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Abstract. Bifurcations are features of dynamical systems and occur when a small change in a
system parameter results in a sudden qualitative change in the system behaviour. Such events
can occur in linear and non-linear systems. The analysis of this phenomenon is challenging in
the presence of non-linearity even for simple systems since they lack the properties and prin-
ciples common to linear systems, e.g. the superposition principle. In the last few decades,
numerical methodologies have been developed in order to efficiently determine bifurcation di-
agrams. Such techniques include continuation, normal form analysis, harmonic balance, and
more recently branch and bounds methods. However, very little work has been considered for
quantification of uncertain non-linear systems. In this paper, a methodology is provided to
propagate parametric uncertainties and define bounds for the bifurcation diagrams taking into
account the factors that most influence the behaviour of the analysed dynamical system. To this
end, the developed methodology includes sensitivity analysis and uncertainty quantification.
The methodology exploits numerical continuation methods, (high order) singular value decom-
positions, interval analysis and Bayesian approach, which is adopted in the Kriging method to
develop surrogate models . The proposed method is validated considering a complex non-linear
system from the aeronautical field: a landing gear (LG) system. The LG system has been the
subject of several deterministic studies predicting the occurrence of shimmy, which is a self-
excited oscillation dangerous for the integrity of the aircraft. This phenomenon arises from
Hopf bifurcations. The case study explores the effects of uncertainty on this phenomenon.
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1 INTRODUCTION

Bifurcation is a phenomenon that is common in several dynamical systems and can be de-
scribed as a sudden qualitative change in the system behaviour due to small variations in systems
parameters. A common misunderstanding of bifurcations is to relate them only to physical sys-
tems modelled taking into account non-linearity. In fact this phenomenon can exhibit itself also
in linear systems: all physical systems have non-linearity, which can be more or less important.
The kind of effect the bifurcation can imply is influenced by the presence of non-linearities.
This paper is focused on a particular effect that can occur only in non-linear systems: the Limit
Cycle Oscillation (LCO). LCOs are isolated closed trajectories characterized by periodical so-
lutions for the states of the systems and can be stable or unstable if the neighbouring trajectories
approach them or not, respectively. This differentiation is not always true and there can be the
case of half-stable LCOs. LCOs can be generated after a particular bifurcation, called a Hopf
bifurcation, that is one of the bifurcations of fixed points (along with pitchfork bifurcation,
saddle-node, transcritical bifurcations). Hopf bifurcations can occur in systems with at least
two degrees of freedom (DoFs); mathematically, it occurs when the real part of a pair of com-
plex eigenvalues, of the Jacobian matrix of the linearised system, changes sign as a parameter
varies. There are three different kinds of Hopf bifurcation depending on the behaviour of the
system after the bifurcation point: supercritical, subcritical and degenerate.

Stable LCOs are of particular interest in science because they model systems that can exhibit
self-sustained oscillations, oscillations that are not due to external force but are generated by the
system itself. Some of these fascinating phenomena characterize our life each day: the beating
of a heart, the daily rhythms in human body temperature and hormone secretion, chemical
reactions that oscillate spontaneously [1]. With regard to the engineering field, stable LCOs
are often the cause of dangerous events: self-exciting vibrations in bridges and wings, and
oscillation in landing gear, known as shimmy. In particular, shimmy is a phenomenon exhibited
not only by landing gear systems, but by all the systems with wheels that interact with the
ground.

Bifurcation analysis is a subject of interest in many fields, such as mathematics and engi-
neering, and there are many different approaches developed to evaluate and describe bifurca-
tion diagrams. Bifurcation diagrams can be evaluated by adopting a pure Monte Carlo ran-
dom search, numerical and experimental continuation, exploiting non-linear normal forms and
branch and bounds methods. All these methods, apart from non-linear normal forms, find a
numerical solution. The normal forms are a significant mathematical method that theoretically
fulfils the requirement to find an analytical solution to non-linear problems, among which are
the identification of bifurcation diagrams and/or backbone curves [2]. All the stated methods
can be adopted to identify equilibrium branches of the bifurcation diagrams (including steady-
state bifurcation points, such as pitchfork and saddle-node bifurcations, and Hopf bifurcations).
However, not all of them solve periodical solutions (e.g. Limit Cycle Oscillation (LCO)): con-
tinuation, experimental and, ideally, pure Monte Carlo random search and non-linear normal
forms can be exploited. In the case of periodical solutions, Harmonic Balance methods have
also been diffusely adopted for the identification of LCOs in the aereolastic and aerodynamics
fields [3] [4] [5].

Dealing with dangerous phenomena occurring after Hopf bifurcations, such as shimmy, it is
important to define confidence intervals that take into account the presence of uncertainty. Un-
certainty is always present in life and in process modelling can be classified as model (form),
parametric (aleatory and epistemic, i.e. irreducible and reducible uncertainty) and/or predictive
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uncertainty. In this regard, in a design process two general approaches can be adopted, which
are shown in Figure 1: deterministic and non deterministic approaches. They are intrinsically
different concerning the treatment of uncertainty [6]. Deterministic approaches consider the
presence of uncertainty just at the end of the analysis using the so called ‘safety factor’, i.e. the
system responses are obtained considering the modelled system as ‘true’. This assumption can
cause an over/under-designed system if the safety factor is too high or low. Non deterministic
approaches consider the presence of uncertainty from the beginning and so a more robust design
can be achieved. They can employ stochastic and/or interval approaches depending on the un-
certainty typology, i.e. aleatory and epistemic. In real systems both these kinds of uncertainties
are present and so it is desirable to develop approaches that sensibly combine stochastic and
interval methodologies. Deterministic approaches are attractive in their simplicity, but unac-
ceptable in the presence of significant randomness and lack of knowledge. Finally, adopting the
non deterministic approaches, the robustness of the achieved result can be strongly limited by
the required time, which is a parameter that significantly limits the applicability of methodolo-
gies that could work well on paper. It is for this reason that in a preliminary design, the analyses
are done through the use of simulators, especially in the presence of complex dynamics and/or
structures for which experiments can be very time expensive and/or impracticable.

Figure 1: Approaches in a design process.

In the last decade, researchers have been starting to look at the effect of parametric uncer-
tainty in the structural parameters and in composite structures in the flutter occurrence and in
the amplitude and frequency of LCOs, arising beyond the linear flutter speed [5] [7] [8] [9] [10]
[11] [12].

The aim of this paper is to present a new methodology to ensure a reliable ‘structure’ through
consideration of uncertainties in bifurcation diagrams. The methodology is implemented in
Matlab, through the development of a tool that exploits the Dynamical System Toolbox [19],
a Matlab interface with AUTO, the software used to perform numerical continuation analyses
[15].
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The process risk and reliability management considered here is in terms of the definition of
confidence bounds for the possible occurrence of LCOs in the presence of parametric uncer-
tainty. These bounds are for delimitation-branches that are the locus of Hopf bifurcation points
and that determines subdivision of the interested parameter space. These subdivision are in
terms of absence or possible occurrence of LCOs and a full identification is not trivial, even de-
terministically. The idea to totally deterministically describe the delimitation-branches consists
of three main parts:

1. determine a first set of branches of locus of Hopf bifurcation points in the range of interest
of parameters;

2. detect possible other Hopf bifurcations that can be isolated from the ones identified in
point 1 and are significant to identify the sought delimitation;

3. critically discuss the possible presence of subcritical Hopf bifurcation. Subcritical Hopf
bifurcation is a Hopf bifurcation that causes an unstable LCO for values of some param-
eters that is less of the ones characterizing the starting Hopf bifurcation point. After the
unstable LCO, a stable LCO, characterised by high amplitude values, typically occurs.
It is apparent that this detection is significant for a robust identification of the sought
delimitation.

In this paper, results and discussion for all the stated points are provided. The uncertainty
propagation has been performed developing a method that shares the same principles adopted
in the technique already been validated by the author in [13]. The technique consists of a new
SVD1-based methodology and has already been adopted in order to predict gust lengths that
cause critical correlated aircraft loads in presence of parametric uncertainty. The novelty in
this methodology is in suitably identifying matrices that can capture the ‘behaviour’ of interest
affecting the Interesting Quantities (IQs) and then in constructing surrogate models in terms of
coefficients that are extracted applying the SVD. In this paper, new aspects are introduced in
the methodology:

– both the singular value decomposition (SVD) and the high order singular value decom-
position (HOSVD) are used;

– Sobol’ indices (main and total effects) are adopted to perform sensitivity analysis (SA)
and describe the importance of each design parameter, identifying which ones to use for
the uncertainty quantification (UQ).

The developed technique has been validated using an analytical description of a landing gear
system. The case study is the shimmy phenomenon, i.e. the LCO to be ‘bounded’ in the presence
of parametric uncertainty.

In section 2, the bifurcation analysis and the analysed branches are first briefly discussed
justifying the research; then the present problem and the case study are presented. In section
3 the methodology is presented covering each step. Finally, in sections 4 and 5 the results are
given and the conclusions are drawn.

1Singular Value Decomposition
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2 BIFURCATION ANALYSIS AND PRESENT PROBLEM

In this section, a brief introduction to what is a bifurcation in a dynamical system is first
presented; the different methods of analysis are then provided and finally, the occurrence of
LCOs as an effect of Hopf bifurcations is presented, introducing the concept of ‘shimmy’.

2.1 BIFURCATION AND DYNAMICAL SYSTEMS

The term bifurcation was first introduced by Poincaré to describe the ‘splitting’ of equilib-
rium solutions in a family of differential equations. J. Guckenheimer provides the following
definition in [14]. ‘Given a system of differential equations 2

ẋ = fp (x) ; x ∈ IRn; p ∈ IRk (1)

depending on the k-dimensional parameter p, then a value p0 of equation (1) for which the flow
of (1) is not structurally stable is a bifurcation value of p.’ Guckenheimer himself emphasizes
how the definition cannot be completely satisfactory since it requires an extremely detailed
study of the flow structure that does not exist in practice. A peculiarity of such a definition is that
a point of bifurcation need not actually represent a change in the topological equivalence class
of a flow, it can represent just a qualitative change. Thus, the bifurcation analysis of a system can
be conducted in a qualitative manner without trying to depict a systematic bifurcation theory,
which would give rise to difficult technical questions.

A common case in which the change is usually of a topological type is the bifurcation of
equilibria (or fixed points). For instance, considering equation (1), bifurcations of that type
can occur for equilibrium solutions obtained varying the k-dimensional parameter p. These
solutions are given by solving fp = 0 and their existence is assured by the implicit function
theorem if the Jacobian derivative of fp with respect to x, i.e. Dxfp, has no zero eigenvalues.
Solutions are given by smooth functions of p and we will call branches of equilibria of (1)
the graph representation of each of these solutions. An equilibrium (x0,p0) is called a point
of bifurcation if at such a point the Jacobian matrix presents a zero eigenvalue; in fact in this
situation the equilibrium point (x0,p0) may belong to several branches of equilibria.

Points of bifurcation can be classified mathematically and/ or qualitatively and the descrip-
tion can be very complex, especially in the presence of ‘imperfection’, intermediate solutions
and chaos. The simplest are the so called bifurcations of fixed points to which belongs the Hopf
bifurcation, which is the one of interest in the present paper. Thus, for the sake of simplicity, a
brief introduction to bifurcations of fixed points is here covered without describing degenerate
cases.

Mathematically, the classification of bifurcations of fixed points is performed looking at
the fixed points and in some case at the eigenvalues of the Jacobian matrix, that is obtained
linearising the system in the neighbourhood of a fixed point. Moreover, typical dynamics rep-
resentation, called ‘normal forms’, have been identified according to the degrees of freedom of
the system. Qualitatively, the characteristic flows in the phase portrait, caused by the occurrence
of a fixed point bifurcation, is considered for the classification. Whatever the dimension of the
considered system is, the bifurcation of each fixed point keeps the same qualitative description,
with the only exception of the Hopf bifurcation, which can occur just in systems with at least
two degrees of freedom. In what follows the categorization of bifurcations of fixed points is
provided, giving more details for the Hopf bifurcation.

2x is the state vector of the system.
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– Saddle-node bifurcation, also known as fold bifurcation or turning-point bifurcation, oc-
curs when fixed points are created and destroyed as a set of parameter p changes.

– Transcritical bifurcation is characterized by the change of stability of a fixed point as p
varies.

– Pitchfork bifurcation occurs in systems with some inherent symmetry and stable points
tend to appear and disappear in symmetrical pairs. This bifurcation can be of two kinds,
supercritical and subcritical, and are characterized by the presence of a cubic term that is
stabilizing and destabilizing, respectively.

– Hopf bifurcation can happen just in systems with at least two degrees of freedom. This
feature is strictly related to the characterization of such a phenomenon: a change of the
sign of real parts of complex eigenvalues, thus the necessity of at least two degrees of free-
dom is straightforward. In presence of non-linearity, Limit Cycle Oscillations (LCOs) can
occur, since Limit Cycles (LCs), isolated closed trajectories characterized by periodical
solutions for the states of the systems, are present in the Hopf bifurcation. LCs can be
stable or unstable if the neighbouring trajectories approach them or not, respectively. As
the pitchfork bifurcation, Hopf bifurcation can be either supercritical or subcritical. The
difference between these two bifurcations is in the oscillation that arises. A supercritical
Hopf bifurcation occurs when only a stable fixed point is present before the destabiliza-
tion, which occurs increasing a set of parameter p, and a stable LC appears after the
destabilization of the fixed point: although the fixed point becomes unstable the trajec-
tory is attracted to a LC that appears just after the bifurcation; thus the response tends to
be periodical and the amplitude is limit to a fixed value. In the occurrence of subcritical
Hopf bifurcations, a stable fixed point and LC with an unstable cycle between them are
present before the bifurcation. Increasing p, the amplitude of the unstable cycle becomes
zero and engulfs the origin making it unstable: all the trajectories are attracted to the
LC that is characterized by large oscillations. It is worth empathizing that the subcritical
Hopf bifurcations is more dangerous since, unlike the supercritical Hopf bifurcation, it
is ‘irreversible’: decreasing the values of p the fixed point cannot be rendered stable and
large oscillation persists [1].

2.2 METHODS TO EVALUATE BIFURCATION DIAGRAMS

Numerical continuation 3 is the method selected to evaluate bifurcation diagrams thanks to
its capabilities, which fit what is needed to perform SA and UQ in terms of bifurcation diagrams.
The main features of numerical continuation are:

– analytical representation of the analysed model is not required.

– simplicity in detecting bifurcation points, such as limit point and Hopf bifurcations.

– periodical branches can be solved applying sophisticated continuation methods.

– limited running time for bifurcation diagrams in two parameters, suitably setting up the
constants characterizing the method (e.g. step size, tolerance ...).

3AUTO is the software used for the continuation [15].

786



I. Tartaruga, J. E. Cooper, M. H. Lowenberg, P. Sartor and Y. Lemmens

Numerical continuation is usually restricted to low-dimensional parameters [16] and requires
an initial solution to identify equilibrium branches. In order to define confidence bounds for
the branch delimiting the area of possible occurrence of LCOs, these drawbacks are not as
significant as the ones met if one of the other methods would be adopted:

– A pure Monte Carlo random search is a blind search of bifurcation diagrams. The model
is run for an extremely large number of input values, which are randomly selected and a
considerable running time is required even for a bifurcation diagram in only one parame-
ter.

– Non-linear normal forms are mathematical tools that help in simplifying the system of
non-linear equations, identifying the so called resonant and non-resonant terms, exploit-
ing suitable transformation and assumptions. However, so far the potential of using non-
linear normal forms has been exerted to fully describe the dynamical behaviour, i.e. iden-
tify bifurcation diagrams, only for small systems (for instance two degree of freedom
systems).

– Branch and bound methods require an analytical description of the dynamical system
and the branches are identified in terms of bounds, which can be made tighter and give
a guarantee of solution just in terms of exclusion. It is necessary (but not sufficient) for
a high compactness of the analytical dynamical system in order to achieve a sensible
precision for the solution, which requires a significant running time. Finally, the methods
have not yet been adopted for periodical branches.

2.3 PRESENT PROBLEM AND CASE STUDY

In order to define confidence bounds of the bifurcation branch delimiting the region of possi-
ble occurrence of LCOs first at least two parameters have to be selected to define the parameter
space in which the sought restrictions are to be determined.

The idea to identify these restrictions, for each analysed set of values of parameters of inter-
est, already presented in the introduction, is here shown in detail:

1. A first set of branches of locus of bifurcation points can be determined after having run an
equilibrium solution changing the values of one of the two selected parameters, keeping
the other constant, and identifying the Hopf bifurcations that occur in the range of interest
of the changed parameter. In fact, once the points are identified, a switch to a continuation
in terms of both the selected parameters can be done determining a set of pairs of values
of the two parameters characterizing Hopf bifurcation points; the solutions obtained as
a locus of this point is exactly the sought first set of branch-delimitations. Once these
delimitations are identified, are known LCOs to occur in these delimited areas. What
needs to be investigated is if some LCOs can occur outside this region: the last two points
fulfil this requirement.

2. Look for possible occurrence of Hopf bifurcation for which the values of the selected
parameters are outside those characterizing the already identified branches (point 1), i.e.
due to Hopf bifurcations from other fixed-point solution branches.

3. Check the possible occurrence of subcritical Hopf bifurcation, for which the related LCO
is present also at values less than those characterising the selected parameters at the iden-
tified branches in 1.
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The last two requirements are important since in the presence of one or both the stated phe-
nomena, the delimitation determined accomplishing the first point, does not totally identify the
region in which LCO can/cannot occur. These two requirements can be fulfilled doing periodi-
cal continuation from the first set of determined branches in terms of the parameter fixed in point
1 for the equilibrium solution. In this way, possible occurrence of LCOs at the stable-equilibria
side can be detected and the final delimitations depicted.

The confidence bounds for such a delimitation take into account parametric uncertainty
present in the analysed system. Due to the presence of a huge number of parameters in models,
SA is needed in order to distinguish the parameters that significantly influence the system from
those that do not, before propagating the uncertainty. The SA has been performed in terms of
the first set of identified branches.

Since the case study in the present paper is the occurrence of shimmy in ground manoeuvres,
the adopted landing gear model is here briefly presented contextualizing the presented idea.

The landing gear model is based on the that presented by Howcroft [18] and it is a dual-wheel
landing gear in which free-plays and wheel gyroscopic effects are not considered. The de-
flection of the landing gear structure is modelled in terms of three degrees of freedom (DoFs)
(Figure 2) and an additional DoF is introduced for the tyre dynamics. The states are in total 7,
since the first three dynamics are of the second order while the last is just of first order. The
degrees of freedom are:

1. torsional, ψ, describing the rotation of the wheel/axle assembly about the local axis z;

2. in-plane, δ, expressing the bending of the oleo piston in the side-stay plane. This DoF is
approximated as a rotation about a point at a distance Lδ from the axle;

3. out-of-plane, β, describing the rotation on the landing gear about the two attachment
points;

4. lateral displacement, λ, characterizing the tyre dynamics, which is modelled adopting the
straight tangent model.

Further information on the adopted model is provided in [18], in appendix A the nominal
values adopted for the parameters of this model are shown.

Having considered the shimmy in the landing gear as the case study, the parameter space, in
which the delimitation is determined, is the one covered by the Hopf bifurcations as the for-
ward velocity V and the vertical force Fz vary. In fact, during landing manoeuvres, these two
parameters vary considerably:

– the vertical force Fz is the one along the main structure of the landing gear and its varia-
tion is strictly related to the loading condition (for instance lift relative to weight during
take-off landing or taxing). In the present paper, an upper force limit of 4 ·105 N has been
considered.

– the forward velocity V during landing manoeuvre must be in agreement with the certifica-
tion; tables provided in an ICAO 4 document [17] indicate the specified range of handling
speeds for each category of aircraft to perform the manoeuvres specified. These speed

4International Civil Aircraft Organization
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Figure 2: Torsional ψ, lateral δ and longitudinal β degree of freedoms characterising the adopted
landing gear model [18]. (XYZ) and (xyz) are the global and local coordinate systems, respec-
tively.

ranges have been assumed for use in calculating airspace and obstacle clearance require-
ments for each procedure. Taking into account the information provided by ICAO, and
the speed at threshold Vatv for an airline jet, based on 1.3 times stall speed in the landing
configuration at maximum certificated landing mass, a range of interest 0 − 100 m/s for
the forward velocity V has been considered in the analysis.

3 METHODOLOGY

Figure 3 presents the flow process chart of the tool in which the methodology to define
confidence bounds for the sought delimitation-branches is implemented. This tool allows the
development of a suitable sampling plane for both SA and UQ, run AUTO, perform bifurcation
analysis, systematically discuss the influence of parameters on the analysed landing gear model
adopting the Sobol’ indices as sensitivity metrics and then perform UQ in terms of parameters
‘significant’ for the system.

In the following subsections, the sensitivity metrics, the method to perform UQ and the
adopted error metrics are presented.

3.1 SENSITIVITY ANALYSIS

SA has its origin in the design of experiments (DOE), which was introduced in order to eval-
uate the input/output (I/O) relation in the presence of variation in factors. Indeed, the definition
provided by Saltelli [20] for SA reflects such a feature: ‘Sensitivity analysis studies the relation-
ships between information flowing in and out of the model’. The pattern adopted by both SA
and DOE consists of selecting first the factors to be varied in the experiments (physical or nu-
merical), secondly in accomplishing the experiments and finally in picking out suitable statistic
tools for the analyses of the data. SA has two main features: it describes how variations in the
output can be caused by variations in factors and it analyses which kind of influence the factors
have on the system; it does not identify which are the causes of particular outputs. The SA has a
significant role in the increment of the level of confidence of a model, a problem raised from the
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For Sensitivity Analysis (SA)
- Sobol` Sequence

For Uncertainty Quantification (UQ)
- Latin Hypercube Sampling (LHS)

Dynamical System
Characterization

- For each sampling point

Run AUTO
- Numerical Continuation

Sampling Plane
Store Data

Sensitivity Analysis (SA) 
- Custom-made Objective function evaluation

- Construction of Surrogate Model
- Sobol` Indices

(subsection 3.1 for methodology  and 4.2 for results) 

Analysis of Main effect and Total effect Indices
(subsection 3.1 for methodology  and 4.2 for results) 

Uncertainty Quantification (UQ)
- SVD/HOSVD feature selection

- Construction of Surrogate Model
(subsection 3.2 for methodology  and 4.3 for results)

Figure 3: Flow process chart of the tool developed to perform SA and UQ in terms of bifurcation
diagrams using AUTO.

presence of uncertainty, which can be model (form), parametric (aleatory and epistemic) and/or
predictive [12]: SA is directly correlated to and is a means to cope with the uncertainty.

As remarked by Saltelli [20] there is not a ‘universal recipe’ that explains how to conduct
a SA and which measures should be adopted. The decision for the method and sensitivity
measures to be adopted depends on the particular problem, model and accepted computational
cost: only experience and engineering judgement can lead to a more efficient pattern or, in
other words, to the strategy that implies lower computational cost, which is a general indicator
of efficiency and can be described as the number of model evaluations needed for the analysis.
In the analysed problem, sensitivity metrics that capture non-linear dynamical behaviour and
high order interaction are desirable and for this reason the Sobol’ indices and the total effect
index STi have been selected. These are part of the global SA methods and are able to correlate
the output variation with the variation in the factors exploiting statistical means and usually
adopting a sampling approach. A sensitivity method is said to be global if all parameters are
simultaneously varied and sensitivity is evaluated over the range of each factor [20]. Sobol’
indices have been constructed studying a special representation of integral scalar function f .
What Sobol has provided in [24] is presented here:

f = f0 +
n∑
s=1

n∑
ii=1<...<is

fi1...is (xi1 , ..., xis) , i = 1...n (2)

where 1 ≤ i1 < ... < is ≤ n and n is the number of factors xi. Formula (2) can be expanded as

f = f0 +
n∑
i=1

fi (xi) +
n∑
i<j

fij (xi, xj) + ...+ f1,2,...,n (x1, x2, ..., xn) , i = 1...n (3)
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For each component of the function f the summands in (2) are 2n.
Assuming that all the analysed function f is squared integrable, then all the fi1...is are squared

integrable as well. The Sobol’ indices are identified after having defined some constants called
variances, which are obtained after having squared equation (2) and integrated the results over
the interesting domain of the factor (x1, x2, ..., xn).∫

f 2 (x) dx− f 2
0 =

n∑
s=1

n∑
ii=1<...<is

∫
f 2
i1...is

(4)

The sought variances for each function f are given by the constants

V =

∫
f 2 (x) dx− f 2

0 (5)

Vi1...is =

∫
f 2
i1...is

dxi1 ...dxis (6)

and it follows that

V =
n∑
s=1

n∑
ii=1<...<is

Vi1...is (7)

The reason for which V and Vi1...is are called variances is due to the fact that they would
actually be so for the functions f and fi1...is if the factors x were randomly uniformly distributed
in the domain of interest.

The Sobol’ indices for each function f and for the factors (x1, x2, ..., xs) are finally given by

Si1...is =
Vi1...is
V

(8)

which are all non-negative leading to the result

n∑
s=1

n∑
ii=1<...<is

Vi1...is = 1 (9)

Sobol’ indices are extremely powerful and can be adopted for three different types of prob-
lems exploiting the fact that the higher is the value of the index Si1...is , the more important are
the factors (x1, x2, ..., xs) and their integration. The three problems are:

1. ranking of variables

2. identifying non-essential variables

3. detecting high order members in (2).

The selection of the parameters more significant to perform UQ in terms of the branches pre-
sented in subsection 2.3, is a problem that belongs to the first two points above-mentioned and
the main effect Si and total effect index STi , introduced by Saltelli [20]-[23], have been deter-
mined. Saltelli has emphasized the importance of STi , which measures the total effects (i.e. first
and higher order iteration) of factor xi, especially in the presence of a huge number of factors.
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The sum of these indices
∑n

i=1 STi must be greater or equal to 1. The equality occurs only in
the case of a perfect additive model and in that case

∑n
i=1 Si = 1.

The function fi1...is and the main Si and total effects STi are obtained as [21]

f0 = E(Y ) (10)
fi = EX∼i

(Y |Xi)− E(Y )

fij = EX∼ij
(Y |Xi, Xj)− fi − fjE(Y )

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(11)

STi =
EX∼i

(VXi
(Y |X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y |X∼i))

V (Y )

where Y stands for the function of interest f , EX(·) and VX(·) are the mean and variance of
argument (·) over Xi, while EX∼i

(·) and VX∼i
(·) are the mean and variance of all factors but

Xi.
In order to efficiently perform the SA, a computational approach that allows a simultaneous

computation of Si and STi has been adopted and the indices are evaluated using a surrogate
model (the Blind Kriging) developed for each selected output u, trained and validated with a
suitable number of sampling points, adopting Sobol’ sequences (also known as LP τ sequences)
as the quasi-Monte Carlo algorithms. An analytical evaluation of such indices is feasible just
for simple systems, which is not the case here. The considered numerical computation has been
presented by Saltelli [21] [25] and consists of using two independent N × k matrices A and B,
whose rows and columns are the considered sampling points and design variables respectively,
and a third (N · k) × k matrix C that is constructing from the previous ones. Each C(i) block
(i = 1...k) of the matrix C can be formed:

1. by all columns of A except the i− th column, which is taken by B

2. by all columns of B except the i− th column, which is taken by A

Whatever case is chosen, N × (k + 2) model evaluations are required to determine the sought
indices. In [21] Saltelli showed that with the first algorithm a higher rate of convergence is
achieved if the following formula for VXi

(EX∼i
(Y |Xi)) and EX∼i

(VXi
(Y |X∼i)) are adopted

to calculate Si and STi , respectively.

VXi
(EX∼i

(Y |Xi) =
1

N

N∑
j=1

f(B)j(f(C(i))j − f(A)j) (12)

EX∼i
(VXi

(Y |X∼i)) =
1

2N

N∑
j=1

(f(Aj)− f(C(i))j)
2

The last term to be calculated is the total variance V and, since it is function of f 2
0 , a formula

for f0 is also required. The existence of three possible equations for V and four for f0 have been
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found [26], giving a total of 12 possible combinations such that:

f̂ 2
0 =

(
1

N

N∑
j=1

f (A)

)2

(13)

f̂ 2
0 =

(
1

N

N∑
j=1

f (B)

)2

(14)

f̂ 2
0 =

(
1

2N

N∑
j=1

f (A,B)

)2

(15)

f̂ 2
0 =

1

N

N∑
j=1

f (A) f (B) (16)

V̂ =
1

N − 1

N∑
j=1

f 2 (A)− f̂ 2
0 (17)

V̂ =
1

N − 1

N∑
j=1

f 2 (B)− f̂ 2
0 (18)

V̂ =
1

2(N − 1)

2N∑
j=1

f 2 (A,B)− f̂ 2
0 (19)

In the present analysis, all of these combinations have been considered and compared in
order to find out the one that gives the most coherent result with respect to the stated properties
of the indices and with the lowest computational time for convergence.

Sobol’ indices can be evaluated using surrogate models 5 of the selected outputs u, trained
with a suitable number of sampling points. These surrogate models are related to B + 1 points
on each first set of identified branch (one for all the considered sampling points, subsection 2.3);
these points are obtained by dividing each identified branch in an equal number of intervals B.

In order to consider the importance of the design parameters, and so determine the Sobol’ in-
dices, it is important to select suitable objective functions u, used as ‘objective’ functions for the
Sobol’ indices. For the landing gear system the objective functions u have been defined having
fixed the two parameters that have to be considered as operating ones due to their importance
for a landing gear system: the forward velocity V and the vertical force on the landing gear Fz.
The qualitative change in the branches can be captured if the objective functions describe both
variation in the shape and translation of the interesting branches. Thus, two kinds of indices
have been selected:

1. for each determined segment on the analysed branches, the approximated slope is taken
as an objective function to capture change in the shape of the analysed branch

f1bi1...is (pi1...is) =
∂Fz
∂pi1...is

∣∣∣∣
b

' ∆Fz
∆pi1...is

∣∣∣∣
b

b = 1...B 1 ≤ i1 < ... < is ≤ NP (20)

5Blind Kriging surrogate models have been adopted.
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2. at the first determined Hopf bifurcation point, i.e. at which the continuation has been
switched in two parameters, the velocity V1 is considered as an objective function to
discuss translations of the interesting branch

f2i1...is (pi1...is) = V1 (pi1...is) 1 ≤ i1 < ... < is ≤ NP (21)

where NP is the number of the analysed parameters. Thus, in total B + 1 objective functions
are considered and the first B have to be considered as a whole since since they describe the
change in the shape of the interesting branch; the mean in terms of all the intervals B has been
considered for each branch. If a significant topology variation of the bifurcation diagram occurs
changing a particular parameter, then this should be considered as an operating parameter.

Once the SA is accomplished, then the UQ can be performed in terms of the most influential
uncertain parameters. In the following subsection the adopted new methodology is presented. It
is based upon the same principles characterizing the already tested technique developed by the
author to predict and propagate parametric uncertainties up to correlated time-history quantities
[13].

3.2 UNCERTAINTY QUANTIFICATION

The methodology for propagating parameter uncertainties belongs to the so called sampling-
based analysis: the Singular Value Decomposition (SVD) and/or High Order Singular Value
Decomposition (HOSVD) have been adopted both to speed up the process and to store data. The
SVD/HOSVD is adopted to accomplish the feature extraction and selection, a critical step in
machine learning problems [27]. The other key to speed up the process is to consider surrogate
models rather than running the numerical model. The surrogate models have been trained and
validated using the Latin Hypercube Sampling (LHS) method [28].

The proposed UQ can be divided in three parts as summarized in Figure 4.

1. Application of SVD/HOSVD

2. Surrogate Model Selection

3. Uncertainty Quantification

In what follows each part of the developed technique for UQ is detailed.

Application of SVD/HOSVD The SVD is defined as: for every matrix A ∈ IRm×n there exist
two orthogonal matrices U ∈ IRm×m and V ∈ IRn×n and a diagonal matrix Σ ∈ IRm×n, whose
diagonal collects the non-negative singular values λ1 ≥ λ2 ≥ ... ≥ λminn,m ≥ 0, such that A
can be decomposed as A = UΣVT.

In order to reduce the dimension of a problem, AT, a truncated SVD can be considered.
It is the matrix obtained considering only the columns of U and V (i.e. the singular vectors)
related to the k highest singular values; usually the non-zero singular values are chosen although
this can sometimes be difficult to do in practice, and therefore the most significant terms are
retained. Several methods have been investigated (Guttman-Kaiser criterion, Captured Energy,
Cattells Scree test) to identify the correct rank for truncated SVD and the Captured Energy has
been adopted due to the good results recently obtained [29]. This method consists of selecting
enough singular values such that the sum of their squares is a certain percentage T of the total
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Decide which are the parameters to be varied and the sampling method : Linked to SA

Sampling = Emulation of the Numerical Model

‘Store’ the IQs, output of the analyses

Construction of Matrices/Tensor suitably arranged to apply the SVD/HOSVD

Reduction of the decomposed matrices in agreement with the importance of the Singular Values or optimization methods

‘Store’ the basis and the coefficients obtained through the SVD/HOSVD

Apply the Surrogate Model on the coefficients

Validation

Is the accuracy acceptable?

Yes No

Uncertainty Quantification through the
emulation of the Surrogate Models

Increase the sampling plane

Decrease the entity of the variation in the parameters

Decrease the number of parameters

1° SVD

3°

2° Surrogate 
Models

Uncertainty Quantification (UQ)
- SVD/HOSVD feature selection

- Construction of Surrogate Model
(subsection 3.2 for methodology  and 4.3 for results)

Figure 4: Flow chart for the Uncertainty Quantification.

sum of the squared values. The reason for such a decision is that the resulting matrix ‘capture’
T% of the Frobenius norm of the full matrix, that is correlated with the energy.

In the aeronautics field, the SVD has been used for over 30 years, applied to a range of dif-
ferent purposes including system identification and modal analysis. Recently, Sarkar et al.[30]
have developed, demonstrated and tested a SVD-based method for symbolic design optimiza-
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tion problem reformulation. Such a method has been applied to Hydraulic Cylinder Design and
Aircraft Concept Sizing. Armstrong [31] used such a technique both to accomplish a down-
selection procedure in terms of loads, identifying a suitable set of unit loads, and also to predict
the response of a structure faster.

Recently a new approach for feature extraction has been introduced, the High Order Singular
Value Decomposition (HOSVD), which exploits tensorial operators and not only matrices. This
can be useful in the presence of output, such as the branches of bifurcation diagrams, to be
analysed in terms of a high number of parameters.

Given a tensor A ∈ IRI1×I2...×ID the HOSVD can be mathematically expressed as [32] [33]:

A = S ×1 U1 ×2 U2...×D UD (22)

where S is the core tensor and dimS = I1 × I2...× ID, dim Ui = Ii × Ii.
As for the SVD, the HOSVD gives the possibility in reducing the dimensions of the problem,

capturing the best rank reduction for the analysed tensor. We have used a tool in Matlab to
perform the HOSVD [34] and two rank approximations, the so called truncated multilinear
singular value decomposition (mlsvd) and the one that uses a non linear least square method
(lmlra) (for further information see [34]).

In the methodology the SVD/HOSVD is adopted for feature extraction by fixing a basis and
then using other coefficients to obtain the required information. If the SVD is considered, the
basis is given by the product of the diagonal matrix and the matrix containing the right singular
vectors, namely ΣkV

T
k ∈ IRk×m; the coefficients that vary with respect to the design parameters

are the terms of the matrix of the left singular vectors Uk. If the HOSVD is applied, the basis
is Sk ×2 U2

k... ×D UD
k and the coefficients of the matrix related to the selected points is U1 if

the 1st dimension of the tensor A is the one related to the sampling plane.
The parameters to be varied are those selected through the SA and the numerical model has

to be run at each sampling point (both training and validation). Having saved all of the required
outputs, either a matrix for each IQ or a tensor for all the selected IQs is constructed. For ex-
ample in the validated test case, the forward velocity V and the vertical force Fz, characterizing
each sought Hopf bifurcation (subsection 2.3), have been selected as IQs. The matrix, defined
for each IQ and to which the SVD is applied, has as many rows as the number of uncertain
parameter variations (D) and as many columns as the number B + 1 of points selected for all
the analysed branches (as already presented for SA in subsection 3.1). The tensor, to which
the HOSVD is applied, has the first dimension related to the the number of uncertain parameter
variations (D), the second and third dimensions for the values of the forward velocity V and the
vertical force Fz at the selected B + 1 points of each branch.

The SVD is applied to each IQ matrix and a basis and set of coefficients can be related to each
IQ, while the HOSVD is applied to the whole tensor and just one basis and a set of coefficient
is related to the IQs. The two bases for the computations are:

– ΣkV
T
k , whose dimensions are (K) x (B + 1), where K is the number of singular values

that are retained

– Sk×2U2
k×3U3

k, whose dimensions has been reduced as (K) x (B+1) x (2) withK < D

In both cases the rank approximation is assumed not to change throughout the design space.
Consequently, the variation of the pairs (V ,Fz) at each Hopf bifurcation for a specific i-th sam-
pling point can be simply identified by multiplying the respective row vector of coefficient
(Uk)i or (U1

k)i by the fixed basis ΣkV
T
k or Sk ×2 U2

k ×3 U3
k.

796



I. Tartaruga, J. E. Cooper, M. H. Lowenberg, P. Sartor and Y. Lemmens

Surrogate Model Selection After having identified the matrices or tensor, surrogate models
of each of the K columns in the U or U1 matrix can be developed in order to enable the UQ of
the IQs. Approaches often used are Kriging based methods, Neural Network, Regression Tree
and Polynomial Radial Basis Functions; the Blind Kriging method [35] [36] [37] is the one that
gives the best results and has been adopted also for the UQ.

Uncertainty Quantification Using the reduced order surrogate models, the efficient genera-
tion of bounds for the first set of delimitation branches (see subsection 2.3 to the occurrence of
LCOs in a landing gear system have been shown.

The sought bounds can be determined in three different, but coherent, ways using the trained
and validated surrogate models:

1. Extreme values adopted by the pair (V , Fz) at each b− th point on the analysed branches.

2. Lower and upper bounds related to two fixed lower and upper quantiles (for instance 0.1
and 0.9). In order to keep the correlation between the IQs, all four possible combinations
of correlated IQs need to be considered i.e. [ IQ1(q = 0.1) vs IQ2(q = 0.1), IQ1(q =
0.1) vs IQ2(q = 0.9), IQ1(q = 0.9) vs IQ2(q = 0.1), IQ1(q = 0.9) vs IQ2(q =
0.9) ]. For each quartet of points, related to a specific point on the sought branch, a
rectangle in the 2D space that includes all the possible correlated IQs that can occur at
that point, provides the required range of quantile-bounds within the defined rectangle.
The overall quantile bounds are simply found by the outer curve of all the four quantile-
branch combinations.

3. Graphical description of a discrete joint probability distribution in terms of the pair (V ,
Fz) at each selected b − th point on the analysed branch. This representation can be
obtained dividing in an arbitrary number of rectangles the box defined, at each interesting
point b−th of the sought delimitation, by the maximum range acquired by each IQ (V and
Fz). In practice, at each point and in each sub-rectangle of the defined box, the discrete
probability function is given by the ratio between the number of occurrences of the pair
(V , Fz) in the considered sub-rectangle and the total occurrences in the whole box. This
stratagem is needed since the data, obtained through the continuation, are discrete and it
is improbable that they acquire the same values changing sampling points.

3.3 ISOLATED BRANCHES AND SUBCRITICAL HOPF BIFURCATION

In order to investigate whether Hopf bifurcations occur for values of the force and velocity
less than the ones characterizing the first set of identified branches, a periodic orbit continuation
has been considered starting from points that have been determined through AUTO and that
are equal to or occur just after the one selected for the UQ. In this way, if for some point a
Hopf bifurcation is identified for less values of those acquired by the pair (V , Fz) at the point
at which the periodical continuation is started, then it has to be checked if the found Hopf
bifurcation belongs to a new branch or is a previous one on the already found branch. A simple
stratagem to automatically accomplish this point is to look at the percentage difference in terms
of the velocity and force characterizing the Hopf bifurcation and the nearest point on the already
found branch: the ‘new found’ Hopf bifurcation belongs or not to a new branch depending on
whether the percentage error is greater or less than a fixed tolerance (for instance 1%). The
tolerance is necessary to be considered due to the inherent discrete data.
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Finally, the occurrence of subcrtical Hopf bifurcation can be checked looking at the stabil-
ity of the first points found through periodical continuation. If they are all stable then only
supercritcal Hopf bifurcations occur, otherwise subcritical Hopf bifurcation happens. AUTO
determines whether a LCO is stable or not calculating the Floquet multiplier [15].

3.4 ERROR METRICS

In order to validate the surrogate models adopted in SA and UQ and the determined confi-
dence bounds, the mean absolute percentage error (MAPE) has been adopted as the error metric.
Letting z be the general actual output and ẑ the predicted output to be validated, the MAPE is
defined as

MAPE =
1

N

N∑
i=1

∣∣∣∣ ẑ − zz
∣∣∣∣ (23)

In the case study, N is:

– the number of validation points if the validation of the surrogate model used in SA and
UQ is considered;

– the number of points B + 1, adopted to describe the sought delimitation, if the validation
of the confidence bounds is performed

B and B + 1 values of MAPE are obtained for the validation of the surrogate models adopted
in SA and UQ, respectively. Thus, a further mean in all the discrete partial derivatives B or
number of points B + 1 on each branch can be considered if a global measure of validation is
desired, that is for instance for SA

MAPE =
1

B

B∑
i=1

MAPE (24)

Finally, the confidence bounds have been validated considering the results given by Monte Carlo
Simulation (MCS) as the truth.

4 RESULTS

In this section the results obtained applying the new methodology to the landing gear are
provided. First the approach adopted to describe the branches (both in SA and UQ) is presented
graphically. Then the validation of the surrogate models adopted in the SA and the main and
total effect indices are discussed. Finally, the validation of the surrogate models considered in
the UQ and the confidence bounds determined with three approaches for the sought delimita-
tions are presented. A discussion about the possible occurrence of subcritical Hopf bifurcation
and Hopf bifurcation at values of (V , Fz) less than those characterizing the identified branches
is also provided.

4.1 DESCRIPTION OF INTERESTING BRANCH

The delimitation of the occurrence of LCO in the 2-parameter space (V ,Fz), is described
considering a fixed number of points B+1 for all the considered sampling points (both training
and validation). As already stated in subsection 3.1, these points are obtained dividing each
branch into B equal intervals. In this subsection, illustrations of the description adopted for the
sought branches is shown (Figure 5).
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Figure 5: Example of the desciption adopted for the sought branches to perform both the Sen-
sitivity Analysis and the Uncertainty Quantification. In this example B is fixed equal to 20 and
each line is a 2-parameter continuation of Hopf bifurcations obtained at a particular sampling
point.

4.2 SENSITIVITY ANALYSIS

The parameters and relative range considered to perform the SA, i.e. calculate the main and
total effect indices, are shown in Table 1. Log-uniform and uniform probability distributions
have been adopted if the variation of the analysed parameter is greater or less of one order of
magnitude, respectively. This choice is due to the lack of information about the parametric
uncertainty [20]. For the sake of completeness, Table 1 shows which probability distribution
has been adopted for each parameter.

The parameters that have not been considered in the SA are those related to:

– the longitudinal DoF β, since the side stay angle µ (also known as horizontal attachment
point orientation angle) has been fixed equal to zero (as if it was a nose landing gear) and
in such a configuration the longitudinal dynamic is less influential;

– the parameters characterizing the adopted straight tangent model for the tyre, since the
whole model itself is made on an assumption and so would require an uncertainty analysis
on its own;

– geometrical distances that are well defined during the design process and difficult to
change during the life of an aircraft, for instance the half track width or the caster length.

In order to determine the desired main and total effect indices, the dimension N of the matrices
characterizing Saltelli’s technique (subsection 3.1) has been fixed equal to 15; thus 195 con-
tinuations in V and Fz have been computing using AUTO to identify the first set of branches,
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Parameter Label Maximum Minimum Units PDF

stiffness coefficient of ψ DoF kψ 963000 837000 N m rad−1 log-uniform

stiffness coefficient of δ DoF kδ 6420000 5580000 N m rad−1 log-uniform

inertia of ψ DoF Iψ 107 93 kg m2 uniform

inertia of δ DoF Iδ 428 372 kg m2 uniform

damping coefficient of ψ DoF cψ 1284 1116 N m s rad−1 log-uniform

damping coefficient of δ DoF cδ 535 465 N m s rad−1 log-uniform

radius of the left wheel rL 0.59 0.5487 m uniform

radius of the right wheel 6 rR 0.59 0.5487 m uniform

tyre relaxation length L 0.5671 0.4929 m uniform

length of contact region h 0.2889 0.2511 m uniform

vertical stiffness of tyres kt 1716280 1491720 N m−1 log-uniform

Table 1: Parameters and the range of values adopted in the Sensitivty Analysis

the locus of Hopf bifurcation in the (V , Fz) parameter space (subsection 2.3). Then, fixing B,
the number of the discrete partial derivatives, equal to 20, the obtained data have been post-
processed identifying the pairs (V , Fz) related to the points B + 1 of each branch. Thus, surro-
gate models for the selected objective functions u (slope and velocity, subsection 3.1 eq. (20)
and (21) ) have been constructed adopting Sobol’ sequences as a quasi-Monte Carlo sampling
plane.

The obtained surrogate models have been validated considering 10 validation points and the
MAPE (and mean of MAPE in all the slopes for the first objective functions, section 3.4) are
shown in Tables 2 and 3. It is apparent that the trained surrogate model replicates the actual
objective functions with extremely high accuracy.

Using the surrogate models, Saltelli’s technique has been adopted to evaluate the main and
total effect indices, and all the 12 combinations to determine the total variance V have been
considered (subsection 3.1). For the sake of clarity, these have been numbered as shown in
Table 4 (see section 3.1 for the expressions).

The comparison is done considering different numbers of evaluations of the surrogate models
to test the performance in terms of convergence. The main and total effect indices of all the
defined objective functions empathize that the best combination is either the 4th or 8th one.
This result is shown here in Figures 6 and 7, which provide for the sake of conciseness just the
comparison for the sum of the main and total indices related to the 19th slope. Looking at the
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Index Slope MAPE slope Index Slope MAPE slope

1 2.06 · 10−3 11 5.80 · 10−3

2 8.67 · 10−4 12 6.81 · 10−3

3 2.93 · 10−3 13 7.72 · 10−3

4 1.68 · 10−3 14 1.08 · 10−2

5 3.83 · 10−3 15 1.11 · 10−2

6 3.07 · 10−3 16 1.55 · 10−2

7 4.35 · 10−3 17 5.11 · 10−2

8 4.58 · 10−3 18 3.94 · 10−1

9 4.74 · 10−3 19 3.44 · 10−2

10 3.95 · 10−3 20 1.04 · 10−2

Table 2: MAPE of the objective functions in terms of the slope.

MAPE slope MAPE velocity

2.9 · 10−2 6.95 · 10−2

Table 3: Mean of MAPE of the objective functions in terms of the slope and MAPE of the
objective function in terms of the velocity at the first identified point.

4th or 8th combinations, it can be noticed that the system is almost additive for the considered
parameter-variation: all the defined objective functions 7 present

∑N
i=1 STi and

∑N
i=1 Si are

respectively greater and less than 1 as they have to be (subsection 3.1), but only just.
Finally, considering the 4th combination, the main and total effect indices are evaluated for

both the considered objective functions in order to select the parameters to be adopted for the
UQ, i.e. those more influential; both the objective functions show that Iψ, cψ and L are the most
influential parameters.

This is illustrated in the bar plot of the total effect for all the parameters (Figure 8). Always
for the sake of conciseness, just the mean 8 of the adopted index related to the slope-objective

7Here, just the results for indices related to the 19th slope are shown.
8As stated in subsection 3.1 the mean for all the B evaluated indices in terms of slope can be considered as a

whole information.
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Combination eq. f 2
0 and V Combination eq. f 2

0 and V

1 13 17 7 15 18

2 14 17 8 16 18

3 15 17 9 13 19

4 16 17 10 14 19

5 13 18 11 15 19

6 14 18 12 16 19

Table 4: Combinations adopted to identify the best espression to be used for the total variance
V .
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Figure 6: Comparison of 12 different evaluations of the total variance V considering the sum of
the total effects STi of the 19th slope-objective function.

functions is shown, that is

STi =
1

B

B∑
b=1

(STi)b (25)
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Figure 7: Comparison of 12 different evaluations of the total variance V considering the sum of
the main effects Si of the 19th slope-objective function.
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Figure 8: Comparison of the influence of each parameter on the output considering the mean of
the total effect STi related to the slope objective function.
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The obtained results are totally coherent with the shimmy phenomenon: shimmy is primarily
related to the tyre characteristics and, for the analysed branch, to the torsional dynamics. In fact,
looking at the LCOs generated by each of the analysed point on all the determined branches,
the torsional state ψ always presents the greatest amplitude and is almost in phase with the state
λ of the tyre dynamics; this means that the torsional mode is the one that most participates in
the LCOs. It can be also noticed that the period of the LCOs is in practice always around that
characterizing the linearised torsional mode: the period of the LCOs is always about 6−7 ·10−2

sec and the damped natural period of the linearised torsional mode is 6.76 · 10−2 sec.
Keeping in mind the results given by the SA, the validation of the surrogate models and the

determined confidence bounds are provided in the following subsection.

4.3 UNCERTAINTY QUANTIFICATION

The performed UQ in terms of the first set of delimitation-branches (subsection 2.3) of the
occurrence of LCOs has been performed in terms of the three most influential parameters (sub-
section 4.2), Iψ, cψ and L , whose range and probability distribution has been discussed in
subsection 4.2 and shown in Table 1.

For the UQ, 31 points (B + 1) have been considered on all the identified branches, 100
points-LHS plane and 1000 point-LHS have been considered in order to train and validate the
surrogate models, respectively.

The number of singular values to be retained in the SVD have been identified using the Cap-
tured Energy method and fixing to 99.99 the percentage T of the captured energy (subsection
3.2). 4 and 3 are the numbers of singular values retained for the matrix related to the forward
velocity V and vertical force Fz, respectively; a total of 7 surrogate models are required to per-
form the sought UQ using the SVD. The same number of surrogate models are required if the
HOSVD is applied and leads to a core tensor with dimension 7 × 31 × 2. Such a decision has
been drawn due to the bad results obtained adopting TensorLab [34] to find out the best rank
reduction. In TensorLab the rank reduction for the mlsvd and as starting guess for the lmlra
method is selected as the corner of an L-curve that represents the balance between an upper
bound on the relative error and the compression ratio of a low multi-linear rank approximation
of the starting tensorA for different core tensor sizes [34]. In the present problem, the corner of
the L-curve is found for a core tensor with dimension 3× 3× 1 and results in a bad choice for
both the mlsvd and lmlra methods; errors higher than 100% are determined just at the training
points. The reason for these bad results is the adoption of a reduction not constrained just in
terms of the dimension related to the sampling plane, i.e. the first dimension of A. A reduction
in terms of the stated first dimension can be simply accomplished considering the first unfolding
matrix A(1) and using the Captured Energy method. We have decided to compare the results
applying the SVD and the HOSVD with the same number of surrogate models (7).

Very good results are found for the validation of the surrogate models adopted for both the
SVD and HOSVD mlsvd, while not so good for those related to the HOSVD lmlra. As stated
in section 3.4 the validation has been accomplished considering MAPE as error metric; Table
5 provides such a results. Figure 9 provides an example of validation adopting the SVD and
the mlsvd for the HOSVD. Only the mlsvd is shown since it has a lower error in the validation
compared to the lmlra method (Table 5). For the same reason the confidence bounds have been
evaluated only with the mlsvd when the HOSVD has been considered.

All the three methods presented in subsection 3.2 have been considered to deal with the
confidence bounds for which the surrogate models have been evaluated considering a 1000
points-LHS sampling plane. The graphic results are shown here all together in Figure 10; for
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Method MAPE% for V MAPE% for Fz

SVD 5.61 · 10−1 1.05 · 10−1

HOSVD lmlra 8.11 7.94

HOSVD mlsvd 3.67 · 10−1 9.56 · 10−2

Table 5: MAPE obtained using the SVD/HOSVD based surrogate model for V and Fz.
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Figure 9: Validation of the Blind Kriging Surrogate models adopted to perform Uncertainty
Quantification using SVD or HOSVD.

the sake of simplicity the confidence bounds shown in Figure 10 are only for the results ob-
tained considering the SVD based method. The HOSVD gives almost the same results. As
stated in subsection 3.2, considering the third method, a rectangle at each analysed point on the
branch is defined and divided into sub-boxes. In the present case 6 sub-boxes have been con-
sidered and several lines (with different colors) define delimitations of indicate joint probability
distributions at each rectangle. The third approach is more approximate than the others since
it is based on a further discretization of the outputs and a comparison with the first and second
approach is meaningless; however, it gives information about joint probability of the position
of the analysed B + 1 Hopf bifurcation points in the 2D parameter space.

Regarding the validation, a MCS with 1000 points has been considered and the results are
presented both in terms of MAPE in Tables 6a and 6b and graphically in Figures 11a (for
the interval confidence bounds) and 11b (for the quantile confidence bounds). The very good
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Figure 10: Confidence bounds of the delimitaion of area in which the LCO can or cannot occur,
adopted using all the three methods.

accurateness achieved with both the SVD and HOSVD mlsvd based methodology is apparent.
It is worthy to emphasize that the developed method involves a computational time reduction of
almost 95% compared to the MCS.

Method MAPE% for V MAPE% for Fz

SVD 9.17 · 10−1 2.25 · 10−1

HOSVD mlsvd 8.92 · 10−1 2.67 · 10−1

(a) Interval confidence bounds

Method MAPE% for V MAPE% for Fz

SVD 1.36 · 10−1 6.17 · 10−2

HOSVD mlsvd 1.08 · 10−1 6.14 · 10−2

(b) Quantile confidence bounds

Table 6: MAPE obtained using the SVD/HOSVD based surrogate model for UQ.
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(a) Interval confidence bounds
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(b) Quantile confidence bounds

Figure 11: Validation of the interval and quantile confidence bounds determined with the
SVD/HOSVD based developed method. The results obtained through MCS are considered
as the truth.
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4.4 ISOLATED BRANCHES AND SUBCRITICAL HOPF BIFURCATION

After having determined the sought confidence bounds, periodical continuation have been
accomplished to check the possible occurrence of subcritical Hopf bifurcations and Hopf bifur-
cation at values (V , Fz) less than those characterizing the identified branches. The stability of
the determined LCO can be verified just looking at the first points of the determined periodical
branches and these are all stable, so no subcrical Hopf bifurcation can occur [1].

With respect to the second stated phenomena, this occurs only starting from the second
Hopf bifurcation on the already identified branches, that is the second point of those that have
the same values for Fz. Clearly, starting from each of these points, the first Hopf bifurcation
point, which already belongs to the found branch, is identified. Thus, we can conclude that the
determined confidence bounds robustly identify a separation between area in which the LCO
can or cannot occur: at the right and left side of the determined bounds the LCO can and cannot
occur, respectively.

5 CONCLUSIONS

The paper has presented a new methodology to robustly define confidence bounds of a bi-
furcation branch delimiting the region of possible occurrence of LCOs. Specific description
of the branches has been proposed to perform both sensitivity and UQ. Suitable SA has been
accomplished adopting main and total effect indices in order to identify the most influential
parameters. Techniques for uncertainty management have been developed and applied to prop-
agate parametric uncertainty using SVD/HOSVD and surrogate models to speed up the whole
process. The determined confidence bounds for the locus of Hopf bifurcation points completely
describe the sought partition since it has been proved that there is no occurrence of subcritical
Hopf bifurcations and no instances of Hopf bifurcation for which the two selected parameters
for the continuation of the branch-locus of Hopf bifurcation (forward velocity V and vertical
force FZ) acquire values lower than those characterising the identified branches. The valida-
tion emphasizes exceptional accuracy and a reduction of almost 95% of the total computation
time required by Monte Carlo Simulations. These results have been obtained both applying the
SVD and the HOSVD mlsvd (multilinear singular value decomposition) and considering a same
number of surrogate models. The performed analysis has also shown that, for the HOSVD, it is
preferable to consider a rank reduction just in the dimension related to the sampling plane.
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7 APPENDIX

A NOMINAL VALUES OF PARAMETERS IN LANDING GEAR MODEL

Table 7 provides the nominal values adopted in the present paper for parameters characteriz-
ing the adopted dual-wheel landing gear model [18].
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µ 0.0 rad/s

Iψ 100.0 kg m2

cψ 1200.0 N m s rad−1

kψ 9.0× 105 N m rad−1

Iδ 400.0 kg m2

cδ 500.0 N m s rad−1

kδ 6.0× 106 N m rad−1

Iβ0 5000.0 kg m2

cβ 2.0× 104 N m s rad−1

kβ 1.0× 107 N m rad−1

L 0.53 m

ρ 0.0 rad

φ0 −0.1175 rad

Lβ 2.818 m

Lδ 0.6 m

rL = rR = r 0.59 m

hL = hR = h 0.27 m

e 0.0 m

a 0.46 m

kt 1.604× 106 N m−1

λ 1 m

cλ 3000.0 N m2rad−1

kλ 0.01 rad−1

kα 1.3256 m

αm 0.1571 rad

Table 7: Nominal landing gear Parameters
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