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Abstract. River hydraulic models are used to assess the environmental risk associated to flood-
ing and consequently inform decision support systems for civil security needs. These numerical
models are generally based on a deterministic approach based on resolving the partial differ-
ential equations. However, these models are subject to various types of uncertainties in their
input. Knowledge of the type and magnitude of these uncertainties is crucial for a meaningful
interpretation of the model results. Uncertainty quantification (UQ) framework aims to proba-
bilize the uncertainties in the input, propagate them through the numerical model and quantify
their impact on the simulated quantity of interest, here, water level field discretized over an un-
structured finite element mesh over the Garonne River (South-West France) between Tonneins
and La Réole simulated with a numerical solver, TELEMAC-2D. The computational cost of the
sensitivity analysis with the classical Monte Carlo approach is reduced using a surrogate model
instead of the numerical solver. The present study investigates one of the machine learning al-
gorithms: A surrogate model based on Gaussian process. This latter was used to represent
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the spatially distributed water level with respect to uncertain stationary flow to the model and
friction coefficients. The quality of the surrogate was assessed on a validation set, with small
root mean square error and a predictive coefficient equal to 1. Sobol’ sensitivity indices are
computed and enhance the high impact of the input discharge on the water level variation.
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1 INTRODUCTION

Flood inundation models are central components in any flood risk analysis system as they
transform the bulk discharge outputs from flood-frequency analyses or rainfall-runoff mod-
els into distributed predictions of flood hazard in terms of water depth, inundation extent and
flow velocity. Predictions may be dynamic in time and can be derived from a range of codes
which vary in complexity from non-model approaches, such as fitting a planar surface to dig-
ital elevation data, through to numerical solutions of fluid dynamics equations derived from
considerations of mass and momentum conservation.
Whilst such models are parsimonious in terms of their data requirements and number of uncon-
strained parameters relative to other environmental physics, their underlying equations may be
non-linear. Moreover, the data sets that they do require may be subject to complex, but poorly
known errors that may vary markedly in time and space. As a consequence, considerable re-
search has, in recent years, sought to understand and better estimate these uncertainties in order
to improve flood risk analysis.
Typically, uncertainties in hydrodynamics models stand are classified as: parametric (or epis-
temic) uncertainty, arising from incomplete knowledge of the correct settings of the models
parameters; input data uncertainty, arising from incomplete knowledge of the true value of the
initial state and forcing, usually linked to the aleatory nature of the physics; and structural un-
certainty, which is the failure of the model to represent the system, even if the correct parameters
and inputs are known. Together, these three components represent a complete probabilistic de-
scription of the informativeness of the model for the underlying system. But in practice, all are
extremely challenging to specify.

In this study, we consider both epistemic and aleatory uncertainties by investigating the effect
of two uncertainty sources on water level calculation for extreme flood event, respectively the
roughness coefficient and the upstream discharge.
On the one hand, the estimation of the roughness is difficult because it is a lumped parameter
that mostly reflects the flow resistance of the river. Since the roughness coefficient has an ex-
tensive effect on flow analysis of a river, including computation of the water level and velocity,
its accurate estimation is important for prediction of the water level during flooding. Because of
its importance, various efforts have been made to quantify the roughness coefficients of rivers
in an objective manner. Among them, an element-based method [9] and empirical equations
that relate the roughness coefficient either to bed material [32] or to relative depth [5] are rep-
resentative. However, owing to the diversity and irregularity of natural rivers, prediction of the
roughness coefficient for a specific river reach using these methods is not simple. Thus, until
now, field measurements have been made either to directly estimate the roughness coefficient
[7] or to provide references [2, 18]. However, there remain uncertainties whether using the
methods referred to above or using field measurements. From a practical viewpoint, water level
and discharge as variables computed by numerical modeling are influenced by uncertainty in
estimating the roughness coefficient. Conducting simulation of dam breakage flow for the Teton
Dam, [13] showed that variation in calculated flood flow water depth was less than 5% with a
20% change in the roughness coefficient. He therefore argued that even if uncertainty in Strick-
lers roughness coefficient is large, its effect on the water depth might be reduced considerably in
the process of computation. These conclusions should be deeply investigated in the context of
flood simulation, on our own river test case, characterized by long homogeneous friction zones
calibrated in high flow.
On the other hand, inundation models require the specification of boundary conditions, which
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are typically the greatest source of aleatory and epistemic uncertainty when simulating the an-
nual exceeding probability of inundation. Flow at the upstream boundary of the river is often
the most important boundary condition, although most applications will require (unless using a
kinematic solution) or benefit from downstream-level boundaries (e.g. tidal reaches). In loca-
tions where they are available, gauging stations are typically the most accurate source of river
flow and level data. However, the ratings at these stations, that convert observed levels to flows,
are usually based on low to medium flow observations, necessitating an uncertain extrapolation
of the rating for high flows. Rating errors may be especially large when flow is out of bank.
Where gauging stations are not available or spatially sparse, hydrological models can be used
to simulate upstream discharges. However, despite much effort, rainfall-runoff models are still
very uncertain, especially where calibration/validation data are lacking.

Subsequently, once the sources of uncertainties have been identified, they must be propa-
gated in the model. The Monte Carlo (MC) methods are the most common techniques used for
uncertainty propagation (UQ) [15]. This framework allows to estimate standard statistics on
the model output, e.g. expectation, standard deviation, quantiles or probabilities of exceeding a
given threshold. It also makes it possible to estimate sensitivity indices representing the shares
of output uncertainty attributable to the different uncertain input parameters, e.g. Sobol’ in-
dices where output uncertainty is measured in terms of variance [30]. MC is simple and highly
adapted to massively parallel computational resources. Yet, its convergence is slow as it scales
inversely to the square root of the sample size and its cost gets prohibitive for expensive models.
In this respect, surrogate models such as Gaussian process model (GP) have received tremen-
dous attention in the last few years, as it allows one to replace the original expensive model by
a surrogate which is built from an experimental design of limited size [25]. Then the surrogate
can be used to compute the UQ study in negligible time. In particular, [27] have shown that,
for a 1D hydraulic model, on the Garonne river section that we consider and stationary flow,
it features similar performance to estimate statistics by Monte-Carlo random sampling when
friction and input forcing uncertainties are taken into account. The accuracy of the water level
correlation matrix and sensitivity Sobol’ indices estimated with the GP surrogate was assessed
with respect to a classical MC estimate based on a large data set. This article is a reference for
us because it involves the same section of Garonne river, the same types of uncertain variables
(friction and upstream flow) and the same family of surrogate model as those considered in our
work. Our work can be seen as an extension to two-dimensional flow modelling and floodplain
characterization.

The present study extends the surrogate model approach in hydraulics to 2D modeling tak-
ing into account the dynamics of the flood plain. Section 2 presents the hydrodynamics solver
TELEMAC-2D, the Garonne test case used in this article and the associated uncertainties. Sec-
tion 3 presents the GP surrogate strategy based on the reduction of the dimension of the output
space with a Proper Orthogonal Decomposition (POD). This section also presents the metrics
used to assess the quality of the surrogate along with the sensitivity indices based on output
variance decomposition. Results are presented in Section 4. Conclusions and perspectives are
finally given in Section 5.
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GOEURY, Sébastien BOYAVAL

2 MODEL: TWO-DIMENSIONAL FLOW OF THE GARONNE RIVER UNDER UN-
CERTAINTY

2.1 Physical model

The Shallow Water Equations (SWE), also called depth-averaged free surface flow equations,
are commonly used in environmental hydrodynamics modelling [12]. They are derived from
the Navier-Stokes equations [31] and express mass and momentum conservation averaged in
the vertical dimension. The non-conservative form of the equations are written in terms of the
water depth (h) and the horizontal components of velocity (u and v):

∂h

∂t
+ div (hu) = 0 (1)
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and: ρw/ρair [kg.m-3] is the water/air density, Patm [Pa] is the atmospheric pressure, Uw,x

and Uw,y [m.s-1] are the horizontal wind velocity components, CDZ [-] is the wind influence
coefficient, Ks [m

1
3 .s-1] is the river bed and floodplain friction coefficient, using the Strickler

formulation [?]. Fx and Fy [m.s-2] are the horizontal components of external forces (friction,
wind and atmospheric forces), h [m] is the water depth, H [m] is the water level (h = H − zf
if zf [m] is the bottom level), u and v [m.s-1] are the horizontal components of velocity and
νe [m2.s-1] is the water diffusion coefficient. div and

−−→
grad are respectively the divergence and

gradient operators.
To solve the system of equations (Eq. (1) to Eq. (3)), initial conditions h(x, y, t = 0) =

h0(x, y); u(x, y, t = 0) = u0(x, y); v(x, y, t = 0) = v0(x, y) are provided along with
boundary conditions (BC) at surface, at bottom and at upstream and downstream frontiers
h(xBC , yBC , t) = hBC(t).

2.2 Study area

The study area extends over a 50 km reach of the Garonne river (France) between Tonneins
(upstream), downstream of the confluence with the river Lot, and La Réole (downstream) (see
Figure 1). This part of the valley was equipped in the 19th century with infrastructure to protect
the Garonne flood plain from flooding such as that occurred in 1875. A system of longitudinal
dykes and weirs was progressively constructed after that flood event to protect the floodplains,
organize submersion and flood retention areas. Protections on the Garonne river form a system
of successive storage areas for the flood plain beyond the dikes.

2.3 Uncertainty characterization

The hydraulic variables are discretized on an unstructured triangular mesh over the two-
dimensional study area. We note h the vector of the water level over the p = 41416 nodes of
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Figure 1: Study area of the Garonne river

the mesh. It represents our quantity of interest (QoI). In this study, the impact of roughness
and upstream flow on the discretized water level h is quantified in the context of extreme flood
event:

• The roughness coefficient defined according to 4 areas. Indeed, T2D was calibrated for
high flow in [4] using steady-state water surface profiles at high discharge, from bank-
full discharge in the main channel (2 500 m3.s−1) to bank-full discharge in the overbank
flow channel between dykes. In the floodplains, the roughness coefficient Ks,1 is selected
as an area with cultivated fields all around the river with a Strickler coefficient of 17
m1/3.s−1. Classically, according to the available expert knowledge, the friction coefficient
is contained in an interval bounded by physical values depending on the roughness of soil
material.

For the main channel, the Strickler roughness coefficient was split into three different
areas:

– from Tonneins to upstream of Mas d’Agenais, Ks,2: 45 m1/3.s−1,

– from upstream of Mas d’Agenais to upstream of Marmande, Ks,3: 38 m1/3.s−1,

– from upstream of Marmande to La Réole, Ks,4: 40 m1/3.s−1.

The distribution of Strickler roughness coefficient is chosen uniform and the interval is
set to cover the range of calibration values.

• The upstream discharge is assumed to follow a Gaussian distribution centered around the
thousand return period 8 490 m3.s−1with a standard deviation of 700 m3.s−1. The study
is thus focused on extreme flood events that activate the flood plains.

Tab. 1 summarizes the considered input uncertainties.
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Variable Distribution Units
Q U [2 500, 10 000] m3.s−1

Ks,1 U [5, 20] m1/3.s−1

Ks,2 U [40, 50] m1/3.s−1

Ks,3 U [33, 43] m1/3.s−1

Ks,4 U [35, 45] m1/3.s−1

Table 1: Distributions of the input variable uncertainties.

2.4 Computing environment

In this work, hydrodynamic is provided using TELEMAC-2D (T2D) depth-averaged hydro-
dynamic model1. It solves the SWE in two dimensions with an explicit first-order time integra-
tion scheme, a finite element scheme and an iterative conjugate gradient method. In each point
of the mesh, T2D gives the water depth and the vertically average horizontal velocity field [17].
T2D was developed initially by the National Hydraulics and Environment Laboratory (LNHE)
of the Research and Development Directorate of EDF, and is now managed by a consortium.
The software comes with an API to modify the values of the uncertain parameters in a non-
intrusive way.

The surrogate model construction as well as the sensitivity analysis was carried out using the
BATMAN-Open-TURNS (BATMAN-OT) library2. This library (developed at CERFACS and
CECILL-B licensed) provides a convenient, modular and efficient framework for design of ex-
periments, surrogate model and uncertainty quantification [26]. It relies on open source python
packages dedicated to statistics (openTURNS3 [3] and scikit-learn4 [23]). It also implements
advanced methods for resampling, robust optimization and uncertainty visualization.

In terms of infrastructures, CERFACS’s cluster, Nemo, has been used to run T2D simula-
tions. The Nemo cluster includes 6,912 cores distributed in 288 compute nodes. The ECU
power peak is 277 Tflop/s. On this architecture, simulating the river and flood plain dynamics
for the test case presented in Sect. 2.2 over 3 days, takes about 6 minutes on 15 cores.

3 AN EFFICIENT UQ FRAMEWORK FOR COSTLY TWO-DIMENSIONAL SIMU-
LATOR

The Monte Carlo (MC) framework is the most common framework used for uncertainty
quantification, due to its simplicity and good statistical results. It is theoretically applicable
whatever the complexity of the deterministic model or the desired statistical estimator. However,
the required sample size increases squarely with the estimator accuracy and makes this approach
rather impracticable when the computational cost of each run of the model, like T2D, is non
negligible. One way to lower the computationally demanding is to replace, on one side, the T2D
model by a surrogate model [11], on the other side, the pure random sampling by alternative
sampling methods such as the Latin Hypercube sampling approach [16].

1More information can be found on the website www.opentelemac.org.
2BATMAN-OT can be downloaded from https://gitlab.com/cerfacs/batman.
3More information on: http://www.openturns.org.
4More information on: https://scikit-learn.org.
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3.1 Build a surrogate model with spatial output

The surrogate model based on Gaussian process regression (GP) [25] has been adopted in the
following. We have chosen this metamodel to the detriment of others for two reasons. The first
one is its small number of hyperparameters: about one per input parameter. The second one is
that it provides a measurement of its model error which would be of interest in our future work,
for optimization and data assimilation problems, based on methods as expected improvement
[19]. While surrogate models offer a low cost alternative to costly models, their formulation
is challenging in high dimension for inputs and outputs. In the present case, the size of the
uncertain input space is small and resumes to 5 scalars. Yet, the quantity of interest is 2D and
discretized over more than 41 000 points. The output space is reduced in order to limit the cost
of the surrogate formulation and the spatial coherence of the later, using a Proper Orthogonal
Decomposition (POD) strategy [24]. POD is a post-processing technique that takes a given set
of data and extracts basis functions, that contain as much ”energy” as possible. The meaning
of ”energy” depends on which kind of POD is used [8]. Here, only POD based on snapshot
method [29] is considered.

We propose to build a surrogate model combining POD and GP surrogate model. So we call
it “POD+GP surrogate model”. The corresponding algorithm is presented as follows:

1. build a learning datasetDl =
(
x(i),h(i)

)
1≤i≤Nl

of sizeNl where the design of experiments(
x(i)
)
1≤i≤Nl

is a Latin hypercube sample (LHS) [21] with x = (Q,Ks,1, Ks,2, Ks,3, Ks,4)

and h(i) is the water level computed by T2D over the mesh at x(i);

2. decompose the sampled output vector h by achieving a POD on the centered output learn-

ing matrix H =

(
h
(i)
j −N−1l

Nl∑
k=1

h
(k)
j

)
1≤i≤Nl
1≤j≤p

and derive the most significant compo-

nents; then, any sampled local water level h(i) can be approximated by a weighted sum
of these components where weights depend on the input vector value x(i);

3. for each component, approximate the relation between its sampled coefficient and the
corresponding sampled model inputs by means of a GP surrogate model;

4. formulate the POD+GP surrogate model ĥ(x) as the weighted sum of the more significant
POD components where weights are the GP surrogate models depending on x.

3.1.1 Reduction of the output dimension by proper orthogonal decomposition (POD)

The key idea of the snapshot method [29] is to achieve a POD of the centred snapshot matrix

H =

(
h
(i)
j −N−1l

Nl∑
k=1

h
(k)
j

)
1≤i≤Nl
1≤j≤p

∈ MNl,p(R), which gathers the water level computed at

each mesh point for the Nl snapshots, from which the sample mean is substracted.
Based on many observations of a random vector, the POD gives the orthogonal directions

of largest variances (or modes) in the probabilistic vector space in order to reduce the vector
space dimension [6]. Note that for simplicity purpose, the adjective centred is dropped in the
following when referring to the centred snapshot matrix H.
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The POD of the snapshot covariance matrix C = N−1l HT H ∈ Mp(R) is equivalent to the
Singular Value Decomposition (SVD) of the snapshot matrix H:

H = U Λ VT =

rp∑
k=1

λk uk vT
k , (4)

where U ∈MNl
(R) is an orthogonal matrix diagonalizing HHT (uk, the kth column of U, is a

left singular vector of H), where V ∈ Mp(R) is an orthogonal matrix diagonalizing HTH (vk,
the kth column of V, is a right singular vector of H), and where Λ ∈ MNl,p(R) is a rectangular
diagonal matrix including rp = min(Nl, p) singular values on its diagonal. The singular values
{λk}1≤k≤rp are the square roots of the eigenvalues of C. Note that in this study, since the size
of the training set Nl is lower than the number of mesh points p = 41 416, the rank of H is here
rp = Nl.

At the kth mesh point, the snapshot hk(x(i)) can then be retrieved as a linear combination of
rp modes {Ψi}1≤i≤rp:

hk
(
x(i)
)

=
(
U Λ VT

)
ki

= Uk:

(
Λ VT

)
:i

=

rp∑
j=1

γk,j Ψj

(
x(i)
)
, (5)

where for any j ∈ {1, . . . , Nl}, γp,j := Uk,j and Ψj

(
x(i)
)

:=
(
ΛVT

)
j,i

.
From that, we want to approximate each relation x→ Ψj(x) by a GP surrogate model Ψgp,j

from the dataset
(
x(i),Ψj

(
x(i)
))

1≤i≤Nl
in order to propose the following POD+GP surrogate

model:

ĥk(x) =

rp∑
i=1

γk,i Ψgp,i(x), (6)

This POD+GP surrogate model requires the construction of rp GP surrogate models.

3.1.2 Learning of the significant POD modes by Gaussian process (GP) modelling

As stated by [25], a GP is a random process (here the mode Ψi) indexed over a domain
(here Rd), for which any finite collection of process values (here

{
Ψi

(
x(j)
)}

1≤j≤Nl
) has a joint

Gaussian distribution. Concretely, let Ψ̃i be a Gaussian random process fully described by its
zero mean and its correlation πi:

Ψ̃i(x) ∼ GP
(
0, σ2

i πi(x,x
′)
)
, (7)

with πi(x,x′) = E
[
Ψ̃i(x)Ψ̃i(x

′)
]
. In our case, the correlation function π (or kernel) is chosen

as a squared exponential:

πi(x,x
′) = exp

(
−‖x− x′‖2

2 `2i

)
, (8)

where `i is a length scale describing dependencies of model output between two input vectors
x and x′, and where σ2

i is the variance of the output signal. Squared exponential kernel leads
to satisfying results but other kernel functions could have been considered, such as a decreas-
ing exponential one or a Matérn one – with their associated hyper-parameters. The choice of
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the kernel is still an open problem and can be mitigated using the available information on
the problem. The square exponential kernel leads to very smooth, thus stable results. Further-
more, it implies that the model is exact at sample points; it does not introduce any other strong
assumptions, hence its wide usage among practitioners.

Then the surrogate model of interest is the mean of the GP resulting of conditioning Ψ̃i by
the training set

{
Ψi

(
x(k)
)}

1≤k≤Nl
. For any x∗ ∈ Rd,

Ψgp,i(x) =
N∑
k=1

βk,i πi
(
x,x(k)

)
, (9)

where βk,i = (Πi + τ 2 INl
)
−1 (

Ψi

(
x(1)
)
. . .Ψi

(
x(Nl)

))T with Πi =
(
πi
(
x(j),x(k)

))
1≤j,k≤Nl

,
and where τ (referred to as the nugget effect) avoids ill-conditioning issues for the matrix Π.
The hyperparameters {`i, σi, τ} are optimized by maximum likelihood applied to the data set
DN using the L-BFGS-B algorithm [33].

3.1.3 Quality measures for the POD+GP surrogate model

In the present study, two common error metrics are used to assess the quality of the surrogate
water level both on the entire mesh (global approach) and at each point of the mesh (local ap-
proach): the root mean square error (RMSE) and the predictive coefficient (Q2). This validation
is carried out over an input-output validation dataset Dv of size Nv.

Root mean square error (RMSE)

The RMSE is used to measure the accuracy of the model, it should be 0 when the model is
perfect. At the kth given mesh node, it is defined as the square root of the mean square error
(MSE) measuring the square distance between the surrogate model and the reference model:

MSEk(Dv) = N−1v

Nv∑
i=1

(
h
(i)
k − ĥ

(i)
k

)2
and RMSEk(Dv) =

√
MSEk(Dv) (10)

Their global counterpart are: MSE(Dv) = p−1
∑p

k=1 MSEk(Dv) and RMSE(Dv) =
√

MSE(Dv).

Predictive coefficient (Q2)

At the kth mesh node, the Q2 predictive coefficient is defined as:

Q2,k = 1− MSEk(Dv)

MSEk(Dv; mean)
(11)

where MSEk(Dv; mean) = N−1v

∑Nv

i=1

(
h
(i)
k − h

(i)
)2

is the MSE of the “averaging model” re-
turning the mean of the learning outputs whatever the input parameter value.
The global counterpart of MSEk(Dv; mean) is MSE(Dv; mean) = p−1

∑p
k=1 MSEk(Dv; mean).

Thus, the global counterpart of Q2,k is:

Q2 = 1− MSE(Dv)

MSE(Dv; mean)
. (12)
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The predictive coefficient measures the performance of the surrogate model with respect to
the simplest one which consists in averaging the learning output values. When Q2 is lower
than (resp. equal to) zero, the surrogate is worse than (resp. equal to) the learning output
values average. When Q2 is equal to one, the surrogate interpolates the validation dataset.
In practice, the surrogate is deemed appropriate when Q2 is greater than 0.8. The predictive
coefficient is also found under the name of Nash-Sutcliffe model efficiency coefficient in the
hydrological literature where is assesses the predictive capacity of the simulated discharge over
a time window with respect to observed discharges [22].

3.2 Quantify and explain the output uncertainty due to input uncertainty propagation

Once the model is built and validated, it can be used instead of the reference model in an
uncertainty quantification study. After propagating the input uncertainties through the surrogate
model by means of specific Monte Carlo methods, we can conduct a statistical analysis on the
output uncertainty as well as a sensitivity analysis to explain how the uncertain input parameters
contribute to this output variability.

3.2.1 Statistical analysis on the output

Using a standard MC approach on the validation data set Dv, the mean value and standard
deviation of the water level at the kth mesh point are formulated as:

µk =
1

Nv

Nv∑
i=1

ĥ
(i)
k and σk =

√√√√ 1

Nv − 1

Nv∑
i=1

(
ĥ
(i)
k − µk

)2
. (13)

3.2.2 Sensitivity analysis on the output with respect to the inputs

Sobol’ indices [30] are commonly used for sensitivity analysis. They provide the shares of
the QoI variance V attributable to the different uncertain inputs. Under the hypotheses that
random input variables are independent, here the roughness coefficients and the upstream flow,
and the random QoI is square integrable, here the water level h, the decomposition of the QoI
reads:

V =
d∑

i=1

V{i} +
d∑

j=i+1

V{i,j} + · · ·+ V{1,2,...,d} =
∑

J⊂{1,2,...,d}

VJ , (14)

where V := Var [QoI], Vi := V [E[QoI|Xi)], Vij := V [E[QoI|XiXj]] − Vi − Vj and more
generally, for any I ⊂ {1, . . . , d}, VI := V [E[QoI|xI ]]−

∑
J⊂I s.t. J 6=I VJ . Then, we obtain:

1 =
d∑

i=1

S{i} +
d∑

j=i+1

S{i,j} + · · ·+ S{1,2,...,d} =
∑

J⊂{1,2,...,d}

SJ , (15)

where for any J ⊂ {1, 2, . . . , d}, SJ = VJ

V is called a Sobol’ index and belongs to the interval
[0, 1]. S{i} is the first order Sobol’ index corresponding to the ratio of output variance due to
the ith input parameter uniquely, and S{ij} is the second-order Sobol’ index describing the ratio
of output variance due to the ith parameter in interaction with the j th parameter. Also the total
Sobol’ index that corresponds to the whole contribution of the ith input parameter reads:

STi
=

∑
I⊂{1,...,d}

I3i

SI . (16)

253



Siham EL GARROUSSI, Matthias DE LOZZO, Sophie RICCI, Dider LUCOR, Nicole GOUTAL, Cédric
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The computation of first order Sobol’ indices requires simple integration, those of the second
order requires double integration, and so on. Many Monte Carlo techniques exist to estimate
these integrals. In this study, the Sobol’ indices are estimated using the algorithm proposed in
[28].

Lastly, we note that the expression (14) is defined for a scalar QoI, such has the water level
hk at mesh node k ∈ {1, 2, . . . , p} where p is the mesh size. Consequently, we can easily plot
the different Sobol’ indices over the mesh on which is defined the model output. Furthermore,
this information can be summarized using the generalized Sobol’ indices [20]:

∀J ⊂ {1, 2, . . . , d}, SJ =

p∑
k=1

V[k]S[k],J

p∑
`=1

V(`)
[k]

. (17)

4 RESULTS

4.1 Learning and test samples

Figure 2: Latin Hypercube Sampling (LHS) DoE for a 300-sample data set, along (Ks,1, Ks,3, Q) directions on
the left panel and along (Ks,3, Q) directions on the right panel.

The design of experiment (DoE) for the training and validation data set was generated using
Latin Hypercube Sampling (LHS) [21] which is a statistical method for generating a near-
random sample of parameter values from a multidimensional distribution. Considering d the
number of input variables, LHS strategy scales as o(d) while other strategies require a larger
number of samples; for instance to insure the convergence of first order statistics [10]. The LHS
space-filling experimental design is shown in Fig. 2, it is associated with a limited computational
cost. While more advanced sampling method could be used, LHS strategy was deemed efficient
for the present study.

4.2 Surrogate model

The LHS strategy has been applied twice. A first time to build a 2000-sample training set
and a second one to create a 1000-sample validation set. Here, the GP kernel was prescribed to
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a Matern(2.5) function. The validation set was only used to assess the quality of the surrogate
model with RMSE and Q2 error metrics.

Figure 3: Principal component analysis

The dimension of the output space was reduced with a POD in order to limit the cost of
the GP surrogate. The number of modes, also called principal components, to be retained is
justified by two criteria taken into account:

• Elbow criterion: on the scree of the POD modes, there is a decrease (elbow) followed by
a more regular decrease. In our case, as shown in figure 3, a decrease occurs at the fourth
mode, then a regular decrease from the fifth mode. Thus only the first four modes are of
interest.

• Kaiser’s criterion: only those modes whose inertia is greater than the average inertia
should be retained. This criterion leads us to select 4 modes, explaining 99.6% of the
total inertia. Indeed, the first principal component explains 95.84% of the total inertia,
the second 1.80%, the third 1.46% and the fourth 0.48%.

studyThe cost of the GP surrogate significantly decreases when the dimension of the output
is reduced5 (6 times smaller) applying the POD, as presented in Tab. 2. The output dimension
is indeed reduced from 41 416 elements to 4 components that explain 99.6% of the variance of
the QoI. But, the physical interpretation of the different modes is not always obvious.
As displayed in Fig. 4, the first mode, which explains 95.84% of the output variability, seems
to represent the effect of the upstream discharge on the average water level height. Indeed, this
component is essentially negative thus its weighting will increase everywhere the average water
level height if negative coefficient or decrease everywhere the average water level if positive
coefficient. While the second mode, which explains 1.80% of the output variability, seems to

5The remaining cost can be considered significant compared to linear surrogate models such as polynomial
chaos expansion. This situation is well-known and naturally explained by the learning sample size increasing
the cost of inverting the covariance matrix. For prediction, this surrogate model is as fast as the others and also
provides a measure of its error.
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Figure 4: Principal component analysis

represent the effect of main channel flow Strickler friction coefficients on the average water
level height as it allows to distinguish the three friction areas defined in section 2.3.
To give more meaning to the principal modes of the decomposition, perspective of our work
could stand in the representation of the learning data set on the bi-dimensional sub-spaces
spanned by couple of modes, e.g. visualizing the learning data set in a plot with the first mode
on the x-axis and the second one on the y-axis.

GP POD+GP
CPU run time (h) ≥ 12 2.5

Table 2: CPU run time comparison between GP without and with POD.

The POD+GP surrogate quality is very good with respect to global error metrics RMSE =
0.8 cm and Q2 = 0.99748. Locally, the quality deteriorates near the boundary of the catchment
area as well as along the dikes as shown in Fig. 5. The heterogeneity of the mesh with small
cells in the river bed (≤ 40 m), near the dikes (≤ 80 m) and larger cells in the flood plain
(≤ 150 m) should be noted and may hide some local failures of the surrogate in the global
RMSE and Q2 criteria.
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Figure 5: Root mean square error

4.3 Sensitivity analysis with the POD+GP surrogate

The POD+GP surrogate is used to carry out a variance-based sensitivity analysis (SA) over
the entire simulated area, with a focus on mesh node 29 515 where Marmande, a city prone to
flooding, is located. The POD+GP surrogate allows for a reliable estimation of first and second
order statistical moments at Marmande as shown in Tab. 3: the water level mean and standard
deviation estimated from the direct model T2D and surrogate are in good agreement with an
under estimation of 1.3% for the mean computed with the surrogate.

Given the statistical distributions for the input variables, the SA at Marmande highlights
that most of the water level variance is explained by the upstream discharge Q and to a lesser
extend, by the Strickler friction coefficient Ks,4 prescribed between Marmande and La Role
as displayed in Fig. 6. At this location, the floodplain friction coefficient Ks,1 and the friction
coefficients upstream of Mas d’Agenais (Ks,2) and upstream of Marmande (Ks,3) have barely
no impact on the water level. It should be noted that the bootstrap method [1] is used to estimate
the variance of the Sobol’ indices, this variance is represented by the black error bars in Fig. 6.
These indicate that the computation of the SA indices is converged and reliable. It should also
be noted that for each input variable, the first (S) and total Sobol’ (ST ) indices at Marmande
are equal, meaning that, at this location, the multivariate impact of the input on the water level
is minimal.

POD+GP T2D
Mean (m) 21.57 21.54
Standard deviation (m) 0.24 0.24

Table 3: Statistical moments of the water level height in Marmande.

Fig. 7 displays the mean and the standard deviation of the water level over the 2D domain
estimated with the POD+GP surrogate. The mean varies between 0 m near the limits of the
domain and 21.57 m at Marmande, where it reaches its maximum. In the floodplain, the mean
water level ranges from 3.21 m and 7.8m close to the dikes. The water level standard deviation
ranges from 0 m to 0.4 m in the floodplain between Mas d’Agenais and Marmande, where the
flow is highly bi-dimensional.
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Figure 6: First (S) and total (ST ) Sobol’ indices estimated with POD+GP surrogate at Marmande.

Figure 7: a- Mean water level, b- standard deviation of the water level, estimated with the POD+GP surrogate.

The 2D computation and representation of first Sobol’ indices confirms that the variance of
the water level is mostly explained (81 % on average) by the input discharge as shown in Fig. 8
and Fig. 9. The floodplain friction coefficient Ks,1 has no impact on the analysis, the upstream
friction coefficient in the river bed Ks,2 has a small impact on the water level close to Mas
d’Agenais, the friction coefficient Ks,3 between Mas d’Agenais and Marmande explains up to
10 % of the water level variance close to Marmande and the downstream friction coefficientKs,4

has an impact over the entire domain with most significance at the upstream and downstream
boundaries. As the sum of the first Sobol’ indices is smaller than 1, higher order Sobol’ indices
are non zero, meaning that multivariate effects between Q and Ks explain the remaining part of
the water level variance.

5 CONCLUSION AND PERSPECTIVES

In this paper, an uncertainty quantification study was carried out with a 2D numerical solver
for the Shallow Water Equations on a section of the Garonne river. It consisted in building a
Gaussian process surrogate model on a POD-reduced 2D water level output field.

The surrogate model was formulated with respect to friction coefficients and input discharge,
the distribution for friction is supposed to be uniform and centered around calibration values
while the discharge distribution is supposed to be Gaussian, centered around a high flood value.
The construction of the surrogate was achieved over a 2000-sample training data set and it was
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Figure 8: First order Sobol’ sensitivity indices computed with the POD+GP surrogate with respect to the input
discharge Q.

Figure 9: First order Sobol’ sensitivity indices computed with the POD-GP surrogate with respect to the friction
coefficients Ks,1 (flood plain), Ks,2 upstream Mas d’Agenais, Ks,3 (between Mas d’Agenais and Marmande and
Ks,4 (downstream of Marmande).

validated over a 1000-sample data set. The dimension of the quantity of interest was reduced
from 41416 elements to 4 principal components using the POD which has resulted in a sig-
nificant reduction of the computational cost of the surrogate. The correlation kernel was here
prescribed as a Matern(2.5) function. The quality of the POD+GP surrogate model was as-
sessed, the surrogate was deemed satisfying with Q2 metrics close to 1 for the entire domain
and RMSE smaller than 0.01m. The quality of the surrogate decreases near the dikes. The sur-
rogate was used to perform a global sensitivity analysis based on variance decomposition. It was
demonstrated that the upstream discharge is the predominant input variable and explains more
than 80 % of the water level variance. The downstream friction coefficient is also a significant
input with heterogeneous influence.

It is essential to mention that the conclusions for this study are strongly related to the hy-
pothesis made for the statistical distribution of the inputs. For instance, further study should
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investigate wider ranges for flood plain coefficients that are highly unknown and may signifi-
cantly over time as flood events occur on the catchment.

The results of the sensitivity analysis allows for a better understanding of the physics as well
as classification of major sources of uncertainty. The latter is of great importance in the context
of data assimilation where the control vector should be properly defined to include key factor
to improve the model outputs. It was here highlighted that in order to improve water level at
Marmande, the control vector should include at least the upstream discharge and the down-
stream friction coefficient. A perspective for this study thus stands in the implementation of an
ensemble-based data assimilation algorithm to improve input discharge and friction assimila-
tion water level observations in the system. Additionally, the cost of the ensemble integration
should be reduced using the surrogate model in place of the direct hydraulic solver.
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