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Abstract. The classic design of experiments (DoE) typically uses the least-square method for 
a model identification and requires associated assumption about the normality of a noise fac-
tor. It is very convenience because it leads to a relative simple computations and well-known 
asymptotic statistics based on the normality assumption. However, if that assumption is not 
satisfied it may fail and obtained results may differ radically from the verification tests. The 
rationale for the caution may be the comparison of interval plots (based on the normality hy-
pothesis) and box-plots (based on raw data). The useful approach is the bootstrap-based 
methodology which replaces the requirement of the normality assumption with weaker re-
quirement of the independent and identical distribution (i.i.d.) of the random term. The indus-
trial applications of this approach are still rare because the industry is very conservative and 
usually utilizes old well-known methods and typical numerical software like e.g. Statistica, 
Statgraphics or Minitab. This paper presents the bootstrap modeling of the random uncer-
tainty in the two cases: the factorial designed experiment and the response surface experi-
ment. 

1 INTRODUCTION 
Methods of the approximation and the prediction rapidly evolved in recent years. New ap-

proaches came from new branches of the statistics and the artificial intelligence area: non-
parametric, data-driven, stochastic etc. Apart from this, the classic approach of the design of 
experiment methodology (DoE) is still very useful and popular in the industry full-scale pro-
duction as well as in the R&D laboratories. 
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The classic design of experiments (DoE) utilizes factorial model of fixed effects since R.A. 
Fisher introduced the analysis of variance (ANOVA) [1] and the latin squares [2] in mid-
twenties of the 20th century, F. Yates proposed two-level fractional factorials [3] in mid-
thirties and G. Taguchi orthogonal arrays [4] in sixties. Simultaneously, the DoE utilizes the 
response surface methodology (RSM), however usually only in the simple form of low-degree 
polynomials, since G.E.P. Box introduced RSM [5] in early fifties of the 20th century and 
H. Scheffé [6] extended this methodology into the mixture designs in late fifties. 

The typical procedure of the model identification assumes the normal distribution of the 
data noise [7] and uses the least square method [8] to identify parameters of the model with 
a priori assumed structure what set this approach in the group of parametric methods. The 
terms of a model are repeatedly eliminated in the specific backward stepwise regression, 
while three indicators: (a) the least significance of parameters, (b) the significance of the lack 
of fit and (c) the conformity of residuals with the normal distribution are simultaneously ob-
served to make a decision to stop or to continue the elimination procedure. 

Practically, for small datasets, the conformity with the normal distribution has very weak 
reliability and it leads to the very uncertain assessment of parameters statistical significance 
and bounds of their confidence intervals. The bootstrap approach [9] with simulation-based 
identification of parameters confidence intervals appears to be better solution than theoretical-
ly proved but only asymptotically equal t-distribution [7]. It seems to be specifically more 
important for the non-parametric models where the model structure is created dynamically 
during data analysis e.g. artificial neural networks , regression trees etc., while theoretically-
based distribution cannot be determined, because their final structures are so non-linear that 
analytical identification of associated distributions and their confidence intervals is not possi-
ble. 

The key issue in the bootstrap approach is to make proper identification of the random 
term inside the model structure because the i.i.d. requirement have to be satisfied by this term.  

2 METHODS 
DoE methodology splits into two branches: the factorial approach [10, 11] for qualitative 

input variables (factors) and the response surface methodology (RSM) [11, 12] for quantita-
tive input variables. Obviously, the models for mixed inputs, qualitative and quantitative, may 
be identified however it is not so easy. 

The specific models used in these methodologies and the location of the random term are 
described in subsequent chapters in details. 

2.1 Factorial model 
The factorial approach is typical for qualitative input variables. Their settings formally are 

labels, not numerical values, in contrast to quantitative ones. The model predicts response for 
assumed settings and its typical structure is the fixed-effects model [7] with additive terms 
which depends on single factors (main effects, linear effects), two factors (second-order inter-
action), three factors (third-order interaction) and eventually up to the highest-order interac-
tion which merges all factors contained in the model. So rich model requires symmetrically 
equivalent rich experimental design: all combinations of all factor’s levels have to be tested 
experimentally.  

Such design is known as full factorial. It may be described by implication: if you need all 
possible interactions, you have to test all possible combinations of levels. It is clear that re-
verse question has to be ask: could I omit tests of some combinations of levels, if I needn’t all 
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interactions? The answer is positive and was given first by Fisher [2] in the form of latin 
squares and later by Yates [3] who developed two-level fractional factorials. 

The sample structure of the fixed-effects model with three factors and terms up to the 
third-order interaction is defined as following: 

( ) ( ) ( ) ( )ijk i j k ij ik jk ijky µ α β γ αβ αγ βγ αβγ= + + + + + + + + ε (1) 

where: 
ijky – the random variable describing the predicted output,
µ  – the average output,

iα  – the linear (main) effect of the first factor α at its level i,

jβ – the linear (main) effect of the second factor β at its level j,

kγ – the linear (main) effect of the third factor γ at its level k,
( )ijαβ  – the second-order interaction effect of the factors α and β at their levels i and j,
( )ikαγ  – the second-order interaction effect of the factors α and γ at their levels i and k,
( ) jkβγ  – the second-order interaction effect of the factors β and γ at their levels j and k,
( )ijkαβγ  – the third-order interaction effect of the factors α, β and γ at their levels i, j and k,
ε – the random term describing impact of all uncontrolled noise factors; typically the

normal distribution with an unknown variance N(0, σ2) is assumed, however it is on-
ly a hypothesis. 

The equation (1) shows the general form of the stochastic model, but the numerical simula-
tion like e.g. the bootstrap requires replacement of the random variable with its particular ob-
servations. It leads to smoothly different relationship: 

| |( ) ( ) ( ) ( )ijk r i j k ij ik jk ijk ijk ry rµ α β γ αβ αγ βγ αβγ += + + + + + + + (2) 

where: 
|ijk ry – the output measured at levels i, j, k of the respective factors and at r repetition of the

test, 
|ijk rr – the residuum (difference between the real measurement of output and its prediction)

observed at levels i, j, k of the respective factors and at r repetition of test; it should be 
noted that r symbol has two difference means: the residuum and the index of test repeti-
tions (in the subscript). 

Just the set of observed residuums { |ijk rr } will be the source for the future subsampling in the 
bootstrap approach. The algorithm’s steps are as following [9]: 
a) the dataset of measurements { |ijk ry } is used to the identification of effects (see Eq.1) typi-

cally by the least-squares method, 
b) the identified effects are used to predict output { ijky } for those levels i, j, k at which meas-

urements were obtained,
c) the dataset of residuums { |ijk rr } is created based on differences between the observed

measurements and the predicted outputs, according to the formula:

| |ijk r ijk r ijkr y y= − (3) 
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d) the bootstrap subsampling is made by a random draw from the dataset of residuums { |ijk rr },
added subsequently to the predicted outputs, resulting in the dataset of bootstrapped out-
puts:

| |ˆ ( )ijk r ijk ijk ry y draw r= + (4) 

e) the bootstrapped outputs are used to identification of new estimates of model effects.
The steps (d) and (e) should be repeat many times (at least thousands times) resulting in a da-
taset of enough size to evaluate necessary statistics. 

2.2 Response surface model 
The response surface approach is typical for quantitative input variables. Their settings are 

continuous numerical values. The model predicts response for assumed settings and its typical 
used structure is a second-order polynomial [7] being a local example of Taylor series. Such 
model is a specific modification of a classic approximation problem due to a random term de-
scribing an impact of all uncontrolled noise factors: 

1 0 1( , , ; , , , )i jy f x x b b b= … … + ε (5) 

where: 
y – the random variable describing the predicted output,
f – the assumed function, usually first or second-order polynomial,
ix – i-th input variable,

jb – j-th model parameter,
ε – the random term describing impact of all uncontrolled noise factors; typically the

normal distribution with an unknown variance N(0, σ2) is assumed, however it is on-
ly a hypothesis. 

Assumption of f function as the first or the second-order polynomial leads to very conven-
ience situation: all model parameters are linearly set and may be identified by the least-
squares method. 

Further procedure has to be split. If a dataset of the output is collected in a designed exper-
iment with strictly controlled input variables then the random term is ε from stochastic Eq.5 is 
replaced with particular observed residuum r and the dataset of residuum will be the source 
for bootstrap draw. The next steps of the bootstrap approach are exactly the same a previously 
mentioned for the fixed-effect model. 

But if the dataset of output is collected in a passive experiment and input variables are 
loosely controlled (if any), then a point from multidimensional space of observations 
(x1,…, xi; y) is established as a the random element. The algorithm’s steps are as following [9]: 
a) the dataset of input values (formally input, but only observed in passive mode) and ob-

served measurements { 1( , , ; )i jx x y… } is used to the identification of the basic model pa-
rameters (see Eq.5) typically by the least-squares method, 

b) the bootstrap subsampling is made by a random draw from the dataset of input values and
observed measurement { 1( , , ; )i jx x y… } resulting in a bootstrapped dataset of the same size 

{ 1̂ ˆ ˆ( , , ; )i jx x y… }, and a bootstrapped  model with parameters k̂b  is identified: 

| 1|

2

|
ˆˆ ˆ ˆ( , , ; ) minj j i j ky f x x b 
− …∑ ö (6) 
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c) the bootstrapped model and its output are used to identification of new estimates of model
effects.

The steps (b) and (c) should be repeat many times (at least thousands times) resulting in a da-
taset of enough size to evaluate necessary statistics. 

3 CASE STUDIES 
Two case studies are presented for a bootstrap-based non-parametric estimation: 

– estimation of the parameter’s significance for a fixed-effects model,
– estimation of the parameter’s significance for a response surface model in passive mode

experiment.

3.1 Case study for a fixed-effects model 
The investigation was conducted on the materials science matter: the analysis of of the ce-

ramic shell mould of the airfoil blade casting [13]. One casting was selected for the micro-
structural and statistical analysis, and finally cut off. The cross-sections were included and 
prepared as metallographic samples from nickel-based superalloy. To reveal the microstruc-
ture of the investigated material the surfaces of the samples were etched, observed by a scan-
ning electron microscope and obtained images analyzed by a computer-aided image analysis 
program to estimate quantitatively the main parameters describing the (γ+γ’) eutectic islands 
that occurred in the investigated superalloy. Details of the bootstrap-based simulation provid-
ed on the mentioned data are available in [13, 14] and here a briefly summary of analysis and 
results is included. 

Dataset was created as six groups containing areas of eutectic islands identified and meas-
ured for each of six traces. The primary selected tool for the test of the traces homogeneity 
was classic ANOVA, but unfortunately the diagnostic test rejected the variances homogeneity, 
what is the basic assumption in ANOVA.  

As an alternative method, the bootstrap-based identification of confidence intervals was 
provided. The one-way general linear model with six levels was identified to construct the 
residuum dataset, which is necessary to make random draw in the bootstrap. Next, the boot-
strapped models were identified in 10 thousand iterations and parameters were collected to 
construct associated statistics (Figure 1). 
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Figure 1: Distribution of the bootstrapped F statistics (source: [13]) 
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The bootstrap simulation experiment revealed that ANOVA results are rather uncertain. The 
bootstrapped   is approximately equal to 0.75 while classic ANOVA p-Value obtained from 
experimental data gave 0.84. It leads to the conclusion that criterion p-Value should be treated 
more as a fuzzy basis for the decision, not the sharp one just on 0.05. 

3.2 Case study for a response surface model in a passive mode experiment 
The case study [15] used data obtained during investigation on compression vertebral frac-

tures prediction based on computer tomography (CT) and microtomography (µCT) images. 
The significant difference in a resolution between these two class of images leaded to differ-
ent prediction models. The small sample size (23 compressed and scanned vertebraes) and the 
high dimensionality of detected properties imposed the necessity of an alternative approach to 
the analysis, other than classic one derived with a requirement of the normality. 

The RSM model was used to construct the prediction model to fit the observed strength of 
vertebraes with the crushing force. The bootstrap method was used to evaluate confidence in-
tervals for effects. Finally, the existence of zero inside the intervals was inspected. If any of 
intervals contained zero, the null hypothesis of was rejected i.e. the parameter was treated as 
statistically insignificant. 

The source dataset contained 23 records of three variables selected as predictors (input var-
iables) and measured strength selected as output. The number of draw iterations was set to 
10.000 to easy selection of quantiles from the bootstrapped dataset. After the full bootstrap 
procedure, the descriptive statistics were evaluated for model parameters. The bounds of the 
confidence intervals were easy identified due to the selected number of bootstrap iterations. 
They were values found at positions 250 and 9750 in the sorted bootstrapped results. Similar-
ly, the bootstrapped p-Value was evaluated as relative position of sign switching inside the 
sorted bootstrapped results. 

The obtained results led to the same decision: all linear coefficients significant and a inter-
cept insignificant, but bootstrap-based results showed stronger significance of the coefficient 
than classic results. 

4 CONCLUSIONS  
• The non-parametric analysis based on the bootstrap approach allows to conduct effective

analysis in such situations, when requirements of classic assumptions are not met.

• The bootstrap-based analysis requires proper identification of the i.i.d. random term (re-
siduum vs. multidimensional point) but its implementation is easy and does not require
additional subtle assumptions.

• The non-parametric bootstrap-based analysis is useful for processing data with a weak
assessment of the distribution e.g. small datasets.

• The non-parametric bootstrap-based analysis may be easy automatized for processing
huge or even big data, which distributions do not fit into any theoretical distribution.

• Further research will be conducted, especially in full-scale industry environment [16, 17,
18], because of engineers expectations about automatized and easy-to-interpret analysis
methods.
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