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Abstract. We present a multi patch assumed strain formulation (with implicit G1-continuity at
the ends of the element) for 3D space Kirchhoff-Love rod; rotations are introduced at the ends
of the element as degree of freedom similarly to the Hermitian interpolation for Euler Bernoulli
beam problem. In this way the G1 continuity is ensured. Due to the general curved geometry
a strong coupling appears in the membrane-flexural-torsion (m-f-t) problem, so that a pure
displacement formulation leads in general to a locked element (membrane, flexural and torsion
locking phenomena can occur). The multi patch approach presented, based on G1 continuity
(low degree of continuity), does not present locking in contrast to the B-Spline (high degree of
continuity) element, in a pure displacement approach. However, both the approaches present
spurious mode in the deformations, i.e. in the stress resultants. In order to avoid this pathology
we adopt a standard assumed strain formulation (or B-bar) approach, projecting the tangent
strain measures onto lower degree spaces, (by means of standard L2 projections). In particular,
considering a polynomial degree interpolation (p) for the displacements, the membrane and
torsional strain measures are projected on a (p-1) space, while the two flexural strain measures
are projected on a (p-2) space. In this way a very easy definition of the B-bar operators is
attained, since the integrations are performed numerically. The strategy is very appealing for
the design of free-locking general curve rod elements, and it provides very accurate results for
different polynomial degrees as it is shown by means of presented example.
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1 INTRODUCTION

Displacement based formulations for structural model are known to suffer for locking phe-
nomenon. In the case of general space curved K.L. rods a strong coupling appears in the
membrane-flexural-torsion (m-f-t) problem, so that many source of locking affect the solu-
tion. In recent works [6, 7] Armero et al. have developed a new C1 finite element for 3D
Kirchhoff-Love rod adopting an assumed strain formulation, based on mixed (Hermitian and
Lagrangian) interpolation, for overcoming the spurious strain modes. In [9] Elguedj et al., on
the basis of [8], present a comparison between discrete strain gap (DSG) approach, as pro-
posed in [5] by means of a collocation of the strain gaps, and the classical B-bar formulation
for overcoming the locking in isogeometric analysis. They show that for both membrane and
shear locking, the ASM approach is more accurate with respect to DSG. Locking in flexural
an torsional dominated problems for curve elements is investigated in [10]. In [4] Beirao et al.
present a collocation isogeometric approach to avoid the shear locking in beam. In this paper a
multi-patch isogeometric formulation for K.L. rods is investigated, with respect to its ability to
avoid locking.
In [3] a multi-patch isogeometric analysis of space rod by means of Lagrange’s multipliers was
presented. Multi-patch approaches with implicit G1 continuity have been introduced in [2],
in which it’s proposed an element that consists in a generalization of standard cubic Hermite
interpolation. It has been obtained performing a transformation on the displacement coordinate
space, as illustrated in figure 1 for open Bspline generated by means of a knot vector with and
without internal knots. The torsional angle ϕ is interpolated by means of a standard C0 Bspline
functions. In order to avoid locking an L2 projection of the strains is considered, particularly,
considering a p-degree interpolation for the degree of freedom (u, ϕ) the function spaces for
the axial, flexural and torsional strain measures are scaled, respectively, to p−1, p−2 and p−1
degree interpolations. In general, an isogeometric L2 B-bar approach generates a full stiffness
matrix, since the assumed strain interpolating bases are not-null everywhere. Contrarily to the
high-continuity isogeometric B-bar formulation presented in [9], the multi patch G1 continuous
formulation presented in this paper allows to strongly reduces the band-width in the stiffness
matrix.

2 THE INTERPOLATION

The multi patch isogeometric interpolation of non polar rods used in this paper has been intro-
duced in [2]. It consists in a generalization of the Hermite interpolation to general open Bspline
interpolations. The displacement degree of freedom of the the second and second last control
points are re-parametrized introducing the end rotations as degree of freedom. Since the tor-
sion angle ϕ is C0 continuous, a G1 constraints is ensured. The stiffness matrix is, then, easily
assembled.

2.1 The G1 interpolation of the centroid curve

At the ends of an open B-spline the tangent vector has the same direction defined by the two
couple of end points. Let P 0(λ), with λ ∈ [0, 1], be the Lagrangian centroid curve. We adopt
for the representation of this curve an open B-Spline description given by

P 0(λ) = Σn
i=1b

p
i (λ)P0,i (1)

where p is the degree and n = p + 1 is the number of control points, bpi (λ) is the i-th function
and P0,i is the generic control point. Let p(λ), with λ ∈ [0, 1], be the generic current centroid
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curve,

p(λ) = Σn
i=1b

p
i (λ)Pi (2)

A coordinate transformation is performed mapping the second, P2, and the second-last, Pn−1,
control points by means of the spatial rotations and the deformation of the end control segments
directors t̃0,1 and t̃0,2 as follows

P2 = P1 + ρ1R̃1t̃0,1, Pn−1 = Pn + ρ2R̃2t̃0,2, (3)

where the initial non unit directors are defined by the difference of the control points

t̃0,1 = P0,2 − P0,1, t̃0,2 = P0,n−1 − P0,n, (4)

in this way, from equation 3 the current non unit directors become

t̃1 = P2 − P1 = ρ1R̃1t̃0,1, t̃2 = Pn−1 − Pn = ρ2R̃2t̃0,2, (5)

where R̃1 and R̃2 are the spatial rotations operators, and the scalars ρ1 and ρ2 are the relative
change in the lengths of these vectors, given by

ρ1 =
∥P2 − P1∥

∥P0,2 − P0,1∥
=

∥t̃1∥
∥t̃0,1∥

, ρ2 =
∥Pn−1 − Pn∥

∥P0,n−1 − P0,n∥
=

∥t̃2∥
∥t̃0,2∥

. (6)

The generic configuration of the centroid curve is given by

p(λ) =bp1(λ)P1+

+bp2(λ)
(

P1 + ρ1R̃1t̃0,1

)
+

+bp3(λ)P3 + ...+ bpn−2(λ)Pn−2+

+bpn−1(λ)
(

Pn + ρ2R̃2t̃0,2

)
+

+bpn(λ)Pn.

(7)

Observing that R̃
T

1 t̃1 = t̃0,1 and R̃
T

2 t̃2 = t̃0,2 and that ˙̃R1R̃
T

1 = ω̃1×(•) and ˙̃R2R̃
T

2 = ω̃2×(•)
the velocity of the centroid curve mapped as in equation 7 is given by

ṗ(λ) = (bp1(λ) + bp2(λ)) Ṗ1+

+bp2(λ)
(
−ρ1 t̃1 × ω̃1 + ρ̇1 t̃1

)
+bp3(λ)Ṗ3 + ...+ bpn−2(λ)Ṗn−2+

+bpn−1(λ)
(
−ρ2 t̃2 × ω̃2 + ρ̇2 t̃2

)
+
(
bpn(λ) + bpn−1

)
Ṗn.

(8)

2.2 The C0 interpolation of the torsional angle

The tangent increment of the torsional angle is given by

ϕ̇(λ) = Σn
i=1b

p
i (λ)ϕ̇i (9)
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but the first and the last term must be represented in terms of the end rotations, observing that
t̂
∣∣
0
= ˆ̃t1 and t̂

∣∣
1
= −ˆ̃t2 and that ϕ̇ = ω̃ · t̂ the interpolation of the velocity of rotation around

the centroid curve, is

ϕ̇(λ) =bp1(λ) ω̃1 · ˆ̃t1+
+bp1(λ)ϕ̇2...+ bpn−1(λ)ϕ̇n−1

+bpn(λ) ω̃2 · (−ˆ̃t2).

(10)

Considering, for each control point, the vector of the increments of the degrees of the freedom
q̇ defined as

q̇T = {Ṗ1, ω̃1, ρ̇1, ϕ̇2; Ṗ3, ϕ̇3, ..., Ṗn−2, ϕ̇n−2; ϕ̇n−1, ρ̇2, Ṗn, ω̃2} (11)

the velocity of the centroid curve, p, and of the torsional angle, ϕ, are given respectively by

ṗ(λ)3,1 = Bp
c(λ)

3,4n q̇4n,1 (12)

and
ϕ̇(λ) = Bp

ϕ(λ)
1,4n q̇4n,1, (13)

where the operators Bp
c(λ) and Bp

ϕ(λ) are defined as

Bp
c(λ) = {(bp1 + bp2) I

3,3, −bp2 (t̃1 × (•)) 3,3, bp2 (t̃1)
3,1, 0 3,1,

bp3 I
3,3,0 3,1, ..., bn−2I 3,3, 0 3,1,

0 3,1, bpn−1(t̃2)
3,1, (bpn−1 + bpn)I

3,3, −bpn−1(t̃2 × (•)) 3,3},
(14)

and

Bp
ϕ(λ) = {(0T ) 1,3, bp1 (t̃

T

1 )
1,3, 0, bp2,

(0T ) 1,3, bp3, ..., (0
T ) 1,3, bpn−2,

bpn−1, 0, (0
T ) 1,3, bpn (t̃

T

2 )
1,3}.

(15)

where I is the identity operator, 0T = {0, 0, 0} and

−t̃j × (•) =

 0 +t̃j ·Ez −t̃j ·Ey

−t̃j ·Ez 0 +t̃j ·Ex

+t̃j ·Ey −t̃j ·Ex 0

 , t̃j =

 t̃j ·Ex

t̃j ·Ey

t̃j ·Ez

 , j = 1, 2. (16)

Figures 1(a) and 1(b) are related to Bernstein’s polynomials of degree 3 and it is clear that
the transformation proposed yields to the Hermite shape functions. Figures 1(c) and 1(d) are
related to Bernstein’s polynomials of degree 4 and corresponding transformed G1-functions;
Figures 1(e) and 1(f) are related to a B-Spline of degree 3 with internal knots and corresponding
transformed G1-B-Spline.

2.3 Strain measures

The velocity of the deformations have been evaluated [1, 2] and are represented by means of
the compatibility operators, B(•), as follows:

ε(q0, q̇) = BT
ε (q0)q̇, χn(q0, q̇) = BT

χn
(q0)q̇

χν(q0, q̇) = BT
χν
(q0)q̇, γ(q0, q̇) = BT

γ (q0)q̇.
(17)
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3 THE ASSUMED STRAIN FORMULATION

The assumed strain method (ASM), proposed in [6, 8, 9] consists in a L2-projection of the
strain measures, by means of the weak definition of the compatibility equation. Let bpi be the
generic i-th function of degree p, that interpolates the displacement field q = (u, ϕ). The axial,
bending and twisting deformations are projected onto the spaces, respectively, bp−1

ε , bp−2
χ and

bp−1
γ , with lower polynomial and continuity degrees. A B-bar formulation for G1 multi-patch

interpolations with BSpline without internal knots is presented next. We remark that, the dis-
placements functional space adopted is G1 continuous as defined in the previous section, while
the strain measures are projected onto standard open BSpline space with lower polynomial de-
gree and lower parametric continuity.

3.1 The B-bar operators

For the Kirchhoff-Love rod the strain measures consistent with a (weak) compatibility con-
ditions are given by modified B̄-operators

ε̄(ḋ) = B̄
T
ε ḋ, χ̄n(ḋ) = B̄

T
χn
ḋ, χ̄ν(ḋ) = B̄

T
χν
ḋ, γ̄(ḋ) = B̄

T
γ ḋ, (18)

where these modified B̄-operators are given by

B̄
T
ε = (bp−1)T Ḡ

−1
∫
L

(
bp−1BT

ε

)
dL, B̄

T
γ = (bp−1)T Ḡ

−1
∫
L

(
bp−1BT

γ

)
dL, (19)

and

B̄
T
χn

= (bp−2)T ¯̄G
−1

∫
L

(
bp−2BT

χn

)
dL, B̄

T
χν

= (bp−2)T ¯̄G
−1

∫
L

(
bp−2BT

χν

)
dL, (20)

in which the Ḡ and ¯̄G are the corresponding mass matrices

Ḡ =

∫
L

(
bp−1 ⊗ bp−1

)
dL, ¯̄G =

∫
L

(
bp−2 ⊗ bp−2

)
dL. (21)

The stiffness operator is defined analogously to a pure displacement formulation. Numeric
integration is performed at level of the element considering p+ 1 Gauss-Lobatto points.

4 NUMERICAL EXAMPLES

In this section three simple cases of curved rods are considered in which the case of mem-
brane, flexural and both locking pathologies. The material parameters are E = 2∗108 [kN/m2],
ν = 0.25. The radius of the centroid is R = 1 [m] and the force at the end has intensity
∥f∥ = 1 [kN ]. In the first two numerical example n̂(S) = êz = {0, 0, 1} and ν̂(S) = t̂× n̂(S)
are considered while in the last example an initial torsion angle ϕ(S) = π S

2
it is considered.
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Figure 1: Transformation of shape function from standard C0 open BSpline to G1 open BSpline shape functions,
(with or without internal knots).
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4.1 Example 1: 2D Arch with a point force at the end

In this section it is considered a circular 2D arch with a point force at the end, see figure 2(a).
Figures 2(b) and 2(c) show the comparison in the error in L2 norm for the uy displacement’s
component, (for two polynomials degrees p = 3, 4), between a pure displacement and B-bar
approach, in the case of multi patch interpolation. The rate of the convergence is highlighted.
Figures 2(d) and 2(e) show the L2 error with the ratio R/hν for different discretizations, either
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(f) G1-multi-patch pure displ.
vs. ASM (or B-bar dashed line).

Figure 2: Cantilever 2D arch with a shear at the end, (membrane locking).

for a BSpline and a multi patch approach; drastic membrane locking appears in the case of
Bspline interpolation that disappears in the case of the multi patch approach. However spurious
modes occurs on the axial stress that is reflected in a reduction of the accuracy in the solution,
see Figure 2(e). Therefore a B-bar approach is necessary for an accurate definition of the strains
in a multi patch approach. Figure 2(f) show the comparison between the accuracy level obtained
with a pure displacement and a B̄ formulation in the case of the multi-patch approach.

4.2 Example 2: 3D Arch with a point force at the end

In this section it is considered a circular 3D arch with a point force at the end, see figure 3(a).
Figure 3(b) shows the comparison for the convergence’s rate of the relative L2 error norm for
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the uz solution, (for the polynomials degree p = 3 and ratio R/hν = 100), between the pure
displacement and the B̄ formulation both the case of the G1-multi-patch approach. Figure 4(d)
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(f) G1-multi-patch pure displ.
vs. ASM (or B-bar dashed line).

Figure 3: Cantilever 3D arch with a shear at the end, (flexural locking).

and 4(e) show the error in L2 norm as function of the ratio R/hν for different discretizations
in the case of BSpline (high inter element continuity) and in the case of the G1 multi-patch
approach (low inter element continuity), for a pure displacement formulation. In the case of the
BSpline interpolation flexural locking appears while in the case of the multi patch approach no
locking appears. As previously observed oscillations can occur in the bending moment Mν for a
pure displacement approach so that a B̄ formulation is necessary. For the multi patch approach
only, figure 3(f) shows the comparison in the accuracy level obtained with a pure displacement
and a B̄ (dashed lines) formulation respectively.

4.3 Example 3: 3D pre-twisted arch with a point force at the end

In this section is considered a pre-twisted circular 3D arch with a shear at the end, see figure
4(a). Figure 4(b) shows the comparison for the convergence rate of the error in L2 norm of the
uz displacement component, (for polynomial degrees p = 3, 4), for the G1 multi-patch approach
using the pure displacement and the B̄ formulation. Figure 4(c) shows a real example of a pre-
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twisted curve rod, i.e. a Glulam pre-twisted curve wood beam. Figure 4(d) and 4(e) show the
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(d) High inter-element continu-
ity BSpline (pure displ.)
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(e) Low inter element continuity
G1-multi-patch (pure displ.)
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(f) G1-multi-patch pure displ.
vs. ASM (or B-bar dashed line).

Figure 4: Pre-twisted cantilever 3D arch with a shear at the end, (flexural locking).

trend of the L2 error norm with respect to the ratio R/hν for different discretizations, in the case
of BSpline (high-continuity) and G1 multi-patch approaches; As opposite to the displacement
formulations, no flexural locking appears in the multi patch approach but significative oscilla-
tions can occur in the bending deformations. A B̄ approach solve this problem as shown figure
4(f) when a comparison in the accuracy level between pure displacement and B̄ (dashed lines)
for multi-patch approach are presented.

5 CONCLUSIONS

• The paper has presented a isogeometric generalization of the G1-Hermitian interpolation
for 3D space Kirchhoff-Love rods.

• The influence of the inter element continuity level on the locking phenomena for 3D
Kirchhoff-Love space rods has been show, comparing the case of Bspline and G1-multi
patch approaches. The multi patch approach strongly reduce locking.
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• A G1-multi patch assumed strain formulation has been presented, (in which is obtained
a banded stiffness matrix contrary to the case of BSpline interpolation); It reduces the
oscillations in the stress resultants.
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