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Abstract. In recent years, the Finite-Volume Method (FVM), being one of the most widely 
applied techniques in Computational Fluid Dynamics (CFD), has gained some popularity in 
solving radiative heat transfer problems. In order to avoid excessive amounts of false scatter-
ing and improve the accuracy of this method, two techniques, well established in CFD scien-
tific field, were developed for a parallelized algorithm using FVM for the prediction of 
radiative heat transfer for absorbing, emitting and scattering gray media in hybrid unstruc-
tured grids. The first one considers a second order accurate spatial/temporal scheme for the 
calculation of radiative heat fluxes, while the second one uses a grid adaptation technique 
during the progress of the solution. The second order spatial scheme is based on the Mono-
tonic Upstream Scheme for Conservation Laws (MUSCL) reconstruction of the radiative in-
tensities, using additionally a slope limiter to control the total variation of the reconstructed 
field. A second order in time Runge-Kutta method is utilized for the solution of the time de-
pendent Radiative Transfer Equation (RTE), avoiding the oscillations derived from the coupl-
ing of the higher order spatial scheme and the standard iterative solution of the non time-
dependent RTE. The second technique is the h-refinement, which enhances the algorithm with 
the capability of local grid adaptation, based on the splitting of the existing elements into new 
ones. Special treatment is needed for hybrid grids, due to the variety of element types (tetra-
hedral, prismatic and pyramidical) and their division alternatives. The algorithm is validated 
against benchmark test cases, proving its potential for improving the accuracy with the im-
plementation of the afore-mentioned techniques. 
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1 INTRODUCTION 
As radiative heat transfer is a major mode of heat transfer in many engineering and indus-

trial applications, many researchers have been devoted in the development of computational 
methods for the prediction of heat transfer due to radiation. Among the developed ones, the 
Finite-Volume Method (FVM), initially proposed by Raithby and Chui [1], has gained some 
popularity solving radiative heat transfer problems, because of its simplicity and its ability to 
be implemented in complex geometries. Considering these characteristics, this method has 
been widely employed in the prediction of radiative heat transfer in various shapes of enclo-
sures, described by structured or unstructured tetrahedral (triangular for 2D), hybrid or poly-
gonal grids and cartesian or cylindrical coordinates [2-12]. Additionally, it possesses another 
attractive feature, the treatment of radiation in a similar to flow way, as the formulation and 
the solution of the discrete equations is a common procedure for fluid flow and radiation [2, 
11, 12, 13]. Therefore, it proves to be especially familiar for Computational Fluid Dynamics 
(CFD) scientists, compared for example with Monte-Carlo method, which is based on view 
factors, requiring as such additional knowledge and experience [12, 13]. Nevertheless, two 
shortcomings of the FVM have been mainly identified, reducing the accuracy of its results, 
namely, the ray effect and false scattering [14-16]. The first is associated with the angular dis-
cretization, while its effects can be mitigated by the utilization of more finite control angles 
[14]. The second one, studied in this work, is associated with the spatial discretization and 
corresponds to the false or numerical diffusion in CFD [15], while its effects can be subdued 
in general by using finer grids or more accurate spatial schemes [16].  

Considerable efforts have been exerted for the development of algorithms, encountering ef-
fectively the false scattering by employing higher order accurate spatial schemes [15, 16]. Al-
though such a practice is common in the computation of the convective fluxes of the Navier-
Stokes equations in CFD, it is rarely implemented for the evaluation of the radiative heat 
fluxes [16]. For a first order scheme, the evaluation of the numerical fluxes in each face of a 
control volume, which corresponds to an edge connecting adjacent nodes in the node-centered 
scheme, is based on the values at these end-points. On the contrary, a second order scheme 
takes into account the values of more mesh nodes, by reconstructing the values of the two 
end-nodes with the Taylor series expansions, such as in the MUSCL (Monotonic Upstream 
Scheme for Conservation Laws) technique [17]. In addition, a slope limiter, such as Van Al-
bada-Van Leer [17, 18] and Min-mod [17, 19], should accompany the higher order scheme in 
order to control the total variation of the reconstructed field and assure the monotonicity be-
tween the two states of the interface of the control volumes. Moreover, a second order scheme 
can sometimes derive negative unphysical values of radiative intensity, which are usually mi-
tigated by a fix-up procedure [16]. However, such a remedy along with the common practice 
solving the Radiative Transfer Equation (RTE) with simple iterative approximations [11, 12] 
can lead to oscillations or even to the failure of the solution. In order to face this deficiency, 
the time-dependent RTE [20-22] can be employed for a pseudo-transient simulation in con-
junction with a more accurate temporal scheme, such as the Runge-Kutta method [23], consi-
dering that a higher order spatial scheme shall be accompanied by an also higher order 
temporal method. 

As stated already, the mitigation of false scattering can be succeeded with the utilization of 
finer grids, requiring increased computational effort. Considering that for many practical 
problems some phenomena are sufficiently localized, grid adaptation can be employed to in-
crease the spatial resolution and consequently the accuracy of the results in a specific region, 
without increasing significantly the memory and computational requirements [24-27]. In gen-
eral, grid adaptation methods can be divided in two categories, namely redistribution and re-
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finement [27]. In the first category of methods, the nodes are repositioned in order a finer dis-
cretization to be succeeded in selected regions. Despite the conservation of the total node 
number, these methods encounter difficulties in cases including complex geometries. The me-
thods of the second category are based on the addition of degrees of freedom following pre-
defined rules, as the h-refinement, implemented in this study. The mesh is enriched by divid-
ing the existing elements into new ones; the procedure begins with the selection of the area 
for enrichment, using appropriate criterions, and continues with the division of the corres-
ponding edges, faces and elements of this area. Special treatment is needed for hybrid meshes, 
due to the variety of the element types (hexahedral, tetrahedral, prismatic and pyramidical) 
and their division alternatives. Except for the previous categorization, mesh adaptation me-
thods can be divided according to the type of the grid (hybrid or tetrahedral) [24, 27] or the 
type of the computational system (serial or parallel) [26]. 

In this study, a second order accurate spatial/temporal scheme along with the h-refinement 
technique is developed to enhance a parallelized node-centered finite-volume algorithm for 
the prediction of radiative heat transfer in three-dimensional unstructured hybrid grids, includ-
ing absorbing-emitting and scattering mediums [11, 12]. Our main aim is to improve the accu-
racy of the algorithm in relatively coarse meshes, in which a first order accurate spatial 
scheme imports non-negligible false scattering amounts. As such, a second order spatial 
scheme, based on the MUSCL reconstruction of the radiative intensity values, along with the 
Van Albada-Van Leer and the Min-mod slope limiters, is incorporated. In order to avoid os-
cillations, derived by the second order spatial scheme in conjunction with the fix-up proce-
dure and the standard iterative solution of the non time-dependent RTE, a second order 
accurate in time Runge-Kutta method is employed for the solution of the corresponding time-
dependent equation. In addition, the h-refinement technique is included to increase the spatial 
resolution locally in selected areas of unstructured hybrid grids, including tetrahedral, pris-
matic, and pyramidical elements (the latter utilized only in the transition region of the grid 
from the prismatic to the tetrahedral elements). The relatively increased requirements for 
memory and computational effort, derived from the previous methods, are subdued by the uti-
lization of an edge-based data structure along with a parallelized implementation, based on 
the domain decomposition approach and MPI (Message Passing Interface) [11, 12]. Finally, 
the proposed numerical approach is validated against benchmark test cases, confirming its ca-
pability to mitigate false scattering and consequently improve the accuracy of the solution in 
coarse computational grids. This feature makes relatively negligible the increase of the com-
putational requirements, derived by the incorporation of the second order accurate spa-
tial/temporal scheme and the h-refinement method. 

2 MATHEMATICAL ANALYSIS 

2.1 Governing equation and discretization 
The radiative intensity for an absorbing, emitting and scattering gray medium at any node 

P in position r  along a path ŝ  can be calculated either for steady-state or transient simula-
tions by the time-dependent RTE [20] as: 

 ( ) ( ) ( ) ( ) ( ) ( )
4

ˆ ˆ, ,1 ˆ ˆ ˆ ˆ, ' , ' , '
4

P P s
P b P i i

dI r s dI r s
I r s k I r I r s s s d

c dt ds α
π

σβ ω
π

+ = − + + Φ∫
 

    (1) 

where IP is the radiative intensity of node P, c is the propagation speed of radiation in the me-
dium, β (β=kα+σs) is the extinction coefficient, kα  is the absorption coefficient, σs  is the scat-
tering coefficient and Ib is the black body intensity, based on the temperature of the medium 
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in the position r . As such, the left hand side terms of the RTE express the rate of change of 
the intensity in time t and in position/direction r , ŝ , the latter defined in this study by the po-
lar and azimuthal angles θ and φ, respectively. The first right hand side term expresses the 
attenuation by absorption and scattering to other directions, while the second one the black 
body emission. Finally, the third term, which is described by the Scattering Phase Function 
(SPF) ( )ˆ ˆ, 'is sΦ , represents the radiation obtained by scattering from the other directions [11, 
12, 13]. 

As far as the discretization is concerned, the RTE has to be solved for a discrete number of 
finite solid angles (angular discretization) and a discrete number of finite control volumes 
(spatial discretization). The finite solid angles, in which the directional domain is divided for 
the angular discretization, are defined usually by lines of constant longitude and constant lati-
tude on the surface of a sphere (Figure 1) [11, 13]. For the spatial discretization, a node-
centered scheme is utilized in this study, in accordance with which the median control volume 
of a node is constructed by connecting lines defined by edge midpoints, barycenters of faces 
and barycenters of elements, sharing this node [11, 28]; the contributions to the control vol-
ume of a node P from different types of elements (prismatic, pyramidical and tetrahedral) ad-
jacent to this node are illustrated in Figure 2. 

 
Figure 1: Angular discretization. 

 
Figure 2: Contributions of three different types of elements (prismatic, pyramidical and tetrahedral) to the con-

trol volume of a node P. 

2.2 Formulation of discrete equations 
Considering the discretization schemes (spatial and angular) of the previous paragraph, the 

RTE is integrated for a node P over its spatial finite control volume VP and over a finite solid 
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angle mnΩ , while subsequently (with the implementation of the divergence theorem) it is for-
mulated as: 

 
mn

mn mn mn mn mn mnP
P i ci i P R P

i

VI I D A I S V
c t

β∆Ω  ∆ + ∆ = − + ∆Ω ∆ ∑  (2) 

where mn
ciD is the directional weight of the solid angle mn and the surface i of the control vol-

ume, while mn
RS  is the sum of the emissive and in-scattering terms, which are defined as [6, 

11]: 
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Quantity ( ),i im n mn′ ′Φ  is the average scattering phase function, expressing the scattering con-
tribution of the control angle i im n′ ′   (incident angle) to the control angle mn (in-scattering an-
gle) [11]; for isotropic scattering it is assumed equal to unity, while for anisotropic one its 
value depends on the utilized model (i.e. Legendre polynomials) [11, 29, 30, 31]. Though the 
angles mθ  and nϕ  can be defined arbitrarily, they are obtained from the equal division of the 
4π steradians into N Nθ ϕ×  directions, such that m m m Nθθ θ θ π+ −∆ = − =  and 

2n n n Nϕϕ ϕ ϕ π+ −∆ = − =  [6, 11]. Considering this angular discretization, the directional 

weight mn
ciD  and the discrete control angle mn∆Ω can be evaluated as: 
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By applying the step scheme, which resembles a simple upwind scheme in CFD, the value 
of the radiative intensity of a downstream face is set equal to that of the upstream node [6, 11, 
12], resulting in the following expression for the second left hand side term of equation (2): 

 , ,
mn mn mn mn mn mn
i ci P ci out Q ci inI D I D I D= +  (10) 

In structured meshes the application of the previous equation is straightforward, as the an-
gular discretization is selected to match exactly with the control volumes’ faces. On the con-
trary, in unstructured grids the control angles are inevitably overlapped [6, 11, 12], requiring 
appropriate manipulation for a more accurate solution, such as the bold approximation and the 
pixelation method. According to the first approximation, an overhang solid angle is consi-
dered wholly either outgoing or incoming, depending on the sign of its directional weight [11] 
(Figure 3a-b). Considering this remedy for the overhang problem, the directional weights of 
equation (10) are defined as: 
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( ) ( )
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, , ,
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 (11) 

where ,
mn
ci boldα  is the approach coefficient for the directional weight mn

ciD . Respectively, in the 
pixelation approach each control angle is divided in smaller ones, for which the bold approx-
imation is employed [6] (Figure 3c), resulting in the following expressions for the directional 
weights: 
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 (12) 

where ,
mn
ci pixα  is the corresponding approach coefficient, calculated by the sum of the positive 

subangles’ directional weights, divided by the sum of the absolute values of them. Although 
this approximation is usually applied only in the overhang control angles of the nodes [2, 6], 
in this study it is implemented to all the nodes and control angles in a pre-computation stage. 
As the values of those coefficients and directional weights do not vary during the iterative so-
lution of the RTE, they are evaluated before the beginning of the procedure, assuring a re-
duced computation time per iteration. As such, the RTE is reformulated independently of the 
employed approximation as: 

 , ,

mn
mn mn mn mn mn mn mn mnP
P P R P P ci out i Q ci in i

i i

VI I S V I D A I D A
c t

β∆Ω  ∆ = − + ∆Ω − ∆ − ∆ ∆ ∑ ∑  (13) 
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Figure 3: a) Schematic of the control angle overhang problem. b) Implementation of the bold approximation. c) 

Implementation of the pixelation method. 

Boundaries’ contributions have also to be considered in the corresponding nodes’ flux bal-
ances, in order their equation sets to be admissible for solution. The boundary conditions in 
radiative heat transfer concern walls, inlets, outlets and symmetric planes; the first three types 
are managed in the same way, as opaque and diffuse surfaces, while for the last one a slightly 
different manipulation is required. As such, the wall boundary conditions are usually imple-
mented in an explicit way (Dirichlet), assigning to the boundary nodes intensity values, com-
puted as the sum of their blackbody intensity, due to their temperature, and the reflection of 
the incoming intensities [2, 6, 11, 12]. Despite the common practice, these boundary condi-
tions are applied implicitly in this study, implementing the step scheme between the boundary 
node and a “ghost” node outside the grid. Considering this manipulation, equation (13) for a 
boundary node P is defined as: 

 
( ) ( ), , , , , ,

mn
mn mn mn mnP
P P R P

mn mn mn mn mn mn mn mn
P ci out i ci out w w Q ci in i w ci in w w P

i i

VI I S V
c t

I D A D A I D A I D A R

β∆Ω  ∆ = − + ∆Ω ∆
− ∆ + ∆ − ∆ + ∆ =∑ ∑

 (14) 

where , ,
mn
ci out wD  is the directional weight going outward of the control volume of node P and 

, ,
mn
ci in wD  is the corresponding directional weight coming inwards to the same control volume. 

Depending on the employed bold or pixelation scheme, such directional weights are calcu-
lated using either equation (11) or (12). For the computation of the radiative intensity of the 
“ghost” node, mn

wI , which appears in the previous equation, the following equation is utilized:  

 , , ,
1 1

1
i i i i

i i

NN
m n m nmn w

w w b P P ci out w
m n

I I I D
ϕθεε

π = =

−
= + ∑∑  (15) 

As far as the symmetry boundary conditions are concerned, the same implicit scheme is 
applied, evaluating radiative intensity of the “ghost” node, mn

wI , such as the net heat flux be-
come zero at the symmetry plane, resembling in that way a specularly reflecting wall [32]. 
Therefore, the intensities of such a boundary node, going out of its control volume to the 
symmetry plane, are placed as incoming in its control volume in the mirroring direction. Em-
ploying mirroring boundary conditions, which is commonly met in CFD, results in reduced 
memory and computational requirements, due to the smaller utilized mesh. Nevertheless, for 
its implementation, the angular discretization should be appropriately performed, in order the 
mirroring plane to coincide with a discrete solid angle limit; otherwise an interpolation 
scheme should be employed [32]. 
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2.3 Time integration 
An explicit scheme, using a four stage Runge-Kutta (RK(4)) method, is implemented for 

the time integration of the RTE and its iterative solution as follows [17, 23]: 

 
( ) ( )
( ) ( ) ( )( )
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1 1,4

, 1,..., 4

mn
mn mnP
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c t

I I

c tI I R I k
V

I I

α

+

+ + −

+ +

∆Ω
∆ =

∆

=

∆
= + =

∆Ω

=

 (16) 

where α1, α2, α3 and α4 are the constants of the method with values 0.11, 0.26, 0.5 and 1.0 re-
spectively, attributing the procedure with a second order accuracy in time [17, 23]. The term l 
is the current external iteration number, k is the current Runge-Kutta iteration number and ΔtP 
is the local pseudo-time step [17, 33], based on the length αedge,P of the shortest edge of the 
grid connected to the node P, which is defined for a steady-state simulation as [17, 20]: 

 ,
1 min( )
2P edge Pc t α∆ ≤  (17) 

Employing the local pseudo-time stepping scheme, a common practice in steady-state 
CFD simulations, accelerates the convergence of the iterative solution, as for each node the 
maximum permissible time step is utilized [17]. Nevertheless, for transient-unsteady simula-
tions a global time step should be applied instead, computed as the smaller of the local ones. 
In case the iterative procedure derives a negative unphysical value of intensity (usually in the 
initial iterations along with a higher order spatial scheme), a fix-up procedure is implemented, 
setting this value equal to zero [16]. Once the new intensity values are calculated, they should 
be exchanged between the adjacent subdomains for a parallelized implementation of the algo-
rithm [11, 12]. 

3 HIGH ORDER SPATIAL SCHEME 
For a first order accurate spatial scheme the left and right states of a face of a control vo-

lume of a node P, which coincides with an edge PQ in the node-centered scheme, are approx-
imated by the values at the end-points of the edge. However, for a higher order scheme, these 
states are defined by the reconstructed values of the same nodes implementing the Taylor se-
ries expansions; the MUSCL scheme is employed in this study, accompanied with a slope li-
miter to control the total variation of the reconstructed field [17, 18, 19, 34]. Considering this 
approximation, the left and right values at the midpoint of an edge PQ are defined as [17, 34]: 

 
( ) ( )

( ) ( )

1
2
1
2

Lmn mn mn
PQ P PQP

Rmn mn mn
PQ Q PQQ

I I I r

I I I r

= + ∇

= − ∇





 (18) 

where PQr  is the vector connecting the end-nodes P and Q. For the calculation of the extrapo-
lation gradients ( )mn

PI∇  and ( )mn
QI∇  at these end-points, the Green-Gauss linear representa-

tion method is employed, described as [17, 34]: 
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 ( ) ( ) ,
, ,

1 1 ˆ ˆ
2

mn mn mn mn
P Q i i P i w wP

i edge PQ i P wallP

I I I n A I n A
V −

 
∇ = + ∆ + ⋅ ∆ 

 
∑ ∑  (19) 

where the last term of the equation is activated only in case the node P is a boundary one. 
Once these gradients are computed, they should be exchanged between the adjacent subdo-
mains for a parallelized implementation of the algorithm [11, 12, 35, 36, 37]. Considering eq-
uation (18), equation (10), describing the step scheme, is reformulated as: 

 ( ) ( ), ,

L Rmn mn mn mn mn mn
i ci PQ ci out PQ ci inI D I D I D= +  (20) 

As stated before, a slope limiter is required, in order the total variation in the reconstructed 
field to be minimized; the Van Albada-Van Leer (VLVA) [17, 18] and the Min-mod [17, 19] 
are included in the present study. They are both based on the centered ( )cmn

PQI∇  and the up-

wind ( ) ( ),
u umn mn

P QI I∇ ∇  gradients, defined as [18, 19]: 
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( ) ( ) ( )
( ) ( ) ( )

2

2
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PQ PQ Q P
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P P PQ
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Q Q PQ

I r I I

I I I
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∇ = ∇ − ∇

∇ = ∇ − ∇



 (21) 

while their utilization transforms equation (18), which derives the reconstructed values of the 
left and right states of the examined edge PQ, as follows: 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1 ,
2
1 ,
2

L u cmn mn mn mn
PQ P P PQ PQ PQ
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= + ⋅ ∇ ⋅ ∇ ⋅

= − ⋅ ∇ ⋅ ∇ ⋅

 
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 (22) 

where X is the limiter function, defined for the Van Albada-Van Leer limiter as [18]: 

 

2 2

2 2

( ) ( ) 0( , ) 2
0 0

a e b b e a abX a b a b e
ab

 + + +
>= + +

 ≤

 (23) 

and for the Min-mod limiter as [19]: 

 
 if  and 0

( , )  if  and 0
0                    if 0

a a b ab
X a b b b a ab

ab

 < >
= < >
 ≤

 (24) 

where e is a very small number with a typical value of 10-16 to prevent division by zero. If the 
second order scheme derives a negative unphysical intensity (usually in the initial iterations), 
the first order scheme is employed instead. By utilizing a higher order spatial scheme, the R/H 
side term of equation (14) is defined as: 
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( ) ( ) ( )( ), , , , , ,
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4 GRID ADAPTATION 
Except for the second order accurate schemes, false scattering can be reduced by utilizing 

finer grids, which however call for increased memory requirements and computational effort. 
Local grid refinement techniques can be applied during the solution procedure to increase the 
accuracy in preselected regions along with significant computational savings, as they avoid 
the generation of new meshes from scratch. Such methods are widely employed in CFD simu-
lations, especially in cases including sufficiently localized phenomena as shocks or in cases 
encountered for the first time in which no previous knowledge exists about the necessary spa-
tial accuracy. Considering the above states the serial h-refinement method is incorporated in 
the present algorithm, which concerns the enrichment of the grid with new nodes as midpoints 
of the edges positioned in the targeted area, along with the division of those edges and the 
corresponding faces and elements. 

The h-refinement technique can be divided basically in three main steps: a) The detection 
of the desired areas for adaptation and the marking of the corresponding edges for division, 
which is succeeded by defining appropriate criterions, targeting usually regions of the field 
with high gradients of a specific variable or regions with a specific characteristic. b) The 
spread of marking information to the neighboring edges, as the marking derived by the first 
step cannot lead to an admissible refinement pattern for the construction of the new mesh; the 
neighboring edges to the marked ones have to be examined by looping several times over the 
elements of the mesh [27]. This edge-based structure makes h-refinement particularly attrac-
tive for implementation in hybrid grids, including various types of elements. c) The embed-
ding of new nodes as midpoints of the marked edges and the division of these edges; the 
corresponding faces and elements are divided then accordingly [27]. The whole procedure is 
based on some predefined rules, which are described as follows: 

1. Every new, embedded as midpoint of an edge, node of the grid is a common point 
of all the neighbouring faces and elements.  

2. Every new edge is a common edge of all the neighbouring elements. 
3. There are five permitted ways for the division of a tetrahedron (Figure 4), resulting 

in [24, 25, 26, 27]: a) two new tetrahedrons, b) four new tetrahedrons, c) eight new tetrahe-
drons, d) two new tetrahedrons, one new pyramid and one new prism and e) one new tetrahe-
dron and one new pyramid. The last two ways (d and e) are required only in the transitional 
region of the grid, from the prismatic to the tetrahedral elements [11, 12], while the third divi-
sion type c can be implemented in three possible ways, depending on the selection of the in-
ternal diagonal edge; the shortest one should always be chosen in order not to produce 
distorted tetrahedrons [27].  

4. There are two permitted ways for the division of a prism (Figure 5), resulting in two 
and four new prisms respectively [24, 25, 26]. 

5. There are three permitted ways for the division of a pyramid (Figure 6), producing 
[24, 25, 26]: a) two new pyramids, b) three new prisms and a new pyramid and c) a new prism 
and a new pyramid. 
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Figure 4: Permitted ways for the division of tetrahedrons. 

 
Figure 5: Permitted ways for the division of prisms. 

 
Figure 6: Permitted ways for the division of pyramids. 

6. A triangular face can be divided in two or four new triangular faces, while a rectan-
gular one can be divided only in two new rectangular faces [27]. 
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7. The coordinates and the variables associated with a new node are defined as the 
arithmetic averages of the respective values at the two end-points of the edge. 

5 EVALUATION 
The present algorithm has been validated against benchmark test cases, comparing its re-

sults with the corresponding ones of reference solvers. The comparison is succeeded via the 
distributions of dimensionless incident radiative heat flux ( )*Q r  of the present and the refer-
ence solvers, defined as [38]: 

 ( ) ( ) ( ) ( )
* 4
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where ( )Q r is the incident radiative heat flux in position r , while E is the initial radiative 
energy, responsible for the heat transfer [11, 12]. The numerical results were obtained after 
the radiative intensity residual is decreased at least four orders of magnitude, computed as: 
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where NP is the number of nodes of the whole mesh. In the next paragraphs evaluation cases 
including radiative heat transfer via an isothermal gray medium in a hexahedral, a J-shaped 
and a baffled cubic enclosure are presented. 

5.1 A hexahedral enclosure with trapezoidal bases 
The first quasi-3D benchmark test case considers radiative heat transfer in a hexahedral en-

closure with trapezoidal bases, as illustrated in Figure 7. Two subproblems were encountered 
for this enclosure on a DELL(R) T7400 workstation with 2 Intel(R) Xeon(R) E5410 4-core proc-
essors at 2.33GHz. 

 
Figure 7: Dimensions of the hexahedral enclosure with trapezoidal bases. 

For the first subcase, the enclosure is assumed to be composed by radiatively black (ε=1) 
and cold walls (Tw=0 K), except for the two trapezoidal bases (z=0 and z=1), in which symme-
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try boundary conditions are imposed. The included medium is considered absorbing and emit-
ting, but no scattering (σ=0 m-1), maintained at constant temperature (Tm=100 K) with an ab-
sorbing coefficient equal to unity (kα=1 m-1). The utilized initial mesh includes 8,507 nodes, 
12,608 tetrahedrons 10,754 prisms and 28 pyramids, while for parallelization it is decom-
posed in two subdomains (Figure 8). For angular discretization, the “sphere” is divided in 16 
azimuthal - 4 polar angles, along with the pixelation method. In Figure 9 the distributions of 
dimensionless incident radiative heat flux along the A-B (left) and the B-C (right) lines of the 
mesh for all the available spatial schemes are illustrated, compared with the exact ones of 
Murthy and Mathur [39], while in Figure 10 the distributions along the C-D (left) and the D-A 
(right) lines are shown. The above mentioned solutions are obtained after the radiative inten-
sity residual is decreased at least four orders of magnitude, requiring approximately two sec-
onds per iteration for the first order spatial scheme and five seconds per iteration for the 
second order ones. As far as the effectiveness of the spatial schemes is concerned, the second 
order ones extract more accurate results comparing with the first order one; as expected the 
schemes jointed with limiters derive better distributions as the simple second order scheme 
seems to overpredict the intensity flux near the cold wall boundaries. 

 
Figure 8: Utilized mesh (left) and mesh density on the face with z=0 (right) for the hexahedral enclosure. 

   
Figure 9: Distributions of dimensionless incident radiative heat flux along the A-B (left) and the B-C line (right). 
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Figure 10: Distributions of dimensionless incident radiative heat flux along the C-D (left) and the D-A line 

(right). 

In the second subcase the same conditions are imposed for the medium and the walls, ex-
cept for the absorption coefficient, which takes three different values (kα=0.1 m-1, kα=1 m-1, 
kα=10 m-1). The utilized mesh consists of 22,788 nodes, 53,692 tetrahedrons and 23,184 
prisms, while for parallelization it is decomposed in two partitions, as illustrated in Figure 11. 
For angular discretization 20 azimuthal and 8 polar angles are employed along with the pix-
elation method. The attention in this subcase is towards the evaluation of the improvement, 
derived by the grid adaptation. As such the current mesh is refined, utilizing a criterion which 
targets the region up to 0.1 m away from the cold boundaries, resulting in a new grid, con-
sisted of 83,305 nodes, 184,522 tetrahedrons and 92,736 prisms (Figure 12). Due to that the 
solution, derived by the refined mesh for the case with absorption coefficient equal to 10, 
didn’t reach the respective reference one at the regions near the cold boundaries, a second grid 
adaptation was performed targeting the region of these solid angles, resulting in a new mesh, 
composed of 190,771 nodes, 428,159 tetrahedrons and 217,812 prisms (Figure 12). All the 
solutions were obtained after the radiative intensity residual is decreased at least five orders of 
magnitude, requiring approximately twelve seconds per iteration for the initial mesh, thirty 
seconds for the one after the first refinement and sixty seconds for the final grid. In Figure 13 
the distributions of dimensionless incident radiative heat flux along the A-B line of the initial 
and the refined meshes for the three absorption coefficients, are presented, compared with the 
corresponding exact ones of Murthy and Mathur [39].  

 
Figure 11: Utilized mesh for the hexahedral enclosure. 
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Figure 12: Mesh density on the face with z=0 before refinement, after the first refinement and after the second 

one.  

 
Figure 13: Distributions of dimensionless incident radiative heat flux along the A-B line for three different val-

ues of absorption coefficient, utilizing the initial and the refined meshes. 

For the simulation with absorption coefficient equal to 0.1 there isn’t any obvious im-
provement. On the contrary for the other subcases, the difference between the initial and the 
refined grids is evident, revealing the ability of h-refinement to derive more accurate solu-
tions, without the need to start from the beginning the generation of a new finer grid. Al-
though the improvement, provided by grid adaptation, isn’t so important, compared to the one 
derived by the second order accurate schemes, it can be proved helpful, depending on the ex-
amined problem. 

5.2 A J-shaped enclosure 
The second test case concerns radiative heat transfer in a J-shaped enclosure, as illustrated 

in Figure 14. It includes an absorbing and emitting cold medium (Tm=0 K), while all the walls 
are considered black (ε=1) and cold (Tw=0 K), except for the upper one at y=2.4 maintained at 
constant temperature equal to 100K and the two bases (z=0 and z=1), in which symmetry 
boundary conditions are imposed. The utilized mesh is composed of 4,040 nodes, 11,132 te-
trahedrons, and 2,800 prisms, while for its parallelized simulation it is divided in two parti-
tions (Figure 15). A quite dense angular discretization of 30 azimuthal and 4 polar angles was 
utilized along with the pixelation approach, due to the significant ray effect, which was en-
countered. A value of 0.01 m-1 is assigned to the absorption coefficient, while the scattering 
coefficient remains equal to zero (σs=0). In Figure 16 the dimensionless incident radiative 
heat flux distributions along the ABCD line for all the available spatial schemes are illustrated, 
compared with the computed ones of Man Young Kim et al. [9]. The results were obtained 
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after radiative intensity residual was decreased at least four orders of magnitude, while the 
simulation for the first order scheme lasted about 5 minutes and for the second order ones 
about 14 minutes on the same to the previous case workstation. A deviation between the re-
sults of the first order scheme and the second order ones is clearly distinguished in the areas 
near the points A, B  and C, proving the potential of the latter schemes for more accurate pre-
dictions even in relatively coarse grids. In addition, the simple second order scheme seems to 
mispredict slightly the radiative intensity fluxes in specific regions (i.e. point B), comparing 
its results with these of the schemes enhanced with limiters. 

 
Figure 14: Dimensions of the J-shaped enclosure. 

           
Figure 15: Utilized mesh (left) and mesh density on the face with z=0 (right). 

 
Figure 16: Distributions of dimensionless incident radiative heat flux along the ABCD line. 
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5.3 A cubic enclosure with three baffles 
A cubic enclosure with three baffles (Figure 17), including an absorbing and emitting me-

dium, maintaining a constant heating power Em=10W/m2 is examined in this case. All the 
walls, including the three baffles, are considered black (ε=1) with a constant emissive power 
Ew=1W/m2, except for the two bases (z=0 and z=1), in which symmetry boundary conditions 
are imposed. The utilized mesh includes 21,228 nodes, 28,212 tetrahedrons and 29,016 
prisms, while for parallelization it is divided in two subdomains (Figure 18). For angular dis-
cretization 24 azimuthal and 4 polar angles are employed along with the pixelation method. 
The results were extracted after radiative intensity residual was decreased at least six orders of 
magnitude, requiring (on a PC with an AMD FX(tm)-8120 Eight-Core Processor at 3.10 
GHz) approximately five seconds per iteration for the first order scheme and fourteen seconds 
per iteration for the second order ones. In Figure 19 the distributions of incident radiative heat 
flux (Q in kW/m2) along the ABCD line for the four available spatial schemes are illustrated, 
compared to the corresponding computed with Z-M (Zone-Method) ones of Coelho et al. [40]. 
As expected, a significant improvement to the accuracy of the computed fluxes implementing 
the second order schemes is identified; a slight overestimation by the simple second order 
scheme is observed again, unlike the schemes coupled with the limiters, due to the unbounded 
reconstructed values of radiative intensity. 

 
Figure 17: Dimensions of the cubic enclosure with the three baffles. 

      
Figure 18: Utilized mesh (left) and mesh density on the face with z=0 (right). 
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Figure 19: Distributions of incident radiative heat flux along the ABCD line for the initial mesh with black en-

closures. 

In order to assure that the differentiation between the first and the second order spatial 
schemes originates indeed from the upgrading of the spatial resolution, a twice dense mesh 
was utilized, including 46,198 nodes, 58,624 tetrahedrons and 66,024 prisms, in which all the 
available schemes were implemented again. A slight improvement is noticed for the first and 
the simple second order scheme in the region between 0.2m and 0.4m, while for the schemes 
enhanced with limiters no difference can be identified (Figure 20). 

 
Figure 20: Distributions of incident radiative heat flux along the ABCD line for the twice dense mesh with black 

enclosures. 

An additional case was encountered with grey walls instead, considering an emissivity 
value equal to 0.8 for the walls and 0.6 for the baffles. In Figure 21 the corresponding distri-
butions of incident radiative heat flux are presented, all closely compared to the ones com-
puted with Z-M (Zone-Method) of Coelho et al. [40]. 
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Figure 21: Distributions of incident radiative heat flux along the ABCD line for the initial mesh, with gray enclo-

sures. 

6 CONCLUSIONS 
In this study an algorithm using a second order scheme in space and time, along with the h-

refinement technique and a precomputational pixelation method is developed to improve the 
accuracy of radiative heat transfer predictions in three-dimensional unstructured hybrid grids. 
Though the previous methods are well established methodologies in CFD, they are rarely im-
plemented in the prediction of radiative heat transfer. As the numerical results reveal, the 
higher order spatial schemes, especially these jointed with slope limiters, mitigate sufficiently 
the false scattering, derived by the finite spatial discretization. Their employment along with a 
second order in time method for the iterative solution of the time dependent RTE prevents the 
development of oscillations during the simulation, which is usually met when the second or-
der spatial scheme is coupled to the standard iterative solution of the RTE [11, 12]. In addi-
tion, h-refinement technique revealed its potential to improve the accuracy of the algorithm 
during the progress of the solution, when the utilized mesh isn’t fine enough, avoiding the 
generation of a finer mesh from the beginning. Although their employment increases the 
computational and memory requirements, they can be assumed relatively negligible, consider-
ing the accuracy improvement succeeded in coarse grids. 
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