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Abstract. The existence of uncertainties, associated with the operating conditions or manu-
facturing imperfections, occur quite often in aerodynamic optimization problems. In this paper,
a workflow for shape optimization in the presence of environmental uncertain flow conditions,
varying stochastically around an average value with an a–priori known standard deviation,
is presented. To do so, the Uncertainty Quantification (UQ) for the objective function needs
to be carried out. This is based on the non-intrusive Polynomial Chaos Expansion (niPCE)
method [1], which allows for a controllable number of calls to the CFD tool used to evaluate
each candidate solution, compared to other sampling methods such as Monte–Carlo. Within
the proposed workflow, PCE is combined with the optimization platform EASY (Evolutionary
Algorithms SYstem) [2], which undertakes the optimization task. The overall process is fully
automated. The shape under consideration is parameterized using CAD-free approaches, such
as Radial Basis Function techniques or the combined use of two cages and the corresponding
Harmonic Coordinates, which are responsible only for surface deformations whereas, as it will
be explained below, other morphing/smoothing [3] tool undertakes the adaptation of the CFD
mesh to the updated boundaries at each optimization cycle. The PCE method selects the points
(Gaussian nodes) in the design space to be evaluated and the computed performance metrics
are integrated with weights indicated by the Gauss integration rules, in order to compute the
mean value and standard deviation of the objective function of the flow problem under uncer-
tainties. The aforementioned tools are applied in two problems, in which OpenFOAM is the
CFD evaluation software.
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1 INTRODUCTION

In aerodynamics, shape optimization under uncertainties [4, 5] aims at designing a shape that
performs efficiently in a range of operating points determined by stochastically varying flow
conditions or in the presence of manufacturing imperfections. In this paper, a workflow that
performs 2D or 3D aerodynamic shape optimizations under uncertainties, exclusively caused
by variations in the flow conditions, is presented and demonstrated in two cases.

Let us denote the function characterizing the performance of an aerodynamic body (at a sin-
gle operating point) by F=F (~b, ~U(~b)), where ~b2RN is the design vector controlling the shape
and ~

U denotes the flow variables. In the presence of uncertain flow conditions, the objective
function to be optimized can be generally expressed as F̂=F̂ (~c, F (~c,~b, ~U(~b,~c))) to denote the
dependency of F̂ on the stochastically varying environmental variables ~c 2 RM . One of the
most frequently used forms of F̂ is

F̂ = µ̂F ± �̂F (1)

in which F̂ is expressed as a linear combination of the mean value (µ̂F ) of F and its standard
deviation (�̂F ) weighted by . In the literature, there are some, stochastic or deterministic,
methods of computing/estimating the mean value and the standard deviation of a function. A
well-known stochastic technique is the Monte–Carlo (MC) [6] one, which may become very
expensive in terms of CPU, since a great number of stochastic variable data-sets should be
evaluated by the CFD software (in CFD-based shape optimization problems). To decrease the
cost of MC, techniques such as Quasi-MC [7] and Latin-Hypercube Sampling [8] have been
developed. On the other hand, a rival method to cope with the same problem is the Method of
Moments [9], in which the adjoint method [10] and direct differentiation are used to compute
up to second–order derivatives of F with respect to (w.r.t.) the environmental variables ~c in
order to get the first two statistical moments of F with second-order accuracy. This method
proves to be a viable alternative of MC techniques, though its computational cost depends on
the number of stochastic variables. In case of a gradient-based optimization method, F̂ needs
to be differentiated w.r.t. the design variables~b, which means that third–order mixed derivatives
of F w.r.t the environmental (twice) and the design variables (once) are required. This has been
presented, for the first time in the literature, by the NTUA group in [9, 11].

In this work, the computation of the µ̂F and �̂F relies on the PCE technique [1, 12]. There
are two ways to implement this technique, the intrusive and non-intrusive one. In the intrusive
PCE variant, every uncertainty affecting the flow model should be introduced in the governing
equations, adding complexity to the problem to be solved. In the non-intrusive variant, which
is the one used herein, the evaluation software is used as black–box to compute the objective
function values for predefined data–sets of the uncertain variables. The latter are the Gaussian
nodes determined by the Gauss integration rules according to which the computation of µ̂F and
its �̂F is the weighted sum of F taken on at these nodes.

2 THE PROPOSED WORKFLOW AND ITS CONSTITUENTS

In shape optimization, a technique to parameterize the aerodynamic shapes should be avail-
able. In this framework, CAD–free approaches using either Radial Basis Functions (RBF) or
control cages based on the Harmonic Coordinates (HC) are employed. The coordinates of the
RBF centers or the HC cage knots form the design variables vector (~b). Over and above, a mesh
morpher/smoother (Rigid Motion Mesh Morpher; R3M) is used to adapt the deformations in the
3D computational mesh. The latter is generated for the reference geometry using CFD–GEOM
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[13]. Regarding the uncertain variables (flow conditions), it is assumed that these follow a nor-
mal distribution around an a–priori known average value and standard deviation. The general
purpose optimization platform EASY (Evolutionary Algorithms SYstem, [2]) undertakes the
optimization through Metamodel–Assisted Evolutionary Algorithms, MAEAs [14, 15]. The
overall workflow is outlined in Fig. 1.

Figure 1: Workflow for CFD-based shape optimization under uncertainties.

2.1 Optimization Platform

The EASY software [2] can handle single- or multi-objective, constrained or unconstrained,
optimization problems by accommodating any evaluation software as a black–box. EASY
implements a population–based Evolutionary Algorithm (EA) that handles three populations,
namely the parents, offspring and elites and applies evolution operators in conformity with the
binary or real encoding of the design variables. For each offspring, the UQ w.r.t. a perfor-
mance metric F (such as the drag, lift, losses, etc.) should be carried out. This is based on
the niPCE where the evaluation tool (herein the CFD s/w) is used, for different sets of the un-
certain variables, along with the Gauss quadrature integration formula. Among the important
features of EASY is the smart use of low–cost surrogate evaluation models (metamodels; artifi-
cial neural networks) during the optimization giving rise to the so-called Metamodel–Assisted
EA (MAEA). This is appropriate for computationally demanding problems such as those with
uncertainties, where the niPCE requires many calls to the CFD tool. In the MAEA, local meta-
models, on–line trained for each and every new individual generated during the evolution, are
used. For all but the first few generations, the metamodels are used to pre–evaluate the offspring
population by, practically, interpolating the F̂ value using archived previously evaluated indi-
viduals and only the most promising members (according to the pre–evaluation on metamodels)
are selected to undergo CFD–based evaluation.
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2.2 Control of the Shape and Mesh Morphing

This section describes briefly the two CAD–free approaches utilized in this workflow, based
either on RBF networks or HC cages. These tools are responsible only for modifying the shapes
whereas the CFD mesh is adapted to the changed shape using a mesh morpher.

2.2.1 Radial Basis Function Model

The use of the RBF model involves two steps, namely training and implementation. Initially,
the user has to define the so–called RBF centers. The K RBF centers can either be a subset of
the mesh nodes lying on the shape to be optimized or some user–defined nodes around it. The
coordinates of the RBF centers form the design vector. The displacement �~r of any CFD node
on the shape, initially located at ~r, is given by

�~r =
KX

i=1

~wi�(||~rci � ~r||) (2)

where ~rci is the initial position vector of the RBF center i, � is the RBF activation function and
~wi weight coefficients, as many as the RBF centers, for each Cartesian direction. To compute
them, the model needs to be trained and, to this end, eq.2 is applied K times on the K centers
of the RBF model and needs to be satisfied for all Cartesian coordinates. For the training, the
displacements �~r, of the RBF centers, generated anew during the evolution, are used.

2.2.2 The Harmonic Coordinates two–cage Model

Cages based on HC, initially proposed for character articulation [16] is a technique to pa-
rameterize the points in a 2D or 3D domain. In an HC–cage–based parameterization, surface
deformations are controlled by the so–called “cage” (a topologically flexible structure) that en-
closes the surface under consideration. An HC–based technique that may control both shape
deformations and CFD mesh adaptation (not used, though, in the problems studied in this paper)
to the new geometry has been proposed in [17], by adopting a two–cage control mechanism.
The cages are filled with a quite coarse unstructured mesh and the nodal HC values on the coarse
mesh are computed by solving as many Laplace equations as the cage control vertices, with ap-
propriate boundary conditions. The HC fields are, then, interpolated from the cage nodes to the
CFD mesh nodes. Thus, the CFD mesh (or its boundary only, as in the examined problems) can
be controlled by displacing the HC cage control vertices, which become the design variables in
the optimization problem. In the two-cage structure, the inner cage controls both the shape de-
formation and mesh morphing while the outer cage limits the effect of morphing and guarantees
a smooth transition, without inverted elements, between the CFD mesh parts that lie inside and
outside the outer cage. Thus, the outer cage vertices should remain still during the optimization
and Laplace equations are not solved for them.
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2.2.3 Morphing–Smoothing Tool

Usually, whenever a CAD–free parameterization tool, such as HC cages or RBF networks,
is used, the same tool can also undertake the adaptation/deformation of the CFD mesh to the
updated shapes. However, in the workflow presented herein, the CFD mesh adaptation is con-
trolled by a mesh morpher.

In the literature, several morphing techniques such as those in may be found. Most of them
cannot handle mesh anisotropies. The Rigid Motion Mesh Morpher and its adaptive smoother
(R3M) [3], used in this work, is a meshless method and belongs to the optimization–based
methods. The internal nodes of the CFD mesh are displaced so as to minimize a given distor-
tion metric. Therefore, it can handle mesh anisotropies since it favours rigidity in the critical
directions of imminent distortion. The basic idea is to keep some parts/elements of the CFD
mesh (referred to as stencils) as-rigid-as-possible. An example of such a stencil handled by the
morpher could be a cluster of neighbouring grid nodes. By definition, ’Rigid Motion’ refers to a
movement of a body without changing its shape or size. Obviously, this cannot be kept entirely
rigid, since this would be in contrast with the mesh adaptation, even if there are ways to favour
rigidity in the critical directions, when distortion of an element/part becomes imminent.

If a stencil (s) in motion was totally rigid, its motion could be associated with a translation
and a rotation velocity, ~↵s and~bs respectively. In this case, the velocity of any node i belonging
to this stencil would be

uis=~↵s +~

bs⇥(~xi � ~cs) (3)

where ~xi is the position vector of node i that belongs to stencil s. Since the motion of a stencil
cannot always be entirely rigid, the actual velocity of node i would be ui 6= uis. R3M and its
smoother tends to minimize the difference between these two velocities (with some weighting
coefficients ws and µjs) for each and every stencil node. Moreover, in order to enforce smooth-
ness of the surface, a subset of its nodes are selected as handles which control surface changes.
For each handle node, there is also an underlying node which is free to move with a different ve-
locity. By displacing the handle nodes (Fig. 2), the CFD mesh nodes are moved by minimizing
the so–called ’Morpher’s Energy’

E=
X

s

ws

X

j2s

µjs

h
~uj�~↵s�~bs⇥(~xj � ~cs)

i2
+
X

i2H

�i

⇣
~ui�~

V

t
i

⌘2

(4)

where ~uj is the actual velocity of node j, ~xj is its position vector, cs the center of the gravity of
the stencil s, ~V t

i is the so–called target velocity of the handle (displacement of CFD mesh node
i on the shape) and �i a weighting coefficient standing for the stiffness of a spring connecting
the handle with its underlying node. If Nn is the number of all the CFD mesh nodes (including
the surface nodes), Ns the number of stencils and Nh the number of handles, then the unknowns
in eq. 4 are the Nn nodal velocities (~ui), the Ns translation velocities (~as) and the Ns rotation
velocities (~bs) of the stencils. Once the Nh target velocities of the handles become known, the
morpher’s energy, eq. 4, is minimized in the least squares sense, by finding the stationary points
w.r.t. the corresponding unknowns by satisfying @E

@~uj
=0, @E

@~as
=0 and @E

@~bs
=0, [3].
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Figure 2: For any displacement of the handles (red squares) ~V t
i , the minimization of the energy expressed in eq. 4

computes the displacements of the CFD nodes.

2.3 UQ using Non-Intrusive PCE

Let F (~⇠) be a stochastic function, where ~⇠ is stochastic variable and w(~⇠) its probability den-
sity function (PDF). We also assume a family of orthogonal polynomials  i(~⇠), where i is the
maximum degree of each polynomial. According to the PCE theory [1], F can be approximated
through the linear combination of orthogonal polynomials  i(~⇠),

F (~⇠) ' f(~⇠)=
qX

i=0

↵i i(~⇠) (5)

where q is the user-defined chaos order, truncating eq. 5 which might otherwise have an infinite
number of terms. The mean value (µF ) and variance (�2

F ) of F can be expressed as

µ̂F =

Z
f(~⇠)w(~⇠)d~⇠ , �̂

2
F =

Z ⇣
f(~⇠)� µ̂F

⌘2

w(~⇠)d~⇠ (6)

By developing eqs. 6 and making use of appropriate Galerkin projections, the final expres-
sions of the first two statistical moments of F , become

µ̂F =↵0 , �̂F =

vuut
qX

i=1

↵

2
i (7)

The PCE coefficients required in eqs. 7 result from the following integrals

↵i =

Z

D

F (~⇠) i(~⇠)w(~⇠)d~⇠, i = 0, 1, . . . , q (8)

where D is the design space in which F is defined.
The integrals in eq. 8 can be evaluated by the Gauss quadrature integration formula in the

domain D. According to this, each integral can be approximated by the weighted sum of the
performance metric F values at n (the value of n depends on the desired accuracy) points zi

within the domain of integration, namely
Z

D

F (~⇠)w(~⇠)d~⇠=
nX

i=1

tiF (zi) (9)

where ti are known weights.
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3 APPLICATIONS

In this section, the workflow (Fig. 1) is used and results are demonstrated in two external
and internal aerodynamic problems. In both, OpenFOAM was used for the evaluation of each
aerodynamic shape.

3.1 Optimization of a 2D Isolated Airfoil Under Uncertainties

The first problem is dealing with the design of an airfoil (Fig. 3), in which the goal is
to optimize its shape by maximizing the objective function F̂ = µ̂F � �̂F . The performance
metric F is the lift coefficient CL, F̂ is thus defined in the worst case scenario. The initially
generated CFD mesh has approximately 88K nodes and 160K elements. The flow conditions
are: freestream Mach number M1 = 0.15 and Reynolds number based on the chord Rec =
3.33 · 106. The Spalart–Allmaras turbulence model [18] is used. The freestream flow angle
(↵1) is considered as the uncertain stochastic variable with mean value µ↵1=5o and standard
deviation �↵1=0.7o, which is assumed to follow a normal distribution. Before proceeding with
the optimization, a UQ for the baseline geometry is carried out in order to decide about the PC
order to be used. The results of this parametric study are tabulated in Table 1.

Airfoil
HC-Inner Cage Nodes

Airfoil
HC-Inner Cage Nodes

Figure 3: Shape optimization under flow uncertainties of an isolated airfoil parameterized using HC cages. Only
the inner cage is shown, with just a small part of the flow domain; the CFD mesh is not drawn either. The
coordinates of the control vertices of the red cage (red points), excluding those of the trailing and leading edge,
stand for the design variables in this problem. Left: Initial geometry and HC inner cage with its control vertices.
Right: Example of new HC inner cage position and the resulting airfoil shape.

Chaos Order q=1
PCE - µ̂F 0.879866
PCE - �̂F 6.339144E-002

Chaos Order q=2
PCE - µ̂F 0.880710
PCE - �̂F 6.339217E-002

Chaos Order q=3
PCE - µ̂F 0.879806
PCE - �̂F 6.339199E-002

Table 1: Mean value and standard deviation of the lift coefficient of the starting/reference isolated airfoil. Compu-
tations performed using the non-intrusive PCE method.

From Table 1, it can been seen that chaos order q=2 is a good compromise in terms of
accuracy and computational cost (3 CFD evaluations are needed for the UQ of a single airfoil).
The airfoil is parameterized using a pair of HC cages, as in Fig. 3. The inner/control cage
comprises 16 nodes, 14 of which are allowed to vary in both directions summing up to 28
design variables in total. The leading and trailing edges are not allowed to move. A (µ,�) =
(8, 12) MAEA with µ parents and � offspring was used for the optimization and the metamodels
were activated after the first 30 evaluations. In the subsequent generations, all individuals were

264



A. G. Liatsikouras, V. G. Asouti, K. C. Giannakoglou, G. Pierrot, M. Megahed

pre–evaluated on the metamodels and the top two of them were selected for CFD–based re–
evaluation. For a termination criterion of 200 evaluations an increase in the objective function
(F̂ ) by approximately 23% is achieved. In Fig. 4, the initial and the optimized geometry of the
isolated airfoil are demonstrated along with the convergence of the optimization. The average
cost per UQ on an Intel(R) Xeon(R) CPU E5-2630 v2 processor is 8 min. (on 6 cores), 88% of
which stands for the cost of running the CFD evaluations.

’Initial’
’Optimized’

-1.25

-1.2

-1.15

-1.1

-1.05

-1

0 50 100 150 200

- 
F^
 /

  
F

re
f

Evaluations

Figure 4: Initial and optimized shape of the airfoil is presented. Furthermore, the convergence history of the
optimization is presented (for �F̂ ).

3.2 Optimization of S-Bend Duct Under Uncertainties

The second case deals with the shape optimization of an S-bend duct for minimum F̂ =
µ̂F + �̂F , with F being the total pressure losses across the duct. The latter is computed at the
inlet/outlet cross sections, from the expression

�pt =

R
(p+ 1

2⇢~u
2)~u · ~ndSR

~u · ~ndS
(10)

where ~u is the velocity vector, p is the pressure and ~n is the unit outward normal vector at the
boundaries of the flow domain.

The 3D CFD mesh has been generated using CFD-GEOM and consists of hexahedrals at
walls, a zone of prisms and tetrahedra everywhere else. The flow is laminar with Re=550. As
uncertain variables, the inlet velocity and the kinematic viscosity are used. It is assumed that
both uncertain variables follow normal distributions with mean values and standard deviations
as in Table 2.

Uncertain Variable mean value standard deviation
Uin(m/s) 10 0.5
⌫(m2

/s) 10�3 5 · 10�5

Table 2: Mean values and standard deviations of the two uncertain variables in the S–bend duct optimization
problem. Both follow normal distributions.

In Fig. 5, the initial shape of the duct is presented. The grey part of the geometry remains
fixed whereas the (green) central curved part is free to deform.
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Figure 5: Initial shape of the S–bend duct problem. The grey part of the duct is fixed (undeformable) during the
optimization whereas the green area is free to deform.

Initially, a UQ study has been performed so as to make a decision on the appropriate chaos
order. From Table 3, it is concluded that using chaos order equal to q=2 (9 CFD evaluations per
UQ) is acceptable in terms of computational cost in order to compute the statistical moments of
F .

Chaos Order q=1
PCE - µ̂F 137.89217
PCE - �̂F 11.14798

Chaos Order q=2
PCE - µ̂F 137.73546
PCE - �̂F 10.93479

Chaos Order q=3
PCE - µ̂F 137.77606
PCE - �̂F 11.08064

Table 3: Optimization of the S–bend duct. Mean value and standard deviation of total pressure losses for each of
the user-defined chaos order.

After having decided the chaos order, the central curved part of the duct, which is free to
deform, is parameterized using RBF. The coordinates of the 24 RBF centers are selected as
design variables for the optimization workflow using EASY. For this case a (µ,�) = (8, 12)
MAEA was used for the optimization along with a termination criterion of 150 evaluations.
Metamodels were activated after the first 25 evaluations and, in each subsequent generation, the
three top individuals were selected for CFD–based re–evaluation. After the optimization in this
duct, the objective function (F̂ ) is reduced approximately by 10% and the changes in shape are
shown in Fig. 6. The average cost per UQ on an Intel(R) Xeon(R) CPU E5-2630 v2 processor
is 38 min., about 94% of which is the cost of performing the 9 CFD evaluations.

Figure 6: Optimization of the S–bend duct. Total pressure distribution in the optimal duct at each Gaussian node
(i.e. set of flow conditions) indicated by the Gauss integration formula. This optimal duct yields about 10% less F̂
value than the starting geometry.
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4 CONCLUSIONS

This paper presents an automated workflow for performing aerodynamic shape optimization
under flow uncertainties. The UQ of the performance metric is based on the non–intrusive
PCE technique. CAD–free approaches (RBF or HC cages) are controlling the shape under
consideration and R3M with its adaptive smoother are responsible for adapting the CFD mesh
to the updated geometry. The shape optimization is performed by an Evolutionary Algorithm
assisted by surrogate evaluation models. The new optimization platform has great potential
and each and every of its components could readily be replaced by other tools with the same
functionalities.
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