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Abstract 

A method for the evaluation of the statistics of response sensitivity of both classically and 
non-classically damped discrete linear structural systems under fully non-stationary stochas-
tic seismic processes is presented. To do this the evolutionary frequency response function, 
also referred in literature as the time-frequency varying response function, plays a central 
role in the evaluation of the spectral characteristics of non-stationary response. 

The proposed approach requires the following items: a) to write governing motion equations 
in state-variables, which are very suitable to evaluate the statistics of the response of both 
classically and non-classically damped discrete linear structural systems by an unified ap-
proach; b) to evaluate in explicit closed form solutions the derivatives of time-frequency re-
sponse vector functions with respect to the parameters that define the modified structural 
model; c) to obtain the sensitivity of the structural response statistics by frequency domain 
integrals.   

A numerical application shows that the proposed approach is suitable to cope with practical 
problems of engineering interest. 

Keywords: Sensitivity analysis, Fully non-stationary processes, Non-geometric spectral mo-
ments, Evolutionary power spectral density function; Evolutionary frequency response func-
tion. 
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1 INTRODUCTION 
During the analysis of structural systems, the reference structural parameters could be 

modified for design reasons. This is very frequent in optimization procedures, design of de-
vices for vibrations control, etc. (see e.g., [1,2,3]). In this framework, the sensitivity analysis 
(i.e. the evaluation of partial derivatives of a performance measure with respect to system pa-
rameters) is a suitable vehicle to evaluate the response variation of structures under the influ-
ence of changes of parameter values. 

Strong motion earthquakes are certainly the main critical actions for structures located in 
the seismically active regions of the earth. The analysis of recorded accelerograms in different 
sites shows that earthquake ground motion time-histories are non-stationary processes in both 
amplitude and frequency content. Then, the stationary models fail to reproduce the time-
varying intensity, which is typical of real earthquakes ground-motion accelerograms. To take 
into account the time variability, the so-called quasi-stationary (or uniformly modulated non-
stationary) random processes have been introduced [see e.g. 4,5]. These processes are con-
structed modulating the amplitude of a stationary zero-mean Gaussian random process 
through a deterministic function of time; for this reason they are also called separable non-
stationary stochastic processes. However, these processes catch only the time-varying intensi-
ty of the accelerograms. To consider simultaneously both the amplitude and frequency chang-
es, time-frequency varying deterministic modulating functions have been introduced in the 
characterization of the seismic process. The latter processes are referred as fully or non-
separable non-stationary stochastic processes (see e.g., [6,7]).  

Several papers have been devoted afterward to study the sensitivity of the response of 
structural systems subjected to stochastic excitations. As an example, Szopa [8] studied the 
stochastic sensitivity of the Van der Pol equation. Benfratello et al. [9] proposed a procedure, 
in the time domain, to evaluate the sensitivity of the statistical moments of the response of 
structural systems for stationary Gaussian and non-Gaussian white input processes. Proppe et 
al. [10] showed that the sensitivity analysis can be considered as an application of the Equiva-
lent Linearization for design problem. Chaudhuri and Chakraborty [11] dealt with the re-
sponse sensitivity evaluation in the frequency domain of structures subjected to non-stationary 
seismic processes. In Cacciola et al. [12] the sensitivities governing the evolution of spectral 
moments of the response are evaluated by solving set of differential equations once the Kron-
ecker algebra is applied.  

For linear structural systems subjected to non-stationary stochastic excitations, the evolu-
tionary frequency response function, also referred in literature as the time-frequency varying 
response function, plays a central role in the evaluation of the statistics of the response [13]. 
In fact, by means of this function, it is possible to evaluate in explicit form the evolutionary 
power spectral density of the response and, consequently, the non-geometric spectral mo-
ments, which are required in the prediction of the safety of structural systems subjected to 
non-stationary random excitations (see e.g., [14-19]). 

In recent studies [20,21], the senior authors, have evaluated in explicit form, for both clas-
sically and non-classically damped structural systems, the time-frequency varying response 
function. 

In this study handy expressions for the sensitivities of non-geometric spectral moments of 
the structural response of linear classically or non-classically damped linear structural systems 
subjected to both separable and non-separable non-stationary excitations are evaluated. The 
proposed approach requires the following items: a) to determine sensitivities of evolutionary 
frequency response functions by means of explicit closed form solutions; b) to evaluate the 
sensitivity of the structural response statistics by frequency domain integrals.  
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A numerical application shows that the proposed approach is suitable to cope with practi-
cal problems of engineering interest. 

2 DYNAMIC RESPONSE SENSITIVITIES FOR DETERMINISTIC LOADS 
The sensitivity analysis consist in the evaluation of the change in the system response due 

to system parameter variations in the neighborhood of prefixed values, called “nominal pa-
rameter”. To this aim, preliminarily the set of significant parameters, for which the influence 
on the response has to be evaluated, are collected in the r-component vector α , where r being 
the number of the significant parameters taken into account. For a quiescent structural system 
at time 0t t , the dependence of the damping and stiffness matrices of the structure, and of 
the response vector collecting the nodal displacements, on the actual value α  of the signifi-
cant parameter vector, is expressed as: 

              0;t t t F t t        M U α C α U α K α U α M τ U α 0         (1) 

where M ,  C α , and  K α  are the n×n  mass, damping, and stiffness matrices of the struc-

ture,  tU α  is the n-dimensional vector of nodal displacements relative to the ground, τ  is 
the n-dimensional array listing the influence coefficients of the ground shaking, ( )F t  is the 
time-dependent loading vector, and a dot over a variable denotes differentiation with respect 
to time.  
Denoting with 0α  the vector of the significant parameters in correspondence of the nominal 
parameters, any vector α  in the neighborhood of 0α  can be represented as: 

          0  α α α ,                                                             (2) 

where α  is assumed to be a vector collecting small parameter variations with respect to the 
nominal parameter vector 0α . In order to evaluate the response sensitivity, the equation of mo-
tion (1) is written as: 

                 0 0 0;t t t F t t                  M U α C α C α U α K α K α U α M τ U α 0
           (3) 

in which  0K α  and  0C α  are the stiffness and damping matrices of the structure evaluated 

in correspondence of the nominal parameter vector 0α , while,      0  C α C α C α  and 

     0  K α K α K α . It follows that the structural system is non-classically damped. To 
solve Eq.(1) the equations of motion have to be rewritten in state variables: 

                 0= + ;t t tF t   Z α D α Z α w Z α 0                             (4) 

where  tZ α  is the 2n- state vector variable while the 2n×2n  matrix  D α  and the 2n- vec-
tor w are defined as: 

 
 

 
 

   
,

1 1; ; ;n n n nt
t

t  

     
             

O IU α 0
Z α D α w

M K α M C αU α τ
    (5) 

where nI  and ,n nO  are respectively the identity and the zero matrices of n×n  order while n0  
stands for a n- dimensional vector. In order to evaluate the structural response the 2n×2n  

77



T.Alderucci, F.Genovese and G. Muscolino 
 

transition matrix  tΘ α  has to be introduced [22,23], and for non-classically damped sys-
tems this matrix can be evaluated as: 

                   * * *exp exp expT Tt t t t            Θ α D α Ψ α Λ α Ψ α A α Ψ α Λ α Ψ α A α
               (6) 

in which  D α  has been defined in Eq.(5),  Λ α  and  Ψ α  are the complex matrices col-
lecting eigenvalues and eigenvectors respectively, depending of uncertain parameters α . 
Formally, these matrices can be evaluated by applying the complex modal analysis. Accord-
ing to this analysis the following coordinate transformation is introduced: 

     .t t  Z α Ψ α X α        (7) 

If m is the number of modes selected for the analysis,  tX α  is a complex vector of order 2m 

and the complex matrix  Ψ α , of order (2 ×2 )n m , collects the complex eigenvectors, solu-
tions of the following eigenproblem: 

             1 1
2;     T

m
 D α Ψ α Ψ α Λ α Ψ α A α Ψ α I     (8) 

where the superscript T  denotes the transpose operator, Λ  is the diagonal matrix collecting 
the 2m  complex eigenvalues and 

 
 

,

.
n n

 
 
 

C α M
A α

M O
        (9) 

In order to evaluate the first-order sensitivity, Eq.(4) must be differentiated with respect to 
α , setting 0α α , leading to the following differential equation [12]: 

         0 0 0 0 0 0, , , ;,i ,i ,it t t t  Z Z Zs α D α s α + F α s α 0   (10) 

where the pseudo-force vector  0 ,tF α  is given by the equation 

     0 0 0, ,it tF α = D α Z α     (11) 

in which all the quantities are known. In Eq.(11) the matrix  0iD α  can be readily determined 

deriving the matrix  D   with respect to i-th significant parameter i . That is, 

 
 

   
   

00

, ,
0 0 -1 -1

0 0

,
, ; n n n n

,i i
i ii i

t
t

  
         

Z
α αα α

O OZ α
s α D α D α

M K α M C α


 (12) 

where 

       
0 0

0 0; .i i
i i

 
  

 
α α α α

K α K α C α C α
 

  (13) 

It is noted that the set of first-order ordinary differential in Eq.(10) is formally similar to 
Eq.(4), which represents the equation of motion of the structural system in the state variable 
space. This means that the derivatives of the response with respect to the i-th parameter can be 
calculated by means of the same procedures used for response evaluation, that is: 
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           
0

0 0 0 0 0 0, exp , , d
t

T
,i

t

t t     Zs α = Ψ α Λ α Ψ α A α F α     (14) 

It follows that the sensitivity vector of the response in state variables can be evaluated as: 

             

           

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0

, exp , , d

               exp , exp , d d

t
T

,i i
t

t

i
t t

t t

t F


  

    

  

   
         

    



 

Zs α = Ψ α Λ α Ψ α A α D α Z α

= Ψ α Λ α B α Λ α v α

(15) 

where 

         
0

0 0 0 0, exp , d
t

F


   
 

   
  
Z α = Ψ α Λ α v α     (16) 

and 

         0 0 0 0 0( ) ( ) ( ) ; .T T
i iv α Ψ α A α w B α = Ψ α A α D α Ψ α     (17) 

For deterministic excitation the sensitivity of the response can be evaluated by a step-by-step 
procedure [12,22,23]. 

3 DYNAMIC RESPONSE SENSITIVITY FOR FULLY NON-STATIONARY 
STOCHASTIC LOAD PROCESSES 

3.1 Closed form solutions for the time-frequency varying response vector function 
In the framework of non-stationary analysis of structures, the spectral moments can be 

evaluated in compact form by introducing the pre-envelope covariance (PEC) matrix. This 
matrix, in nodal space, is a 2 2n n  Hermitian matrix, that, for non-classically damped sys-
tems, can be evaluated formally as [18,19]: 

* *

*

* *

0, 1,

1, 2,

E ( ) ( ) E ( ) ( )
( ) E ( ) ( )

E ( ) ( ) E ( ) ( )

( ) i ( )
                                                 

i ( ) ( )

T T

T

T T

T

t t t t
t t t

t t t t

t t
t t

    
     
    
 

  
  

   

ZZ

UU UU

UU UU

U α U α U α U α
Σ α Z α Z α

U α U α U α U α

α α
α α

 

 

  (18) 

where ( )tZ α  is the nodal state variable vector solution of Eq.(4), while the matrices 

, ( )i tUU α  collect the non-geometric spectral moments (NGSM) [15-19]. After some algebra, 
the nodal PEC matrix, can be evaluated in time-domain, for quiescent structural systems (at 
time 0 0t  ), as follows: 

     
0 0

1 2 1 2 1 2( ) , d d
t t

T T
FF

t t

t t t R           ZZ α Θ α ww Θ α              (19) 
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where w  is the vector defined in Eq.(5), 1 2( , )FFR    is the complex autocorrelation function 
and  tΘ α  is the transition matrix defined in Eq.(6). By substituting the transition matrix (6) 
into Eq.(19), the nodal PEC matrix can be written also as [20,21]: 

     
0 0

* * *
1 2 1 2 1 2( ) ( ) exp , ( ) ( ) exp , d d ( )

t t
T T

FF
t t

t t t R     
  

         
  
 ZZ α Ψ α Λ α v α v α Λ α Ψ α  

                       (20) 

where the vector ( )v α  has been defined in Eq.(17). In this equation the autocorrelation func-
tion is defined as follows:  

    *
1 2 1 2 1 2 0

0

, exp i ( , ) ( , ) ( )dFFR t t t t a t a t G    


                  (21) 

where ( , ) ( , )a t a t    is the modulating function, that for fully non-stationary processes 
depends on both time and frequency. In Eq.(21)  0G   is the one-sided power spectral densi-
ty (PSD) function of the stationary counterpart of the fully not stationary input process having 
the one-sided evolutionary PSD (EPSD) defined as 2

0( ) ( , ) ( )FFG t a t G   . By substitut-
ing Eq.(21) into Eq.(20), it is possible to evaluate the nodal PEC matrix (18) as: 

*

0

( , ) ( , , )d ( ) ( , ) ( )Tt t t 


 ZZ ZZ XXΣ α G α Ψ α Σ α Ψ α                (22) 

where ( , )tXXΣ α  is the PEC matrix in the complex modal state subspace defined as: 

0

( , ) ( , , )dt t 


 XX XXΣ α G α                 (23) 

where ( , , )tXXG α  is the one-sided EPSD function matrix of the modal complex response, 
that is: 

*
0( , , ) ( ) ( , , ) ( , , ).Tt G t t   XXG α X α X α                (24) 

Notice that, in evaluating the nodal PEC matrix of Eq.(22), the following coordinate trans-
formation has been introduced: 

( , , ) ( ) ( , , )t t Z α Ψ α X α        (25) 

where ( , , )tZ α  is the time-frequency varying response (TFR) vector function of the nodal 
response, while ( , , )tX α  is the TFR vector function of the modal response, defined as: 

   
0

( , , ) exp , exp i ( , )d ( ).
t

t

t t a       X α = Λ α v α                (26) 

In order to evaluate in explicit form the TFR vector function of modal response, the vector 
( , , )tX α  can be evaluated as the solution of a set of 2m first order uncoupled differential 

equations, since the following relationship holds [20]: 

   0 0 0( , , ) ( ) ( , , ) ( )exp i ( , ) ; ( , , ) ( , )t t t a t t t t        X α Λ α X α v α X α X α   (27) 
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where  0 0, , ( , )t X α X α  is the vector of the initial condition at time 0t t  and ( )t  is 
the unit step function.  

If the particular solution of Eq.(27),  p , ,tX α , can be determined in explicit form, the 
TFR vector function, according to the dynamics of non-classically damped systems, can be 
written as [21]: 

          p 0 p 0 0, , , , exp ( , ) , , .t t t t t t           X α X α Λ α X α X α    (28) 

The analytical expression of the particular solution vector  p , ,tX α , can be easily ob-
tained in closed form for the most common models of modulating function ( , )a t  proposed 
in literature [4-7]. It has been recently shown that the most useful time-frequency functions to 
model the fully non-stationary seismic excitation can be written as [6]: 

 0 0 0( , ) ( ) ( ) exp ( ) ( ) ( );aa t t t t t t t                           (29) 

where     and  a   could be complex functions which have to be chosen to satisfy the 

condition: ( , ) ( , )a t a t   .  
It has been demonstrated that for quiescent structural systems at time 0 0t  ,  0 , X α 0 , 

and for the modulating function, defined in Eq.(29), the vector  , , tX α , defined in Eq.(28), 
can be evaluated in explicit form as [20,21]: 

      2 2, , ε(ω) exp [ (ω) ] ( ) ( ) exp  ( ) ( )t t t t t             X α Γ Γ Λ α Γ v α    (30)
  

where ( ) ( ) ia       and ( )Γ  is the diagonal matrix, function of the α  vector too that 
for simplicity‟s sake is omitted, defined as: 

       
1

2, + .m   


    Γ Γ α Λ α I              (31) 

Then, it is possible to evaluate, in explicit form, the EPSD function matrix of the modal re-
sponse by substituting Eq.(30) into Eq.(24) which can be written as: 

* *
0( , , ) ( ) ( ) ( , , ) ( , , ) ( )T Tt G t t   ZZG α Ψ α X α X α Ψ α     (32) 

3.2 Closed form solutions for the sensitivity of time-frequency varying response vector 
function 
By differentiating the PEC matrix, defined in Eq.(18), it is possible to evaluate its sensi-

tivity with respect to the i-th parameter, as follows: 

     
0

** *
0 0 0 0 0

( ), E ( ) , E ( ) ,
,i ,i

TT T
,i ,i

i

tt t t t t


 
    

Z Z

ZZ
s s Z Z

α α

Σ αα Z α s α Z α s α


   (33) 

where the vector  0 ,,i tZs α  has been defined in Eq.(12). It follows that, analogously to 
Eq.(22), the following relationship holds: 

   * * *
0 0 0 0 0 0 0

0

E ( ) , ( ) ( , , ) ( , , ) ( )dT T T
,i it t t t G   

 
   

 
zZ α s α Ψ α X α Y α Ψ α   (34) 
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where the vector 0( , , )i tY α  is the sensitivity of TFR vector function with respect to the pa-
rameter i : 

   0 0 0 0
0

( , , ) exp , ( , , )d .
t

i it t       Y α Λ α B α X α    (35) 

Alternatively the sensitivity of PEC matrix can be defined as: 

   0 0

0 0

0, 1,

0 0
0
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  
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  
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 


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   (36)

whose elements are the sensitivity of first three spectral moments with respect to the parame-
ter i . In this equation  0 ,

,i ,i
t

Z Zs sG α  is the sensitivity of the one-sided EPSD function of nod-
al response, that is: 

 
0

0

* * *
0 0 0 0 0

( , , ),

( ) ( ) ( , , ) ( , , ) ( , , ) ( , , ) ( ).   
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G t t t t





    


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

   

Z Z

ZZ
s s

α α

G αG α

Ψ α X α Y α Y α X α Ψ α
   (37) 

The main problem is now to evaluate the vector 0( , , )i tY α , defined in Eq.(35), taking in-
to account Eq.(30). This vector function can be evaluated as solution of the following differ-
ential equation with zero start conditions at time 0 0t  : 

   0 0 0 0 0 0 0( , , ) ( ) ( , , ) ( , , ) ; ( , ,0) .i i i it t t t       Y α Λ α Y α B α X α Y α 0   (38) 

To perform the solution of this set of differential equations the vector defined in Eq.(30) is 
rewritten as: 

     0 1 0 2 0, , , , , ,t t t   X α X α X α     (39) 

where 

   
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2
1 0 0

2
2 0 0 0

, , (ω)exp [ (ω) ] ( ) ( ) ( ) ;
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t t t t

t t t

    

  

     

   

X α Γ Γ v α

X α Λ α Γ v α
   (40) 

It follows that it is possible to split the vector solution of Eq.(38) as the sum of two vectors, 
solutions of the following two sets of differential equations, with zero start initial conditions 
at time 0 0t  : 

 

 

,1 0 0 ,1 0 0 1 0 ,1 0

,2 0 0 ,2 0 0 2 0 ,2 0

( , , ) ( ) ( , , ) ( , , ); ( , ,0)
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t t t
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  

  

Y α Λ α Y α B α X α Y α 0

Y α Λ α Y α B α X α Y α 0
  (41) 

It follows that the sensitivity TFR„s vector function can be evaluate in closed form solution as: 

         
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where the particular solution vectors of Eqs.(41), can be evaluated, after some algebra, as fol-
lows: 

       

 

,1,p 0 0 0 0 0

2
,2,p 0 0 0 0

, , (ω)exp [ (ω) ] ( ) ( ) ( )  ( ) ( );

( , , ) (ω) ( , ) exp ( ) ( );
i i i i

i i

t t t

t t t

      

  

     

   

Y α Γ Γ B α B α Γ B α Γ v α

Y α P α Λ α Γ v α
            (43) 

where 0( , )i tP α  is a matrix of order (2 ×2 )m m  whose elements, , 0( , )i jkP tα , are defined as fol-
lows: 

                                    , 0
, 0 , 0 , 0

( )
( , )  ( ); ( , ) ,i jk

i jj i jj i jk
k j

B
P t t B P t j k

 
  



α
α α α             (44) 

with , 0( )i jkB α  elements of the matrix  0iB α . Finally, the sensitivity of PEC matrix with re-
spect to the parameter i , defined in Eq.(36), can be evaluated by substituting Eqs.(39) and 
(42) into Eq.(37), and then the result (the explicit closed form of the nodal EPSD function ma-
trix) into Eq.(36). 

4 NUMERICAL APPLICATIONS 
In this section, the accuracy of the proposed procedure has been verified, through the com-

parison of the results of a numerical application with the Monte Carlo Simulation (MCS) 
method (1000 samples). The analysed system is composed by two interconnected three-story 
selected structures, having the same floor elevation, as depicted in Figure 1. The two neigh-
bouring floors are connected by a damper device. Each fluid damper device is modelled as a 
combination of a linear spring, having stiffness   5

d, 1 10 N/mik   , and a linear dashpot, 

having damping coefficient   6
d, 1 10 N s/mic   , with 0   a dimensionless parameter. 

It follows that the vector α  becomes a scalar quantity and the nominal structural matrices are 
evaluated setting 0  .  

 
Figure 1: Geometric configuration of the analyzed structure. 
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The characteristics of each floor (mass im , stiffness ik and damping coefficient ic ) for the 
two buildings are summarized in Table 1. In Table 2 the modal characteristics of the two un-
linked buildings (circular frequency i , period iT  and modal participating mass ratio i ), 
together with the global system are reported. 
 

 Building 1 Building 2 
 N mik   112 10  92 10  
 kgim  61.29 10  

61.29 10  
 Ns mic  51 10  

51 10  
Table 1: Characteristics of the analysed buildings. 

 

Building 1 Building 2 Global system 
 rad si   siT   %i   rad si   siT   %i   rad si   siT   %i  

175.235 0.036 91.408 17.523 0.359 91.408 17.527 0.359 47.704 
490.998 0.013 7.488 49.099 0.128 7.488 49.100 0.128 3.744 
709.512 0.009 1.104 70.951 0.089 1.104 70.952 0.089 0.552 

Table 2: Modal information of the analysed buildings. 

The selected structures are subjected to a fully non-stationary seismic input whose EPSD 
function can be expressed as: 

2
0( ) ( , ) ( ).FFG t a t G                                            (45) 

In the previous equation the parameters of the modulating function, defined in Eq.(29), 

have been set as:  
2

2

1 0.15
2 25πa


 

 
 

 
 ,  

2
5π

    and 0 0t  ; the Tajimi-Kanai PSD 

function is used to model the PSD function of the stationary counterpart of the input stochas-
tic process: 
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


 
                                  (46) 

where 2 3
W 0.05 m sG  , K = 4 π rad/s  is the filter frequency that determines the dominant 

input frequency and K = 0.6  is the filter damping coefficient that indicates the sharpness of 
the PSD function. 

In order to show the accuracy of the proposed method, the sensitivity  
,ur

S t  (indicated in 

Eq.(47)) with respect to the parameter  of NGSMs of the generic r-th floor displacement 
( )ru t  are compared with MCS results and are depicted in Figures 2-4.  

                                                     
 

,

,

0

,
r

ur

u t
S t














                                                (47) 
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In Eq.(47),  , ,
ru t are the r-diagonal elements of the , ( )tUU α  matrix defined in 

Eq.(36) while the subscript  indicates the order of the NGSMs. 
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Figure 2: Time histories of the sensitivity of the NGSM 0, ( )

ru t , for the six relative to ground floor displace-
ments of the buildings (black line) and comparison with the MCS (red dots). 
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Figure 3: Time histories of the sensitivity of real part of the NGSM 1, ( )

ru t , for the six relative to ground floor 
displacements of the buildings (black line) and comparison with the MCS (red dots). 
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Figure 4: Time histories of the sensitivity of the NGSM 2, ( )

ru t , for the six relative to ground floor displace-
ments of the buildings (black line) and comparison with the MCS (red dots). 

 

The figures 2-4 evidence a perfect superposition between the proposed analytical solution and 
the MCS method, demonstrating the accuracy of the proposed procedure. Obviously a positive 
sensitivity indicates an increment of the corresponding NGSM, when the parameter   chang-
es, while a negative sensitivity means that the NGSM decreases when the parameter changes. 

Finally, in Figure 5 the sensitivity of the first NGSM of the response of third floors, for 
both buildings, and for five different ratio of the stiffness, have been depicted. In the first 
three cases the stiffness of building 1 is assumed: 112 10 N/mik  . In the latest two cases the 
stiffness of building 2 is: 112 10 N/mik  . These figures show that the sensitivity of the first 
NGSM is positive for the more rigid building, while it is negative for the more deformable 
building. Namely, for the presence of devices, changing the parameter   the response of 
more rigid structures increases, while the response of lighter structures decreases. In the third 
case, when the two structures have the same stiffness, the sensitivity for building 1 is negative 
for the former time instants and positive for the following ones. The opposite result is ob-
tained for building 2. This means that in the third case the sign of the sensitivity changes in 
the time. Zero sensitivity means that a change of parameter   does not modify the response 
of two buildings with respect to the nominal case. 
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Figure 5: Time histories of the sensitivity of the NGSM 

30, ( )u t , for the third relative to ground floor displace-
ments of the buildings for different ratio of the stiffness. 
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5 CONCLUSIONS 

In the framework of optimization procedures, especially during the design of vibration 
control devices, the sensitivity analysis is a very powerful tool to evaluate how the structural 
response is modified with reference structural parameters changes. 

In this paper a novel method for the evaluation of the sensitivities of non-geometric spec-
tral moments of the structural response of linear classically or non-classically damped linear 
structural systems subjected to both separable and non-separable non-stationary excitations is 
proposed. 

The proposed procedure is based on two fundamental steps: first, it is necessary to deter-
mine sensitivities of evolutionary frequency response functions, and it is possible thanks to 
the herein obtained explicit closed form solutions; then, by simple frequency domain inte-
grals, it is possible to evaluate the sensitivity of the structural response statistics. 

The presented method has a unified approach for both classically and non-classically 
damped discrete linear structural systems, thanks to use of the state-variables. 

The numerical application on a plane-frame demonstrated the effectiveness of the proposed 
method, since a validation with MCS method has been done.  
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