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Abstract 

In the mid-term future, climate change could determine significant alterations of the frequen-

cy and magnitude of climate extremes, so affecting the design of new structures and infra-

structures, and the reliability of existing ones designed according to the provisions of present 

or past Codes.  

In this work, a Bayesian hierarchical model for the characterization of climate extremes un-

der non stationary climate conditions is presented starting from the analysis of an ensemble 

of future climate projections. The Bayesian Hierarchical Model is formulated through the 

classical three-level formulation, in which the standard extreme value representation at each 

site is combined with a spatial latent process, and collects the main sources of uncertainties 

regarding climate projections.  

A Metropolis Hastings algorithm within a Gibbs sampler is implemented to update model pa-

rameters, and from the posterior probability density functions of the extreme value distribu-

tion parameters, return levels that serve as basis for structural design are estimated. The 

implementation of the model in different time windows combined with the Bayesian frame-

work allows the probabilistic assessment of time evolution of extreme value parameters and 

return levels.  

The results obtained for a relevant case study demonstrate the possibilities of the proposed 

methodology to describe climate extremes under climate change and to provide guidance for 

potential amendments in the current definition of climatic actions on structures. 

Keywords: Climate Change, Climatic Actions, Structural Design, Bayesian Hierarchical 

Model, MCMC algorithm. 
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1 INTRODUCTION 

In the mid-term future, climate change could determine significant alterations of the fre-

quency and the magnitude of climate extremes. Since structural design is often governed by 

climatic actions such as thermal, wind, snow and ice loads, alteration of them caused by cli-

mate change could significantly affect the design of new structures and infrastructures as well 

as the reliability of the existing ones designed in accordance to the provisions of current or 

past Codes [1]. Indeed, the current definition of climatic actions on structures is based on the 

extreme value analysis of the underlying natural phenomena (daily temperatures, ground 

snow load, wind velocities) under the assumption of stationary climate conditions [2].   

As consequence of global warming this assumption is becoming more and more arguable 

and a better evaluation of climate extremes and their evolution over time is needed to evaluate 

the potential consequences for infrastructures and buildings.  

Dealing with climate extremes, generally recorded at a spatial scale, a key strategy in ex-

treme value analysis to overcome difficulties caused by the scatter of data is the spatial mod-

elling [3]. The main advantage in spatial modelling is the pooling of information but it can be 

also useful for interpolation to sites where little or no data may have been collected. Then, the 

implementation in a Bayesian framework, enables inferences and predictions to incorporate 

uncertainties in process variation and parameter estimates. 

In order to characterize the spatial behavior of the extreme value process, a Bayesian hier-

archical model for climate extremes derived from the analysis of Regional Climate Model 

(RCM) output is proposed. The model is able to incorporate physical and spatial information 

through covariates and random effects and is implemented on different time windows of forty 

years long to assess the time evolution of extreme value parameters. From the posterior PDFs 

of extreme value parameters, the characteristic values of climatic loads, used for structural 

design, are evaluated assessing their changes with time and considering the uncertainty in the 

predictions. 

The proposed methodology will be presented showing the results obtained for extreme 

ground snow loads in the Italian Mediterranean region [4], considering an ensemble of six dif-

ferent RCMs for the period 1951-2100 and two different emission scenarios. 

2 METHODOLOGY  

There has been considerable recent interest in spatial hierarchical models to characterize 

the spatial behavior of climate data. Aim of these models is to describe how the marginal dis-

tribution of a quantity of interest varies with its location. The key idea is that rather than ap-

plying a spatial model directly to the data, it is assumed that there is a latent spatial process 

characterized by a spatial model for the parameters of the marginal distributions at each loca-

tion. An extensive review of such models for spatial data can be found in [5]. 

Hierarchical spatial modelling for extremes has begun to be studied recently, one of the 

first work in this field is found in [3], while successive developments and applications are 

available in [6] for extreme precipitations and in [7] for extreme precipitations obtained by 

regional climate models. They are increasingly used for the capability to borrow strength from 

neighboring locations when estimating parameters in extreme value analysis, usually charac-

terized by small amount of data. The Bayesian Hierarchical Model is formulated through what 

has now become the standard three-level hierarchical formulation [8]: 

• Data Layer, which is the base layer where data, e.g. the yearly maxima of the investi-

gated climate variables, are modelled at each location according to the Extreme Value 

theory; 
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• Process Layer, where the latent process that drives the extremes for the study region is 

formulated; 

• Prior Layer, where information about the parameters controlling the latent process are 

given in terms of prior distributions. 

The model is flexible and able to incorporate covariate information, variability due to spa-

tial effects and micro-scale variability due to climate model uncertainty. Each layer of the 

model will be fully described in the next paragraphs. 

2.1 Data Level 

At data level, series of yearly maxima derived from the analysis of climate projections 

provided by each RCM r, are available for each cell i in the study region. In order to evaluate 

the evolution in time of the extreme value process, data are divided in subsequent time win-

dows of 40 years shifted by ten years, thus obtaining eleven time window t (1951-1990, 1961-

2000,..., 2041-2080 and 2051-2090). The time window length is set to 40 years to be con-

sistent with the actual definition of climatic loads on structural codes, which is based on the 

analysis of observed data series of climate extremes of about forty years [9], while the shift of 

ten years is defined to properly evaluate the evolution in time of climatic loads.  

For each time window t, N=40 yearly maxima are thus given at each cell i in the study re-

gion and assuming an Extreme Value Distribution Type I as marginal distribution, the random 

variable Yitr is described by the cumulative distribution function F(y) 

 
, ,

, ,

, ,

( ) exp exp
i t r

i t r

i t r

y
F Y y

µ
σ

  − < = − −  
    

 (1) 

and the probability density function f(y) is  
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where μi,t,r and σi,t,r are the location and scale parameter for cell i, time window t and RCM 

r. The first level of the hierarchical model structure, for each climate model r, will be de-

scribed by 

 t t( ) | EVI( (s, ),exp(log( )(s, )))t tY s θ µ ω σ ω∼  (3) 

with 

Yt(s)            are the yearly maxima of climate data at the location s in the study region for 

the time window t; 

θt                  are the random parameter of the model in the time window t; 

μt(s,ω)        is a random field describing the spatial variation of location parameter of EV 

Type I distribution in the time window t, where ω ∈ Ω express the random 

event; 

log(σt)(s,ω)   is a random field describing the spatial variation of the log-scale parameter of 

EV Type I distribution in the time window t, where ω ∈ Ω express the random 

event. 

If Yi,t is a vector of the yearly maxima in the investigated time window t for the cell i in the 

study region and Yt = (YT
1,t, ..., Y

T
D,t) contains all the maxima for the D cells in the region, 

then assuming the conditional independence of Yi for all location, common assumption in hi-

erarchical modelling [5], starting from eq. 2 the likelihood function becomes 
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2.2 Process Level 

In the hierarchical model, at the process level, the latent spatial process is formulated by 

constructing a structure that relates the parameter of the data level to the characteristics of the 

region. In particular, a Gaussian random field is proposed to model spatial variation of loca-

tion and log-scale parameters according the following formulas 

 2

, , ,( , ) ( ( , ), )t t t ts N X W sµ µ µµ ω β ω τ+∼  (5) 

 2

, , ,log( )( , ) ( ( , ), )t t t ts N X W sσ σ σσ ω β ω τ+∼  (6) 

with 

Wμ,t(s,ω)     is a spatial random effect described by a zero mean Gaussian random field 

N(0,∑μ(lμ,t, sμ,t)) with covariance matrix ∑μ . 

Wσ,t(s,ω)     is a spatial random effect described by a zero mean Gaussian random field 

N(0,∑σ(lσ,t, sσ,t)) with covariance matrix ∑σ .  

X                  is a matrix of covariate information; 

βμ,t and βσ,t   are vectors of regression coefficients for μt and σt given X; 

τμ
2 and τσ

2    are precision terms for the location and the log-scale fields 

Different models may be set for the covariance structure, considering stationarity or non 

stationarity in the covariance function as described in [10]. In this work an exponential model 

with parameter correlation length lμ,t and sill sμ,t has been considered. ; 

Covariate information are spatially-varying, physical features or observable quantities that 

can either be collected at all prediction locations of interest or in some way interpolated from 

nearby observations [11] (for example, elevation, or geographical feature such latitude or lon-

gitude but also wind speed or direction). 

The precision terms, τμ,t
2 and τσ,t

2 in eq. 5 and 6, can be viewed as a noise associated with 

replication of measurements at location s, and in this case represents the variability of the data 

related to internal climate model uncertainty. However, the availability of few realizations of 

climate model run, often only one, due to the enormous computational demand doesn’t allow 

a direct assessment of this source of uncertainty.  

A possibility to assess the uncertainty related to the RCM internal variability is the meth-

odology described by the authors in [12], where an ad hoc weather generator is proposed able 

to generate new consistent climate projections directly from RCM output. Analyzing the gen-

erated series, an evaluation of the noise associated to the EV parameters becomes possible and 

the constant precision terms τμ,t
2 and τσ,t

2, associated at each investigated climate model r, de-

pending on the cell i and the time window t, are defined. 

2.3 Prior Level 

Prior distribution are finally assigned to the hyperparameters of the model at each time 

window t, θt(βμ,t, βσ,t, lμ,t, sμ,t, lσ,t, sσ,t). Where possible, uninformative priors are assigned to 

these parameters and conjugate priors are used to facilitate the use of Gibbs sampling in the 

model implementation.  

Normal distribution with mean defined as the mean of the point estimates of parameters in 

the region and large variance are set for the intercept terms of the regression coefficients (β0,μ 
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and β0,σ), while normal distribution with zero mean and large variance are set for the other 

regression coefficients β. 

However, informative priors are generally needed for the sill (sμ,t, sσ,t) and correlation 

length (lμ,t, lσ,t) parameters to avoid improper posteriors [5]. Since these parameters are not 

observable quantities, a preliminary analysis should be carried out to characterize the behavior 

of the experimental semi-variogram for μ and σ. Following the procedure proposed in [13] 

maximum likelihood estimates of μ and σ are computed at each location in the study region, 

and prior distributions for the parameters are chosen to define a wide envelope around the ex-

perimental semi-variogram given by the ML estimates.  

2.4 Implementation of the model 

In order to update each parameter θt of the described model a Metropolis–Hastings algo-

rithm within a Gibbs sampler has been implemented. This hybrid MCMC algorithm [14] con-

sists of a Gibbs sampler where a Metropolis step is used in order to sample from conditional 

distributions which are not known. Parameters of the model, which will be implemented for 

each time window t, are collected at each step i of the algorithm in the vector θt
(i)(βμ,t

(i), βσ,t
(i), 

lμ,t
(i), sμ,t

(i), lσ,t
(i), sσ,t

(i)). Then, applying the Gibbs sampler, we partition the sampling for loca-

tion μ and log-scale log(σ) parameters and the next point in the chain i + 1, is generated in the 

following steps: 

• Updating of correlation length parameter; 

• Updating of sill parameter; 

• Updating of regression parameters; 

• Updating of EV parameter at each site; 

• Repetition of the previous four steps for log-scale parameter. 

A complete description of each step of the algorithm can be found in [15]. The algorithm is 

iterated checking the convergence for each parameters and finally, posterior densities of pa-

rameters θt are obtained. Implementing the model in the subsequent time windows t, the varia-

tion over time of posterior densities can be easily assessed, especially for EV parameters and 

consequently for return levels. In particular, for the definition of climatic actions on structures, 

we are interested in the evaluation of climate change impact on characteristic values ck, i.e. 

value having a probability of 2% to be exceeded in one year (mean return period of 50 years) 

[16]. Therefore, posterior samples are easily computed for ck according to 

 [ ]{ }, log log(1 0.02)i i i

k t t tc µ σ= + − − −  (7) 

and updated return level maps for characteristic loads can be easily drawn evaluating 

changes in the different time windows. 

3 APPLICATION FOR GROUND SNOW LOADS 

3.1 Study area and dataset 

This section shows an application of the methodology presented in the previous section, on 

extreme ground snow loads considering the Zone 3-4 of the Italian Mediterranean climatic 

region defined by the Annex C to EN1991-1-3 [4]. The study region is shown in Figure 1 and 

comprises D=272 cells at which climate projections are provided by the highest resolution 

Regional Climate Models developed by the EUROCORDEX initiative [17].  
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Figure 1: Investigated region. 

Climate projections provided by an ensemble of r=6 RCMs for the period 1951-2100 have 

been analyzed, considering a medium emission scenario RCP4.5 and the highest emission 

scenario RCP8.5 [18]. The main characteristics of the investigated climate projections are re-

ported in Table 1.  

 

Institute RCM  GCM Period  Experiment 

DMI HIRHAM5  EC-EARTH  1951-2100  Historical,RCP4.5,RCP8.5 

CLMcom 
CCLM4-8-17  

CNRM-CM5-

LR  
1951-2100  

Historical,RCP4.5,RCP8.5 

CLMcom CCLM4-8-171  EC-EARTH  1951-2100  Historical,RCP4.5,RCP8.5 

KNMI RACMO22E  EC-EARTH  1951-2100 Historical,RCP4.5,RCP8.5 

MPI-CSC REMO2009 MPI-ESM-LR 1951-2100 Historical,RCP4.5,RCP8.5 

IPSL-INERIS WRF331F CM5A-MR 1951-2100 Historical,RCP4.5,RCP8.5 

Table 1: Overview on the analyzed climate projections and their main characteristics. 

3.2 Implementation and results 

In order to derive ground snow loads from regional climate models output such as daily 

temperatures and precipitation, the procedure described in [1] and [15] has been implemented 

deriving series of N=140 yearly maxima snow load for each cell in the study region. 

Among possible covariate information, altitude shows most significant influence on ex-

treme snow loads, it has been then considered as the only covariate and a quadratic model has 

been chosen as defined in the Eurocode EN1991-1-3 [4] for characteristic ground snow load 

in Mediterranean region. Then, covariate matrix X and the vectors of regression coefficients 

βμ,t and βσ,t in eq. 5 and 6 become 
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The model have been implemented for each time window t, and the MCMC algorithm has 

been iterated 40 000 times, obtaining posterior densities of random parameters θt(βμ,t, βσ,t, lμ,t, 

sμ,t, lσ,t, sσ,t). As an example in Figure 2 the results in terms of posterior densities of location μ 

and scale σ EV parameters, but also qk, are presented for one cell, i=160, in the study region 

in different time windows (t = 1, 4, 8, 10) according to one of the investigated climate model 

(first RCM in Table 1). 

 

Figure 2: Changes in posterior PDFs of μ , σ and qk with time t. 

The hierarchical model combined with the Bayesian approach enables a direct assessment 

of the uncertainties affecting the extreme value process using the posterior distribution of pa-

rameters and return values, as shown in Figure 2. Moreover, the implementation of the model 

in subsequent time window allows a direct estimation of the effect of climate change on ex-

treme ground snow loads by means of the analysis of changes in posterior densities of EV pa-

rameters and return values. 

The spatial pooling of the data provides an added value in comparison with classical ap-

proach based on maximum likelihood estimates at point level leading to more precise and less 

variable estimates [3]. The reduced uncertainty in the estimation is shown in Figure 2 where 
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qk estimates obtained by the presented spatial model are compared with the classical site by 

site analysis according the maximum likelihood method, for some cells at increasing distance 

in the study region. The results in terms of 95% confidence interval clearly show the reduced 

uncertainty for the illustrated spatial model confirming the advantages of spatial pooling for 

tail estimation. 

 

Figure 3: qk estimates by maximum likelihood method (MLM) and Bayesian hierarchical model (BHM) with 

95% confidence intervals. 

3.3 Return level and Factor of Change Maps 

Return level maps can also be drawn from the posterior samples of qk obtained according 

the investigated climate models and scenarios. However, more information about climate 

change impact can be derived by the definition of factors of change (FC) as the difference or 

the ratio of predictions from RCM in the future period and the historical period.   

The factor of change approach has a long history in climate change impact studies, it is 

based on the assumption that changes in the observed climate variables form present to future 

are the same than changes predicted by the climate models not requiring to apply bias correc-

tion methods.   

Factor of change maps represent a good solution for the assessment and the visualization of 

future trends in climatic actions since the estimated changes can be easily applied to the cur-

rent version of climatic load maps in structural Codes.  

Therefore, from the posterior samples of qk, mean and standard deviation for FC are com-

puted  

 ,

,

,

, ( )

,1 ,1

( ) ; k t

k t

qk t

k t FC q

k k

q
FC q

q q

σ
σ= =  (8) 

As an example maps for mean FC and standard deviation are reported in Figure 4 and 5 re-

spectively, considering t=8 (2021-2060) and the six RCMs in Table 1 run according the 

RCP4.5 scenario.  
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Figure 4: Posterior mean of qk Factor of Change for 2021-2060 w.r.t. 1951.1990 according to the climate models 

in Table 1, Scenario RCP4.5. 

 

Figure 5: Posterior standard deviation of qk Factor of Change for 2021-2060 w.r.t. 1951.1990 according to the 

climate models in Table 1, Scenario RCP4.5. 

The results obtained for the different climate models can be finally combined considering 

each climate model of the ensemble as an equally likely representation of future climate. In 

this way, a complete probabilistic description of future changes in characteristic loads is ob-

tained providing guidance for potential amendments of the current version of climatic load 

maps in structural Codes.  

In Figure 6, the results in terms of factor of change maps for characteristic ground snow 

load qk are presented in a bivariate map, which consider the 25-75% prediction interval for FC, 

for three time windows (1991-2030, 2011-2050, and 2031-2080) according the RCP4.5 and 

RCP8.5 scenario (second and third row respectively). In the same Figure, on the top row, the 

current snow load map for the study region, obtained implementing the load altitude relation-

ship given in the Annex C of EN1991-1-3 [4] and based on the results of the European Snow 

Load Research Project[19], which analyzed observed data series of ground snow loads in the 

period 1951-1990, is also reported. 
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Figure 6: Factors of Change for qk - Confidence interval [25-75%] Map (Scenario RCP4.5). 

4 CONCLUSIONS  

In order to estimate future changes in climatic actions on structures, a methodology based 

on the construction of a Bayesian hierarchical model for the characterization of climate ex-

tremes derived from the analysis of high-resolution climate model output has been presented.  

The model is formulated through the classical three-level formulation, in which the stand-

ard extreme value representation at each site is combined with a spatial latent process, and it 

is implemented in different time windows to assess climate change effects on the extreme 

value process. 

An application on ground snow loads has been carried out to illustrate the capabilities of 

the proposed methodology. The results shows that the Bayesian framework enables a direct 

assessment of the uncertainties affecting the prediction of the extreme value parameters and 

return levels. Moreover, the spatial pooling of the data leads to more precise and less variable 

estimates with respect to classical approaches based on maximum likelihood estimates at 

point level.  

Finally, combining the results obtained for each climate model, suitable factors of change 

uncertainty maps are drawn providing guidance for potential amendments of the climatic load 

maps in structural Codes. 
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