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Abstract. Surrogate modeling is a field of increasing importance in the field of autonomous
driving simulations. Surrogates are used to provide a time efficient model that would save long
hours of simulation runs and save computational power. The field of Search Based Testing,
which is the ultimate field of application of the model presented in this paper, requires vary-
ing parameters to cover the whole parameter space. Available methods tend to be very time
consuming and unfortunately fail to cover the whole input space.

The surrogate model presented in this paper is inspired by work of Schobi et al. [1], which
were the first to develop methods that improve the mean prior function of a Gaussian process
to obtain an improved posterior. This paper develops a similar model, but makes use of the
advantages provided by the research done in the field of Sparse Grids to improve the Gaussian
Process posterior.

The obtained Gaussian posterior is tested using well known mathematical functions which
are used to quantify the accuracy of the model and to provide a basis for comparing it to other
methods available in the field. The application fields of the resulting model range from optimiz-
ing a possibly constrained objective function for find global optima, to performing reliability
analysis over a defined parameter space.
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1 Introduction

Autonomous Driving Software is yet another field with high safety requirements. Before
a self-driving car can be allowed to freely drive in the streets, it should prove to be—even in
its worse case scenarios—better than a human driver. Meeting these standards would require
running complex systems with expensive simulations and long hours of testing. Performing
accurate tests includes trying out many driving scenarios with different input parameters. These
simulation runs, until today, struggle to explore the whole parameter space and thus raise the
need for developing accurate surrogate models that are inexpensive to run under different sce-
narios.

Great efforts have been made in developing surrogate modeling techniques by combining
several methods in models that highlight the best of each method working separately. Current
state-of-the-art work is presented by Schobi et al. in [1] in and [2], where the proposed method
is to combine Polynomial Chaos Expansion (PCE) techniques with Gaussian Processes in a
method called PC-Kriging. This method splits the meta-modeling technique into two parts: the
PCE captures the global trend of the function, while the Gaussian Process focuses on the local
features.

This paper presents an alternative approach which uses Sparse Grids instead of PCEs. The
new method allows for adaptivity already in the global part of the model through the use of
Ritter-Novak Refinement. We call this method ”SG-Kriging”, with reference to the original
”PC-Kriging” method that was developed by Schobi et al. in [1].

Sparse Grids [3, 4] are a hierarchical discretization technique based on a regular grid-based
discretization that covers the input space. In its most basic form, each discretization level adds
extra grid points half-way in between the already existing points from the previous level to
provide finer computations. Sparse Grids were further studied in [5] in their spatially adaptive
variants to suit high-dimensional problems and in [6] to have hierarchical B-Splines as ansatz
functions, instead of the simpler piece-wise polynomial standard approach.

The SG-Kriging method explained in this paper performs a function interpolation using B-
Spline-based Sparse Grids, and then uses the result as a mean prior for the Gaussian Process.
The developed model aims to be: flexible—so that it can be applied to a variety of functions and
testing scenarios, adaptive—so that the choice of the SG points can meet a preset requirement
of exploration vs exploitation and is capable of being extended to higher-dimensional problems.
The scope of this paper is however limited to only testing on a two-dimensional function, and
higher dimensions will be tackled in later work.

This paper is divided into the following sections: Section 2 describes the main motivation
of the paper and summarizes the current state-of-art in the field of surrogate modeling. It also
explains the potential benefits of using Sparse Grids as priors for Gaussian Processes. Section 3
describes the background theory by separately explaining two commonly used meta-modeling
techniques, namely Sparse Grids and Gaussian Processes. Section 4 combines these two meta-
modeling techniques in a method called SG-Kriging. Moreover, Section 5 describes the ex-
perimental settings that are used for testing, while Section 6 presents first results of testing the
developed method on well-known mathematical functions and provides comparisons to each of
the individual methods. Finally, Section 7 summarizes the paper and suggests future work to
improve the resulting SG-Kriging model.
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2 Current State of the Art and Motivation

The first contribution to developing a Gaussian Process with advanced prior knowledge ob-
tained from an external meta-modeling technique came by Schobi et al. in [1]. In that research,
Polynomial Chaos Expansions (PCEs) are used to replace the original trend of the Gaussian Pro-
cess. In their core, PCEs are used to represent a random variable using orthonormal polynomi-
als, similarly to how a Fourier Series expansion represents a function as a sum of trigonometric
functions. Results by Schobi et al. show how adding sparsity can ease the curse of dimension-
ality by optimally selecting the number of these polynomials and eliminating unnecessary ones.
Furthermore, their definition of the least squares minimization problem shows how to optimally
select the expansion coefficients of these polynomials. Their method of combining PCEs with
Gaussian Processes produces results that outperform each of the methods implemented sepa-
rately.

The main motivation of of this work comes from the increasing interest and research devel-
opments in the field of Sparse Grids over the past years. This paper highlights the advantages
of Sparse Grids and argues that using them to add to the prior knowledge of a Gaussian Process
can produce an improved posterior. The main advantages that show promising results:

e The availability of SG** [7], an open-source Sparse Grids toolbox that provides an effi-
cient way of using Sparse Grids in various flavors ranging from the core basics to more
advanced techniques.

* Incorporating adaptivity in Sparse Grids as discussed in [8] and thus driving the refine-
ment where really required. This saves computational time in regions that are not of
interest.

* The development of B-Spline-variants of Sparse Grids and resolving the previously ex-
isting issues around boundary treatment by introducing so-called hierarchical not-a-knot
(nak) B-Splines as presented in [6].

* The extension of Modified nak B-Splines to provide a trade-off between spending (too
many) grid points on the boundaries and eliminating boundary points. This was achieved
in [9] based on a similar approach for piece-wise polynomial bases in [5] to provide an
improved estimate of boundary values without the need to discretize those boundaries.

Based on these contributions, this paper presents the use of Sparse Grids to obtain the prior
knowledge of a Gaussian Process. Furthermore, in their variant used here, Sparse Grids in-
corporate adaptivity early on in the model and thus provide a finer grid with increased prior
knowledge in the regions of interest of the original function.

3 Theoretical Background

This section explains the theory behind the methods that are used in this paper, namely
Sparse Grids and Gaussian Processes. Short summaries are provided for the aim of explaining
how they will be combined in the next sections. Detailed information is out of the scope of the
paper and can be obtained from the linked references.

3.1 Sparse Grids

Sparse Grids, as introduced by Zenger [3] for the solution of PDEs, are a discretization tech-
nique that is suited for high-dimensional problems. They are based on a hierarchical basis in
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1D, which is then extended to the d-dimensional setting via a tensor product construction. Ex-
amples of these basis functions include piecewise-linear functions and basis splines (B-Splines).
Piece-wise linear (or in general polynomial) functions have the disadvantage that they are non-
differentiable at the grid points. This becomes problematic in applications which require the
use of gradient-based algorithms. On the other hand, B-Splines are polynomials of order p and
are at least p — 1 times continuously differentiable.

In d dimensions, the hierarchical basis functions form a sequence of nested sub-spaces,
which can then be truncated; see [4, 5, 10] for more details. For sufficiently smooth functions, an
optimal truncation with respect to the L? and maximum norms leads to so-called regular Sparse
Grids, and reduces the number of grid points by orders of magnitude with only minor impact
on the approximation accuracy. This mitigates the curse of dimensionality to some extent, the
exponential dependency of the number of discretization points on the dimensionality. Note that
an alternative approach was first introduced by Smolyak in [11] for numerical quadrature and
is know as the Smolyak Rule or the Combination Technique.

The scope of this paper is to use Sparse Grids to build a surrogate model that approximates
a complicated high-dimensional function by a simpler, more efficient approximation. The orig-
inal function could be a black box function or a computationally expensive simulation run. In
either case, unnecessary evaluations should be avoided because they increase computation time
without having a significant improvement on the results. In interpolatory settings, the value of
the surrogate model matches that of the original function at all grid points. In-between grid
points, values are interpolated depending on the selected basis.

3.2 Generating the Regular Sparse Grid

Figure 1 shows a simple example of how a regular Sparse Grid is generated for level 2. The
procedure follows the hierarchical splitting technique. In each subspace shown in Figure 1, a
grid point is spent for the Cartesian product of the respective one-dimensional ones (centers of
the basis functions). For sufficiently smooth functions, an optimal selection of subspaces leads
to a truncation based on the level sum. Combining the grid points of all the four sub-spaces in
this example results in a full-grid, while using only those of the upper triangle (shown in darker
grey in the figure) result in a regular Sparse Grid of level 2. Here, this results in a total of 5
Sparse Grid points rather than the 3 x 3 = 9 for the corresponding full grid.

Figure 2 shows the resulting Sparse Grids for levels 1 to 5 (left to right). The top row shows
grids when boundary points are omitted, while the bottom row includes them. Including bound-
ary points challenges the efficiency of the model. A trade-off is needed between completely
loosing knowledge about the boundary values and including all points. This motivated work
in [5] to modify the hierarchical basis functions to extrapolate at the boundaries so as to in-
clude estimated boundary information without spending any grid points at the boundary. The
idea is that adaptive refinement can then recover boundary information only where it is really
necessary.

3.2.1 From the Piece-Wise Linear Basis to the B-Spline Basis

As already mentioned, piece-wise linear basis functions are problematic as they are non-
smooth (non-differentiable) at the grid points. Work by Valentin in [12] introduced a hierarchy
of basis splines (B-Splines) as alternative basis functions for Sparse Grids, where piece-wise
polynomials are defined between the grid points and are used to interpolate the original func-
tion. These piece-wise polynomials are connected to each other by knots, which are connecting
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Figure 1: Hierarchical Splitting to generate a regular Sparse Grid of level 2 for a two-dimensional function. The
grid on the right shows the 2d regular Sparse Grid.
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Figure 2: Two-dimensional regular Sparse Grid for levels 1, 2, 3, 4, and 5 (from left to right). The top row shows
the results when omitting boundary points, while the bottom row shows the results including them. It can be noted
from the bottom row, that at any level, the number of boundary points exceeds that of non-boundary points. This
increases the computational complexity of the underlying surrogate model.

points between polynomials at which smoothness is ensured. Moreover, [9] discusses that in-
cluding boundary conditions can be dimensionally problematic for B-Splines in Sparse Grids
and therefore presents a solution using not-a-knot boundary conditions. Not-a-knot sequences
are obtained by eliminating the first and last interior knots from the full grid. Furthermore, the
same concept of modifying the basis to include boundary information without spending any
grid points on the boundary is extended to apply to B-Splines.

3.2.2 Spatial Adaptivity in Sparse Grids

Another important contribution by [12] is the introduction of different approaches to spa-
tial adaptivity. Spatially adaptive Sparse Grids at different levels are shown in Figure 3 for the
Ritter-Novak refinement criterion that is targeted to optimzation problems. Unlike the regular
grids shown in Figure 2, where the underlying grid shape only depends on the grid level, spa-
tially adaptive Sparse Grids are sensitive to local features of the function. The grid is no longer
symmetric and finer discretizations can be added in regions of interest to provide more accurate
estimations.
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Figure 3: Intermediate snapshots of spatially adaptive refinement of a two-dimensional Sparse Grid without bound-
ary discretization in an optimization scenario based on a Ritter-Novak refinement criterion.

3.3 Gaussian Processes

In their book about Gaussian Processes [13], Rasmussen and Williams define a Gaussian
Process as a generalization of a Gaussian distribution, applied over functions. The function

(),
f@) ~ N(m(z), k(z,2')), (1)

is said to follow a Gaussian Process with a mean function m(z) and a covariance function
k(x,z"), where x and 2’ are two points in the input space. Covariance functions are defined
using symmetric positive functions called kernels, thus the name covariance kernels. Using
Gaussian Processes to create a surrogate model simply starts with prior knowledge about the
original functions and then incorporates evaluation points to compute the posterior. This poste-
rior function then becomes an efficient approximation of the original function and is thus given
the name surrogate model.

The posterior of the Gaussian Process only requires second order moments of the prior,
namely the mean and the covariance. For the generally used case where the mean prior is zero,
defining the covariance kernel of the process is sufficient to obtain the posterior. The posterior
mean and covariance are calculated as

Meurr (1) = m() + kox (kxx + 02L) 7 (fx — mx), (2)
ksue(7,2") = k(2. 2") — KXy (kxx + 0%1) kax, , 3)
where
x € Rand 2’ € R are two points in the input space,
m(z) € R and mgy,,(z) € R are the mean prior and posterior functions,
k(xz,2") € R and kg, (2, ') € R are the prior and posterior covariance kernels,

X € RN are the evaluation points and fy € R are original function values at these
points. NN is the number of training points, while d is the dimension of the input function,

k.x € RY is the cross—covariance between the training points and the point z in the input
space,

kxx € RY*N ig the cross—covariance between the training points,

The subscripts surr are used because in the next sections that posterior process will define the
end result of the surrogate model. Moreover, the prior mean m(z) will be replaced by Sparse
Grid interpolations to create a Gaussian Process with a sparse prior.
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4 Combining Sparse Grids and Gaussian Processes

The method proposed in this section consists of combining two surrogate modeling tech-
niques to create a more powerful method. In other words, the resulting method consists of
a two step process, where the output of Sparse Grids interpolation becomes the input of the
Gaussian Process and the final result is the sought for surrogate. As already mentioned in the
motivation section, the Sparse Grid toolbox incorporates B-Spline bases of different orders and
allows for adaptivity. Work by Schobi et al. in [1] use Polynomial Chaos Expansions instead of
Sparse Grids for this purpose. In their method, PCEs focus on the global behaviour of the orig-
inal function, while the Gaussian Process analyzes its local properties. Having Sparse Grids as
local priors, local properties can already be incorporated into the surrogate model at an earlier
stage and thus result in a both globally as well as locally accurate surrogate model.

A second challenge for PCEs which is alleviated for Sparse Grid techniques, is posed by
non-parametric distributions. Non-parametric distributions come in handy when dealing with
the initial stages of building a statistical model, such as a kernel density estimator. Before
enough knowledge is obtained to identify which parametric distribution the model belongs to,
non-parametric distributions can be used as they are generalized to suit different classes of
models. PCEs are challenged in this field because their main building block, the orthonormal
polynomial basis, does not exist for non-parametric distributions.

4.1 Notation and Setting Used

To account for the results of the two different meta-modeling methods that are used in this
section, different subscripts are used to describe the different stages. The subscript sg refers
to the first output of the meta-modeling technique, namely after Sparse Grid discretization is
performed. The subscript surr refers to the final result of the whole model, that is the poste-
rior of the Gaussian Process whose original prior was the Sparse Grid interpolation. Moreover,
f (x) refers to the surrogate function approximation, while f,,(z) refers to the original func-
tion. With these notations in mind, fi, () refers to the first stage surrogate function and fu. ()
refers to the final surrogate, which is the end result of this paper. The grid points at which the
function evaluations are performed are denoted as X, where X, refers to the Sparse Grid points
and X, refer to the random points that are originally used to train the Gaussian Process. Since
each evaluation of the original function is very computationally expensive and must be avoided
wherever possible, maximum possible knowledge exploitation must be made of these evalua-
tions once they are performed. For example, once the Sparse Grid meta-modeling technique is
done, X, and fx,, evaluations are obtained. These points can be further included in the training
set of the Gaussian Process and thus expanding the total number of points to Ny, = (Ngg+ Ngp).
This extended dataset is now defined as X, = [Xgz, Xgp| € RN where d is the dimension
over which the original function is defined.

4.2 Resulting Surrogate Model: Gaussian Process with a Sparse B-Spline Prior

Figure 4 shows how the implementation of the end result surrogate model is performed.
First, the original function is interpolated using a Sparse Grid with a B-Spline basis. Different
options exist for this step. B-Splines of first order are simple piece-wise linear functions, while
they converge towards Gaussians for increasing order. Depending on the required accuracy of
the first stage surrogate, fsg(x), the number of sampled grid points and the order of the B-splines
have to be adapted. Note that the subscript X, refers to the evaluation of the respective function
at those grid points, unlike the general function definition f,,;,(«) which can take any numerical
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value based on the input z.

b ReXel S

||

Orig

X,

X

%%

—— fonis(2)

Sparse Gaussian Process

Figure 4: Gaussian Process with a sparse B-Spline prior (SG-Kriging).

The first stage surrogate function fsg(x) is then used to define the Gaussian Process and
acts as the mean function of the prior. To exploit the currently available knowledge about the
original function, the Sparse Grid points X, and the function evaluations at these points ;’(“gg
are then used to expand the training set of the Gaussian Process. Furthermore, Gaussian Process
modeling is carried out in its standard way as explained in Section 3.3. The end result is the
second stage surrogate f;urr(x), which is a more accurate approximation of the original function

and is used to achieve the aim of this paper.

4.3 Hyperparameters of the Surrogate Model

From the definition of the resulting surrogate model as a Gaussian Process with a Sparse
B-Spline prior, several important hyperparameters come into play. The Gaussian process that is
used in this paper has a squared exponential covariance kernel, defined as

(¢ =) (e~ ) )

T “4)
The lengthscale parameter, [ controls the smoothness of the function, while the signal variance
term, o controls the deviations from the mean. A simple hyperparameter optimization algorithm
is implemented in this paper. It is based on Algorithm 2.1 in [13] where the log marginal
likelihood is maximized to obtain optimal parameter values. The current implementation is not
very stable in all cases, and better methods do exist (such as cross validation), but it does create
an improvement for the results obtained here.

ks (x,2') = o%exp —

4.4 Validation of the Surrogate Model

The end result is a surrogate function, fsurr(x), which approximates the original function,
forig(z). Model validation is performed by first generating a mesh that spans over the possible
range of values in the input space. For example, for interpolating a two-dimensional function,
a two-dimensional grid is created to cover the range of possible input values. The grid size is
variable and can be increased to create a finer grid and thus perform the validation over more
evaluation points. Both the original and the surrogate function are evaluated at these points
of the grid and then error measures are calculated to obtain a numerical value resembling the
accuracy of the model against the original function. The grid can be created by random sub-
divisions sizes of the input space or equally sized ones. The formula used to calculate the error
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measures is N . ,
> it (forig(Ti) = fourr ()
Zé\ijfl(fsurr<xi> — florig)?
where N, is the size of the validation set and /iig 1S a constant and it indicates the mean value

of the original function. The formula is the same as was used in [1] and gives a measure of the
relative generalization error of the surogate model.

: (&)

€ITgen =

5 Experiments

This section presents the results obtained from testing the Gaussian Process with a Sparse
Grid B-Spline prior on analytical performance test functions, such as the Rastrigin function.
These functions are chosen because they are well-known in the field of optimization and pro-
vide common ground for benchmarking comparisons. The Rastrigin funciton is a particularly
interesting function because of its multiple local minima in each dimension. The error is com-
puted at the grid points of a regular grid of size 150?; see Section 4.4.

5.1 Scope of Application

In the current work, the method presented here is used to create a surrogate model to ap-
proximate the original function over the entire search space. Therefore, throughout all the
experiments conducted here, the adaptivity criterion is either completely deactivated or set to
a very low value. Adaptivity in the context of Sparse Grids relates the grid refinement to the
value of the original function at the evaluated grid points. For an optimization task, such as find-
ing the global minimum, grid points can be created only in the regions with the lowest known
function values. This aims to obtain a higher degree of accuracy around the global minumum.
Search-based testing, which is the future scope of this project, will benefit from this adaptive
refinement criterion, as it would speed up the search process by guiding it towards obtaining
good solutions (or possibly bad if fail cases are being searched for).

5.2 Rastrigin Function

The Rastrigin function, originally developed by Leonard A. Rastrigin [14], is a non-convex
function that is frequently used to test global optimization algorithms. We selected the Rastrigin
function as it is a very challenging function that represents characteristics of our target scenario:
We have plenty of local minima, and the function is in general smooth. One restriction, however
still remains, namely that there often exists in automated driving scenarios, cases with switches
which can no longer be modeled by a smooth function. Originally it was defined for two dimen-
sions with an input search space x; € [—5.12,5.12] for i = 1, 2. It can, however, be generalized
for higher dimensions. Moreover, the input search spaces in this paper are unit hyper-cubes of
the form z; € [0,1] for i = 1,2, ..., n. Therefore, the Rastrigin function is re-scaled so that its
multiple local minima lie in this reduced search space between 0 and 1. We use the Rastrigin
function in the form

2
fl@) =20+ ((10z; — 4)* = 5eos2r(10z; — 4)) forz; € [0,1], (6)

i=1

see Figure 5 for an illustration. The factor 10 scales the function to create multiple local minima
in the reduced search space, while the shifting by 4 shifts the global minimum so that it is no
longer located at the center of the Sparse Grid.

230



Naya Baslan, Julian Schmidt, Alexander F. Kerschl and Dirk Pfliiger

Response Contour Plot Rastrigin Function 105 Response Surface Plot Rastrigin Function
90
100
75
80
60 60 y
40
[0.4,0.4] | a5
20
04 global min
L 30
-
0.2 4
® k15
B * @
0.0 T r T —a

0.0 0.2 0.4 0.6 0.8 10

Figure 5: The scaled and translated Rastrigin function as used in the experiments. It is smooth with many local
minima and a single global minimum.

6 Results and Comparison

This section uses the Rastrigin function to compare between the different surrogate model
types. The aim of this part is to view the performance of the Gaussian Process and the Sparse
Grids as separate surrogate modeling techniques and compare it to the combination between
the two individual methods. First, the pure Gaussian Process is tested, i.e., one with zero prior
knowledge. Second, the Sparse Grid method is tested. And third, the two methods are com-
bined, where the Sparse Grid surrogate is used as a prior for the Gaussian Process. Violin plots
are used to display the results, as they depict both the statistics of the results as well as their
density. The width of the violin plot indicates how often a certain value occurs in the data. A
wider section indicates a higher probability of occurrence, while a narrower section indicate
lower probability. The purple marker indicated in the figures shows the mean value, while the
orange marker indicates the median.

6.1 Pure Gaussian Process with Zero Mean Prior

The first set of results in Figures 6 and 7 shows the performance of interpolating the Rast-
rigin function defined by Equation (6) using a pure Gaussian Process. In other words, this is
a standard Gaussian Process that uses a zero mean prior function. The covariance kernel that
was used throughout this paper is the squared exponential kernel. There are two main hyper-
parameters that are defined for this kernel, i.e., the length scale and the overall variance of the
function. The general trend obeserved in the figures is,that the accuracy improves as the num-
ber of samples in increased. The violin plot is used to show the results for 10 experiment runs
per sample size; allowing for statistical as well as distribution inference. Moreover, a simple
hyperparameter optimization algorithm based on maximizing the log mariginal likelihood, as
defined in Algorithm 2.1 in [13] is implemented and its results are show in Figure 7. It can be
noticed that the hyperparameter optimization significantly improves the results.

6.2 Pure Sparse Grids Surrogate

Figure 8 shows the results of creating the surrogate model using only the Sparse Grid method.
For this purpose, modified not-a-Knot B-Splines of degree 3 are used as basis functions. The
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Figure 9: Underlying grid structure for each

Figure 8: Pure Sparse Grids interpolation. number of evaluation points.

plot shows that increasing the number of sampling points does not necessarily improve the
accuracy of the model. The reason behind this is a general problem that exists for interpolating
a function over a discretized grid. Based on the number of grid points that are evaluated and on
their location in the input search space, there is always a risk that the overall function values are
over- or under-estimated based on where the underlying function is evaluated. Figure 9 shows
the underlying Sparse Grid structure of each of the four discretizations. Note that we choose a
grid refinement independent of the target function in this first proof of concept—in particular,
we employ no hyperparameter optimization. For the use as a simple prior for Gaussian Process
Interpolation in a subsequent step, this is, however, already sufficient to achieve good results.

6.3 Combining the Two Methods: Gaussian Process with Sparse Grid B-Spline Prior

This section presents different experiments that show the performance of the SG-Kriging
method under varying settings. It also aims to show that improving a Gaussian Process prior
using a Sparse Grid Surrogate enhances the end performance. Contour plots from the first and
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second stage surrogates as well as violin plots of the generalized error measures of the end
model are used to visualize the performance of SG-Kriging. Finally, comparisons are made be-
tween different levels of priors to show that the developed method is sensitive to the percentage
of Sparse Grid points used.

6.3.1 Preliminary Results of SG-Kriging

A simple experiment, shown in 10 is first performed using only 17 Sparse Grid points for the
prior. The total number of evaluation points used for both the prior and the Gaussian Proces are
shown on the horizontal axis. These preliminary results already show that using this improved
prior reduces the generalized error of the resulting model. Comparing these results to each of
the individual runs in Figures 7 and 8 shows that SG-Kriging behaves better, even at low number
of sampling points.

Moreover, the contour plots in Figure 11 show different levels of Sparse Grid priors being
used. Each of the columns in the figure refer to a different number of Sparse Grid points. The
top row shows all the priors, while the bottom row shows the corresponding posteriors. For
these five experiment runs, the total number of evaluation points for Sparse Grids plus Gaussian
process are fixed to 241. That is, for example, when 47 points are used for the Sparse Grids
prior, the rest adding up to 241 are used by the Gaussian Process to obtain the posterior. These
results show that the prior, with increasing numbers of evaluation points is able to capture the
properties of the Rastrigin function despite its many local minima. Each posterior is shown to
be an improvement over its corresponding prior. It can also be noticed that the Gaussian Process
at all levels improves the performance around the boundaries of the function. This shows that
the extrapolation done by Sparse Grids at the boundaries can be made more accurate using a
Gaussian Process. One question that still remains open is how to choose the optimal number of
Sparse Grid points at different sampling sizes. The next experiment run addresses this issue by
studying the effect of changing the percentage of Sparse Grid points on the end results.

Gaussian Process with B-Spline Sparse Prior

. 17 SG Points
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effgen
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Figure 10:
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Comparing Prior and Posterior for Different Ratios of SG vs GP points
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Figure 11: For a total of 241 evaluation points spent per run, the figure shows how the posterior is an improvement
of the prior. Each column represents one run, with the top figure showing the prior and the bottom one shows the
posterior. Results show that having a Gaussian Process on top of the Sparse Grid surrogate model does indeed
improve the results.

6.3.2 Sensitivity of SG-Kriging to the Percentage of Sparse Grid Points in the Prior

In the third set of experiments, shown in Figure 12 we examine how the ratio between Sparse
Grid points and random training for the Gaussian Process influences the accuracy of the result-
ing surrogate model. The twelve plots show the results obtained from incrementally increasing
the ratio of the number of Sparse Grid points used in SG-Kriging for fixed numbers of total eval-
uation points. The two plots on the extremes, that is the top left one and bottom right one show
the two separate methods. The top left is for a pure Gaussian Process with zero mean prior,
while the bottom right one is for pure Sparse Grids. In the plots, the horizontal axis shows the
total number of evaluation points used, while the legend indicates the percentage of Sparse Grid
points (up to rounding and refinement-based deviations). We observe high errors for both the
individual methods working separately. Moreover, adding Sparse Grid points does improve the
results, indicating that a good prior is crucial. The results tend to worsen again at percentages
of Sparse Grids points higher than 70%, which is indicating that the Sparse Grids method is be-
coming more dominant. The current implementation of Sparse Grids is still not improving the
accuracy with increasing number of evaluation points, as was seen in Figure 8. This limitation
is now affecting the performance of the combination method and will be addressed in future
work. These results show that SG-Kriging is sensitive to the relative and absolute amount of
Sparse Grid points spent, and that some sort of automatic hyperparameter optimization will be
required in the future. However, for up to 80% Sparse Grid points inclusion, the resulting sur-
rogate model behaves better than any of the two separate methods, showing that the proposed
method is promising and raising the interest for its future development.

7 Summary and Future Work

This paper presents first results of an alternative technique to combine two meta-modeling
methods to create an accurate and computationally efficient surrogate model that will be used
instead of the original expensive function. The resulting SG-Kriging method is obtained by
incorporating a Sparse Grid interpolation of a function as the mean prior term of a Gaussian
Process. The resulting Gaussian posterior is what is regarded as the surrogate model that will
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Gaussian Process with B-Spline Sparse Prior
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Figure 12: SG-Kriging using different percentage combinations of Sparse Grid Points. The best results are
achieved for intermediate percentages of Sparse Grid points, depending on the total number of grid points spent.
In most cases, the range of optimal values is 30% — 50% for Sparse Grid points versus Gaussian Process points.

replace the original function and is better for a given total number of evaluation points than
each of the two methods individually. Our results furthermore show for a difficult analytic
function, that the relative amount of effort (function evaluations) spent to improve the prior is
a new important parameter of our proposed SG-Kriging method. This work contains only a
first proof of concept and has many promising extensions. Future research in this topic includes
implementing hyper-parameter optimization algorithms that will optimally calibrate the kernel
and the percentage of the Sparse Grid points. Furthermore, the results presented here have been
obtained for an uninformed adaptive refinement, which calls for further research regarding the
adaptive refinement criterion of the Sparse Grid.
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