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Abstract. Combination of low-tensor rank techniques and the Fast Fourier transform
(FFT) based methods had turned out to be prominent in accelerating various statistical
operations such as Kriging, computing conditional covariance, geostatistical optimal de-
sign, and others. However, the approximation of a full tensor by its low-rank format can
be computationally formidable. In this work, we incorporate the robust Tensor Train (TT)
approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-
based Kriging. It is shown that here the computational complexity of Kriging is reduced
to O(dr3n), where n is the mode size of the estimation grid, d is the number of variables
(the dimension), and r is the rank of the TT approximation of the covariance matrix.
For many popular covariance functions the TT rank r remains stable for increasing n and
d. The advantages of this approach against those using plain FFT are demonstrated in
synthetic and real data examples.
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This paper is dedicated to our wonderful colleague Prof. Hermann G. Matthies on the
occasion of his 68th birth anniversary.
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1 Introduction

Kriging is an interpolation method that makes estimates of unmeasured quantities
based on (sparse) scattered measurements. It is widely applied in the estimation of some
spatially distributed quantities such as daily moisture, rainfall intensities, temperatures,
contaminant concentrations or hydraulic conductivities, etc. [40, 22]. Kriging is also used
as a surrogate of some complex physical models for the purpose of efficient uncertainty
quantification (UQ), in which it estimates the model response under some random per-
turbation of the parameters. In the first case the estimation grids are usually in two or
three dimensions [60, 9, 18] or four dimensions in a space-time Kriging [3, 34, 21], while in
the latter the dimension number could be much larger (equals to the number of uncertain
parameters). When considering finely resolved estimation grids (which is often the case
for UQ jobs), Kriging can easily exceed the computational capacity of modern computers.
In this case estimation variance of Kriging or solving the related geostatistical optimal de-
sign problems incurs even higher computational costs [41, 43, 55]. Kriging mainly involves
three computational tasks. The first is solving a N ×N system of equations to obtain the
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Kriging weights, where N is the number of measurements. Despite its O(N3) complexity
this task is better manageable since N is usually much smaller than the number of esti-
mates on a fine grid, N̄ = n̄d, d the dimensionality, especially when the measurement is
expensive like for complex physical models. The second task is to compute the N̄ Kriging
estimates by multiplying the weights vector to the N̄×N cross-covariance matrix between
measurements and unknowns. The third task is to evaluate the N̄ estimation variances as
the diagonal of a N̄ × N̄ conditional covariance matrix. If we take the optimal design of
sampling into account, there is an additional task to repeatedly evaluate the N̄ × N̄ con-
ditional covariance matrix for the purpose of a high-dimensional non-linear optimization
[32, 54, 51].

Remarkable progress had been made in speeding up Kriging computations by Fast
Fourier transform (FFT) [11]. The low-rank tensor decomposition techniques brought a
further possible reduction in the time cost, since d-dimensional FFT on a tensor in low-
rank format can be made at the cost of a series of 1-dimensional FFT’s, as exemplified
in [59] by using canonical, Tucker and Tensor Train formats of tensors. The work in
[44] brought a significant further reduction of computational cost for the second and third
Kriging tasks as well as the task for the optimal design of sampling by applying a low-rank
canonical tensor approximation to the vectors of interest.

In this paper, we enhance the methodology proposed in [44] by employing a more
robust low-rank Tensor Train (TT) format instead of the canonical format. We apply
the TT-cross algorithm for efficient approximation of tensors, which is a key improvement
compared to the method introduced in [44] where the low-rank format of the covariance
matrix was assumed to be given. We also consider a more broad Matérn class of covariance
functions.

The current work improves the applicability of the use of low-rank techniques in the
FFT-based Kriging. We achieve a reduction of the computational complexity of Kriging
to the level of O(dr3n̄), where r is the considered TT rank of the approximation, and n̄
is the number of grid points in one direction, such that N̄ = n̄d is the total number of
estimated points.

We assume second-order stationarity for the covariance function and simple Kriging on
a rectangular, equispaced grid parallel to the axes.

We also discuss possible extensions to non-rectangular domains and to general (scat-
tered) measurement points. In such cases, the tensor ranks may significantly increase,
up to the full rank. For the cases when FFT technique is not applicable the authors
of [52, 37, 35, 29] applied the hierarchical matrix technique (H-matrices). A parallel
implementation of Kriging was done in [50].

1.1 State of the art for FFT-based Kriging

Let us assume that the covariance function is second-order stationary and is discretized
on a tensor (regular and equispaced grid) mesh with N̄ = n̄d points. Then the N̄ × N̄
auto-covariance matrix of the unknowns has a symmetric (block-) Toeplitz structure (Sec-
tion 3.1), which can be extended to a (block-) circulant matrix by a periodic embedding
in which the number of rows and columns is enlarged, for example, from N̄ to Ň = 2N̄+1
[49, 22, 31]. It is known [11] that only the first column of the circulant matrix has to be
stored. This reduces the computing cost from quadratic to log-linear [61] in N̄ . The key
in the FFT-based Kriging is the fact that the multiplication of a circulant matrix and a
vector is a discrete convolution which can be computed swiftly through FFT algorithm
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so that the quadratic computational complexity is also reduced to a log-linear one [12].
If the measurements are given on a regular equispaced grid, the first Kriging task is

solving a system also with a symmetric positive-definite Toeplitz matrix [11, 4]. Further
development of methods handling measurements that are on a subset of a finer regular
grid have been made in [49, 11].

The work in [44] combined the power of FFT and the low-rank canonical tensor decom-
position. It was assumed that the covariance matrix and the vector of interest (of size Ň)
are available in a low-rank canonical tensor format which is a sum of r Kronecker products
of vectors of size ň each, with ňd = Ň . Separable covariance functions (e.g. Gaussian,
separate exponential) can be decomposed exactly with r = 1. For smooth non-separable
covariance functions, a small r value can usually give a good approximation.

The canonical tensor representation can not only greatly reduce the memory stor-
age size of the circulant matrix, but also speed up the Fourier transform since the d-
dimensional FFT applied on the Kronecker product of matrices can be implemented by
computing the 1-dimensional FFT on the first direction of each matrix. This reduces the
complexity to O(drň log ň). For r � ň this is a significant reduction from the complexity
of FFT on the full tensor, which is O(dňd log ň).

1.2 Goals, approach and contributions

However, converting a full tensor to a well approximating low-rank tensor format can
be computationally formidable. Simply generating the full tensor itself might be beyond
the memory capacity of a desktop computer. To make the low-rank FFT-based method
practical, we need an efficient way to obtain a low-rank approximation directly from the
multi-dimensional function that underlies the full tensor. It could be a challenging task
though to approximate the first column of the Toeplitz (circulant) matrix in the canonical
tensor format for d ≥ 3. This is due to the fact that the class of rank-k canonical tensors is
a nonclosed set in the corresponding tensor product space (pp 91-92 in [28]). The Tucker
format tensor decomposition [27, 17, 15] adopted in [36] could be too costly to use for
problems with d ≥ 3.

In this paper, we adopt an alternative tensor format, namely, the Tensor Train (TT)
format [47, 17] (introduced in Section 4.1) which can be obtained from a full tensor in a
stable direct way by a sequence of singular value decompositions of auxiliary matrices, or,
more importantly, it can be computed iteratively by the TT-cross method [48] which has
the complexity in the order of O(dr3n̄), see Section 4.2 for more details. Often this is the
most time-consuming stage of Kriging operations. Once the tensors are approximated in
the TT format, the FFT can be carried out with a modest O(dr2n̄ log n̄) complexity. This
makes the overall low-rank FFT-based Kriging practical for high dimensions. We test the
efficiency of the method in terms of computational time and memory usage in Section 5.

Thus, our paper is novel in three aspects: (i) we approximate the covariance matrix
in the low-rank TT tensor format using only the given covariance function as a black
box (this part was missing in [44]), (ii) we extend the methodology to Matérn, exponen-
tial and spherical covariance functions (in addition to Gaussian functions), and (iii) we
demonstrate that the low-rank approach enables high-dimensional Kriging.
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1.3 Notation

We denote vectors by bold lower-case letters (e.g., c, u, ξ) and matrices by bold upper-
case letters (e.g., Css, M, H). Letters decorated with an overbar represent the size of
the tensor grid of estimates. Embedded matrices, vectors and their sizes are denoted
by letters with a check accent (e.g., Č, č, ň, ňi). F [d] stands for d-dimensional Fourier
transform (FT), Fi for one-dimensional FT along the i-th dimension. F [−d] and F−1

i are
their inverse operators.

2 Kriging and geostatistical optimal design

Like in [44], we work with the function estimate form [30, 31] of Kriging (introduced
in Section 2.2). We take simple Kriging in which the estimates are assumed to have zero
mean.

2.1 Matérn covariance

A low-rank approximation of the given function or a data set is a key component of
the tasks formulated above. Among of the many covariance models available, the Matérn
family [39] is widely used in spatial statistics and geostatistics.

The Matérn covariance function is defined as

Cν,`(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν

Kν

(√
2νr

`

)
. (1)

Here r := ‖p1 − p2‖ is the distance between two points p1 and p2 in Rd; ν > 0 defines the
smoothness. The larger is parameter ν, the smoother is the random field. The parameter
` > 0 is called the covariance length and measures how quickly the correlation of the
random field decays with distance. Kν denotes the modified Bessel function of order ν.
It is known that setting ν = 1/2 we obtain the exponential covariance model. The value
ν =∞ corresponds to a Gaussian covariance model.

In [36], the authors provided the analytic sinc-based proof of the existence of low-rank
tensor approximations of Matérn functions. They investigated numerically the behavior
of the Tucker and canonical ranks across a wide range of parameters specific to the family
of Matérn kernels. It could be problematic to extend the results of this work to d > 3,
since one of the terms in the Tucker decomposition storage cost O(drn + rd) is growing
exponentially with d.

2.2 Computational tasks in Kriging and optimal sampling design

The computation of a simple Kriging process and optimal sample design involve mainly
these tasks:

Task-1. Let y denote a N -size vector containing the sampled values, Cyy denote the
auto-covariance matrix. If the measurements are not exact and the covariance matrix R
of the random measurement error is available, R is to be added to Cyy. The first task is
to solve the below system for the Kriging weights ξ:

Cyyξ = y (2)

Task-2. With the weights ξ we can obtain the Kriging estimates ŝ (sized N̄ × 1 ) by
a superposition of columns of the cross-covariance matrices Csy (sized N̄ ×N ) weighted
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by ξ, i.e. the Kriging estimate ŝ is given by [31]:

ŝ = Csyξ . (3)

Task-3. The variance σ̂2
s of the estimates ŝ is to be obtained from the diagonal of the

conditional covariance matrix Css|y:

σ̂2
s = diag(Css|y) = diag

(
Css −CsyC

−1
yy Cys

)
= diag (Css)−

N∑
i=1

(Csyζi)
◦2 , (4)

where ζi is the i-th column of L−T with L the lower triangular Cholesky factor matrix of
Cyy, and the superscript ◦2 denotes Hadamard square.

Task-4. The goal of geostatistical design is to optimize sampling patterns (or locations)
for y. There two most common objective functions to be minimized, which are also called
A- and C- criteria of geostatistical optimal design [41, 43, 5]:

φA = N̄−1 trace
[
Css|y

]
φC = z>Css|yz = z>(Css −CsyC

−1
yy Cys)z , (5)

where z is a data vector [43].

3 Interface from Kriging to FFT-based methods

In this section we give a brief introduction to the basics of FFT-based Kriging [11].
We assume that the measurement points are a subset of the estimate grid points. The
simplest version of Kriging is a direct injection: the estimated values are set equal to
the measurement values at the corresponding locations, and to zeros at all other points.
Equivalently, we say that we inject a (small) tensor of measurements into a (larger) tensor
of estimations.

For the FFT-based Kriging we use a regular, equispaced grid which leads to a (block)
Toeplitz covariance matrix that can be augmented to a circulant one (Section 3.1). An
embedding operation augments the injected tensor to the size that is compatible with
the circulant covariance matrix. The (pseudo-)inverse of embedding is called extraction
(Section 3.2).

3.1 Embedding Toeplitz covariance to circulant matrices

A Toeplitz matrix is constant along each descending diagonal (from left to right). A
block Toeplitz matrix has identical sub-matrices in each descending diagonal block and
each sub-matrix Toeplitz. If the covariance function is stationary and the estimates are
made on a d-dimensional regular, equispaced grid, the covariance matrix Css is symmetric
level-d block Toeplitz [2]. Since submatrices are repeating along diagonals the required
storage could be reduced from O(N̄2) to O(N̄) elements [61, 23].

A circulant matrix Č is a Toeplitz matrix that has its first column č periodic. This type
of matrices come from covariance functions that are periodic in the domain. A circulant
matrix-vector product can be computed efficiently by FFT [57]. The eigenvalues of Č can
be computed as the Fourier transform of its first column č [58, 2, pp. 350-354]. These
properties lead us to the fast FFT-based kriging methods.
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A Toeplitz matrix Css can always be augmented to a circulant matrix Č. This process
is called embedding. Let C(:, 1) be the first column of Css. Embedding is often done by
appending the second through the last but one element of C(:, 1) to the end of C(:, 1) in
reverse order, which makes a periodic vector č. For the cases d > 1, this augmentation
has to be done recursively in every level for the d-level Toeplitz covariance matrix. An
equivalent way of doing this is to augment the domain (to be 2d times larger) and extend
the covariance function to be periodic on the domain, as illustrated in [33, 45]. In [42, 6, 45]
the authors have addressed the issue of the minimum embedding size.

3.2 Injection, embedding and extraction of data tensors

Suppose we obtained the Kriging weights ξ for the measurements by solving (2). The
injection of ξ means to insert it in a larger all-zero tensor that has the same size of the
estimate tensor, i.e. the injected tensor has non-zero entries only at the measurement
sites.

Suppose we have N measurements indexed by j = 1, · · · , N , each associated with
a weight ξj and a site index vector `j, then the injection of ξ results in a tensor ξ̄ ∈
Rn̄1×n̄2×···×n̄d with entries:

ξ̄(i1, i2, · · · , id) =

{
ξj if i = `j,∀j ∈ [1, · · · , N ]
0 otherwise

. (6)

We denote the injection operation by H : ξ → ξ̄.
Embedding an injected weight tensor enhances its mode size from n̄ to ň = 2n̄ by

padding zeros to the extra entries so that the tensor is of 2d times the original size. The
embedded weight tensor ξ̌ ∈ Rň1×ň2×···×ňd has entries:

ξ̌(i1, i2, · · · , id) =

{
ξ̄(i1, i2, · · · , id) if i` ≤ n̄`, 1 ≤ ` ≤ d
0 otherwise

. (7)

We denote the embedding operation by M : ξ̄ → ξ̌.
The extraction is the inverse operation of embedding, we denoted it byM†. ByM†(η)

we take only the first half of η in every dimension, which results in a new tensor of only
1
2d

of the size of η.

3.3 Matrix-vector multiplication via FFT

With the circulant covariance matrix Č obtained as explained in Section 3.1, the Task-
2 in (3) becomes a discrete convolution which can be computed by using FFT[57], this is
written as (e.g., Fritz, Nowak and Neuweiler, [11]):

Csyξ = CssH(ξ) =M†ČM(H(ξ))

=M†F [−d]
(
F [d] (č) ◦ F [d]

(
ξ̌
))

. (8)

where the operation M(H(·)) injects and embeds ξ into ξ̌. The F [d] is evaluated by
the Fast Fourier Transformation (FFT) [10]. Without using tensor approximations the
computational complexity for Kriging is reduced to O

(
Ň log Ň

)
, and the storage size

reduced to O
(
Ň
)
.

For the variance estimation (Task-3) in (4) the FFT method also applies. We first need
to do a Cholesky decomposition Cyy = LLT , and inject and embed each column ζi of
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L−T to get the corresponding ζ̌i. Then (4) can be computed as

σ̂2
s = σ2

s1N̄ −
∑N

i=1

[
M†F [−d]

(
F [d] (č) ◦ F [d]

(
ζ̌i
))]◦2

, (9)

where σ2
s is the prior variance, 1N̄ is a N̄ -length vector of all ones.

4 FFT-based Kriging accelerated by low-rank tensor decomposition

In addition to the efficient FFT-based method enabled by the Teoplitz structure of co-
variance matrices, the Kriging process can be further sped up by low-rank representations
of the embedded covariance matrices. Since the covariance functions are usually smooth,
large covariance matrices could be well approximated by a low-rank tensor format. A
literature survey of low-rank tensor approximation techniques is available in [27, 15].

In this section, we approximate the first column of the circulant covariance matrix in
tensor train (TT) format and then rewrite 8 also in the TT format. We start with a brief
reviewing of the TT technique.

4.1 TT decomposition

We assume that the data vectors (c, ξ, etc.) can be associated to a function discretised
on a structured grid in d dimensions, for example, if ξ(x, y, z) is sampled on a Cartesian
3-dimensional grid,

ξ = {ξ(xi1 , yi2 , zi3)}
n1,n2,n3

i1,i2,i3=1 . (10)

Then we can enumerate the entries of the vector via sub-indices i1, i2, . . . , id, thereby seeing
it as a tensor with elements ξ(i1, . . . , id). We approximate such tensors, and, consequently,
associated data vectors, in the Tensor Train (TT) decomposition [47],

ξ(i1, i2, . . . , id) ≈ ξ̃(i1, i2, . . . , id) :=

r0,...,rd∑
α0,...,αd=1

ξ(1)
α0,α1

(i1)ξ(2)
α1,α2

(i2) · · · ξ(d)
αd−1,αd

(id). (11)

Here ξ(k), k = 1, . . . , d, are called TT blocks. Each TT block ξ(k) is a three-dimensional
tensor of size rk−1 × nk × rk, r0 = rd = 1. The efficiency of this representation relies on
the TT ranks r0, . . . , rd being bounded by a moderate constant r. For simplicity we can
also introduce an upper bound of the univariate grid sizes nk ≤ n. Then we can notice
that the TT format (11) contains at most dnr2 elements. This is much smaller than the
number of entries in the original tensor which grows exponentially in d. Using Kronecker
products, one can rewrite (11) as follows,

ξ̃ =

r0,...,rd∑
α0,...,αd=1

ξ(1)
α0,α1

⊗ ξ(2)
α1,α2

⊗ · · · ⊗ ξ(d)
αd−1,αd

,

i.e. we see each TT block as a set of vectors of length nk.
Of course, one can think of any other scheme of sampling a function, e.g. at random

points, but the TT decomposition requires independence of sub-indices i1, . . . , id, and
therefore the Cartesian product discretisation. The rationale behind using this, on the
first glance excessive, scheme, is the fast convergence of the approximation error ε with
the TT ranks. If ξ(x, y, z) is analytic, the TT ranks often depend logarithmically on ε
[56, 26, 53]. Combining the TT approximation with collocation on the Chebyshev grid,
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which allows to take n = O(| log ε|) for analytic functions, one arrives at O(d| log ε|3)
overall cost of interpolation or integration using the TT format. This can be significantly
cheaper than the O(ε−2) cost of Monte Carlo quadrature or Radial Basis function inter-
polation. Moreover, TT ranks depend usually very mildly on the particular univariate
discretisation scheme, provided that it can resolve the function. We can use any uni-
variate grid in each variable instead of the Chebyshev rule. For example, a uniform grid
yields Toeplitz or circulant covariance matrices, which are amenable to fast FFT-based
multiplication/diagonalisation.

However, it is difficult to obtain sharp bounds for the TT ranks theoretically. Therefore,
we resort to robust numerical algorithms to compute a TT approximation of given data.

4.2 TT-cross approximation

A full tensor can be compressed into a TT format quasi-optimally for the desired
tolerance via the truncated singular value decomposition (SVD) [47]. However, the full
tensor might even be impossible to store. In this section we recall the practical TT-cross
method [48] that computes the representation (11) using only a few entries from ξ. It is
based on the skeleton decomposition of a matrix [14], which represents an n×m matrix
A of rank r as the cross (in Matlab-like notation)

A = A(:,J )A(I,J )−1A(I, :) (12)

of r columns and rows, where I and J are two index sets of cardinality r such that
A(I,J ) (the intersection matrix) is invertible. If r � n,m, the right-hand side requires
only (n+m− r)r � nm elements of the original matrix.

In order to describe the TT-cross method, we introduce the so-called unfolding matrices
Ξk = [ξ(i1, . . . , ik; ik+1, . . . , id)], that have the first k indices grouped together to index
rows, and the remaining indices grouped to index columns. Let us now consider Ξ1 and
apply the idea of the matrix cross (12). Assume that there exists a set of r1 index tuples,
I>1 = {iα1

2 , . . . , i
α1
d }

r1
α1=1, such that the I>1-“columns” of the original tensor ξ(:, I>1) form

a “good” basis for all columns of Ξ1. The reduction (12) may be formed for r1 rows at
positions I<2 = {iα1

1 }r1α1=1, which are now optimized by choosing the r1 × r1 submatrix
ξ(I<2, I>1) such that its volume (modulus of determinant) is maximal. This can be done
by the maxvol algorithm [13] in O(nr2

1) operations. Now we construct the first TT block
ξ(1) as the n× r1 matrix ξ(:, I>1)ξ(I<2, I>1)−1. In a practical algorithm, the inversion is
performed via the QR-decomposition for numerical stability. Next, we reduce the tensor
onto I<2 in the first variable, and apply TT-cross inductively to [Ξ>1(α1, i2, . . . , id)] =
[ξ(iα1

1 , i2, . . . , id)].
In the k-th step, assume that we are given the reduction Ξ>k−1(αk−1, ik, . . . , id), a

“left” index set I<k = {iαk−1

1 , . . . , i
αk−1

k−1 }
rk−1

αk−1=1, and a “right” set I>k = {iαk
k+1, . . . , i

αk
d }

rk
αk=1.

The rk−1n × rk reduced unfolding matrix [Ξ>k−1(αk−1, ik; I>k)] is again feasible for the
maxvol algorithm, which produces a set of row positions `k = {ααk

k−1, i
αk
k }

rk
αk=1. The next

left set I<k+1 is constructed from `k by replacing αk−1 with the corresponding indexes
i
αk−1

1 , . . . , i
αk−1

k−1 from I<k. Continuing this process until the last variable, where we just

copy ξ(d) = Ξ>d−1, we complete the induction.
This process can be also organized in a form of a binary tree, which gives rise to the

so-called hierarchical Tucker cross algorithm [1]. In total, we need O(dnr2) evaluations of
ξ and O(dnr3) additional operations in computations of the maximum volume matrices.
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Algorithm 1 TT cross algorithm with rank adaptation.
Require: Initial index sets I>k, rank increasing parameter ρ ≥ 0, stopping tolerance

δ > 0 and/or maximum number of iterations itermax.
Ensure: TT blocks of an approximation (11) to ξ.

1: while iter < itermax and ‖ξ̃iter − ξ̃iter−1‖ > δ‖ξ̃iter‖ do
2: for k = 1, 2, . . . , d do . Forward iteration
3: (Optionally) prepare an auxiliary enrichment set Iaux>k .
4: Compute the rk−1n× rk unfolding matrix ξ(I<k, ik; I>k).
5: Compute I<k+1 by the maxvol algorithm and (optionally) truncate.
6: end for
7: for k = d, d− 1, . . . , 1 do . Backward iteration
8: (Optionally) prepare an auxiliary enrichment set Iaux<k .
9: Compute the rk−1 × nrk unfolding matrix ξ(I<k ; ik, I>k).

10: Compute I>k−1 by the maxvol algorithm and (optionally) truncate.
11: end for
12: end while

The TT-cross method requires some starting index sets I>k. Without any prior knowl-
edge, it seems reasonable to initialize I>k with independent realizations of any easy to
sample reference distribution (e.g. uniform or Gaussian). If the target tensor ξ admits an
exact TT decomposition with TT ranks not greater than r1, . . . , rd−1, and all unfolding
matrices have ranks not smaller than the TT ranks of ξ, the cross iteration outlined above
reconstructs ξ exactly [48]. However, practical tensors can usually only be approximated
by a TT decomposition with low ranks. Nevertheless a slight overestimation of the ranks
can deliver a good approximation, if a tensor was produced from a regular enough function
[1, 7].

However, it might be necessary to refine the sets I<k, I>k by conducting several TT
cross iterations, going back and forth over the TT blocks and optimizing the sets by the
maxvol algorithm. For example, after computing ξ(d) = Ξ>d−1, we “reverse” the algorithm
and apply the maxvol method to the columns of a rd−1 × n matrix ξ(d). This gives a
refined set of points I>d−1 = {iαd−1

d }. The recursion continues from k = d to k = 1,
optimizing the right sets I>k, while taking the left sets I<k from the previous (forward)
iteration. After several iterations, both I<k and I>k can be optimized to the particular
target function, even if the starting sets were inaccurate.

This adaptation of points can be combined with the adaptation of ranks. If the initial
ranks r1, . . . , rd−1 were too large, they can be reduced to quasi-optimal values for the
desired accuracy via SVD. However, we can also increase the ranks by computing the un-
folding matrix

[
ξ(I<k, ik; iαk

k+1, . . . , i
αk
d )
]

on an enriched index set: we take {iαk
k+1, . . . , i

αk
d }

from I>k for αk = 1, . . . , rk, and also from an auxiliary set Iaux>k for αk = rk+1, . . . , rk+ρ.
This increases the k-th TT rank from rk to rk + ρ. The auxiliary set can be chosen at
random [46] or using a surrogate for the error [8]. The pseudocode of the entire TT cross
method is listed in Algorithm 1, where we let I<1 = I>d = ∅ for uniformity. Empowered
with the enrichment scheme, we are not limited to just truncating ranks from above. In-
stead, we can start with a low-rank initial guess and increase the ranks until the desired
accuracy is met.
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4.3 TT representation of general and structured matrices

Let us now consider how the TT format (11) can be generalised to matrices C ∈ Rnd×nd
,

such as the Css matrix from (4). Using sub-indices i1, . . . , id, we can think of a matrix as
a 2d-dimensional tensor with elements C(i1, . . . , id; j1, . . . , jd). However, most matrices in
our applications have full ranks, and a straightforward 2d-dimensional TT decomposition
would be inefficient. Instead, we consider a permuted, or matrix TT decomposition [47]:

C(i1, . . . , id; j1, . . . , jd) =

R0,...,Rd∑
β0,...,βd=1

C
(1)
β0,β1

(i1, j1)C
(2)
β1,β2

(i2, j2) · · ·C(d)
βd−1,βd

(id, jd), (13)

or in the Kronecker form,

C =

R0,...,Rd∑
β0,...,βd=1

C
(1)
β0,β1
⊗ C(2)

β1,β2
⊗ · · · ⊗ C(d)

βd−1,βd
. (14)

The identity matrix can be trivially represented in matrix TT format Ind = In⊗· · ·⊗Id
with R0 = · · · = Rd = 1. Furthermore, we can quickly assemble block Toeplitz and
circulant matrices if their first column/row is given in the TT format [24]. Let us introduce
the operation T : R2n → Rn×n which assembles a Toeplitz matrix from a vector of its first
column and row stacked together, and the operation C : Rn → Rn×n which assembles a
circulant matrix from its first column. Assume that a vector c of size (2n)d or a vector č
of size nd are given in the TT format (11),

c =

r0,...,rd∑
α0,...,αd=1

c(1)
α0,α1

⊗ · · · ⊗ c(d)
αd−1,αd

, č =

r0,...,rd∑
α0,...,αd=1

č(1)
α0,α1

⊗ · · · ⊗ č(d)
αd−1,αd

(15)

Then the block Toeplitz or circulant matrix, respectively

C =

(
d⊗

k=1

T

)
c, Č =

(
d⊗

k=1

C

)
č,

can be written in the matrix TT formats (13) with the same TT ranks,

C =

r0,...,rd∑
α0,...,αd=1

(
T c(1)

α0,α1

)
⊗· · ·⊗

(
T c(d)

αd−1,αd

)
, Č =

r0,...,rd∑
α0,...,αd=1

(
Cč(1)

α0,α1

)
⊗· · ·⊗

(
Cč(d)

αd−1,αd

)
.

Similarly we can apply the multivariate Fourier transform without changing TT ranks:(
d⊗

k=1

F

)
c =

r0,...,rd∑
α0,...,αd=1

(
Fc(1)

α0,α1

)
⊗ · · · ⊗

(
Fc(d)

αd−1,αd

)
, (16)

where F : Rn → Rn is the univariate FFT. This reduces the complexity of FFT from
O(N logN) = O(dnd log n) to O(dr2n log n).

In general, the TT format allows to represent the product of any matrix given in (13)
and a compatible vector given in (11) in another TT format [47] with multiplied ranks,

Cξ =

(r0R0),...,(rdRd)∑
γ0,...,γd=1

(
C

(1)
β0,β1

ξ(1)
α0,α1

)
γ0,γ1
⊗ · · · ⊗

(
C

(d)
βd−1,βd

ξ(d)
αd−1,αd

)
γd−1,γd

, (17)

where γk = αk + (βk − 1)rk, k = 0, . . . , d.
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4.4 Kriging operations in TT format

To rewrite the Kriging estimation (8) in low rank format, we first find a TT approx-
imation (15) of c by using the TT-cross algorithm introduced in Section 4.2. With the
rest of the operations we can proceed in two ways.

4.4.1 Small number of scattered samples

If we assume N to be small, the Task-1 of computing Kriging weights, Cyyξ = y, can
be computed directly at low cost. Now we inject the scattered values into a TT tensor
of desired size as introduced in (6). Suppose `j ∈ Nd is the position of the jth sample,
j = 1, . . . , N, we can define

Hj =
d⊗

k=1

e
(k)
j , where e

(k)
j (ik) =

{
1, ik = `j(k)
0, otherwise,

i.e. the injection operation (6) per sample. Now the injected tensor is written in the CP
format as

ξ̄ =
N∑
j=1

ξjHj, (18)

which can be converted to TT format directly by the formula in [16, pp. 380] or using
the Alternating Least Squares (ALS) [19] approximation.

Similarly, we can use the direct truncation or the ALS method for summing columns
of Csy with the weights ζi in (4), as well as the summation of different vectors (Csyζi)

◦2.
Embedding operation (7) is simpler and more efficient: we just need to pad every TT

block with zeros. Assuming we are given a vector ξ in the form (11), we construct the
following new TT blocks of a vector ξ̌:

ξ̌(k)
αk−1,αk

(ik) =

{
ξ

(k)
αk−1,αk(ik), ik = 1, . . . , n̄k,

0, ik = n̄k + 1, . . . , nk,
k = 1, . . . , d. (19)

Similarly, Extraction operation is performed by truncating the range of ik in each TT
block from nk back to n̄k. Most importantly, embedding and extraction can be performed
very efficiently without changing the TT ranks, similarly to FFT (16).

Finally, we need to compute the Hadamard products of TT tensors, e.g. F [d](č)◦F [d](ξ̌)
in (8). The Hadamard product can be constructed exactly via (17) by noticing that

s := c ◦ ξ = Cξ, for C = diag(c),

or approximately by applying the TT-Cross algorithm to a tensor given elementwise by
the formula s(i1, . . . , id) = c(i1, . . . , id)ξ(i1, . . . , id). The direct multiplication requires
O(dnR2r2) operations, and the truncation afterwards has an even higher cost O(dnR3r3).
In contrast, the TT-Cross approach needs computing O(dnr2) samples of the target tensor
s, which means taking samples of the TT decompositions for c and ξ and multiplying them.
Sampling another TT tensor requires in total O(dnR2r) operations, which, assuming that
the ranks are comparable, R ∼ r, results in a total of O(dnr3) operations in the TT-Cross
computation of Hadamard products, which is thus preferred in this paper.

For geostatistical optimal design (Task-4) we need to compute the trace of Css|y. Since
in the Task-3 we obtain already the diagonal of Css|y in the TT format, the trace can be
evaluated swiftly by computing a dot product with the all-ones tensor.
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4.4.2 Large number of structured samples

When N is large, the summation (18) can be a difficult operation in the TT format,
potentially leading also to the TT ranks being in the order of N . However, a large number
of samples usually means that these samples are distributed fairly uniformly in the domain
of interest. In this case, we switch to the TT computations even before Task-1 in equation
(2). First, we interpolate the given samples onto a uniform Cartesian grid with the mesh
interval being in the order of the average distance between the original samples. In the
remaining operations, we assume that y is structured in this way, i.e. it can be seen as a
tensor y(i1, . . . , id), ik = 1, . . . , m̄k, k = 1, . . . , d. Thus, we can approximate y in the TT
format.

The solution for weights (2) becomes a rather difficult operation for a large N . However,
given the TT decompositions for y and Cyy, the linear system can be solved more effi-
ciently by employing ALS and similar tensor algorithms [19, 8]. Similarly, we can compute
C−1
yy Cys for (4) by treating Cys as the right hand side, and expanding Cyy accordingly.
If we interpolate y onto a periodic uniform Cartesian grid, the matrix Cyy becomes

circulant, similarly to Č. In this case we can approximate only its first column in the TT
format, perform the Fourier transform to obtain the eigenvalues, and apply again the TT-
Cross method to approximate the pointwise division F [d](y)(i1, . . . , id)/F [d](c)(i1, . . . , id).

5 Numerical tests

We used the Matlab package TT-Toolbox ( https://github.com/oseledets/TT-Toolbox)
for Tensor Train algorithms. The codes used for numerical experiments are available at
https://github.com/dolgov/TT-FFT-COV. All computations are done on a MacBook
Pro produced in 2013, equipped with 16GB RAM and an 2.7 GHz Intel Core i7 CPU.

We consider three test cases: 1) a 2-dimensional problem with N =
∏2

i=1 ni = 6002 (it
is easy to visualize); 2) a 3-dimensional problem with N = 1015 and 3) 10-dimensional
problem with N =

∏10
i=1 ni = 10010. One of these parameters could be, for example, time.

The daily soil moisture data set, used below, is taken from [20, 37, 38], where only one
replicate, sampled at N locations, is used.

5.1 Kriging of daily moisture data

Numerical models play important role in climate studies. These numerical models
are complicated and high-dimensional, including such variables as pressure, temperature,
speed, and direction of the wind, level of precipitation, humidity, and moisture. Many
parameters are uncertain or even unknown. Accurate modeling of soil moisture finds
applications in the agriculture, weather prediction, early warnings of flood and in some
others. Since the underlined geographical areas are usually large and high spatial resolu-
tions are required, the involved data sets are huge. This could make the computational
process in dense matrix format unfeasible or very expensive. By involving efficient low-
rank tensor calculus, we can increase the spatial and time resolution and consider more
parameters. It is clear that utilization of the rank k tensor approximation introduces an
additional numerical error in quantities of interest (QoIs). By increasing tensor ranks we
reduce this approximation error.

We consider high-resolution soil moisture data from January 1, 2014, measured in the
topsoil layer of the Mississippi River basin, U.S.A (Fig. 1).

Figure 2 shows an example of daily moisture data. On the left picture we used 2000

321



Sergey Dolgov, Alexander Litvinenko, and Dishi Liu

−120 −110 −100 −90 −80 −70

25
30

35
40

45
50

Soil moisture

longitude

la
tit

ud
e

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Figure 1: The area where the daily soil moisture data were measured, Mississippi River basin, U.S.A.

points (x, y, v)Ni=1, N = 2000 for interpolation, and on the right 4000 points. The third
picture shows two set of locations: one with 2000 points, marked with the blue symbol +
and with 4000 points, marked with red dot.

Figure 2: Daily moisture data. Interpolated from (left) 2000 and (center) 40000 measurement points.
(right) Two sets of sampling points, 2000 and 4000.

The spatial resolution is 0.0083 degrees, and the distance of one-degree difference in this
region is approximately 87.5 km. The grid consists of 1830× 1329 = 2.432.070 locations
with 2.000.000 observations and 432.070 missing values. Therefore, the available spatial
data are not on a regular grid.

The tensor product Kriging is performed as described in Sec. 4.4.2. First, we interpo-
late the given measurements (Fig. 3, left) onto a (coarse) Cartesian grid with the mesh
interval being approximately equal to the average distance between the measurements.
Specifically, we ended up with a 65×65 grid (Fig. 3, center). Then the tensor of values on
this coarse grid is approximated into a TT decomposition. Finally, the Kriging estimate
(2)–(3) on a fine grid with 257× 257 points (Fig. 3, right) is computed in the TT format
using FFT and TT-Cross algorithms.

5.2 High-dimensional field generation: computational benchmark

To generate the following 2D, 3D and 10D random fields we used the Matlab script
test generate y tt.m in https://github.com/dolgov/TT-FFT-COV.
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Figure 3: (left) 64000 measurements of the moisture; (center) regression on a coarse 65 × 65 Cartesian
mesh; (right) TT-Kriging approximation on a fine mesh.

2D example. In this example we generated a high-resolution 2-dimensional Matérn
random field in [0, 2000]2. One realization is presented in Fig. 4. The smoothness of the
Matérn field is ν = 0.4, covariance lengths in x and y directions (1, 1) and the variance
10. This realization is computed by the following formula in the TT format

u′ = C1/2ξ =

√
1

n
F>Λ1/2ξ =

√
1

n
F−1(λ1/2 ◦ ξ), (20)

where the inverse Fourier F−1, the square root of eigenvalues λ1/2, and tensor product
ξ of two Gaussian random vectors are approximated in the TT format. Particularly,
ξ = ξ1 ⊗ ξ2 is a tensor product of two Gaussian vectors. The size of the first column č of
Č is 3200× 3600 and the computing time was 1 sec. With TT procedures one can create
very fine resolved random fields in large domains. For instance, generation of a random
field in the domain [0, 1.000.000]2 with 1.600.000 × 1.800.000 locations takes less than 1
minute.

3D example. This example is very similar to the previous 2D example. The difference
is only that the domain is [0, 100.000]3 and the size of the first column of C is 160.000×
180.000× 160.000 = 4.608 · 1015. The computing time was 3 minutes.

10D example. In this example, we generated a 10-dimensional Matérn random field.
One of the dimensions could be time, for example. Table 1 contains all model parameters
and the number of unknowns in (hypothetical) full tensor and in the TT decomposition
of the final field ŝ. In this example we computed TT approximation of the first column
of the multilevel circulant covariance matrix (cf. [24, 25]). Then we diagonalized this
circulant matrix via FFT and computed square root of diagonal elements. After that
we generated a random field by multiplying the square root with a random vector of the
following structure ξ :=

⊗10
ν=1 ξν , where ξν is a normal vector. We note that we never

store the whole vector ξ explicitly, but only it’s tensor components ξν . Also, note that ξ
is not Gaussian.

The TT approximation tolerance is set to 10−4. In the 10-dimensional case above the
maximal rank was 143, and the total computing time 118 sec. In the similar 8-dimensional
case the maximal rank was 138, and the total computing time 96 sec. Of course, one should
observe tensor ranks not only of ŝ, but of other steps such as the TT approximation of
the measurement vector and of the first column of the covariance matrix. These TT ranks
were smaller than the TT ranks of the final solution though.
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Figure 4: High-resolution realization of 2D Matérn random field, computed with TT tensor format in
[0, 2000]2.

Table 1: Parameters of the 10-dimensional problem.

parameter value
variance of model 10
vector of correlation length in x1, . . . , x10-direction [1, 5, 10, 15, 20, 25, 30, 35, 40, 45]
length of domain in x1, . . . , x10-direction [10, 50, 100, 150, 200, 250, 300, 350, 400, 450]
number of elements in x1, . . . , x10-direction [100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
number of elements in original tensor 10010 = 1020

number of elements in TT tensor 107

6 Discussion and Conclusions

In this paper, we proposed an FFT-based Kriging that utilizes a low-rank Tensor Train
(TT) approximation of the covariance matrix. We apply the TT-Cross algorithm to
generate a low-rank decomposition avoiding full tensors which could be well beyond the
memory capacity of a desktop PC.

The low-rank format reduces the storage of the embedded circulant covariance matrix
from exponential to linear in the number of variables. The circulant matrix can be di-
agonalized by FFT. Furthermore, due to the linearity of the Fourier transform, the TT
format allows to implement the d-dimensional FFT at the cost of O(dr2) one-dimensional
FFT operations.

We then use the same technique to generate large Matérn random fields since the diag-
onalized covariance matrix gives eigen pairs for the spectral expansion of the underlying
random field. We show in numerical examples that this method can generate very large
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random fields with a commonly affordable computational resource.
We demonstrated how to utilize the TT tensor format to speed up such geostatistical

tasks as the generation of large random fields, computing kriging coefficients, kriging es-
timates, conditional covariance, and geostatistical optimal design. We used the fact that
after discretization on a tensor grid the obtained matrix could be extended to a circulant
one. Then, much expensive linear algebra operation could be done via d-dimensional FFT.
From the definition, one can see that FFT has tensor rank 1. After approximating the
first column of the circulant matrix in the TT format (we assumed that such approxima-
tion exists) we were able to apply efficient TT tensor arithmetics and speedup expensive
calculations even more. Utilizing TT format in FFT calculus allowed us to decrease com-
putational cost and storage from O(N̄ log N̄) to O(dr3n̄), where r ≥ 1 is the tensor rank,
d the dimensionality of the problem and n̄ is the number of points along the single longest
edge of the estimation grid.

The presented numerical techniques have memory requirements as low as O (dn̄r2).
Thus, we achieved log-complexity in the total number of lattice points. The resulting
methods allow much better spatial resolution and significantly reduce the computing time.

The fundamental assumptions are: the covariance matrix is separable or has a TT-rank
r � n, the interpolation grid is a rectangular tensor grid, and the measurements also lie
in the tensor grid. The random vector used to generate the random field is a Kronecker
product of smaller random vectors.
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