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Abstract. Fissile matter detection and characterisation are crucial issues; especially in nuclear
safety, safeguards, matter comptability, reactivity measurements. In this context, we want to
identify a source of fissile matter knowing external measures such as instants of detection of
neutrons during an interval of measure. Thus we observe the neutrons detection times emitted by
the fissile matter and going through the detector, then we compute the moments of the empirical
distribution of the number of neutrons detected during a time gate T. In order to identify the
source we have to get the following parameters: the multiplication factor k of the system, the
intensity of the source S, the fission efficiency εF .

Given the parameters of the source there are some models that allow us to predict the mo-
ments of counted number of neutrons during a time gate T. We consider a point model stat-
ing monokinetic neutrons are moving in an infinite, isotropic and homogeneous medium. The
method makes it possible to compute the first moments of the count number distribution.

Then, given the moments of counted number of neutrons during a time gate T we want to
get the parameters of the fissile source. In order to achieve this goal, we will use the following
method

• Bayesian approach in order the get the distribution of parameters. The a posteriori distri-
bution is non-trivial, samples can be achieved with Markov Chain Monte-Carlo methods
with covariance matrix adaptation (MCMC with CMA).
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Nomenclature

Nuclear constants
α Decreasing coefficient of the neutronic system

ν̄ Mean number of neutrons emitted by a fission event

ν̄S Mean number of neutrons emitted by a source event

λC Capture rate by time unit

λF Fission rate by time unit

D2S Diven factor of the source of order 2

D2 Diven factor of the fission of order 2

D3S Diven factor of the source of order 3

D3 Diven factor of the fission of order 3

fν Probability the fission emits ν neutrons

fν,S Probability that source emits ν neutrons during a source event

p Probability that a neutron causes a fission

Nuclear parameters
p Vector of the parameters of the system

p∗ Vector of the parameters of the system to estimate

εC Capture efficiency

k Multiplication factor

S Intensity of the source (neutron/units of time)

Observations and model outputs
M Vector of the first three simple statistical moments, the model

M̂ Vector of the first three simple empirical moments, the measures

T Time gate (units of time)

1 Introduction

We are interested in fissile matter detection and characterisation. We want to determine the

fissile source with external measures. Times of neutron detections during an interval of measure

provides the observations.

We study here an inverse problems under limited data. The inverse problem is ill-posed, getting

the entries of the model is challenging. To tackle this issue we use bayesian methods, the a

posteriori distribution provides the relative probability of the entries knowing the measures,

our observation [12]. In order to sample this distribution we will use a MCMC method: the

Metropolis-Hastings algorithm.

Since the distribution is degenerate when the measures are extensive, we will use an Adaptive-

Metropolis algorithm with Covariance Matrix Adaptation.
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The paper is organized as follows. First, we introduce the neutron point model and expose the

expressions of the simple moments of the neutrons count distribution [7].

Secondly, we will recall Bayes rules, present the requirements for the sampling and expose the

given covariance for the measures. And we will also present the sampling of the a posteriori

distribution, the discretisation with 3 parameters.

Finally, we will expose the results of the sampling with a benchmark. We will analyse the

features of the sampled distribution with an explicit sampling and MCMC one, and settle how

the work can be improved.

2 Stochastic neutronics problem, forward problem

The simplest model in neutronics is the point model approximation.

Definition 2.1 Point model [11]
The medium is infinite, homogeneous and isotropic. The neutrons are supposed point particles
moving at the same speed. Moreover, we consider the neutron’s life ends with a capture (with
or without a detection) or a fission. These events are poissonian type. Neutrons are produced
by fission and by the Poisson or compound Poisson type sources. A fission chain is modeled as
a branching process.

The model is governed by the following parameters

2.1 Source

We model the source as a compound Poisson process with a strength

Definition 2.2
S := Intensity of the compound Poisson process (1)

The probability distribution of the number of neutrons emitted by a source event is given by

fν,S (2)

where ν goes from 0 to the maximum number of neutrons emitted by the source νmax,S . The
mean number of neutrons emitted by one source event is

ν̄S :=

νmax,S∑
ν=0

νfν,S. (3)

From this, we can derive the following nuclear constants.

Definition 2.3 The Diven factors of order 2 and 3 of the source probability distribution are

D2S :=

∑
ν ν(ν − 1)fν,S

ν̄2
S

, D3S :=

∑
ν ν(ν − 1)(ν − 2)fν,S

ν̄3
S

(4)
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2.2 Fission

Definition 2.4 Let p be the probability that a neutron causes a fission (so 1− p is be the prob-
ability that a neutron be captured).
The probability distribution of the number of neutrons produced by a fission is

fν (5)

where ν goes from 0 to the maximum number of neutrons emitted by the fission νmax, and

ν̄ :=
νmax∑
ν=0

νfν (6)

the mean number of neutrons emitted by one source event. When a fission occurs ν̄ neutrons are
emitted on average.
Then

k := ν̄p (7)

is the mean number of children of a neutron. We will call it the multiplication factor [2].

In our case 0 < k < 1, so the system is stationary which is the most important configurations

for nuclear safety applications [9].

As previously, we obtain the formulas of the Diven factors of the fission of order 2 and 3.

D2 :=

∑
ν ν(ν − 1)fν

ν̄2
, D3 :=

∑
ν ν(ν − 1)(ν − 2)fν

ν̄3
(8)

Definition 2.5 The fission rate is
λF (9)

2.3 Capture

The neutron count is the action of detecting the neutron presence.

Definition 2.6 The capture rate is
λC (10)

Definition 2.7 We define the capture efficiency by

εC := Probability that a captured neutron is detected (11)

This efficiency is linked to the fission one εF by the equality

Definition 2.8
εF := Detector efficiency =

λCεC
λF

(12)

this is the ratio of the mean number of detections over the mean number of induiced fissions.
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2.4 Measurements

We get our observations from a detector with Helium 3 [15]. Neutronicians choose this

element because its cross-section is large, so the capture probability is high. Neutrons are

absorbed in the detector with the reaction

3
2He +

0
1 n →1

1 H+3
1 H+ 765keV

then the proton emerging from the reaction causes an electric current. During a time interval

of duration Tmeas, each instant of detection is stored as a list in file (see fig. 1). Then we obtain

n = �Tmeas

T
� realizations of N[0,T ] the counted neutrons during a time gate T , and we compute

the empirical moments of this distribution

Figure 1: A measurement during t0 and tmax = t0 + Tmeas, with a time gate T

2.5 Forward model

Definition 2.9 Let N[0,T ] be the random variable representing the neutron counts during T . The
three first associated moments of this distribution are

• E[N[0,T ]] := the first moment of the neutron counted during T distribution

• E[N2
[0,T ]] := the second simple moment of the neutron counted during T distribution

• E[N3
[0,T ]] := the third simple moment of the neutron counted during T distribution

These are the outputs of our model.

In the case of the point model the simple moments can be expressed as a function of the so-

called Feynman moments Y2(T ), Y3(T ) [9].

Proposition 2.10 The first three simple moments of N[0,T ] are of the form

E[N[0,T ]] = ν̄SS
εFk

(1− k)ν̄
T

E[N2
[0,T ]] = E[N[0,T ]](1 + E[N[0,T ]] + Y2)

E[N3
[0,T ]] = E[N[0,T ]](1 + 3Y2 + Y3) + 3E[N[0,T ]]

2(1 + Y2) + E[N[0,T ]]
3

(13)

where the Feynman moments are given by

Y2(T ) =
εFD2k

(k − 1)2

(
1− ρ

ν̄SD2S

ν̄D2

)(
1− 1− e−αY T

αY T

)

Y3(T ) = 3

(
εFD2k

−(1− k)2

)2(
1− ρ

ν̄SD2S

ν̄D2

)(
1 + e−αY T − 2

1− e−αY T

αY T

)

− εFD3k3

(k − 1)3

(
1− k − 1

k

ν̄2
SD3S

ν̄2D3

)(
1− 3− 4e−αY T + 2e−2αY T

αY T

) (14)

where αY = λC + λF (1− ν̄)
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A proof of this result can be found in [7].

Our forward model is
M : R3 → R

3

p 
→ M(p)
(15)

where p = (εC , k, S) and Mj(p) = E[N j
[0,T ]].

3 Bayesian inverse problem

3.1 Bayes principle

We have the observations M̂ which are the estimated moments of N[0,T ]. Bayes theorem [13]

states

P(p|M̂)
a posteriori distribution

∝ P(M̂|p)
likelihood

P(p)
a priori distribution

(16)

where the likelihood and the a priori distribution are as follows

1. Thanks to the Central Limit Theorem, given the parameter p the measures are Gaussian

with mean M(p) and covariance 1
n
Cov(p) where M refers to the expression of the exact

simple moments of the distribution of N[0,T ], Cov(p) the covariance matrix of the three

first simple moments, n the number of realizations.

This gives explicitly

P(M̂|p) ∝ 1√
det( 1

n
Cov(p))

e−
1
2

t(M̂−M(p))Cov(p)−1(M̂−M(p))n (17)

which is the expression of the likelihood up to a multiplicative constant.

The computation of Cov(p) needs the expression of the simple moments up to the order

6, and this is too complex to be computed analytically. So we will use the empirical

covariance matrix Ĉov.

P̃(M̂|p) ∝ 1√
det( 1

n
Ĉov)

e−
1
2

t(M̂−M(p))Ĉov
−1

(M̂−M(p))n (18)

2. The a priori distribution is assumed to be uniform on [εC,min, εC,max] × [kmin, kmax] ×
[Smin, Smax].

Our goal is to sample the a posteriori distribution 16. We will use two different methods: a

discrete sampling with a regular mesh and Adaptive Metropolis with Covariance Matrix Adap-

tation.

3.2 Explicit sampling of the a posteriori distribution

A simple way to obtain the explicit sampling of the a posteriori distribution is to use a regular

mesh of the domain [εC,min, εC,max]× [kmin, kmax]× [Smin, Smax] and compute the a posteriori

distribution on each point of the mesh. The computations were done with Ne points in each

directions. The overall number of evaluations of the forward model 15 is therefore N3
e . We

also compute the moments in order to have some quantitative information: mean, variance,

expectation to be compared with MCMC results.

Remark 3.1 By 16 the computation of the likelihood is true up to a multiplicative constant.
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3.3 MCMC sampling of the a posteriori distribution

The principle of the method is to build a Markov chain that has the target distribution as its

stationary distribution. Hence one can obtain a sample of the target distribution by sampling

and recording states from the chain. Various algorithms exist for constructing such Markov

chains, including the Metropolis-Hastings (MH) algorithm. The states of the MH chain are

produced iteratively. At each iteration, the algorithm picks a random proposal according to

some instrumental distribution that may depend on the current sample value. The proposal is

the candidate for the next sample value and it is either accepted (in which case the proposal value

is used in the next iteration) or rejected (in which case the proposal value is discarded, and the

current value is used in the next iteration) with some probability. The probability of acceptance

is determined by comparing the values of the target density at the current and proposal values

so as to ensure that the MH chain has the target distribution as its stationary distribution.

We implement here a specific MCMC method [10]: the Adaptive Metropolis algorithm with

Covariance Matrix Adaptation in order to sample a target distribution π.

The adaptation uses the Covariance matrix of the all the points proposed by the instrumental

law and accepted by the rejection procedure in order to accept more.

We implemented the following algorithm using [1] and [6]. Here

p = (p1, p2, p3) (19)

and we define p1,min = εC,min, p1,max = εC,max, p2,min = kmin, p2,max = kmax, p3,min =
Smin, p3,max = Smax The target distribution is denoted π.

We first initiate

• The empirical acceptance xrate.

• The initial scale factor of the instrumental law frac

• The target acceptance rate xobj

• The frequency of update of the scale factor NMC,1

• The burnin phase duration Nbp

• The initial parameter p0 is chosen with the uniform distribution over
⊗3

k=1[pk,min, pk,max]

Iteration i → i+ 1

1. During i ≤ Nbp , we use as instrumental law

qi+1 ∼ N (pi, frac
2Cbi) (20)

where qi+1 the proposal, pi the last accepted point, Cbi = diag(((pk,max − pk,min)2)3k=1).

2. After the burnin we use the instrumental law as in algorithm 4 of [1]

qi+1 ∼ N (pi, frac
2Ci) (21)

where Ci is defined by 24.
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3. Finally we compute the acceptance rate α using the likelihood ratio of the proposal and

the previous accepted point

α(qi+1,pi) = min(1,
π(qi+1)

π(pi)
) (22)

4. The acceptance-rejection criterion

u ∼ U([0, 1])
If u ≤ α(qi+1,pi) then qi+1 is accepted: pi+1 = qi+1 otherwise pi+1 = pi

(23)

is applied

5. We update the scale factor when i ≡ 0( mod NMC,1). We update the scale factor frac

frac = frac exp(xrate − xobj)

xrate =
Number of acceptation

Number of iterations

This is an algorithm with global scaling and with vanishing adaptation so the ergodicity of

the algorithm is achieved. The vanishing factor γi =
1
i
, it must be chosen as

∑
i γi = +∞ [1].

So that

Ci =
1

k + 1
(

k∑
i=0

pip
T
i + (k + 1)p̄kp̄

T
k ) (24)

where p̄i =
1

i+1

∑i
k=0 pk as in [6]. The covariance matrix is updated as in [8]

Ci+1 = (1− γi+1)Ci + γi+1(qi − p̄i)

p̄i+1 = (1− γi+1)p̄i + γi+1qi

(25)

The empirical covariance matrix and the mean proposal are updated as follows

The target xobj = 0.234 is chosen thanks to [4]. Since the a posteriori distribution can be really

degenerate the use of C and the global factor adaptation allows to sample well the distribution,

even if highly degenerated.

4 Test-cases, numerical application

The real parameter will be

p∗ =

⎛⎝εCk
S

⎞⎠ =

⎛⎝ 0.25 10−3

0.5 or 0.75 or 0.95
70 ms−1

⎞⎠ (26)

In the following figures the cross represents p∗, the observations M̂ are the values of the simple

moments of p∗.

We use the following bounds for the a priori distribution

εC,min = 0.1 10−2

εC,max = 0.4 10−2

kmin = 0

kmax = 1

Smin = 20

Smax = 200

(27)
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The quantity of interest is N[0,T ] when T = 10 ms and for a time of measurement of Tmeas =
36, 360, 3600 s. We have also considered αY = 2 ms−1 and

ν̄ = 2.4130

D2 = 0.7992

D3 = 0.4819

ν̄S = 1.000

D2S = 0

D3S = 0

(28)

The initialization parameters of the AM algorithm are

xrate = 1

xobj = 0.234

frac = 0.1

Nbp = 107

NMC,1 = max(
NMC

10000
, 1)

(29)

Regarding the explicit sampling there are N3
e points in the grid with Ne = 400.

The 2D-a posteriori distribution of the parameter p are estimated by histograms with 100× 100
from the AM sample.

Tmeas = 36s

k
=

0.
5

Tmeas = 360s Tmeas = 3600s

k
=

0.
75

k
=

0.
95

Figure 2: A posteriori distribution for (k, S) using 3P3M with explicit sampling

We can compare it to the result using the MCMC method
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Tmeas = 36s
k
=

0.
5

Tmeas = 360s Tmeas = 3600s
k
=

0.
75

k
=

0.
95

Figure 3: A posteriori distribution for (k, S) using 3P3M with MCMC sampling

We can also observe the a posteriori distribution for (k, εC)

Tmeas = 36s

k
=

0.
5

Tmeas = 360s Tmeas = 3600s

k
=

0.
75

k
=

0.
95

Figure 4: A posteriori distribution for (k, εC) using 3P3M with explicit sampling

We can compare these results to the MCMC method results
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Tmeas = 36s
k
=

0.
5

Tmeas = 360s Tmeas = 3600s
k
=

0.
75

k
=

0.
95

Figure 5: A posteriori distribution for (k, εC) using 3P3M with MCMC

5 Discussion

The explicit sampling of the distribution is really effective when the dimension of p is up to

three.

When the dimension is larger than four, the AM algorithm is efficient whatever the dimension

of p is.

We observe the higher the multiplication factor k the more the distribution is degenerate. The

same effects appear when the time of measurement Tmeas is large. The real value p∗ is in the

support of the distribution, but this support is large.

6 Conclusion

To sum up, in the context of the neutron point model we have used the analytic expression

of the three first simple moments which define the forward model of our inverse problem. Our

observations are the estimation of the three first empirical moments of the neutron count dis-

tribution. Then using the Bayes principle, we have exposed the estimation of the a posteriori

distribution of the parameters. Then we have implemented two sampling methods of this a

posteriori distribution:

• The first method is a simple sampling with a regular grid whose cost dramatically in-

creases with the dimension of the parameter.

• The second method is obtained by the use of the Adaptive Metropolis algorithm with

Covariance Matrix Adaptation

On an example with synthetic data, we observed that the support of the distribution contains the

true parameter. The distribution is more degenerate when the multiplication factor k is high,

and also when Tmeas is large.

The explicit sampling is well adapted when dim(p∗) ≤ 3, but it is too expensive when this

condition is not satisfied. Then the use of the AM-CMA approach is required.
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The present work shows that the sampling (explicit or with AM-CMA) is satisfactory to

retrieve the true for parameter for one time gate T when dim(p∗) ≤ 3. Considering two time

gates T1 and T2 will enable recovering a parameter of higher dimension.
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