
LIMIT REPRESENTATIONS OF IMPRECISE RANDOM FIELDS

Mona M. Dannert1,∗, Johannes L. Häufler1 and Udo Nackenhorst1
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Abstract. In order to describe spatially uncertain parameters by random fields, the underlying
autocorrelation structure in engineering structures is usually not known.. The idea of impre-
cise random fields is to acknowledge this lack of knowledge by adding epistemic uncertainties.
Within this contribution the influence of the correlation length is studied. In particular, it is
shown that there exist bounds that limit the case of having no idea at all. This “absolutely no
idea p-box” is defined by white noise and the random variable corresponding to the mean value
and standard deviation of the imprecise random field. By this, the limits of having “absolutely
no idea” can be described without the need of Karhunen-Loève expansion and random field
propagation. Then, at least for linear problems, every response in between can be estimated by
linear interpolation without any need for sampling.
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1 INTRODUCTION

Stochastic finite element (FE) method aims to describe a models response depending on

random input variables such as loads or material parameters. In this context, uncertainties are

distinguished into aleatory and epistemic [5]. The former describe the irreducible, intrinsic ran-

domness of a parameter and is classically described by probability theory. The latter is caused

by a lack of knowledge or data. However, gaining enough information to reduce epistemic un-

certainty is usually limited by finite resources or limited technical capabilities in engineering

reality. To consider such epistemic uncertainties, several possibilistic approaches can be used,

e.g. interval [9] or fuzzy [8] analyses. An honest approach usually considers both, aleatory and

epistemic uncertainties. Alternative approaches on the treatment of these mixed uncertainties,

e.g. evidence theory, fuzzy probabilities or probability boxes, have been reviewed for example

in [1].

In probability theory, random fields can be used to describe spatially uncertain values in

terms of their mean value, standard deviation and autocorrelation structure. While mean value

and standard deviation can be estimated by experiments quite easily, the autocorrelation be-

tween the random field values at two different locations can hardly be measured. To describe

such mixed aleatory and epistemic uncertainties, imprecise random fields have been introduced

lately [6]. This approach can be understood as an extension of probability box (p-box) approach

towards random fields. The random field parameters that cannot be determined precisely, e.g.

the correlation length, can be described as interval [3] or fuzzy valued [10]. Propagating such

imprecise random fields through an FE model, the quantity of interest is described by a p-box,

meaning a lower and upper bound instead of a crisp distribution. However, by introducing a

second loop over the epistemic uncertainties the sampling process can become very expensive.

Discretising the individual random fields for each correlation length by Karhunen-Loève (KL)

expansion furthermore leads to high-dimensional problems, especially when small correlation

lengths are involved [3, 4].

This contribution focuses on the autocorrelation structure where the lack of information is

incorporated by an interval valued correlation length. For this purpose, the concept of impre-

cise random fields and the KL expansion as a method to discretise random fields are introduced

in Section 2. It is important to ensure that the imprecise response is not affected by the local

or global error arising from the truncation of the KL expansion [4]. Therefore, an imprecise

random field input is carefully investigated in Section 3 in terms of the affect of the correla-

tion length and truncation order. Furthermore, the limits of the correlation length towards zero

(white noise) and infinity (random variable) are studied. Afterwards, the propagation of impre-

cise random field input parameters is studied for a linear problem including load and material

uncertainties within Section 4. Finally, the results are summarised and concluded in Section 5.

2 IMPRECISE RANDOM FIELDS

The concept of imprecise random fields allows to model one or several parameters of a

random field by interval or fuzzy variables. This way, epistemic uncertainties can be added to a

classically aleatory random field. Mixed uncertainties are usually propagated by a double loop

approach. After discretising the epistemic parameters within an outer loop, the probabilistic

problem resulting for each crisp parameter can be solved within the inner loop, e.g. by Monte

Carlo (MC) sampling. In case of imprecise random fields this means that each resulting random

field needs to be discretised. A well known method for this purpose is given by Karhunen-Loève

(KL) expansion [7] which will be shortly summarised in the following subsection. Afterwards
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the main idea of the probability box (p-box) approach is illustrated in order to describe and

propagate imprecise random fields.

2.1 Random field discretisation

Random fields X(z, ω) are parameters depending on space z ∈ Dd and chance ω ∈ Ω. They

can be described in terms of a mean value μX(z) and an autocovariance function Cov(z1, z2) =
σX(z1)σX(z2) Γ(z1, z2), where σX(z) is the standard deviation and Γ(z1, z2) describes the

autocorrelation between the random variables assigned to two arbitrary locations z1 and z2.

Within this contribution, the standard deviation is assumed to be constant, σX(z) = σX .

Then the random field can be described in terms of μX(z), σX and ΓX(z1, z2) and its series

expansion reads [11]

X(z, ω) = μX(z) + σX

∞∑
i=1

√
λiφi(z)ξi(ω), (1)

where ξi are independent standard normal distributed random variables. The eigenpairs {λi,φi}
are gained by solving ∫

D

ΓX(z1, z2)φi(z2) dz2 = λiφi(z1), (2)

where ΓX(z1, z2) can be decomposed as

ΓX(z1, z2) =
∞∑
i=1

λiφi(z1)φi(z2). (3)

To propagate random field parameters through a model, e.g. a stochastic finite element

(FE) problem, the infinite sum in Equation (1) needs to be truncated and the random field is

approximated by

X̂(z, ω) = μX(z) + σX

T∑
i=1

√
λiφi(z)ξi(ω). (4)

The corresponding expanded autocorrelation function then reads

Γ̂X(z1, z2) =
T∑
i=1

λiφi(z1)φi(z2) (5)

and maintains an error ε(z) depending on T

ε(z) = 1−
T∑
i=1

λiφ
2
i (z). (6)

With Cov(z1, z2) = σX(z1)σX(z2) Γ(z1, z2), Equation (6) is the normalised equivalent to the

often used error variance εσ2(z), defined e.g. by [2]. Furthermore, the mean error over the

whole domain, equivalent to the mean error variance ε̄σ2 , can be estimated by

ε̄ = 1−
T∑
i=1

λi

∫
D

φ2
i (z) dz. (7)
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In case of an analytical solution, the eigenfunctions are orthonormal, φi(z)φj(z) = δij , and

Equation (7) simplifies to [2]

ε̄ = 1− 1

|D|
T∑
i=1

λi. (8)

Random fields are classically categorised with aleatory uncertainties, meaning that they de-

scribe the intrinsic randomness of a phenomena itself, which cannot be further reduced. How-

ever, the describing parameters may contain epistemic uncertainty caused by a lack of knowl-

edge or data. For this reason, the concept of imprecise random fields is introduced in the fol-

lowing subsection.

2.2 Probability box approach

If one or several parameters cannot be determined precisely, the classically aleatory random

field includes also epistemic uncertainties, e.g. by interval or fuzzy valued parameters [10].

To avoid further assumptions on the fuzziness, this work considers epistemic parameters to be

interval valued. This leads to the concept of an imprecise random field [6],

[X](z, ω) = μI
X(z) + σI

X

∞∑
i=1

√
λI
iφ

I
i (z)ξi(ω), (9)

where the index I denotes the interval valued random field parameters. The interval valued

eigenvalues and -functions originate from an interval valued correlation length LI .

In this work imprecise random fields are propagated through an FE problem using the prob-

ability box (p-box) approach [1]. By this, the quantity of interest Y can be described by a left

and right bound [F Y , F Y ] of the cumulative distribution function (CDF). If further information

is available, e.g. the interval ranges μI
Y and σI

Y of the mean value and the standard deviation

or the probability family F , these can be added and the p-box is described by the quintuple

(F Y , F Y , μ
I
Y , σ

I
Y ,F).

The eigenvalues λi are not monotonically dependent on the correlation length L. For this rea-

son, a pure vertex analysis does not necessarily guarantee to gain the outer bounds of the p-box

in case an imprecise random field contains an interval valued correlation length. A straightfor-

ward possibility is to discretise LI , to perform a stochastic analysis with each Li ∈ LI and to

determine the p-box bounds by the minimum and maximum of all results [3]. Alternatively, if

the used model is monotonic, the relevant intermediate correlation lengths L∗
i ∈ LI of the im-

precise random field input can be determined by optimisation a priori [6]. This may reduce the

computational effort of propagating multiple random fields, especially when several imprecise

random fields are involved.

Note that when the constant standard deviation is considered to be interval valued (as well),

the choice to decompose the autocorrelation function instead of the autocovariance function -

as it is usually done in literature - becomes beneficial in terms of the computational cost. As

ΓX(z1, z2) is independent of σX , Equation (2) needs to be solved only once (per Li) and not for

each σX,i ∈ σI
X (in combination with each Li).
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3 INVESTIGATION ON CRUCIAL RANDOM FIELD PARAMETERS

Within this contribution one-dimensional (1D) random fields depending on the spatial param-

eter z ∈ D are investigated. Furthermore, an exponential autocorrelation function ΓX(z1, z2) is

considered,

ΓX(z1, z2) = exp

{
−|z1 − z2|

L

}
, (10)

which describes the decay of the autocorrelation in terms of the correlation length L. Note that

the stochastic dimension N of the random field depends on the truncation order T , see Equa-

tion (4). Due to the non-differentiability of Equation (10) at z1 = z2, the corresponding random

field can become very high-dimensional when L is small compared to the domain length l.
However, the availability of an analytical solution, described e.g. in [11], justifies the effort for

the purpose of this paper.

The parameters which describe a random field are investigated in this section. Equation (1)

can be interpreted as an expanded standard normal distributed random field (μS = 0, σS = 1)

that is scaled by σX and shifted towards μX(z). The mean value and the standard deviation

therefore do not influence the expansion itself. Beside the chosen autocorrelation function, the

main effect on the random field is caused by the correlation length. Therefore, in this section

a 1D standard normal distributed random field S(z, ω) defined on D = [0, 1] is investigated

for the correlation length values L = [0.01, 0.1, 1.0, 10.0] in Subsection 3.2. The results are

compared to the limits L → 0, which defines white noise, and L → ∞, which is equal

to a constant standard normal distributed random variable S(ω). However, the impact of the

truncation order T on the expansion error needs to be studied before.

3.1 Influence of the truncation order

When different correlation lengths Li ∈ LI are considered for an imprecise random field,

special care must be taken regarding the truncation order T . To ensure that the p-box bounds

are not affected by different errors within the input variance σ2{X̂(z, ω)} = σ2
X Γ̂X(z1, z2),

the truncation needs to be chosen individually for each Li, e.g. in terms of an equal mean

error ε̄i. As it can be seen in Figure 1a, the convergence of the latter and consequently the

stochastic dimension N = T is highly dependent on the correlation length ratio. For large L/l
the corresponding ε̄ is already small for very few truncation terms. It is therefore practical to use

the upper bound of LI to decide on ε̄. However, by this approach one can be forced to accept

extremely high dimensions for the lower bound of LI when the range of the interval valued

correlation length is large.

Table 1: Truncation orders T resulting to the mean errors ε̄ ≈ 3.2%, ε̄ ≈ 1.3% and ε̄ ≈ 0.8% regarding an

exponential autocorrelation function with different correlation length ratios L/l.

ε̄ ≈ 3.2% ε̄ ≈ 1.3% ε̄ ≈ 0.8%

L/l [−] T [−] ε̄ [%] T [−] ε̄ [%] T [−] ε̄ [%]

10.0 1 3.2441 2 1.2977 3 0.7963

1.0 7 3.0997 16 1.3064 26 0.7948

0.1 63 3.2382 156 1.3029 254 0.7993

0.01 625 3.2420 1551 1.3068 2534 0.7998
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In Table 1, for three possibly aimed errors ε̄ ≈ 3.2%, ε̄ ≈ 1.3% and ε̄ ≈ 0.8% (guided by

the lowest possible truncation terms T = 1, T = 2 and T = 2 of the maximum L/l) the closest

possible error ε̄i and the corresponding value Ti are listed for the different considered Li/l. As

can be seen for ε̄ ≈ 3.2%, not all Li/l can match this error well. The next possible error referred

to L/l = 10 is ε̄ ≈ 1.3%. Here the errors of the different Li/l are better comparable already

but T has more than doubled. Furthermore, if further relatively large correlation length ratios,

e.g. L/l = 5, were included, the corresponding error could again not match perfectly. For

this reason, the truncation has to be investigated for each problem considered with imprecise

random fields and the comparable error needs to be chosen individually depending on the in-

volved values Li to be propagated. Regarding the local error ε(z) depicted in Figure 1b, another

difficulty becomes clear in terms of different correlation lengths to be considered. Although all

Li/l fulfil the same mean error ε(z) ≈ 1.3%, the local error still varies significantly when T is

small. Depending on the quantity of interest, this can lead to localisation effects [4].

(a) convergence of ε̄ with increasing T (b) local variation of ε(z) for a fixed ε̄ ≈ 1.3%

Figure 1: Influence of different correlation length ratios L/l and truncation orders T on the mean error ε̄ and the

local error ε(z) of a 1D random field using an exponential autocorrelation function.

3.2 Influence of the correlation length

As already mentioned, the correlation length L is a parameter indicating how fast or slow

the autocorrelation between the random field values X(z1, ω) and X(z2, ω) decays with the

distance |z1 − z2|. When L/l → 0, the values of the field are completely uncorrelated which

is called white noise. On the other hand the random field converges towards a random variable

for L/l → ∞. In this subsection, the influence of Li/l on a standard normal distributed random

field S(z, ω) is studied and the convergence of the random field properties towards these two

limits are investigated. The corresponding truncation orders Ti are chosen according to a mean

error ε̄i ≈ 0.8%, compare Table 1.

In Figure 2 the effect of the different considered correlation length ratios as well as the limits

of L/l is visualised. On the left side, the autocorrelation function Γ(z1, z2) is depicted in its

closed form. It can be easily seen that the non-differentiability at z1 = z2 becomes more and

more crucial for decreasing L/l. On the right, three standard normal distributed random field
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(a) L/l → 0 (white noise)

(b) L/l = 0.01

(c) L/l = 0.1

(d) L/l = 1.0

(e) L/l = 10.0

(f) L/l → ∞ (random variable)

Figure 2: Influence of the correlation length ratio L/l considering a 1D standard normal distributed random field.

Left: closed form of the exponential autocorrelation function Γ(z1, z2), right: three random field realisations

Ŝj = Ŝ(z, ωj) (solid lines) and their corresponding mean values μ̂S,j = μ{Ŝj} (dashed lines).
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realisations Ŝj = Ŝ(z, ωj) are depicted for the different ratios L/l. Furthermore, the individual

mean value μ̂S,j = μ{Ŝj} corresponding to the realisation j is given in a dashed line of the

same colour. It can be seen that the variation of the random field increases with a decreasing

L/l. However, the higher the variation is, the more likely μ̂S,j falls close to the input mean

value μS = 0 of the random field. Therefore, the convergence behaviour of μ̂S,j is investigated

further in terms of the number nMC of random field realisations.

The variation of the mean value μ̂S,j of an individual random field Ŝj = Ŝ(z, ωj) seems

to depend on the correlation length ratio L/l. In the following the mean value μ{μ̂S,j} and

standard deviation σ{μ̂S,j} of the individual random field mean values μ̂S,j , j = 1, ..., nMC, are

discussed in terms of an increasing sample size nMC. As can be seen in Figure 3a, considering

a sufficiently large sample size the mean value μ{μ̂S,j} of all random field mean values con-

verges towards the input mean value μS = 0 that has been used in Equation (4) to create the

realisations. On the contrary, the standard deviation σ{μ̂S,j} of all random field mean values is

not generally converging towards the input standard deviation σS = 1 but towards individual

values σ ∈ [0, 1]. Furthermore, L/l → 0 describes the lower bound with σ{μ̂S,j} converging to

zero, L/l → ∞ the upper bound with σ{μ̂S,j} converging to one.

(a) μ{μ̂S,j} converging to μS (b) σ{μ̂S,j} converging to a value σ ∈ [0, σS ]

Figure 3: Convergence of the mean value μ{μ̂S,j} and the standard deviation σ{μ̂S,j} of the individual mean

values μ̂S,j = μ{Ŝj} of nMC standard normal distributed random field realisations Ŝj = Ŝ(z, ωj).

In this case, a standard normal distributed random field Ŝ(x, ω) has been used. It has been

found that μ{μ̂S,j} → μS = 0 and σ{μ̂S,j} → σ ∈ [0, σS = 1]. However, understanding

an arbitrary random field X(z, ω) as a standard normal distributed random field S(z, ω) that

has been scaled by σX and shifted towards μX(z), one can conclude in general that for j =
1, ..., nMC and nMC sufficiently large

μ{μ̂X,j} → μX independent of L/l, (11)
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and σ{μ̂X,j} is bounded by the limits of L/l,

σ{μ̂X,j} →
{
0 for L/l → 0

σX for L/l → ∞ . (12)

For this reason it can be worth the effort to once determine σ{μ̂S,j} of a standard normal dis-

tributed random variable as a function of the correlation length ratio L/l. Having this standard-

ised result for a given autocorrelation function one can estimate σ{μ̂X,j} of any random field

X(z, ω) by

σ{μ̂X,j}(L/l) = σX · σ{μ̂S,j}(L/l), (13)

where σX is the input standard deviation that is used to create random field realisations in

Equation (4). Then, if the random field propagates linearly through the applied model, the

mean value and standard deviation of a quantity of interest can be estimated immediately for

any further Li/l as soon as two correlation length values have been propagated.

Figure 4: Standard deviation σ{μ̂S,j} of the individual mean values μ̂S,j = μ{Ŝj} of nMC = 106 standard normal

distributed random field realisations Ŝj(z, ω) with respect to the correlation length ration L/l.

In Figure 4 the standard deviation σ{μ̂S,j} resulting from nMC = 106 individual random

field mean values μ̂S,j = μ{Ŝj} is depicted as a function of L/l. Note that the results of a

white noise property depend on the discretisation of the domain, here nel = 3000, and therefore

σ{μ̂S,j} is not exactly zero. However, it can be expected that for nel → ∞ it is σ{μ̂S,j} → 0.

It can be estimated that for correlation lengths L which are larger than ten times the domain

length l, the resulting random field starts to converge towards a random variable and the effort

of discretising the random field by KL expansion might not be justified. On the lower bound,

L/l is rather restricted by the feasibility in terms of the stochastic dimension than by converging

towards white noise.
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4 LINEAR BEAM STUDY

Considering a linear model Y = M(X) to propagate (imprecise) random fields X(z, ω), it

can be assumed that the mean value μ{Y } and the standard deviation σ{Y } depend linearly on

μ{μ̂X,j} and σ{μ̂X,j}. Instead of simulating several Li ∈ LI to determine the p-box of Y , the

computational cost could therefore be reduced significantly by just propagating the limits of L,

meaning white noise and a random variable, through the model to gain the p-box of “absolutely

no idea”. Any further needed Li/l could then be simply gained by linear interpolation. The

standard deviation σ{μ̂X,j} corresponding to a specific random field X(z, ω) with any standard

deviation σX defined on an arbitrary D can be gained by sampling, which is much cheaper

when the random field does not need to be propagated. Alternatively, it even can be estimated

by the standardised results depicted in Figure 4 by reading σ{μ̂S,j} corresponding to L/l from

the graph and multiplying this value with σX as given in Equation (13).

This assumption is further studied within this section. For this purpose, the beam problem

depicted in Figure 5 is considered assuming a linear elastic material. To gain a good rep-

resentation of white noise, the beam is discretised by nel = 3000 1D beam elements. The

investigated random fields are assumed as a function along the beam length l = 1m and to be

constant within the cross section A = 0.01m2 (1D random field). The maximum deflection

wmax = w(z = 0.5m) in the middle of the both-sided supported beam is the quantity of inter-

est. For a deterministic simulation using a Young’s modulus E = 210 · 109 N
m2 and a constant

line load q0 = 5000 N
m

, the quantity of interest results in wmax = 3.72 · 10−5 m.

wmax

b = h = 0.1ml = 1m

b

q0 = 5000 N
m

h

Figure 5: Linear-elastic beam with Young’s modulus E = 210 · 109 N
m2 under constant line load, deterministic

maximal deflection: wmax = 3.72 · 10−5 m.

In the following subsections, both, the line load and the Young’s modulus are considered as

imprecise random fields in first two studies independently, and in a third study combined.

4.1 Investigation on different imprecise random field input parameters

In the following, two studies on the correlation length ratio L/l are performed, each with one

parameter considered as imprecise random field input with the parameters given in Table 2. For

both studies, the discretised correlation length intervals L(1)/l = [0.01 : 0.01 : 0.1], L(2)/l =
[0.1 : 0.1 : 1.0] and L(3)/l = [1.0 : 1.0 : 10.0] as well as L/l → 0 (white noise, abbreviated by

WN) and L/l → ∞ (random variable, abbreviated by RV) are investigated chosing ε̄ = 0.8%.

A closer look is spend on the results of the values L(∗)/l = [WN, 0.01, 0.1, 1.0, 10.0,RV]. Each

Li/l simulation is performed using brute force MC with nMC = 10000 samples.

In the first study, the line load q is modelled as an imprecise random field with μq = q0 =
5000 N

m
and σq = 0.1μq = 500 N

m
. As q is in the numerator of the beam deflection solution,

it can be assumed that the propagation of Li/l through the FE model is linear. The Young’s

modulus E, considered with μE = E = 210 · 109 N
m2 and σE = 0.05μE = 10.5 · 109 N

m2 within

the second study, can be found in the denominator of the beam deflection solution. Therefore,

the results are expected to depend inversely on E(z, ω) and might not be Gaussian distributed

anymore.
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Table 2: Random field parameters considered for two studies including each one random field input parameter.

random field input mean value standard deviation

study 1 line load q(z, ω) μq = 5000 N
m σq = 0.1μq = 500 N

m

study 2 Young’s modulus E(z, ω) μE = 210 · 109 N
m2 σE = 0.05μE = 10.5 · 109 N

m2

The CDFs resulting from each Li/l are depicted in Figure 6 for both studies. The axis de-

scribing wmax is scaled uniquely such that both p-boxes can be directly compared qualitatively.

The deterministic result is given as a vertical dash-dot line, the results of L(∗)/l in different

colours and these of all other Li/l as grey dotted lines. Both results appear to be Gaussian dis-

tributed, which corroborates the assumption of a linear dependency between input and output.

(a) study 1: line load as input random field

(b) study 2: Young’s modulus as input random field

Figure 6: CDFs for different correlation length ratios L/l bounded by white noise L/l → 0 and a random variable

L/l → ∞ considering one random field input parameter.

In the first study, the input standard deviation is assumed to be ten percent of the input mean

value, σq = 0.1μq, while it is only five percent, σE = 0.05μE , in the second study. For this

reason, the resulting p-box is much wider in Figure 6a than in Figure 6b. The CDF gained by a

random variable spans the widest range of wmax. With decreasing L/l the CDFs become steeper.

The CDF of the white noise is very close to the deterministic value. It can be assumed that it will

converge towards a vertical line for nel → ∞. By this, one can estimate an “absolutely no idea

92



p-box” by even just one stochastic simulation, the one assuming just a random variable. The

white noise result defining the second part of the p-box bound can be considered as a vertical

line μ{wRV
max}. In addition to the qualitative impression gained by Figure 6, the mean value and

standard deviation of both, input random fields and the quantity of interest according to each

L(∗)/l can be compared quantitatively in Table 3.

Table 3: Mean value μ{μ̂X,j} and standard deviation σ{μ̂X,j} of the considered input random fields as well as

mean value μ{wmax} and standard deviation σ{wmax} of the maximum beam deflection wmax resulting from a

propagation through a linear FE model for different L/l.

(a) study 1: line load as input random field

input realisations quantity interest

L/l [−] μ{μ̂q,j} [Nm ] σ{μ̂q,j} [Nm ] μ{wmax} [m] σ{wmax} [m]

WN 5.0001e+03 9.1424e+00 3.7223e-05 7.5621e-08

0.01 4.9986e+03 7.0213e+01 3.7213e-05 5.8664e-07

0.1 4.9998e+03 2.1207e+02 3.7214e-05 1.7917e-06

1.0 5.0002e+03 4.2623e+02 3.7221e-05 3.2960e-06

10.0 5.0013e+03 4.9965e+02 3.7231e-05 3.7368e-06

RV 5.0039e+03 5.0130e+02 3.7251e-05 3.7319e-06

deterministic 5e+03 - 3.72e-05 -

(b) study 2: Young’s modulus as input random field

input realisations quantity interest

L/l [−] μ{μ̂E,j} [ N
m2 ] σ{μ̂E,j} [ N

m2 ] μ{wmax} [m] σ{wmax} [m]

WN 2.1000e+11 1.9224e+08 3.7249e-05 4.3169e-08

0.01 2.0998e+11 1.4680e+09 3.7299e-05 3.3463e-07

0.1 2.1001e+11 4.4876e+09 3.7293e-05 9.9669e-07

1.0 2.0994e+11 8.9484e+09 3.7310e-05 1.6989e-06

10.0 2.0000e+11 1.0341e+10 3.7295e-05 1.8649e-06

RV 2.0990e+11 1.0457e+10 3.7313e-05 1.8716e-06

deterministic 2.1e+11 - 3.72e-05 -

As it was expected based on the behaviour of random fields investigated in Subsection 3.2,

the mean values μ{wmax} of the maximum beam deflection turn out to lay close to the determin-

istic result, independent of the correlation length. The standard deviation σ{μ̂X,j} of the input

random fields have been determined by the generated samples. Alternatively, σ{μ̂X,j} can be

determined by Equation (13). The values of both options are compared in Table 4 for both con-

sidered random field inputs, the line load q(z, ω) and the Young’s modulus E(z, ω). Note that

σ{μ̂S,j} has been determined by nMC = 106 samples, while the q(z, ω) and E(z, ω) have been

sampled only nMC = 104 times each. Still, the results are comparable already. Furthermore, it

can be seen that Equation (12) holds true for both input parameters E and q.

Regarding the standard deviation σ{wmax} of the quantity of interest, it can be seen that the

value is very small for white noise and increases with increasing L/l for both studies in Ta-
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Table 4: Comparison of the standard deviation σ{μ̂X,j} of the input random fields determined by nMC = 10000

samples with the result gained by factorising σ{μ̂S,j} of a standard normal distributed random field Ŝ(z, ω) by σX .

line load q(z, ω) [Nm ] Young’s modulus E(z, ω)[ N
m2 ]

L/l [−] σ{μ̂S,j} [−] σq · σ{μ̂S,j} σ{μ̂q,j} σE · σ{μ̂S,j} σ{μ̂E,j}
WN 0.0183 9.1500e+00 9.1424e+00 1.9215e+08 1.9224e+08

0.01 0.1408 7.0400e+01 7.0213e+01 1.4784e+09 1.4680e+09

0.1 0.4243 2.1212e+02 2.1207e+02 4.4552e+09 4.4876e+09

1.0 0.8593 4.2965e+02 4.2623e+02 9.0227e+09 8.9484e+09

10.0 0.9836 4.9180e+02 4.9965e+02 1.0328e+10 1.0341e+10

RV 0.9999 4.9995e+02 5.0130e+02 1.0499e+10 1.0457e+10

bles 3a and 3b. To investigate a possible linear dependence between input and output, σ{wmax}
is plotted versus σ{μ̂X,j} in Figure 7. The axis denoting σ{wmax} is scaled equally for both

studies. This way, the different percentages in the input standard deviations, σq = 0.1μq and

σE = 0.05μE become visible again. The values L(∗)/l are highlighted in red while all other

Li/l pairs are depicted as grey crosses. The blue line represents the assumed linear dependence

between white noise, for which it is σ{wmax} → 0 for nel → ∞, and the random variable. It

can be seen that the dependence between input and output standard deviation is not perfectly

linear, as the results lay above the blue line. Assuming a linear dependence and interpolating

any L/l response from the CDF gained by a random variable would therefore underestimate the

real standard deviation.

(a) study 1: line load as input random field (b) study 2: Young’s modulus as input random field

Figure 7: Dependence of the output standard deviation σ{wmax} on the input standard deviation σ{μ̂X,j} of the

individual mean values μ̂X,j = μ{X̂j} with nMC = 10000 random field realisations X̂j(z, ω) when one input

random field is considered.

The CDFs resulting from a linear interpolation of Li/l within the “absolutely no idea p-box”

are compared to the ones gained by sampling and propagation in Figures 8 and 9 for both stud-

ies. The underestimated standard deviation is clearly visible by the dashed lines, which denote

the interpolated CDFs, being slightly steeper than the corresponding CDF gained by sampling

(solid line). However, with respect to the spectrum resulting from “having no idea at all” about

the correlation length, the linear interpolation leads to a good estimate. Furthermore, if it is

supposed to represent the lower bound of L, the estimate returns a slightly more conservative

but save bound.
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(a) Lq/l = 0.01 (b) Lq/l = 0.1

(c) Lq/l = 1.0 (d) Lq/l = 10.0

Figure 8: Comparison of the CDFs gained by sampling and interpolation within the “absolutely no idea p-box” for

different correlation lengths Lq/l considering the line load as an imprecise random field input.

(a) LE/l = 0.01 (b) LE/l = 0.1

(c) LE/l = 1.0 (d) LE/l = 10.0

Figure 9: Comparison of the CDFs gained by sampling and interpolation within the “absolutely no idea p-box” for

different correlation lengths LE/l considering the Young’s modulus as an imprecise random field input.
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4.2 Investigation on the interference of two imprecise random field input parameters

The more parameters are considered as imprecise random fields the more expensive a sim-

ulation becomes. If the underlying interval valued correlation lengths need to be discretised,

each combination of Li/l corresponding to each parameter needs to be propagated. In this case,

a cheap estimate gained by linear interpolation can still become valuable. The beam problem

defined in Figure 5 is simulated again but with both parameters, the line load q(z, ω) and the

Young’s modulus E(z, ω), considered as imprecise random fields. The corresponding mean

values μq and μE as well as standard deviations σq and σE are still chosen as given in Table 2.

For both parameters, the correlation length values L(∗)/l = [WN, 0.01, 0.1, 1.0, 10.0,RV] are

chosen and each combination Lq,i/l × LE,i/l is propagated. The corresponding random fields

are truncated such that ε̄i = 0.8%. For the propagation of each Li/l combination, nMC = 30000
samples are generated.

The resulting CDFs for the quantity of interest wmax are depicted in Figure 10. The combi-

nation of twice white noise and twice a random variable are depicted in bold lines while the vice

versa combinations are depicted in bold dashed lines. For the sake of clarity, the combinations

where it is Lq,i/l = LE,i/l are depicted in coloured lines, all other combinations are plotted in

grey dotted lines.

Figure 10: CDFs for different combinations of correlation length ratios Lq/l and LE/l bounded by the combina-

tions of white noise Lq/l → 0, LE/l → 0 and random variables Lq/l → ∞, LE/l → ∞ considering two random

field input parameters.

As before, the mean value μ{wmax} is not affected but the standard deviation σ{wmax}. It

can be seen that all Li/l combinations lay within the p-box defined by the white noise com-

bination and the random field combination. Furthermore, the former seems again to converge

towards the deterministic result. The “absolutely no idea p-box” can therefore be defined by

only propagating the combination of both parameters being a random variable.

The resulting standard deviation σ{wmax} depending on the input combination of σ{μ̂q,j}
and σ{μ̂E,j} is depicted in Figure 11. The blue surface is spanned by the results corresponding

to [0, σ{wRV,q
max }] × [0, σ{wRV,E

max }]. The results σ{wmax} gained by propagating the pairs Lq,i/l,
LE,i/l are marked by a cross, while the interpolated value corresponding to this input is marked

by a dot on the surface. Furthermore, the interpolated and simulated values corresponding to

each other are connected by a line. This way the distance between the simulation cross and the

interpolation surface is visualised.
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Figure 11: Dependence of the output standard deviation σ{wmax} on the input standard deviations σ{μ̂q,j} and

σ{μ̂E,j} of the individual mean values μ̂q,j = μ{q̂j} and μ̂E,j = μ{Êj}, respectively, with nMC = 30000 random

field realisations q̂j(z, ω) and Êj(z, ω) when two imprecise random fields are considered.

Compared to the two studies discussed in Subsection 4.1, the bilinear interpolation surface

matches most of the simulation results even better. The computational cost could therefore

be reduced drastically by only propagating the parameters modelled by random variables and

avoiding the propagation of several correlation length combinations. Additionally, this would

completely save the cost to determine the KL expansion, which can become expensive when

no analytic solution is available. The cost of each individual realisation can be furthermore

reduced significantly when the random property is constant for each realisation. Finally, prop-

agating one or several random variables means a low stochastic dimension which enables more

sophisticated sampling techniques than brute force MC sampling. As discussed in Subsec-

tion 3.1, the propagation of just one random field can become highly dimensional. Therefore

sophisticated sampling methods often suffer from the curse of dimensionality when they are

used to propagate random fields.

5 CONCLUSION AND PERSPECTIVES

In this contribution imprecise random fields described by interval valued correlation lengths

have been investigated. In a first study, the influence of the correlation length L on a standard

normal distributed random field has been studied in general. To describe the variability of

a random field X(z, ω) corresponding to L, the mean value μ{μ̂X,j} and standard deviation

σ{μ̂X,j} of the individual random field realisations mean values μ̂X,j have been introduced. It
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could be shown that the former converges towards the mean value μX used to define the random

field, while the converged value of the latter depends on L. However, the bounds of σ{ ˆμX , j}
are defined by the limits of the correlation length, L → 0 describing white noise and L → ∞
standing for a random variable. For the applied linear elastic example, these limits propagate to

a p-box which includes all other solutions corresponding to any L. As L ∈ (0,∞) represents

all possible correlation lengths when no information is available, this p-box has been called

“absolutely no idea p-box”.

In a second step the dependence between input and output of the simple linear mechanical

model has been investigated in terms of different imprecise random field input parameters. As

the mean value of the quantity of interest Y is barely affected by the correlation length, the

focus has been on the standard deviation. It has been shown that the dependence between

the standard deviation σ{Y } of the quantity of interest and σ{ ˆμX,j} is not perfectly linear.

However, determining it by assuming a linear dependence within the “absolutely no idea p-

box” has shown to result in a good estimate. Furthermore, as the real standard deviation σ{Y } is

underestimated, a linear interpolation of the lower interval bound results in a conservative p-box,

when L ∈ [L̃,∞) is considered. According to the fact that the correlation length (as well as the

autocorrelation function itself) is usually unknown, interpolating within an “absolutely no idea

p-box” can be a computational cheap method in terms of engineering application. As the white

noise converges towards a vertical line of the mean value μ{Y } corresponding to the random

field, only the random variable needs to propagated to determine this limit representation of the

p-box, avoiding the need for computationally expensive random field discretisation. By that,

the stochastic dimensions are reduced drastically and perhaps, more efficient low dimensional

sampling schemes could be applied to further reduce the computational cost for engineering

analysis.

For engineering applications the suggested approach appears very attractive. Further investi-

gations are needed to investigate nonlinear problems. Here, for some parameters the dependence

between input and output can become more complex. Still, a first linear estimate can be used to

reduce the sampling effort.
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