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Abstract. District heating networks have traditionally been designed and operated as distribu-
tion networks supplied by few central heat production units. In order to reduce emissions in the
heating sector feed-in from smaller decentralized units and industrial waste heat is becoming
ever more important. This transition requires a more detailed monitoring of the network state,
which can be achieved either by installing a huge number of additional sensors in the grid or
by a state estimation based on a few additional measurements. However, the uncertain heat
consumption generated by consumers presents a major challenge in this endeavor. In this paper
we propose a model-based approach for optimal sensor placement in district heating networks
in order to minimize the uncertainty in the demand values which are estimated by solving a
Bayesian inverse problem. The optimization scheme is designed to yield a fair compromise be-
tween the desired information gain and the costs for installing the chosen sensors. A steady-state
model is employed to estimate temperatures, mass flows and pressures of network components
given the mean demand and the initial pressure generated by the heating plant. Our approach is
applied to a real-sized district heating network using actual consumption distributions as given
prior in order to validate the model and to prove scalability.
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1 INTRODUCTION
District heating networks are closed looping systems in the sense that water is pumped from

heating plants towards consumers through a pipe system and flows back through parallel laid

pipes. Energy is transmitted by heating up the water at the heating plants and cooling it down at

the consumer’s place. Within the grid the energy flow through each element is not predetermined

by the network operator but is a result of the energy extracted by the consumers. In order to

ensure security of supply and minimize energy losses in the grid, temperature and pressure at

the heating plant have to be adjusted accordingly.

Future district heating networks will be characterized by lower temperature levels and addi-

tional decentralized feed-in [16] making it considerably more difficult to ensure, that no grid

element is overloaded. Therefore additional information about the network state and conse-

quently the consumer’s actual consumption have to be obtained. However, constantly measuring

the demand at each consumer’s place is not practically feasible. The large number of additional

sensors would not only mean high investment cost but also a high onside electricity demand.

Moreover measurements directly at the consumers may be misleading, due to the way they

are connected to the grid. Usually the main pipes are laid under the roads and smaller pipes

connect these with the heat-exchange-stations inside the buildings. If the consumption changes

drastically or is close to zero the network state inside this connection pipes is not representative

for the main pipes in the grid.

Alternatively, the heat consumption can be predicted or estimated based on external param-

eters [6]. These estimations naturally inherit some kind of uncertainty affecting the model

prediction [18]. Hence, we say that uncertainty propagates from the consumption parameters

to the network’s state via the parameter-to-observable map. In this paper we propose a model-

based approach to place a small number of sensors at optimal positions in the district heating

network in order to minimize the variance of the estimated demand values. We claim that

a better knowledge about the consumer’s consumption eventually leads to more precise state

predictions in the whole network. In order to quantify the uncertainty of both the demand

estimation and the model’s prediction we use the linearized parameter-to-observable map and a

Bayesian viewpoint.

Optimal sensor placement is a broad field of research. It often appears in the context of

optimal experimental design in the literature [2, 17, 10, 12, 21]. Probabilistic sensitivity-based

approaches [3, 14, 19] and Bayesian inference-based perspectives [1, 2, 11] are mainly used

as a tool to maximize the information gain obtained from optimally positioned sensors at low

cost. A topic that is closely related to our question is leakage detection. A review paper on

leakage detection methods in district heating networks is given by [24]. In [5] a distributed

demand response approach based on augmented Lagrangian methods to optimize the heating

demand with minimal private information exchange is developed. To the best of our knowledge,

the sensor placement problem for variance-minimal demand estimation has not been applied to

district heating networks so far.

The paper is structured as follows. In Section 2 we introduce a heating model which maps the

consumer’s demand onto the network’s state. A Bayesian inference approach for model-based

optimal experimental design is applied to our setting in Section 3. Numerical results for a

real-sized district heating network are presented in Section 4. We end the paper with a short

discussion of the results and a conclusion.
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2 HEAT MODEL EQUATIONS
For practical purposes we are interested in the pressures and temperatures at given points in

the network as well as the amount of water flowing through the pipes. Therefore, an operator

(y,θ,η) �→ e(y,θ,η) is constructed which couples the consumer demands θ, the network state

y consisting of temperatures T, pressures p and mass flows �m, and set-point values η. In the

following we describe the different components of this operator e. The structure of district

heating networks can be described and implemented as a graph G = (V,E) with nodes V and

directed edges E ⊆ V ×V. In this setting, the network state is defined according to the edges

and nodes of the graph:

y � (pi,T i,Tend
kl ,T

start
kl , �mkl), for all i ∈ V and (k, l) ∈ E, (1)

where pi,T i are the pressure and the temperature in node i, and Tend
kl ,T

start
kl , �mkl denote the water

temperature at the end respectively the start of edge (k, l) and the mass flow on that edge. These

kinds of models are commonly used to analyze different aspects of district heating networks

[9, 15, 23, 4, 7]. In this paper, we assume steady state conditions and neglect time delays in the

network. Since G is directed, we can assign a nominal flow direction to each edge. For an edge

(i, j) ∈ E the nominal flow direction is from node i to node j, meaning that �mi j ≥ 0 if water

flows form node i towards node j. The superscripts start and end should be understood in the

sense of this nominal flow direction. Per definition it follows that �mi j = − �m ji and Tend
i j = Tstart

ji .

We only investigate treelike networks with one heating plant, in which the mass flow directions

cannot change. Therefore, we deliberately choose the nominal flow direction in such a way, that

only positive values for the mass flow occur, i.e., if (i, j) ∈ E then �mi j ≥ 0.

Let Ni � { j ∈ V | (i, j) ∈ E or ( j, i) ∈ E} be the set of nodes in the neighborhood of i which

are connected to node i by an edge (i, j) ∈ E or ( j, i) ∈ E. Furthermore, let

E+i �
{( j, i) ∈ E | j ∈ Ni and �m ji > 0

}
and E –

i �
{(i, j) ∈ E | j ∈ Ni and �mi j ≥ 0

}
denote the set of edges through which water flows into respectively out of node i. Kirchhoff’s

law can be applied to the network in the sense that the total mass of water which flows into a

node, matches the total mass of water flowing out of a node:∑
( j,i)∈E+i

�m ji =
∑

(i,j)∈E –
i

�mi j, for all i ∈ V . (2)

The temperature in each node is determined by the mixing laws of thermodynamics [23]:

T i =
���
∑

( j,i)∈E+i

�m ji Tend
ji
�	

/ ���

∑
( j,i)∈E+i

�m ji
�	
 , for all i ∈ V . (3)

Similarly, the temperature at the origin of an edge is given by the temperature of the node if the

edge is an outflow of that node:

Tstart
i j = T i if (i, j) ∈ E –

i . (4)

In our model, the four edge types Eload, Epipe, Eheating and Epump are distinguished. A single

edge might represent multiple components in the physical network:
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• The edges Eload represent consumers in the heating grid. In the physical world a heat

exchanger is used to transfer energy from the district heating grid into the household

heating system. A valve controls the mass flow through the heat exchanger in order to

keep the water flowing back into the district heating network at a constant temperature.

Additional equipment might be installed in order to measure the heat consumption or

restrict the maximal mass flow [8]. This behavior is modeled as

Tend
i j = Tset

i j , for all (i, j) ∈ Eload (5)

�mi j =
�Qi j

cp

(
Tstart

i j − Tend
i j

) , for all (i, j) ∈ Eload (6)

pi − p j ≥ Δpmin, for all (i, j) ∈ Eload (7)

where cp = 4.182 kJ kg−1 K−1 is the specific heat capacity of water and Tset
i j and �Qi j

are the consumer’s set-points for the return temperature and the transferred heat energy,

respectively. The model parameters θ are exactly these heat energies �Qi j on a demand

edge (i, j) ∈ Eload. A minimum pressure difference Δpmin has to be applied by the grid in

order to enable the flow through all components, cf. [8].

• Pipes Epipe are passive elements in the grid, meaning that the change in pressure and

temperature are not actively controlled but resulting from the mean mass flow through the

pipe and the soil temperature Ta:

Tend
i j =

(
Tstart

i j − Ta

)
exp

(
− li jλi j

cp �mi j

)
+ Ta , for all (i, j) ∈ Epipe, (8)

pi − p j = κi j fD,i j
8li j

π2ρd5
i j

�m2
i j + ρg(zj − zi), for all (i, j) ∈ Epipe, (9)

compare [9, 23]. The coefficient λi j denotes the heat transferred through the isolation per

pipe length and temperature difference between water and soil in W m−1 K−1. Furthermore,

fD,i j is the Darcy friction factor which is can be calculated by the Colebrook-White equation

1√
fD,i j
= −2log10

(
εi j

3.7di j
+

2.51

Rei j
√

fD,i j

)
(10)

depending on the inner roughness εi j and the diameter di j of the pipes, as well as the

Reynolds number Rei j . The correction factor κi j is introduced in eq. (9) to account for

the pressure loss due to bends. The constants κi j , di j and εi j are grid parameters that are

assumed to be well known. Evidently, ρ = 997 kg m−3 is the density of water and zj − zi
is the difference of altitude between the nodes j and i.

• The heating edges Eheating are introduced to serve as slack edges to fulfill the law of energy

conservation in the grid. Therefore the equations

Tend
i j = Tset

i j for all (i, j) ∈ Eheating (11)

p j = pi for all (i, j) ∈ Eheating . (12)

restrict only the temperature at the end of an edge to be at a fixed set-point Tset
i j while the

pressure does not change.
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• Likewise, the pump edges Epump are introduced as slack edges where the temperature

Tend
i j = Tstart

i j , for all (i, j) ∈ Epump

i j , (13)

does not change. Typically, the model has only one heating and one pump edge which

are directly connected in series and represent the largest heating plant in the network.

The pressure difference between the supply side and the return side is at its highest at the

heating plant and decreases with increasing distance. The demand edge (ν,w) ∈ Eload

with the lowest pressure difference is the so called worst point of the network. In real

life networks this point is well known. The typical control scheme consists of measuring

the pressure difference at this point and adjusting the pump pressure in such a way that

the requirement in eq. (7) is just met for the worst point. Additionally an overall pressure

level has to be maintained to prevent evaporation. These restrictions are mimicked in our

model by fixing the pressures

pν = p0, pw = p0 −Δpmin, (14)

with a suitable setpoint value p0 measured in bar.

The functional relations (2) – (14) form a system of nonlinear equations which are summarized

by the operator e(y,θ,η) in a state equation

e(y,θ,η) = 0, (15)

which has a unique solution y(θ,η) for given consumer demands θ and given set-point values

η � (p0,Δpmin,pstart
i j ,T

set
i j ) as introduced before. The proof of the uniqueness and existence of

the solution can be done analogous to [9]. We solve eq. (15) by a Newton-method with projected

gradients where the starting point is determined after a fixed point iteration according to [9, 23].

3 BAYESIAN INFERENCE AND OPTIMAL EXPERIMENTAL DESIGN
Model-based optimal design of experiments has the task to find a setup of experimental

conditions, like sensor positions and control mechanisms, such that the model parameters can

be estimated with minimal variance. In our setting we want to find optimal sensor positions in

district heating networks such that the uncertainty in the estimated demand values θ is minimized.

The model equation (15) brings the state y, the demands θ and the set-point values η into a

functional relation. Our aim is to employ temperature-, pressure- and flow-sensors that measure

the components of the solution y(θ,η). However, not all state variables in the network are of

equal interest. We want to exclude the unreasonable sensor positions at the outset to reduce

the dimension of the resulting optimization problem. Therefore, we select only a subset of the

vector y as possible output channels that can be measured by sensors. Let Ξ be such a selection

matrix. Thus, we introduce the overall parameter-to-observable map

θ �→ h(θ) � Ξ · y(θ,η) ∈ Rns (16)

that maps the model parameters to ns quantities of interest that can be directly measured

by sensors. This mapping h(θ) serves as our computer model that is commonly enhanced

by a probabilistic point of view [22] where the collected data z is assumed to be subject to

observational noise which is modeled as a random variable ε:

z = h(θ) + ε . (17)
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Within a Bayesian framework, the posterior probability distribution of the estimated param-

eters is determined by the Bayes formula. Let γ > 0 and π0 ∈ N(θ0,Γ0/γ) be a Gaussian prior,

capturing the a priori knowledge we have about θ. Furthermore, let ε ∈ N(0, Σ) be a Gaussian

random variable with density ρ and noise covariance matrix Σ. We assume that the measure-

ments obtained from different sensors are independently distributed and thus Σ is a diagonal

matrix. Considering eq. (17), the data likelihood π(z | θ) has thus the density ρ(z− h(θ)). Then

the posterior π(θ | z) is given by

π(θ | z) ∝ π(z | θ)π0

= exp

(
−1

2
‖z− h(θ)‖2

Σ−1 −
γ

2
‖θ − θ0‖2

Γ –1
0

)
,

(18)

where ‖x‖A �
√
x�Ax is the weighted norm of a vector x with a matrix A. The maximum

a posteriori estimator (MAP) is a point θ that maximizes this posterior probability distribution

function:

θ(z) � argminθ

(
1

2
‖z− h(θ)‖2

Σ−1 +
γ

2
‖θ − θ0‖2

Γ –1
0

)
, (19)

compare [22].

In our case, the parameter-to-observable map is nonlinear and thus one cannot expect to

obtain a posterior probability distribution that yields confidence regions which are analytically

tractable. Therefore, we linearize the mapping θ �→ h(θ) at the MAP point θ to obtain a

Gaussian posterior whose covariance matrix is given by

Cpost

(
θ
)
=
(
J� Σ−1 J + γ Γ –1

0

)−1

, (20)

where J is the sensitivity matrix which is computed by the implicit function theorem:

J �
∂ h
∂ θ

����
θ=θ

= −Ξ
[
∂e

(
y(θ,η),θ,η)
∂ y

]−1
∂e

(
y(θ,η),θ,η)
∂ θ

(21)

The confidence region G(θ,Cpost, α) around the MAP point θ to a level 1 − α, where α ∈ (0,1),
has then the analytical expression

G
(
θ,Cpost, α

)
�

{
θ ∈ Rnp : (θ −θ)� C –1

post(θ −θ) ≤ χ2
np
(1 − α)

}
, (22)

where χ2
np
(1 − α) is the quantile of the χ2 distribution with np degrees of freedom, see [10].

We now introduce weights ωk ∈ {0,1} for each predefined sensor position k = 1, . . . ,ns such

that ωk = 1 if, and only if, sensor k is used. Set Ω � diag(ω1, . . . ,ωns
) as the weight matrix

containing the vector ω on its diagonal. The knowledge received from the used sensors is added

to the noise model ε ∈ N(0,Ω−1 Σ), whereby a division by zero is set to infinity. This has

the meaningful interpretation that an unused sensor yields an infinitely large covariance in the

corresponding output channel, i.e., we know nothing about that quantity of interest.

These weights ω directly influence the MAP point

θ(z;ω) � argminθ

(
1

2
‖z− h(θ)‖2

Ω Σ−1 +
γ

2
‖θ − θ0‖2

Γ –1
0

)
, (23)
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the sensitivity J in eq. (21), the posterior covariance matrix of the parameters

Cpost

(
θ(z;ω),ω )

=
(
J� Ω Σ−1 J + γ Γ –1

0

)−1

, (24)

as well as the confidence region in eq. (22), compare [2, 14].

In an optimally designed experiment, a fair compromise between the cost c ∈ R
ns
+ of the

used sensors and a measure Ψ of Cpost, representing the information gain by these sensors, is

obtained. In order to reduce the computational complexity of the following problem and since z
is difficult to obtain or not available beforehand, we set θ(z;ω) = θ0 to an initial MAP estimation

and keep it constant through the optimization. Let κ > 0 be a penalty factor and let ‖·‖0 be the

0-"norm". We consider the optimal experimental design problem

min
ω∈{0,1}ns

Ψ
[
Cpost

(
θ0,ω

) ]
+ κ

ns∑
k=1

ck ‖ωk ‖0 (25)

If ns is large, problem (25) is very difficult to solve due to combinatorial explosion. Therefore,

we perform a relaxation on the domain of definition of ω and replace the discontinuous penalty

by a smooth function Pδ, where δ ∈ (0,1], which converges to the 0-"norm" for δ → 0. For

δ = 1 this function has the form Pδ=1(ω,c) � c�ω, otherwise

Pδ(ω,c) �
ns∑

k=1

ck fδ(ωk), for δ ∈ (0, 1
2
), (26)

where fδ(x) : [0,1] �→ [0,1] is continuously differentiable and approximates the 0-"norm", see

[1] for more details. The relaxed optimization problem

min
ω∈[0,1]ns

Ψ
[
Cpost

(
θ0,ω

) ]
+ κ Pδ(ω,c) (27)

is first solved for δ = 1 and then by a reiteration scheme for diminishing δ the optimal sensor

weights ωopt tend to become sparse and {0,1}-valued for a suitable choice of κ > 0, cf. [1, 2].

We solve problem (27) by standard BFGS-SQP methods [20].

According to [12], the most prominent design criteria Ψ measuring the size of a matrix C are

the following:

ΨA = trace(C), ΨD = det(C), ΨE = λmax(C). (28)

It is known that problem (27) with δ = 1 is convex for Ψ = ΨA and Ψ = ΨD, see [17]. However,

using ΨE requires non-smooth methods [13]. In this paper, we choose to compute the trace of

the posterior covariance matrix.

4 NUMERICAL RESULTS FOR A REAL-SIZED HEATING NETWORK
We demonstrate our method for the heating grid in the district Darmstadt-Nord of the German

city Darmstadt. The network is operated by the ENTEGA AG, the heat is provided by a central

heating plant and distributed to 67 consumers through a pipe network of approximately 14.2 km

length. The graph representation of the grid consists of 372 edges and 306 nodes.

Over the course of a day significant changes of overall demands as well as the relative

distribution between the consumers is observed in practice. In the following we analyze the

experiment design for each hour of the day individually and compare the results. Final investment

decisions would have to be taken such that they yield good performance in all hours of the day.

The hourly index is omitted in this section.
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Figure 1: Network structure of the considered heating grid. Consumers with hourly measured

demands are marked as circles, unmeasured as triangles. Green markers represent residential

buildings, red ones commercial buildings and blue represent buildings in the group others.

4.1 Prior demand estimation
The prior load distribution N(θ0,Γ0/γ) is estimated based on available consumption data.

For 56 consumers the load is directly measured with hourly resolution. Let KM be the index set

of all measured consumers and let KU be the index set of all unmeasured. The mean parameter

θ0, i for the measured demand �Qd
i of consumer i is given by the mean consumption over all

observed days d

θ0, i =
1

D

D∑
d=1

�Qd
i , for all i ∈ KM . (29)

Unmeasured consumers j ∈ KU are paired with similar measured consumers j∗ ∈ KM. The

expected demand is given by scaling the expectation value of the paired consumer by the

associated total consumption that was also available for us, �Q2019
j , respectively, �Q2019

j∗ :

θ0, j =
�Q2019

j

�Q2019
j∗
θ0, j∗, for all j ∈ KU . (30)

The return temperatures Tset for each consumer are estimated by the same procedure. Different

heat consumption profiles can be explained by the varying outdoor temperatures and by different

consumer behavior [6]. Grouping consumers for whom similar behavior is expected leads

to three groups. The first group Gres, being residential buildings, consist of 40 multi-family

houses and one single-family house. The second group GTC is made up by 10 commercial

buildings. The remaining 17 buildings form the group Gother and are not expected to show

strong similarities. Fig. 1 shows the distribution of demand classes in the network.
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(a) covariance matrix (b) correlation matrix

Figure 2: In 2a the covariance matrix Γ0 for the heat demand �Q hour 3 to 4 pm is shown. The

first block represents the group of measured residential buildings, followed by the unmeasured

residential buildings for which all correlation coefficients are set to zero. The second block

represents measured and unmeasured commercial buildings, the third the buildings of the "other"

group. The variances can differ by several orders of magnitude due to the largely different size

of the buildings. 2b shows the corresponding correlation matrix normalized by the standard

deviations.

The standard deviation σi for the measured demands i are estimated by

σi =

√√√
1

D

D∑
d=1

( �Qd
i − θ0, i

)2
, for all i ∈ KM . (31)

Within the first two groups the normalized standard deviations σi/θ0, i are close-by for all hourly

measured consumers. The standard deviation of the unmeasured demands

σ j =
θ0, j

|KM |
∑

i∈KM

σi

θ0, i
, for all j ∈ KU, (32)

are therefore estimated by scaling the mean normalized variations by the estimated demand

expectations. For the group Gother all standard deviations can be gathered directly from the data.

The entries Γ0, i j for the prior covariance matrix Γ0 can now be gathered by

Γ0, i j =

⎧⎪⎪⎨⎪⎪⎩
σ2

i , if i = j,
1

D−1

∑D
d=1

( �Qd
i − θ0, i

) ( �Qd
j − θ0, j

)
, if i, j ∈ Gres ∩KM or i, j ∈ GTC ∩KM,

0, else.

(33)

The covariance coefficients between two groups as well as for consumers in group Gother are set

to 0, because no similarity in the demand patterns are expected here. When ordered according

to the groups, the block structure of the covariance matrix becomes clearly visible as it is shown

in Fig. 2a for the hour 3 to 4 pm.
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The factor γ > 0 must be large enough to achieve regularity of the covariance matrix, see

eq. (24), and to make the solver of the optimization problem (27) numerically stable. This factor

also brings the prior into proper scaling when added to the data misfit part of the covariance

formula in eq. (24). In our case, taking γ = 5 × 103 was sufficient.

4.2 Sensors
Two different kinds of sensors are considered, namely pressure sensors and power flow sensors

measuring three values simultaneously. There are two parallel pipes in the grid, one delivering

hot water and one returning the cold water to the heating plant. Let (i, j) ∈ Epipe be a pipe on

the return side (cold water) and (k, l) ∈ Epipe be the corresponding parallel pipe on supply side

(hot water). A potential power flow sensor would then measure the mass flow �mi j , which is

equal for both pipes, as well as the temperatures Tend
i j and Tstart

kl . The power transmitted along

the pipe-pair is given by the temperature difference between the two pipes and the mass flow

through them:

Pkl
i j = cp �mi j

(
Tend

i j − Tstart
kl

)
. (34)

There are 150 plausible positions for such heating power sensors and as many pressure sensor

locations as nodes in the network are available, altogether we obtain ns = 456 candidate sensor

positions.

Each sensor has a different accuracy when measuring the quantities of interest. The pressure

sensors operate with a 0.04 % precision of the measured pressure value: Δ pi = 0.04 % · pi, for

all i ∈ V. The mass flow �mi j is determined by measuring the flow speed with a fixed accuracy.

The accuracy of the mass flow therefore depends on the pipe diameter di j and the density of

water ρ:

Δ �mi j = ρ
d2

i j

4
· 0.012 m s−1, for all (i, j) ∈ E . (35)

For the temperature measurement, we have Δ T i = ΔTend
kl = Δ Tstart

kl = 0.6 ◦C, for all i ∈ V
and (k, l) ∈ E. These values form the diagonal entries of the covariance matrix Σ of the noise

model ε, see eq. (17). The non-diagonal entries in Σ are set to zero since we assume the sensor

readings to be statistically independent.

4.3 Computational results
We solved the state equation (15) by a Newton-method with projected gradients after the

starting point had been computed by a truncated fixed-point iteration. The usage of projected

gradients enhanced the convergence properties, since the network was designed to yield only

positive mass flows �m. After computing the sensitivity matrix J , see eq. (21), we solved

problem (27) with a standard SQP-method where the Hessian is constructed by BFGS-updates.

The reiteration scheme with the penalty term was performed starting with δ1 = 1 and then

updating δk+1 � δk/2 for k = 1, . . . ,6. Thus, in a few reiterations, the optimal sensor weights

became sparse and almost {0,1}-valued. We additionally want to point out that the solution

was found after approximately 120 function and 110 gradient evaluations in total for each hour,

respectively.

We pick the hour of the day with the highest heat demand, which was 9 to 10 am, and

compare the results for different values of κ in Tab. 1. We also generated 500 random vectors
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(a) Costs of optimal sensors for

different κ and hours of the day

(b) Optimized sensor positions for

7 am, κ = 7 × 10−5 and 9 am, κ = 1 × 10−4

Figure 3: 3a The optimized set of sensors depends on the chosen value for κ as well as the hour

of the day due to different prior assumptions for the demands. Sets resulting in equal costs are

usually very similar or equal as in 3b. This indicates that the proposed approach leads to sensor

positions that perform well for all hours.

ωrnd and computed the average of their respective ΨA,ΨD and ΨE criteria, to compare with an

optimal selection of ω and with no sensors at all. We observe that the smaller the value of

κ the more sensors are used and the smaller is the design criterion. However, the greater the

number of installed sensors the higher the costs. The improvement of prior information about

the demands which is achieved by using sensors at the optimized positions ωopt, is between

56 % and 64 % when evaluating ΨA, clearly over 99 % when using ΨD and between 71 % and

77 % when evaluating ΨE. A random selection of an equal number of sensors produces a much

smaller difference while the computational efforts are much higher.

As seen in Fig. 3a, the optimal trade-off between the cost of sensors and the design criterion

varies for the different hours of the day for a constant κ resulting in a different number of

sensors and therefore different costs at the optimal solution. This behavior can be attributed

to the different prior assumptions over the demands for each hour of the day. Fig. 4 shows the

design criteria ΨA over the cost for the sensors for optimized sensor networks for each hour

individually. By changing the value for κ the optimum can be altered along these estimated

optimality curves. It can be seen from this representation that the curve steeply decreases for

low numbers of sensors and flattens for higher numbers. This is similar to a pareto-front known

from multi-objective optimization. Additionally, it seems as if the optimality curves tend to

Table 1: Comparison of the solution of problem (27) for different κ from hour 9 to 10 am. We

additionally computed the design criteria ΨD and ΨE.

# ‖ω‖0 c�ω κ ΨA ΨD ΨE

0 0 - - 23.46 1.65 × 10−127 7.91

ωrnd 7 - - 22.60 1.20 × 10−127 7.62

ωopt 7 1.630 × 104 1.2 × 10−4 10.27 3.48 × 10−131 2.28

ωrnd 9 - - 22.58 1.14 × 10−127 7.65

ωopt 9 2.202 × 104 0.7 × 10−4 9.28 3.45 × 10−132 2.00

ωrnd 15 - - 21.97 8.98 × 10−128 7.47

ωopt 15 3.546 × 104 0.3 × 10−4 8.55 5.55 × 10−133 1.80
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Figure 4: By choosing κ, a trade-off can be made between a better information score ΨA and

lower costs. The lines along the weighting moves tend to shift towards higher prices and worse

scores for increasing θ0 and σ2. The values given in these figures are the mean values for all

consumers. It can be seen that there are also some exceptions to this trend.

shift towards higher costs as well as higher ΨA-values with overall higher demands and higher

variances for the demands. Even though these trends do not hold true for all demand priors

examined, it should be taken into account when choosing a κ for practical applications. Fig. 3b

shows the position of sensors for the hour 7 am and κ = 7 × 10−5 which is exactly the same as

the set for the hour 9 am choosing κ = 1 × 10−4. Similarly as in this example the chosen sensor

positions for different hours tend to match each other closely if κ is set in such a way that similar

cost arise in the optimum. It can therefore be expected that a set of sensors optimized for one

hour provides good results for the other hours as well.

The mapping y = h(θ) can be used to estimate the network’s state y. Since we assume normal

distributed uncertainty for the consumers demand, we can use the linearised model to estimate

an normal distribution for the state yest ∈ N (
y0, Σy

)
with the covariance matrix Σy given by

Σy ∝ J Cpost J
�, (36)

where J is the sensitivity matrix from (21). In Fig. 5 the estimated states for the prior and

the posterior estimation over the demands for hour 9 am and κ = 1 × 10−4 are compared, by

calculating the change in variance for each individual state variable. The graphic shows the

temperatures variance as node color and the mass flow variance as edge color for the supply

side of the network. It can be seen directly, that the uncertainty does not only decrease near the

measurements, but for almost all state variables. When separating the grid into different sections

it seems as if within each section the gains are relatively even, but differ strongly between the

sections. This can be motivated by the different consumer structure. By comparing with Fig. 1 it

can be observed that the lowest section on the right side mostly consists of residential buildings.

For these the variances were already rather low for the prior assumption as seen in Fig. 2a. In the

middle section on the right side, many consumers are classified as "others", showing comparable

large demands and large variations in the prior. Therefore the relative gain is larger for this area.
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Figure 5: The linearized model can be used as a state estimator. Using the posterior estimation for

the consumers demand significantly reduces the uncertainty compared to the prior assumption.

This plot shows the uncertainty change for the temperatures (node color) and the mass flow

(edge color) for the supply side of the network.

5 CONCLUSION
In this paper we presented a Bayesian approach for a sensor placement problem in heating

networks to improve the reliability of our knowledge about one of the most important system

parameters – the consumer’s heat consumption. The sensor placement task can be interpreted

as an optimal experimental design problem which we modeled using the solution of the state

equation of the heating network, its sensitivity matrix and the Bayes formula for the parameter’s

covariance. We solved this optimization problem by a BFGS-SQP method with a reiteration

scheme to obtain sparse and almost {0,1}-valued sensor weights. The optimally positioned

sensors measure temperatures, pressures and mass flows in the network at a trade-off between

small covariance values and low costs. In subsequent numerical experiments we applied our

method to the heating network of the northern district of the German city Darmstadt. We showed

that the optimal placement of a few sensors significantly increased the informational value of the

uncertain demands at low cost when compared to randomly placed sensors. This shows that our

method is superior to Monte-Carlo approaches. An enhanced knowledge of the demand values

provides the basis for a detailed monitoring of the network state in order to reduce industrial

waste-heat.

Even though the numerical results are very promising, some barriers remain for practical use

of this approach. In order to optimize the sensor positions, a prior distribution for the demands is

required. For our investigated network, this was done by analyzing each consumer’s past demand

which was measured with hourly resolution for most buildings. However, measurements of this

kind are rather uncommon in district heating networks. The expected demand as well as the

variance of the demands who were not measured, were estimated by comparing the buildings

with measured ones. In order to treat these consumers equally to the measured ones, the non-
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diagonal entries of the covariance matrix should be estimated as well. However, this task is

not trivial since estimating the coefficients, e.g., by the mean of the coefficients in the same

buildings group, will most likely lead to a matrix which is not positive definite and therefore no

valid covariance matrix.

The optimal sensor positions found in our setting may differ from the sensors that would

be chosen in real life application. For example, sensors are still placed in the connection

lines between single buildings and the main grid, which is equivalent to directly measuring

the demand at the consumers heat exchange station. These measurement positions would be

unsuitable for real life applications due to fast demand changes that are likely to occur. However,

this possibility is not considered by the steady state model. Another example is given by the

two pressure sensors in Fig. 3b, which are next to each other. In our model, this is equivalent to

measuring the mass flow through this pipe as given by (9). For practical applications this would

not be a preferable setup, as the pressure differences between the two nodes are too small to gain

usable information.

In order to install sensors in real district heating grids, many additional factors need to be

taken into account, e.g., how well a potential sensor position could be reached, for installation

or maintenance. The optimization scheme proposed in this paper can contribute to this decision

process by suggesting optimal sensor positions under simplified conditions or by comparing

different possible settings in the context of the chosen model.
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