
RECOMMENDER TECHNIQUES FOR SOFTWARE WITH RESULT
VERIFICATION

Ekaterina Auer1 and Wolfram Luther2

1University of Applied Sciences Wismar,
D-23966 Wismar, Germany

e-mail: ekaterina.auer@hs-wismar.de

2 University of Duisburg-Essen
D-47048 Duisburg, Germany
e-mail: luther@inf.uni-due.de

Keywords: software, scientific recommender systems, initial value problem, ordinary differen-
tial equations.

Abstract. Methods with result verification such as interval analysis or affine arithmetic have
been used successfully at least since the 1970s not only for dealing with the automated proofs
that simulation results obtained using computers are correct, but also for taking into account
the influence of bounded uncertainty in the input on the outcome of a simulation. There are
many packages developed for providing basic arithmetic computations on different platforms,
for example, filib++ in C++1, PyInterval in Python2, or such exotic implementations as Juli-
aIntervals in Julia programming language3, and this is only a small choice of tools for interval
arithmetics. Moreover, there are packages for higher level algorithms such as solving ini-
tial value problems for ordinary differential equations (e.g., VNODE-LP), global optimization
or linear/nonlinear systems of equations (e.g., inside C-XSC Toolbox). However, despite this
abundance of software solutions, set-based methods with result verification are rarely used by
an ordinary engineer for dealing with bounded uncertainty. In our opinion, one reason for this
unpopularity is that engineers do not have time to compare the existing tools and choose the
package that is most suitable for their task. To address this problem, we suggest using automatic
recommendations.

In this paper, we focus on software for solving initial value problems since it is important in
many application areas such as biomechanics or automatic control. We show how modern con-
cepts from the area of recommender systems can be employed to obtain an automatic suggestion
about what tool to use for a given application and what prerequisites are necessary to be able
to do so. We discuss in general what kind of data, metadata, quality criteria, metrics, and visu-
alizations are required to be able to compare and recommend software with result verification.
Finally, we present algorithms for recommendation and illustrate their functionality.

1www2.math.uni-wuppertal.de/˜xsc/software/filib.html
2pypi.org/project/pyinterval
3github.com/JuliaIntervals

509

Available online at www.eccomasproceedia.org
Eccomas Proceedia UNCECOMP (2019) 509-533

UNCECOMP 2019
3rd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Crete, Greece, 24-26 June 2019

ISSN:2623-3339 © 2019 The Authors. Published by Eccomas Proceedia.
Peer-review under responsibility of the organizing committee of UNCECOMP 2019.
doi: 10.7712/120219.6356.18823

Ekaterina Auer and Wolfram Luther

1 INTRODUCTION

Digital assistance becomes more and more ubiquitous in everyday private and working life.
Therefore, topics with applications to ambient intelligence and smart environments are of par-
ticular interest in the field of information science. Research trends focus on cross-cutting issues
such as standardization, verification and validation assessment, or development of formal test-
ing and quality criteria concerning, for example, reliability, performance and user satisfaction,
which makes devising versatile metrics and agreeing on unified vocabularies across disciplines
especially important. As demonstrated in [8], new software engineering priorities are in such
technologies as search engines, recommender systems, and general data mining techniques.

The goal of recommender systems (RS) [2] is to aid consumers while they select from a
variety of products, mostly with the aim to increase product sales (e.g., for online shops) or
otherwise promote a given business (e.g., for social networks). Depending on the intended
application, a number of other – operational or technical – goals can be set concerning, for
example, relevance, novelty or diversity of recommendations. For generating suggestions, it is
assumed that meaningful rules can be discerned about the way the consumers (users) select the
products (items) or, vice versa, about the products most suitable for (a group of) customers. To
achieve the mentioned goals, RS might take into account such characteristics as the intended
product use, customer behavior, or product ratings and try to compile a ranked list from the
multitude of offers (or predict a user’s rating for a given item) according to criteria specified
beforehand. Beyond the classical application in the area of e-commerce, RS are also in high
demand for digital products, for media (including such different aspects as movies, news, or
scientific publications), for healthcare, learning, or artificial-intelligence-based services. This
new perspective requires novel, formally described standards, quality criteria and metrics [66]
to determine the ranking in the sense of a multi-criteria optimization supported, if possible, by
test environments (e.g., for software tools) and evaluation guidelines for recommendations.

Whereas evaluation of recommendations is a fairly well-known topic (cf. [2], Chapter 7),
the related notions of testing and test environments might require a further explanation. Their
obvious goal is direct certification of a RS, as, for example, in case of the data set and precise test
descriptions provided in the context of the Netflix prize 4. On the other hand, their development
might be motivated by human factors: While some consumer groups might make decisions
taking into account just the quality criteria, fulfillment of requirements, known benchmarks
results, or recommendations from peers, other consumer groups, in particular, professionals,
might want to parameterize and try out different digital products in a common test environment
themselves to find the right product or the right solution in a given situation and for a specified
task. A new research direction is therefore scientific RS (SRS) for digital products supported
by test environments.

In our view, a scientific RS should possess the following characteristics:

1. It is a recommender for scientists providing a ranked list of items (e.g., software tools)
suitable for the user’s task.

2. It is usually knowledge based, context aware and multi-criteria; its item ratings evolve
with time (e.g., requirements for software quality, its usability and the degree of interac-
tion might evolve with time).

3. It provides recommendations which are relevant for a given user with respect to prede-
fined (or inferred) criteria.

4www.netflixprize.com

510

Ekaterina Auer and Wolfram Luther

4. It is flexible in the sense that (groups of) items or users with new attributes can be added
easily to the set-up.

5. It is reliable, for example, is based on formally described criteria, uses reliable algo-
rithms, provides explanations of recommendations for credibility and traceability of deci-
sions, and takes care of good provenance of data (e.g., through common test conditions).
Trustworthiness is supported through recommendation rating by users.

6. It can be supported by a test environment, which can take care of the cold-start problem
and active learning.

By contrast, such RS subgoals as novelty, surprise, or diversity (cf. [2], page 3) need not be
considered. Although context-aware, SRS does not necessarily need to take into account such
domain-specific challenges as location and the social component. Social media for scientists
such as www.academia.edu or www.researchgate.net belong to the general class
of social RS such as www.facebook.com and might contain subcomponents which can be
classified as SRS (e.g., recommending project partners).

In this paper, we apply the general principles and techniques of (scientific) recommendation
in a specific context of verified software. After giving a brief overview of the state of the art
in SRS along with suggestions of how it can be employed for our purposes (Section 2), we
illustrate the concepts summarily in Section 2.2 using the application area of visual analytics,
where automatic choosing of the appropriate visualization technique is a common software fea-
ture (often without the name of recommendation). Our focus is on recommending techniques
for verified solution of initial value problems (IVPs) for ordinary differential equations (ODEs),
an area where we would like to offer users similar options. In Section 3 we point out what is
necessary to recommend a scientific tool in general. In Section 4, we describe first the available
verified IVP solvers along with the necessary conditions and rules to be able to give a recom-
mendation. Moreover, we provide and illustrate a specific algorithm using a small data set.
Finally, we point out possible improvements and further research directions. Conclusions are in
the last section.

2 SCIENTIFIC RECOMMENDER SYSTEMS

The purpose of scientific RS is to recommend an item (a ranked list of k items) to a scientist
in a broad sense (e.g., engineer, researcher, teacher, student). This item can be a digital product,
for example, a software tool or a technique, from various application areas such as visualization
or education.

One classical formulation of a recommender problem is to determine a list of recommenda-
tions (for items) based on preferences and needs of a user (group), which we see as the most
relevant formulation for a scientific recommender. Three general RS techniques are collabo-
rative filtering (using information about user-item interaction), content-based methods (using
information about attributes of users and items), and knowledge-based methods (using explicit
information about user requirements). SRS recommend items for scientific tasks that fulfill pre-
defined requirements and constraints and make use of all of the mentioned general techniques
where necessary. To establish a list of recommendations, SRS often rely on object or case-based
approaches accompanied by filtering and learning algorithms, similarity measures to compare
items (cases), quality criteria and metrics to select and rate suggestions, and intelligent algo-
rithms to match users’ quality criteria with product properties/descriptions or to find people
with similar interests/profiles and expectations for the product.

In this section, we identify the most common SRS topics first. After that we describe the

511

Ekaterina Auer and Wolfram Luther

subtopic of visual analytics in more detail. Note that our literature review is not supposed to
be complete and has a narrow focus. For general overviews of RS and their research topics,
see, for example, [2, 32], and for SRS [22, 25, 53, 58, 59, 49], which are mainly about RS in
education and paper recommending. In [50, 14, 26], the state of the art is described for aspect-
based RS which make personalized recommendations taking into account the users’ opinions
about aspects of the rated items extracted from their reviews.

2.1 Topics for scientific recommendation

Below, we identify research topics in scientific recommendation (in capital letters) and exem-
plify them by (a) relevant publication(s). The considered SRS mainly use a case database with
benchmarks for problems and their solutions; retrieve similar tasks; reuse, adapt and revise so-
lutions and retain new cases and new user preferences. That is, they can be classified as mostly
knowledge-based and employ appropriate quality criteria and metrics. Case-based and feature-
based SRS continue to evolve by including new user groups, their tasks and environments as
shown in [39].

SRS-SE recommend relevant activities for software engineering (SE) tasks and support de-
velopers during programming of software components by providing “information items esti-
mated to be valuable for a software engineering task in a given context” [56]. Specifically,
SRS-RE offer help in the area of requirements engineering (RE) considered to be “one of the
most critical places in software development” [22] by employing the whole range of recom-
mender techniques from collaborative filtering to social media related algorithms.

SRS-P make a choice of relevant papers (P) from a specified scientific field. Scientific paper
recommender systems are extensively described in [59], supplemented by several new metrics
and a comparative/contrasting definition of various recommendation tasks. An important sub-
task is to extract semantic relations between keywords from scientific articles in order to support
users in the process of browsing and searching for content in a meaningful way [38]. SRS-E
help students and teachers to make choices (e.g., of suitable courses) in the educational (E) con-
text [23]. Further tasks for SRS-E are given in [4], where the authors describe an RS that can
be applied for finding experts in academia, for example, supervisors for students’ qualifications
or research, reviewers for conferences, journal or project submissions, or partners for R&D
proposals. SRS-STI, that is, RS for scientific and technical information (STI), are addressed
in [48]. Here, a more general point of view is adopted by combining the angles of SRS-P (e.g.,
scientific libraries), SRS-E (e.g., e-learning) and others. The privacy issues and the cold start
problem are addressed and several algorithms for the generation of behavior-based recommen-
dations are explored there.

The next topic is the one of the most relevant w.r.t. the goal of this paper. SRS-PSE provides
recommendation for problem-solving environments (PSE) [28, 27, 67]. In [67], the project CB-
Matrix is described – an early development in the area of devising “intelligent recommender
components” to assist scientists in choosing and applying scientific tools. The developers of
the project PYTHIA [28, 27] start out by recommending software/methods for partial differ-
ential equations and then extend their methodology to enable users to prototype their own rec-
ommenders on the basis of their own databases and specifications for interaction with under-
lying execution environments. The resulting customizable web-based platform MyPYTHIA
does not seem to be freely accessible online anymore5. MyPYTHIA leaves the problem of a

5The service swMATH http://swmath.org, which is a SRS-P itself and provides information on mathe-
matical software based on the analysis of publications [9], only supplies links to papers for the keyword

512

Ekaterina Auer and Wolfram Luther

common test environment out of consideration [27]. SRS-R (SRS for reliable (R) or verified
software/hardware) and SRS-VA (SRS for visual analytics, VA), which are in the focus of this
paper, can be considered as subtopics within this general setting. Even if it is not explicitly
termed as a RS in such publications as [7], the mechanism behind choosing visualization tech-
niques based on optimization of a metric w.r.t. quality criteria can be seen as such. More
information about this topic is in Section 2.2. SRS-R deal with reliable hardware and software
components, use reliable algorithms and include evaluation strategies for the system outcome,
even if ground truth to assess accuracy is missing. This topic is described in detail in Section 4.
Finally, SRS-AS, RS for assistive software (AS) [24], enable existing interoperability architec-
tures to automatically select the most suitable assistive software for a given interaction with a
specific electronic target device taking into account the user’s benefit and disabilities.

Knowledge-based RS often employ ontologies (constructed beforehand in a ’intelligence’
step, e.g., from user reviews) for generating recommendations. Ontologies provide a structured
framework for modeling concepts and relationships between scientific domains of expertise.
They are a prerequisite for development of domain knowledge metadata bases for modeling,
communicating and sharing knowledge among people (or problem-solving applications). A lot
of work has been done in this field, also from the angle of artificial intelligence. For example,
PROTEGE-II [62] is an implementation of a methodology for building knowledge-based and
domain specific knowledge acquisition systems. The tool provides protocol-based decision sup-
port in a specific medical domain. Another tool, CEDAR OnDemand [11] allows users to enter
ontology-based metadata conveniently through existing web forms from their own repositories.
The web page contents is analyzed to identify the text input fields and associate them with auto-
matically recommended ontologies. Finally, there are modeling languages based on ontologies.
For example, the publication [17] shows how to employ the unified problem-solving method
development language (UPML) as a comprehensive framework for modeling libraries of meth-
ods. UPML provides a hierarchy of concepts to specify knowledge components. In particular,
the description of a method includes a competence (defined by a set of input and output role
descriptions as well as preconditions and postconditions, e.g., formulas for inputs and outputs),
a separate method ontology (definitions of the concepts and relationships of a method) and its
associated operational description.

2.2 Recommending a visualization

A publication on scientific recommenders would not be complete without mentioning the
field of visualization, which is a very extensive topic. A lot of work has been done on choosing
the right visualization for the problem at hand, often without explicitly calling it a recommen-
dation. In this section, we mention the most important publications in this area from our point
of view and describe an application of such techniques in the field of steel production.

2.2.1 Short overview of recommender tools in visualization

The general goal of SRS-VA is to automatically suggest a visualization providing insight
about the data under consideration, ideally taking into account their characteristics and domain
as well as individual user preferences. Accordingly, approaches to visualization recommenda-
tion can be classified loosely into four categories [34]: RS based on data characteristics, RS
(additionally) using representational goals, RS employing domain knowledge to improve rec-
ommendations, and RS relying on explicit interaction with users to infer their preferences. The
first group can be considered as the most widely spread one since it was explored long before

513

Ekaterina Auer and Wolfram Luther

the term RS had been applied to VA. The others appeared as a result of cross-cutting research in
such areas as RS, data science, information visualization, and artificial intelligence. The bound-
aries between groups are not sharp so that there are methods using (parts of) techniques from
the other groups. Below, we exemplify the concepts with appropriate RS references. For more
information, see [34].

In the first group, the authors of [40, 60] suggest encoding ordered sets of user-specified data
and metadata descriptors by visual variables (e.g., size, texture, color, shape). They develop a
compositional algebra to enumerate the space of encodings and apply a set of visual integrity
criteria to prune and rank the set of visualizations. This approach resulted in algebraic specifi-
cation language VizQL with the help of which both the structure of a view and the complying
queries can be specified and used to fill the structure with data. Moreover, the module Show
Me [40] introduces a set of heuristics to extend automatic presentation to the generation of tables
of views (small multiple displays) and recommend chart types. This research is implemented
in a commercial tool Tableau6. An example of a free tool from the same class is the web ap-
plication Voyager [68, 69]. The Voyager approach uses statistical and perceptual measures for
finding out interesting relationships between data and transformations and allows for automatic
generation and interactive steering of views as well as refinement of multiple recommendations.

One of the research goals in the second class of SRS-VA is automating generation of user
tasks from natural language descriptions instead of creating them manually [34]. In the latter
case, there is a connection with formal modeling methods for user interfaces/interaction. In the
former case, advanced linguistic techniques are necessary. An example here is the tool Impro-
vise7. The tool SemViz8 [46] belongs to the third group and uses knowledge ontologies from
the semantic web for adaptive semantics visualization. Similarly, a knowledge base of various
ontologies is used in [65] to recommend visualizations. Here, the whole range of techniques
from the previous classes is employed: Although rule-based and functional requirements gov-
ern discovering and ranking of potential mappings, such factors as device characteristics, data
properties and descriptions of tasks influence the pre-selection and the final ranking. Finally,
tools like VizRec [45] or VizDeck [35] belong to the last class and employ information about
perceptual guidelines and explicit feedback about user preferences.

The publication [7] gives a comprehensive overview of metrics to compute the quality of
a visualization which have been introduced and discussed for different information visualiza-
tion techniques in recent years. The quality-metric-driven automation layer added to the visual
analytics pipeline can serve directly as the basis for making data characteristic oriented rec-
ommendations, which is (implicitly) suggested to be done by multi-criteria optimization. In
particular, the authors cover node-link diagrams and matrix representations for relational data;
parallel coordinates and pixel-based techniques for multi-dimensional data; scatter plots and
scatter matrices for high-dimensional data; TreeMaps for hierarchical data; radial visualizations
when focusing on one dimension (e.g., a person); glyphs, line and bar charts for uncertainty vi-
sualization; and, finally, typographic visualizations and tag clouds for visual representation of
text data. Additionally, geo-spatial data visualizations are examined separately as a case of
special purpose visualization. As the authors explain, the selection focuses on fields in which
quality criteria and quality metrics along with their underlying concepts, tasks and evaluation
efforts are (semi-)formally described and can be examined analytically. Moreover, they present
a high-level overview of visual exploration goals supported by the majority of metrics, for ex-

6www.tableau.com
7www.cs.ou.edu/˜weaver/improvise
8knoesis.org/semviz

514

Ekaterina Auer and Wolfram Luther

ample, clutter reduction filtering out noisy views, identifying data groups and partition clusters,
establishing relations between dimensions, filtering out outliers, or preserving original data
properties in the mapping process while reducing the number of dimensions. However, no user
studies are conducted that compare the different metrics for different tasks and different data
characteristics from a human-centered point of view.

2.2.2 Challenges in visualization recommender research

The directions of research in SRS-VA are aimed towards stronger involvement of human fac-
tors (e.g., higher interactivity) and domain specifics in generation of recommendations which
might necessitate higher use of formal languages, standards or ontologies (e.g., for encoding
tool and task categories). Filters concerning user experience and further (better) quality criteria
and metrics to rank recommendations remain topics of interest [57]. A further challenge is that
there exist many tools and methodologies for visualization, which requires possibly expensive
filtering, which in turn influences the efficiency. Besides, finding competent users is necessary
for selecting the right quality parameters out of a large number and for specifying optimiza-
tion goals. Finally, although extensive research in this direction exists [7], it is a challenge
to devise computable quality measures for optimization. For that, representative situations and
datasets, users, tasks, and quality criteria are necessary. Quality measures could be derived from
evaluation studies concerning task categories, user experience and interaction styles; concern-
ing visualization tools (with the focus on performance, accuracy, usability, result presentation
readability, integrity); and concerning data and metadata quality.

2.2.3 An application to steel production

In the previous subsections, we described recommendation methods relying heavily on for-
malizing different concepts in visualization. It is also possible to approach the task empirically,
which overlaps somewhat with the class of RS based on explicit user interaction. For example,
users are urged to explore a small number of parameter variants using large singles and small
multiples as alternative views in [21], allowing for efficient data analysis.

A similar approach is adopted by the inclusion processing framework viewer IPFViewer
2.0, developed under guidance of the second author and employed in the area of steel produc-
tion for analyzing (big) data collected about non-metallic inclusions and other defects in steel
samples [61]. Extensive interviews were conducted with experts after the initial version 1.0 had
appeared, during which alternative visualization concepts (i.e., various forms of multiple views)
had been shown to users. IPFViewer was adapted to the outcome of the survey in its version
2.0, which in turn was evaluated again by the same experts. That is, a number of visualization
recommendations (for highly specialized experts) were generated and evaluated comparatively
through user feedback w.r.t. their suitability.

IPFViewer 2.0 takes into account process parameters such as intentional settings or measure-
ments taken during monitoring of various steel grades and their metadata, defect parameters,
descriptors and volume data for each defect, isoperimetric shape factors (e.g., volume or sur-
face area), sample parameters (e.g., milling machine slices of the steel surface), and statistical
descriptors of the defects (e.g., the sample cleanliness). It performs 3D reconstruction of cracks,
non-metallic inclusions or pores. The tool can analyze the ensemble data set in various ways,
for example, detect outliers to identify samples that differ from the others by position, size, type
and number. To rate steel quality, it carries out trend analysis to study the influence of different

515

Ekaterina Auer and Wolfram Luther

process parameters on the steel samples and variance analysis to examine natural fluctuations
within the samples and desired variations that result from process parameters. When required,
IPFViewer relies on incremental, approximate analysis techniques to ensure the responsiveness
of the application while sufficient precision is guaranteed for queries with fast response times.

The steel production facility workers are now able to quickly and interactively analyze data
with millions of data rows. The resulting data tree is visualized as a huge grid in a scrollable
area. Each grid cell incorporates a multiple view system with such standard visualization tech-
niques as scatter plots, bar charts and trend graphs. Steel experts examine the histogram about
defect diameter and the largest found defects to evaluate a sample quickly without having to
analyze each defect manually. They can also scroll through all the samples and compare them,
create and save various layouts that visualize different aspects of the data in order to confirm or
refute hypotheses.

3 WHAT IS NECESSARY TO RECOMMEND A SCIENTIFIC TOOL?

In Figure 1, three general steps most SRS have to undergo to generate a recommendation
are shown. The purpose of the first one is to extract information which describes a given user’s
request for a recommendation. This retrieval can be automatic (e.g., identifying keywords from
texts), interaction-based (e.g., asking users to enter keywords) or manual (e.g., rigidly fixing the
keywords). Here, the base data/metadata set is produced. In the next step, new information is
generated, for example, taking into account similarity measures or based on ontologies, possibly
including machine learning algorithms. This produces candidates for recommendation. Finally,
the candidates are ranked according to predefined criteria or metrics and the resulting list of
recommendations is conveyed back to the users. An important additional step is evaluation of
the produced recommendations. For example, if there is a common testing environment for
the items of interest, the recommendation can be validated additionally and the feedback about
these validation results reused at the intelligence step. There are also other possibilities for
evaluation such as user studies, see [2], Chapter 7.

‘Intelligence’ step

info extraction
(automatic/manual)

Users

Request

‘Knowledge’ step

info generation
(ontology, similarity,

learning)

seed data/metadata

‘Ranking’ step

info preference
prediction

(optimization etc.)

enhanced data

Recommendation

Evaluation

Figure 1: General stages in RS. Steps strictly belonging to a RS are shown in blue.

To illustrate these steps and to see what is necessary to implement a scientific recommender,
let us consider a relatively simple example from [67]. The task of the RS from [67] is to rec-
ommend data structures (e.g., block matrices) for solving large sparse linear systems based on
previously solved use cases. At the first step, features of matrices are determined (e.g., number
of non-zeros, degree of bandedness) and a database of past information on pairs “matrix”-“data
structure” is created. Possibly, the data have to be normalized beforehand. At the next step,
a predefined similarity metric is used to be able to determine matrices similar to a given new

516

Ekaterina Auer and Wolfram Luther

one. To improve similarity detection, tests based on genetic algorithms can be carried out here
to automatically determine a ‘good’ set of feature weights. At the third step, the most suitable
data structures for these similar matrices are determined and ranked for the recommendation
according to a ‘measure of goodness’ (i.e., performance in flops). The recommendations are
evaluated in cross-validation tests. As shown in [27], such principles can be generalized and
used to generate recommenders themselves.

Since the goal of a SRS is to provide a ranked list of tools best suited for a given user task
as explained earlier, we describe a possible approach to choosing the most suitable item (or a
list of them) and relate it to the scientific tool context. An interesting ranking method based on
keywords is introduced in [51, 52]. A more sophisticated ranking algorithm is described in [70].
For textbook approaches in network context, see [2], Chapter 10.

As already explained in relation to VA, multi-objective optimization can play an important
role as an RS technique and be seen independently of visualization context. A quality function
q and the associated algorithm A are defined in dependence on the problem-solving tool v, sev-
eral descriptors (e.g., those pertaining to data, users, and tasks) and some side conditions. As
proposed in [7], the algorithm A has to solve a multi-objective optimization problem in order to
find a problem-solving instance v (or a ranked list L of such tools v) to maximize (minimize)
q. The choice of parameters to optimize and their ranges depends on the task definition, re-
quirements, equality and inequality constraints, valid standards or measurements/experiments
for validation. This choice can be made by trial and error, searching or filtering. The function q
is characterized by quality criteria and quality metrics defined in the context of the user group
and its profile, the task and its model, the data, metadata and data types mapped to the tool v be-
longing to a predefined set of computer-based problem solvers, the hardware and its interfaces.
The quality criteria encompass performance of the task completion including effectiveness and
efficiency, reliability criteria for the input data that need to be mapped by v to the outcome
space accurately and efficiently. If the optimization problem can be solved automatically, then
the problem solving tool v or tool selection and its/their quality metric parameters fulfill the
requirements and side conditions and can be recommended to the user (group) for drawing con-
clusions and making decisions. Typically, requirements concern the solution or its enclosure
under uncertainty in parameters. The success of this approach depends on whether an effective
and efficient implementation A of the target function q and its computation can be provided.

In order to produce L, a strategy similar to [59] can be employed. There, a similarity-based
diversity metric mdiv is considered for a set P of scientific papers pi as a normalized sum

1−mdiv := c−1 ·
∑
i6=j

msim(pi, pj) ∈ [0, 1], where c = (|P |(|P |−1))·max
i6=j

msim(pi, pj) , (1)

which can be adapted to scientific tools. That is, such tools can be seen as similar if their values
for a given quality measure differ only slightly on a set B of benchmark problems. Further, the
term ‘coverage’ is introduced in [59] as “the extent to which all important aspects and subtopics
of a scientific field are covered by a set of papers”. It is an open research topic to develop a
method to similarly cover a given problem space with a small number of scientific tools that
solve the benchmark problems w.r.t. given requirements, constraints and quality criteria, for
example, performance, accuracy, and usability. That means describing the problem space as
a multidimensional space T depending on problem descriptors and compiling a small number
of tools in a list L that clusters the space T . This can be done by using an average similarity

517

Ekaterina Auer and Wolfram Luther

distance

Av(dsim(L)) :=

∑
i6=j

dsim(vi, vj)

|L|(|L| − 1)
(2)

for a set L ⊆ T of scientific tools vi and the similarity distance dsim by constructing a sequence
Av(dsim(Li)) with further tools vi+1 ∈ T as far as possible from the already taken item set
{v1, v2, . . . , vi} ⊆ T . For this, we arrange the distances according to their value in descending
order and start with two most distant items v1, v2. The process can be terminated if the last
distance d(Li, vi+1) falls below a certain limit c. Then for each v ∈ T there is at least one item
vi ∈ L with dsim(vi, v) = c.
To summarize, what is needed for SRS is the following.

Database User features, item features, user-item information
Information generation strategies Classification, ontology
Metrics Means for establishing similarity and goodness (quality criteria, weights to reflect

situational context)
Ranking algorithms based on metrics such as the similarity-based diversity metric (1) or the

the cosine metric (6)
Common test environment (optional): Database generation, evaluation.
Generalization (optional): Means to decouple a recommender from the actual feature vector

or metric/criteria instantiation

4 A SCIENTIFIC RECOMMENDER FOR IVP SOLVERS

In this section, we describe an algorithm to recommend verified initial value problem solvers
(IVPS) for ODEs and its possible generalizations. Verified methods [44] are constructed in such
a way as to provide a mathematical guarantee that a solution obtained on a computer is correct.
IVPS generate numerical sets that are mathematically proved to contain exact solutions. They
are useful in different contexts, for example, for computer-assisted proofs [63, 64] or for prop-
agating bounded uncertainty through systems [54]. There are many free libraries implementing
verified IVPS techniques, which we describe in some more detail in Subsection 4.1. However,
an average engineer is disinclined to use them, main reason being the difficulty to choose the
right method for a given problem without having the full knowledge about the subject. Some
verified methods might be too simple to be used for an advanced application leading to very
conservative or pessimistic results; other methods might be too prohibitive computationally.
This led us to the idea of implementing a common web-based environment for testing such
verified IVPS, which can serve as a basis for a recommender [6].

As far as we know, there are no comparable recommenders for non-verified, normal floating-
point arithmetic based IVPS. Such recommendation portals as MyPYTHIA [27] could prob-
ably have been used for that purpose but does not seem to be online anymore. Note that the
MyPYTHIA application to partial differential equations described in [27] could serve as a good
basis for the appropriate IVPS recommender. There are several web platforms for gathering
benchmarks, testing and comparing traditional non-verified IVPS, most notably TEST SET
at pitagora.dm.uniba.it/˜testset/ building on research from DETEST [29] and
similar. Besides, the service swMATH [16] semi-automatically manages the existing Web in-
formation about mathematical software. However, verified IVPS have to be compared based on
different criteria: for example, they always produce “correct” solutions, that is, the reliability of
the results does not need to be tested. After describing available software for verified solution of
IVPs and our testing environment VERICOMP, we analyze existing literature concerned with

518

Ekaterina Auer and Wolfram Luther

testing and comparing them to identify possible quality criteria and problem classification in
Subsection 4.2. The rest of this section is devoted to our recommender algorithm (including an
illustration) and possible improvements.

4.1 Verified IVP solvers and VERICOMP

A number of most widely known IVPS are summarized in Table 1 along with some of the
newer tools. Some of these IVPS are also suitable for computing solutions for hybrid sys-
tem dynamics (e.g., Flow*), algebraic-differential equations (CORA) or Poincaré maps (Is-
abelle), some of the tools additionally provide non-verified solutions (e.g., CAPD) or the use of
multiple-precision arithmetic (e.g., kv).

It can be seen from the table that the IVPS are based on very different algorithms (Col-
umn 4) with different data structures implemented in different programming languages (Col-
umn 2) using different verification concepts (Column 3). A further point is that their perfor-
mance often depends on the right choice of their settings, which should be preferably tuned
to the given problem by their respective developers (Column 5). For the sake of presenta-
tion clarity, we only show parameters which are important in our opinion. The time span
for the simulation, that is, the initial and the final integration time, is also an important set-
ting and can be specified within all IVPS. Although most of the solvers use only result veri-
fication, a lot of effort has been devoted to formal verification of solvers’ codes [31, 41] re-
cently. VNODE is a tool relying on the concept of literate programming [37, 47] for code
verification. Literate programming allows a human expert to assess in a comfortable way if
a code is correct. The list of solvers is not complete, for more software consult, for exam-
ple, cps-vo.org/group/ARCH/ToolPresentations.

A forum for comparing software for verification of continuous and hybrid dynamical systems
is offered by the workshop ARCH [1] and its friendly competition9. One of the aims is to
establish a curated set of benchmarks submitted by academia and industry. This extensive
information service gathers and makes accessible benchmark problems, tool presentations, and
experience reports in form of papers. However, the approach has shortcomings. The workflow
of the competition is to join a group first, then determine the set of problems from the ARCH pdf
repository, perform the tests, and, finally, prepare a report. This workflow is not automatized,
the responsibility for the correct implementation and testing with the benchmarks for given
tools lies with the user/developer, there is no common testing environment, and the results
from different reports are not immediately reusable since stored in papers and not in any kind
of a common database precluding an automatized recommendation. The long-term goal of our
web-based platform VERICOMP [6] is to provide such a common, automatized, recommender-
enhanced comparison environment.

VERICOMP is a service for actually comparing verified initial value problem solvers for
systems of ordinary differential equations using common comparison conditions. One possibil-
ity to employ it is for developers of new IVPS in order to relate their tool to the state of the art.
Another possibility is to employ it to decide what solver is the best for a given problem. For
users be able to do so at a glance, VERICOMP uses work-precision diagrams, solution plots,
and text tables. Here, developing further VA strategies for representing these heterogeneous,
large data is our future work. The gathered information is stored in a MySQL database.

The tests with verified IVPS might take considerable time. Therefore, a recommenda-
tion should be provided based on similar problems from the database. The RS results can

9cps-vo.org/group/ARCH/FriendlyCompetition

519

Ekaterina Auer and Wolfram Luther

be additionally validated by actually performing the available tests. Three solvers Vnode-LP,
ValEncIA-IVP, and RiOT with various parameters were provided for testing in the old version
of VERICOMP under vericomp.inf.uni-due.de, the service of which is unfortunately
discontinued. VERICOMP 2.010 taking into account generalizing features from Section 4.4
is under construction. At the moment, only the feature of adding IVPs to the database and
browsing them is accessible. We work on implementing the functionalities discussed in Sec-
tions 4.2,4.3.

It is our long-term goal to provide a common environment for testing all the verified solvers
mentioned above, which means that a semi-automatic procedure for adding a new solver to
VERICOMP is needed. However, this is extremely difficult due to differences in interfaces,
concepts, programming languages and platforms. Therefore, we concentrate on the intermediate
goal of providing a database which needs to be filled by IVPS’ developers themselves. This
leads to the lesser challenge of providing the set of problems in the form well suited for running
tests with them with different software, which we work on at the moment. This requires a
survey on opinions of expert users.

4.2 Existing comparisons and quality

Emerging and old verified software is permanently being tested and compared with some
standard benchmarks. For example, VERICOMP’s problem database was used as a benchmark
for new IVPS in [18, 19]. More tests are described and made available through papers at ARCH.
However, every paper presenting a new solver (e.g., [31], [41]) features tests and comparisons
according to some criteria relevant for the authors and using benchmarks the authors consider
appropriate. To be able to have an overview over the whole range of available possibilities,
it is necessary to standardize the comparison criteria and the tests as well as devise various
benchmark problem sets. In this subsection, we analyze the publications [12, 19, 20, 31, 33,
18] from Table 1 with the goal to establish a common set of quality criteria and testing aims.
Besides, we name the problems most commonly used as benchmarks.

The quality criteria can concern performance, accuracy, efficiency, or usability. Usability
is often of a minor significance in IVPS tests, which is not entirely justified since such factors
as the ease of interfacing an IVPS with a given application might play a crucial role in prac-
tice. In verification context, accuracy means the degree of pessimism in the resulting enclosure
(e.g., overestimation). Overestimation is not always easy to characterize: the width of the re-
sulting enclosure is only a good indicator for that if all problem parameters are crisp and do
not contain any uncertainty [6]. More research on overestimation characterization for tests is
necessary. Statistics on the following quality criteria were actively gathered by the old version
of VERICOMP:

C4 wall clock time (tc) at a predefined integration time tout (performance),
C5 user CPU time tus w.r.t. overestimation eus at tout (efficiency), and
C6 time to break-down (tbd, accuracy), possibly bounded from above by a certain limit tmax.

Here, eus is mainly (but not always) assumed to be characterized by the resulting enclosure
width [5]. These criteria allowed us to produce quite accurate recommendations using the
algorithm from Section 4.3, see [5]. Besides, the following further criteria can make sense [30]:

C1 Number of arithmetic operations at a time step

10vericomp.fiw.hs-wismar.de

520

Ekaterina Auer and Wolfram Luther

C2 Number of function/ Jacobian, etc./ inverse matrix evaluations
C3 Overhead (the overall user CPU time minus the user CPU time for function evaluations [30])
C7 Total number of steps and the number of accepted steps

Besides C4 and C6, the most widely used quality characteristics concerning performance, ac-
curacy, and efficiency, resp., in publications from Table 1 are

C8, C9 User CPU time and the width of the enclosure at tout
C10 CPU time to achieve a certain prescribed enclosure width over the time span [0, tout]

As the eleventh criterion C11, usability based on empirical (online) studies should be intro-
duced. The testing aims in the considered papers are to characterize a given solver w.r.t. the
state of the art. However, users also like to find a good IVPS for their given application (cf.
experience reports at ARCH). This goodness can be characterized by various scenarios, for ex-
ample, an offline simulation with very high accuracy (e.g., for particle colliders) or fast online
verified simulation over short time spans (e.g., for control).

Problems (P)IVPs for DAEs, etc.

IVPs for ODEs (P.IV)stiff (P.IV.II)

non-stiff (P.IV.I)

linear (L) non-linear (NL)

difficult (C)moderate (B)simple (A) moderate (B)simple (A) difficult (C)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

uncertain (U)
or crisp (NU)

Figure 2: Classification of benchmark problems for verified IVPS [6].

The most common benchmarks used for solver characterization in the considered papers are
the Lorenz system, the Rossler system, (Lotka-)Volterra equations, the oil reservoir problem,
the harmonic oscillator as well as problems from the DETEST benchmarks. Several papers
use old VERICOMP version benchmarks, one difficulty being that the problem IDs changed in
the new version. Besides, the benchmark set consisting of over 73 problems needs structuring.
For example, automatically extractable, distinct problem benchmark sets for asserting common
ground (e.g., the five problems mentioned above), for advanced testing, or for practice-oriented
testing can be devised. For more details about the form of the mentioned test problems, see
VERICOMP under vericomp.fiw.hs-wismar.de. For the benchmarks, we suggest us-
ing the classification in Figure 2. The main classes of linear and non-linear problems have three
subclasses: simple (possibly with exact expressions for solutions), moderate (w.r.t. their dimen-
sion, order, etc.) and complex or difficult problems. In each of these subclasses, we differentiate
between problems with uncertain and crisp parameters. The use of this classification was jus-
tified in [5]. Further problem classes such as ODEs with delays or non-smooth right sides as
well as hybrid systems or systems of differential-algebraic equations can be incorporated into it.

521

Ekaterina Auer and Wolfram Luther

However, the classification needs to remain flexible to be able to reflect factors which interest
users at a given moment, for example, chaoticity or cooperativity.

The considered papers mostly use tables and trajectory plots to present comparison results.
Only [18] uses other visual aids (spider diagrams) for that purpose. Occasionally, just one set of
IVPS parameters (cf. Table 1, Column 5), which additionally varies from example to example
sometimes, is employed and the strategy behind the choice of settings is not always clear. A
comparison using these settings consistently would be more interesting from the point of view
of finding out and recommending such settings automatically.

4.3 A recommender for IVPS for ODEs in VERICOMP

We can think of the following tasks a recommender for IVPS might be required to solve:

1. Recommend a solver (a ranked list of solvers) for a new user problem under consideration
of their specific tasks (online/offline simulation, etc.)

2. Find a coverage set L for a problem set B

In this subsection, we describe a formal basis for such a IVPS recommender. We plan to make
it accessible in the near future.

Following [36], we define a SRS for IVPS as a 6-tuple < U, T, L,K, P, S >, where U
represents the user, T is the entity set (of items) , L ⊆ T is the set of recommended items,
K = K(P, T, S) is the context, P stands for the user profile and S for the situation. To produce
a recommendation, we maximize a certain utility function χ depending on the user, the context,
and the set of recommended items.

To solve the recommendation tasks mentioned above, we identify U with the problem a user
wants to solve. Therefore, P coincides with the problem characteristics defined by the classifi-
cation in Figure 2. T contains solvers characterized by their specific settings and S is described
by the type of application the users have in mind for their problems (e.g., online/offline simu-
lation). Note that the context K is independent of T , because the number of solvers does not
change during a session. The utility function can be a weighted sum of normalized values for
each criterion C1,. . .,C11:

χ(v, u) =
m∑
i=1

ωin(Ci(v, u)), v ∈ T, u ∈ U,
m∑
i=1

ωi = 1, m = 11, (3)

where ωi are the weights, n(·) a normalizing function, and Ci(v, u) a function returning the
value of the criterion i for solver v and problem u, for example, as shown in Eqs. (5). Note
that we assume that v is not merely one of the solvers, but rather a solver with certain settings
(e.g., ValEncIA with the stepsizes of 0.025, 0.0025 is represented by two separate items in T).
To produce a recommendation, we use the multiattribute utility collaborative filtering with the
given criteria and weighting according to the situation s ∈ S [43]. The first step in the process
of filtering is to establish similarity to a (group of) problem(s) u from the database U with the
help of a measure µ(u). In our case, we can define a simple µ(u) := µ(l(u), c(u), f(u)) as
depending on the linearity l : U 7→ {L,NL}, complexity c : U 7→ {A,B, C}, and the presence
of uncertainty f : U 7→ {U ,NU}. It returns all problems from the class uniquely defined by
the values l(u), c(u), f(u):

µ : U 7→ 2U

µ(u) := {ũ ∈ U |l(ũ) = l(u), c(ũ) = c(u), f(ũ) = f(u)} .

522

Ekaterina Auer and Wolfram Luther

The set µ(u) constitutes the user profile P . The next step is weighting: according to the situation
s, a vector with weights (ω1, . . . , ωm) is determined by the function ν as

ν : S 7→ [0, 1]m

ν(s) := (ω1, . . . , ωm) .

The third step is finding the appropriate neighborhood for the problem u. In our case, this
neighborhood coincides with P . In the final step of the recommending process, we rate the
available solvers v ∈ T with the help of the normalizing function

n : R+ → [0, 1], nk1,k2(x) =
1

1 + e1−(x−k1)/k2
, k1, k2 ≥ 0 , (4)

with k1 and k2 being real heuristic parameters depending on the data, and the function χ from
Eq. (3). We use k1 = 40 and k2 = 10 in the following.

To see how the recommendation work, consider the following example. Let an engineer
be interested in simulating a non-linear, simple problem with uncertainty in a verified way.
Suppose the similarity measure µ returns a set consisting of two problems u1 (ẋ = −1

2
x3,

x(0) = [0.5, 1.5]) and u2 (ẋ1 = 1, ẋ2 = x2 cos (x0), x1(0) = 0, x2 = [0.9, 1.25]) belonging
to the class P .IV .I.NL.A.U . Suppose further that the data concerning the quality criteria C4,
C5, and C6 shown in Table 2 for three solvers RiOT, Valencia, and VNODE with three different
settings are recorded for these problems in the database. Finally, suppose that the engineer’s
goal is to simulate the problem online over short time intervals, which defines the situation s.
If we restrict ourselves to the three criteria for which the data are recorded, the wall clock time
(C4) and the relation of user CPU time to overestimation (C5) are equally important, whereas
the time to break-down and the width of the enclosure there (C6) do not play much of a role.
Accordingly, the assigned weights for i = 4, 5, 6 are 0.4, 0.4, 0.2, resp., and zero otherwise.
The neighborhood is the set {u1, u2}.

Now we are ready to rate the solvers. A pre-normalization requirement is that bigger criterion
values should correspond to better performance. Therefore, they are computed as follows for a
solver v and a problem u:

C4(v, u) = 1/tc
C5(v, u) = 1/(eus · tus), (5)
C6(v, u) = tbd/ebd .

The ratings obtained using these definitions in formula (3) are shown in the last column of Ta-
ble 3 (rounded). A higher rating (0 ≤ χ(v, u) ≤ 1) indicates better performance. Note that the
problem was not actually simulated to make the recommendation. From Table 3, it is clear that
the criterion values are always the highest for VNODE with the 15th order of Taylor expansion
in the situation s, a recommendation in good accordance with the data in Table 2. The averaging
order plays a role: The criterion values can be computed as given in Eqs. (5) for each problem
and averaged. This value can be then used in the formula for the rating χ. Alternatively, ratings
χ(vi, ui) can be computed for each benchmark ui and averaged afterwards, which usually pro-
vides a better separation between the ratings (therefore, our formula for χ is given such that this
dependence is recorded directly). The main difficulty is to find a good normalizing function for
the broad range of criterion values (5). Users can validate the recommendation by running the
standard test on the problem u. Note that recommendations depend greatly on the information

523

Ekaterina Auer and Wolfram Luther

in the data base. Besides, they are produced for a problem class and not for a particular prob-
lem, making a flexible classification procedure a must. Our further work includes improving
this recommender principle through the use of better metrics (e.g., (1),(6)), averaging (e.g., (2))
and normalizations.

4.4 Improvements

Recommendations depend significantly on problem and solver features. The problem fea-
tures in VERICOMP are the right side of the IVP, initial conditions, the integration time interval,
parameters, the exact solution (if available), the assignment to a problem class and a textual de-
scription concerning, for example, the origin of the problem. It is obvious from Section 4.3
that the set of these features and the classification must be as flexible as possible. A topic for
our future work is to investigate if a finer theoretical classification (or set of features) similar
to that for partial-differential equations from [27] is also useful (and not too inefficient) in our
context. In [27], not as much attention is paid to solver-oriented features as to problem-centric
ones. However, we also aim to recommend specific solver settings, which makes a careful
study of IVPS characteristics necessary. At the moment, solvers are characterized mainly by
their names, parameters (cf. Column 5 from Table 1) with their default values, and a textual
description of their methods.

Our long-term (and somewhat ideal) goal is to provide a common environment for testing
and recommending IVPS under the same conditions. This goal necessitates development of a
semi-automatic procedure for adding a new solver to the solver database, which is a complex
task for verified solvers since they lack common interfaces and are very different in their under-
lying concepts. A more manageable task would be to provide (template of) a solver database to
be filled by an IVPS developer, which would leave common test conditions out the considera-
tion. A useful feature in this case would be to convert the available benchmark sets (common
ground, application or practice-oriented, see Section 4.2) into the syntax supported by a given
solver or, at least, easy to use with it. Similar converters exist, for example, for hybrid systems
(cf. HyST11). However, they seem to develop a new converter for each new solver. A more
interesting approach would be to automatize this process along with the database generation
itself, for example, through the use of XML specifications.

If we have a large (and extendable) set of solvers and want to adapt the problem classification
in an easy way if necessary, we can consider descriptions in form of keywords. An approach
retrieving information from relational and unstructured data might be useful as a filtering and
structuring pre-step for the SRS routines described in Section 4.3. Following [51, 52], we
assume that each request r for a solver v is defined by a keyword vector r = (r1, . . . rJ)

T

and a corresponding numeric vector u = (u1, . . . , uJ)
T, where uj = 1 for each j-th keyword

constituting the request r, j = 1 . . . J . Each tool v has a profile represented by a feature vector cr
built from keywords si and their weights ωki , i = 1, . . . , I , k = 1, . . . , K. The weights influence
the rating of the tool v w.r.t. each descriptor si and incorporate various factors (benchmarks,
actuality, fitting to the problem dimensions). For example, they can reflect the degree of belief
in si according to its provenance. The weights are normalized and aggregated over k = 1 . . . K
to an average weight ωi(v) only if si is equal to a keyword from the request, si = rj , resulting
in J such weights. Those are used in the cosine similarity measure

11www.verivital.com/hyst/

524

Ekaterina Auer and Wolfram Luther

dv :=

∑J
j=1 uj · ωj√∑J

j=1 ω
2
j ·

√∑J
j=1 u

2
j

, (6)

that describes the similarity between the request vector r and the feature vector cr characterizing
the qualification of the tool v to solve the task. The final ranking is a descending list sorted
according to dv.

Consider a small illustration for this algorithm in our context. Suppose we are interested in
the subset of seven items (solvers with their settings) from Table 212. Assume further that we
want to find a good solver for linear IVPs applicable in real time. That is, r consists of two
keywords r1 =“linear”, r2 =“online” and u = (1 1)T. Let the database on the seven items
contain the information shown in Table 4. Here, the weights ω1

i ∈ [0, 1] reflect how relevant or
good the solver is w.r.t. the meaning of a given keyword, whereas the weights ω2

i ∈ [0, 1] show
the degree of confidence in this assessment according to its provenance. For example, ω2

i can
be set to one if tests were performed using a common environment (e.g., VERICOMP); to some
other number less than one if the assessment is supplied by the developer of the tool; and still
a smaller number if it is based on information extracted (automatically) from publications or
similar. Accordingly, the weights ω2

i for RiOT with the order 11 are less than one since the tests
for this setting were not carried out in VERICOMP. Suppose there is no information about how
well Valencia 0.025 performs with linear systems. The last column of Table 4 shows the ratings
obtained using formula (6). For example, the average weight for the keyword “linear” for RiOT
5 is 0.6+1

2
= 0.8 (we can omit normalization here), the weight vector consists of two components

(0.8 0.6)T and dRiOT 5 =
1.4√

0.82 + 0.62 ·
√
2
= 0.9899 (truncated). Since a keyword is missing

from the description of Valencia 0.025, no rating is generated. According to Table 4, the suitable
solvers are Valencia with the stepsize 0.025 and VNODE with orders of Taylor expansion 15
and 20. This smaller set of solvers can be chosen for actual test runs, from the results of which
recommender algorithms both from this section and Section 4.3 can profit. Better results can be
achieved with more sophisticated normalizing and weighting strategies. Keywords and actual
values of weights for them can be assigned on the basis of the previously computed quality
criteria or such linguistic descriptions as ‘good’ or ‘bad’ extracted from papers. The results can
be fed back to run tests and update the database.

5 CONCLUSIONS

In this paper, we presented the state of the art in the field of scientific recommender systems
with a focus on visual analytics and problem-solving environments. We identified concepts,
components and approaches necessary to recommend a scientific tool. Finally, we described in
detail a possibility to recommend a solver for initial value problems depending on a user’s prob-
lem, partially supported by a testing environment VERICOMP accessible online. In particular,
we discussed various quality criteria, metrics, problem classifications and problem/solver fea-
tures based on an extensive literature study. The recommender algorithm was illustrated using
a small example.

Our future work concerns implementing the discussed options in the common test environ-
ment VERICOMP. The possibility of manual filling of VERICOMP’s database with simulation
results for a new solver by a registered user is under construction in its new version. More-
over, we plan to make the recommender available in the near future. Our middle-term goals

12Obviously, this pre-step makes more sense if there are many more solvers in the database

525

Ekaterina Auer and Wolfram Luther

are to make the database construction more flexible by allowing it to be generated from XML-
like descriptions and to provide templatized converters of benchmark sets to respective solvers’
syntaxes.

REFERENCES

[1] ARCH17. 4th International Workshop on Applied Verification of Continuous and Hybrid
Systems, 2017.

[2] Ch. C. Aggarwal. Recommender Systems: The Textbook. Springer Publishing Company,
1st edition, 2016.

[3] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verifi-
cation for Continuous and Hybrid Systems, 2015.

[4] M. Angelova, V. Devagiri, V. Boeva, P. Linde, and N. Lavesson. An expertise recom-
mender system based on data from an institutional repository (DiVA). In Proc. ELPUB,
Toronto, Canada, 2018.

[5] E. Auer. Result Verification and Uncertainty Management in Engineering Applications.
Verlag Dr. Hut, 2014. Habilitation Monograph.

[6] E. Auer and A. Rauh. VERICOMP: a system to compare and assess verified IVP solvers.
Computing, 94(2):163–172, Mar 2012.

[7] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady, J. Fuchs, D. See-
bacher, A. Diehl, U. Brandes, H. Pfister, T. Schreck, D. Weiskopf, and D. A. Keim. Quality
metrics for information visualization. Computer Graphics Forum, 37(3):625–662, 2018.

[8] B. W. Boehm. Some future software engineering opportunities and challenges. In The
Future of Software Engineering, pages 1–32. Springer, Berlin, Heidelberg, 2011.

[9] S. Bönisch, M. Brickenstein, H. Chrapary, G.-M. Greuel, and W. Sperber. swMATH - A
new information service for mathematical software. In Intelligent Computer Mathematics
- MKM, Calculemus, DML, and Systems and Projects 2013, Part of CICM 2013, Bath,
UK, July 8-12, 2013. Proceedings, pages 369–373, 2013.

[10] O. Bouissou and M. Martel. A Runge-Kutta method for computing guaranteed solutions
of ODEs. In 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics, SCAN’06, Duisburg, Germany, 2006.

[11] S. A. C. Bukhari, M. Martı́nez Romero, M. J. O’Connor, A. L. Egyedi, D. Willrett,
J. Graybeal, M. A. Musen, K.-H. Cheung, and S. H. Kleinstein. CEDAR OnDemand:
A browser extension to generate ontology-based scientific metadata. BMC Bioinformat-
ics, 19(1):268:1–268:6, 2018.

[12] F. Bünger. Shrink wrapping for Taylor models revisited. Numerical Algorithms,
78(4):1001–1017, 2018.

[13] M. Capinski, J. Cyranka, Z. Galias, T. Kapela, M. Mrozek, and P. Zgliczynski. Computer
assisted proofs in dynamics group. capd.ii.uj.edu.pl.

526

Ekaterina Auer and Wolfram Luther

[14] L. Chen, G. Chen, and F. Wang. Recommender systems based on user reviews: The state
of the art. User Modeling and User-Adapted Interaction, 25(2):99–154, June 2015.

[15] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification, pages 258–263, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[16] H. Chrapary and W. Dalitz. Software products, software versions, archiving of software,
and swMATH. In Mathematical Software - ICMS 2018 - 6th International Conference,
South Bend, IN, USA, July 24-27, 2018, Proceedings, pages 123–127, 2018.

[17] M. Crubézy and M. A. Musen. Ontologies in support of problem solving. In Steffen
Staab and Rudi Studer, editors, Handbook on Ontologies, pages 321–341. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[18] J. A. dit Sandretto and A. Chapoutot. Validated explicit and implicit Runge-Kutta methods.
Reliable Computing electronic edition, 22, July 2016.

[19] T. Dzetkulič. Rigorous integration of non-linear ordinary differential equations in Cheby-
shev basis. Numerical Algorithms, 69(1):183–205, May 2015.

[20] I. Eble. Über Taylor-Modelle. PhD thesis, Universität Karlsruhe, 2007.

[21] St. van den Elzen and J. J. van Wijk. Small multiples, large singles: A new approach for
visual data exploration. Computer Graphics Forum, 2013.

[22] A. Felfernig, G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger, D. Pagano, and W. Maalej.
An overview of recommender systems in requirements engineering. In Managing Require-
ments Knowledge., pages 315–332. Springer, Berlin, Heidelberg, 2013.

[23] A. Geyer-Schulz, M.l Hahsler, and M. Jahn. Educational and scientific recommender sys-
tems: Designing the information channels of the virtual university. International Journal
of Engineering Education, pages 153–163, 2001.

[24] E. Gómez-Martı́nez, M. Linaje, F. Sánchez-Figueroa, A. Iglesias-Pérez, J. C. Preciado,
R. González-Cabero, and J. Merseguer. A semantic approach for designing assistive soft-
ware recommender systems. Journal of Systems and Software, 104(C):166–178, June
2015.

[25] A. I. Guseva, V. S. Kireev, P. V. Bochkarev, I. A. Kuznetsov, and S. A. Philippov. Scientific
and educational recommender systems. AIP Conference Proceedings, 1797(1):020002,
2017.

[26] M. Hernández-Rubio, I. Cantador, and A. Bellogı́n. A comparative analysis of recom-
mender systems based on item aspect opinions extracted from user reviews. User Model-
ing and User-Adapted Interaction, Nov 2018.

[27] E. N. Houstis, A. C. Catlin, N. Dhanjani, J. R. Rice, N. Ramakrishnan, and V. S. Verykios.
MyPYTHIA: A recommendation portal for scientific software and services. Concurrency
and Computation: Practice and Experience, 14(13-15):1481–1505, 2002.

527

Ekaterina Auer and Wolfram Luther

[28] E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrishnan, and C. E. Houstis.
PYTHIA-II: A knowledge/database system for managing performance data and recom-
mending scientific software. ACM Trans. Math. Softw., 26(2):227–253, June 2000.

[29] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick. Comparing Numerical Meth-
ods for Ordinary Differential Equations. SIAM Journal on Numerical Analysis, 9(4):603–
637, 1972.

[30] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick. Comparing numerical meth-
ods for ordinary differential equations. SIAM Journal on Numerical Analysis, 9(4):603–
637, 1972.

[31] F. Immler. A Verified ODE Solver and Smale’s 14th Problem. PhD thesis, TU Müchen,
2018.

[32] D. Jannach, M. Zanker, M. Ge, and M. Gröning. Recommender systems in computer
science and information systems – a landscape of research. In Christian Huemer and
Pasquale Lops, editors, E-Commerce and Web Technologies, pages 76–87, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[33] M. Kashiwagi. Verified numerical computation and kv library.
http://verifiedby.me/kv/index-e.html.

[34] P. Kaur and M. Owonibi. A review on visualization recommendation strategies. In Pro-
ceedings of the 12th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2017), pages 266–273, 2017.

[35] A. Key, B. Howe, D. Perry, and C. Aragon. VizDeck: Self-organizing dashboards for
visual analytics. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 681–684, New York, NY, USA, 2012. ACM.

[36] A. Klahold. Empfehlungssysteme: Grundlagen, Konzepte und Lösungen. Vieweg Teubner,
2009. In German.

[37] D. E. Knuth. Literate Programming. The Computer Jour., 27(2):97–111, 1984.

[38] B. Latard, J. Weber, G. Forestier, and M. Hassenforder. Towards a semantic search en-
gine for scientific articles. In Research and Advanced Technology for Digital Libraries -
21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017,
Thessaloniki, Greece, September 18-21, 2017, Proceedings, pages 608–611, 2017.

[39] F. Lorenzi and F. Ricci. Case-based recommender systems: A unifying view. In Bamshad
Mobasher and Sarabjot Singh Anand, editors, Intelligent Techniques for Web Personaliza-
tion, pages 89–113. Springer Berlin Heidelberg, 2005.

[40] J. Mackinlay, P. Hanrahan, and Ch. Stolte. Show Me: Automatic presentation for visual
analysis. IEEE Transactions on Visualization and Computer Graphics, 13(6):1137–1144,
November 2007.

[41] A. Mahboubi, G. Melquiond, and Th. Sibut-Pinote. Formally verified approximations of
definite integrals. J. Autom. Reasoning, 62(2):281–300, 2019.

528

Ekaterina Auer and Wolfram Luther

[42] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based val-
idated integrators. MSUHEP 40910, Department of Physics, Michigan State University,
East Lansing, MI 48824, 2004.

[43] N. Manouselis and C. Costopoulou. Personalization Techniques and Recommender Sys-
tems, chapter Experimental Analysis of Multiattribute Utility Collaborative Filtering on a
Syntetic Data Set, pages 111–133. World Scientific Publishing Company, 2008.

[44] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. Society
for Industrial and Applied Mathematics, Philadelphia, 2009.

[45] B. Mutlu, E. Veas, and Ch. Trattner. VizRec: Recommending personalized visualizations.
ACM Trans. Interact. Intell. Syst., 6(4):31:1–31:39, November 2016.

[46] K. Nazemi, R. Retz, J. Bernard, J. Kohlhammer, and D. W. Fellner. Adaptive semantic vi-
sualization for bibliographic entries. In Advances in Visual Computing - 9th International
Symposium, ISVC 2013, Rethymnon, Crete, Greece, July 29-31, 2013. Proceedings, Part
II, pages 13–24, 2013.

[47] N.S. Nedialkov. Implementing a Rigorous ODE Solver Through Literate Programming,
volume 3 of Mathematical Engineering, pages 3–19. Springer, Heidelberg, 2011.

[48] A. W. Neumann. Recommender Systems for Information Providers – Designing Customer
Centric Paths to Information. Springer, 2009.

[49] Ch. Obeid, I. Lahoud, H. El Khoury, and P.-A. Champin. Ontology-based recommender
system in higher education. In Companion Proceedings of the The Web Conference 2018,
WWW ’18, pages 1031–1034, Republic and Canton of Geneva, Switzerland, 2018. Inter-
national World Wide Web Conferences Steering Committee.

[50] D. H. Park, I. Y. Choi, H. K. Kim, and J. K. Kim. A review and classification of recom-
mender systems research. In International Conference on Social Science and Humanity
IPEDR vol. 5, pages 290–294, Singapore, 2011. IACSIT Press.

[51] J. Protasiewicz. Support system for selection of reviewers. In IEEE Int. Conf. on Systems,
Man, and Cybernetics, pages 3062–3065, San Diego, CA, USA, 2014.

[52] J. Protasiewicz, W. Pedrycz, M. Kozlowski, S. Dadas, T. Stanislawek, A. Kopacz, and
M. Galźźewska. A recommender system of reviewers and experts in reviewing problems.
Know.-Based Syst., 106(C):164–178, August 2016.

[53] A. S. Raamkumar, S. Foo, and N. Pang. Can I have more of these please? assisting
researchers in finding similar research papers from a seed basket of papers. The Electronic
Library, 36(3):568–587, 2018.

[54] A. Rauh and E. Auer. Modeling, Design, and Simulation of Systems with Uncertainties,
volume 3 of Mathematical Engineering. Springer, Heidelberg, 2011.

[55] A. Rauh, E. Auer, J. Minisini, and E. P. Hofer. Extensions of VALENCIA-IVP for Re-
duction of Overestimation, for Simulation of Differential Algebraic Systems, and for Dy-
namical Optimization. In Proceedings in Applied Mathematics and Mechanics, pages
1023001–1023002, 2007.

529

Ekaterina Auer and Wolfram Luther

[56] M. P. Robillard, W. Maalej, R. J. Walker, and Th. Zimmermann. Recommendation Systems
in Software Engineering. Springer Publishing Company, 2014.

[57] J. Scholtz, C. Plaisant, M. A. Whiting, and G. G. Grinstein. Evaluation of visual ana-
lytics environments: The road to the visual analytics science and technology challenge
evaluation methodology. Information Visualization, 13(4):326–335, 2014.

[58] S. Siebert, S. Dinesh, and S. Feyer. Extending a research-paper recommendation sys-
tem with bibliometric measures. In Proceedings of the Fifth Workshop on Bibliometric-
enhanced Information Retrieval (BIR) co-located with the 39th European Conference on
Information Retrieval (ECIR 2017), Aberdeen, UK, April 9th, 2017., pages 112–121, 2017.

[59] L. Steinert. Beyond Similarity and Accuracy - A New Take on Automating Scientific Paper
Recommendations. PhD thesis, University of Duisburg-Essen, Germany, 2017.

[60] Ch. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and visual-
ization of multidimensional databases. Commun. ACM, 51(11):75–84, November 2008.

[61] M. Thurau, Chr. Buck, and W. Luther. IPFViewer: Incremental, approximate analysis of
steel samples. In Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014,
Göteborg, Sweden, pages 1–8, 2014.

[62] S. W. Tu, H. Eriksson, J. H. Gennari, Y. Shahar, and M. A. Musen. Ontology-based
configuration of problem-solving methods and generation of knowledge-acquisition tools:
application of PROTEGE-II to protocol-based decision support. Artificial Intelligence in
Medicine, 7(3):257–289, 1995.

[63] W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197–
1202, 1999.

[64] W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math.,
2(1):53–117, 2002.

[65] M. Voigt, M. Franke, and K. Meissner. Using expert and empirical knowledge for context-
aware recommendation of visualization components. IARIA Int. Jour. on Advances in Life
Sciences, 5(1):27–41, 2013.

[66] B. Weyers, E. Auer, and Luther W. The role of verification and validation techniques
within visual analytics. JUCS: Special Issues on Collaborative Technologies and Data
Science in Smart City Applications, 2019. submitted.

[67] D. C. Wilson, D. B. Leake, and R. Bramley. Case-based recommender components for
scientific problem-solving environment. In Proceedings of the Sixteenth IMACS World
Congress, 2000.

[68] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe, and J. Heer. Voy-
ager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE
Trans. Vis. Comput. Graph., 22(1):649–658, 2016.

530

Ekaterina Auer and Wolfram Luther

[69] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. D. Mackinlay,
B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis with partial view speci-
fications. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, Denver, CO, USA, May 06-11, 2017., pages 2648–2659, 2017.

[70] S. Zhao, D. Zhang, Z. Duan, J. Chen, Y.-P. Zhang, and J. Tang. A novel classification
method for paper-reviewer recommendation. Scientometrics, 115(3):1293–1313, June
2018.

531

Ekaterina Auer and Wolfram Luther

IVPS Lang. VC Main method Main parameters
Valencia [55] C++ RV Picard iteration, exponen-

tial extension
stepsize

VNODE [47] C++ RV
LP

Taylor series (TS),
Hermite-Obreschkoff
method (HO)

method/ order/ toler-
ances/ min.stepsize/
stepsize control

CAPD [13] C++ RV TS, explicit-implicit HO method/order/tolerances
COSI-VI [42] FORTRAN RV Taylor models TM order/ stepsize/ tol-

erances/ preconditioning/
shrink wrapping

RiOT [20] C++ RV Taylor models (TM) TM order/ bounding
method/ stepsize control/
tolerances/ sparsity

verifyode [12] INTLAB RV Taylor models TM order/
bounder/stepsize control/
tolerances/shrink wrap./
sparsity

Flow* [15] C++ RV Taylor models TM order/stepsize con-
trol/ tolerances/no.steps
with symbolic re-
mainders/ remainder
estimation bound

kv [33] C++ RV Power series and affine
arithmetics

method/ma precision

[19] C++ RV TM, Chebyshev function
enclosures

method/ order/ sparsity/
tolerances

DYNIbex [18] C++ RV affine arithmetic, Runge-
Kutta

RK variant/ order/ step-
size/ tolerances

GRK [10] OCaml RV Runge-Kutta, multipreci-
sion arithmetics

stepsize control/ toler-
ances

CORA [3] MATLAB RV Reachability analysis
with zonotopes/ poly-
topes

(polynomial) zonotope
order/ tolerances

Isabelle [31] PolyML FV
RV

Affine arithmetic/ zono-
topes, Runge-Kutta

max. zonotope or-
der/ stepsize control/
tolerances/ ma precision

[41] Coq FV
RV

antiderivatives of rigor-
ous polynomial approxi-
mations, adaptive domain
splitting

ma precision/ target error
bound

Table 1: Verified IVPS. ‘VC’ means verification concept, with possibilities ‘RV’ (result verification), ‘LP’ (literal
programming), ‘FV’ (formal verification). The abbreviation ‘ma’ means ‘machine arithmetic’, usually floating
point.

532

Ekaterina Auer and Wolfram Luther

Solver u1 u2

tc tus eus tbd ebd tc tu eu tbd ebd
RiOT 5 3.270s 3.197s 0.448 10 0.130 3.597s 3.466s 0.811 10 0.20
RiOT 10 13.030s 12.763s 0.443 10 0.057 0.860s 0.842s 0.811 10 0.20
RiOT 15 40.883s 40.607s 0.443 10 0.055 0.918s 0.886s 0.811 10 0.20
V 0.025 0.045s 0.042s 2.987 1.300 5.85 0.260s 0.257s 0.850 10 309.55
V 0.0025 0.287s 0.282s 2.905 1.17 3.69 1.528s 1.521s 0.815 10 249.32
V 0.00025 2.794s 2.780s 2.897 1.19 3.77 1m30.844s 1m30.726s 0.812 10 243.87
VNODE 15 0.014s 0.009s 0.887 6.36 151.77 0.047s 0.041s 0.811 10 0.203
VNODE 20 0.014s 0.007s 0.987 3.81 218.18 0.047s 0.042s 0.811 10 0.203
VNODE 25 0.015s 0.009s 1.138 2.59 270.42 0.046s 0.039s 0.811 10 0.203

Table 2: Test run data on the problems u1, u2 from the database of the old version of VERICOMP. V stands for
Valencia. C4 is defined by tc, C5 by tus and eus, and C6 by tbd and ebd. Besides, tout = 1s and tmax = 10s.

vi C4(vi, ui) (u1/u2) C5(vi, ui) (u1/u2) C6(vi, ui) (u1/u2)
χ(vi,u1)+χ(vi,u2)

2

RiOT 5 0.007/0.007 0.007/0.007 0.936/0.500 0.149
RiOT 10 0.007/0.008 0.007/0.008 0.999/0.500 0.155
RiOT 15 0.007/0.007 0.007/0.008 0.999/0.500 0.155
V 0.025 0.058/0.009 0.014/0.010 0.007/0.007 0.020
V 0.0025 0.009/0.007 0.008/0.007 0.007/0.007 0.007
V 0.00025 0.007/0.007 0.007/0.007 0.007/0.007 0.006
VNODE 15 0.89/0.05 0.99/0.11 0.01/0.48 0.462
VNODE 20 0.89/0.05 0.99/0.11 0.01/0.48 0.461
VNODE 25 0.84/0.05 0.99/0.13 0.01/0.48 0.453

Table 3: Recommendation process with three criteria and nine solvers, based on the problems u1 and u2, using the
normalizing function n40,10 and rating averaging.

Solver Keyword ω1
1 ω2

1 Keyword ω1
2 ω2

2 Keyword ω1
3 ω2

3 Rating
RiOT 5 linear 0.6 1 nonlinear 0.8 1 online 0.2 1 98.99
RiOT 10 linear 0.5 1 nonlinear 0.9 1 online 0.1 1 98.83
RiOT 11 linear 0.5 0.6 nonlinear 0.95 0.6 online 0.1 0.6 97.61
V 0.025 nonlinear 0.2 1 online 0.6 1 –
V 0.0025 linear 0.6 1 nonlinear 0.2 1 online 0.56 1 99.99
VNODE 15 linear 0.9 1 nonlinear 0.7 1 online 0.7 1 99.84
VNODE 20 linear 0.95 1 nonlinear 0.8 1 online 0.6 1 99.51

Table 4: Solver descriptions in terms of feature vectors cr. Ratings are multiplied by the factor 100 for better
presentation.

533

