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Abstract. The topic of model updating has been the focus of intensive research since it is
a useful mean for reliable predictions of the structural performance of dynamic systems. The
differences between the output of the Finite Element (FE) model and the modal parameters
estimated using Ambient Vibration Tests (AVT) can be due to both model and measurement
uncertainties. The need for taking uncertainties into account has been widely recognized and
several approaches have been developed by the two main schools of probability interpretations:
the frequentist and the Bayesian interpretation. In the latter, probability is not interpreted as the
relative occurrence of a random phenomena but as the plausibility of an hypothesis. The main
scope of the interpretation of probability in the Bayesian context leads to the fact that the reason
of uncertainty of the structural parameters is seen in the incomplete available information/data.
In this work, the Bayesian updating of cable stayed footbridge model parameters using dynamic
measurements is discussed. The quantification of model uncertainties is carried out by means
of the prediction error when the numerical model updating is performed using two different ref-
erence Data Sets: the first one consists in the experimental natural frequencies and the second
one consists in both natural frequencies and corresponding modal vectors. In practice, when
incomplete measurements of vibration modes are available, including the modal vectors in the
reference data set is not an easy task. For this reason, the Modal Assurance Criterion (MAC)
is used in order quantify the modal vector prediction error. In addition, the numerical model
output is replicated by means of Polynomial Chaos (PC) based surrogate model in order to
reduce the computational burden related to the posterior distribution evaluation at each step of
Markov Chain Monte Carlo sampling.
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1 INTRODUCTION

A physical model may be described by a forward problem, which predicts some Quantities
of Interest (QoI) of the system given a set of unknown/uncertain input set of parameters [1, 2].
The corresponding inverse problem consists in estimating the set of these parameters from a set
of measured/observed data, taking into account that in realistic applications the data are noisy,
incomplete and characterized by a significant level of uncertainty [3].

A classical inverse problem in structural engineering is Finite Element (FE) model updat-
ing aiming to invert the standard forward relation between the unknown parameters and the
predicted response of a model using experimentally observed data. Usually, incomplete modal
data (e.g. natural frequencies and vibration modes) are used to calibrate model parameters
in order to minimize the distance between the model predictions and the observed quantities
[4, 5, ?].

The FE model updating can be divided into two main approaches: deterministic and proba-
bilistic model updating [7]. The former is well established in literature with several successful
applications to strategic and historic structures. In practice, the modal data identified from the
measurements are very sensitive to measurement noise, environmental conditions and level of
excitation occurring during the tests. Furthermore, the numerical model is always a simplified
representation of a real structure and therefore a large number of uncertainties arise because of
uncertain geometry, material properties, boundary conditions as well as for simplifications and
idealizations.

Therefore the role of measurement and model uncertainty in model updating is crucial and
probabilistic FE model updating methods such as Bayesian methods have become popular al-
lowing for explicitly accounting for all the sources of errors involved in the updating process
[7, 8, 9]. In the Bayesian updating framework the unknown model input parameters are taken
to be uncertain and modeled as Random Variables (RVs) described by their posterior marginal
distributions, obtained from prior information and measurements of QoIs that are observable
and depend on the unknown parameters. The main limitation of Bayesian updating is the high
computational cost related to the posterior distributions computation especially when several
updating parameters are modified during the process or when a large data set is used as target.
The acceleration of the Bayesian updating framework can be achieved with surrogate models
able to reproduce the numerical FE solution with the surrogate solution [3, 10].

In this paper, a Bayesian robust framework for the calibration of a FE numerical model
describing an actual steel cable-stayed footbridge in Terni (Umbria Region) is defined using
dynamic incomplete modal data (natural frequencies and vibration modes) obtained via Ambi-
ent Vibration Tests (AVT). Two updating parameters are selected whose effects on both natural
frequencies and vibration modes are significant. The evaluation of the posterior marginal dis-
tributions is carried out using Markov Chain Monte Carlo (MCMC) method [11, 12].

The deterministic solution at each step of the chain replaced by the solution obtained via
Polynomial Chaos (PC) based surrogate models for reducing the high computational costs [13,
14, 15].

When mode shape are used as reference the formulation of the Bayesian updating framework
is not an easy task since mode shape matching is usually required. For this reason the Modal
Assurance Criterion (MAC) is used for ensuring mode shape matching and to represent the
mode shape vector prediction error as the difference between the measured and the predicted
modal data.

Section 2 introduces the general probabilistic model while Section 3 briefly reviews the
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Bayesian updating framework with a special focus on the computational aspects and on the
likelihood function formulation. Section 4 briefly reviews the PC expansion method and finally
the procedure is applied to the cable-stayed footbridge case and the main results are presented
and discussed.

2 UNCERTAINTY IN FINITE ELEMENT MODEL PARAMETER ESTIMATION

A numerical FE model M : RN → RM provides a mapping from the parameters Θ =
{Θ1, ...,ΘN} ∈ RN to an output vector u = {u1, ..., uM} ∈ RM so that:

u =M(Θ) (1)

In the ideal case, the model output u corresponds perfectly to the true system output D, i.e.
D =M(Θ). This latter equality is the starting point for the deterministic FE model parameter
estimation using incomplete modal data, where the main objective is to estimate the model
parameters Θi, i = 1, ..., N for a given set of measured system output.

Actually, a numerical mechanical model is not able to perfectly reproduce the real behavior
of the true structural system [16]. Therefore, a modeling error eM defined as the difference
between the real behavior of the true system and the model predictions, i.e. eM = D−M(Θ),
is always present. Since the measurements are in practice always disturbed also a measurement
error eD determine a difference between the true system output and the actual observed data D,
i.e. eD = D−D.

Eliminating the unknown true system behavior D form the error equations, the total predic-
tion error e can be obtained as the sum of the modeling and measurement error:

e = eM + eD = D−M(Θ) (2)

Equation 2 represents the main starting point for the Bayesian method.

3 BAYESIAN METHOD

In the Bayesian updating framework the model parameters are gathered in the real valued
input random vector Θ = {Θ1,Θ2, ...,ΘN} ∈ RN and modeled as independent RVs defined
according to some probability space {Ω,F ,P} where Ω is the probability space, F is the σ-
Field and P is the probability measure. If each Θi is described by the Probability Density
Function (PDF) πi(θi), the joint PDF is given by the product of the N densities.

In the Bayesian approach the updated probabilities of the unknown parameters Θ when data
D becomes available is quantified by a joint PDF which is known as posterior distribution and
it is expressed by [17]

p(Θ|D,M) = c−1p(D|Θ,M)p(Θ|M) (3)

The term p(D|Θ) - called likelihood function - expresses the probability of the data condi-
tional to the unknown/adjustable vector Θ. The term p(Θ|M) is the prior distribution, which
quantifies the initial plausibility of the vector of parameters Θ associated with the model class
M . The normalizing constant c = p(D|M) is called the evidence of model class M. This nor-
malization makes the integration over the parameter space of the posterior PDF in (3) equal to
one. The c constant is given by the multidimensional integration over the parameter space

c = p(D|M) =

∫
p(D|Θ)p(Θ|M)dΘ (4)
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When a single set of incomplete modal data are used as target, the vector D consists of the
extracted modal data from measured acceleration time histories, namely

D = {f̂1,j, ..., f̂M,j, Φ̂1,j, ..., Φ̂M,j} (5)

where f̂i,j and Φ̂1,j are respectively the ith natural frequency and the ith mode shape vector
in the jth data set; M is the total number of observed modes.

3.1 Likelihood function

The likelihood function can be interpreted as a measure of the accuracy of the model in
describing the measurements. The likelihood function can be obtained according to the Total
Probability Theorem as the convolution of the measurement and modeling errors, eD and eM .

In this study no information is available on the individual errors and the effects of both mod-
eling and measurement errors are considered by using the the total prediction error in Equation
2. The error of the i-th natural frequency efi is defined as:

efi = fi(Θ)− f̂i (6)

The error of the i-th mode shape vector eMi is defined by means of Modal Assurance Criterion
(MAC) [18]. The MAC coefficient is used in order to measure the correlation between the
measured (Φ̂i) and the numerically computed (Φi(Θ)) mode shape vectors. Taking into account
that MAC coefficient assumes values between 1 and 0 respectively for perfect match and no
correlation its complement 1−MAC can be considered as the residual error for mode shape

eMS
i = 1− |Φ̂iΦi(Θ)|

(Φ̂iΦ̂T
i )(Φi(Θ)Φi(Θ)T )

(7)

The uncertainty in efi and eMS
i are modeled as Gaussian vector with zero mean and unknown

variance σ2 therefore the likelihood function is formulated basing on the PDFs of the errors in
6 and 7

p(D|Θ) ∝ exp

(
−1

2
eTΣ−1e

)
(8)

where e is a [2M × 1] vector of the total error

e =

[
ef

eMS

]
(9)

and Σ is a [2M × 2M ] total error covariance matrix.
When both natural frequencies and mode shape vectors are considered in the reference data

set D mode pairing should be properly carried out ensuring that the comparison of modal prop-
erties obtained from the measured data and FE model should be made only when they corre-
spond to the same dynamic mode.

3.2 Computational aspects of posterior distribution

When the prior PDF and the likelihood function are determined, Equations 3 and 4 allow
for the updating of the PDFs of the model parameters Θi based on experimental observations
of the structural system. If the number of parameters and data space dimension is large, the
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multidimensional integration in Equation 4 cannot be solved analytically and sampling methods
such as the Markov Chain Monte Carlo (MCMC) and its derivatives are used. The term MCMC
refers to all procedure based on stationary chains of samples to approximate the parameter
distributions.

In particular the Metropolis Hastings (MH) algorithm, as an MCMC simulation method, is
used in this study [12]. This algorithm is based on generating samples from any target distri-
bution of the uncertain parameters Θi. The proposed parameter sample Θ∗ are generated by a
proposal density q(Θt|Θ∗) depending on the current state of the chain. The candidate sample
Θ∗ has a probability of ρ(Θt|Θ∗) to be accepted as next state of the chain Θt+1 = Θ∗; there-
fore the probability for the candidate sample to be rejected is 1− ρ(Θt|Θ∗). If the candidate is
rejected, the current sample is treated as the next sample. The specification of the acceptance
probability ρ allows generating a Markov chain with desired target density.

This approach can be computationally prohibitive since it requires the computation of the FE
model deterministic solution at each step of the chain and usually it requires about 105 samples
generations to have solution convergency. In order to obtain a significant reduction of the com-
putational burden an effective method based on the functional approximation of the forward
model response in Equation 1 is used. To this end the Polynomial Chaos (PC) representation
method [19] is used to a obtain an analytical representation of the model itself as a function of
the main random input random parameters leading directly to a surrogate model in the form of
response surface. This means that the posterior sampling via MCMC can be carried out directly
from the response surface without the need to solve the analytical model for all the samples.

4 POLYNOMIAL CHAOS REPRESENTATION

Let Θ be a non Gaussian RN -valued random vector withN independent components defined
by

Θ = g(ξ) (10)

where g is a deterministic nonlinear function, g : RK → RN , ξ ∼ N(0, I) is a Rk-valued
vector of k independent and identically distributed, zero mean, unit variance Gaussian RVs and
I denotes the identity matrix having dimension (k × k).

The solution of the physical model in (1) becomes

u = G(ξ) (11)

where G : RK → RM . Considering a N -variate input and a univariate output, i.e. M = 1,
and assuming that the model response is a finite variance RV, the structural response can be
approximated as

ũ = G̃(ξ) =

NP−1∑
α≥0

ûαΨα(ξ) (12)

where Ψα(ξ) represents the multivariate orthogonal polynomials with finite multi-index set and
ûα are the polynomial coefficients. If p indicates the maximum polynomial order, then NP is
given by

NP =

(
K + p
p

)
=

(K + p)!

K!p!
(13)
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The polynomial order have to be chosen to guarantee results accuracy. Several different
approaches are available for the estimation of the polynomial deterministic coefficients ûα [20,
13].

Using this approach a model sensitivity analysis can be performed in a straight forward
manner basing on the orthogonality condition at the base of the mathematical setting of the PC
representation since all the statistics of the QoIs can be estimated from the deterministic coeffi-
cients statistics. In this paper a Global Sensitivity Analysis (GSA) based on Sobol’ coefficients
[21] is carried out to determine the influence of each input random model parameter on the final
results, assessing the importance of using a proper reference data set in the Bayesian updating
framework.

5 NUMERICAL EXAMPLE: A CABLE STAYED FOOTBRIDGE

In order to test the performance of the proposed algorithm for the probabilistic Bayesian
updating of a FE model parameters using incomplete modal data, a cable stayed footbridge in
Terni (Umbria Region, central Italy) is taken as case study. The footbridge has a total length
of 180 m and has two main parts: a curved shape one with a total length of 120 m, which
is supported by an asymmetric array of cables connected to a 60 m tall inverted tripod tower
through a pair of circular rings; a straight 60 m span with two bowstring arches.

The initial three dimensional FE model was built using the commercial code SAP2000 [22].
Different mechanical characteristics (Table 1) have been selected for the structural components
and each stay is modeled with a nonlinear element describing bot tension - stiffening and large
deflections.

A pre stress modal analysis was carried out starting from the equilibrium condition under
dead load and cable pre tension in order to consider the nonlinear behavior mainly due to cable
sag and large deflection. Natural frequencies calculated from the initial FE model are shown in
Table 2: seven mode shapes are identified in the range of frequency of interest.

5.1 Dynamic system identification

The footbridge dynamic characterization in terms of natural frequencies and corresponding
vibration mode shapes has been obtained from full scale measurements in operating conditions
using fourteen uniaxial accelerometers. The obtained acceleration time histories have been used
to identify vertical, horizontal and torsional vibration modes with Enhanced Frequency Domain
Decomposition (EFDD) method [23].

A single data set with 400 Hz sampling rate was recorded with time lengths 926 s. Re-
liability of results was investigated using different order of decimation and different type of
filters. Seven modes have been clearly identified in the range of frequency of interest. Table
3 summarizes the minimum, fmin, and the the maximum, fmax, values of the identified natu-
ral frequencies considering different signal sampling parameters (e.g. decimation order, filters,

Table 1: Mechanical properties used in the initial FEM.

Material E Mass density
GPa KN/m3

Steel S355 210 78
Cables 160 77

Concrete C32/40 33.345 25
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Mode fFEM Mode’s type
Hz

1 1.030 Vertical
2 1.514 Lateral
3 1.774 Torsional
4 2.184 Vertical
5 2.365 Lateral
6 2.982 Vertical
7 3.153 Vertical

Table 2: Modal features obtained
from initial FE model.

Mode fEXPmin fEXPmax Mode’s type
Hz Hz

1 1.11 1.13 Vertical
2 1.67 1.69 Lateral
3 1.79 1.80 Torsional
4 2.40 2.47 Lateral
5 2.58 2.59 Vertical
6 3.30 3.31 Vertical
7 3.35 3.40 Vertical

Table 3: Range of identified natural
frequencies from data sets #1 and #2.

frequency resolution of the output power spectral density spectrum). Initially the natural fre-
quencies of the initial FE model were mostly higher than the measured natural frequencies.

The MAC was used to identify the modal shapes from the experimental data set. In the
following, two different MAC matrices will be estimated: the auto-MAC matrix and the MAC
matrix. The first is estimated from the measured mode shapes while the second is computed
pairing one experimental with one numerical mode shapes. The diagonal terms in the auto-MAC
matrix are all equal to one meaning that each mode shape is paired with itself. The MAC matrix
is estimated from the experimental mode shapes and the FE analysis mode shapes showing
that the matrix diagonal terms are higher than 0.80 indicating a good correlation between the
experimental and numerical modal vectors.

5.2 Selection of the updating parameters

The selection of the updating parameters is a key issue in the model updating procedure
since they have to be strictly and directly related to the measurement results used as target. A
preliminary deterministic sensitivity analysis is thus carried out in order to provide information
for an efficient selection.

In particular the sensitivity of the natural frequencies and the mode shapes (in terms of di-
agonal MAC values) to variation of structural steel and cable Young’s moduli, cable tension
stiffening, model mass density and stiffnesses of rotational and translational springs used for
modeling the soil - structure interaction (Figure 1). It has been found that the variation in the
each cable and in the spring stiffness describing the soil - structure interaction has negligible
effects on the numerical model eigenfrequencies and eigenvectors. On the contrary, eigenfre-
quencies and eigenvectors are very sensitive to variations in the steel elastic moduli and the
model mass density. It is worth noting that variations in cable elastic moduli provide significant
variations in the eigenvectors and small variations in the eigenfrequencies.

Assuming that the model mass density does not vary significantly along the deck only two
updating parameters are defined for the Bayesian framework: the deck and cable stiffnesses
described by the steel, Esteel, and cable, Ecables, elastic moduli, respectively. Therefore, the real
valued random vector Θ ∈ R2 has independent components: Θ1 = Esteel and Θ2 = Ecables.

5.3 Surrogate Model

In this case study, the six experimental natural frequencies and the six corresponding mode
shape vectors f̄EXPi and M̄EXP

i with i = 1, ..., 6 are used as reference while the corresponding
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Figure 1: Eigenfrequencies and diagonal MAC values variations with changes in the mechanical
parameters (upper panels and lower panels respectively): (a,d) steel modulus of elasticity; (b,e)
cables modulus of elasticity; (c,f) model mass density.

six numerical model frequencies and mode shape vectors fFEMi andMFEM
i with i = 1, ..., 6 are

set as QoIs. Since the MAC coefficient complement 1−MAC is used in order to evaluate the
prediction error eMS as in Equation 7 and considering that the MAC coefficient is very sensitive
to small variation of the single eigenvector component, each of the fourteen component of the
considered six mode shape vectors are set as QoIs.

The PC expansion in Equation 12 is thus used in order to build a surrogate model for each of
the selected QoIs (Figure 2). Two normal distribution has been assumed for the two component
of the input random vector Θ1 and Θ2 to build the 90 different response surfaces. The initial
mechanical characteristics of the two different material used for the deck and cables in Table 1
are used as PDFs mean values; the coefficient of variation (c.o.v.) is assumed in order to avoid
unfeasible samples in the simulation procedure. The resulting two PDFs are used also as prior
distribution in the Bayesian updating framework (Figure 4).

The maximum polynomial degree p has been set equal to 5 and a complete basis has been
built requiring (p + 1)N = 36 analyses. The deterministic coefficients in Equation 12 are
evaluated using least square minimization method [24] and a full tensor grid scheme. Once
that accurate surrogate models have been built, the variance of the NP polynomial coefficients
uα is estimated for each QoI and used to evaluate the first order Sobol’ indices, which give
information on the influence of the uncertain parameters Θ1 and Θ2 on each QoI, e.g. the first
six natural frequencies and the 84 eigenvector components of the first six mode shape vectors
(Figure 3).
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Figure 2: Example of a surrogate model: natural frequency (a) and eigenvector component (b) .

5.4 Bayesian inverse problem solution

Setting D̄1 = {f1, ..., f6} and D̄2 = {f1, ..., f6,Φ1, ...,Φ6} as two different reference vector
and replacing the numerical model in Equation 1 with the surrogate model in Equation (12), the
posterior marginal PDF of the two dimensional random vector Θ = {Θ1,Θ2} can be estimated.
In particular, the MCMC MH algorithm is applied requiring the evaluation of the deterministic
solution 150,000 times in both cases in order to ensure convergency. It is important to point
out that when D̄1 is used as reference data set, the MCMC MH algorithm is modified using
the diagonal MAC coefficients as constraints in order to guarantee the natural frequency/mode
shape matching at each step of the chain.

The results of the Bayesian updating procedure are shown in Figure 4. The posterior distri-
bution of Θ1 has mean values equal to 266GPa and 273GPa - about 1.25 and 1.30 times the
mean value of the prior PDF - when D̄1 and D̄2 are used as reference vector respectively.

The posterior distribution of Θ2 is very similar to the prior PDF when D̄1 is used as reference,
indicating that D̄1 is non informative with respect to this random parameter. This result was
expected since the natural frequencies are mainly influenced by the stiffness of the deck, Θ1,
as shown by the Sobol’ indices in Figure 3. On the contrary the posterior distribution of Θ2

is characterized by an evident maximum at the posterior mean value equal to 184MPa, about
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Figure 3: First order Sobol indices: natural frequency (a) and eigenvector component of the 3rd

and 5th numerical mode shape (b and c, respectively).
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Figure 4: Prior and posterior marginal distributions: (a) deck stiffness; (b) cables stiffness.

1.15 times the mean value of the prior PDF.
Finally, Figure 5 (a) compares the natural frequencies estimated from the experimental data

to those obtained with the initial numerical model and the updated model using the posterior
mean value of Θ when D̄1 and D̄2 are used as reference data set. Before the Bayesian updating
procedure the differences between the experimental and the numerical eigenfrequencies were
greater than 8%, with the only exception of the 3rd numerical mode shape for which the error
was lower than 1%. After the update carried out using the two considered reference data sets
these errors are reduced to values lower than 1% with the exception of the 3rd mode shape for
which the error is equal to 8%.

Figure 5 (b) compares the numerical and experimental mode shapes before and after the
updating procedure in terms of diagonal MAC values. The initial experimental and numerical
mode shapes are characterized by high values of the MAC number. After the update carried
out using D̄1 as reference, the most significant increase of the MAC values, from 73% to 92%,
occurs for the 3rd mode shape (torsional). On the contrary the diagonal MAC value decreases
for the 5th and 6th mode shape. After the update carried out using D̄2 as reference the diagonal
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Figure 5: FEM responses before and after the updating Bayesian procedure:(a) natural frequen-
cies; (b) diagonal MAC values.

MAC values increase for each considered mode shape, especially for the 3rd, the 4th and the 5th

mode shape, the most influenced by the stiffness of cables, Θ2.

6 CONCLUSION

In the present work, a robust updating procedure for the calibration of a FE numerical model
has been set up in a probabilistic Bayesian framework. The proposed approach is based on
dynamic incomplete modal data (natural frequencies and vibration modes) obtained via AVTs
and on a functional approximation of the system random response.

First, the initial three dimensional FE model of a cable-stayed footbridge was set up and a
sensitivity analysis was carried out both in a probabilistic and deterministic setting in order to
select in an efficient manner the most significant parameters to be used in the Bayesian updating
procedure targeting the measured natural frequency and mode shape vectors. Second, surrogate
models based on the PC representation of the structural system dynamic response were built in
order to significantly reduce the computation cost related to the posterior densities estimates by
means of MCMC MH procedure. Finally, the updating procedure was carried out using two
different reference data set: the first one consists in the experimental natural frequencies and
the second one consists in both natural frequencies and corresponding vibration modes. When
mode shape are used as target the modal vector prediction error is quantified by means of MAC
as the distance between actual correlation and perfect correlation.

The proposed approach overcome the main drawback of the whole Bayesian updating frame-
work related to the unfeasible computational costs making it suitable for real time Structural
Health Monitoring (SHM) applications. Furthermore, results demonstrated the importance of
using a proper informative data set.
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