam through a chain of tools that link a field of design variables, defined as one
vector per boundary face, to the boundary displacement from the baseline geometry, using a
regularization phase and a proximity smoothing. Regularization was performed using either
the Laplace-Beltrami or the p-Laplacian PDEs. Defining such a chain and differentiating it
introduces the adjoint to the regularization PDEs and leads to the computation of accurate sen-
sitivity derivatives w.r.t. the design variables, which allows the utilization of any method to
update them, such as L-BFGS; this is an advantage over methods that regularize the sensitivity
derivatives ad hoc. This framework was applied to the optimization of a 2D S-shaped duct
and the DrivAer car model. In both cases, regularization based on the Laplace-Beltrami PDE
proved capable of removing small wavelength features from the sensitivity derivatives and the
optimized shapes while the p-Laplacian PDE, with p = 2, allowed such features to appear in
the optimized geometry, even when using a high regularization radius. Despite the p-Laplacian
regularization leading to an irregular optimized geometry in the case of the DrivAer model, the
fact that its performance in terms of drag reduction was significantly better than that obtained
with the Laplace-Beltrami approach (∼ 15% reduction compared to ∼ 5%) indicates that such
small wavelength features can indeed be desirable from the aerodynamics point of view.
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