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Abstract. Reliable forecasting of wind power generation is crucial to optimal control of costs
in generation of electricity with respect to the electricity demand. Here, we propose and an-
alyze stochastic wind power forecast models described by parametrized stochastic differential
equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an
approximate maximum likelihood method to infer the model parameters taking into account the
time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters
for each model. We applied our models to Uruguayan wind power production as determined
by historical data and corresponding numerical forecasts for the period of March 1 to May 31,
2016.
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1 Introduction

Over the past 10 years, Uruguay has seen a spectacular transformation in production of
wind-based power. In 2007, Uruguay did not produce energy from wind; by 2016, the installed
capacity for wind power generation was 1210 MWatts satisfying more than 12% of the total
electricity demand of the country. Moreover, renewable energy production in Uruguay provides
94.5% of the country’s electricity and 55% of the country’s total energy mix1. To incorporate
the increased amount of generated power in to the supply system, reliable forecasting models
are crucial.

Many statistical forecast methods have been developed, for example persistence models [1],
Kalman filters [4], and Autoregressive and Moving Average Model (ARMA) [?]. The main
feature that distinguishes the forecast methods, and the corresponding time-horizon they are
valid, is the purpose of its use (operation scheduling, electrical grid management, maintenance).
Stochastic forecast models are adequate for relative long-term applications because of their
dependence on Numerical Weather Prediction (NWP) models. They consider the uncertainty
of the deterministic forecast by using historical power production data. Probabilistic forecast
models can also be used for stochastic optimization problems for optimizing the wind farms
operation and energy trading. Taking into account the production costs of each energy source (
fossil fuel, thermal hydropower, biomass, wind) and the storage capacity, such a model makes
it possible for decision makers to control electricity costs in the market.

Recently, a probabilistic forecast model based on stochastic differential equations (SDEs),
[7] was introduced. Our goal is to extend the previous work to include a parametric form for
the drift coefficient that controls the quality of the forecast, to explore the need for Lamperti
transformation in [7] by considering inferences directly from state-dependent diffusion, and to,
find the best model fit by pursuing variability analysis and examining sensitivity of the models
parameters.

In Section 2 we formulate the SDEs and propose two models. In Section 3 we describe the
available datasets and the preprocessing procedure. Then, numerical results for each model are
presented in Section 4. We conclude in Section 5 by discussing our results.

2 Indirect Inference method with Stochastic Differential Equations

In this section, we introduce a stochastic process, X(t) 2 [0, 1], that serves as the stochastic
analogue of the normalized deterministic forecast, p(t) 2 [0, 1], for t 2 [0, T ]. We consider that
the stochastic process, X(t), is the solution the following parametrized Ito diffusion SDE

(

dX(t) = b(X(t), t;✓)dt+ �(X(t), t;✓)dW (t), t > 0 ,

X(0) = x0 ,

and assume that the drift, b(X(t), t;✓), and the diffusion, �(X(t), t;✓), coefficients are such
that a solution exists and is unique, [2]. Here, ✓ denotes the set of parameters for each model.
W (t) is a one-dimensional Brownian motion. As we expect the process, X(t), to align with the
numerical forecast, p(t), we choose the drift to be a linear polynomial of the state

b(x, t;✓) = �✓(t)(x� p(t)) , (1)

where ✓(t) represents the rate by which the variable reverts to p(t) in time.
1The energy mix statistics are sourced from the Global Wind Energy Council and the World Resources Institute.
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We distinguish two major models (Model 1 and Model 2) based on the choice of the diffusion
coefficient. The purpose of this distinction is to explore the need for the transformation to have
a state independent diffusion coefficient.

Model 1

We want the diffusion at the boundaries to vanish (i.e., if X(t) 2 {0, 1}, then �(0) = �(1) =

0) such that the stochastic forecast does not exceed the total capacity. Thus, we choose the
diffusion to be a second order polynomial with respect to the state of the process of the form

�(X(t), t;✓) =
p

2✓(t)↵X(t)(1�X(t)).

The first proposed model–Model 1–is
8

<

:

dX(t) = �✓(t)

⇣

X(t)� p(t)

⌘

dt+

r

2↵✓(t)X(t)

⇣

1�X(t)

⌘

dW

t

, t > 0 ,

X(0) = x0 ,

(2)

and
✓ = (✓(t),↵), ↵ > 0, ✓(t) > 0, for all t > 0.

The inference approach for the parameters is based on the two moment equations for the
stochastic process, X(t). For that, we denote µ

X

(t) = E[X(t)], v
X

(t) = var[X(t)] = E[(X(t)�
µ

X

(t))

2
] and v

X

(t, s) = cov(X(t), X(s)) = E[(X(t) � µ

X

(t))(X(s) � µ

X

(s))] as the mean,
variance and co-variance functions respectively. The equation of the mean is

(

dµ

X

(t) = �✓(t)(µ

X

(t)� p(t))dt, t > 0 ,

µ

X

(0) = µ0 = x0 ,

with the solution

µ

X

(t) = e

�
R t
0 ✓(s)ds

✓

Z

t

0

✓(s)p(s)e

R s
0 ✓(u)du

ds+ µ0

◆

. (3)

The equation of the variance is
(

dv

X

(t) = �2✓(t)

⇣

(1 + ↵)v

X

(t)� ↵µ

X

(t)(1� µ

X

(t))

⌘

dt, t > 0 ,

v

X

(0) = 0 ,

from which we have that

v

✓

X

(t) = e

�2(1+↵)
R t
0 ✓(s)ds

✓

Z

t

0

2✓(s)↵µ

X

(s)(1� µ

X

(s))e

2(1+↵)
R s
0 ✓(s)du

ds

◆

. (4)

The co-variance between two times of X(t) is given by

v

✓

X

(t, s) = v

✓

X

(s)e

�
R t
0 ✓(u)du

, 8t > s . (5)
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Model 2

In this section, we transform equation (2) by means of the Lamperti transform such that
the diffusion term of the transformed system is independent of the state. This transformation
is recommended in both simulation and estimation, [9]. Numerical schemes sampled from an
SDE with additive noise are more stable, and usually of higher order than those sampled from an
SDE with multiplicative noise. Moreover, [10] and [7] suggested that the transformed process
is better approximated by a Gaussian distribution.

Let us denote by Z(t) =  (X(t)) =

R

1p
x(1�x)

dx

�

�

�

x=Xt

the transformed process that satisfies

an SDE with state-independent diffusion. For the definition of the Lamperti transform see
[9]. To ensure the uniqueness of the solution, µ

Z

(t), for the mean equation of the transformed
process, Z(t), the following condition should be satisfied

↵  min(p(t), 1� p(t)) .

One way to satisfy this condition is by choosing the parameter ↵

↵(t) = ↵p(t)(1� p(t)) .

Here we denote the multiplicative constant with the same letter as in the function ↵(t), because
in the sequel we will refer only to the constant ↵. This suggests the form of the Model 2
8

<

:

dY (t) = �✓

⇣

Y (t)� p(t)

⌘

dt+

r

2✓↵p(t)

⇣

1� p(t)

⌘

Y (t)

⇣

1� Y (t)

⌘

dW

t

, t > 0 ,

Y (0) = x0 ,

(6)
and

✓ = (✓(t),↵), ↵ > 0, ✓(t) > 0, for all t > 0.

The Lamperti transformation of the process Y (t) defines the process

Z(t) =  (Y (t)) =

Z

1

p

x(1� x)

dx

�

�

�

x=Y (t)
= arcsin(2Y (t)� 1) ,

which satisfies the following SDE

dZ(t) =

˜

b(Z(t);✓)dt+ �̃(t;✓)dW
t

,

where
˜

b(x;✓) =
�✓(1 + sin(x)� 2p(t)) +

1
2 sin(x)�̃

2
(t;✓)

cos(x)

,

and

�̃(t;✓) =
p

2✓(t)↵p(t)(1� p(t)) .

The mean µ

Z

(t) = E[Z(t)] of Z(t) is

µ

Z

(t) = arcsin

n

e

�
R t
0 h(u)du

⇣

Z

t

0

✓(s)(2p(s)� 1)e

R s
0 h(u)du

ds+ sin(Z(0))

⌘o

, (7)
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where h(t) = ✓(t)[1�2↵p(t)(1�p(t))]. Using the inverse of given by Y (t) =  

�1
(Z(t)) =

1
2

⇣

1 + sin(Z(t))

⌘

, we obtain the following approximation for the mean µ

Y

(t) = E[Y (t)] after
using the Lamperti transform

µ̃

Y

(t) =  

�1
(µ

Z

(t)) =

1

2

(1 + sin(µ

Z

(t))) . (8)

The equation of the variance is given by

dv

Z

(t)

dt

= 2A(t;✓)v
Z

(t) + �̃

2
(t;✓), v

Z

(0) = 0 ,

and an exact solution for this first-order ordinary differential equation (ODE) is given by

v

Z

(t) = e

2
R t
0 A(s;✓)ds

Z

t

0

1

2

�̃

2
(t;✓)e�2

R s
0 A(u;✓)du

ds

where A(t;✓) = @

x

˜

b(x;✓))|
x=µZ(t). The covariance function is

v

Z

(t, s) = v

Z

(s)e

R t
s A(u;✓)du

, for all t > s .

Thus, the approximate variance and covariance functions for Y (t) are

ṽ

Y

(t) =

1

4

cos

2
(µ

z

(t))v

Z

(t) . (9)

and
ṽ

Y

(t, s) =

1

4

cos(µ

z

(t))v

Z

(t, s) cos(µ

z

(s)) . (10)

2.1 Approximate Likelihood

We assume that the observation variables D(j)
= (D

(j)
(t1), . . . , D

(j)
(t

N

)), j = 1, . . . , J ,
satisfy

D(j)
= X(j)

+ ✏

(j) (11)

where X(j)
= (X

(j)
(t1), . . . , X

(j)
(t

N

)) is the solution of the SDE in equations (2) or (6)
for p(t) = p

(j)
(t), and ✏

(j) are the measurement errors that are generated from a Gaussian
distribution N (0,⌃

✏,(j)
).

The approximate likelihood based on the two-moment expansion of the process X(t) and
Y (t) is

L(✓;D
nm

) =

J

Y

j=1

(2⇡)

�N/2|V(j)
(✓)|�1/2

exp

⇥

(d(j) � µ

(j)
(✓))T [V(j)

(✓)]�1
(d(j) � µ

(j)
(✓))

⇤

(12)

for a given set of observations d

NJ

=

�

d(j)
=

�

d

(j)
(t1), . . . , d

(j)
(t

N

)

�

, j = 1, . . . , J

 

. Here
µ

(j)
(✓) = (µ(t1), . . . , µ(tN)), V(j)

(✓) = Vs
(j)
(✓) + ⌃✏,(j), and Vs

(j)
(✓) is an n ⇥ n matrix

with elements [Vs
(j)
]

kl

= v(t

k

, t

l

), k, l = 1, . . . N . Note that µ(t), v(t) and v(t, s) are given
in equations (3) -(5) of Model 1 and in equations (8)- (10) of Model 2. Finally, the maximum
likelihood estimates (MLE) of the parameters, ✓, are obtained by maximizing the function in
equation (12).
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3 Description of the data

Application of our models to the wind power problem is built on two datasets. The first
dataset consists of 72 hours of numerical predictions of wind power production and the second
dataset includes the actual wind power produced during the same 72 hours (one observation
every one hour) in Uruguay. The data correspond to the aggregate power ( MWatts ) in the fol-
lowing wind farms: ARTI, CAPE, FACE, CPPP, FLO1, JPTE, KENT, LRLM, MIN1, MWIN,
RSUR and TDMA. The nominal capacity of this set of parks is 793.7 MWatts. Before proceed-
ing, we normalize each of the datasets with the maximum installed capacity to obtain values
between [0, 1]. We denote by p

j

(t

n

), d(j)(t
n

), j = 1, . . . , J , J = 81, n = 1, . . . , 72 the normal-
ized numerical prediction and historical prediction at the jth set at time t

n

.

Figure 1: Numerical forecast and real production comparison

In our model, we expect the deterministic forecast to capture some features of the observed
real production. Thus, we opt to discard the time series where a big difference between x(t) and
p(t) (i.e., more than 20%) is observed especially at time (t = 1). We consider them as outliers
with respect to our models. Including them affects the quality of the parameter estimates and
produces instabilities in the likelihood maximization problem. If we choose a time horizon
that is greater than 24 hours, we observe redundancy between successive sets of actual power
production, which contradicts the independence assumption while computing the likelihood
function. For this reason, some sets are discarded (J = 73).

4 Results

In this section, we present the application of the models described in Section 2 to the datasets
described in Section 3. For both models, we consider a parametrization with respect to time-
independent parameters. Next, we introduce potential trends of ✓ and select the best model
according to the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
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(BIC). Then, to check variability in the estimates from the selected model, we use the boot-
strapping method to compute optimal parameters with respect to randomly selected subsets of
data and present the bootstrap confidence intervals. To validate the models, we split the data
into training and testing sets. We use the training sets for the optimization problem and use
the optimal values to generate empirical confidence bands. Finally, we validate the best model
by verifying that the test set observations fall within the generated confidence bands. We also
present the sensitivity of the model parameters based the Fisher Information Matrix (FIM) for
the approximate likelihood.

4.1 Proposed models and model selection

The different parametrizations of Model 1 (2) and Model 2 (6) are summarized in Table 4.1.

Parametric Model ✓(t) Number of parameters (✓(t),↵,�)
SDE0 ✓0 3
SDE1 ✓1(t) = ✓0e

�✓1t 4
SDE2 ✓2(t) = ✓0e

�✓1t
+ ✓2 5

SDE3 ✓0e
�✓1t

+ ✓2e
✓3t 6

Table 1: Proposed models with parametrizations of the rate ✓(t)

We assume that the observed production has non-correlated Gaussian measurement error for
each set, j = 1, . . . , J , ✏(j) ⇠ N(0,�

2I), and we consider � a parameter of the model.

Horizon Parameters Without noise � = 0.05 � = 0.02 � = 0.01

12 h (✓

⇤
,↵

⇤
,�

⇤
) (0.177, 0.082) (0.256, 0.106, 0.036) (0.200, 0.094, 0.004) (0.184, 0.087, 0)

standard deviation 10

�2
(0.83, 0.41) 10

�2
(1.75, 0.7, 0.25) 10

�2
(0.91, 0.44, 0.44) 10

�2
(0.87, 0.44, 0.23)

18 h (✓

⇤
,↵

⇤
,�

⇤
) (0.140, 0.089, 0) (0.213, 0.102, 0.038) (0.163, 0.102, 0.010) (0.1458, 0.094, 0)

standard deviation 10

�2
(0.83, 0.41) 10

�2
(1.2, 0.59, 0.19) 10

�2
(0.68, 0.45, 0.19) 10

�2
(0.58, 0.40, 0.23)

24h (✓

⇤
,↵

⇤
,�

⇤
) (0.140, 0.087) (0.196, 0.118, 0.036) (0.160, 0.098, 0.002) (0.143, 0.091, 0)

standard deviation 10

�2
(0.47, 0.31) 10

�2
(0.96, 0.57, 0.17) 10

�2
(0.57, 0.37, 0.48) 10

�2
(0.49, 0.33, 0.24)

36h (✓

⇤
,↵

⇤
,�

⇤
) (0.121, 0.109) (0.172, 0.147, 0.034) (0.139, 0.125, 0.004) (0.130, 0.111, 0)

standard deviation 10

�2
(0.47, 0.47) 10

�2
(0.96, 0.57, 0.17) 10

�2
(0.52, 0.51, 0.36) 10

�2
(0.50, 0.47, 0.20)

48h (✓

⇤
,↵

⇤
,�

⇤
) (0.114, 0.105) (0.154, 0.156, 0.035) (0.126, 0.124, 0.004) (0.126, 0.111, 0)

standard deviation 10

�2
(0.39, 0.39) 10

�2
(0.73, 0.76, 0.17) 10

�2
(0.44, 0.47, 0.32) 10

�2
(0.41, 0.40, 0.16)

Table 2: Model 1. Optimal parameter values for actual data and different time horizons.

In Table 2, we present the optimal values of the parametric model SDE0 (✓,↵,�) for the
time horizons
{6, 12, 18, 24, 36, 48} based on Model 1. In the column termed ’Without noise’, we report the
output of the minimization of the negative logarithm of the likelihood function (12) using the
actual data. For the numerical optimization, we used the fmincon function in MATLAB. We
observe that Model 1 is not able to recover the value of �, and the output is always zero ( thus
we simply report values of ✓ and ↵). To investigate the effect of this observation, we added an
artificial Gaussian noise to the data with � = {0.05, 0.02, 0.01}. We can see that the values of
✓ and ↵ change noticeably and appear to be sensitive to the measurement error. For � = 0.05,
the likelihood is 0.036 while ↵ jumps from 0.082 to 0.106, which suggests that it is difficult for
our model to distinguish between the measurement error and the noise coming from the SDE

387



S. Elkantassi, E. Kalligiannaki, R. Tempone

through ↵. Part of the noise, �, is indeed absorbed by ↵, which explains the jump in its value.
This observation is confirmed in the last two columns of Table 2, where the likelihood cannot
retrieve � for noise on the order of 0.02 and 0.01.

We observe that ✓ is decreasing with time, which indicates that the predictability of the model
becomes less reliable with increasing time horizons. This motivates the use of the exponentially
decreasing parametric functions for ✓ in Table 4.1, that define the models SDE0, SDE1,SDE2,
and SDE3. The models are parametrized by (✓

i

(t),↵,�) such that ✓0(t) = ✓0 is a constant
rate, ✓1(t) is a one-term exponential function, ✓2(t) has an asymptotic lower bound given by ✓2

to avoid converging to zero and ✓3(t) is a linear combination of exponentially decreasing and
increasing functions to better fit the data (see table 4.1).

To obtain good initial values for the optimization for the time varying ✓(t), in SDE1, SDE2,
and SDE3 models, we fit the optimal values for the constant ✓⇤ of the SDE0 model obtained
in the first column of Table 2 using the ‘Curve Fitting Toolbox’of MATLAB. We then use the
fitted coefficients of {✓0, ✓1, ✓2, ✓3} as initial points for the maximum likelihood estimators of
(✓(t),↵,�). The MLE parameters for all models are presented in Table 3 for the T = 24-hour
time horizon.

Model Initial values Optimal values Standard deviation
SDE0 (0.2, 0.4) (0.140, 0.087) 10

�2
(0.47, 0.31)

SDE1 (0.202, 0.013, 0.4) (0.199, 0.034, 0.141) 10

�2
(0.68, 0.15, 0.53)

SDE2 (0.124, 0.047, 0.099, 0.4) (0.137, 0.108, 0.087, 0.125) 10�2(2.09, 1.33, 0.34, 0.46)

SDE3 (0.2, 0.01, 2 · 10�3
, 0.02, 0.1) (0.28, 0.103, 10

�3
, 0.363, 0.018) 10

�2
(2.06, 1.04, 4 · 10�4

, 0.16, 0.05)

Table 3: Model 1. Optimal parameters for a 24-hour time horizon for the parametric SDE’s i Table 4.1

Among the four candidate models, data in Table 4.1 confirm that SDE1 is the best model as
it has the smallest AIC and BIC values.

Criterion df AIC BIC

SDE0 3 �8418 �8411

SDE1 4 -8427 �8418

SDE2 5 �8426 �8414

SDE3 6 �8273 �8259

Table 4: Model selection

Model 2

Next, we present the best model among those described in Table 4.1 based on Model 2 ,de-
scribed in equation (6), following the same steps as for Model 1.
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Horizon Parameters Estimates

12 h (✓

⇤
,↵

⇤
,�

⇤
) (0.138, 0.108, 0.087)

standard deviation 10

�2
(0.79, 1.87, 0.07)

18 h (✓

⇤
,↵

⇤
,�

⇤
) (0.127, 0.569, 003)

standard deviation 10

�2
(0.41, 1.49, 0.04)

24h (✓

⇤
,↵

⇤
,�

⇤
) (0.115, 0.602, 0.03)

standard deviation 10

�2
(0.28, 1.16, 0.03)

36h (✓

⇤
,↵

⇤
,�

⇤
) (0.095, 1.008, 0.019)

standard deviation 10

�2
(0.39, 4.52, 0.12)

48h (✓

⇤
,↵

⇤
,�

⇤
) (0.087, 0.993, 0.016)

standard deviation 10

�2
(0.31, 3.98, 0.09)

Table 5: Optimal parameter values for actual real data and different time horizons for Model 2 using the Lamperti-
transformed process.

From Table 5, we see that ✓ exhibits the same behavior as in Model 1, it decreases with
longer time horizons. We also observe that Model 2 is able to capture the measurement error
using the same datasets, and the optimal values are consistent with our findings from Model 1.

Model Initial values Optimal values Standard deviation
SDE0 (0.4, 0.2, 0.1) (0.115, 0.602, 0.03) 10

�2
(0.28, 1.16, 0.03)

SDE1 (0.161, 0.013, 0.2, 0.1) (0.218, 0.033, 0.453, 0.033) 10

�2
(0.79, 0.33, 1.27, 0.05)

SDE2 (0.114, 0.013, 0.061, 0.2, 0.1) (0.218, 0.033, 0, 0.453, 0.033) 10�2(0.79, 0.32, 0.57, 1.26, 0.05)

SDE3 (0.1673, 0.0157, 6 · 10�8
, 0.245, 0.2, 0.1) (0.218, 0.033, 00.018, 0.453, 0.033) 10

�2
(0.81, 0.32, 0.02, 1.39, 1.04, 0.05)

Table 6: Optimal parameters for 24-hour time horizon using the Lamperti transformed process.

Table 7 confirms that SDE1 is the best model with respect to AIC and BIC.

Criterion AIC BIC

SDE0 -6410 -6403
SDE1 -7311 -7302
SDE2 -7309 -7297
SDE3 -7310 -7296

Table 7: Model selection

4.2 Variability, validation and sensitivity analysis

An important issue to explore is the variability of the datasets. Here, we use the bootstrapping
method to select randomly 80% of the data and compute statistics for the parameters from the
bootstraped samples. We compute the sample mean and the bootstraped confidence intervals of
each parameter. Figures 2 and 3 show that our data predict a reliable set of estimates that both
models agree on.
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Figure 2: Model 1. Bootstrap histograms of ✓0, ✓1 and ↵ based on n = 100 iterations
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Figure 3: Model 2. Bootstrap histograms of ✓0, ✓1, ↵ and � based on n = 100 iterations

Figure 4 shows that the prediction interval of ✓(t) of Model 1 falls inside the prediction
interval of Model 2, suggesting that both predict the same rate.

Figure 4: Best fit for SDE1 for the two models.

To validate the selected models we present the empirical path density and confidence bands
for two days in the training set, as shown in figures 5 - 8. We generate the empirical path density
from simulated paths of SDE’s (2) and (6) for the MLE optimal parameters for which we use a
Euler-Maruyama discretization scheme. On the same graphs, we present the actual wind energy
production and the available numerical forecast. The figures verify that the actual production
falls into the 95% confidence band for most times.
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Figure 5: Empirical Confidence Interval (CI) and real
wind energy production corresponding to May 16, 2016
(12 hours)
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Figure 6: Empirical CI and real wind energy production
corresponding to May 22, 2016 (24 hours)
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Figure 7: Empirical CI and real wind energy production
corresponding to May 16, 2016 ( 12 hours)
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Figure 8: Empirical CI and real wind energy production
corresponding to May 22, 2016 (Horizon 24 hours)

Next, we analyze the sensitivity of both models to the parameters (✓0, ✓1,↵). The sensitivity
index is given by the diagonal elements of the FIM that corresponds to the approximate likeli-
hood for each model, [14]. A direct sensitivity analysis of the models based on (2), and (6) is
the subject ongoing work, [16]. Figures 9 and 10 demonstrate that the most sensitive parameter
for both models is ✓1, which controls the rate of decay of ✓(t) with respect to the time horizon.
Note that the least sensitive parameter in the two models is different; for Model 1, it is ↵ while
for Model 2, it is ✓0.
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Figure 9: Sensitivity of parameters in Model 1. The most
sensitive parameter is ✓1 and the less sensitive is ↵.

Figure 10: Sensitivity of parameters in Model 2. The
most sensitive parameter is ✓1 and the less sensitive is ✓0,
in contrast to Model 1.

5 Discussion and Conclusions

It it important to point out that we based our study on a benchmark example in which we
generate synthetic data from real deterministic forecast paths, p

i

(t), i = 1, . . . , J using specific
values of (✓(t),↵,�). Then, for each p

i

(t), we sample one path, X
i

(t), to mimic the actual data
and check whether the MLE parametrs are close to the true parameters. The numerical results of
the benchmark example reveal that although both models are able to retrieve the true parameter
values, Model 2 is numerically more stable (parameters have smaller confidence intervals, and
the rate of convergence is more stable)

With actual data, Model 1 is not able to capture the value of � for all ✓
i

(t), i 2 {1, 2, 3}, and
its parameters are very sensitive to an artificial measurement error. On the other hand, Model 2
provides an estimate of the measurement error and we assume that this is related to the stability
of Model 2 due to the use of the Lamperti-transformed process. However, it is remarkable that
both models predict the same rate.

The variability analysis verifies that the available datasets are rich enough to predict an in-
formative model. Moreover, the two models predict the same rate, (see Figure 4) and the most
sensitive parameter for both models is ✓1, which controls the decay. The least sensitive param-
eter is different.

To avoid removing datasets that have poor deterministic forecasts or that have extreme ob-
servations (i.e., sudden dramatic changes in wind power production that can not be predicted by
the deterministic forecast), it may be possible to use regime-switching models.
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