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Abstract 

A new formulation for likelihood-informed Bayesian inference is proposed in this work based 
on probability models introduced for the features between the measurements and model pre-
dictions. The formulation applies to both linear and nonlinear dynamic models of structures. 
A relation between likelihood-informed and likelihood-free approximate Bayesian computa-
tion (ABC) is also established in this study, demonstrating that both formulations yield rea-
sonable and consistent uncertainties for the model parameters. In particular, the 
uncertainties obtained with the new formulation account better for the fact that different sam-
pling rates used in recording response time history measurements often yield measurements 
that contain the same information and so the sampling rate should not affect the uncertainty 
in the model parameters. The effectiveness of the proposed approach is demonstrated using 
an example from model updating of a linear model of a dynamical spring-mass chain system.  

Keywords: Uncertainty quantification, Bayesian learning, model updating, structural dynam-
ics, Likelihood-informed Bayesian computation, data features
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1 INTRODUCTION 
Bayesian model updating has gained more interest because of its effectiveness in practical 

engineering problems [1-3]. In Bayesian updating, the prior probability density function 
(PDF) of model parameters is updated to the posterior PDF by accounting for the information 
obtained from the measurements. Using probability models for the prediction errors, often 
formulated as the discrepancy between model predictions and the measurements, the 
likelihood function is developed. Asymptotic methods and sampling techniques have been 
developed to solve the parameter inference problem. In particular, sampling methods include 
versions of Markov Chain Monte Carlo (MCMC) (e.g. [4]), adaptive MCMC [5] as well as 
Transitional MCMC (TMCMC) [6, 7]. For likelihood-free parameter inference, the 
approximate Bayesian computation (ABC) has been developed. Among the algorithms 
proposed to solve the ABC, the subset simulation [8, 9] is shown to be computational 
effective alternative.  

Bayesian model updating in structural dynamics using response time histories measure-
ments such as accelerations, displacements or strains is often formulated by introducing point-
to-point probabilistic descriptions of the discrepancy between the measurements and model 
predictions [10]. Spatially and temporally uncorrelated prediction error models used to quanti-
fy these discrepancies, result in very peaked posterior probability distributions for the model 
parameters due to the large number of data points available from high sampling rates. Spatial-
ly and temporally correlated prediction error models are more reasonable for quantifying un-
certainties [11, 12]. However, the uncertainty depends on the correlation structure assumed 
which is often unknown and needs to be selected from a family of user-introduced correlation 
structures that might not be representative for the application. In general, the uncertainty 
quantified by the posterior probability distribution depends highly on the prediction error 
models and the correlation structure introduced between time instances as well as between 
measurements at different locations. 

Herein we address the problem of Bayesian learning given response time history measure-
ments. It is expected that for sufficiently small sampling rate, the information contained in the 
response time histories is independent of the sampling rate used to represent the time histo-
ries. Conventional techniques fail to quantify such independence and also give unrealistically 
small uncertainties due to the large number of data points used to represent the time histories. 
To properly quantify uncertainties, we propose a new formulation for likelihood-informed 
Bayesian inference based on probability models introduced for the features between the 
measured data and model predictions. Specifically, a probability model is assigned to the 
square of the discrepancy of the response time history between the measurement and the 
model prediction. Different probability models are investigated, such as a truncated Gaussian 
model and an exponential distribution model. It is demonstrated that reasonable uncertainties 
are obtained for the model parameters that are independent of the sampling rate used to repre-
sent the response time histories. A relation between likelihood-informed and likelihood-free 
Bayesian computations is also established, demonstrating that both formulations yield reason-
able and consistent uncertainties for the model parameters. A spring-mass chain model with 
simulated, noise contaminated, measured acceleration time histories is used to demonstrate 
the effectiveness of the proposed approach.  

The rest of this paper is organized as follows. In Section 2, the new likelihood-informed 
formulation for Bayesian model updating is proposed and compared with ABC formulation. 
The effectiveness of the proposed method is demonstrated using a spring-mass chain system 
in Section 3. Section 4 reports the conclusions of this study.  
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2 PROPOSED BAYESIAN FORMULATIONS 

In Bayesian framework, the probabilities of unknown parameter sets   in the model class 
M  can be first estimated from the prior probability density functions (PDF), and then it can 
be updated based on the following Bayesian formula when some measurements D  are 
available: 

 ( | , ) c ( | , ) ( | )p D M p D M p M    (1) 

where ( | , )p D M  is the posterior PDF of the model parameters given the measurements D  
and the model class M ;  ( | )p M  is the prior PDF; c is the constant which is selected so that  
the posterior PDF integrates to one; ( | , )p D M  is the likelihood function of observing the 
data from the model class.  

2.1 Model parameter estimation 

Consider a parameterized class of structures models  ;g M , where M is the model,   is 
the set of model parameters which can be identified using the measurements D . Let 

 0
0ˆ ( ) , 1, 2, , ; 1, 2, ,N

j DD y k t R j N k N       be the measured response time histories 

data from the structure, where 0N  is the number of degrees of freedom (DOF) of the models, 

DN  is the number of the sampled data using a sampling rate t , j and k denote the j-th modes 
and time index at time k t , respectively. 

Conventional methods for parameter estimation in structural dynamics using direct re-
sponse time history measurements are based on prediction error equations formulated at time 
t k t   as follows:  

    ˆ ; , ( ; )j j jy k g k M k     (2) 

Using a zero-mean Gaussian model for the prediction errors ( ; )j k  , 1, 2, , Dk N  , and as-
suming of the prediction errors between the different sensor DOF 01,2, ,j N  , one can 
readily built the likelihood in the form given in [10, 13].  

Herein, a new formulation for the likelihood is presented based on introducing probabilis-
tic models for the features between the data and the model predictions. Specifically, it is as-
sumed that the average of the square of the discrepancy between the measurements  ˆ jy k  

and the model prediction  ; |jg k M , 1, 2, , Dk N  , satisfy the following equation: 

     2

1

1 ˆ ; ;
DN

j j j
kD

y k g k M e
N




     (3) 

Due to the fact that the square error is always larger than zero, the uncertainty in je  can be 
quantified with the following two kinds of distributions: 1. the truncated normal distribution; 
2. the exponential distribution. 

Regarding the case 1, the PDF of each variable je  can be written as [14]: 

 
2

2

2( ) exp( )
2

j
j

e
p e


   (4) 
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where   is the prediction error parameter of the truncated Gaussian probability models. The 
likelihood-informed based on the data features can be derived by the following formula: 

 
0

1

( | , ) ( | , )
N

j
j

p e M p e M 


  (5) 

The proposed likelihood is then given by: 

  
0 02 1 1( | , )= exp ; ;

2

N N

p e M J M  


                  
 (6) 

where    
0

2
1

1; ; = ;
N

j
j

J M J M  
 
 , and       2

1

1 ˆ; ; ;
DN

j j j
kD

J M y k g k M
N

 


    . Conse-

quently, the logarithmic of the likelihood is: 

      
0 2

0 0 2
1 1

1 ˆ=ln ( | , )=c ln ; ;
2

DN N

j j
j kD

L p e M N y k g k M
N

   
  

      (7) 

where 0 0
2lnc N


 . 

In the case 2, the PDF of each variable je , assuming that it follows an exponential distribu-
tion, is given by: 

 
exp( ) 0

( )
0 0

j j
j

j

e e
p e

e
    

 (8) 

where the parameter   is reparameterized by 2

1=
2




, which can make the exponent term 

equal to that of the truncated normal distribution. Similarly, the logarithmic likelihood func-
tion is calculated as: 

      
0 2

1 0 2
1 1

1 ˆ=ln ( | , )=c 2 ln ; ;
2

DN N

j j
j kD

L p e M N y k g k M
N

   
  

      (9) 

where 1 0 ln 2c N  .  
When the prior PDF and likelihood function are determined, the posterior PDF of the mod-

el parameters   is further solved according to the Eq. (1). It should be noted that the new 
method extends a recent likelihood-informed formulation developed for the case where the 
modal frequencies and mode shape components are available as the measured data [15].  

Several methods have been introduced to estimate the model parameters and their uncer-
tainties. Specifically, Monte Carlo Markov Chain (MCMC) [4], adaptive MCMC [5] as well 
as Transitional MCMC (TMCMC) [6], etc, can be used for populating with samples the sup-
port of the posterior distribution. Herein, the TMCMC algorithm is applied. 

2.2 Relationship between likelihood-informed formulation and ABC  

Based on the Eq. (9), the most probable value (MPV) 2̂  of the posterior PDF can be 
obtained. Equivalently, it can be solved by maximizing the logarithmic likelihood function L : 
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2 2

1
2

ˆ=

=0L
 




 (10) 

where 1=L L . The best estimate is then given by: 

 2

0

1ˆ =
2N

   (11) 

where   is defined as a prediction error, which is given by: 

    
0 2

1 1

1 ˆ= ; ;
DN N

j j
j kD

y k g k M
N

 
 

     (12) 

Equivalently, Eq. (11) can be rewritten as follows: 

 2
0 ˆ2N   (13) 

In ABC algorithms, a summary statistics   and a tolerance parameter   are first intro-
duced [16]: 

     ,X D     (14) 

where X D  denotes a simulated dataset from ( | , )p D M , and  ,    is a distance measure 

on the model output space. In general, the measure  ,    is chosen to be the least square 
measure of the distance between the measurements and the model prediction from a parame-
terized class of structures models. Specifically for the model with predictions  ;g M , it is 
written as: 

    
0 2

1 1

1 ˆ= ; ;
DN N

j j
j kD

y k g k M
N

 
 

     (15) 

It can be readily found that the right side term in Eq. (15) is exactly the same as that in Eq. 
(12), thus the tolerance value   can be then selected based on the best estimate 2̂ : 

 2
0 ˆ=2N   (16) 

The effectiveness of choosing the tolerance value is also demonstrated using examples in the 
next section. 

3 NUMERICAL EXAMPLE 

3.1 Description of a 10-DOF Spring-Mass Chain model 
Consider a 10-DOF spring-mass chain system excited at the base. The equation of motion 

with base excitation  gy t : 

          + 1 gMv t Cv t K v t M y t      (17) 

where  1= 1,1, ,1 T  is a 10 1  vector. The system is created based on the following assump-
tions: 
a) The mass matrix M  is diagonal having elements equal to 1kg. 
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b) The springs are assumed to have the same stiffness equal to 1000N/m, and the spring ma-
trix K  is given by the following stiffness matrix when the parameter 1  : 

 

1 2 2

2 2 3 3

3

9 10 10

10 10

0 0
0 0

0 0
0 0
0 0 0

k k k
k k k k

K k
k k k

k k

  
    
  
   
  



 


 (18) 

c) Rayleigh damping is assumed with the damping matrix written as  

 C M K    (19) 

where the coefficient   and   are taken to be 0.2265 and 6.7515 4e , respectively, cor-
responding to given damping ratios 1 5 0.02    for the first and fifth modes of the sys-
tem. .  

d) Given the above system properties, the natural frequencies 1 2 3, ,    of the first three 
modes are estimated to be 1.0Hz, 3.0Hz and 4.9Hz.  

e) The base excitation gy  is obtained from an earthquake excitation, as shown in Fig. 1.  

 
Fig. 1 Earthquake excitation 

Eq. (17) can be also expressed with respect to the modal coordinates using the transfor-
mation    v t t  , as follows: 

        * 1T
gt C t t M y t         (20) 

where *C  and   are two diagonal matrices with elements 2 i  and 2
i , respectively. The 

state-space form is next constructed: 

      = c cx t A x t B p t  (21) 
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where x  is state vector, x  is first derivative of the state, cA  is system state matrix and cB  is 

the input to state matrix given as: 

  
 
 

 *

0 0
, , , (t)

1c c g

t I
x t A B p y t

MCt





     
               

  (22) 

The observation equation can also be written in the form: 

 ( ) ( ) ( )c cd t G x t J p t   (23) 

For absolute acceleration measurements ( )d t , the matrixes cG  and cJ  are given by: 

 * , (1 1)T
c a a c aG S S C J S M              (24) 

where aS  is the  selection matrix. Thus, the system of equations (23) and (24) can be applied 
to predict the acceleration measurements.  

3.2 Results 
The proposed method is now applied to the system mentioned above. Two cases are 

investigated in this section. The first one studies the problem of parameter estimation using 
the data features to formulate the likelihood, with truncated normal (TN) distribution assumed 
for the square of the discrepancy between the measured and model predicted response time 
histories (Case 1). The other one formulates the likelihood in a similar way but assumes an 
exponential (EXP) distribution for the square error, instead of a truncated Gaussian 
distribution. The exponential distribution is also used to explore the relationship between 
likelihood-informed algorithm and the likelihood-free ABC algorithm. All methods are 
compared with the conventional Bayesian formulation assuming normal (NORM) distribution 
for the prediction errors at each time instant to construct the likelihood.  

Results are presented for simulated measurements that are generated for a nominal spring-
mass chain model. To simulate the effect of model error, 5% Gaussian noise is added to the 
acceleration response time histories generated from the nominal model. The acceleration 
measurements from all ten DOF of the system are considered. For demonstration purposes, a 
single stiffness parameter is considered as the model parameter to be updated. This parameter 
included the stiffness of the first three springs in the spring-mass chain system.  

Parameter estimation results along with their uncertainties (5 and 95% quantiles) are 
presented in Figs. 2 and 3 for different sampling rates t  ranging from 0.1 t  to 10 t  of the 
same time history. The number of the samples DN  are decreased accordingly from 10 DN  to 
0.1 DN . Specifically, results from the proposed truncated Gaussian distribution (TN) are 
compared with results obtained from the conventional Bayesian method. It should be noted 
that the different sampling rates chosen do not affect the information contained in the data. 
Both methods give almost the same MAP estimates for the structural model parameter (Fig. 
2). However, uncertainty bounds are substantially different for the two methods. Specifically, 
from the results in Fig. 2, it becomes evident that the conventional Bayesian method gives 
very small uncertainties that decrease as the number of sampling points increase. The 
proposed method based on the data features provides much higher uncertainties that are 
independent on the number of data points used. This is consistent with intuition since the 
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information contained in the acceleration time history is almost independent of the sampling 
rate used in this example.  

θ 1

 
Fig. 2 Parameter estimation of 1  using TN (Case 1) and NORM 

 
Fig. 3 Parameter estimation of   using TN (Case 1) and NORM 

 
Next, parameter estimation results along with their uncertainties (5 and 95% quantiles) are 

compared in Fig. 4 for the TN case (Case 2), the conventional Bayesian method (NORM) and 
the ABC method. Again the sampling rates t  range from 0.1 t  to 10 t  of the same time 
history. The best estimate ̂  of the standard deviation is specified as the value 90  (90-
quantile) obtained from EXP. Then the tolerance value   in ABC algorithm can be calculated 
based on the formulation in Eq. (16). Although all three methods predict the same MAP esti-
mate, the uncertainty bounds computed from the conventional Bayesian methods are again 

110



Xinyu Jia, Costas Papadimitriou 
 
substantially smaller than the bounds computed from the other two methods. Also, the uncer-
tainty in the model parameter decreases as the sampling rate increases which is contrary to 
intuition, since there is not extra information contained in the time history with higher sam-
pling rate. The uncertainty predicted by the proposed likelihood-informed method is similar to 
the uncertainty estimated by the ABC method. Both methods (TN and ABC) provide uncer-
tainty bounds that are almost independent on the sampling rate. The small discrepancies in the 
uncertainty bounds are due to the choice of the tolerance value in ABC. A slightly different 
tolerance can zero the discrepancy between the two methods.  

 
Fig. 4 Parameter estimation of 1  using EXP (Case 2), NORM and ABC 

4 CONCLUSIONS  
A new formulation based on the data features for likelihood-informed Bayesian infer-

ence has been presented and discussed in this paper. The effectiveness of the proposed for-
mulation has been demonstrated by a spring-mass chain model. The main conclusions of 
this work are:  

 The proposed data-features likelihood-based Bayesian methodology correctly accounts 
for the uncertainty in the model parameters, making such uncertainty independent of 
sampling rate of the measured response time histories. In contrast, the uncertainty in the 
model parameters obtained from conventional Bayesian inference formulation depends 
on the sampling rate of the response time histories, despite the fact that the information 
contained in the response time history data is independent of the sampling rate.  

 The proposed likelihood-informed Bayesian formulation provides results that are con-
sistent with the ones obtained from likelihood-free ABC formulations.  

 The proposed method applied herein to linear structural systems can also be extended to 
non-linear structural systems given response time history measurements. 
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